Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems
Jiang, Bingbing; Barnett, John B; Li, Bingyun
2009-01-01
There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications. PMID:24198464
Surface analysis monitoring of polyelectrolyte deposition on Ba 0.5Sr 0.5TiO 3 thin films
NASA Astrophysics Data System (ADS)
Morales-Cruz, Angel L.; Fachini, Estevão R.; Miranda, Félix A.; Cabrera, Carlos R.
2007-09-01
Thin films are currently gaining interest in many areas such as integrated optics, sensors, friction, reducing coatings, surface orientation layers, and general industrial applications. Recently, molecular self-assembling techniques have been applied for thin film deposition of electrically conducting polymers, conjugated polymers for light-emitting devices, nanoparticles, and noncentrosymmetric-ordered second order nonlinear optical (NOL) devices. Polyelectrolytes self-assemblies have been used to prepare thin films. The alternate immersion of a charged surface in polyannion and a polycation solution leads usually to the formation of films known as polyelectrolyte multilayers. These polyanion and polycation structures are not neutral. However, charge compensation appears on the surface. This constitutes the building driving force of the polyelectrolyte multilayer films. The present approach consists of two parts: (a) the chemisorption of 11-mercaptoundecylamine (MUA) to construct a self-assembled monolayer with the consequent protonation of the amine, and (b) the deposition of opposite charged polyelectrolytes in a sandwich fashion. The approach has the advantage that ionic attraction between opposite charges is the driving force for the multilayer buildup. For our purposes, the multilayer of polyelectrolytes depends on the quality of the surface needed for the application. In many cases, this approach will be used in a way that the roughness factor defects will be diminished. The polyelectrolytes selected for the study were: polystyrene sulfonate sodium salt (PSS), poly vinylsulfate potassium salt (PVS), and polyallylamine hydrochloride (PAH), as shown in Fig. 1. The deposition of polyelectrolytes was carried out by a dipping procedure with the corresponding polyelectrolyte. Monitoring of the alternate deposition of polyelectrolyte bilayers was done by surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), specular reflectance infrared (IR), and atomic force microscopy (AFM). The surface analysis results are presented through the adsorption steps of the polyelectrolytes layer by layer.
Xiang, Yan; Lu, Shanfu; Jiang, San Ping
2012-11-07
As one of the most effective synthesis tools, layer-by-layer (LbL) self-assembly technology can provide a strong non-covalent integration and accurate assembly between homo- or hetero-phase compounds or oppositely charged polyelectrolytes, resulting in highly-ordered nanoscale structures or patterns with excellent functionalities and activities. It has been widely used in the developments of novel materials and nanostructures or patterns from nanotechnologies to medical fields. However, the application of LbL self-assembly in the development of highly efficient electrocatalysts, specific functionalized membranes for proton exchange membrane fuel cells (PEMFCs) and electrode materials for supercapacitors is a relatively new phenomenon. In this review, the application of LbL self-assembly in the development and synthesis of key materials of PEMFCs including polyelectrolyte multilayered proton-exchange membranes, methanol-blocking Nafion membranes, highly uniform and efficient Pt-based electrocatalysts, self-assembled polyelectrolyte functionalized carbon nanotubes (CNTs) and graphenes will be reviewed. The application of LbL self-assembly for the development of multilayer nanostructured materials for use in electrochemical supercapacitors will also be reviewed and discussed (250 references).
Electrostatic Interactions and Self-Assembly in Polymeric Systems
NASA Astrophysics Data System (ADS)
Dobrynin, Andrey
Electrostatic interactions between macroions play an important role in different areas ranging from materials science to biophysics. They are main driving forces behind layer-by-layer assembly technique that allows self-assembly of multilayer films from synthetic polyelectrolytes, DNA, proteins and nanoparticles. They are responsible for complexation and reversible gelation between polyelectrolytes and proteins. In this talk, using results of the molecular dynamics simulations and analytical calculations, I will demonstrate what effect electrostatic interactions, counterion condensation and polymer solvent affinity have on a collapse of polyelectrolyte chain in a poor solvent conditions for the polymer backbone, on complexations and reversible gelation between polyelectrolytes and polyamholytes (unstructured proteins), on microphase separation transitions in spherical and planar charged brushes, and on a layer-by-layer assembly of charged nanoparticles and linear polyelectrolytes on charged surfaces. NSF DMR-1004576 DMR-1409710.
Wang, Dongrui; Wang, Xiaogong
2011-03-01
Graphene/azo polyelectrolyte multilayer films were fabricated through electrostatic layer-by-layer (LbL) self-assembly, and their performance as electrochemical capacitor electrode was investigated. Cationic azo polyelectrolyte (QP4VP-co-PCN) was synthesized through radical polymerization, postpolymerization azo coupling reaction, and quaternization. Negatively charged graphene nanosheets were prepared by a chemically modified method. The LbL films were obtained by alternately dipping a piece of the pretreated substrates in the QP4VP-co-PCN and nanosheet solutions. The processes were repeated until the films with required numbers of bilayers were obtained. The self-assembly and multilayer surface morphology were characterized by UV-vis spectroscopy, AFM, SEM, and TEM. The performance of the LbL films as electrochemical capacitor electrode was estimated using cyclic voltammetry. Results show that the graphene nanosheets are densely packed in the multilayers and form random graphene network. The azo polyelectrolyte cohesively interacts with the nanosheets in the multilayer structure, which prevents agglomeration of graphene nanosheets. The sheet resistance of the LbL films decreases with the increase of the layer numbers and reaches the stationary value of 1.0 × 10(6) Ω/square for the film with 15 bilayers. At a scanning rate of 50 mV/s, the LbL film with 9 bilayers shows a gravimetric specific capacitance of 49 F/g in 1.0 M Na(2)SO(4) solution. The LbL films developed in this work could be a promising type of the electrode materials for electric energy storage devices.
Oded, Meirav; Kelly, Stephen T.; Gilles, Mary K.; ...
2016-07-05
The combination of block copolymer templating with electrostatic self-assembly provides a simple and robust method for creating nano-patterned polyelectrolyte multilayers over large areas. The deposition of the first polyelectrolyte layer provides important insights on the initial stages of multilayer buildup. Here, we focus on two-dimensionally confined “dots” patterns afforded by block copolymer films featuring hexagonally-packed cylinders that are oriented normal to the substrate. Rendering the cylinder caps positively charged enables the selective deposition of negatively charged polyelectrolytes on them under salt-free conditions. The initially formed polyelectrolyte nanostructures adopt a toroidal (“doughnut”) shape, which results from retraction of dangling polyelectrolyte segmentsmore » into the “dots” upon drying. With increasing exposure time to the polyelectrolyte solution, the final shape of the deposited polyelectrolyte transitions from a doughnut to a hemisphere. In conclusion, these insights would enable the creation of patterned polyelectrolyte multilayers with increased control over adsorption selectivity of the additional incoming polyelectrolytes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oded, Meirav; Kelly, Stephen T.; Gilles, Mary K.
The combination of block copolymer templating with electrostatic self-assembly provides a simple and robust method for creating nano-patterned polyelectrolyte multilayers over large areas. The deposition of the first polyelectrolyte layer provides important insights on the initial stages of multilayer buildup. Here, we focus on two-dimensionally confined “dots” patterns afforded by block copolymer films featuring hexagonally-packed cylinders that are oriented normal to the substrate. Rendering the cylinder caps positively charged enables the selective deposition of negatively charged polyelectrolytes on them under salt-free conditions. The initially formed polyelectrolyte nanostructures adopt a toroidal (“doughnut”) shape, which results from retraction of dangling polyelectrolyte segmentsmore » into the “dots” upon drying. With increasing exposure time to the polyelectrolyte solution, the final shape of the deposited polyelectrolyte transitions from a doughnut to a hemisphere. In conclusion, these insights would enable the creation of patterned polyelectrolyte multilayers with increased control over adsorption selectivity of the additional incoming polyelectrolytes.« less
Hess, Andreas; Aksel, Nuri
2013-09-10
The yield stress of polyelectrolyte multilayer modified suspensions exhibits a surprising dependence on the polyelectrolyte conformation of multilayer films. The rheological data scale onto a universal master curve for each polyelectrolyte conformation as the particle volume fraction, φ, and the ionic strength of the background fluid, I, are varied. It is shown that rough films with highly coiled, brushy polyelectrolytes significantly enhance the yield stress. Moreover, via the ionic strength I of the background fluid, the dynamic yield stress of brushy polyelectrolyte multilayers can be finely adjusted over 2 decades.
Polyelectrolyte multilayers: preparation and applications
NASA Astrophysics Data System (ADS)
Izumrudov, V. A.; Mussabayeva, B. Kh; Murzagulova, K. B.
2018-02-01
The review concerns the results of studies on the synthesis of polyelectrolyte coatings on charged surfaces. These coatings represent nanostructured systems with clearly defined tendency to self-assembly and self-adjustment, which is of particular interest for materials science, biomedicine and pharmacology. A breakthrough in this area of knowledge is due to the development and introduction of a new technique, so-called layer-by-layer (LbL) deposition of nanofilms. The technique is very simple, viz., multilayers are formed as a result of alternating treatment of a charged substrate of arbitrary shape with water-salt solutions of differently charged polyelectrolytes. Nevertheless, efficient use of the LbL method to fabricate nanofilms requires meeting certain conditions and limitations that were revealed in the course of research on model systems. Prospects for applications of polyelectrolyte layers in various fields are discussed. The bibliography includes 58 references.
Diffusion of Sites versus Polymers in Polyelectrolyte Complexes and Multilayers.
Fares, Hadi M; Schlenoff, Joseph B
2017-10-18
It has long been assumed that the spontaneous formation of materials such as complexes and multilayers from charged polymers depends on (inter)diffusion of these polyelectrolytes. Here, we separately examine the mass transport of polymer molecules and extrinsic sites-charged polyelectrolyte repeat units balanced by counterions-within thin films of polyelectrolyte complex, PEC, using sensitive isotopic labeling techniques. The apparent diffusion coefficients of these sites within PEC films of poly(diallyldimethylammonium), PDADMA, and poly(styrenesulfonate), PSS, are at least 2 orders of magnitude faster than the diffusion of polyelectrolytes themselves. This is because site diffusion requires only local rearrangements of polyelectrolyte repeat units, placing far fewer kinetic limitations on the assembly of polyelectrolyte complexes in all of their forms. Site diffusion strongly depends on the salt concentration (ionic strength) of the environment, and diffusion of PDADMA sites is faster than that of PSS sites, accounting for the asymmetric nature of multilayer growth. Site diffusion is responsible for multilayer growth in the linear and into the exponential regimes, which explains how PDADMA can mysteriously "pass through" layers of PSS. Using quantitative relationships between site diffusion coefficient and salt concentration, conditions were identified that allowed the diffusion length to always exceed the film thickness, leading to full exponential growth over 3 orders of magnitude thickness. Both site and polymer diffusion were independent of molecular weight, suggesting that ion pairing density is a limiting factor. Polyelectrolyte complexes are examples of a broader class of dynamic bulk polymeric materials that (self-) assemble via the transport of cross-links or defects rather than actual molecules.
Fast Self-Healing of Polyelectrolyte Multilayer Nanocoating and Restoration of Super Oxygen Barrier.
Song, Yixuan; Meyers, Kevin P; Gerringer, Joseph; Ramakrishnan, Ramesh K; Humood, Mohammad; Qin, Shuang; Polycarpou, Andreas A; Nazarenko, Sergei; Grunlan, Jaime C
2017-05-01
A self-healable gas barrier nanocoating, which is fabricated by alternate deposition of polyethyleneimine (PEI) and polyacrylic acid (PAA) polyelectrolytes, is demonstrated in this study. This multilayer film, with high elastic modulus, high glass transition temperature, and small free volume, has been shown to be a super oxygen gas barrier. An 8-bilayer PEI/PAA multilayer assembly (≈700 nm thick) exhibits an oxygen transmission rate (OTR) undetectable to commercial instrumentation (<0.005 cc (m -2 d -1 atm -1 )). The barrier property of PEI/PAA nanocoating is lost after a moderate amount of stretching due to its rigidity, which is then completely restored after high humidity exposure, therefore achieving a healing efficiency of 100%. The OTR of the multilayer nanocoating remains below the detection limit after ten stretching-healing cycles, which proves this healing process to be highly robust. The high oxygen barrier and self-healing behavior of this polymer multilayer nanocoating makes it ideal for packaging (food, electronics, and pharmaceutical) and gas separation applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diamanti, Eleftheria; Gregurec, Danijela; Gabriela, Romero; Cuellar, J L; Donath, E; Moya, S E
2016-06-01
In this manuscript we review work of our group on the assembly of lipid layers on top of polyelectrolyte multilayers (PEMs). The assembly of lipid layers with zwitterionic and charged lipids on PEMs is studied as a function of lipid and polyelectrolyte composition by the Quartz Crystal Microbalance. Polyelectrolyte lipid interactions are studied by means of Atomic Force Spectroscopy. We also show the coating of lipid layers for engineering different nanomaterials, i.e., carbon nanotubes and poly(lactic-co-glycolic) nanoparticles and how these can be used to decrease in vitro toxicity and to direct the intracellular localization of nanomaterials.
Layer-by-Layer Self-Assembly of Plexcitonic Nanoparticles
2013-08-12
nitrate , trisodium citrate tribasic dihydrate, sodium poly(styrene sulfonate) (PSS, MW ~70,000), poly(diallyldimethyl ammonium chloride ) (PDADMAC...Abstract: Colloidal suspensions of multilayer nanoparticles composed of a silver core, a polyelectrolyte spacer layer (inner shell), and a J-aggregate...multilayer architecture served as a framework for examining the coupling of the localized surface plasmon resonance exhibited by the silver core with
Highly magneto-responsive multilayer microcapsules for controlled release of insulin.
Zheng, Chunli; Ding, Yafei; Liu, Xiaoqing; Wu, Yunkai; Ge, Liang
2014-11-20
In this study, magneto-responsive polyelectrolyte multilayer microcapsules were successfully prepared by the formation of shell with biocompatible iron oxide nanoparticles (Fe₃O₄ NPs) and polyallylamine hydrochloride (PAH) by layer-by-layer (LbL) self-assembly technique. The self-assembled microcapsules were characterized by SEM, TEM and zeta-potential analyzer. According to the pH sensitivity of the microcapsule membrane permeability, insulin was encapsulated, with the encapsulation efficiency of 92.08±5.57%. The in vitro release behavior in an external alternating magnetic field indicated that once the magnetic field was applied, the drug release was greatly accelerated. In addition, according to the observed pulse release upon cyclic on-off operations of magnetic field, it could be assumed that the magneto-responsive microcapsules had an excellent "switching on" effect, which might be attributed to the rearrangement of shell structure caused by magnetic nanoparticles twisting and polyelectrolyte chains shaking, hence the increase of microcapsule membrane permeability and the enhancement of insulin release. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Xiaodong; Zhang, Jianxiang; Hu, Qiaoling; Li, Xiaohui
2011-11-01
Polystyrene-poly(acrylic acid)/poly(allylamine hydrochloride) polyelectrolyte multilayer was found to be instable and apt to reconstruct in the pure water. By depositing polystyrene-poly(acrylic acid)/poly(allylamine hydrochloride) multilayer on the polystyrene-poly(acrylic acid) hybrid CaCO(3) templates, novel polyelectrolyte capsules could be prepared after the removal of the templates. The resultant capsules could keep their three-dimensional (3D) spherical shape after being dried at room temperature, dramatically different from the conventional polyelectrolyte capsules based on nonhybrid templates by layer-by-layer procedure. The instable polyelectrolyte multilayer, hybrid templates, and assembly cycles were demonstrated to be three indispensable factors responsible for the formation of this type of 3D stable capsules. The formation mechanism was also discussed in this study. Copyright © 2011 Elsevier Inc. All rights reserved.
Layer-by-Layer Assembled Nanotubes as Biomimetic Nanoreactors for Calcium Carbonate Deposition.
He, Qiang; Möhwald, Helmuth; Li, Junbai
2009-09-17
Enzyme-loaded magnetic polyelectrolyte multilayer nanotubes prepared by layer-by-layer assembly combined with the porous template could be used as biomimetic nanoreactors. It is demonstrated that calcium carbonate can be biomimetically synthesized inside the cavities of the polyelectrolyte nanotubes by the catalysis of urease, and the size of the calcium carbonate precipitates was controlled by the cavity dimensions. The metastable structure of the calcium carbonate precipitates inside the nanotubes was protected by the outer shell of the polyelectrolyte multilayers. These features may allow polyelectrolyte nanotubes to be applied in the fields of nanomaterials synthesis, controlled release, and drug delivery. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photoinduced charge-transfer materials for nonlinear optical applications
McBranch, Duncan W.
2006-10-24
A method using polyelectrolyte self-assembly for preparing multi-layered organic molecular materials having individual layers which exhibit ultrafast electron and/or energy transfer in a controlled direction occurring over the entire structure. Using a high molecular weight, water-soluble, anionic form of poly-phenylene vinylene, self-assembled films can be formed which show high photoluminescence quantum efficiency (QE). The highest emission QE is achieved using poly(propylene-imine) (PPI) dendrimers as cationic binders. Self-quenching of the luminescence is observed as the solid polymer film thickness is increased and can be reversed by inserting additional spacer layers of transparent polyelectrolytes between each active conjugated layer, such that the QE grows with thickness. A red shift of the luminescence is also observed as additional PPV layers are added. This effect persists as self-quenching is eliminated. Charge transfer superlattices can be formed by additionally incorporating C.sub.60 acceptor layers.
Xu, Weinan; Ledin, Petr A; Shevchenko, Valery V; Tsukruk, Vladimir V
2015-06-17
Branched polyelectrolytes with cylindrical brush, dendritic, hyperbranched, grafted, and star architectures bearing ionizable functional groups possess complex and unique assembly behavior in solution at surfaces and interfaces as compared to their linear counterparts. This review summarizes the recent developments in the introduction of various architectures and understanding of the assembly behavior of branched polyelectrolytes with a focus on functional polyelectrolytes and poly(ionic liquid)s with responsive properties. The branched polyelectrolytes and poly(ionic liquid)s interact electrostatically with small molecules, linear polyelectrolytes, or other branched polyelectrolytes to form assemblies of hybrid nanoparticles, multilayer thin films, responsive microcapsules, and ion-conductive membranes. The branched structures lead to unconventional assemblies and complex hierarchical structures with responsive properties as summarized in this review. Finally, we discuss prospectives for emerging applications of branched polyelectrolytes and poly(ionic liquid)s for energy harvesting and storage, controlled delivery, chemical microreactors, adaptive surfaces, and ion-exchange membranes.
Mu, Bin; Lu, Chunyin; Liu, Peng
2011-02-01
The disintegration-controllable stimuli-responsive polyelectrolyte multilayer microcapsules have been fabricated via the covalent layer-by-layer assembly between the amino groups of chitosan (CS) and the aldehyde groups of the oxidized sodium alginate (OSA) onto the sacrificial templates (polystyrene sulfonate, PSS) which was removed by dialysis subsequently. The covalent crosslinking bonds of the multilayer microcapsules were confirmed by FTIR analysis. The TEM analysis showed that the diameter of the multilayer microcapsules was <200nm. The diameter of the multilayer microcapsules decreased with the increasing of the pH values or the ionic strength. The pH and ionic strength dual-responsive multilayer microcapsules were stable in acidic and neutral media while they could disintegrate only at strong basic media. Copyright © 2010 Elsevier B.V. All rights reserved.
Chai, Fujuan; Sun, Linlin; He, Xinyi; Li, Jieli; Liu, Yuanfen; Xiong, Fei; Ge, Liang; Webster, Thomas J; Zheng, Chunli
2017-01-01
Natural polyelectrolyte multilayers of chitosan (CHI) and alginate (ALG) were alternately deposited on doxorubicin (DOX)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with layer by layer self-assembly to control drug release for antitumor activity. Numerous factors which influenced the multilayer growth on nano-colloidal particles were studied: polyelectrolyte concentration, NaCl concentration and temperature. Then the growth regime of the CHI/ALG multilayers was elucidated. The coated NPs were characterized by transmission electron microscopy, atomic force microscopy, X-ray diffraction and a zeta potential analyzer. In vitro studies demonstrated an undesirable initial burst release of DOX-loaded PLGA NPs (DOX-PLGA NPs), which was relieved from 55.12% to 5.78% through the use of the layer by layer technique. The release of DOX increased more than 40% as the pH of media decreased from 7.4 to 5.0. More importantly, DOX-PLGA (CHI/ALG) 3 NPs had superior in vivo tumor inhibition rates at 83.17% and decreased toxicity, compared with DOX-PLGA NPs and DOX in solution. Thus, the presently formulated PLGA-polyelectrolyte NPs have strong potential applications for numerous controlled anticancer drug release applications.
Nicolas, Henning; Yuan, Bin; Zhang, Xi; Schönhoff, Monika
2016-03-15
The powerful host-guest chemistry of cucurbit[8]uril (CB[8]) was employed to obtain photoresponsive polyelectrolyte multilayer films for the reversible and photocontrolled binding and release of an organic guest molecule. For this purpose, we designed and synthesized a polyelectrolyte with azobenzene side groups. Then, CB[8] was associated with the azo side group to obtain a supramolecular host-guest complex that was further used as building block in order to prepare photoresponsive and CB[8]-containing polyelectrolyte multilayer films. Ultraviolet spectroscopy and a dissipative quartz crystal microbalance are employed to monitor the formation of the host-guest complex and the layer-by-layer self-assembly of the multilayer films, respectively. We demonstrate that the photoresponsive properties of the azo side groups are maintained before and after host-guest complexation with CB[8] in solution and within the multilayer films, respectively. A guest molecule was then specifically included as second binding partner into the CB[8]-containing multilayer films. Subsequently, the release of the guest was performed by UV light irradiation due to the trans-cis isomerization of the adjacent azo side groups. Re-isomerization of the azo side groups was achieved by VIS light irradiation and enabled the rebinding of the guest into CB[8]. Finally, we demonstrate that the photocontrolled binding and release within CB[8]-containing multilayer films can reliably and reversibly be performed over a period of more than 2 weeks with constant binding efficiency. Therefore, we expect such novel type of photosensitive films to have promising future applications in the field of stimuli-responsive nanomaterials.
Polypeptide multilayer film co-delivers oppositely-charged drug molecules in sustained manners.
Jiang, Bingbing; Defusco, Elizabeth; Li, Bingyun
2010-12-13
The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intended for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO(3)) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO(3) templates. Two oppositely charged drugs were loaded into capsules within polypeptide multilayer films postpreparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g., opposite charges) any time postpreparation (e.g., minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved.
Polypeptide Multilayer Film Co-Delivers Oppositely-Charged Drug Molecules in Sustained Manners
Jiang, Bingbing; DeFusco, Elizabeth; Li, Bingyun
2010-01-01
The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intending for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely-charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO3) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO3 templates. Two oppositely-charged drugs were loaded into capsules within polypeptide multilayer films post-preparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g. opposite charges) any time post-preparation (e.g. minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely-charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved. PMID:21058719
Motion-based, high-yielding, and fast separation of different charged organics in water.
Xuan, Mingjun; Lin, Xiankun; Shao, Jingxin; Dai, Luru; He, Qiang
2015-01-12
We report a self-propelled Janus silica micromotor as a motion-based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self-propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s(-1) . Biotin-functionalized Janus micromotors can specifically capture and rapidly transport streptavidin-modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self-propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab-on-chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Bailiang; Jin, Tingwei; Xu, Qingwen; Liu, Huihua; Ye, Zi; Chen, Hao
2016-05-18
Bacteria adhesion on the surface of biomaterials and following biofilm formation are important problems in biomedical applications. The charged antibiotics with small molar mass can hardly deposit alternately with polymers into multilayered films to load the drug. Herein, the (poly(acrylic acid)-gentamicin/poly(ethylenimine))n ((PAA-GS/PEI)n) multilayer film was designed and constructed via a layer-by-layer self-assembly method. Low molar mass GS cations were first combined with polyanion PAA and self-assembled with PEI to form multilayer films showing exponential growth behavior. The GS dosage could be adjusted by changing the layer number of films. Furthermore, the thermal cross-linking method was used to control the release rate of GS in PBS buffer. Owing to the diffusion of GS, a zone of inhibition of about 7.0 mm showed the efficient disinfection activity of the multilayer film. It could also be seen from the biofilm inhibition assay that the multilayer film effectively inhibited bacterial adhesion and biofilm formation. As the drug loading dosage was 160 μg/cm(2), the multilayer films showed very low cytotoxicity against human lens epithelial cells. The present work provides an easy way to load GS into multilayer films which can be applied to surface modification of implants and biomedical devices.
Gao, Wenli; Feng, Bo; Lu, Xiong; Wang, Jianxin; Qu, Shuxin; Weng, Jie
2012-08-01
This study describes the fabrication of two types of multilayered films onto titanium by layer-by-layer (LBL) self-assembly, using poly-L-lysine (PLL) as the cationic polyelectrolyte and deoxyribonucleic acid (DNA) as the anionic polyelectrolyte. The assembling process of each component was studied using atomic force microscopy (AFM) and quartz crystal balance (QCM). Zeta potential of the LBL-coated microparticles was measured by dynamic light scattering. Titanium substrates with or without multilayered films were used in osteoblast cell culture experiments to study cell proliferation, viability, differentiation, and morphology. Results of AFM and QCM indicated the progressive build-up of the multilayered coatings. The surface morphology of three types of multilayered films showed elevations in the nanoscale range. The data of zeta potential showed that the surface terminated with PLL displayed positive charge while the surface terminated with DNA displayed negative charge. The proliferation of osteoblasts on modified titanium films was found to be greater than that on control (p < 0.05) after 3 and 7 days culture, respectively. Alamar blue measurement showed that the PLL/DNA-modified films have higher cell viability (p < 0.05) than the control. Still, the alkaline phosphatase activity assay revealed a better differentiated phenotype on three types of multilayered surfaces compared to noncoated controls. Collectively our results suggest that PLL/DNA were successfully used to surface engineer titanium via LBL technique, and enhanced its cell biocompatibility. Copyright © 2012 Wiley Periodicals, Inc.
Tian, Kuan; Xie, Changsheng; Xia, Xianping
2013-09-01
To reduce such side effects as pain and bleeding caused by copper-containing intrauterine device (Cu-IUD), a novel medicated intrauterine device, which is coated with an indomethacin (IDM) delivery system on the surface of copper/low-density polyethylene (Cu/LDPE) composite intrauterine device, has been proposed and developed in the present work. The IDM delivery system is a polyelectrolyte multilayer film, which is composed of IDM containing chitosan and alginate layer by layer, is prepared by using self-assembled polyelectrolyte multilayer method, and the number of the layers of this IDM containing chitosan/alginate multilayer film can be tailored by controlling the cyclic repetition of the deposition process. After the IDM containing chitosan/alginate multilayer film is obtained on the surface of Cu/LDPE composite intrauterine device, its release behavior of both IDM and cupric ion has been studied in vitro. The results show that the release duration of IDM increase with the increasing of thickness of the IDM containing chitosan/alginate multilayer film, and the initial burst release of cupric ion cannot be found in this novel medicated Cu/LDPE composite IUD. These results can be applied to guide the design of novel medicated Cu-IUD with minimal side effects for the future clinical use. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guzenko, Nataliia; Gabchak, Oleksandra; Pakhlov, Evgenij
The complexation of polyhexamethylenguanidine hydrochloride (PHMG) and sodium carboxymethylcellulose (CMC) was investigated for different conditions. Mixing of equiconcentrated aqueous solutions of the polyelectrolytes was found to result in the formation of an insoluble interpolyelectrolyte complex with an overweight of carboxymethylcellulose. A step-by-step formation of stable, irreversibly adsorbed multilayer film of the polymers was demonstrated using the quartz crystal microbalance method. Unusually thick polymer shells with a large number of loops and tails of the polyanion were formed by the method of layer-by-layer self-assembly of PHMG and CMC on spherical CaCO3 particles. Hollow multilayer capsules stable in neutral media were obtained by dissolution of the inorganic matrix in EDTA solution.
Polyelectrolyte Multilayers in Tissue Engineering
Detzel, Christopher J.; Larkin, Adam L.
2011-01-01
The layer-by-layer assembly of sequentially adsorbed, alternating polyelectrolytes has become increasingly important over the past two decades. The ease and versatility in assembling polyelectrolyte multilayers (PEMs) has resulted in numerous wide ranging applications of these materials. More recently, PEMs are being used in biological applications ranging from biomaterials, tissue engineering, regenerative medicine, and drug delivery. The ability to manipulate the chemical, physical, surface, and topographical properties of these multilayer architectures by simply changing the pH, ionic strength, thickness, and postassembly modifications render them highly suitable to probe the effects of external stimuli on cellular responsiveness. In the field of regenerative medicine, the ability to sequester growth factors and to tether peptides to PEMs has been exploited to direct the lineage of progenitor cells and to subsequently maintain a desired phenotype. Additional novel applications include the use of PEMs in the assembly of three-dimensional layered architectures and as coatings for individual cells to deliver tunable payloads of drugs or bioactive molecules. This review focuses on literature related to the modulation of chemical and physical properties of PEMs for tissue engineering applications and recent research efforts in maintaining and directing cellular phenotype in stem cell differentiation. PMID:21210759
Chain Conformation and Dynamics in Spin-Assisted Weak Polyelectrolyte Multilayers
Zhuk, Aliaksandr; Selin, Victor; Zhuk, Iryna; ...
2015-03-13
In this paper, we report on the effect of the deposition technique on film layering, stability, and chain mobility in weak polyelectrolyte layer-by-layer (LbL) films. Ellipsometry and neutron reflectometry (NR) showed that shear forces arising during spin-assisted assembly lead to smaller amounts of adsorbed polyelectrolytes within LbL films, result in a higher degree of internal film order, and dramatically improve stability of assemblies in salt solutions as compared to dip-assisted LbL assemblies. The underlying flattening of polyelectrolyte chains in spin-assisted LbL films was also revealed as an increase in ionization degree of the assembled weak polyelectrolytes. As demonstrated by fluorescencemore » recovery after photobleaching (FRAP), strong binding between spin-deposited polyelectrolytes results in a significant slowdown of chain diffusion in salt solutions as compared to dip-deposited films. Moreover, salt-induced chain intermixing in the direction perpendicular to the substrate is largely inhibited in spin-deposited films, resulting in only subdiffusional (<2 Å) chain displacements even after 200 h exposure to 1 M NaCl solutions. Finally, this persistence of polyelectrolyte layering has important ramifications for multistage drug delivery and optical applications of LbL assemblies.« less
NASA Astrophysics Data System (ADS)
Prouty, Malcolm D.
2007-12-01
Layer-by-layer (LbL) self-assembly has demonstrated broad perspectives for encapsulating, and the controllable delivery, of drugs. The nano-scale polymer layers have the capability of material protection. Magnetic nanoparticles have great potential to be applied with LbL technology to achieve both "focusing" of the encapsulated drugs to a specific location followed by "switching" them on to release the encapsulated drugs. In this work, Phor21-betaCG(ala), dextran, and dexamethasone were used as model drugs. Encapsulation of these drugs with layer-by-layer self-assembly formed biolnano robotic capsules for controlled delivery and drug release. Silica nanoparticles coated with polyelectrolyte layers of sodium carboxymethyl cellulose (CMC) or gelatin B, along with an oppositely charged peptide drug (Phor2l-betaCG(ala)), were prepared using LbL self-assembly and confirmed using QCM and zeta potential measurements. The peptide drug was assembled as a component of the multilayer walls. The release kinetics of the embedded peptide were determined. Up to 18% of the embedded Phor21-betaCG(ala) was released from the CMC multilayers over a period of 28 hours. The release was based on physiological conditions, and an external control mechanism using magnetic nanoparticles needed to be developed. Magnetic permeability control experiments were setup by applying LbL self-assembly on MnCO3 micro-cores to fabricate polyelectrolyte microcapsules embedded with superparamagnetic gold coated cobalt (Co Au) nanoparticles. An alternating magnetic field was applied to the microcapsules to check for changes in permeability. Permeability experiments were achieved by adding fluorescein isothiocyanate (FITC) labeled dextran to the microcapsule solution. Before an alternating magnetic field was applied, the capsules remained impermeable to the FITC-dextran; however, after an alternating magnetic field was applied for 30 minutes, approximately 99% of the capsules were filled with FITC-dextran, showing that the Co Au embedded microcapsules were indeed "switched on" using an alternating magnetic field. LbL assembly was then applied to encapsulate micronized dexamethasone with biocompatible polyelectrolytes such as protamine sulfate C, chondroitin sulfate sodium salt, and gelatin B, along with a layer of superparamagnetic nanoparticles. The biocompatible polymers were used to retain and protect the vulnerable drug. In vitro drug release kinetics were investigated according to different environmental factors such as temperature and pH. An external oscillating magnetic field was applied to "switch on" and accelerate the drug release. The results were compared to those without applying a magnetic field.
Wu, Feng; Li, Jian; Su, Yuefeng; Wang, Jing; Yang, Wen; Li, Ning; Chen, Lai; Chen, Shi; Chen, Renjie; Bao, Liying
2016-09-14
In the present work, polyelectrolyte multilayers (PEMs) and graphene sheets are applied to sequentially coat on the surface of hollow carbon spheres/sulfur composite by a flexible layer-by-layer (LBL) self-assembly strategy. Owing to the strong electrostatic interactions between the opposite charged materials, the coating agents are very stable and the coating procedure is highly efficient. The LBL film shows prominent impact on the stability of the cathode by acting as not only a basic physical barrier, and more importantly, an ion-permselective film to block the polysulfides anions by Coulombic repulsion. Furthermore, the graphene sheets can help to stabilize the polyelectrolytes film and greatly reduce the inner resistance of the electrode by changing the transport of the electrons from a "point-to-point" mode to a more effective "plane-to-point'' mode. On the basis of the synergistic effect of the PEMs and graphene sheets, the fabricated composite electrode exhibits very stable cycling stability for over 200 cycles at 1 A g(-1), along with a high average Coulombic efficiency of 99%. With the advantages of rapid and controllable fabrication of the LBL coating film, the multifunctional architecture developed in this study should inspire the design of other lithium-sulfur cathodes with unique physical and chemical properties.
NASA Astrophysics Data System (ADS)
Zhang, Xinming; Li, Zhaoyang; Yuan, Xubo; Cui, Zhenduo; Yang, Xianjin
2013-11-01
The bare inert surface of titanium (Ti) alloy typically causes early failures in implants. Layer-by-layer self-assembly is one of the simple methods for fabricating bioactive multilayer coatings on titanium implants. In this study, a dopamine-modified hyaluronic acid/chitosan (DHA/CHI) bioactive multilayer was built on the surface of Ti-24Nb-2Zr (TNZ) alloy. Zeta potential oscillated between -2 and 17 mV for DHA- and CHI-ending layers during the assembly process, respectively. The DHA/CHI multilayer considerably decreased the contact angle and dramatically improved the wettability of TNZ alloy. Atomic force microscopy results revealed a rough surface on the original TNZ alloy, while the surface became smoother and more homogeneous after the deposition of approximately 5 bilayers (TNZ/(DHA/CHI)5). X-ray photoelectron spectroscopy analysis indicated that the TNZ/(DHA/CHI)5 sample was completely covered by polyelectrolytes. Pre-osteoblast MC3T3-E1 cells were cultured on the original TNZ alloy and TNZ/(DHA/CHI)5 to evaluate the effects of DHA/CHI multilayer on osteoblast proliferation in vitro. The proliferation of osteoblasts on TNZ/(DHA/CHI)5 was significantly higher than that on the original TNZ alloy. The results of this study indicate that the proposed technique improves the biocompatibility of TNZ alloy and can serve as a potential modification method in orthopedic applications.
Diamanti, Eleftheria; Gregurec, Danijela; Rodríguez-Presa, María José; Gervasi, Claudio A; Azzaroni, Omar; Moya, Sergio E
2016-06-28
Supported membranes on top of polymer cushions are interesting models of biomembranes as cell membranes are supported on a polymer network of proteins and sugars. In this work lipid vesicles formed by a mixture of 30% 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 70% 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) are assembled on top of a polyelectrolyte multilayer (PEM) cushion of poly(allylamine hydrochloride) (PAH) and poly(styrene sodium sulfonate) (PSS). The assembly results in the formation of a bilayer on top of the PEM as proven by means of the quartz crystal microbalance with dissipation technique (QCM-D) and by cryo-transmission electron microscopy (cryo-TEM). The electrical properties of the bilayer are studied by electrochemical impedance spectroscopy (EIS). The bilayer supported on the PEMs shows a high resistance, on the order of 10(7) Ω cm(2), which is indicative of a continuous, dense bilayer. Such resistance is comparable with the resistance of black lipid membranes. This is the first time that such values are obtained for lipid bilayers supported on PEMs. The assembly of polyelectrolytes on top of a lipid bilayer decreases the resistance of the bilayer up to 2 orders of magnitude. The assembly of the polyelectrolytes on the lipids induces defects or pores in the bilayer which in turn prompts a decrease in the measured resistance.
Aggarwal, Neha; Altgärde, Noomi; Svedhem, Sofia; Michanetzis, Georgios; Missirlis, Yannis; Groth, Thomas
2013-10-01
Polyelectrolyte multilayers of chitosan and heparin are assembled on glass where heparin is applied at pH = 4, 9 and 4 during the formation of the first layers followed by pH = 9 at the last steps (denoted pH 4 + 9). Measurements of wetting properties, layer mass, and topography show that multilayers formed at pH = 4 are thicker, contain more water and have a smoother surface compared to those prepared at pH = 9 while the pH = 4 + 9 multilayers expressed intermediate properties. pH = 9 multilayers are more cell adhesive and support growth of C2C12 cells better than pH = 4 ones. However, pH 4 + 9 conditions improve the bioactivity to a similar level of pH = 9 layers. Multilayers prepared using pH 4 + 9 conditions form thick enough layers that may allow efficient loading of bioactive molecules. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multilayered Polyelectrolyte Microcapsules: Interaction with the Enzyme Cytochrome C Oxidase
Pastorino, Laura; Dellacasa, Elena; Noor, Mohamed R.; Soulimane, Tewfik; Bianchini, Paolo; D'Autilia, Francesca; Antipov, Alexei; Diaspro, Alberto; Tofail, Syed A. M.; Ruggiero, Carmelina
2014-01-01
Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties. PMID:25372607
NASA Astrophysics Data System (ADS)
Lutkenhaus, Jodie; McEnnis, Kathleen; Hammond, Paula
2007-03-01
Microporous networks are of interest as electrolyte materials, gas separation membranes and catalytic nanoparticle templates. Here, we create microporous polyelectrolyte networks of tunable pore size and connectivity using the layer-by-layer (LBL) technique. In this method, a film is formed from the alternate adsorption of oppositely charged polyelectrolytes from aqueous solution to create a cohesive thin film. Using poly(ethylene imine) (PEI) and poly(acrylic acid) (PAA), LBL thin films of variable composition and charge density were assembled; then, the films were treated in an acidic bath, which ionizes PEI and de-ionizes PAA. This shift in charge density induces morphological rearrangement realized by a microporous network. Depending on the assembly pH and acidic bath pH, we are able to precisely tune the morphology, which is characterized by atomic force microscopy and scanning electron microscopy. To demonstrate the porous nature of the polyelectrolyte multilayer, the pores were filled with non-aqueous electrolyte (i.e. ethylene carbonate, dimethyl carbonate and lithium hexafluorophosphate) and probed with electrochemical impedance spectroscopy. These microporous networks exhibited two time constants, indicative of ions traveling through the liquid-filled pores and ions traveling through the polyelectrolyte matrix.
Multilayer biomimetics: reversible covalent stabilization of a nanostructured biofilm.
Li, Bingyun; Haynie, Donald T
2004-01-01
Designed polypeptides and electrostatic layer-by-layer self-assembly form the basis of promising research in bionanotechnology and medicine on development of polyelectrolyte multilayer films (PEMs). We show that PEMs can be formed from oppositely charged 32mers containing several cysteine residues. The polypeptides in PEMs become cross-linked under mild oxidizing conditions. This mimicking of disulfide (S-S) bond stabilization of folded protein structure confers on the PEMs a marked increase in resistance to film disassembly at acidic pH. The reversibility of S-S bond stabilization of PEMs presents further advantages for controlling physical properties of films, coatings, and other applications involving PEMs.
Assembly of purple membranes on polyelectrolyte films.
Saab, Marie-belle; Estephan, Elias; Cloitre, Thierry; Legros, René; Cuisinier, Frédéric J G; Zimányi, László; Gergely, Csilla
2009-05-05
The membrane protein bacteriorhodopsin in its native membrane bound form (purple membrane) was adsorbed and incorporated into polyelectrolyte multilayered films, and adsorption was in situ monitored by optical waveguide light-mode spectroscopy. The formation of a single layer or a double layer of purple membranes was observed when adsorbed on negatively or positively charged surfaces, respectively. The purple membrane patches adsorbed on the polyelectrolyte multilayers were also evidenced by atomic force microscopy images. The driving forces of the adsorption process were evaluated by varying the ionic strength of the solution as well as the purple membrane concentration. At high purple membrane concentration, interpenetrating polyelectrolyte loops might provide new binding sites for the adsorption of a second layer of purple membranes, whereas at lower concentrations only a single layer is formed. Negative surfaces do not promote a second protein layer adsorption. Driving forces other than just electrostatic ones, such as hydrophobic forces, should play a role in the polyelectrolyte/purple membrane layering. The subtle interplay of all these factors determines the formation of the polyelectrolyte/purple membrane matrix with a presumably high degree of orientation for the incorporated purple membranes, with their cytoplasmic, or extracellular side toward the bulk on negatively or positively charged polyelectrolyte, respectively. The structural stability of bacteriorhodopsin during adsorption onto the surface and incorporation into the polyelectrolyte multilayers was investigated by Fourier transform infrared spectroscopy in attenuated total reflection mode. Adsorption and incorporation of purple membranes within polyelectrolyte multilayers does not disturb the conformational majority of membrane-embedded alpha-helix structures of the protein, but may slightly alter the structure of the extramembraneous segments or their interaction with the environment. This high stability is different from the lower stability of the predominantly beta-sheet structures of numerous globular proteins when adsorbed onto surfaces.
Boddohi, Soheil; Killingsworth, Christopher E; Kipper, Matt J
2008-07-01
The goal of this work is to explore the effects of solution ionic strength and pH on polyelectrolyte multilayer (PEM) assembly, using biologically derived polysaccharides as the polyelectrolytes. We used the layer-by-layer (LBL) technique to assemble PEM of the polysaccharides heparin (a strong polyanion) and chitosan (a weak polycation) and characterized the sensitivity of the PEM composition and layer thickness to changes in processing parameters. Fourier-transform surface plasmon resonance (FT-SPR) and spectroscopic ellipsometry provided in situ and ex situ measurements of the PEM thickness, respectively. Vibrational spectroscopy and X-ray photoelectron spectroscopy (XPS) provided details of the chemistry (i.e., composition, electrostatic interactions) of the PEM. We found that when PEM were assembled from 0.2 M buffer, the PEM thickness could be increased from less than 2 nm per bilayer to greater than 4 nm per bilayer by changing the solution pH; higher and lower ionic strength buffer solutions resulted in narrower ranges of accessible thickness. Molar composition of the PEM was not very sensitive to solution pH or ionic strength, but pH did affect the interactions between the sulfonates in heparin and amines in chitosan when PEM were assembled from 0.2 M buffer. Changes in the PEM thickness with pH and ionic strength can be interpreted through descriptions of the charge density and conformation of the polyelectrolyte chains in solution.
NASA Astrophysics Data System (ADS)
Groehn, Franziska
2015-03-01
With regard to the world's decreasing energy resources, developing strategies to exploit solar energy become more and more important. One approach is to take advantage of photocatalysis. Inspired by natural systems such as assemblies performing photosynthesis, it is highly promising to self-assemble synthetic functional species to form more effective or tailored supramolecular units. In this contribution, a new type of photocatalytically active self-assembled nanostructures in aqueous solution will be presented: supramolecular nano-objects obtained through self-assembly of macroions and multivalent organic or inorganic counterions. Polyelectrolyte-porphyrin nanoscale assemblies exhibit up to 10-fold higher photocatalytic activity than the corresponding porphyrins without polymeric template. Other self-assembled catalysts based on polyelectrolytes can exhibit expressed selectivity in a photocatalytic model reaction or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, current results on combining different functional units at the polyelectrolyte template represent a next step towards more complex supramolecular structures for solar energy conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selin, Victor; Ankner, John F.; Sukhishvili, Svetlana A.
Here in this paper, we report on the role of molecular diffusivity in the formation of nonlinearly growing polyelectrolyte multilayers (nlPEMs). Electrostatically bound polyelectrolyte multilayers were assembled from poly(methacrylic acid) (PMAA) as a polyanion and quaternized poly(2-(dimethylamino)ethyl methacrylate) (QPC) as a polycation. Film growth as measured by ellipsometry was strongly dependent on the time allowed for each polymer deposition step, suggesting that the diffusivities of the components are crucial in controlling the rate of film growth. Uptake of polyelectrolytes within nlPEMs was relatively slow and occurred on time scales ranging from minutes to hours, depending on the film thickness. Spectroscopicmore » ellipsometry measurements with nlPEM films exposed to aqueous solutions exhibited high (severalfold) degrees of film swelling and different swelling values for films exposed to QPC or PMAA solutions. FTIR spectroscopy showed that the average ionization of film-assembled PMAA increased upon binding of QPC and decreased upon binding of PMAA, in agreement with the charge regulation mechanism for weak polyelectrolytes. The use of neutron reflectometry (NR) enabled quantification of chain intermixing within the film, which was drastically enhanced when longer times were allowed for polyelectrolyte deposition. Diffusion coefficients of the polycation derived from the uptake rates of deuterated chains within hydrogenated films were of the order of 10 –14 cm 2/s, i.e., 5–6 orders of magnitude smaller than those found for diffusion of free polymer chains in solution. Exchange of the polymer solutions to buffer inhibited film intermixing. Taken together, these results contribute to understanding the mechanism of the growth of nonlinear polyelectrolyte multilayers and demonstrate the possibility of controlling film intermixing, which is highly desirable for potential future applications.« less
Nonlinear Layer-by-Layer Films: Effects of Chain Diffusivity on Film Structure and Swelling
Selin, Victor; Ankner, John F.; Sukhishvili, Svetlana A.
2017-08-09
Here in this paper, we report on the role of molecular diffusivity in the formation of nonlinearly growing polyelectrolyte multilayers (nlPEMs). Electrostatically bound polyelectrolyte multilayers were assembled from poly(methacrylic acid) (PMAA) as a polyanion and quaternized poly(2-(dimethylamino)ethyl methacrylate) (QPC) as a polycation. Film growth as measured by ellipsometry was strongly dependent on the time allowed for each polymer deposition step, suggesting that the diffusivities of the components are crucial in controlling the rate of film growth. Uptake of polyelectrolytes within nlPEMs was relatively slow and occurred on time scales ranging from minutes to hours, depending on the film thickness. Spectroscopicmore » ellipsometry measurements with nlPEM films exposed to aqueous solutions exhibited high (severalfold) degrees of film swelling and different swelling values for films exposed to QPC or PMAA solutions. FTIR spectroscopy showed that the average ionization of film-assembled PMAA increased upon binding of QPC and decreased upon binding of PMAA, in agreement with the charge regulation mechanism for weak polyelectrolytes. The use of neutron reflectometry (NR) enabled quantification of chain intermixing within the film, which was drastically enhanced when longer times were allowed for polyelectrolyte deposition. Diffusion coefficients of the polycation derived from the uptake rates of deuterated chains within hydrogenated films were of the order of 10 –14 cm 2/s, i.e., 5–6 orders of magnitude smaller than those found for diffusion of free polymer chains in solution. Exchange of the polymer solutions to buffer inhibited film intermixing. Taken together, these results contribute to understanding the mechanism of the growth of nonlinear polyelectrolyte multilayers and demonstrate the possibility of controlling film intermixing, which is highly desirable for potential future applications.« less
Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng
2014-06-01
To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.
Chickneyan, Zarui Sara; Briseno, Alejandro L; Shi, Xiangyang; Han, Shubo; Huang, Jiaxing; Zhou, Feimeng
2004-07-01
An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.
Redox-controlled molecular permeability of composite-wall microcapsules
NASA Astrophysics Data System (ADS)
Ma, Yujie; Dong, Wen-Fei; Hempenius, Mark A.; Möhwald, Helmuth; Julius Vancso, G.
2006-09-01
Many smart materials in bioengineering, nanotechnology and medicine allow the storage and release of encapsulated drugs on demand at a specific location by an external stimulus. Owing to their versatility in material selection, polyelectrolyte multilayers are very promising systems in the development of microencapsulation technologies with permeation control governed by variations in the environmental conditions. Here, organometallic polyelectrolyte multilayer capsules, composed of polyanions and polycations of poly(ferrocenylsilane) (PFS), are introduced. Their preparation involved layer-by-layer self-assembly onto colloidal templates followed by core removal. PFS polyelectrolytes feature redox-active ferrocene units in the main chain. Incorporation of PFS into the capsule walls allowed us to explore the effects of a new stimulus, that is, changing the redox state, on capsule wall permeability. The permeability of these capsules could be sensitively tuned via chemical oxidation, resulting in a fast capsule expansion accompanied by a drastic permeability increase in response to a very small trigger. The substantial swelling could be suppressed by the application of an additional coating bearing common redox-inert species of poly(styrene sulfonate) (PSS-) and poly(allylamine hydrochloride) (PAH+) on the outer wall of the capsules. Hence, we obtained a unique capsule system with redox-controlled permeability and swellability with a high application potential in materials as well as in bioscience.
NASA Astrophysics Data System (ADS)
Gao, Wenli; Feng, Bo; Ni, Yuxiang; Yang, Yongli; Lu, Xiong; Weng, Jie
2010-11-01
Titanium and its alloys are frequently used as surgical implants in load bearing situations, such as hip prostheses and dental implants, owing to their biocompatibility, mechanical and physical properties. In this paper, a layer-by-layer (LBL) self-assembly technique, based on the polyelectrolyte-mediated electrostatic adsorption of poly-L-lysine (PLL) and DNA, was used to the formation of multilayer on titanium surfaces. Then bovine serum albumin (BSA) adsorption and biomimetic mineralization of modified surfaces were studied. The chemical composition and wettability of assembled substrates were investigated by X-ray photoelectron spectroscopy (XPS), fluorescence microscopy and water contact angle measurement, respectively. The XPS analysis indicated that the layers were assembled successfully through electrostatic attractions. The measurement with ultraviolet (UV) spectrophotometer revealed that the LBL films enhanced ability of BSA adsorption onto titanium. The adsorption quantity of BSA on the surface terminated with PLL was higher than that of the surface terminated with DNA, and the samples of TiOH/P/D/P absorbed BSA most. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that samples of assembled PLL or/and DNA had better bioactivity in inducing HA formation. Thus the assembling of PLL and DNA onto the surface of titanium in turn via a layer-by-layer self-assembly technology can improve the bioactivity of titanium.
Ionochromic 4,4 '-azobispyridinium salt-incorporated polymer: synthesis and optical properties
NASA Astrophysics Data System (ADS)
Lee, Taek Seung; Ahn, Heungki; Lee, Jin Kyun; Park, Won Ho
2003-01-01
Azobispyridinium-bearing polyelectrolyte linked with flexible alkyl chain was synthesized and characterized. The polymer showed absorption changes upon addition of hydroxide anion with an isobestic point in UV-visible spectrum. It is presumed that conformational change of the azo group in the main chain is responsible for the point. Transduction of physical information (hydroxide concentration) into an optical signal from azo group was related to the ionochromic effect. Electrostatic self-assembled multilayer of the polymer with appropriate polyanion was carried out via layer-by-layer deposition.
Xu, Yida; Xu, Chao; Shvarev, Alexey; Becker, Thomas; De Marco, Roland
2010-01-01
Polymeric membrane ion selective electrodes are normally interrogated by zero current potentiometry, and their selectivity is understood to be primarily dependent on an extraction/ion-exchange equilibrium between the aqueous sample and polymeric membrane. If concentration gradients in the contacting diffusion layers are insubstantial, the membrane response is thought to be rather independent of kinetic processes such as surface blocking effects. In this work, the surface of calcium-selective polymeric ion-selective electrodes is coated with polyelectrolyte multilayers as evidenced by zeta potential measurements, atomic force microscopy and electrochemical impedance spectroscopy. Indeed, such multilayers have no effect on their potentiometric response if the membranes are formulated in a traditional manner, containing a lipophilic ion-exchanger and a calcium-selective ionophore. However, drastic changes in the potential response are observed if the membranes are operated in a recently introduced kinetic mode using pulsed chronopotentiometry. The results suggest that the assembled nanostructured multilayers drastically alter the kinetics of ion transport to the sensing membrane, making use of the effect that polyelectrolyte multilayers have different permeabilities toward ions with different valences. The results have implications to the design of chemically selective ion sensors since surface localized kinetic limitations can now be used as an additional dimension to tune the operational ion selectivity. PMID:17711298
pH-responsiveness of multilayered films and membranes made of polysaccharides
Silva, Joana M.; Caridade, Sofia G.; Costa, Rui R.; Alves, Natália M.; Groth, Thomas; Picart, Catherine; Reis, Rui L.; Mano, João F.
2016-01-01
We investigated the pH-dependent properties of multilayered films made of chitosan (CHI) and alginate (ALG) and focused on their post-assembly response to different pH environments using quartz crystal microbalance with dissipation monitoring (QCM-D), swelling studies, zeta potential measurements and dynamic mechanical analysis (DMA). In an acidic environment, the multilayers presented lower dissipation values and, consequently, higher moduli when compared with the values obtained for the pH used during the assembly (5.5). When the multilayers were exposed to alkaline environments the opposite behavior occurred. These results were further corroborated with the ability of this multilayered system to exhibit a reversible swelling-deswelling behavior within the pH range from 3 to 9. The changes of the physicochemical properties of the multilayer system were gradual and different from the ones of individual solubilized polyelectrolytes. This behavior is related to electrostatic interactions between the ionizable groups combined with hydrogen-bonding and hydrophobic interactions. Beyond the pH range of 3-9 the multilayers were stabilized by genipin cross-linking. The multilayered films also became more rigid while preserving the pH-responsiveness conferred by the ionizable moieties of the polyelectrolytes. This work demonstrates the versatility and feasibility of LbL methodology to generate inherently pH stimuli-responsive nanostructured films. Surface functionalization using pH-repsonsiveness endows abilities for several biomedical applications such as drug delivery, diagnostics, microfluidics, biosensing or biomimetic implantable membranes. PMID:26421873
Self-assembled morphologies of an amphiphilic Y-shaped weak polyelectrolyte in a thin film.
Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu
2017-11-29
Different from the self-assembly of neutral polymers, polyelectrolytes self-assemble into smaller aggregates with a more loosely assembled structure, which results from the repulsive forces acting between similar electrical compositions with the introduction of ions. The Y-shaped weak polyelectrolytes self-assemble into a core-shell type cylindrical structure with a hexagonal arrangement in a thin film, whose thickness is smaller than the gyration radius of the polymer chain. The corresponding formation mechanism consists of enrichment of the same components, adjustment of the shape of the aggregate, and the subsequent separation into individual aggregates. With the increase in the thickness of the thin film until it exceeds the gyration radius of the polymer chain, combined with the greater freedom of movement along the direction of thin film thickness, the self-assembled structure changes into a micellar structure. Under confinement, the repulsive force to the polymeric components is weakened by the repulsive forces among polyelectrolyte components with like charges, and this helps in generating aggregates with more uniform size and density distribution. In particular, when the repulsive force between the walls and the core forming components is greater than that between the walls and the shell forming components, such asymmetric confinement produces a crossed-cylindrical structure with nearly perpendicular arrangement of two cylinder arrays. Similarly, a novel three-crossed cylinder morphology is self-assembled upon removal of confinement.
Qi, Wei; Cai, Peng; Yuan, Wenjing; Wang, Hua
2014-11-01
For polyelectrolyte multilayers (PEMs) assembled by the layer-by-layer (LbL) assembly technique, their nanostructure and properties can be governed by many parameters during the building process. Here, it was demonstrated that the swelling of the PEMs containing poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS) in cell culture media could be tuned with changing supporting salt solutions during the assembly process. Importantly, the influence of the PEMs assembled in different salt solutions on NIH-3T3 cell adhesion was observable. Specifically, the cells could possess a higher affinity for the films assembled in low salt concentration (i.e. 0.15M NaCl) or no salt, the poorly swelling films in cell culture media, which was manifested by the large cell spreading area and focal adhesions. In contrast, those were assembled in higher salt concentration, highly swelling films in cell culture media, were less attractive for the fibroblasts. As a result, the cell adhesion behaviors may be manipulated by tailoring the physicochemical properties of the films, which could be performed by changing the assembly conditions such as supporting salt concentration. Such a finding might promise a great potential in designing desired biomaterials for tissue engineering and regenerative medicine. © 2014 Wiley Periodicals, Inc.
Self-assembled virus-membrane complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Lihua; Liang, Hongjun; Angelini, Thomas
Anionic polyelectrolytes and cationic lipid membranes can self-assemble into lamellar structures ranging from alternating layers of membranes and polyelectrolytes to 'missing layer' superlattice structures. We show that these structural differences can be understood in terms of the surface-charge-density mismatch between the polyelectrolyte and membrane components by examining complexes between cationic membranes and highly charged M13 viruses, a system that allowed us to vary the polyelectrolyte diameter independently of the charge density. Such virus-membrane complexes have pore sizes that are about ten times larger in area than DNA-membrane complexes, and can be used to package and organize large functional molecules; correlatedmore » arrays of Ru(bpy){sub 3}{sup 2+} macroionic dyes have been directly observed within the virus-membrane complexes using an electron-density reconstruction. These observations elucidate fundamental design rules for rational control of self-assembled polyelectrolyte-membrane structures, which have applications ranging from non-viral gene therapy to biomolecular templates for nanofabrication.« less
Bioinspired assembly of surface-roughened nanoplatelets.
Lin, Tzung-Hua; Huang, Wei-Han; Jun, In-Kook; Jiang, Peng
2010-04-15
Here we report a novel electrophoretic deposition technology for assembling surface-roughened inorganic nanoplatelets into ordered multilayers that mimic the brick-and-mortar nanostructure found in the nacreous layer of mollusk shells. A thin layer of sol-gel silica is coated on smooth gibbsite nanoplatelets in order to increase the surface roughness to mimic the asperity of aragonite platelets found in nacres. To avoid the severe cracking caused by the shrinkage of sol-gel silica during drying, polyelectrolyte polyethyleneimine is used to reverse the surface charge of silica-coated-gibbsite nanoplatelets and increase the adherence and strength of the electrodeposited films. Polymer nanocomposites can then be made by infiltrating the interstitials of the aligned nanoplatelet multilayers with photocurable monomer followed by photopolymerization. The resulting self-standing films are highly transparent and exhibit nearly three times higher tensile strength and one-order-of-magnitude higher toughness than those of pure polymer. The measured tensile strength agrees with that predicted by a simple shear lag model. Published by Elsevier Inc.
Kulikouskaya, Viktoryia I; Pinchuk, Sergei V; Hileuskaya, Kseniya S; Kraskouski, Aliaksandr N; Vasilevich, Irina B; Matievski, Kirill A; Agabekov, Vladimir E; Volotovski, Igor D
2018-03-22
Layer-by-Layer assembled polyelectrolyte films offer the opportunity to control cell attachment and behavior on solid surfaces. In the present study, multilayer films based on negatively charged biopolymers (pectin, dextran sulfate, carboxymethylcellulose) and positively charged polysaccharide chitosan or synthetic polyelectrolyte polyethyleneimine has been prepared and evaluated. Physico-chemical properties of the formed multilayer films, including their growth, morphology, wettability, stability, and mechanical properties, have been studied. We demonstrated that chitosan-containing films are characterized by the linear growth, the defect-free surface, and predominantly viscoelastic properties. When chitosan is substituted for the polyethyleneimine in the multilayer system, the properties of the formed films are significantly altered: the rigidity and surface roughness increases, the film growth acquires the exponential character. The multilayer films were subsequently used for culturing mesenchymal stem cells. It has been determined that stem cells effectively adhered to chitosan-containing films and formed on them the monolayer culture of fibroblast-like cells with high viability. Our results show that cell attachment is a complex process which is not only governed by the surface functionality because one of the key parameter effects on cell adhesion is the stiffness of polyelectrolyte multilayer films. We therefore propose our Layer-by-Layer films for applications in tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.
Ionic content and permeability of polyelectrolyte multilayers and complexes
NASA Astrophysics Data System (ADS)
Ghostine, Ramy A.
Ultrathin films of polyelectrolyte multilayers (PEMUs) are built by the alternating deposition of oppositely charged polymers from aqueous solutions onto a clean substrate. The most used protocol to fabricate this type of films is called the Layer-by-Layer assembly technique. The type of polyelectrolytes, the buildup conditions, and the post-assembly treatments can be modified in order to control both the chemical and physical properties of multilayers. In recent years, multilayers have been used in commercially available products, corrosion protection, biocompatible surfaces, hydrophobic and hydrophilic coatings and chromatographic applications. Their robustness and stability make polyelectrolyte multilayer thin films good candidates for a series of other applications such as cell growth control, ion exchange membranes, drug delivery, sensors and electronics. In this dissertation, the permeability of polyelectrolyte multilayers made from poly(diallyldimethylammonium chloride) (PDADMAC) and sodium poly(4-styrene sulfonate) (NaPSS) is discussed in details. The permeability was studied by measuring the flux of redox active ions across a PEMU coated electrode. The effect of temperature, salt type and concentration was studied and it was determined that the flux of ions increases with temperature and salt concentration, and the permeability of ions strongly depends on the type of salt ions present in solution. The membrane concentration of the redox active ion was also calculated using attenuated total reflectance Fourier transform infra red spectroscopy. In another part of this dissertation, the ionic content of PEMUs was investigated by using radioactive counterions to track the ratio of positive to negative polymer repeat units. It was found that the accepted model of charge overcompensation for each layer is incorrect. In fact, overcompensation at the surface occurs only on the addition of the polycation, whereas the polyanion merely compensates the polycation. After the assembly of about a dozen layers, positive sites begin to accrue in the multilayer. The buildup mechanism is highly asymmetric with respect to the layer number, thus a new model profile for PEMU was employed. The critical impact of asymmetric growth on various properties of multilayers is also discussed. Thickness change, surface roughness, mechanical properties and ionic content of PEMUs were also studied in another part of this dissertation. The effect of salt annealing on these properties was investigated by the use of radiolabeling technique and atomic force microscopy. It was determined that salt annealing causes the polymer mobility in the multilayer to increase, reducing the amount of extrinsic charges and decreasing the surface roughness of the multilayer. The incorporation of 2nd generation fibroblast growth factor was studied in another chapter of this dissertation. FGF-1 is an important protein used in the wound healing process. The addition of FGF into films of PEMU was successful after modifying the ionic content of these films. It was shown that treating PSS terminated PEMU films with 10 mM PSS at high salt concentration would remove all positive extrinsic charges from the multilayer and add extra PSS chains in the bulk of the film. The addition of extra PSS depends on the salt concentration used during the PSS treatment. The highest amount of incorporated FGF was 58 mug cm-2. The release of FGF in phosphate buffer saline solution was also tracked for 30 days period. A total of 13 mug cm-2 of FGF were released from (PDADMA/PSS) 10 when treated with PSS at 1.5 M NaCl. Doping constants and diffusion coefficients for an extruded, stoichiometric, dense polyelectrolyte complex, exPEC, were determined for a Hofmeister series of anions in the last part of this dissertation. Both parameters describe the extent and speed to which a complex may be doped, where they followed a Hofmeister ordering and covered a wide range of response. Doping and undoping kinetics of polyelectrolyte complexes of PDADMA and PSS were also investigated using conductivity and radioactivity techniques. Tracer diffusion of radiolabeled Na+, compared with coupled diffusion of NaCl, revealed slightly faster diffusion of Na+ compared to Cl- withing the PEC.
Zhu, Chun-Tao; Ma, Sheng-Hua; Zhang, Ying; Wang, Xue-Jing; Lv, Peng; Han, Xiao-Jun
2016-04-05
We have demonstrated a novel way to form thickness-controllable polyelectrolyte-film/nanoparticle patterns by using a plasma etching technique to form, first, a patterned self-assembled monolayer surface, followed by layer-by-layer assembly of polyelectrolyte-films/nanoparticles. Octadecyltrimethoxysilane (ODS) and (3-aminopropyl)triethoxysilane (APTES) self-assembled monolayers (SAMs) were used for polyelectrolyte-film and nanoparticle patterning, respectively. The resolution of the proposed patterning method can easily reach approximately 2.5 μm. The height of the groove structure was tunable from approximately 2.5 to 150 nm. The suspended lipid membrane across the grooves was fabricated by incubating the patterned polyelectrolyte groove arrays in solutions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) giant unilamellar vesicles (GUVs). The method demonstrated here reveals a new path to create patterned 2D or 3D structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resistance of poly(ethylene oxide)-silane monolayers to the growth of polyelectrolyte multilayers.
Buron, Cédric C; Callegari, Vincent; Nysten, Bernard; Jonas, Alain M
2007-09-11
The ability of poly(ethylene oxide)-silane (PEO-silane) monolayers grafted onto silicon surfaces to resist the growth of polyelectrolyte multilayers under various pH conditions is assessed for different pairs of polyelectrolytes of varying molar mass. For acidic conditions (pH 3), the PEO-silane monolayers exhibit good polyelectrolyte repellency provided the polyelectrolytes bear no moieties that are able to form hydrogen bonds with the ether groups of the PEO chains. At basic pH, PEO-silane monolayers undergo substantial hydrolysis leading to the formation of negatively charged defects in the monolayers, which then play the role of adsorption sites for the polycation. Once the polycation is adsorbed, multilayer growth ensues. Because this is defect-driven growth, the multilayer is not continuous and is made of blobs or an open network of adsorbed strands. For such conditions, the molar mass of the polyelectrolyte plays a key role, with polyelectrolyte chains of larger molar mass adsorbing on a larger number of defects, resulting in stronger anchoring of the polyelectrolyte complex on the surfaces and faster subsequent growth of the multilayer. For polyelectrolytes of sufficiently low molar mass at pH 9, the growth of the multilayer can nevertheless be prevented for as much as five cycles of deposition.
Maza, Eliana; Tuninetti, Jimena S; Politakos, Nikolaos; Knoll, Wolfgang; Moya, Sergio; Azzaroni, Omar
2015-11-28
The layer-by-layer construction of interfacial architectures displaying stimuli-responsive control of mass transport is attracting increasing interest in materials science. In this work, we describe the creation of interfacial architectures displaying pH-dependent ionic transport properties which until now have not been observed in polyelectrolyte multilayers. We describe a novel approach to create pH-controlled ion-rectifying systems employing polyelectrolyte multilayers assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), alternately deposited with poly(diallyldimethylammonium chloride) (PDADMAC). The conceptual framework is based on the very contrasting and differential interactions of PSS and MA units with PDADMAC. In our setting, sulfonate groups play a structural role by conferring stability to the multilayer due to the strong electrostatic interactions with the polycations, while the weakly interacting MA groups remain "silent" within the film and then act as on-demand pH-responsive units. When these multilayers are combined with a strong cationic capping layer that repels the passage of cationic probes, a pH-gateable rectified transport of anions is observed. Concomitantly, we also observed that these functional properties are significantly affected when multilayers are subjected to extensive pH cycling as a consequence of irreversible morphological changes taking place in the film. We envision that the synergy derived from combining weak and strong interactions within the same multilayer will play a key role in the construction of new interfacial architectures displaying tailorable ion transport properties.
Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly
Shi, Quan; Qian, Zhiyong; Liu, Donghua; Liu, Hongchen
2017-01-01
In vivo implants that are composed of titanium and titanium alloys as raw materials are widely used in the fields of biology and medicine. In the field of dental medicine, titanium is considered to be an ideal dental implant material. Good osseointegration and soft tissue closure are the foundation for the success of dental implants. Therefore, the enhancement of the osseointegration and antibacterial abilities of titanium and its alloys has been the focus of much research. With its many advantages, layer-by-layer (LbL) assembly is a self-assembly technique that is used to develop multilayer films based on complementary interactions between differently charged polyelectrolytes. The LbL approach provides new methods and applications for the surface modification of dental titanium implant. In this review, the application of the LbL technique to surface modification of titanium including promoting osteogenesis and osseointegration, promoting the formation and healing of soft tissues, improving the antibacterial properties of titanium implant, achieving local drug delivery and sustained release is summarized. PMID:28824462
Diamanti, Eleftheria; Gutiérrez-Pineda, Eduart; Politakos, Nikolaos; Andreozzi, Patrizia; Rodriguez-Presa, María José; Knoll, Wolfgang; Azzaroni, Omar; Gervasi, Claudio A; Moya, Sergio E
2017-12-06
Supported membranes on polymer cushions are of fundamental interest as models for cell membranes. The use of polyelectrolyte multilayers (PEMs) assembled by the layer by layer (LbL) technique as supports for a bilayer allows for easy integration of the lipid bilayer on surfaces and devices and for nanoscale tunable spacing of the lipid bilayer. Controlling ionic permeability in lipid bilayers supported on PEMs triggers potential applications in sensing and as models for transport phenomena in cell membranes. Lipid bilayers displaying gramicidin channels are fabricated on top of polyallylamine hydrochloride (PAH) and polystyrene sulfonate (PSS) multilayer films, by the assembly of vesicles of phosphatidylcholine and phosphatidylserine, 50 : 50 M/M, carrying gramicidin (GA). Quartz crystal microbalance with dissipation shows that the vesicles with GA fuse into a bilayer. Atomic force microscopy reveals that the presence of GA alters the bilayer topography resulting in depressions in the bilayer of around 70 nm in diameter. Electrochemical impedance spectroscopy (EIS) studies show that supported bilayers carrying GA have smaller resistances than the bilayers without GA. Lipid layers carrying GA display a higher conductance for K + than for Na + and are blocked in the presence of Ca 2+ .
Baba Ismail, Yanny Marliana; Ferreira, Ana Marina; Bretcanu, Oana; Dalgarno, Kenneth; El Haj, Alicia J
2017-11-01
This paper presents a new approach in assembling bone extracellular matrix components onto PLA films, and investigates the most favourable environment which can be created using the technique for cell-material interactions. Poly (lactic acid) (PLA) films were chemically modified by covalently binding the poly(ethylene imine) (PEI) as to prepare the substrate for immobilization of polyelectrolyte multilayers (PEMs) coating. Negatively charged polyelectrolyte consists of well-dispersed silicon-carbonated hydroxyapatite (SiCHA) nanopowders in hyaluronic acid (Hya) was deposited onto the modified PLA films followed by SiCHA in collagen type I as the positively charged polyelectrolyte. The outermost layer was finally cross-linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrocholoride and N-hydroxysulfosuccinimide sodium salt (EDC/NHS) solutions. The physicochemical features of the coated PLA films were monitored via X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscope (AFM). The amounts of calcium and collagen deposited on the surface were qualitatively and quantitatively determined. The surface characterizations suggested that 5-BL has the optimum surface roughness and highest amounts of calcium and collagen depositions among tested films. In vitro human mesenchymal stem cells (hMSCs) cultured on the coated PLA films confirmed that the coating materials greatly improved cell attachment and survival compared to unmodified PLA films. The cell viability, cell proliferation and Alkaline Phosphatase (ALP) expression on 5-BL were found to be the most favourable of the tested films. Hence, this newly developed coating materials assembly could contribute to the improvement of the bioactivity of polymeric materials and structures aimed to bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Seong, Joon Seob; Yun, Mid Eum; Park, Soo Nam
2018-02-01
Layer-by-layer (LbL) self-assembly of multilayered liposomes is used to improve the stability of conventional liposomes. In this study, the LbL technology was used to prepare novel multilayered liposomes from chitooligosaccharide and N-succinyl-chitosan. We propose that this preparation can be used as a transdermal drug delivery system (TDDS) to enhance stability against surfactants and control drug release. Particle size increased with the number of layers in the multilayer and the zeta potential varied between positive and negative values with alternate deposition of polyelectrolytes. Finally, approximately 300-400nm-thick four-layered liposomes were prepared. These liposomes were more stable against surfactants and showed a relatively high release of quercetin at pH 5.5 than the uncoated liposomes as assessed via in vitro drug release and skin permeation studies. In summary, the multilayered liposomes showed potential for use as a surfactant-stable TDDS that effectively enhanced the permeation of quercetin, a poorly soluble drug, into the skin. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structure of Protein Layers in Polyelectrolyte Matrices Studied by Neutron Reflectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovskaya, Veronika; Ankner, John Francis; O'Neill, Hugh Michael
2011-01-01
Polyelectrolyte multilayer films obtained by localized incorporation of Green Fluorescent Protein (GFP) within electrostatically assembled matrices of poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) via spin-assisted layer-by-layer growth were discovered to be highly structured, with closely packed monomolecular layers of the protein within the bio-hybrid films. The structure of the films was evaluated in both vertical and lateral directions with neutron reflectometry, using deuterated GFP as a marker for neutron scattering contrast. Importantly, the GFP preserves its structural stability upon assembly as confirmed by circular dichroism (CD) and in situ attenuated total reflection Fourier Transform Infrared spectroscopy (ATR-FTIR). Atomic force microscopy was complimentedmore » with X-ray reflectometry to characterize the external roughness of the biohybrid films. Remarkably, films assembled with a single GFP layer confined at various distances from the substrate exhibit a strong localization of the GFP layer without intermixing into the LbL matrix. However, partial intermixing of the GFP layers with polymeric material is evidenced in multiple-GFP layer films with alternating protein-rich and protein-deficient regions. We hypothesize that the polymer-protein exchange observed in the multiple-GFP layer films suggests the existence of a critical protein concentration which can be accommodated by the multilayer matrix. Our results yield new insights into the mechanism of GFP interaction with a polyelectrolyte matrix and open opportunities for fabrication of bio-hybrid films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.« less
Direct optical imaging of nanoscale internal organization of polymer films
NASA Astrophysics Data System (ADS)
Suran, Swathi; Varma, Manoj
2018-02-01
Owing to its sensitivity and precise control at the nanoscale, polyelectrolytes have been immensely used to modify surfaces. Polyelectrolyte multilayers are generally water made and are easy to fabricate on any surface by the layer-by-layer (LbL) self-assembly process due to electrostatic interactions. Polyelectrolyte multilayers or PEMs can be assembled to form ultrathin membranes which can have potential applications in water filtration and desalination [1-3]. Hydration in PEMs is a consequence of both the bulk and surface phenomenon [4-7]. Bulk behavior of polymer membranes are well understood. Several techniques including reflectivity and contact angle measurements were used to measure the hydration in the bulk of polymer membranes [4, 8]. On the other hand their internal organization at the molecular level which can have a profound contribution in the transport mechanism, are not understood well. Previously, we engineered a technique, which we refer to as Bright-field Nanoscopy, which allows nanoscale optical imaging using local heterogeneities in a water-soluble germanium (Ge) thin film ( 25 nm thick) deposited on gold [8]. We use this technique to study the water transport in PEMs. It is understood that the surface charge and outer layers of the PEMs play a significant role in water transport through polymers [9-11]. This well-known `odd-even' effect arising on having different surface termination of the PEMs was optically observed with a spatial resolution unlike any other reported previously [12]. In this communication, we report that on increasing the etchant's concentration, one can control the lateral etching of the Ge film. This allowed the visualization of the nanoscale internal organization in the PEMs. Knowledge of the internal structure would allow one to engineer polymer membranes specific to applications such as drug delivering capsules, ion transport membranes and barriers etc. We also demonstrate a mathematical model involving a surface permeability term which captures the experimentally observed odd-even effect.
Self-recovery of stressed nanomembranes
NASA Astrophysics Data System (ADS)
Jiang, Chaoyang; Rybak, Beth M.; Markutsya, Sergiy; Kladitis, Paul E.; Tsukruk, Vladimir V.
2005-03-01
Long-term stability and self-recovery properties were studied for the compliant nanomembranes with a thickness of 55nm free suspended over openings of several hundred microns across. These nanomembranes were assembled with spin-assisted layer-by-layer routines and were composed of polymer multilayers and gold nanoparticles. In a wide pressure range, the membranes behave like completely elastic freely suspended plates. Temporal stability was tested under extreme deformational conditions close to ultimate strain and very modest creep behavior was observed. A unique "self-recovery" ability of these nanomembranes was revealed in these tests. We observed a complete restoration of the initial nanomembrane shape and properties after significant inelastic deformation. These unique micromechanical properties are suggested to be the result of strong Coulombic interaction between the polyelectrolyte layers combined with a high level of biaxial orientation of polymer chains and in-plane prestretching stresses.
Dellacasa, Elena; Zhao, Li; Yang, Gesheng; Pastorino, Laura; Sukhorukov, Gleb B
2016-01-01
The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA) n stereocomplex and the cores with and without the polymeric (PSS/PAH) n /PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.
Yang, Gesheng; Pastorino, Laura
2016-01-01
Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release. PMID:26925356
Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins.
Gaddes, David; Jung, Huihun; Pena-Francesch, Abdon; Dion, Genevieve; Tadigadapa, Srinivas; Dressick, Walter J; Demirel, Melik C
2016-08-10
Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics.
[Preparation of polyelectrolyte microcapsules contained gold nanoparticles].
Sun, Ya-jie; Zhu, Jia-bi; Zheng, Chun-li
2010-03-01
In this work, polyelectrolyte microcapsules containing gold nanoparticles were prepared via layer by layer assembly. Gold nanoparticles and poly (allyamine hydrochloride) (PAH) were coated on the CaCO3 microparticles. And then EDTA was used to remove the CaCO3 core. Scanning electron microscopy (SEM) was used to characterize the surface of microcapsules. SEM images indicate that the microcapsules and the polyelectrolyte multilayer were deposited on the surface of CaCO3 microparticles. FITC-bovine serum albumin (FITC-BSA, 2 mg) was incorporated in the CaCO3 microparticles by co-precipitation. Fluorescence microscopy was used to observe the fluorescence intensity of microcapsules. The encapsulation efficiency was (34.31 +/- 2.44) %. The drug loading was (43.75 +/- 3.12) mg g(-1).
Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie
Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less
Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles
Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie; ...
2017-10-06
Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less
Renewable urea sensor based on a self-assembled polyelectrolyte layer.
Wu, Zhaoyang; Guan, Lirui; Shen, Guoli; Yu, Ruqin
2002-03-01
A renewable urea sensor based on a carboxylic poly(vinyl chloride) (PVC-COOH) matrix pH-sensitive membrane has been proposed, in which a positively charged polyelectrolyte layer is first constructed by using a self-assembly technique on the surface of a PVC-COOH membrane, and urease, with negative charges, is then immobilized through electrostatic adsorption onto the PVC-COOH membrane, by controlling the pH of the urease solution below its isoelectric point. The response characteristics of the PVC-COOH pH-sensitive membrane and the effects of experimental conditions have been investigated in detail. Compared with conventional covalent immobilization, the urea sensor made with this self-assembly immobilization shows significant advantage in terms of sensitivity and ease of regeneration. The potential responses of the urea sensor with self-assembly immobilization increase with the urea concentration over the concentration range 10(-5) - 10(-1) mol l(-1), and the detection limit is 0.028 mmol(-1). Moreover, this type of urea sensor can be repeatedly regenerated by using a simple washing treatment with 0.01 mol l(-1) NaOH (containing 0.5 mol l(-1) NaCl) and 0.01 mol l(-1) HCl. The urease layers and the polyelectrolyte layers on the PVC-COOH membrane are removed, the potential response of the sensor to urea solutions of different concentrations returns nearly to zero, and another assembly cycle of urease and polyelectrolyte can then be carried out.
Palamà, Ilaria E; Leporatti, Stefano; de Luca, Emanuela; Di Renzo, Nicola; Maffia, Michele; Gambacorti-Passerini, Carlo; Rinaldi, Ross; Gigli, Giuseppe; Cingolani, Roberto; Coluccia, Addolorata M L
2010-04-01
The lack of sensitivity of chronic myeloid leukemia (CML) stem cells to imatinib mesylate (IM) commonly leads to drug dose escalation or early disease relapses when therapy is stopped. Here, we report that packaging of IM into a biodegradable carrier based on polyelectrolyte microcapsules increases drug retention and antitumor activity in CML stem cells, also improving the ex vivo purging of malignant progenitors from patient autografts. Microparticles/capsules were obtained by layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolyte multilayers on removable calcium carbonate (CaCO(3)) templates and loaded with or without IM. A leukemic cell line (KU812) and CD34(+) cells freshly isolated from healthy donors or CML patients were tested. Polyelectrolyte microcapsules (PMCs) with an average diameter of 3 microm, fluorescently labelled multilayers sensitive to the action of intracellular proteases and 95-99% encapsulation efficiency of IM, were prepared. Cell uptake efficiency of such biodegradable carriers was quantified in KU812, leukemic and normal CD34(+) stem cells (range: 70-85%), and empty PMCs did not impact cell viability. IM-loaded PMCs selectively targeted CML cells, by promoting apoptosis at doses that exert only cytostatic effects by IM alone. More importantly, residual CML cells from patient leukapheresis products were reduced or eliminated more efficiently by using IM-loaded PMCs compared with freely soluble IM, with a purging efficiency of several logs. No adverse effects on normal CD34(+) stem-cell survival and their clonogenic potential was noticed in long-term cultures of hematopoietic progenitors in vitro. This pilot study provides the proof-of-principle for the clinical application of biodegradable IM-loaded PMC as feasible, safe and effective ex vivo purging agents to target CML stem cells, in order to improve transplant outcome of resistant/relapsed patients or reduce IM dose escalation.
Feng, Ai Ling; You, Min Li; Tian, Limei; Singamaneni, Srikanth; Liu, Ming; Duan, Zhenfeng; Lu, Tian Jian; Xu, Feng; Lin, Min
2015-01-14
Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interests in bioapplications due to their unique optical properties by converting near infrared excitation to visible emission. However, relatively low quantum yield prompts a need for developing methods for fluorescence enhancement. Plasmon nanostructures are known to efficiently enhance fluorescence of the surrounding fluorophores by acting as nanoantennae to focus electric field into nano-volume. Here, we reported a novel plasmon-enhanced fluorescence system in which the distance between UCNPs and nanoantennae (gold nanorods, AuNRs) was precisely tuned by using layer-by-layer assembled polyelectrolyte multilayers as spacers. By modulating the aspect ratio of AuNRs, localized surface plasmon resonance (LSPR) wavelength at 980 nm was obtained, matching the native excitation of UCNPs resulting in maximum enhancement of 22.6-fold with 8 nm spacer thickness. These findings provide a unique platform for exploring hybrid nanostructures composed of UCNPs and plasmonic nanostructures in bioimaging applications.
Design of polyelectrolyte multilayer membranes for ion rejection and wastewater effluent treatment
NASA Astrophysics Data System (ADS)
Sanyal, Oishi
Polyelectrolyte multilayer (PEM) membranes present a special class of nanostructured membranes which have potential applications in a variety of water treatment operations. These membranes are fabricated by the layer-by-layer (LbL) assembly of alternately charged polyelectrolytes on commercial membrane surfaces. A large variety of polyelectrolytes and their varied deposition conditions (pH, number of bilayers etc.) allow very fine tuning of the membrane performance in terms of permeability and rejection. The first part of this thesis is about the application of PEM membranes to the removal of perchlorate ion from water. Being a monovalent ion, it is most effectively removed by a reverse osmosis (RO) membrane. However, these membranes inherently have very low fluxes which lead to high pressure requirements. In our work, we modified the surface of a nanofiltration (NF) membrane by the LbL assembly of oppositely charged polyelectrolytes. The appropriate tuning of the LbL conditions led to the development of a membrane with significantly higher flux than RO membranes but with equivalent perchlorate rejection. This was one of the best trade-offs offered by PEM membranes for monovalent ion rejection as has been reported in literature so far. While PEM membranes have mostly shown great potential in ion-rejection studies, they have seldom been tested for real wastewater effluents. The second part of this thesis, therefore, deals with evaluating the applicability of PEM membranes to treating an electrocoagulation (EC)-treated high strength wastewater. Two types of very commonly used polyelectrolyte combinations were tried out -- one of which was an ionically crosslinked system and the other one was covalently crosslinked. Both the types of PEM membranes showed a high level of COD reduction from the feed stream with higher fluxes than commercial RO membranes. One major challenge in using membranes for wastewater treatment is their fouling propensity. Like many other wastewater samples, the EC treated solution also contained a fair amount of organic foulants. These PEM membranes, however, indicated better anti-fouling properties than commercial NF/RO membranes under normal flow conditions. The last part of our work was focused on improving the anti-fouling properties of these membranes by the incorporation of clay nanoplatelets within polyelectrolyte multilayers. In this project, a commercial polyethersulfone (PES) membrane was modified by clay-polyelectrolyte composite thin films and tested against the EC effluent under tangential flow conditions. In comparison to the PEM membranes, these clay-PEM (c-PEM) hybrid membranes offered superior anti-fouling properties with higher fluxes and also required lesser number of layers. On crosslinking the polyelectrolytes, the c-PEM membranes yielded improved anti-fouling properties and high COD removal. Introduction of these inorganic nanoplatelets, however, led to a significant decline in the initial flux of the modified membranes as compared to bare PES membranes, which therefore necessitates further optimization. Some strategies which can potentially help in optimizing the performance of these c-PEM membranes have been discussed in this thesis.
NASA Astrophysics Data System (ADS)
Shi, Ruixia; Na, Na; Jiang, Fubin; Ouyang, Jin
2013-06-01
Growth process information and molecular structure identification are very important for characterization of self-assembled films. Here, we explore the possible application of desorption electrospray ionization mass spectrometry (DESI-MS) that provides the assembled information of rhodamine B (Rh B) and rhodamine 123 (Rh 123) films. With the help of lab-made DESI source, two characteristic ions [Rh B]+ and [Rh 123]+ are observed directly in the open environment. To evaluate the reliability of this technique, a comparative study of ultraviolet-visible (UV-vis) spectroscopy and our method is carried out, and the result shows good correlation. According to the signal intensity of characteristic ions, the layer-by-layer adsorption process of dyes can be monitored, and the thicknesses of multilayer films can also be comparatively determined. Combining the high sensitivity, selectivity, and speed of mass spectrometry, the selective adsorption of similar structure molecules under different pH is recognized easily from extracted ion chronograms. The variation trend of dyes signalling intensity with concentration of polyelectrolyte is studied as well, which reflects the effect of surface charge on dyes deposition. Additionally, the desorption area, surface morphology, and thicknesses of multilayer films are investigated using fluorescence microscope, scanning electron microscope (SEM), and atomic force microscopy (AFM), respectively. Because the desorption area was approximately as small as 2 mm2, the distribution situation of organic dyes in an arbitrary position could be gained rapidly, which means DESI-MS has advantages on in situ analysis.
NASA Astrophysics Data System (ADS)
Zhou, Weitao; Huang, Haitao; Du, Shan; Huo, Yingdong; He, Jianxin; Cui, Shizhong
2015-08-01
In this approach, polyelectrolyte film-coated nanofibrous silk fibroin (SF) nonwovens were prepared from the alternate deposition of positively charged polyethylenimine (PEI) and negatively charged SF using electrostatic layer-by-layer (LBL) self-assembled technology. The composite membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometer. The SF-PEI multilayer-assembled nanofibers (less than five layers) were fine and uniform with the fiber diameter from 400 nm to 600 nm, and had very large surface area and high porosity (more than 70%). The amino groups of PEI were proved to be deposited onto SF nonwovens, which granted the coated nonwovens with potential applicability for copper ions adsorption. The PEI films coated SF substrate showed much higher copper ions adsorption capacity than that of ethanol treated SF nanofibers. Adding the number of PEI coated could enhance the Cu2+ adsorption capacity significantly. The maximum milligrams per gram of copper ions adsorbed reached 59.7 mg/g when the SF substrate was coated with 5 bilayers of SF-PEI. However, the copper ions adsorption capacity had no obvious change as the number of PEI continued to increase. These results suggest potential for PEL film-coated nanofibrous nonwovens as a new adsorbent for metal ions.
Interfaces and thin films as seen by bound electromagnetic waves.
Knoll, W
1998-01-01
This contribution summarizes the use of plasmon surface polaritons and guided optical waves for the characterization of interfaces and thin organic films. After a short introduction to the theoretical background of evanescent wave optics, examples are given that show how this interfacial "light" can be employed to monitor thin coatings at a solid/air or solid/liquid interface. Examples are given for a very sensitive thickness determination of samples ranging from self-assembled monolayers, to multilayer assemblies prepared by the Langmuir/Blodgett/Kuhn technique or by the alternate polyelectrolyte deposition. These are complemented by the demonstration of the potential of the technique to also monitor time-dependent processes in a kinetic mode. Here, we put an emphasis on the combination set-up of surface plasmon optics with electrochemical techniques, allowing for the on-line characterization of various surface functionalization strategies, e.g. for (bio-) sensor purposes.
Self-assembly of polyelectrolyte surfactant complexes using large scale MD simulation
NASA Astrophysics Data System (ADS)
Goswami, Monojoy; Sumpter, Bobby
2014-03-01
Polyelectrolytes (PE) and surfactants are known to form interesting structures with varied properties in aqueous solutions. The morphological details of the PE-surfactant complexes depend on a combination of polymer backbone, electrostatic interactions and hydrophobic interactions. We study the self-assembly of cationic PE and anionic surfactants complexes in dilute condition. The importance of such complexes of PE with oppositely charged surfactants can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. Many useful properties of PE surfactant complexes come from the highly ordered structures of surfactant self-assembly inside the PE aggregate which has applications in industry. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-surfactant systems. Our investigation shows highly ordered pearl-necklace structures that have been observed experimentally in biological systems. We investigate many different properties of PE-surfactant complexation for different parameter ranges that are useful for pharmaceutical, engineering and biological applications.
Simioni, Andreza Ribeiro; de Jesus, Priscila Costa Carvalho; Tedesco, Antonio Claudio
2018-06-01
Microcapsules fabricated using layer-by-layer self-assembly have unique properties, making them attractive for drug delivery applications. The technique has been improved, allowing the deposition of multiple layers of oppositely charged polyelectrolytes on spherical, colloidal templates. These templates can be decomposed by coating multiple layers, resulting in hollow shells. In this paper, we describe a novel drug delivery system for loading photosensitizer drugs into hollow multilayered microcapsules for photoprocess applications. Manganese carbonate particles were prepared by mixing NH 4 HCO 3 and MnSO 4 and performing consecutive polyelectrolyte adsorption processes onto these templates using poly-(sodium 4-styrene sulfonate) and poly-(allylamine hydrocholoride). A photosensitizer was also incorporated into the layers. Hollow spheres were fabricated by removing the cores in the acidic solution. The hollow, multilayered microcapsules were studied by scanning electron microscopy, steady-state, and time-resolved techniques. Their biological activity was evaluated in vitro with cancer cells using a conventional MTT assay. The synthesized CaCO 3 microparticles were uniform, non-aggregated, and highly porous spheres. The phthalocyanine derivatives loaded in the microcapsules maintained their photophysical behaviour after encapsulation. The spectroscopic results presented here showed excellent photophysical behaviour of the studied drug. We observed a desirable increase in singlet oxygen production, which is favourable for the PDT protocol. Cell viability after treatment was determined and the proposed microcapsules caused 80% cell death compared to the control. The results demonstrate that photosensitizer adsorption into the CaCO 3 microparticle voids together with the layer-by-layer assembly of biopolymers provide a method for the fabrication of biocompatible microcapsules for use as biomaterials. Copyright © 2018 Elsevier B.V. All rights reserved.
Molecular Origins of Thermal Transitions in Polyelectrolyte Assemblies
NASA Astrophysics Data System (ADS)
Yildirim, Erol; Zhang, Yanpu; Antila, Hanne S.; Lutkenhaus, Jodie L.; Sammalkorpi, Maria; Aalto Team; Texas A&M Team
2015-03-01
Polyelectrolyte (PE) multilayers and complexes formed from oppositely charged polymers can exhibit extraordinary superhydrophobicity, mechanical strength and responsiveness resulting in applications ranging functional membranes, optics, sensors and drug delivery. Depending on the assembly conditions, PE assemblies may undergo a thermal transition from glassy to soft behavior under heating. Our earlier work using thermal analysis measurements shows a distinct thermal transition for PE layer-by-layer (LbL) systems assembled with added salt but no analogous transition in films assembled without added salt or dry systems. These findings raise interesting questions on the nature of the thermal transition; here, we explore its molecular origins through characterization of the PE aggregates by temperature-controlled all-atom molecular dynamics simulations. We show via molecular simulations the thermal transition results from the existence of an LCST (lower critical solution temperature) in the PE systems: the diffusion behavior, hydrogen bond formation, and bridging capacity of water molecules plasticizing the complex changes at the transition temperature. We quantify the behavior, map its chemistry specificity through comparison of strongly and weakly charged PE complexes, and connect the findings to our interrelated QCM-D experiments.
Jiang, Chao; Luo, Caijun; Liu, Xiaolin; Shao, Lei; Dong, Youqing; Zhang, Yingwei; Shi, Feng
2015-05-27
The layer-by-layer (LbL) assembled multilayer has been widely used as good barrier film or capsule due to the advantages of its flexible tailoring of film permeability and compactness. Although many specific systems have been proposed for film design, developing a versatile strategy to control film compactness remains a challenge. We introduced the simple mechanical energy of a high gravity field to the LbL assembly process to tailor the multilayer permeability through adjusting film compactness. By taking poly(diallyldimethylammonium chloride) (PDDA) and poly{1-4[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl sodium salt} (PAzo) as a model system, we investigated the LbL assembly process under a high gravity field. The results showed that the high gravity field introduced effectively accelerated the multilayer deposition process by 20-fold compared with conventional dipping assembly; the adsorption rate was positively dependent on the rotating speed of the high gravity equipment and the concentration of the building block solutions. More interestingly, the film compactness of the PDDA/PAzo multilayer prepared under the high gravity field increased remarkably with the growing rotational speed of the high gravity equipment, as demonstrated through comparisons of surface morphology, cyclic voltammetry curves, and photoisomerization kinetics of PDDA/PAzo multilayers fabricated through the conventional dipping method and through LbL assembly under a high gravity field, respectively. In this way, we have introduced a simple and versatile external form of mechanical energy into the LbL assembling process to improve film compactness, which should be useful for further applications in controlled ion permeability, anticorrosion, and drug loading.
Szczepanowicz, Krzysztof; Kruk, Tomasz; Świątek, Wiktoria; Bouzga, Aud M; Simon, Christian R; Warszyński, Piotr
2018-06-01
Formation of protein-resistant surfaces is a major challenge in the design of novel biomaterials and an important strategy to prevent protein adsorption is the formation of protein-resistant coatings. It can be achieved by proper modification of surfaces, e.g., by immobilization of hydrophilic polymers such as poly(ethylene glycol) (PEG). An appropriate method to immobilize PEG at charged surfaces is the adsorption of copolymers with PEG chains grafted onto polyelectrolyte backbone. The growing interest in the use of polyelectrolyte multilayer coatings in biomedical applications to improve biocompatibility and/or to prepare coating with antiadhesive properties has been the main reason for these studies. Therefore the aim was to produce protein resistant polyelectrolyte multilayer films. They were formed via the layer-by-layer approach, while their pegylation by the deposition of pegylated polyanion, PGA-g-PEG, as an external layer. The influence of PEG chain length and grafting density of PGA-g-PEG copolymers on the protein antiadhesive properties of pegylated polyelectrolyte multilayer films was investigated. To monitor the formation of pegylated and non-pegylated multilayer films, adsorption of the following proteins: HSA, Fibrinogen, and FBS were measured by quartz crystal microbalance (QCM - D). We found that protein adsorption onto all pegylated polyelectrolyte multilayers was significantly reduced in comparison to non-pegylated ones. Long-term performance tests confirmed the stability and the durability of the protein resistant properties of the pegylated multilayers. Antiadhesive properties of tested surfaces pegylated by PGA-g-PEG were compared to the available data for pegylated polycation PLL-g-PEG. Copyright © 2018 Elsevier B.V. All rights reserved.
Molecular lego for the assembly of biosensing layers.
Mano, N; Kuhn, A
2005-03-31
We propose a procedure to assemble monolayers of redox mediator, coenzyme, enzyme and stabilizing polyelectrolyte on an electrode surface using essentially electrostatic and complexing interactions. In a first step a monolayer of redox mediator, substituted nitrofluorenones, is adsorbed. In a second step, a layer of calcium cations is immobilized at the interface. It establishes a bridge between the redox mediator and the subsequently adsorbed coenzyme NAD(+). In the next step we use the intrinsic affinity of the NAD(+) monolayer for dehydrogenases to build up a multilayer composed of mediator/Ca(2+)/NAD(+)/dehydrogenase. The so obtained modified electrode can be used as a biosensor. Quartz crystal microbalance measurements allowed us to better understand the different parameters responsible for the adsorption. A more detailed investigation of the system made it possible to finally stabilize the assembly sufficiently by the adsorption of a polyelectrolyte layer in order to perform rotating disk electrode measurements with the whole supramolecular architecture on the electrode surface.
Wang, Weina; Xu, Yisheng; Backes, Sebastian; Li, Ang; Micciulla, Samantha; Kayitmazer, A Basak; Li, Li; Guo, Xuhong; von Klitzing, Regine
2016-04-12
Biomimetic multilayers based on layer-by-layer (LbL) assembly were prepared as functional films with compact structure by incorporating the mussel-inspired catechol cross-linking. Dopamine-modified poly(acrylic acid) (PAADopa) was synthesized as a polyanion to offer electrostatic interaction with the prelayer polyethylenimine (PEI) and consecutively cross-linked by zinc to generate compact multilayers with tunable physicochemical properties. In situ layer-by-layer growth and cross-linking were monitored by a quartz crystal microbalance with dissipation (QCM-D) to reveal the kinetics of the process and the influence of Dopa chemistry. Addition of Dopa enhanced the mass adsorption and led to the formation of a more compact structure. An increase of ionic strength induced an increase in mass adsorption in the Dopa-cross-linked multilayers. This is a universal approach for coating of various surfaces such as Au, SiO2, Ti, and Al2O3. Roughness observed by AFM in both wet and dry conditions was compared to confirm the compact morphology of Dopa-cross-linked multilayers. Because of the pH sensitivity of Dopa moiety, metal-chelated Dopa groups can be turned into softer structure at higher pH as revealed by reduction of Young's modulus determined by MFP-3D AFM. A deeper insight into the growth and mechanical properties of Dopa-cross-linked polyelectrolyte multilayers was addressed in the present study. This allows a better control of these systems for bioapplications.
Assessment of polyelectrolyte coating stability under dynamic buffer conditions in CE.
Swords, Kyleen E; Bartline, Peter B; Roguski, Katherine M; Bashaw, Sarah A; Frederick, Kimberley A
2011-09-01
Dynamic buffer conditions are present in many electrophoretically driven separations. Polyelectrolyte multilayer coatings have been employed in CE because of their chemical and physical stability as well as their ease of application. The goal of this study is to measure the effect of dynamic changes in buffer pH on flow using a real-time method for measuring EOF. Polyelectrolyte multilayers (PEMs) were composed of pairs of strong or completely ionized polyelectrolytes including poly(diallyldimethylammonium) chloride and poly(styrene sulfonate) and weak or ionizable polyelectrolytes including poly(allylamine) and poly(methacrylic acid). Polyelectrolyte multilayers of varying thicknesses (3, 4, 7, 8, 15, or 16 layers) were also studied. While the magnitude of the EOF was monitored every 2 s, the buffer pH was exchanged from a relatively basic pH (7.1) to increasingly acidic pHs (6.6, 6.1, 5.5, and 5.1). Strong polyelectrolytes responded minimally to changes in buffer pH (<1%), whereas substantial (>10%) and sometimes irreversible changes were measured with weak polyelectrolytes. Thicker coatings resulted in a similar magnitude of response but were more likely to degrade in response to buffer pH changes. The most stable coatings were formed from thinner layers of strong polyelectrolytes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Acquisition of Infrared Variable Angle Spectroscopic Ellipsometer (IR-VASE)
2016-04-22
External Advisory Board Meeting in Rio Piedras, PR. March 2016 Quiñonez B.*, Castilla D., Almodóvar J.; “ Polysaccharide -based polyelectrolyte...April 2016 Quiñonez B.*, Castilla D., Almodóvar J.; “ Polysaccharide -based polyelectrolyte multilayers: Physicochemical characterization and in...2016 Quiñonez B.*, Castilla D., Almodóvar J.; “ Polysaccharide -based polyelectrolyte multilayers: Physicochemical characterization and in vitro
Feng, Ai Ling; You, Min Li; Tian, Limei; Singamaneni, Srikanth; Liu, Ming; Duan, Zhenfeng; Lu, Tian Jian; Xu, Feng; Lin, Min
2015-01-01
Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interests in bioapplications due to their unique optical properties by converting near infrared excitation to visible emission. However, relatively low quantum yield prompts a need for developing methods for fluorescence enhancement. Plasmon nanostructures are known to efficiently enhance fluorescence of the surrounding fluorophores by acting as nanoantennae to focus electric field into nano-volume. Here, we reported a novel plasmon-enhanced fluorescence system in which the distance between UCNPs and nanoantennae (gold nanorods, AuNRs) was precisely tuned by using layer-by-layer assembled polyelectrolyte multilayers as spacers. By modulating the aspect ratio of AuNRs, localized surface plasmon resonance (LSPR) wavelength at 980 nm was obtained, matching the native excitation of UCNPs resulting in maximum enhancement of 22.6-fold with 8 nm spacer thickness. These findings provide a unique platform for exploring hybrid nanostructures composed of UCNPs and plasmonic nanostructures in bioimaging applications. PMID:25586238
O'Neal, Joshua T; Dai, Ethan Y; Zhang, Yanpu; Clark, Kyle B; Wilcox, Kathryn G; George, Ian M; Ramasamy, Nandha E; Enriquez, Daisy; Batys, Piotr; Sammalkorpi, Maria; Lutkenhaus, Jodie L
2018-01-23
Polyelectrolyte multilayers and layer-by-layer assemblies are susceptible to structural changes in response to ionic environment. By altering the salt type and ionic strength, structural changes can be induced by disruption of intrinsically bound ion pairs within the multilayer network via electrostatic screening. Notably, high salt concentrations have been used for the purposes of salt-annealing and self-healing of LbL assemblies with KBr, in particular, yielding a remarkably rapid response. However, to date, the structural and swelling effects of various monovalent ion species on the behavior of LbL assemblies remain unclear, including a quantitative view of ion content in the LbL assembly and thickness changes over a wide concentration window. Here, we investigate the effects of various concentrations of KBr (0 to 1.6 M) on the swelling and de-swelling of LbL assemblies formed from poly(diallyldimethylammonium) polycation (PDADMA) and poly(styrene sulfonate) polyanion (PSS) in 0.5 M NaCl using quartz-crystal microbalance with dissipation (QCM-D) monitoring as compared to KCl, NaBr, and NaCl. The ion content after salt exchange is quantified using neutron activation analysis (NAA). Our results demonstrate that Br - ions have a much greater effect on the structure of as-prepared thin films than Cl - at ionic strengths above assembly conditions, which is possibly caused by the more chaotropic nature of Br - . It is also found that the anion in general dominates the swelling response as compared to the cation because of the excess PDADMA in the multilayer. Four response regimes are identified that delineate swelling due to electrostatic repulsion, slight contraction, swelling due to doping, and film destruction as ionic strength increases. This understanding is critical if such materials are to be used in applications requiring submersion in chemically dynamic environments such as sensors, coatings on biomedical implants, and filtration membranes.
Moskowitz, Joshua; Blaisse, Michael; Samuel, Raymond; Hsu, Hu-Ping; Harris, Mitchel; Martin, Scott; Lee, Jean; Spector, Myron; Hammond, Paula
2010-01-01
While the infection rate of orthopedic implants is low, the required treatment, which can involve six weeks of antibiotic therapy and two additional surgical operations, is life threatening and expensive, and thus motivates the development of a one-stage re-implantation procedure. Polyelectrolyte multilayers incorporating gentamicin were fabricated using the layer-by-layer deposition process for use as a device coating to deal with an existing bone infection in a direct implant exchange operation. The films eluted about 70% of their payload in vitro during the first three days and subsequently continued to release drug for more than four additional weeks, reaching a total average release of over 550 μg/cm2. The coatings were demonstrated to be bactericidal against Staphylococcus aureus, and degradation products were generally nontoxic towards MC3T3-E1 murine preosteoblasts. Film-coated titanium implants were compared to uncoated implants in an in vivo S. aureus bone infection model. After a direct exchange procedure, the antimicrobial-coated devices yielded bone homogenates with a significantly lower degree of infection than uncoated devices at both day four (p < 0.004) and day seven (p < 0.03). This study has demonstrated that a self-assembled ultrathin film coating is capable of effectively treating an experimental bone infection in vivo and lays the foundation for development of a multi-therapeutic film for optimized, synergistic treatment of pain, infection, and osteomyelitis. PMID:20488534
The Structures of Fibronectin Adsorbed on Polyelectrolyte Thin Films
NASA Astrophysics Data System (ADS)
Shin, Kwanwoo; Satija, Sushil; Fang, Xiao-Hua; Li, Bin-Quan; Nadine, Pernodet; Miriam, Rafailovich; Sokolov, Jonathan; Arach, Goldar; Roser, Steve
2002-03-01
We have shown that it is possible to form a fibrilar network of fibronectin on a polyelectrolyte polymer film whose dimensions are similar to those reported on the extra cellular matrix. The fibronectin network was observed to form only when the charge density of the polymer was in excess of the natural charge density of the cell wall. Furthermore, the self-organized fibronectin layer was much thicker than the polymer film, indicating that long ranged interaction may play a key role in the assembly process. It is therefore important to understand the structure of the polymer layer/protein interface. Here we report on a neutron reflectivity study where we explore the structure of the polyelectrolyte layer, in this case sulfonated polystyrene (PSS_x.), with varying degree of sulfonation (x<30%), as a function of sulfur content and counter ion concentration. These results are then correlated with systemic study of the adsorption and the multilayer formation of fibronectin as a function of incubation time for various sulfonation levels of PSS_x. Furthermore, the surface charge on the substrates can be strongly influenced by the presence of salt ions, it is important to understand changes due to electrostatic interactions occurring in the various salt conditions. Complementary X-ray reflection was used to determine the salt density profile associating with the internal ionic polymer matrix. This work was funded in part of the NSF-MRSEC program.
Oded, Meirav; Kelly, Stephen T.; Gilles, Mary K.; ...
2016-04-07
Nano-patterned materials are beneficial for applications such as solar cells, opto-electronics, and sensing owing to their periodic structure and high interfacial area. We present a non-lithographic approach for assembling polyelectrolytes into periodic nanoscale patterns over cm 2 -scale areas. We used chemically modified block copolymer thin films featuring alternating charged and neutral domains as patterned substrates for electrostatic self-assembly. In-depth characterization of the deposition process using spectroscopy and microscopy techniques, including the state-of-the-art scanning transmission X-ray microscopy (STXM), reveals both the selective deposition of the polyelectrolyte on the charged copolymer domains as well as gradual changes in the film topographymore » that arise from further penetration of the solvent molecules and possibly also the polyelectrolyte into these domains. Our results demonstrate the feasibility of creating nano-patterned polyelectrolyte layers, which opens up new opportunities for structured functional coating fabrication.« less
Novel application of polyelectrolyte multilayers as nanoscopic closures with hermetic sealing.
Marcott, Stephanie A; Ada, Sena; Gibson, Phillip; Camesano, Terri A; Nagarajan, R
2012-03-01
Closure systems for personnel protection applications, such as protective clothing or respirator face seals, should provide effective permeation barrier to toxic gases. Currently available mechanical closure systems based on the hook and loop types (example, Velcro) do not provide adequate barrier to gas permeation. To achieve hermetic sealing, we propose a nonmechanical, nanoscopic molecular closure system based on complementary polyelectrolyte multilayers, one with a polycation outermost layer and the other with a polyanion outermost layer. The closure surfaces were prepared by depositing polyelectrolyte multilayers under a variety of deposition conditions, on conformable polymer substrates (thin films of polyethylene teraphthalate, PET or polyimide, PI). The hermetic sealing property of the closures was evaluated by measuring the air flow resistance using the dynamic moisture permeation cell (DMPC) at different humidity conditions. The DMPC measurements show that the polyelectrolyte multilayer closures provide significantly large resistance to air flow, approximately 20-800 times larger than that possible with conventional hook and loop type closure systems, at all humidity levels (from 5 to 95% relative humidity). Hence, from the point of view of providing a hermetic seal against toxic gas permeation, the polyelectrolyte multilayer closures are viable candidates for further engineering development. However, the adhesive strength of the multilayer closures measured by atomic force microscopy suggests that the magnitude of adhesion is much smaller than what is possible with mechanical closures. Therefore, we envisage the development of a composite closure system combining the mechanical closure to provide strong adhesion and the multilayer closure to provide hermetic sealing. © 2012 American Chemical Society
Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen
2016-04-26
Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces.
Maestro, Armando; Llamas, Sara; Álvarez-Rodríguez, Jesús; Ortega, Francisco; Maroto-Valiente, Ángel
2016-01-01
Summary This work addresses the formation and the internal morphology of polyelectrolyte layers obtained by the layer-by-layer method. A multimodal characterization showed the absence of stratification of the films formed by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Indeed the final organization might be regarded as three-dimensional solid-supported inter-polyelectrolyte films. The growth mechanism of the multilayers, followed using a quartz crystal microbalance, evidences two different growth trends, which show a dependency on the ionic strength due to its influence onto the polymer conformation. The hydration state does not modify the multilayer growth, but it contributes to the total adsorbed mass of the film. The water associated with the polyelectrolyte films leads to their swelling and plastification. The use of X-ray photoelectron spectroscopy has allowed for deeper insights on the internal structure and composition of the polyelectrolyte multilayers. PMID:26977377
Guzmán, Eduardo; Maestro, Armando; Llamas, Sara; Álvarez-Rodríguez, Jesús; Ortega, Francisco; Maroto-Valiente, Ángel; Rubio, Ramón G
2016-01-01
This work addresses the formation and the internal morphology of polyelectrolyte layers obtained by the layer-by-layer method. A multimodal characterization showed the absence of stratification of the films formed by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Indeed the final organization might be regarded as three-dimensional solid-supported inter-polyelectrolyte films. The growth mechanism of the multilayers, followed using a quartz crystal microbalance, evidences two different growth trends, which show a dependency on the ionic strength due to its influence onto the polymer conformation. The hydration state does not modify the multilayer growth, but it contributes to the total adsorbed mass of the film. The water associated with the polyelectrolyte films leads to their swelling and plastification. The use of X-ray photoelectron spectroscopy has allowed for deeper insights on the internal structure and composition of the polyelectrolyte multilayers.
Reibetanz, Uta; Halozan, David; Brumen, Milan; Donath, Edwin
2007-06-01
Polyelectrolyte multilayer sensor capsules, 5 microm in diameter, which contained fluorescein-labeled poly(acrylic acid) (PAAAF) as pH-sensitive reporter molecules, were fabricated and employed to explore their endocytotic uptake into HEK 293T cells by flow cytometry. The percentage of capsules residing in the endolysosomal compartment was estimated from the fluorescence intensity decrease caused by acidification. Capsules attached to the extracellular surface of the plasma membrane were identified by trypan blue quenching. The number of capsules in the cytoplasm was rather small, being below the detection limit of the method. The advantages of polyelectrolyte multilayer capsules are that the fluorophore is protected from interaction with cellular compartments and that the multilayer can be equipped with additional functions.
Zhang, Fu; Wu, Qi; Liu, Li-Jun; Chen, Zhi-Chun; Lin, Xian-Fu
2008-06-05
A novel multilayered drug delivery system by LbL assembly of galactosylated polyelectrolyte, which is possible to have the potential in hepatic targeting by the presence of galactose residues at the microcapsule's surface, is designed. Thermal treatment was performed on the capsules and a dramatic thermal shrinkage up to 60% decrease of capsule diameter above 50 degrees C was observed. This thermal behavior was then used to manipulate drug loading capacity and release rate. Heating after drug loading could seal the capsule shell, enhancing the loading capacity and reducing the release rate significantly. Excellent affinity between galactose-binding lectin and heated galactose-containing microcapsules were observed, indicating a stable targeting potential even after high temperature elevating up to 90 degrees C.
Synthesis and applications of electrically conducting polymer nanocomposites
NASA Astrophysics Data System (ADS)
Ku, Bon-Cheol
This research focuses on the synthesis and applications of electrically conducting polymer nanocomposites through molecular self-assembly. Two different classes of polymers, polyaniline (PANI) and polyacetylenes have been synthesized by biomimetic catalysis and spontaneous polymerization method. For gas barrier materials, commercially available polymers, poly(allylamine hydrochloride) (PAH) and poly (acrylic acid) (PAA), have also been used and thermally cross-linked. The morphological, optical and electrical properties of amphiphilic polyacetylenes have been studied. Furthermore, barrier properties, permselectivity, pervaporation properties of polyacetylenes/aluminosilicate nanocomposites have been investigated. For processability and electrical properties of carbon nanotube and conducting polymers, substituted ionic polyacetylenes (SIPA) have been covalently incorporated onto single-walled carbon nanotubes (SWNT) using the "grafting-from" technique. In the first study, a nanocomposite film catalyst has been prepared by electrostatic layer-by-layer (ELBL) self-assembly of a polyelectrolyte and a biomimetic catalyst for synthesis of polyaniline. Poly(dimethyl diallylammonium chloride) (PDAC) and hematin have been used as polycation and counter anions, respectively. The absorption spectra by UV-vis-NIR spectroscopy showed that conductive form polyaniline was formed not only as a coating on the surface of the ELBL composites but was also formed in solution. Furthermore, it was found that the reaction rate was affected by pH and concentration of hematin in the multilayers. The feasibility of controlled desorption of hematin molecules from the LBL assembly was explored and demonstrated by changing the pH and hematin concentration. The polymerization rate of aniline in solution was enhanced with decreasing pH of the solutions due to increased desorption of hematin nanoparticles from the multilayers. These ELBL hematin assemblies demonstrated both a way to functionalize surfaces with conductive polyaniline and a potential method of reusability of the catalyst for improved cost effectiveness. For fabrication of multifunctional nanocomposite membranes, (P2EPy-R/Saponite) n on NafionRTM substrate was demonstrated by electrostatic layer-by layer assembly technique. (Abstract shortened by UMI.)
Biocolloids with ordered urease multilayer shells as enzymatic reactors.
Lvov, Y; Caruso, F
2001-09-01
The preparation of biocolloids with organized enzyme-containing multilayer shells for exploitation as colloidal enzymatic nanoreactors is described. Urease multilayers were assembled onto submicrometer-sized polystyrene spheres by the sequential adsorption of urease and polyelectrolyte, in a predetermined order, utilizing electrostatic interactions for layer growth. The catalytic activity of the biocolloids increased proportionally with the number of urease layers deposited on the particles, demonstrating that biocolloid particles with tailored enzymatic activities can be produced. It was further found that precoating the latex spheres with nanoparticles (40-nm silica or 12-nm magnetite) enhanced both the stability (with respect to adsorption) and enzymatic activity of the urease multilayers. The presence of the magnetite nanoparticle coating also provided a magnetic function that allowed the biocolloids to be easily and rapidly separated with a permanent magnet. The fabrication of such colloids opens new avenues for the application of bioparticles and represents a promising route for the creation of complex catalytic particles.
Liu, Xuefan; Han, Wei; Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Zhang, Jianhao; Ge, Liqin
2018-04-01
The consumption of fresh-cut fruits is limited because of the oxidation browning and pathogenic bacteria's growth on the fruit surface. Besides, crack of the fresh-keeping film may shorten the preservation time of fruit. In this work, polyelectrolyte multilayer (PEM) film was fabricated by layer-by-layer (LBL) electrostatic deposition method. The film was made by carboxy methylcellulose sodium (CMC) and chitosan (CS). The as-prepared PEM film had good anti-oxidative and antibacterial capability. It inhibited the growth of Gram-negative bacteria and the antibacterial rate was more than 95%. The stratified structure and linear increase of the absorbance in the film verified a linear increase of film thickness. The slight scratched film could self-heal rapidly after the stimulation of water whatever the layer number was. Moreover, the film could heal cracks whose width was far bigger than the thickness. The application of PEM film on fresh-cut apples showed that PEM film had good browning, weight loss and metabolic activity inhibition ability. These results showed that the PEM film is a good candidate as edible film in fresh-cut fruits applications.
Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu
2016-01-01
Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants. PMID:27821857
Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu
2016-11-08
Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.
NASA Astrophysics Data System (ADS)
Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu
2016-11-01
Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.
Material properties of novel polymeric films
NASA Astrophysics Data System (ADS)
Kim, Gene
This dissertation will study the material properties of two types of novel polymer films (polyelectrolyte multilayer films and photolithographic polymer films). The formation of polylelectrolyte multilayer films onto functionalized aluminum oxide surfaces and functionalized poly(ethylene terephthaltate) (PET) were studied. Functionalization of the aluminum oxide surfaces was achieved via silane coupling. Functionalization of PET surfaces was achieved via hydrolysis and amidation. Surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurements were used to monitor the polyelectrolyte multilayer formation. Mechanical properties of the aluminum oxide supported polyelectrolyte multilayer films were tested using a simplified peel test. XPS was used to analyze the surfaces before and after peel. Single lap shear joint specimens were constructed to test the adhesive shear strength of the PET-supported polyelectrolyte multilayer film samples with the aid of a cyanoacrylate adhesive. The adhesive shear strength and its relation with the type of functionalization, number of polyelectrolyte layers, and the effect of polyelectrolyte conformation using added salt were explored. Also, characterization on the single lap joints after adhesive failure was carried out to determine the locus of failure within the multilayers by using XPS and SEM. Two types of photolithographic polymers were formulated and tested. These two polymers (photocrosslinkable polyacrylate (PUA), and a photocrosslinkable polyimide (HRP)) were used to investigate factors that would affect the structural integrity of these particular polymers under environmental variables such as processing (time, UV cure, pressure, and temperature) and ink exposure. Thermomechanical characterization was carried out to see the behavior of these two polymers under these environmental variables. Microscopic techniques were employed to study the morphological behavior of the two polymer systems. Also, unique in-house characterization methods such as the vibrational holographic interferometry to measure residual stress in these polymer coatings upon processing, and the environmental tensile tester (ETT) to measure ink diffusion and swelling stresses were used to further characterize these two polymers.
Cell surface engineering with polyelectrolyte multilayer thin films.
Wilson, John T; Cui, Wanxing; Kozlovskaya, Veronika; Kharlampieva, Eugenia; Pan, Di; Qu, Zheng; Krishnamurthy, Venkata R; Mets, Joseph; Kumar, Vivek; Wen, Jing; Song, Yuhua; Tsukruk, Vladimir V; Chaikof, Elliot L
2011-05-11
Layer-by-layer assembly of polyelectrolyte multilayer (PEM) films represents a bottom-up approach for re-engineering the molecular landscape of cell surfaces with spatially continuous and molecularly uniform ultrathin films. However, fabricating PEMs on viable cells has proven challenging owing to the high cytotoxicity of polycations. Here, we report the rational engineering of a new class of PEMs with modular biological functionality and tunable physicochemical properties which have been engineered to abrogate cytotoxicity. Specifically, we have discovered a subset of cationic copolymers that undergoes a conformational change, which mitigates membrane disruption and facilitates the deposition of PEMs on cell surfaces that are tailorable in composition, reactivity, thickness, and mechanical properties. Furthermore, we demonstrate the first successful in vivo application of PEM-engineered cells, which maintained viability and function upon transplantation and were used as carriers for in vivo delivery of PEMs containing biomolecular payloads. This new class of polymeric film and the design strategies developed herein establish an enabling technology for cell transplantation and other therapies based on engineered cells. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Sayin, Mustafa; Dahint, Reiner
2017-03-01
Nanostructure formation via self-assembly processes offers a fast and cost-effective approach to generate surface patterns on large lateral scale. In particular, if the high precision of lithographic techniques is not required, a situation typical of many biotechnological and biomedical applications, it may be considered as the method of choice as it does not require any sophisticated instrumentation. However, in many cases the variety and complexity of the surface structures accessible with a single self-assembly based technique is limited. Here, we report on a new approach which combines two different self-assembly strategies, colloidal lithography and layer-by-layer deposition of polyelectrolytes, in order to significantly expand the spectrum of accessible patterns. In particular, flat and donut-like charge-patterned templates have been generated, which facilitate subsequent deposition of gold nanoparticles in dot, grid, ring, out-of-ring and circular patch structures. Potential applications are e.g. in the fields of biofunctional interfaces with well-defined lateral dimensions, optical devices with tuned properties, and controlled three-dimensional material growth.
CONJUGATED POLYMERS AND POLYELECTROLYTES IN SOLAR PHOTOCONVERSION, Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schanze, Kirk S
2014-08-05
This DOE-supported program investigated the fundamental properties of conjugated polyelectrolytes, with emphasis placed on studies of excited state energy transport, self-assembly into conjugated polyelectroyte (CPE) based films and colloids, and exciton transport and charge injection in CPE films constructed atop wide bandgap semiconductors. In the most recent grant period we have also extended efforts to examine the properties of low-bandgap donor-acceptor conjugated polyelectrolytes that feature strong visible light absorption and the ability to adsorb to metal-oxide interfaces.
Monolayers and multilayers of conjugated polymers as nanosized electronic components.
Zotti, Gianni; Vercelli, Barbara; Berlin, Anna
2008-09-01
Conjugated polymers (CPs) are interesting materials for preparing devices based on nanoscopic molecular architectures because they exhibit electrical, electronic, magnetic, and optical properties similar to those of metals or semiconductors while maintaining the flexibility and ease of processing of polymers. The production of well-defined mono- and multilayers of CPs on electrodes with nanometer-scale, one-dimensional resolution remains, however, an important challenge. In this Account, we describe the preparation and conductive properties of nanometer-sized CP molecular structures formed on electrode surfaces--namely, self-assembled monolayer (SAM), brush-type, and self-assembled multilayer CPs--and in combination with gold nanoparticles (AuNPs). We have electrochemically polymerized SAMs of carboxyalkyl-functionalized terthiophenes aligned either perpendicular or parallel to the electrode surface. Anodic coupling of various pyrrole- and thiophene-based monomers in solution with the oligothiophene-based SAMs produced brush-like films. Microcontact printing of these SAMs produced patterns that, after heterocoupling, exhibited large height enhancements, as measured using atomic force microscopy (AFM). We have employed layer-by-layer self-assembly of water-soluble polythiophene-based polyelectrolytes to form self-assembled multilayers. The combination of isostructural polycationic and polyanionic polythiophenes produced layers of chains aligned parallel to the substrate plane. These stable, robust, and dense layers formed with high regularity on the preformed monolayers, with minimal interchain penetration. Infrared reflection/adsorption spectroscopy and X-ray diffraction analyses revealed unprecedented degrees of order. Deposition of soluble polypyrroles produced molecular layers that, when analyzed using a gold-coated AFM tip, formed gold-polymer-gold junctions that were either ohmic or rectifying, depending of the layer sequence. We also describe the electronic conduction of model alpha,omega-capped sexithiophenes featuring a range of electron donor/acceptor units and lengths of additional conjugation. The sexithiophene cores exhibit redox-type conductivity, developing at the neutral/cation and cation/dication levels with values depending the nature of the substitution and the redox system. Extending the conjugation beyond the sexithiophene frame introduces further oxidation processes displaying enhanced conductivity. Finally, we discuss the ability of CP-based monolayers to coordinate AuNPs. Although thiophene- and pyrrole-based oligomers aggregate toluene-soluble AuNPs, alkyl substitution inhibits the aggregation process through steric restraint. Consequently, we investigated the interactions between AuNPs and polypyrrole or polythiophene monolayers, including those formed from star-shaped molecules. The hindered aggregation provided by alkyl substituents allowed us to adsorb thiol-functionalized oligothiophenes and oligopyrroles directly onto preformed AuNPs. Novel materials incorporating AuNPs of the same size but bearing different conjugated ends or bridges have great promise for applications in electrocatalysis, electroanalysis, and organic electronics.
[Preparation of polyelectrolyte microcapsules containing ferrosoferric oxide nanoparticles].
Liu, Xiao-Qing; Zheng, Chun-Li; Zhu, Jia-Bi
2011-01-01
In this study, polyelectrolyte microcapsules have been fabricated by biocompatible ferrosoferric oxide nanoparticles (Fe3O4 NPs) and poly allyamine hydrochloride (PAH) using layer by layer assembly technique. The Fe3O4 NPs were prepared by chemical co-precipitation, and characterized by transmission electron microscopy (TEM) and infrared spectrum (IR). Quartz cell also was used as a substrate for building multilayer films to evaluate the capability of forming planar film. The result showed that Fe3O4 NPs were selectively deposited on the surface of quartz cell. Microcapsules containing Fe3O4 NPs were fabricated by Fe3O4 NPs and PAH alternately self-assembly on calcium carbonate microparticles firstly, then 0.2 molL(-1) EDTA was used to remove the calcium carbonate. Scanning electron microscopy (SEM), Zetasizer and vibrating sample magnetometer (VSM) were used to characterize the microcapsule's morphology, size and magnetic properties. The result revealed that Fe3O4 NPs and PAH were successfully deposited on the surface of CaCO3 microparticles, the microcapsule manifested superparamagnetism, size and saturation magnetization were 4.9 +/- 1.2 microm and 8.94 emu x g(-1), respectively. As a model drug, Rhodamin B isothiocyanate labeled bovine serum albumin (RBITC-BSA) was encapsulated in microcapsule depended on pH sensitive of the microcapsule film. When pH 5.0, drug add in was 2 mg, the encapsulation efficiency was (86.08 +/- 3.36) % and the drug loading was 8.01 +/- 0.30 mg x m(L-1).
Chiu, Yu-Chieh; Gammon, Joshua M; Andorko, James I; Tostanoski, Lisa H; Jewell, Christopher M
2016-07-27
While biomaterials provide a platform to control the delivery of vaccines, the recently discovered intrinsic inflammatory characteristics of many polymeric carriers can also complicate rational design because the carrier itself can alter the response to other vaccine components. To address this challenge, we recently developed immune-polyelectrolyte multilayer (iPEMs) capsules electrostatically assembled entirely from peptide antigen and molecular adjuvants. Here, we use iPEMs built from SIINFEKL model antigen and polyIC, a stimulatory toll-like receptor agonist, to investigate the impact of pH on iPEM assembly, the processing and interactions of each iPEM component with primary immune cells, and the role of these interactions during antigen-specific T cell responses in coculture and mice. We discovered that iPEM assembly is pH dependent with respect to both the antigen and adjuvant component. Controlling the pH also allows tuning of the relative loading of SIINFEKL and polyIC in iPEM capsules. During in vitro studies with primary dendritic cells (DCs), iPEM capsules ensure that greater than 95% of cells containing at least one signal (i.e., antigen, adjuvant) also contained the other signal. This codelivery leads to DC maturation and SIINFEKL presentation via the MHC-I antigen presentation pathway, resulting in antigen-specific T cell proliferation and pro-inflammatory cytokine secretion. In mice, iPEM capsules potently expand antigen-specific T cells compared with equivalent admixed formulations. Of note, these enhancements become more pronounced with successive booster injections, suggesting that iPEMs functionally improve memory recall response. Together our results reveal some of the features that can be tuned to modulate the properties of iPEM capsules, and how these modular vaccine structures can be used to enhance interactions with immune cells in vitro and in mice.
Wu, Mengchun; An, Ni; Li, Yang; Sun, Junqi
2016-11-29
Fluorine-free self-healing superhydrophobic films are of significance for practical applications because of their extended service life and cost-effective and eco-friendly preparation process. In this study, we report the fabrication of fluorine-free self-healing superhydrophobic films by layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS)-1-octadecylamine (ODA) complexes (PSS-ODA) and poly(allylamine hydrochloride) (PAH)-sodium dodecyl sulfonate (SDS) (PAH-SDS) complexes. The wettability of the LbL-assembled PSS-ODA/PAH-SDS films depends on the film structure and can be tailored by changing the NaCl concentration in aqueous dispersions of PSS-ODA complexes and the number of film deposition cycles. The freshly prepared PSS-ODA/PAH-SDS film with micro- and nanoscaled hierarchical structures is hydrophilic and gradually changes to superhydrophobic in air because the polyelectrolyte-complexed ODA and SDS surfactants tend to migrate to the film surface to cover the film with hydrophobic alkyl chains to lower its surface energy. The large amount of ODA and SDS surfactants loaded in the superhydrophobic PSS-ODA/PAH-SDS films and the autonomic migration of these surfactants to the film surface endow the resultant superhydrophobic films with an excellent self-healing ability to restore the damaged superhydrophobicity. The self-healing superhydrophobic PSS-ODA/PAH-SDS films are mechanically robust and can be deposited on various flat and nonflat substrates. The LbL assembly of oppositely charged polyelectrolyte-surfactant complexes provides a new way for the fabrication of fluorine-free self-healing superhydrophobic films with satisfactory mechanical stability, enhanced reliability, and extended service life.
Sanyal, Oishi; Lee, Ilsoon
2014-03-01
Reverse osmosis (RO) and nanofiltration (NF) are the two dominant membrane separation processes responsible for ion rejection. While RO is highly efficient in removal of ions it needs a high operating pressure and offers very low selectivity between ions. Nanofiltration on the other hand has a comparatively low operating pressure and most commercial membranes offer selectivity in terms of ion rejection. However in many nanofiltration operations rejection of monovalent ions is not appreciable. Therefore a high flux high rejection membrane is needed that can be applied to water purification systems. One such alternative is the usage of polyelectrolyte multilayer membranes that are prepared by the deposition of alternately charged polyelectrolytes via layer-by-layer (LbL) assembly method. LbL is one of the most common self-assembly techniques and finds application in various areas. It has a number of tunable parameters like deposition conditions, number of bilayers deposited etc. which can be manipulated as per the type of application. This technique can be applied to make a nanothin membrane skin which gives high rejection and at the same time allow a high water flux across it. Several research groups have applied this highly versatile technique to prepare membranes that can be employed for water purification. Some of these membranes have shown better performance than the commercial nanofiltration and reverse osmosis membranes. These membranes have the potential to be applied to various different aspects of water treatment like water softening, desalination and recovery of certain ions. Besides the conventional method of LbL technique other alternative methods have also been suggested that can make the technique fast, more efficient and thereby make it more commercially acceptable.
NASA Astrophysics Data System (ADS)
Porta-i-Batalla, Maria; Eckstein, Chris; Xifré-Pérez, Elisabet; Formentín, Pilar; Ferré-Borrull, J.; Marsal, Lluis F.
2016-08-01
Controlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells. In this work, we have created and analyzed a stimuli-responsive drug delivery system based on layer-by-layer pH-responsive polyelectrolyte and nanoporous anodic alumina. The results demonstrate that it is possible to control the drug release using a polyelectrolyte multilayer coating that will act as a gate.
Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films
Ball, Vincent
2012-01-01
Polyelectrolyte multilayer films are a versatile functionalization method of surfaces and rely on the alternated adsorption of oppositely charged species. Among such species, charged dyes can also be alternated with oppositely charged polymers, which is challenging from a fundamental point of view, because polyelectrolytes require a minimal number of charges, whereas even monovalent dyes can be incorporated during the alternated adsorption process. We will not only focus on organic dyes but also on their inorganic counterparts and on metal complexes. Such films offer plenty of possible applications in dye sensitized solar cells. In addition, dyes are massively used in the textile industry and in histology to stain textile fibers or tissues. However, the excess of non bound dyes poses serious environmental problems. It is hence of the highest interest to design materials able to adsorb such dyes in an almost irreversible manner. Polyelectrolyte multilayer films, owing to their ion exchange behavior can be useful for such a task allowing for impressive overconcentration of dyes with respect to the dye in solution. The actual state of knowledge of the interactions between charged dyes and adsorbed polyelectrolytes is the focus of this review article.
Comparison of multilayer formation between different cellulose nanofibrils and cationic polymers.
Eronen, Paula; Laine, Janne; Ruokolainen, Janne; Osterberg, Monika
2012-05-01
The multilayer formation between polyelectrolytes of opposite charge offers possibility for creating new tailored materials. Exchanging one or both components for charged nanofibrillated cellulose (NFC) further increases the variety of achievable properties. We explored this by introducing unmodified, low charged NFC and high charged TEMPO-oxidized NFC. Systematic evaluation of the effect of both NFC charge and properties of cationic polyelectrolytes on the structure of the multilayers was performed. As the cationic component cationic NFC was compared with two different cationic polyelectrolytes, poly(dimethyldiallylammoniumchloride) and cationic starch. Quartz crystal microbalance with dissipation (QCM-D) was used to monitor the multilayer formation and AFM colloidal probe microscopy (CPM) was further applied to probe surface interactions in order to gain information about fundamental interactions and layer properties. Generally, the results verified the characteristic multilayer formation between NFC of different charge and how the properties of formed multilayers can be tuned. However, the strong nonelectrostatic affinity between cellulosic fibrils was observed. CPM measurements revealed monotonically repulsive forces, which were in good correspondence with the QCM-D observations. Significant increase in adhesive forces was detected between the swollen high charged NFC. Copyright © 2011 Elsevier Inc. All rights reserved.
Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong
2016-11-08
Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.
NASA Astrophysics Data System (ADS)
Kidambi, Srivatsan
Over the past decades, the development of new methods for fabricating thin films that provide precise control of the three-dimensional topography and cell adhesion has generated lots of interest. These films could lead to significant advances in the fields of tissue engineering, drug delivery and biosensors which have become increasingly germane areas of research in the field of chemical engineering. The ionic layer-by-layer (LbL) assembly technique called "Polyelectrolyte Multilayers (PEMs)", introduced by Decher in 1991, has emerged as a versatile and inexpensive method of constructing polymeric thin films, with nanometer-scale control of ionized species. PEMs have long been utilized in such applications as sensors, eletrochromics, and nanomechanical thin films but recently they have also been shown to be excellent candidates for biomaterial applications. In this thesis, we engineered these highly customizable PEM thin films to engineer in vitro cellular microenvironments to control cell adhesion and for drug delivery applications. PEM films were engineered to control the adhesion of primary hepatocytes and primary neurons without the aid of adhesive proteins/ligands. We capitalized upon the differential cell attachment and spreading of primary hepatocytes and neurons on poly(diallyldimethylammoniumchloride) (PDAC) and sulfonated polystyrene (SPS) surfaces to make patterned co-cultures of primary hepatocytes/fibroblasts and primary neurons/astrocytes on the PEM surfaces. In addition, we developed self-assembled monolayer (SAM) patterns of m-d-poly(ethylene glycol) (m-dPEG) acid molecules onto PEMs. The created m-dPEG acid monolayer patterns on PEMs acted as resistive templates, and thus prevented further deposits of consecutive poly(anion)/poly(cation) pairs of charged particles and resulted in the formation of three-dimensional (3-D) patterned PEM films or selective particle depositions atop the original multilayer thin films. These new patterned and structured surfaces have potential applications in microelectronic devices and electro-optical and biochemical sensors. The PEG patterns developed are tunable at certain salt conditions and be removed from the PEM surface without affecting the PEM layers underneath the patterns. These removable surfaces provide an alternative method to form patterns of multiple particles, proteins and cells. This new approach provides an environmentally friendly and biocompatible route to designing versatile salt tunable surfaces. Finally, we illustrate the use of PEM films to engineer aptamer and siRNA based drug delivery systems.
Wasupalli, Geeta Kumari; Verma, Devendra
2018-03-16
We report here the self-assembled structures of polyelectrolyte complexes (PECs) of polyanionic sodium alginate with the polycationic chitosan at room temperature. The PECs prepared at different pH values exhibited two distinct morphologies. The chitosan-alginate PECs self-assembled into the fibrous structure in a low pH range of pH3 to 7. The PECs obtained at high pH series around pH8 and above resulted in the formation of colloidal nanoparticles in the range of 120±9.48nm to 46.02±16.66nm. The zeta potential measurement showed that PECs prepared at lower pH (pH<6) exhibited nearly neutral surface charge, whereas PECs prepared at higher pH than 6 exhibited highly negative surface charge. The molecular interactions in nano-colloids and fibers were evaluated using FTIR analysis. The results attest that the ionic state of the chitosan and alginate plays an important role controlling the morphologies of the PECS. The present study has identified the enormous potential of the polyelectrolytes complexes to exploit shape by the alteration of ionic strength. These findings might be useful in the development of novel biomaterial. The produced fibers and nanocolloids could be applied as a biomaterial for tissue engineering and drug delivery. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Bassil, Joelle; Alem, Halima; Henrion, Gérard; Roizard, Denis
2016-04-01
Completely homogenous films formed via the layer-by-layer assembly of poly(diallyldimethylammonium chloride) (PDADMAC) and the poly(styrene sulfonate) were successfully obtained on plasma-treated poly(dimethylsiloxane) (PDMS) substrates. To modify the hydrophobicity of the PDMS surface, a cold plasma treatment was previously applied to the membrane, which led to the creation of hydrophilic groups on the surface of the membrane. PDMS wettability and surface morphology were successfully correlated with the plasma parameters. A combination of contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis was used to demonstrate that homogeneous and hydrophilic surfaces could be achieved on PDMS cold-plasma-treated membranes. The stability of the assembled PEL layer on the PDMS was evaluated using a combination of pull-off testing and X-ray photoelectron spectroscopy (XPS), which confirmed the relevance of a plasma pre-treatment as the adhesion of the polyelectrolyte multilayers was greatly enhanced when the deposition was completed on an activated PDMS surface at 80 W for 5 min.
Localized entrapment of green fluorescent protein within nanostructured polymer films
NASA Astrophysics Data System (ADS)
Ankner, John; Kozlovskaya, Veronika; O'Neill, Hugh; Zhang, Qiu; Kharlampieva, Eugenia
2012-02-01
Protein entrapment within ultrathin polymer films is of interest for applications in biosensing, drug delivery, and bioconversion, but controlling protein distribution within the films is difficult. We report on nanostructured protein/polyelectrolyte (PE) materials obtained through incorporation of green fluorescent protein (GFP) within poly(styrene sulfonate)/poly(allylamine hydrochloride) multilayer films assembled via the spin-assisted layer-by-layer method. By using deuterated GFP as a marker for neutron scattering contrast we have inferred the architecture of the films in both normal and lateral directions. We find that films assembled with a single GFP layer exhibit a strong localization of the GFP without intermixing into the PE matrix. The GFP volume fraction approaches the monolayer density of close-packed randomly oriented GFP molecules. However, intermixing of the GFP with the PE matrix occurs in multiple-GFP layer films. Our results yield new insight into the organization of immobilized proteins within polyelectrolyte matrices and open opportunities for fabrication of protein-containing films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, X.; Li, D.; Luett, M.
1998-07-01
This paper reports the synthesis and characterizations of a new water-soluble poly(paraphenylene) (PPP) and its applications in preparing self-assembled multi-layer films. This new water-soluble conducting polymer was prepared through the sulfonation reaction of poly(p-quarterphenylene-2,2{prime}-dicarboxylic acid). The incorporation of sulfonate groups has dramatically improved PPP's solubility in water at a wide pH range, whereas previous PPP is only slightly soluble in basic solutions. Dilute aqueous solutions of this polymer with acidic, neutral or basic pH emit brilliant blue light while irradiated with UV light. The sulfonated PPP emits from 350 nm to 455 nm with a maximum intensity at 380 nm.more » Self-assembled multilayers of this sulfonated PPP were constructed with a positively charged polymer poly(diallyl dimethyl ammonium chloride) and characterized with various surface analyses. Conductive (RuO{sub 2} and ITO), semiconductive (Si wafer), and non-conductive (SiO{sub 2}) substrates were used in the preparation of self-assembled multilayers. Electrical, optical and structural properties of these novel self-assembled thin films will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, X.; Li, D.Q.; Luett, M.
1998-03-01
This paper reports the synthesis and characterizations of a new water-soluble poly(para-phenylene) (PPP) and its applications in preparing self-assembled multilayer films. This new water-soluble conducting polymer was prepared through the sulfonation reaction of poly(p-quarterphenylene-2,2{prime}-dicarboxylic acid). The incorporation of sulfonate groups has dramatically improved PPP`s solubility in water at a wide pH range, whereas previous PPP is only slightly soluble in basic solutions. Dilute aqueous solutions of this polymer with acidic, neutral or basic pH emit brilliant blue light while irradiated with UV light. The sulfonated PPP emits from 350 nm to 455 nm with a maximum intensity at 380 nm.more » Self-assembled multilayers of this sulfonated PPP were constructed with a positively charged polymer poly(diallyl dimethyl ammonium chloride) and characterized with various surface analyses. Conductive (RuO{sub 2} and ITO), semiconductive (Si wafer), and non-conductive (SiO{sub 2}) substrates were used in the preparation of self-assembled multilayers. Electrical, optical and structural properties of these novel self-assembled thin films will be discussed.« less
Pattekari, P.; Zheng, Z.; Zhang, X.; Levchenko, T.; Torchilin, V.
2015-01-01
Nano-encapsulation of poorly soluble anticancer drug was developed with sonication assisted layer-by-layer polyelectrolyte coating (SLbL). We changed the strategy of LbL-encapsulation from making microcapsules with many layers in the walls for encasing highly soluble materials to using very thin polycation / polyanion coating on low soluble nanoparticles to provide their good colloidal stability. SLbL encapsulation of paclitaxel resulted in stable 100-200 nm diameter colloids with high electrical surface ξ-potential (of -45 mV) and drug content in the nanoparticles of 90 wt %. In the top-down approach, nanocolloids were prepared by rupturing powder of paclitaxel using ultrasonication and simultaneous sequential adsorption of oppositely charged biocompatible polyelectrolytes. In the bottom-up approach paclitaxel was dissolved in organic solvent (ethanol or acetone), and drug nucleation was initiated by gradual worsening the solution with the addition of aqueous polyelectrolyte assisted by ultrasonication. Paclitaxel release rates from such nanocapsules were controlled by assembling multilayer shells with variable thicknesses and are in the range of 10-20 hours. PMID:21442095
Chou, Leo Y T; Song, Fayi; Chan, Warren C W
2016-04-06
DNA assembly of nanoparticles is a powerful approach to control their properties and prototype new materials. However, the structure and properties of DNA-assembled nanoparticles are labile and sensitive to interactions with counterions, which vary with processing and application environment. Here we show that substituting polyamines in place of elemental counterions significantly enhanced the structural rigidity and plasmonic properties of DNA-assembled metal nanoparticles. These effects arose from the ability of polyamines to condense DNA and cross-link DNA-coated nanoparticles. We further used polyamine wrapped DNA nanostructures as structural templates to seed the growth of polymer multilayers via layer-by-layer assembly, and controlled the degree of DNA condensation, plasmon coupling efficiency, and material responsiveness to environmental stimuli by varying polyelectrolyte composition. These results highlight counterion engineering as a versatile strategy to tailor the properties of DNA-nanoparticle assemblies for various applications, and should be applicable to other classes of DNA nanostructures.
NASA Astrophysics Data System (ADS)
Rivero, Pedro Jose; Goicoechea, Javier; Urrutia, Aitor; Matias, Ignacio Raul; Arregui, Francisco Javier
2013-10-01
In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs.
2013-01-01
In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs. PMID:24148227
She, Zhen; Wang, Chunxia; Li, Jun; Sukhorukov, Gleb B; Antipina, Maria N
2012-07-09
Basic fibroblast growth factor (FGF2) is an important protein for cellular activity and highly vulnerable to environmental conditions. FGF2 protected by heparin and bovine serum albumin was loaded into the microcapsules by a coprecipitation-based layer-by-layer encapsulation method. Low cytotoxic and biodegradable polyelectrolytes dextran sulfate and poly-L-arginine were used for capsule shell assembly. The shell thickness-dependent encapsulation efficiency was measured by enzyme-linked immunosorbent assay. A maximum encapsulation efficiency of 42% could be achieved by microcapsules with a shell thickness of 14 layers. The effects of microcapsule concentration and shell thickness on cytotoxicity, FGF2 release kinetics, and L929 cell proliferation were evaluated in vitro. The advantage of using microcapsules as the carrier for FGF2 controlled release for enhancing L929 cell proliferation was analyzed.
Self-assembled metal nano-multilayered film prepared by co-sputtering method
NASA Astrophysics Data System (ADS)
Xie, Tianle; Fu, Licai; Qin, Wen; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping
2018-03-01
Nano-multilayered film is usually prepared by the arrangement deposition of different materials. In this paper, a self-assembled nano-multilayered film was deposited by simultaneous sputtering of Cu and W. The Cu/W nano-multilayered film was accumulated by W-rich layer and Cu-rich layer. Smooth interfaces with consecutive composition variation and semi-coherent even coherent relationship were identified, indicating that a spinodal-like structure with a modulation wavelength of about 20 nm formed during co-deposition process. The participation of diffusion barrier element, such as W, is believed the essential to obtain the nano-multilayered structure besides the technological parameters.
Chirality-selected phase behaviour in ionic polypeptide complexes
Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; ...
2015-01-14
In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with amore » β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.« less
POLYELECTROLYTE MULTILAYER STAMPING IN AQUEOUS PHASE AND NON-CONTACT MODE
Mehrotra, Sumit; Lee, Ilsoon; Liu, Chun; Chan, Christina
2011-01-01
Polyelectrolyte multilayer (PEM) transfer printing has been previously achieved by stamping under dry conditions. Here, we show for the first time, that PEM can be transferred from a stamp to the base substrate under aqueous conditions whereby the two surfaces are in a non-contact mode. Degradable multilayers of (PAA/PEG)10.5 followed by non-degradable multilayers of (PDAC/SPS)80.5 were fabricated under acidic pH conditions on either PDMS or glass (stamp), and subsequently transferred over top of another multilayer prepared on a different substrate (base substrate), with a spacing of ~ 200 μm between the stamping surface and the base substrate. This multilayer transfer was performed under physiological pH conditions. This process is referred to herein as non-contact, aqueous-phase multilayer (NAM) transfer. NAM transfer can be useful for applications such as fabricating three-dimensional (3-D) cellular scaffolds. We attempted to create a 3-D cellular scaffold using NAM transfer, and characterized the scaffolds with conventional and fluorescence microscopy. PMID:21860540
Development of decellularized aortic valvular conduit coated by heparin-SDF-1α multilayer.
Zhou, Jingxin; Ye, Xiaofeng; Wang, Zhe; Liu, Jun; Zhang, Busheng; Qiu, Jiapei; Sun, Yanjun; Li, Haiqing; Zhao, Qiang
2015-02-01
Decellularization can reduce the immune response to aortic valve allograft tissue, but the thrombogenicity and in vivo remolding of these grafts remain controversial. The aim of the present study was to modify the surface of decellularized valvular conduits with heparin-stromal cell-derived factor-1α (SDF-1α) polyelectrolyte multilayer film and to test the thrombogenicity and biocompatibility in vitro and recellularization in vivo. The donor aortic valvular conduits were decellularized with a combination of different detergents and were coated with heparin and SDF-1α alternately to form a polyelectrolyte multilayer. Platelet adhesion and lactate dehydrogenase assay were used to evaluate the antiplatelet property. The adhesion, growth, and migration of bone marrow stem cells (BMSCs) to the scaffolds were assessed. For in vivo studies, the grafts were anastomosed to the infrarenal aorta, without or with heparin and SDF-1α multilayer. Functional assessment was performed by Doppler echography and micro-computed tomography at 2-week and 4-week time points after implantation. Explanted grafts were examined histologically and by immunohistochemistry. In vitro studies demonstrated that the heparin-SDF-1α multilayer film improved hemocompatibility with respect to a substantial reduction of platelet adhesion. BMSCs also achieved better adhesion, proliferation, and migration on the modified graft. For in vivo studies, the grafts in both groups remained patent after 4 weeks, but it was demonstrated that the modified decellularized grafts had better self-endothelialization and recruitment of endothelial progenitor cells. These results indicate that heparin-SDF-1α multilayer film can be used to cover the decellularized aortic valvular graft to decrease platelet adhesion while precipitating regeneration of the decellularized aortic valve allograft in vivo. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Kazakova, Lyubov I; Shabarchina, Lyudmila I; Anastasova, Salzitsa; Pavlov, Anton M; Vadgama, Pankaj; Skirtach, Andre G; Sukhorukov, Gleb B
2013-02-01
The concept of enzyme-assisted substrate sensing based on use of fluorescent markers to detect the products of enzymatic reaction has been investigated by fabrication of micron-scale polyelectrolyte capsules containing enzymes and dyes in one entity. Microcapsules approximately 5 μm in size entrap glucose oxidase or lactate oxidase, with peroxidase, together with the corresponding markers Tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride (Ru(dpp)) complex and dihydrorhodamine 123 (DHR123), which are sensitive to oxygen and hydrogen peroxide, respectively. These capsules are produced by co-precipitation of calcium carbonate particles with the enzyme followed by layer-by-layer assembly of polyelectrolytes over the surface of the particles and incorporation of the dye in the capsule interior or in the multilayer shell. After dissolution of the calcium carbonate the enzymes and dyes remain in the multilayer capsules. In this study we produced enzyme-containing microcapsules sensitive to glucose and lactate. Calibration curves based on fluorescence intensity of Ru(dpp) and DHR123 were linearly dependent on substrate concentration, enabling reliable sensing in the millimolar range. The main advantages of using these capsules with optical recording is the possibility of building single capsule-based sensors. The response from individual capsules was observed by confocal microscopy as increasing fluorescence intensity of the capsule on addition of lactate at millimolar concentrations. Because internalization of the micron-sized multi-component capsules was feasible, they could be further optimized for in-situ intracellular sensing and metabolite monitoring on the basis of fluorescence reporting.
Building a road map for tailoring multilayer polyelectrolyte films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ankner, John Francis; Bardoel, Agatha A; Sukishvili, Svetlana
2012-01-01
Researchers are moving a step closer to a definite road map for building layer-by-layer (LbL) assembled polyelectrolyte films, with the assistance of the Liquids Reflectometer at Oak Ridge National Laboratory's Spallation Neutron Source, in Oak Ridge, Tennessee. Scientists using the liquids reflectometer have successfully taken snapshots in close to real time of these multilayered structures for different applications when they modify the structure and function parameters. Polyelecrolytes are polymers that carry charge in aqueous solutions. They contain chemical groups that dissociate in water, making such polymers charged. Most polyelectrolytes are water soluble. They are important components in foods, soaps, shampoos,more » and cosmetics products. They show promise for such environmental work as oil recovery and water treatment. Polyelectrolytes are compelling because researchers can chemically modify how they interact with water for multiple applications. When two types of polyelectrolytes of opposite charge are assembled at a surface in a sequential way using the LbL assembly technique, 'the result is the forming of surface films, useful for coatings, biomedical implants and devices, controlling adhesion of biological molecules, and controlling delivery of therapeutic molecules from surfaces,' said Svetlana Sukhishvili of the Stevens Institute of Technology in New Jersey, the lead chemist on the collaboration. 'Medical doctors often prefer to deliver multiple therapeutic compounds from the coatings in a time-resolved manner,' Sukhishvili said. 'To assist them, material scientists need to learn how to build coatings in which polymer layering will not be compromised when exposed to normal physiological conditions.' 'Being able to control these properties, understanding how what you do to the materials affects their properties, this allows you to apply them to situations where interacting with an environment is very helpful, whether in a biological context or any other kind of water soluble context,' said John Ankner, lead instrument scientist for the Liquids Reflectometer. Ankner said that when several parameters are systematically altered, that allows researchers to map out the whole range of structures in the polymer. 'This work really sets a road map for how to get started with synthesizing polyelectrolyte materials for specific applications. Then, one can say, ok, this methylated material, the one that is 30% charged, is going to be what we want to use for a particular application.' The ORNL collaboration with the Stevens Institute has been conducting a series of experiments at the SNS to study layered film stratification in these polymers. Researchers stitch the polyelectrolyte chains in the LbL films together through what is called ionic pairing and arrange them within fuzzy, ultrathin layers that lie parallel to a solid surface substrate. Exposure of these films to aqueous solutions that contain salt (i.e., conditions that imitate real life) can compromise this film layering, as the salt ions act to weaken the ionic pairing that binds such layers together. So salt solutions are of key interest in studying how to make such layers for use in human applications. In the first research, Ankner, Sukhishvili and her student Li Xu looked at the effects of the layering of two types of LbL films of changing the charge density with a salt solution, and of blocking access to a charged site by nearby groups. The films were composed of positively charged variants of PDMA, a methyl polymer, and PDEA, an ethyl polymer. The other component of both systems is the ion exchanger polystyrene sulfonate (PSS) which features a fixed negative charge. First, a silicon substrate was dipped into solutions of PDMA and PDEA in dilute sodium chloride for a fixed time. Depending on the deposition time and the concentration of the solution, a nanometer-thick monolayer of the polymer adsorbs to the silicon surface. The film buildup is then continued by depositing a layer of PSS, and the cycle is repeated. The PDMA (methyl)/PSS and PDEA (ethyl)/PSS films were then annealed in varying concentrations of aqueous salt solutions. The chemists wanted to know if in these multi-layer cake-like assemblies, the structure can be systematically altered by varying the salt concentration, time in solution, and ultimately other environmental parameters, such as temperature or pH. Neutron reflectivity of the layered films exhibits the quality of the layering, in particular the concentration of the layers and how intermixed they are with adjacent layers. In this research, neutron reflectivity data from films built from 10%, 40%, and 100% charged PDMA or PDEA polyelectrolytes and 100% charged PSS were quantitatively compared to predicted, layered arrangements until the models produced reflectivity patterns matching those of the data.« less
Buck, Maren E.
2010-01-01
We report an approach to the fabrication of freestanding and amine-reactive thin films that is based on the reactive layer-by-layer assembly and subsequent lift-off of azlactone-containing polymer multilayers. We demonstrate that covalently crosslinked multilayers fabricated using the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and a primary amine-containing polymer [poly(ethyleneimine) (PEI)] can be delaminated from planar glass and silicon surfaces by immersion in mildly acidic aqueous environments to yield flexible freestanding membranes. These freestanding membranes are robust and can withstand exposure to strong acid, strong base, or incubation in high ionic strength solutions that typically lead to the disruption and erosion of polymer multilayers assembled by reversible weak interactions (e.g., ‘polyelectrolyte multilayers’ assembled by electrostatic interactions or hydrogen bonding). We demonstrate further that these PEI/PVDMA assemblies contain residual reactive azlactone functionality that can be exploited to chemically modify the films (either directly after fabrication or after they have been lifted off of the substrates on which they were fabricated) using a variety of amine-functionalized small molecules. These freestanding membranes can also be transferred readily onto other objects (for example, onto the surfaces of planar substrates containing holes or pores) to fabricate suspended polymer membranes and other film-functionalized interfaces. In addition to planar, two-dimensional freestanding films, this approach can be used to fabricate and isolate three-dimensional freestanding membranes (e.g., curved films or tubes) by layer-by-layer assembly on, and subsequent lift-off from, the surfaces of topologically complex substrates (e.g., the curved ends of glass tubing, etc.). The results of this investigation, when combined, suggest the basis of methods for the fabrication of stable, chemically-reactive, and flexible polymer thin films and membranes of potential utility in a variety of fundamental and applied contexts. PMID:20857952
Driving Forces of the Self-Assembly of Supramolecular Systems: Partially Ordered Mesophases
NASA Astrophysics Data System (ADS)
Shcherbina, M. A.; Chvalun, S. N.
2018-06-01
The main aspects are considered of the self-organization of a new class of liquid crystalline compounds, rigid sector-shaped and cone-shaped dendrons. Theoretical approaches to the self-assembly of different amphiphilic compounds (lipids, bolaamphiphiles, block copolymers, and polyelectrolytes) are described. Particular attention is given to the mesophase structures that emerge during the self-organization of mesophases characterized by intermediate degrees of ordering, e.g., plastic crystals, the rotation-crystalline phase in polymers, ordered and disordered two-dimensional columnar phases, and bicontinuous cubic phases of different symmetry.
Robust Guar Gum/Cellulose Nanofibrils Multilayer Films with Good Barrier Properties.
Dai, Lei; Long, Zhu; Chen, Jie; An, Xingye; Cheng, Dong; Khan, Avik; Ni, Yonghao
2017-02-15
The pursuit of sustainable functional materials requires development of materials based on renewable resources and efficient fabrication methods. Hereby, we fabricated all-polysaccharides multilayer films using cationic guar gum (CGG) and anionic cellulose nanofibrils (i.e., TEMPO-oxidized cellulose nanofibrils, TOCNs) through a layer-by-layer casting method. This technique is based on alternate depositions of oppositely charged water-based CGG and TOCNs onto laminated films. The resultant polyelectrolyte multilayer films were transparent, ductile, and strong. More importantly, the self-standing films exhibited excellent gas (water vapor and oxygen) and oil barrier performances. Another outstanding feature of these resultant films was their resistance to various organic solvents including methanol, acetone, N,N-dimethylacetamide (DMAc) and tetrahydrofuran (THF). The proposed film fabrication process is environmentally benign, cost-effective, and easy to scale-up. The developed CGG/TOCNs multilayer films can be used as a renewable material for industrial applications such as packaging.
The Self-Assembly of Nanogold for Optical Metamaterials
NASA Astrophysics Data System (ADS)
Nidetz, Robert A.
2011-12-01
Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger nanoparticles and larger poly(styrene) ligands resulted in larger and smaller assemblies, respectively. Stirring the solution resulted in a wider size distribution of microbead assemblies due to the stirring's shear forces. Two undeveloped methods to self-assemble nanogold were investigated. One method used block-copolymer thin films as chemical templates to direct the electrostatic self-assembly of nanogold. Another method used gold nanorods that are passivated with different ligands on different faces. The stability of an alkanethiol ligand in different acids and bases was investigated to determine which materials could be used to produce Janus nanorods.
Wang, Yifeng; Zhou, Jing; Guo, Xuecheng; Hu, Qian; Qin, Chaoran; Liu, Hui; Dong, Meng; Chen, Yanjun
2017-12-01
In this work, a layer-by-layer (LbL) assembled biopolymer microcapsule with separate layer cavities is generated by a novel and convenient gas-liquid microfluidic approach. This approach exhibits combined advantages of microfluidic approach and LbL assembly method, and it can straightforwardly build LbL-assembled capsules in mild aqueous environments at room temperature. In particular, using this approach we can build the polyelectrolyte multilayer capsule with favorable cavities in each layer, and without the need for organic solvent, emulsifying agent, or sacrificial template. Various components (e.g., drugs, proteins, fluorescent dyes, and nanoparticles) can be respectively encapsulated in the separate layer cavities of the LbL-assembled capsules. Moreover, the encapsulated capsules present the ability as colorimetric sensors, and they also exhibit the interesting release behavior. Therefore, the LbL-assembled biopolymer capsule is a promising candidate for biomedical applications in targeted delivery, controlled release, and bio-detection. Copyright © 2017 Elsevier B.V. All rights reserved.
Engineering the extracellular environment: Strategies for building 2D and 3D cellular structures.
Guillame-Gentil, Orane; Semenov, Oleg; Roca, Ana Sala; Groth, Thomas; Zahn, Raphael; Vörös, Janos; Zenobi-Wong, Marcy
2010-12-21
Cell fate is regulated by extracellular environmental signals. Receptor specific interaction of the cell with proteins, glycans, soluble factors as well as neighboring cells can steer cells towards proliferation, differentiation, apoptosis or migration. In this review, approaches to build cellular structures by engineering aspects of the extracellular environment are described. These methods include non-specific modifications to control the wettability and stiffness of surfaces using self-assembled monolayers (SAMs) and polyelectrolyte multilayers (PEMs) as well as methods where the temporal activation and spatial distribution of adhesion ligands is controlled. Building on these techniques, construction of two-dimensional cell sheets using temperature sensitive polymers or electrochemical dissolution is described together with current applications of these grafts in the clinical arena. Finally, methods to pattern cells in three-dimensions as well as to functionalize the 3D environment with biologic motifs take us one step closer to being able to engineer multicellular tissues and organs. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Highly sensitive self-complementary DNA nanoswitches triggered by polyelectrolytes.
Wu, Jincai; Yu, Feng; Zhang, Zheng; Chen, Yong; Du, Jie; Maruyama, Atsushi
2016-01-07
Dimerization of two homologous strands of genomic DNA/RNA is an essential feature of retroviral replication. Herein we show that a cationic comb-type copolymer (CCC), poly(L-lysine)-graft-dextran, accelerates the dimerization of self-complementary stem-loop DNA, frequently found in functional DNA/RNA molecules, such as aptamers. Furthermore, an anionic polymer poly(sodium vinylsulfonate) (PVS) dissociates CCC from the duplex shortly within a few seconds. Then single stem-loop DNA spontaneously transforms from its dimer. Thus we can easily control the dimer and stem-loop DNA by switching on/off CCC activity. Both polyelectrolytes and DNA concentrations are in the nanomole per liter range. The polyelectrolyte-assisted transconformation and sequences design strategy ensures the reversible state control with rapid response and effective switching under physiologically relevant conditions. A further application of this sensitive assembly is to construct an aptamer-type drug delivery system, bind or release functional molecules responding to its transconformation.
Linear and Star Poly(ionic liquid) Assemblies: Surface Monolayers and Multilayers.
Erwin, Andrew J; Xu, Weinan; He, Hongkun; Matyjaszewski, Krzysztof; Tsukruk, Vladimir V
2017-04-04
The surface morphology and organization of poly(ionic liquid)s (PILs), poly[1-(4-vinylbenzyl)-3-butylimidazolium bis(trifluoromethylsulfonyl)imide] are explored in conjunction with their molecular architecture, adsorption conditions, and postassembly treatments. The formation of stable PIL Langmuir and Langmuir-Blodgett (LB) monolayers at the air-water and air-solid interfaces is demonstrated. The hydrophobic bis(trifluoromethylsulfonyl)imide (Tf 2 N - ) is shown to be a critical agent governing the assembly morphology, as observed in the reversible condensation of LB monolayers into dense nanodroplets. The PIL is then incorporated as an unconventional polyelectrolyte component in the layer-by-layer (LbL) films of hydrophobic character. We demonstrate that the interplay of capillary forces, macromolecular mobility, and structural relaxation of the polymer chains influence the dewetting mechanisms in the PIL multilayers, thereby enabling access to a diverse set of highly textured, porous, and interconnected network morphologies for PIL LbL films that would otherwise be absent in conventional LbL films. Their compartmentalized internal structure is relevant to molecular separation membranes, ultrathin hydrophobic coatings, targeted cargo delivery, and highly conductive films.
Mesoscale Graphene-like Honeycomb Mono- and Multilayers Constructed via Self-Assembly of Coclusters.
Hou, Xue-Sen; Zhu, Guo-Long; Ren, Li-Jun; Huang, Zi-Han; Zhang, Rui-Bin; Ungar, Goran; Yan, Li-Tang; Wang, Wei
2018-02-07
Honeycomb structure endows graphene with extraordinary properties. But could a honeycomb monolayer superlattice also be generated via self-assembly of colloids or nanoparticles? Here we report the construction of mono- and multilayer molecular films with honeycomb structure that can be regarded as self-assembled artificial graphene (SAAG). We construct fan-shaped molecular building blocks by covalently connecting two kinds of clusters, one polyoxometalate and four polyhedral oligomeric silsesquioxanes. The precise shape control enables these complex molecules to self-assemble into a monolayer 2D honeycomb superlattice that mirrors that of graphene but on the mesoscale. The self-assembly of the SAAG was also reproduced via coarse-grained molecular simulations of a fan-shaped building block. It revealed a hierarchical process and the key role of intermediate states in determining the honeycomb structure. Experimental images also show a diversity of bi- and trilayer stacking modes. The successful creation of SAAG and its stacks opens up prospects for the preparation of novel self-assembled nanomaterials with unique properties.
Khan, Amit Kumar; Gudlur, Sushanth; de Hoog, Hans-Peter M; Siti, Winna; Liedberg, Bo; Nallani, Madhavan
2017-09-18
The synthesis and characterization of a new protein-polymer conjugate composed of β lactoglobulin A (βLG A) and poly(ethylene glycol) PEG is described. βLG A was selectively modified to self-assemble by super-charging via amination or succinylation followed by conjugation with PEG. An equimolar mixture of the oppositely charged protein-polymer conjugates self-assemble into spherical capsules of 80-100 nm in diameter. The self-assembly proceeds by taking simultaneous advantage of the amphiphilicity and polyelectrolyte nature of the protein-polymer conjugate. These protein-polymer capsules or proteinosomes are reminiscent of protein capsids, and are capable of encapsulating solutes in their interior. We envisage this approach to be applicable to other globular proteins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi
2016-01-01
The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections in the early stage.
Macromolecular shape and interactions in layer-by-layer assemblies within cylindrical nanopores.
Lazzara, Thomas D; Lau, K H Aaron; Knoll, Wolfgang; Janshoff, Andreas; Steinem, Claudia
2012-01-01
Layer-by-layer (LbL) deposition of polyelectrolytes and proteins within the cylindrical nanopores of anodic aluminum oxide (AAO) membranes was studied by optical waveguide spectroscopy (OWS). AAO has aligned cylindrical, nonintersecting pores with a defined pore diameter d(0) and functions as a planar optical waveguide so as to monitor, in situ, the LbL process by OWS. The LbL deposition of globular proteins, i.e., avidin and biotinylated bovine serum albumin was compared with that of linear polyelectrolytes (linear-PEs), both species being of similar molecular weight. LbL deposition within the cylindrical AAO geometry for different pore diameters (d(0) = 25-80 nm) for the various macromolecular species, showed that the multilayer film growth was inhibited at different maximum numbers of LbL steps (n(max)). The value of n(max) was greatest for linear-PEs, while proteins had a lower value. The cylindrical pore geometry imposes a physical limit to LbL growth such that n(max) is strongly dependent on the overall internal structure of the LbL film. For all macromolecular species, deposition was inhibited in native AAO, having pores of d(0) = 25-30 nm. Both, OWS and scanning electron microscopy showed that LbL growth in larger AAO pores (d(0) > 25-30 nm) became inhibited when approaching a pore diameter of d(eff,n_max) = 25-35 nm, a similar size to that of native AAO pores, with d(0) = 25-30 nm. For a reasonable estimation of d(eff,n_max), the actual volume occupied by a macromolecular assembly must be taken into consideration. The results clearly show that electrostatic LbL allowed for compact macromolecular layers, whereas proteins formed loosely packed multilayers.
Muzzio, Nicolás E; Pasquale, Miguel A; Diamanti, Eleftheria; Gregurec, Danijela; Moro, Marta Martinez; Azzaroni, Omar; Moya, Sergio E
2017-11-01
The development of antifouling coatings with restricted cell and bacteria adherence is fundamental for many biomedical applications. A strategy for the fabrication of antifouling coatings based on the layer-by-layer assembly and thermal annealing is presented. Polyelectrolyte multilayers (PEMs) assembled from chitosan and hyaluronic acid were thermally annealed in an oven at 37°C for 72h. The effect of annealing on the PEM properties and topography was studied by atomic force microscopy, ζ-potential, circular dichroism and contact angle measurements. Cell adherence on PEMs before and after annealing was evaluated by measuring the cell spreading area and aspect ratio for the A549 epithelial, BHK kidney fibroblast, C2C12 myoblast and MC-3T3-E1 osteoblast cell lines. Chitosan/hyaluronic acid PEMs show a low cell adherence that decreases with the thermal annealing, as observed from the reduction in the average cell spreading area and more rounded cell morphology. The adhesion of S. aureus (Gram-positive) and E. coli (Gram-negative) bacteria strains was quantified by optical microscopy, counting the number of colony-forming units and measuring the light scattering of bacteria suspension after detachment from the PEM surface. A 20% decrease in bacteria adhesion was selectively observed in the S. aureus strain after annealing. The changes in mammalian cell and bacteria adhesion correlate with the changes in topography of the chitosan/hyaluronic PEMs from a rough fibrillar 3D structure to a smoother and planar surface after thermal annealing. Copyright © 2017. Published by Elsevier B.V.
Polyelectrolyte multilayer capsules as vehicles with tunable permeability.
Antipov, Alexei A; Sukhorukov, Gleb B
2004-11-29
This review is devoted to a novel type of polymer micro- and nanocapsules. The shell of the capsule is fabricated by alternate adsorption of oppositely charged polyelectrolytes (PEs) onto the surface of colloidal particles. Cores of different nature (organic or inorganic) with size varied from 0.1 to 10 mum can be used for templating such PE capsules. The shell thickness can be tuned in nanometer range by assembling of defined number of PE layers. The permeability of capsules depends on the pH, ionic strength, solvent, polymer composition, and shell thickness; it can be controlled and varied over wide range of substances regarding their molecular weight and charge. Including functional polymers into capsule wall, such as weak PEs or thermosensitive polymers, makes the capsule permeability sensitive to correspondent external stimuli. Permeability of the capsules is of essential interest in diverse areas related to exploitation of systems with controlled and sustained release properties. The envisaged applications of such capsules/vesicles cover biotechnology, medicine, catalysis, food industry, etc.
Study of sporadical properties of crosslinked polyelectrolyte multilayers
NASA Astrophysics Data System (ADS)
Balu, Deebika
Polyelectrolyte multilayers (PEM) have become a highly studied class of materials due to the range of their applicability in many areas of research, including biology, chemistry and materials science. Recent advances in surface coatings have enabled modification of PEM surfaces to provide desirable properties such as controlled release, super-hydrophobicity, biocompatibility, antifouling and antibacterial properties. In the past decade, antimicrobial PEM coatings have been investigated as a safer alternative to the traditional disinfection methods that usually involve application of hazardous chemicals onto the surface to be cleaned. These antimicrobial coatings could be applied to common surfaces prone to colonization of bacteria (such as bench tops, faucet handles, etc) to supplement routine sanitization protocols by providing sustained antimicrobial activity. Vegetative bacteria (such as Escherichia coli) are more susceptible to antimicrobial agents than bacterial species that form spores. Hence, the antimicrobial activity of PEM coatings fabricated using Layer by Layer (LbL) technique were assayed using Bacillus anthracis spores (Sterne strain). In this thesis, the sporicidal effect of various polyelectrolyte multilayer coatings containing cross-linked polymers immersed in bleach have been evaluated as potential augmentation to existing disinfection methods.
Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules.
Parakhonskiy, Bogdan V; Yashchenok, Alexey M; Konrad, Manfred; Skirtach, Andre G
2014-05-01
Colloidal particles play an important role in various areas of material and pharmaceutical sciences, biotechnology, and biomedicine. In this overview we describe micro- and nano-particles used for the preparation of polyelectrolyte multilayer capsules and as drug delivery vehicles. An essential feature of polyelectrolyte multilayer capsule preparations is the ability to adsorb polymeric layers onto colloidal particles or templates followed by dissolution of these templates. The choice of the template is determined by various physico-chemical conditions: solvent needed for dissolution, porosity, aggregation tendency, as well as release of materials from capsules. Historically, the first templates were based on melamine formaldehyde, later evolving towards more elaborate materials such as silica and calcium carbonate. Their advantages and disadvantages are discussed here in comparison to non-particulate templates such as red blood cells. Further steps in this area include development of anisotropic particles, which themselves can serve as delivery carriers. We provide insights into application of particles as drug delivery carriers in comparison to microcapsules templated on them. Copyright © 2014 Elsevier B.V. All rights reserved.
Kavitha, Varadharajan; Gnanamani, Arumugam
2013-05-01
The present study emphasizes in situ transformation of soybean oil to self-assembled supramolecular multilayered biopolymer material. The said polymer material was characterized and the entrapment efficacy of both hydrophilic and hydrophobic moieties was studied. In brief, soybean oil at varying concentration was mixed with mineral medium and incubated under agitation (200 rpm) at 37 degrees C for 240 h. Physical observations were made till 240 h and the transformed biopolymer was separated and subjected to physical, chemical and functional characterization. The maximum size of the polymer material was measured as 2 cm in diameter and the cross sectional view displayed the multilayered onion rings like structures. SEM analysis illustrated the presence of multilayered honeycomb channeled structures. Thermal analysis demonstrated the thermal stability (200 degrees C) and high heat enthalpy (1999 J/g). Further, this multilayered assembly was able to entrap both hydrophilic and hydrophobic components simultaneously, suggesting the potential industrial application of this material.
Encapsidation of Linear Polyelectrolyte in a Viral Nanocontainer
NASA Astrophysics Data System (ADS)
Hu, Yufang
2005-03-01
We present the results from a combined experimental and theoretical study on the self-assembly of a model icosahedral virus, Cowpea Chlorotic Mottle Virus (CCMV). The formation of native CCMV capsids is believed to be driven primarily by the electrostatic interactions between the viral RNA and the positively charged capsid interior, as well as by the hydrophobic interactions between capsid protein subunits. To probe these molecular interactions, in vitro self-assembly reactions are carried out using the CCMV capsid protein and a synthetic linear polyelectrolyte, sodium polystyrene sulfonate (NaPSS), which functions as the analog of viral RNA. Under appropriate solutions conditions, NaPSS is encapsidated by the viral capsid. The molecular weight of NaPSS is systematically varied and the resulting average capsid size, size distribution, and particle morphology are measured by transmission electron microscopy. The correlation between capsid size and packaged cargo size, as well as the upper limit of capsid packaging capacity, are characterized. To elucidate the physical role played by the encapsidated polyelectrolyte in determining the preferred size of spherical viruses, we have used a mean-field approach to calculate the free energy of the virus-like particle as a function of chain length (and of the strength of chain/capsid attractive interaction). We find good agreement with our analytical calculations and experimental results.
Protein hydrogels with engineered biomolecular recognition
NASA Astrophysics Data System (ADS)
Mi, Lixin
Extracellular matrices (ECMs) are the hydrated macromolecular gels in which cells migrate and proliferate and organize into tissues in vivo . The development of artificial ECM with the required mechanical, physico-chemical, and biological properties has long been a challenge in the biomaterial research field. In this dissertation, a novel set of bioactive protein hydrogels has been synthesized and characterized at both molecular and materials levels. The self-recognized and self-assembled protein copolymers have the ability to provide engineered biofunctionality through the controlled arrangement of bioactive domains on the nanoscale. Genetic engineering methods have been employed to synthesize these protein copolymers. Plasmid DNA carrying genes to express both di- and tri-block proteins have been constructed using molecular cloning techniques. These genes were expressed in bacterial E. coli to ensure homogeneous protein length and anticipated structure. Three diblock protein sequences having a leucine zipper construct on one end and polyelectrolyte (AGAGAGPEG)10 on the other, have been studied by circular dichroism, size-exclusion chromatography, analytical ultracentrifugation, and static light scattering to characterize their secondary structure, structural stability, and oligomeric state. The results show that ABC diblock mixtures form very stable heterotrimer aggregates via self-recognition and self-assembly of the coiled coil end domains. Tri-block proteins with two leucine zipper motif ends flanking the polyelectrolyte random coil in the middle have been investigated by circular dichroism and fluorescence spectroscopy, and the hydrogels formed by self-assembly of these tri-blocks have been studied using transmission electronic microscopy and diffusing wave spectroscopy. The reversible gelation behavior is the result of heterotrimeric aggregation of helices to form the physical crosslinks in the gel, with the polyelectrolyte region center block retaining water soluble and swelling. The RGD cell adhesion tripeptide has been inserted into the polyelectrolyte region by site-directed mutagenesis. Two dimensional human foreskin fibroblast cultures have shown that the RGD-containing protein surface is bioactive in promoting cell attachment, cell signaling, and cytoskeleton organization. The protein and the cell recognize and interact at molecular level. Collectively, these findings indicate that this bioactive protein hydrogel system is a promising biomaterial for mammalian cell culture. This research may provide insights for the rational development of bioactive ECM for specific cell and tissue engineering applications.
Structure Formation in Salt-Free Solutions of Amphiphilic Sulfonated Polyelectrolytes
NASA Astrophysics Data System (ADS)
Bockstaller, Michael; Koehler, Werner
2000-03-01
Self-assembled systems have long attracted attention due to their practical importance in many technical and biological fields. Dodecyl-substituted poly(para-phenylen)sulfonates (abbreviated PPPS) are highly charged polyelectrolytes which in the uncharged state have been investigated extensively and an intrinsic persistence length of 15 nm has been reported. Due to their hydrophobic side chains, PPPS are compatible with water only as micellar aggregates and tend to form supramolecular structures even at concentrations as low as 10-5mol_mon.units/l. Because of the rodlike conformation of PPPS, this self-assembly leads to aggregates of anisotropic shape. Therefore, depolarized light scattering was employed to yield complementary information about structure and dynamics of these complex fluids. Aqueous solutions of PPPS at room temperature undergo a structural transition at a critical concentration of c_crit.=0.016 g/l. This transition is characterized by a strong increase of scattered intensity in forward direction and dynamic depolarized scattering. Above c_crit. the cylindrical micelles (L=310 nm, d=3.1 nm, N_radial=12) self assembly into large ellipsoidal clusters of size in the μ m range. Due to the strong increase of depolarized scattered intensity there has to be a preferential orientation of the micelles inside those clusters, which thus represent a lyotropic mesophase. By combining static and dynamic light scattering for the low q-range as well as small angle x-ray scattering for the higher q-range it is possible to determine size and shape of each aggregation step. Decreasing the molecular weight of the PPPS has profound influence on the micellar length and hence on c_crit. which is close to the overlap concentration (c ~ 1/L^3) allowing for the observation of the polyelectrolyte effect.
Dong, Anjie; Hou, Guoling; Sun, Duoxian
2003-10-15
Amphoteric polyurethane (APU) samples used in this paper were composed of hydrophobic soft segments and pendent -COOH and -CH(2)N(CH(3))(2) groups on the hard segments, which present the properties of both amphoteric polyelectrolytes and amphiphilic block copolymers. APU macromolecules can self-assemble into micelles in acidic and basic aqueous media by hydrophobic/hydrophilic interaction. The self-assembly behavior of APU in acidic and basic media was studied by transmission electron microscopy and light scattering methods. The spherical and hollow micelles of APU were observed respectively in acidic and basic aqueous media. The results indicate that the size and size distribution of APU self-assembly micelles largely depend on the ratio of -COOH to -CH(2)N(CH(3))(2) groups, density of ionizable groups, concentration of APU, and types of acid and base in the media.
Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C
2016-06-01
Biaxially oriented polypropylene (BOPP) is widely used in packaging. Although its orientation increases mechanical strength and clarity, BOPP suffers from a high oxygen transmission rate (OTR). Multilayer thin films are deposited from water using layer-by-layer (LbL) assembly. Polyethylenimine (PEI) is combined with either poly(acrylic acid) (PAA) or vermiculite (VMT) clay to impart high oxygen barrier. A 30-bilayer PEI/VMT nanocoating (226 nm thick) improves the OTR of 17.8 μm thick BOPP by more than 30X, rivaling most inorganic coatings. PEI/PAA multilayers achieve comparable barrier with only 12 bilayers due to greater thickness, but these films exhibit increased oxygen permeability at high humidity. The PEI/VMT coatings actually exhibit improved oxygen barrier at high humidity (and also improve moisture barrier by more than 40%). This high barrier BOPP meets the criteria for sensitive food and some electronics packaging applications. Additionally, this water-based coating technology is cost effective and provides an opportunity to produce high barrier polypropylene film on an industrial scale. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-Assembled Nanoporous Biofilms from Functionalized Nanofibrous M13 Bacteriophage.
Devaraj, Vasanthan; Han, Jiye; Kim, Chuntae; Kang, Yong-Cheol; Oh, Jin-Woo
2018-06-12
Highly periodic and uniform nanostructures, based on a genetically engineered M13 bacteriophage, displayed unique properties at the nanoscale that have the potential for a variety of applications. In this work, we report a multilayer biofilm with self-assembled nanoporous surfaces involving a nanofiber-like genetically engineered 4E-type M13 bacteriophage, which was fabricated using a simple pulling method. The nanoporous surfaces were effectively formed by using the networking-like structural layers of the M13 bacteriophage during self-assembly. Therefore, an external template was not required. The actual M13 bacteriophage-based fabricated multilayered biofilm with porous nanostructures agreed well with experimental and simulation results. Pores formed in the final layer had a diameter of about 150⁻500 nm and a depth of about 15⁻30 nm. We outline a filter application for this multilayered biofilm that enables selected ions to be extracted from a sodium chloride solution. Here, we describe a simple, environmentally friendly, and inexpensive fabrication approach with large-scale production potential. The technique and the multi-layered biofilms produced may be applied to sensor, filter, plasmonics, and bio-mimetic fields.
Deposition of zeolite nanoparticles onto porous silica monolith
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gackowski, Mariusz; Bielanska, Elzbieta; Szczepanowicz, Krzysztof
2016-06-01
A facile and effective method of deposition of MFl zeolite nanoparticles (nanocrystals) onto macro-/mesoporous silica monolith was proposed. The electrostatic interaction between those two materials was induces by adsorption of cationic polyelectrolytes. That can be realized either by adsorption of polyelectrolyte onto silica monolith or on zeolite nanocrystals. The effect of time, concentration of zeolite nanocrystals, type of polyelectrolyte, and ultrasound treatment is scrutinized. Adsorption of polyelectrolyte onto silica monolith with subsequent deposition of nanocrystals resulted in a monolayer coverage assessed with SEM images. Infrared spectroscopy was applied as a useful method to determine the deposition effectiveness of zeolite nanocrystalsmore » onto silica. Modification of nanocrystals with polyelectrolyte resulted in a multilayer coverage due to agglomeration of particles. On the other hand, the excess of polyelectrolyte in the system resulted in a low coverage due to competition between polyelectrolyte and modified nanocrystals.« less
Ionically self-assembled monolayers (ISAMs)
NASA Astrophysics Data System (ADS)
Janik, John
2001-04-01
Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub-nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS).
Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.
Zawko, Scott A; Schmidt, Christine E
2011-08-01
An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.
Water-Soluble Conjugated Polymers: Self-Assembly and Biosensor Applications
NASA Astrophysics Data System (ADS)
Bazan, Guillermo
2005-03-01
Homogeneous assays can be designed which take advantage of the optical amplification of conjugated polymers and the self-assembly characteristic of aqueous polyelectrolytes. For example, a ssDNA sequence sensor comprises an aqueous solution containing a cationic water soluble conjugated polymer such as poly(9,9-bis(trimethylammonium)-hexyl)-fluorene phenylene) with a peptide nucleic acid (PNA) labeled with a dye (PNA-C*). Signal transduction is controlled by hybridization of the neutral PNA-C* probe and the negative ssDNA target, resulting in favorable electrostatic interactions between the hybrid complex and the cationic polymer. Distance requirements for Förster energy transfer are thus met only when ssDNA of complementary sequence to the PNA-C* probe is present. Signal amplification by the conjugated polymer provides fluorescein emission >25 times higher than that of the directly excited dye. Transduction by electrostatic interactions followed by energy transfer is a general strategy. Examples involving other biomolecular recognition events, such as DNA/DNA, RNA/protein and RNA/RNA, will also be provided. The mechanism of biosensing will be discussed, with special attention to the varying contributions of hydrophobic and electrostatic forces, polymer conformation, charge density, local concentration of C*s and tailored defect sites for aggregation-induced optical changes. Finally, the water solubility of these conjugated polymers opens possibilities for spin casting onto organic materials, without dissolving the underlying layers. This property is useful for fabricating multilayer organic optoelectronic devices by simple solution techniques.
ERIC Educational Resources Information Center
Schott, Marco; Beck, Matthias; Winkler, Franziska; Lorrmann, Henning; Kurth, Dirk G.
2015-01-01
Metallo-supramolecular polyelectrolytes (MEPE) based on iron(II)-acetate and 1,4-bis(2,2':6',2?-terpyridin-4'-yl)benzene are assembled by layer-by-layer deposition on transparent electrode surfaces. When a potential is applied, the color of the film can be switched from blue to transparent. Due to the strong absorption and the fast switching…
Pheromone synthesis in a biomicroreactor coated with anti-adsorption polyelectrolyte multilayer
Dimov, Nikolay; Muñoz, Lourdes; Carot-Sans, Gerard; Verhoeven, Michel L. P. M.; Bula, Wojciech P.; Kocer, Gülistan; Guerrero, Angel; Gardeniers, Han J. G. E.
2011-01-01
To prepare a biosynthetic module in an infochemical communication project, we designed a silicon/glass microreactor with anti-adsorption polyelectrolyte multilayer coating and immobilized alcohol acetyl transferase (atf), one of the key biosynthetic enzymes of the pheromone of Spodoptera littoralis, on agarose beads inside. The system reproduces the last step of the biosynthesis in which the precursor diene alcohol (Z,E)-9,11-tetradecadienol is transformed into the major component (Z,E)-9,11-tetradecadienyl acetate. The scope of this study was to analyze and implement a multilayer, anti-adsorption coating based on layer-by-layer deposition of polyethylenimine/dextransulfate sodium salt (PEI/DSS). The multilayers were composed of two PEI with molecular weights 750 and 1.2 kDa at pH 9.2 or 6.0. Growth, morphology, and stability of the layers were analyzed by ellipsometry and atomic force microscopy (AFM). The anti-adsorption functionality of the multilayer inside the microreactor was validated. The activity of His6-(atf) was measured by gas chromatography coupled to mass spectrometer (GC-MS). PMID:22662033
Preparation and analysis of multilayer composites based on polyelectrolyte complexes
NASA Astrophysics Data System (ADS)
Petrova, V. A.; Orekhov, A. S.; Chernyakov, D. D.; Baklagina, Yu. G.; Romanov, D. P.; Kononova, S. V.; Volod'ko, A. V.; Ermak, I. M.; Klechkovskaya, V. V.; Skorik, Yu. A.
2016-11-01
A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan-hyaluronic acid, chitosan-alginic acid, and chitosan-carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.
Polyelectrolyte layer-by-layer deposition in cylindrical nanopores.
Lazzara, Thomas D; Lau, K H Aaron; Abou-Kandil, Ahmed I; Caminade, Anne-Marie; Majoral, Jean-Pierre; Knoll, Wolfgang
2010-07-27
Layer-by-layer (LbL) deposition of polyelectrolytes within nanopores in terms of the pore size and the ionic strength was experimentally studied. Anodic aluminum oxide (AAO) membranes, which have aligned, cylindrical, nonintersecting pores, were used as a model nanoporous system. Furthermore, the AAO membranes were also employed as planar optical waveguides to enable in situ monitoring of the LbL process within the nanopores by optical waveguide spectroscopy (OWS). Structurally well-defined N,N-disubstituted hydrazine phosphorus-containing dendrimers of the fourth generation, with peripherally charged groups and diameters of approximately 7 nm, were used as the model polyelectrolytes. The pore diameter of the AAO was varied between 30-116 nm and the ionic strength was varied over 3 orders of magnitude. The dependence of the deposited layer thickness on ionic strength within the nanopores is found to be significantly stronger than LbL deposition on a planar surface. Furthermore, deposition within the nanopores can become inhibited even if the pore diameter is much larger than the diameter of the G4-polyelectrolyte, or if the screening length is insignificant relative to the dendrimer diameter at high ionic strengths. Our results will aid in the template preparation of polyelectrolyte multilayer nanotubes, and our experimental approach may be useful for investigating theories regarding the partitioning of nano-objects within nanopores where electrostatic interactions are dominant. Furthermore, we show that the enhanced ionic strength dependence of polyelectrolyte transport within the nanopores can be used to selectively deposit a LbL multilayer atop a nanoporous substrate.
Wu, Zhennan; Liu, Jiale; Li, Yanchun; Cheng, Ziyi; Li, Tingting; Zhang, Hao; Lu, Zhongyuan; Yang, Bai
2015-06-23
Two-dimensional (2D) nanomaterials possessing regular layered structures and versatile chemical composition are highly expected in many applications. Despite the importance of van der Waals (vdW) attraction in constructing and maintaining layered structures, the origin of 2D anisotropy is not fully understood, yet. Here, we report the 2D self-assembly of ligand-capped Au15 nanoclusters into mono-, few-, and multilayered sheets in colloidal solution. Both the experimental results and computer simulation reveal that the 2D self-assembly is initiated by 1D dipolar attraction common in nanometer-sized objects. The dense 1D attachment of Au15 leads to a redistribution of the surface ligands, thus generating asymmetric vdW attraction. The deliberate control of the coordination of dipolar and vdW attraction further allows to manipulate the thickness and morphologies of 2D self-assembly architectures.
Rivas, Gustavo A; Miscoria, Silvia A; Desbrieres, Jacques; Barrera, Gustavo D
2007-01-15
We are proposing for the first time the use of a Nafion/multi-walled carbon nanotubes dispersion deposited on glassy carbon electrodes (GCE) as a new platform for developing enzymatic biosensors based on the self-assembling of a chitosan derivative and different oxidases. The electrodes are obtained by deposition of a layer of Nafion/multi-wall carbon nanotubes dispersion on glassy carbon electrodes, followed by the adsorption of a chitosan derivative as polycation and glucose oxidase, l-aminoacid oxidase or polyphenol oxidase, as polyanions and biorecognition elements. The optimum configuration for glucose biosensors has allowed a highly sensitive (sensitivity=(0.28+/-0.02)muAmM(-1), r=0.997), fast (4s in reaching the maximum response), and highly selective (0% interference of ascorbic acid and uric acid at maximum physiological levels) glucose quantification at 0.700V with detection and quantification limits of 0.035 and 0.107mM, respectively. The repetitivity for 10 measurements was 5.5%, while the reproducibility was 8.4% for eight electrodes. The potentiality of the new platform was clearly demonstrated by using the carbon nanotubes/Nafion layer as a platform for the self-assembling of l-aminoacid oxidase and polyphenol oxidase. Therefore, the platform we are proposing here, that combines the advantages of nanostructured materials with those of the layer-by-layer self-assembling of polyelectrolytes, opens the doors to new and exciting possibilities for the development of enzymatic and affinity biosensors using different transdution modes.
Sun, Guangyao; Zhou, Huaijuan; Cao, Xun; Li, Rong; Tazawa, Masato; Okada, Masahisa; Jin, Ping
2016-03-23
Composite films of VO2-TiO2 were deposited on sapphire (11-20) substrate by cosputtering method. Self-assembled well-ordered multilayer structure with alternating Ti- and V-rich epitaxial thin layer was obtained by thermal annealing via a spinodal decomposition mechanism. The structured thermochromic films demonstrate superior optical modulation upon phase transition, with significantly reduced transition temperature. The results provide a facile and novel approach to fabricate smart structures with excellent performance.
Quantifying quality in DNA self-assembly
Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik
2014-01-01
Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596
Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors.
Samant, Saumil P; Grabowski, Christopher A; Kisslinger, Kim; Yager, Kevin G; Yuan, Guangcui; Satija, Sushil K; Durstock, Michael F; Raghavan, Dharmaraj; Karim, Alamgir
2016-03-01
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.
Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; ...
2016-03-04
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS- b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
Nanorings of self-assembled fullerene C(70) as templating nanoreactors.
Iyer, K Swaminathan; Saunders, Martin; Becker, Thomas; Evans, Cameron W; Raston, Colin L
2009-11-18
Micelles, polyelectrolytes, peptides, and plasmid DNA with well-defined growth cavities can function as templates for the synthesis of metal nanocrystals. In a similar way, carbon-based toroidal 'nanoreactors' composed of clustered fullerenes could be used to synthesize nanohybrids by forming metal nanocrystals within the confines of the ring.
Halloysite clay nanotubes for resveratrol delivery to cancer cells.
Vergaro, Viviana; Lvov, Yuri M; Leporatti, Stefano
2012-09-01
Halloysite is natural aluminosilicate clay with hollow tubular structure which allows loading with low soluble drugs using their saturated solutions in organic solvents. Resveratrol, a polyphenol known for having antioxidant and antineoplastic properties, is loaded inside these clay nanotubes lumens. Release time of 48 h is demonstrated. Spectroscopic and ζ-potential measurements are used to study the drug loading/release and for monitoring the nanotube layer-by-layer (LbL) coating with polyelectrolytes for further release control. Resveratrol-loaded clay nanotubes are added to breast cell cultures for toxicity tests. Halloysite functionalization with LbL polyelectrolyte multilayers remarkably decrease nanotube self-toxicity. MTT measurements performed with a neoplastic cell lines model system (MCF-7) as function of the resveratrol-loaded nanotubes concentration and incubation time indicate that drug-loaded halloysite strongly increase of cytotoxicity leading to cell apoptosis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multilayer block copolymer meshes by orthogonal self-assembly
Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.
2016-01-01
Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218
Morita-Imura, Clara; Imura, Yoshiro; Kawai, Takeshi; Shindo, Hitoshi
2014-11-04
The pH-responsive self-assembly of zwitterionic amphiphile C16CA was expanded to the recovery of gold (Au) nanoparticles for environmentally friendly chemistry applications. Multilayered lamellae at pH ∼ 4 were successfully incorporated into nanoparticles by dispersion. Redispersion of nanoparticles was achieved under basic conditions by the transition of self-assembly.
Directed assembly of three-dimensional structures with micron-scale features
Gratson, Gregory; Lewis, Jennifer A.
2006-11-28
The invention provides polyelectrolyte inks comprising a solvent, a cationic polyelectrolyte, dissolved in the solvent, and an anionic polyelectrolyte, dissolved in the solvent. The concentration of at least one of the polyelectrolytes in the solvent is in a semidilute regime.
Rahman, Masoud; Tajabadi, Fariba; Shooshtari, Leyla; Taghavinia, Nima
2011-04-04
Hollow structures show both light scattering and light trapping, which makes them promising for dye-sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO(2) fibers are prepared by layer-by-layer (LbL) self-assembly deposition of TiO(2) nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO(2) dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO(2) nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25-fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50% in conversion efficiency. By employing the intensity-modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light-harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion.
Thompson, Michael T; Berg, Michael C; Tobias, Irene S; Rubner, Michael F; Van Vliet, Krystyn J
2005-12-01
It is well known that mechanical stimuli induce cellular responses ranging from morphological reorganization to mineral secretion, and that mechanical stimulation through modulation of the mechanical properties of cell substrata affects cell function in vitro and in vivo. However, there are few approaches by which the mechanical compliance of the substrata to which cells adhere and grow can be determined quantitatively and varied independent of substrata chemical composition. General methods by which mechanical state can be quantified and modulated at the cell population level are critical to understanding and engineering materials that promote and maintain cell phenotype for applications such as vascular tissue constructs. Here, we apply contact mechanics of nanoindentation to measure the mechanical compliance of weak polyelectrolyte multilayers (PEMs) of nanoscale thickness, and explore the effects of this tunable compliance for cell substrata applications. We show that the nominal elastic moduli E(s) of these substrata depend directly on the pH at which the PEMs are assembled, and can be varied over several orders of magnitude for given polycation/polyanion pairs. Further, we demonstrate that the attachment and proliferation of human microvascular endothelial cells (MVECs) can be regulated through independent changes in the compliance and terminal polyion layer of these PEM substrata. These data indicate that substrate mechanical compliance is a strong determinant of cell fate, and that PEMs of nanoscale thickness provide a valuable tool to vary the external mechanical environment of cells independently of chemical stimuli.
Kolasinska-Sojka, Marta; Wlodek, Magdalena; Szuwarzynski, Michal; Kereiche, Sami; Kovacik, Lubomir; Warszynski, Piotr
2017-10-01
The formation and properties of supported lipid bilayers (SLB) containing hydrophobic nanoparticles (NP) was studied in relation to underlying cushion obtained from selected polyelectrolyte multilayers. Lipid vesicles were formed from zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer (PBS). As hydrophobic nanoparticles - quantum dots (QD) with size of 3.8nm (emission wavelength of 420nm) were used. Polyelectrolyte multilayers (PEM) were constructed by the sequential, i.e., layer-by-layer (LbL) adsorption of alternately charged polyelectrolytes from their solutions. Liposomes and Liposome-QDs complexes were studied with Transmission Cryo-Electron Microscopy (Cryo-TEM) to verify the quality of vesicles and the position of QD within lipid bilayer. Deposition of liposomes and liposomes with quantum dots on polyelectrolyte films was studied in situ using quartz crystal microbalance with dissipation (QCM-D) technique. The fluorescence emission spectra were analyzed for both: suspension of liposomes with nanoparticles and for supported lipid bilayers containing QD on PEM. It was demonstrated that quantum dots are located in the hydrophobic part of lipid bilayer. Moreover, we proved that such QD-modified liposomes formed supported lipid bilayers and their final structure depended on the type of underlying cushion. Copyright © 2017 Elsevier B.V. All rights reserved.
Colorado, Ramon; Crouse, Christopher A; Zeigler, Christopher N; Barron, Andrew R
2008-08-19
Films of the molybdenum-iron nanocluster [H x PMo 12O 40 subsetH 4Mo 72Fe 30(O 2CMe) 15O 254(H2O) 68] (FeMoC) were generated on gold via the self-assembly technique using two divergent routes. The first route entails the self-assembly of unfunctionalized FeMoC onto a preprepared carboxyl-terminated SAM on gold. The second route involves the preparation of thiol-terminated functionalized FeMoC clusters, which are then allowed to self-assemble onto bare gold surfaces. Monolayer films of FeMoC clusters are attained via both routes, with the second route requiring shorter immersion times (2 days) than the first route (6 days). Multilayer films of FeMoC are formed via the second route for immersion times longer than 2 days. Characterization of these films using optical ellipsometry, X-ray photoelectron spectroscopy, and atomic force microscopy confirm the self-assembly of the clusters on the surfaces.
Electrochromic Behavior of Ionically Self-Assembled Thin Films
NASA Astrophysics Data System (ADS)
Janik, J. A.; Heflin, J. R.; Marciu, D.; Miller, M. B.; Davis, R. M.
2001-03-01
Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub-nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS).
Immobilization of Superoxide Dismutase on Polyelectrolyte-Functionalized Titania Nanosheets.
Rouster, Paul; Pavlovic, Marko; Szilagyi, Istvan
2018-02-16
The superoxide dismutase (SOD) enzyme was successfully immobilized on titania nanosheets (TNS) functionalized with the poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte. The TNS-PDADMAC solid support was prepared by hydrothermal synthesis followed by self-assembled polyelectrolyte layer formation. It was found that SOD strongly adsorbed onto oppositely charged TNS-PDADMAC through electrostatic and hydrophobic interactions. The TNS-PDADMAC-SOD material was characterized by light scattering and microscopy techniques. Colloidal stability studies revealed that the obtained nanocomposites possessed good resistance against salt-induced aggregation in aqueous suspensions. The enzyme kept its functional integrity upon immobilization; therefore, TNS-PDADMAC-SOD showed excellent superoxide radical anion scavenging activity. The developed system is a promising candidate for applications in which suspensions of antioxidant activity are required in the manufacturing processes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polyelectrolyte-Surfactant Complexes: A New Class of Organogelators
NASA Astrophysics Data System (ADS)
Cavicchi, Kevin; Liu, Yuqing; Guzman, Gustavo
2011-03-01
Polyelectrolyte-surfactant complexes (PE-SURFs) are a class of polymers generated by neutralizing a polyelectrolyte with an oppositely charged surfactant. It has been found that PE-SURFs composed of polystyrene sulfonate and long chain alkyl dimethyl amines act as good organogelators for a range of hydrophobic, organic solvents. Thermo-reversible organogels are formed by heating and cooling PE-SURF/solvent solutions. The gel transition temperature is influenced by the degree of polymerization, the length of the alkyl side-chain, the solubility parameter of the solvent, and the concentration of the gelator. Freeze-drying and scanning electron microscopy characterization of the resultant xerogels shows the formation of rod- and plate-like network morphologies depending on the system parameters. This behavior is consistent with gelation driven by the self-assembly of the amphiphilic PE-SURFs into micellar networks.
Han, Uiyoung; Seo, Younghye; Hong, Jinkee
2016-04-07
Layer by layer (lbl) assembled multilayer thin films are used in drug delivery systems with attractive advantages such as unlimited selection of building blocks and free modification of the film structure. In this paper, we report the fundamental properties of lbl films constructed from different substances such as PS-b-PAA amphiphilic block copolymer micelles (BCM) as nano-sized drug vehicles, 2D-shaped graphene oxide (GO), and branched polyethylenimine (bPEI). These films were fabricated by successive lbl assembly as a result of electrostatic interactions between the carboxyl group of BCM and amine group of functionalized GO or bPEI under various pH conditions. We also compared the thickness, roughness, morphology and degree of adsorption of the (bPEI/BCM) films to those in the (GO/BCM) films. The results showed significant difference because of the distinct pH dependence of each material. In addition, drug release rates of the GO/BCM film were more rapid those of the (bPEI/BCM) film in pH 7.4 and pH 2 PBS buffer solutions. In (bPEI/BCM/GO/BCM) film, the inserted GO layers into bPEI/BCM multilayer induced rapid drug release. We believe that these materials &pH dependent film properties allow developments in the control of coating techniques for biological and biomedical applications.
Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E; Green, Jordan J
2013-07-10
Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized because of its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 h, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4'-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface.
Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E.; Green, Jordan J
2013-01-01
Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized due to its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 hours, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4′-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface. PMID:23755861
Electrical properties of multilayers from low- and high-molecular-weight polyelectrolytes.
Radeva, Tsetska; Milkova, Viktoria; Petkanchin, Ivana
2004-11-15
The formation of stable multilayer films by using as constituents sodium poly(4-styrene sulfonate) (PSS) and poly(4-vinyl pyridine) (PVP) was studied by electrooptics. A strong increase in basicity of the pyridine rings in the electrical field of the oppositely charged PSS chains was suggested to be the driving force for multilayer film formation. A linear increase in the film thickness was registered after deposition of the first three layers, with no dependence on the polyelectrolyte molecular weight. The electrooptical effect was found to increase with increasing area of each next layer, but depended on the molecular weights of both polymers. Polarization of "condensed" counterions along the chains of the last-adsorbed layer was suggested to explain this dependence. Following the counterion dynamics, we come to the conclusion that the electrical properties of the top layer govern the electrooptical behavior of the PSS/PVP film.
Sun, Bin; Lynn, David M
2010-11-20
We report an approach to the design of multilayered polyelectrolyte thin films (or 'polyelectrolyte multilayers', PEMs) that can be used to provide tunable control over the release of plasmid DNA (or multiple different DNA constructs) from film-coated surfaces. Our approach is based upon methods for the layer-by-layer assembly of DNA-containing thin films, and exploits the properties of a new class of cationic 'charge-shifting' polymers (amine functionalized polymers that undergo gradual changes in net charge upon side chain ester hydrolysis) to provide control over the rates at which these films erode and release DNA. We synthesized two 'charge-shifting' polymers (polymers 1 and 2) containing different side chain structures by ring-opening reactions of poly(2-alkenyl azlactone)s with two different tertiary amine functionalized alcohols (3-dimethylamino-1-propanol and 2-dimethylaminoethanol, respectively). Subsequent characterization revealed large changes in the rates of side chain ester hydrolysis for these two polymers; whereas the half-life for the hydrolysis of the esters in polymer 1 was ~200 days, the half-life for polymer 2 was ~6 days. We demonstrate that these large differences in side chain hydrolysis make possible the design of PEMs that erode and promote the surface-mediated release of DNA either rapidly (e.g., over ~3 days for films fabricated using polymer 2) or slowly (e.g., over ~1 month for films fabricated using polymer 1). We demonstrate further that it is possible to design films with release profiles that are intermediate to these two extremes by fabricating films using solutions containing different mixtures of these two polymers. This approach can thus expand the usefulness of these two polymers and achieve a broader range of DNA release profiles without the need to synthesize polymers with new structures or properties. Finally, we demonstrate that polymers 1 and 2 can be used to fabricate multilayered films with hierarchical structures that promote the sequential release of two different DNA constructs with separate and distinct release profiles (e.g., the release of a first construct over a period of ~3 days, followed by the sustained release of a second for a period of ~70 days). With further development, this approach could contribute to the design of functional thin films and surface coatings that provide sophisticated control over the timing and the order of the release of two or more DNA constructs (or other agents) of interest in a range of biomedical contexts. Copyright © 2010 Elsevier B.V. All rights reserved.
Wen, Ke; Maoz, Rivka; Cohen, Hagai; Sagiv, Jacob; Gibaud, Alain; Desert, Anne; Ocko, Benjamin M
2008-03-01
Experimental evidence derived from a comprehensive study of a self-assembled organosilane multilayer film system undergoing a process of postassembly chemical modification that affects interlayer-located polar groups of the constituent molecules while preserving its overall molecular architecture allows a quantitative evaluation of both the degree of intralayer polymerization and that of interlayer covalent bonding of the silane headgroups in a highly ordered layer assembly of this type. The investigated system consists of a layer-by-layer assembled multilayer of a bifunctional n-alkyl silane with terminal alcohol group that is in situ converted, via a wet chemical oxidation process conducted on the entire multilayer, to the corresponding carboxylic acid function. A combined chemical-structural analysis of data furnished by four different techniques, Fourier transform infrared spectroscopy (FTIR), synchrotron X-ray scattering, X-ray photoelectron spectroscopy (XPS), and contact angle measurements, demonstrates that the highly ordered 3D molecular arrangement of the initial alcohol-silane multilayer stack is well preserved upon virtually quantitative conversion of the alcohol to carboxylic acid and the concomitant irreversible cleavage of interlayer covalent bonds. Thus, the correlation of quantitative chemical and structural data obtained from such unreacted and fully reacted film samples offers an unprecedented experimental framework within which it becomes possible to differentiate between intralayer and interlayer covalent bonding. In addition, the use of a sufficiently thick multilayer effectively eliminates the interfering contributions of the underlying silicon oxide substrate to both the X-ray scattering and XPS data. The present findings contribute a firm experimental basis to the elucidation of the self-assembly mechanism, the molecular organization, and the modes and dynamics of intra- and interlayer bonding prevailing in highly ordered organosilane films; with further implications for the rational exploitation of some of the unique options such supramolecular surface entities can offer in the advancement of a chemical nanofabrication methodology.
NASA Astrophysics Data System (ADS)
Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt
2008-03-01
Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.
Surfactant mediated polyelectrolyte self-assembly
Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; ...
2015-11-25
Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less
Tunable self-organization of nanocomposite multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C. Q.; Pei, Y. T.; Shaha, K. P.
In this letter we report the controlled growth and microstructural evolution of self-assembled nanocomposite multilayers that are induced by surface ion-impingement. The nanoscale structures together with chemical composition, especially at the growing front, have been investigated with high-resolution transmission electron microscopy. Concurrent ion impingement of growing films produces an amorphous capping layer 3 nm in thickness where spatially modulated phase separation is initiated. It is shown that the modulation of multilayers as controlled by the self-organization of nanocrystallites below the capping layer, can be tuned through the entire film.
Self-organization of a wedge-shaped surfactant in monolayers and multilayers.
Cain, Nicholas; Van Bogaert, Josh; Gin, Douglas L; Hammond, Scott R; Schwartz, Daniel K
2007-01-16
The self-organization behavior of a wedge-shaped surfactant, disodium-3,4,5-tris(dodecyloxy)phenylmethylphosphonate, was studied in Langmuir monolayers (at the air-water interface), Langmuir-Blodgett (LB) monolayers and multilayers, and films adsorbed spontaneously from isooctane solution onto a mica substrate (self-assembled films). This compound forms an inverted hexagonal lyotropic liquid crystal phase in the bulk and in thick adsorbed films. Surface pressure isotherm and Brewster angle microscope (BAM) studies of Langmuir monolayers revealed three phases: gas (G), liquid expanded (LE), and liquid condensed (LC). The surface pressure-temperature phase diagram was determined in detail; a triple point was found at approximately 10 degrees C. Atomic force microscope (AFM) images of LB monolayers transferred from various regions of the phase diagram were consistent with the BAM images and indicated that the LE regions are approximately 0.5 nm thinner than the LC regions. AFM images were also obtained of self-assembled films after various adsorption times. For short adsorption times, when monolayer self-assembly was incomplete, the film topography indicated the coexistence of two distinct monolayer phases. The height difference between these two phases was again 0.5 nm, suggesting a correspondence with the LE/LC coexistence observed in the Langmuir monolayers. For longer immersion times, adsorbed multilayers assembled into highly organized periodic arrays of inverse cylindrical micelles. Similar periodic structures, with the same repeat distance of 4.5 nm, were also observed in three-layer LB films. However, the regions of organized periodic structure were much smaller and more poorly correlated in the LB multilayers than in the films adsorbed from solution. Collectively, these observations indicate a high degree of similarity between the molecular organization in Langmuir layers/LB films and adsorbed self-assembled films. In both cases, monolayers progress through an LE phase, into LE/LC coexistence, and finally into LC phase as surface density increases. Following the deposition of an additional bilayer, the film reorganizes to form an array of inverted cylindrical micelles.
Porous PLGA microspheres tailored for dual delivery of biomolecules via layer-by-layer assembly.
Go, Dewi P; Palmer, Jason A; Mitchell, Geraldine M; Gras, Sally L; O'Connor, Andrea J
2015-05-01
Tissue engineering is a complex and dynamic process that requires varied biomolecular cues to promote optimal tissue growth. Consequently, the development of delivery systems capable of sequestering more than one biomolecule with controllable release profiles is a key step in the advancement of this field. This study develops multilayered polyelectrolyte films incorporating alpha-melanocyte stimulating hormone (α-MSH), an anti-inflammatory molecule, and basic fibroblast growth factor (bFGF). The layers were successfully formed on macroporous poly lactic-co-glycolic acid microspheres produced using a combined inkjet and thermally induced phase separation technique. Release profiles could be varied by altering layer properties including the number of layers and concentrations of layering molecules. α-MSH and bFGF were released in a sustained manner and the bioactivity of α-MSH was shown to be preserved using an activated macrophage cell assay in vitro. The system performance was also tested in vivo subcutaneously in rats. The multilayered microspheres reduced the inflammatory response induced by a carrageenan stimulus 6 weeks after implantation compared to the non-layered microspheres without the anti-inflammatory and growth factors, demonstrating the potential of such multilayered constructs for the controlled delivery of bioactive molecules. © 2014 Wiley Periodicals, Inc.
Elahi, M. Fazley; Guan, Guoping; Wang, Lu; King, Martin W.
2014-01-01
To enhance the hemocompatibility of silk fibroin fabric as biomedical material, polyelectrolytes architectures have been assembled through the layer-by-layer (LbL) technique on silk fibroin fabric (SFF). In particular, 1.5 and 2.5 bilayer of oppositely charged polyelectrolytes were assembled onto SFF using poly(allylamine hydrochloride) (PAH) as polycationic polymer and poly(acrylic acid) (PAA) as polyanionic polymer with PAH topmost. Low molecular weight heparin (LMWH) activated with 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) was then immobilized on its surface. Alcian Blue staining, toluidine blue assay and X-ray photoelectron spectroscopy (XPS) confirmed the presence of heparin on modified SFF surfaces. The surface morphology of the modified silk fibroin fabric surfaces was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and obtained increased roughness. Negligible hemolytic effect and a higher concentration of free hemoglobin by a kinetic clotting time test ensured the improved biological performance of the modified fibroin fabric. Overall, the deposition of 2.5 bilayer was found effective in terms of biological and surface properties of the modified fibroin fabric compared to 1.5 bilayer self-assembly technique. Therefore, this novel approach to surface modification may demonstrate long term patency in future in vivo animal trials of small diameter silk fibroin vascular grafts. PMID:28788601
NASA Astrophysics Data System (ADS)
Song, Jing; Jańczewski, Dominik; Guo, Yuanyuan; Xu, Jianwei; Vancso, G. Julius
2013-11-01
Redox responsive nanotubes were fabricated by the template assisted layer-by-layer (LbL) assembly method and employed as platforms for molecular payload release. Positively and negatively charged organometallic poly(ferrocenylsilane)s (PFS) were used to construct the nanotubes, in combination with other polyions. During fabrication, multilayers of these polyions were deposited onto the inner pores of template porous membranes, followed by subsequent removal of the template. Anodized porous alumina and track-etched polycarbonate membranes were used as templates. The morphology, electrochemistry, composition and other properties of the obtained tubular structure were characterized by fluorescence microscopy, scanning (SEM) and transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) spectroscopy. Composite nanotubes, consisting of poly(acrylic acid) anions with PFS+ and nanoparticles including fluorophore labelled dextran and decorated quantum dots, with PFS polyelectrolytes were also fabricated, broadening the scope of the structures. Cyclic voltammograms of PFS containing nanotubes showed similar redox responsive behaviour to thin LbL assembled films. Redox triggered release of labelled macromolecules from these tubular structures demonstrated application potential in controlled molecular delivery.Redox responsive nanotubes were fabricated by the template assisted layer-by-layer (LbL) assembly method and employed as platforms for molecular payload release. Positively and negatively charged organometallic poly(ferrocenylsilane)s (PFS) were used to construct the nanotubes, in combination with other polyions. During fabrication, multilayers of these polyions were deposited onto the inner pores of template porous membranes, followed by subsequent removal of the template. Anodized porous alumina and track-etched polycarbonate membranes were used as templates. The morphology, electrochemistry, composition and other properties of the obtained tubular structure were characterized by fluorescence microscopy, scanning (SEM) and transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) spectroscopy. Composite nanotubes, consisting of poly(acrylic acid) anions with PFS+ and nanoparticles including fluorophore labelled dextran and decorated quantum dots, with PFS polyelectrolytes were also fabricated, broadening the scope of the structures. Cyclic voltammograms of PFS containing nanotubes showed similar redox responsive behaviour to thin LbL assembled films. Redox triggered release of labelled macromolecules from these tubular structures demonstrated application potential in controlled molecular delivery. Electronic supplementary information (ESI) available: Nanotube wall thickness determination protocol. See DOI: 10.1039/c3nr03927g
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS- b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
Influence of salt and rinsing protocol on the structure of PAH/PSS polyelectrolyte multilayers.
Feldötö, Zsombor; Varga, Imre; Blomberg, Eva
2010-11-16
A quartz crystal microbalance (QCM) and dual polarization interferometry (DPI) have been utilized to study how the structure of poly(allylamine hydrochloride) (PAH)/poly(styrene sulfonate) (PSS) multilayers is affected by the rinsing method (i.e., the termination of polyelectrolyte adsorption). The effect of the type of counterions used in the deposition solution was also investigated, and the polyelectrolyte multilayers were formed in a 0.5 M electrolyte solution (NaCl and KBr). From the measurements, it was observed that thicker layers were obtained when using KBr in the deposition solution than when using NaCl. Three different rinsing protocols have been studied: (i) the same electrolyte solution as used during multilayer formation, (ii) pure water, and (iii) first a salt solution (0.5 M) and then pure water. When the multilayer with PAH as the outermost layer was exposed to pure water, an interesting phenomenon was discovered: a large change in the energy dissipation was measured with the QCM. This could be attributed to the swelling of the layer, and from both QCM and DPI it is obvious that only the outermost PAH layer swells (to a thickness of 25-30 nm) because of a decrease in ionic strength and hence an increase in intra- and interchain repulsion, whereas the underlying layers retain a very rigid and compact structure with a low water content. Interestingly, the outermost PAH layer seems to obtain very similar thicknesses in water independent of the electrolyte used for the multilayer buildup. Another interesting aspect was that the measured thickness with the DPI evaluated by a single-layer model did not correlate with the estimated thickness from the model calculations performed on the QCM-D data. Thus, we applied a two-layer model to evaluate the DPI data and the results were in excellent agreement with the QCM-D results. To our knowledge, this evaluation of DPI data has not been done previously.
Ye, Yuhang; Xie, Hangqing; Shao, Xiaobao; Wei, Yuan; Liu, Yuhong; Zhao, Wenbo; Xia, Xinyi
2016-03-01
Novel nanomaterials and nanotechnology for use in bioassay applications represent a rapidly advancing field. This study developed a novel method to fabricate the glucose biosensor with good gold nanoparticles (AuNPs) fixed efficiency based on effective self-assembly technology for preparation of multilayers composed of poly(allylamine hydrochloride) (PAH) and AuNPs. The electrochemical properties of the biosensor based on (AuNPs/PAH)n/AuNPs/glucose oxide (GOD) with different multilayers were systematically investigated. Among the resulting glucose biosensors, electrochemical properties of the biosensor with three times self-assembly processes ((AuNPs/PAH)3/AuNPs/GOD) is best. The GOD biosensor exhibited a fast amperometric response (5 s) to glucose, a good linear current-time relation over a wide range of glucose concentrations from 0.05 to 162 mM, and a low detection limit of 0.029 mM. The GOD biosensor modified with (AuNPs/PAH)n layers will have essential significance and practical application in future owing to the simple method of fabrication and good performance.
Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging
NASA Astrophysics Data System (ADS)
McGrath, Andrew J.; Dolan, Ciaran; Cheong, Soshan; Herman, David A. J.; Naysmith, Briar; Zong, Fangrong; Galvosas, Petrik; Farrand, Kathryn J.; Hermans, Ian F.; Brimble, Margaret; Williams, David E.; Jin, Jianyong; Tilley, Richard D.
2017-10-01
Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte ("Fe-PolyM3") assemblies, with good cell viability (>80%) remaining up to 100 μg mL-1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukhanova, T. E., E-mail: tat-sukhanova@mail.ru; Vylegzhanina, M. E.; Valueva, S. V.
The morphology and electrical properties of biogenic selenium-containing nanosystems based on polyelectrolyte complexes (PECs) were examined using AFM, Kelvin Probe Force and electron microscopy methods. It has been found, that prepared nanostructures significantly differed in their morphological types and parameters. In particular, multilayers capsules can be produced via varying synthesis conditions, especially, the selenium–PEC mass ratio ν. At the “special point” (ν = 0.1), filled and hollow nano- and microcapsules are formed in the system. The multilayer character of the capsules walls is visible in the phase images. Kelvin Probe Force images showed the inhomogeneity of potential distribution in capsulesmore » and outside them.« less
Zykwinska, Agata; Pihet, Marc; Radji, Sadia; Bouchara, Jean-Philippe; Cuenot, Stéphane
2014-06-01
Hydrophobins are small surface active proteins that fulfil a wide spectrum of functions in fungal growth and development. The human fungal pathogen Aspergillus fumigatus expresses RodA hydrophobins that self-assemble on the outer conidial surface into tightly organized nanorods known as rodlets. AFM investigation of the conidial surface allows us to evidence that RodA hydrophobins self-assemble into rodlets through bilayers. Within bilayers, hydrophilic domains of hydrophobins point inward, thus making a hydrophilic core, while hydrophobic domains point outward. AFM measurements reveal that several rodlet bilayers are present on the conidial surface thus showing that proteins self-assemble into a complex three-dimensional multilayer system. The self-assembly of RodA hydrophobins into rodlets results from attractive interactions between stacked β-sheets, which conduct to a final linear cross-β spine structure. A Monte Carlo simulation shows that anisotropic interactions are the main driving forces leading the hydrophobins to self-assemble into parallel rodlets, which are further structured in nanodomains. Taken together, these findings allow us to propose a mechanism, which conducts RodA hydrophobins to a highly ordered rodlet structure. The mechanism of hydrophobin assembly into rodlets offers new prospects for the development of more efficient strategies leading to disruption of rodlet formation allowing a rapid detection of the fungus by the immune system. Copyright © 2014 Elsevier B.V. All rights reserved.
Inkjet Deposition of Layer by Layer Assembled Films
Andres, Christine M.; Kotov, Nicholas A.
2010-01-01
Layer-by-layer assembly (LBL) can create advanced composites with exceptional properties unavailable by other means, but the laborious deposition process and multiple dipping cycles hamper their utilization in microtechnologies and electronics. Multiple rinse steps provide both structural control and thermodynamic stability to LBL multilayers but they significantly limit their practical applications and contribute significantly to the processing time and waste. Here we demonstrate that by employing inkjet technology one can deliver the necessary quantities of LBL components required for film build-up without excess, eliminating the need for repetitive rinsing steps. This feature differentiates this approach from all other recognized LBL modalities. Using a model system of negatively charged gold nanoparticles and positively charged poly(diallyldimethylammonium) chloride, the material stability, nanoscale control over thickness and particle coverage offered by the inkjet LBL technique are shown to be equal or better than the multilayers made with traditional dipping cycles. The opportunity for fast deposition of complex metallic patterns using a simple inkjet printer was also shown. The additive nature of LBL deposition based on the formation of insoluble nanoparticle-polyelectrolyte complexes of various compositions provides an excellent opportunity for versatile, multi-component, and non-contact patterning for the simple production of stratified patterns that are much needed in advanced devices. PMID:20863114
Dynamics of polyelectrolyte adsorption on surfaces: Applications in the detection of iron in water
NASA Astrophysics Data System (ADS)
Gammana, Madhira N.
Layer by layer (LbL) self assembly is a simple multilayer thin (nanometer scale) film fabricating technique. The mechanism of film growth remains a topic of much controversy. For example, several models have been proposed to explain the origin of linear and exponential film growth that are attributed to differences in the dynamic processes that occur at the molecular level during film formation. The problem is that there are no methods that directly measure the dynamics of polymer formation during LbL film formation. In this thesis, I describe the essential elements of an ATR-IR spectroscopic method that was developed to enable measurement of the dynamics of the mass adsorbed and polyelectrolyte conformation during the formation of PEM's. In particular, I followed the sequential adsorption of Sodium polyacrylate (NaPA) and Poly (diallyldimethylammonium) chloride (PDADMAC) from deionized (DI) water and as a function of ionic strength to show that polymer diffusion occurs between layers when adsorbed from DI water. In contrast, a denser layer occurs with no polymer interdiffusion for deposition from 0.02M ionic strength solutions of NaPA and PDADMAC. While the mass deposited increased with ionic strength, linear multilayer growth in films were observed in all cases. This finding disputes a common viewpoint that interdiffusion of polymer layers is a key feature of exponential film growth. The theme of polymer layer adsorption was used in the detection of Fe 3+ in seawater. A new approach, developed previously in Tripp's group, utilized "vertical amplification" in which a block copolymer assembled on membranes provided multiple anchoring points extending from the surface for attaching a siderophore, desferrioxamine B (DFB). The Fe3+ chelates with the siderophore producing a red color that can be quantified by visible spectroscopy. However, the rate of Fe3+ uptake was found to be dependent on flow rate. The origin of this flow rate dependence was identified by the work presented in this thesis. It was found that the amount and rate of Fe3+ uptake was dependent on the relative size of each block in the polymer and the degree of reaction of DFB with the adsorbed layer. In particular, higher amounts and higher rates were obtained when the density of DFB was lowered. This shows that the DFB was sterically hindered from forming a hexacoordinate complex with Fe3+ by the presence of neighboring DFB molecules. This is a key factor that needs to be considered in developing Fe3+ detection systems based on siderophores anchored to surfaces.
Adsorption of IgG on/in a PAH/PSS multilayer film: Layer structure and cell response.
Feldötö, Zsombor; Lundin, Maria; Braesch-Andersen, Sten; Blomberg, Eva
2011-02-01
The binding of immunogloblulins (IgG) (mouse monoclonal recognizing IFNγ) on precoated polystyrene or silica surfaces by the layer-by-layer technique has been investigated with QCM-D and DPI. The aim of the work was to increase the sensitivity of the conventional enzyme-linked immunosorbent spot (ELISpot) assay. The polyelectrolytes used to build the multilayers were poly(allylamine hydrochloride) (PAH)/poly(sodium 4-styrenesulfonate) (PSS) alternately adsorbed from 150mM NaCl. The multilayer build up is linear and the internal structure of the PAH/PSS multilayer is compact and rigid as observed by low relative water content (20-25%) and high layer refractive index (n∼1.5) after the formation of five bilayers. Incorporation of IgG within the PAH/PSS multilayer did not give rise to overcharging and did not affect the linear build up. ELISpot test on PAH/PSS multilayer modified polystyrene wells showed that the cytokine response was significantly smaller than on the regular PVDF backed polystyrene wells. This may be due to the compact and rigid nature of the PAH/PSS multilayer, which does not allow formation of the kind of three dimensional support needed to achieve bioactive IgG binding to the surface. Immunological tests of the polyelectrolyte multilayers in the absence of IgG showed that PSS terminated PAH/PSS multilayer did not induce any cytokine response whereas PAH terminated did, which suggests that PSS totally covers the surface from the cells point of view. Copyright © 2010 Elsevier Inc. All rights reserved.
Sarker, Ashis K; Hong, Jong-Dal
2012-08-28
Multilayer assemblies of uniform ultrathin film electrodes with good electrical conductivity and very large surface areas were prepared for use as electrochemical capacitors. A layer-by-layer self-assembly approach was employed in an effort to improve the processability of highly conducting polyaniline (PANi) and chemically modified graphene. The electrochemical properties of the multilayer film (MF-) electrodes, including the sheet resistance, volumetric capacitance, and charge/discharge ratio, were determined by the morphological modification and the method used to reduce the graphene oxide (GO) to reduced graphene oxide (RGO) in the multilayer films. The PANi and GO concentrations could be modulated to control the morphology of the GO monolayer film in the multilayer assemblies. Optical ellipsometry was used to determine the thickness of the GO film in a single layer (1.32 nm), which agreed well with the literature value (~1.3 nm). Hydroiodic acid (HI), hydrazine, or pyrolysis were tested for the reduction of GO to RGO. HI was found to be the most efficient technique for reducing the GO to RGO in the multilayer assemblies while minimizing damage to the virgin state of the acid-doped PANi. Ultimately, the MF-electrode, which could be optimized by fine-tuning the nanostructure and selecting a suitable reduction method, exhibited an excellent volumetric capacitance, good cycling stability, and a rapid charge/discharge rate, which are required for supercapacitors. A MF-electrode composed of 15 PANi/RGO bilayers yielded a volumetric capacitance of 584 F/cm(3) at a current density of 3.0 A/cm(3). Although this value decreased exponentially as the current density increased, approaching a value of 170 F/cm(3) at 100 A/cm(3), this volumetric capacitance is one of the best yet reported for the other carbon-based materials. The intriguing features of the MF-electrodes composed of PANi/RGO multilayer films offer a new microdimensional design for high energy storage devices for use in small portable electronic devices.
Cellulose fiber-enzyme composites fabricated through layer-by-layer nanoassembly.
Xing, Qi; Eadula, Sandeep R; Lvov, Yuri M
2007-06-01
Cellulose microfibers were coated with enzymes, laccase and urease, through layer-by-layer assembly by alternate adsorption with oppositely charged polycations. The formation of organized polyelectrolyte and enzyme multilayer films of 15-20 nm thickness was demonstrated by quartz crystal microbalance, zeta-potential analysis, and confocal laser scanning microscopy. These biocomposites retained enzymatic catalytic activity, which was proportional to the number of coated enzyme layers. For laccase-fiber composites, around 50% of its initial activity was retained after 2 weeks of storage at 4 degrees C. The synthesis of calcium carbonate microparticles on urease-fiber composites confirmed urease functionality and demonstrated its possible applications. This strategy could be employed to fabricate fiber-based composites with novel biological functions.
Self-assembling semiconducting polymers--rods and gels from electronic materials.
Clark, Andrew P-Z; Shi, Chenjun; Ng, Benny C; Wilking, James N; Ayzner, Alexander L; Stieg, Adam Z; Schwartz, Benjamin J; Mason, Thomas G; Rubin, Yves; Tolbert, Sarah H
2013-02-26
In an effort to favor the formation of straight polymer chains without crystalline grain boundaries, we have synthesized an amphiphilic conjugated polyelectrolyte, poly(fluorene-alt-thiophene) (PFT), which self-assembles in aqueous solutions to form cylindrical micelles. In contrast to many diblock copolymer assemblies, the semiconducting backbone runs parallel, not perpendicular, to the long axis of the cylindrical micelle. Solution-phase micelle formation is observed by X-ray and visible light scattering. The micelles can be cast as thin films, and the cylindrical morphology is preserved in the solid state. The effects of self-assembly are also observed through spectral shifts in optical absorption and photoluminescence. Solutions of higher-molecular-weight PFT micelles form gel networks at sufficiently high aqueous concentrations. Rheological characterization of the PFT gels reveals solid-like behavior and strain hardening below the yield point, properties similar to those found in entangled gels formed from surfactant-based micelles. Finally, electrical measurements on diode test structures indicate that, despite a complete lack of crystallinity in these self-assembled polymers, they effectively conduct electricity.
Laser-induced fast fusion of gold nanoparticle-modified polyelectrolyte microcapsules.
Wu, Yingjie; Frueh, Johannes; Si, Tieyan; Möhwald, Helmuth; He, Qiang
2015-02-07
In this study we investigated the effect of laser-induced membrane fusion of polyelectrolyte multilayer (PEM) based microcapsules bearing surface-attached gold nanoparticles (AuNPs) in aqueous media. We demonstrate that a dense coating of the capsules with AuNPs leads to enhanced light absorption, causing an increase of local temperature. This enhances the migration of polyelectrolytes within the PEMs and thus enables a complete fusion of two or more capsules. The encapsulated substances can achieve complete merging upon short-term laser irradiation (30 s, 30 mW @ 650 nm). The whole fusion process is followed by optical microscopy and scanning electron microscopy. In control experiments, microcapsules without AuNPs do not show a significant capsule fusion upon irradiation. It was also found that the duration of capsule fusion is affected by the density of AuNPs on the shell - the higher the density of AuNPs the shorter the fusion time. All these findings confirm that laser-induced microcapsule fusion is a new type of membrane fusion. This effect helps to study the interior exchange reactions of functional microcapsules, micro-reactors and drug transport across multilayers.
NASA Astrophysics Data System (ADS)
Fou, A. C.; Onitsuka, O.; Ferreira, M.; Rubner, M. F.; Hsieh, B. R.
1996-05-01
Light-emitting diodes have been fabricated from self-assembled multilayers of poly(p-phenylene vinylene) (PPV) and two different polyanions; polystyrene sulfonic acid (SPS) and polymethacrylic acid (PMA). The type of polyanion used to assemble the multilayer thin films was found to dramatically influence the behavior and performance of devices fabricated with indium tin oxide and aluminum electrodes. Light-emitting devices fabricated from PMA/PPV multilayers were found to exhibit luminance levels in the range of 20-60 cd/m2, a thickness dependent turn-on voltage and classical rectifying behavior with rectification ratios greater than 105. In sharp contrast, the devices based on SPS/PPV exhibited near symmetric current-voltage curves, thickness independent turn-on voltages and much lower luminance levels. The significant difference in device behavior observed between these two systems is primarily due to a doping effect induced either chemically or electrochemically by the sulfonic acid groups of SPS. It was also found that the performance of these devices depends on the type of layer that is in contact with the Al top electrode thereby making it possible to manipulate device efficiency at the molecular level.
Ion distribution in dry polyelectrolyte multilayers: a neutron reflectometry study
Ghoussoub, Yara E.; Zerball, Maximilian; Fares, Hadi M.; ...
2018-02-09
Counterions were found to be uniformly distributed in polycation-terminated films of poly(diallyldimethylammonium) and poly(styrenesulfonate) prepared on silicon wafers using layer-by-layer adsorption.
Shen, Liguo; Cui, Xia; Yu, Genying; Li, Fengquan; Li, Liang; Feng, Shushu; Lin, Hongjun; Chen, Jianrong
2017-05-15
In this study, polyvinylidene fluoride (PVDF) microfiltration membrane was coated by dipping the membrane alternatingly in solutions of the polyelectrolytes (poly-diallyldimethylammonium chloride (PDADMAC) and polystyrenesulfonate (PSS)) via layer-by-layer (LBL) self-assembly technique to improve the membrane antifouling ability. Filtration experiments showed that, sludge cake layer on the coated membrane could be more easily washed off, and moreover, the remained flux ratio (RFR) of the coated membrane was obviously improved as compared with the control membrane. Characterization of the membranes showed that a polyelectrolyte layer was successfully coated on the membrane surfaces, and the hydrophilicity, surface charge and surface morphology of the coated membrane were changed. Based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approaches, quantification of interfacial interactions between foulants and membranes in three different scenarios was achieved. It was revealed that there existed a repulsive energy barrier when a particle foulant adhered to membrane surface, and the enhanced electrostatic double layer (EL) interaction and energy barrier should be responsible for the improved antifouling ability of the coated membrane. This study provided a combined solution to membrane modification and interaction energy evaluation related with membrane fouling simultaneously. Copyright © 2017 Elsevier Inc. All rights reserved.
Fiber optic pH sensor with self-assembled polymer multilayer nanocoatings.
Shao, Li-Yang; Yin, Ming-Jie; Tam, Hwa-Yaw; Albert, Jacques
2013-01-24
A fiber-optic pH sensor based on a tilted fiber Bragg grating (TFBG) with electrostatic self-assembly multilayer sensing film is presented. The pH sensitive polymeric film, poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) was deposited on the circumference of the TFBG with the layer-by-layer (LbL) electrostatic self-assembly technique. The PDDA/PAA film exhibits a reduction in refractive index by swelling in different pH solutions. This effect results in wavelength shifts and transmission changes in the spectrum of the TFBG. The peak amplitude of the dominant spectral fringes over a certain window of the transmission spectrum, obtained by FFT analysis, has a near-linear pH sensitivity of 117 arbitrary unit (a.u.)/pH unit and an accuracy of ±1 a.u. (in the range of pH 4.66 to pH 6.02). The thickness and surface morphology of the sensing multilayer film were characterized to investigate their effects on the sensor's performance. The dynamic response of the sensor also has been studied (10 s rise time and 18 s fall time for a sensor with six bilayers of PDDA/PAA).
Yuan, Youyong; Liu, Bin
2014-09-10
A drug delivery system based on poly(ethylene glycol) (PEG) grafted conjugated polyelectrolyte (CPE) has been developed to serve as a polymeric photosensitizer and drug carrier for combined photodynamic and chemotherapy. The amphiphilic brush copolymer can self-assemble into micellar nanopaticles (NPs) in aqueous media with hydrophobic conjugated polyelectrolyte backbone as the core and hydrophilic PEG as the shell. The NPs have an average diameter of about 100 nm, with the absorption and emission maxima at 502 and 598 nm, respectively, making them suitable for bioimaging applications. Moreover, the CPE itself can serve as a photosensitizer, which makes the NPs not only a carrier for drug but also a photosensitizing unit for photodynamic therapy, resulting in the combination of chemo- and photodynamic therapy for cancer. The half-maximal inhibitory concentration (IC50) value for the combination therapy to U87-MG cells is 12.7 μg mL(-1), which is much lower than that for the solely photodynamic therapy (25.5 μg mL(-1)) or chemotherapy (132.8 μg mL(-1)). To improve the tumor specificity of the system, cyclic arginine-glycine-aspartic acid (cRGD) tripeptide as the receptor to integrin αvβ3 overexpressed cancer cells was further incorporated to the surface of the NPs. The delivery system based on PEGylated CPE is easy to fabricate, which integrates the merits of targeted cancer cell image, chemotherapeutic drug delivery, and photodynamic therapy, making it promising for cancer treatment.
Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly.
Hnilova, Marketa; Karaca, Banu Taktak; Park, James; Jia, Carol; Wilson, Brandon R; Sarikaya, Mehmet; Tamerler, Candan
2012-05-01
Development of versatile and flexible assembly systems for fabrication of functional hybrid nanomaterials with well-defined hierarchical and spatial organization is of a significant importance in practical nanobiotechnology applications. Here we demonstrate a bio-enabled self-assembly technique for fabrication of multi-layered protein and nanometallic assemblies utilizing a modular gold-binding (AuBP1) fusion tag. To accomplish the bottom-up assembly we first genetically fused the AuBP1 peptide sequence to the C'-terminus of maltose-binding protein (MBP) using two different linkers to produce MBP-AuBP1 hetero-functional constructs. Using various spectroscopic techniques, surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR), we verified the exceptional binding and self-assembly characteristics of AuBP1 peptide. The AuBP1 peptide tag can direct the organization of recombinant MBP protein on various gold surfaces through an efficient control of the organic-inorganic interface at the molecular level. Furthermore using a combination of soft-lithography, self-assembly techniques and advanced AuBP1 peptide tag technology, we produced spatially and hierarchically controlled protein multi-layered assemblies on gold nanoparticle arrays with high molecular packing density and pattering efficiency in simple, reproducible steps. This model system offers layer-by-layer assembly capability based on specific AuBP1 peptide tag and constitutes novel biological routes for biofabrication of various protein arrays, plasmon-active nanometallic assemblies and devices with controlled organization, packing density and architecture. Copyright © 2011 Wiley Periodicals, Inc.
Coordination-based gold nanoparticle layers.
Wanunu, Meni; Popovitz-Biro, Ronit; Cohen, Hagai; Vaskevich, Alexander; Rubinstein, Israel
2005-06-29
Gold nanoparticle (NP) mono- and multilayers were constructed on gold surfaces using coordination chemistry. Hydrophilic Au NPs (6.4 nm average core diameter), capped with a monolayer of 6-mercaptohexanol, were modified by partial substitution of bishydroxamic acid disulfide ligand molecules into their capping layer. A monolayer of the ligand-modified Au NPs was assembled via coordination with Zr4+ ions onto a semitransparent Au substrate (15 nm Au, evaporated on silanized glass and annealed) precoated with a self-assembled monolayer of the bishydroxamate disulfide ligand. Layer-by-layer construction of NP multilayers was achieved by alternate binding of Zr4+ ions and ligand-modified NPs onto the first NP layer. Characterization by atomic force microscopy (AFM), ellipsometry, wettability, transmission UV-vis spectroscopy, and cross-sectional transmission electron microscopy showed regular growth of NP layers, with a similar NP density in successive layers and gradually increased roughness. The use of coordination chemistry enables convenient step-by-step assembly of different ligand-possessing components to obtain elaborate structures. This is demonstrated by introducing nanometer-scale vertical spacing between a NP layer and the gold surface, using a coordination-based organic multilayer. Electrical characterization of the NP films was carried out using conductive AFM, emphasizing the barrier properties of the organic spacer multilayer. The results exhibit the potential of coordination self-assembly in achieving highly controlled composite nanostructures comprising molecules, NPs, and other ligand-derivatized components.
Highly sensitive self-complementary DNA nanoswitches triggered by polyelectrolytes
NASA Astrophysics Data System (ADS)
Wu, Jincai; Yu, Feng; Zhang, Zheng; Chen, Yong; Du, Jie; Maruyama, Atsushi
2015-12-01
Dimerization of two homologous strands of genomic DNA/RNA is an essential feature of retroviral replication. Herein we show that a cationic comb-type copolymer (CCC), poly(l-lysine)-graft-dextran, accelerates the dimerization of self-complementary stem-loop DNA, frequently found in functional DNA/RNA molecules, such as aptamers. Furthermore, an anionic polymer poly(sodium vinylsulfonate) (PVS) dissociates CCC from the duplex shortly within a few seconds. Then single stem-loop DNA spontaneously transforms from its dimer. Thus we can easily control the dimer and stem-loop DNA by switching on/off CCC activity. Both polyelectrolytes and DNA concentrations are in the nanomole per liter range. The polyelectrolyte-assisted transconformation and sequences design strategy ensures the reversible state control with rapid response and effective switching under physiologically relevant conditions. A further application of this sensitive assembly is to construct an aptamer-type drug delivery system, bind or release functional molecules responding to its transconformation.Dimerization of two homologous strands of genomic DNA/RNA is an essential feature of retroviral replication. Herein we show that a cationic comb-type copolymer (CCC), poly(l-lysine)-graft-dextran, accelerates the dimerization of self-complementary stem-loop DNA, frequently found in functional DNA/RNA molecules, such as aptamers. Furthermore, an anionic polymer poly(sodium vinylsulfonate) (PVS) dissociates CCC from the duplex shortly within a few seconds. Then single stem-loop DNA spontaneously transforms from its dimer. Thus we can easily control the dimer and stem-loop DNA by switching on/off CCC activity. Both polyelectrolytes and DNA concentrations are in the nanomole per liter range. The polyelectrolyte-assisted transconformation and sequences design strategy ensures the reversible state control with rapid response and effective switching under physiologically relevant conditions. A further application of this sensitive assembly is to construct an aptamer-type drug delivery system, bind or release functional molecules responding to its transconformation. Electronic supplementary information (ESI) available: I. Sequences of DIS25, DIS25-2a and DIS25-3a. II. Structural formula of poly(l-lysine)-graft-dextran (PLL-g-Dex). 1H-NMR spectra of PLL-g-Dex in D2O. III. Gel electrophoretic analysis of dimerization of DIS25 with various N/P ratios. IV. The effect of polyelectrolyte on the fluorescence polarity of TAMRA-labeled duplex. V. UV absorption/Tm profiles of DIS25. VI. Arrhenius plots for spontaneous dissociation of the DIS25 dimer and PLL-g-Dex-assisted dimerization of DIS25.VII. Switching between double stem-loop DIS42 and extended multiplex drived by PLL-g-Dex and PVS. See DOI: 10.1039/c5nr05193b
Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets.
Priolo, Morgan A; Holder, Kevin M; Guin, Tyler; Grunlan, Jaime C
2015-05-01
Layer-by-layer (LbL) assembly has emerged as the leading non-vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide-based barrier films. This Feature Article is a mini-review of LbL-based multilayer thin films with a 'nanobrick wall' microstructure comprising polymeric mortar and nano-platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water-based thin films exhibit oxygen transmission rates below 5 × 10(-3) cm(3) m(-2) day(-1) atm(-1) and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake-filled polymers are briefly reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Light Irradiation as Key to Shape and Function of Nano-Assemblies in Solution
NASA Astrophysics Data System (ADS)
Groehn, Franziska
Developing strategies to exploit solar energy become more and more important. Inspired by natural systems it is highly promising to self-assemble functional species into effective tailored supramolecular units. Here we report self-assembled polymer structures in solution, taking advantage of optical properties of hybrid structures and light responsiveness. A new type of photocatalytically active self-assembled polymer structure in aqueous solution consists of supramolecular nano-objects obtained from macroions and multivalent inorganic ``counterions'' such as nanoparticles or clusters. These can exhibit expressed selectivity or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, polyelectrolyte-porphyrin nanoscale assemblies exhibit tunable optical properties including strong fluorescence and an up to 20-fold higher photocatalytic activity than without polymeric template. A different approach is to transfer light energy into mechanical energy. Here, light energy is converted into nanoscale shape changes. This route for the conversion of light is highly promising for applications in drug delivery, nanosensors and solar energy conversion. Membership of DPG, Germany ID 153159-.
Packaging of Polyelectrolytes in Viral Capsids: The Interplay Between Polymer Length and Capsid Size
NASA Astrophysics Data System (ADS)
Knobler, Charles
2008-03-01
Each particle of the Cowpea Chlorotic Mottle Virus (CCMV) has a very small ``parts list,'' consisting of two components: a molecule of single-stranded RNA and a 190-residue protein that makes up the 28-nm diameter icosahedral capsid. When purified viral RNA and capsid protein are mixed in solution at an appropriate pH and ionic strength, infectious wild-type viruses form spontaneously. Virus-like particles (VLPs) are formed when the protein self assembles around other anionic polymers such as poly(styrene sulfonate) (PSS). Under different pH and ionic strength conditions the capsid protein can assemble by itself into empty capsids, multishell structures, tubes and sheets. To explore the effect on virion size of the competition between the preferred curvature of the protein and the size of the packaged cargo we have examined the formation of VLPs around PSS polymers with molecular weights ranging from 400 kDa to 3.4 MDa. Two distinct sizes are observed -- 22 nm for the lower molecular weights, jumping to 27 nm at 2 MDa. While under given conditions the size of PSS in solution is directly determined by its molecular weight, the self-complementarity of RNA makes its solution structure dependent on the nucleotide sequence as well. We have therefore employed Small-Angle X-ray Scattering and Fluorescence Correlation Spectroscopy to examine the sizes of viral and non-viral RNAs of identical lengths. A model for the assembly that includes both the self-interactions of the polyelectrolyte and the capsid proteins and the interactions between them provides insight into the experimental results.
Yuan, Sujun; Mu, Jiuke; Mao, Ruiyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi
2014-04-23
The multilaminated ZnO/TiO2 heterojunction films were successfully deposited on conductive substrates including fluorine-doped tin oxide (FTO) glass and flexible indium tin oxide coated poly(ethylene terephthalate) via the layer-by-layer (LBL) self assembly method from the oxide colloids without using any polyelectrolytes. The positively charged ZnO nanoparticles and the negatively charged TiO2 nanoparticles were directly used as the components in the consecutive deposition process to prepare the heterojunction thin films by varying the thicknesses. Moreover, the crystal growth of both oxides could be efficiently inhibited by the good connection between ZnO and TiO2 nanoparticles even after calcination at 500 °C, especially for ZnO which was able to keep the crystallite size under 25 nm. The as-prepared films were used as the working electrodes in the three-electrode photoelectrochemical cells. Because the well-contacted nanoscale heterojunctions were formed during the LBL self-assembling process, the ZnO/TiO2 all-nanoparticle films deposited on both substrates showed remarkably enhanced photoelectrochemical properties compared to that of the well-established TiO2 LBL thin films with similar thicknesses. The photocurrent response collected from the ZnO/TiO2 electrode on the FTO glass substrate was about five times higher than that collected from the TiO2 electrode. Owing to the absence of the insulating layer of dried polyelectrolytes, the ZnO/TiO2 all-nanoparticle heterojunction films were expected to be used in the photoelectrochemical device before calcination.
Aulin, Christian; Karabulut, Erdem; Tran, Amy; Wågberg, Lars; Lindström, Tom
2013-08-14
The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3)·μm/m(2)·day·kPa at 23 °C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging.
Marchenko, Irina; Yashchenok, Alexey; Borodina, Tatiana; Bukreeva, Tatiana; Konrad, Manfred; Möhwald, Helmuth; Skirtach, Andre
2012-09-28
Enzyme-catalyzed degradation of CaCO₃-templated capsules is presented. We investigate a) biodegradable, b) mixed biodegradable/synthetic, and c) multicompartment polyelectrolyte multilayer capsules with different numbers of polymer layers. Using confocal laser scanning microscopy we observed the kinetics of the non-specific protease Pronase-induced degradation of capsules is slowed down on the order of hours by either increasing the number of layers in the wall of biodegradable capsules, or by inserting synthetic polyelectrolyte multilayers into the shell comprised of biodegradable polymers. The degradation rate increases with the concentration of Pronase. Controlled detachment of subcompartments of multicompartment capsules, with potential for intracellular delivery or in-vivo applications, is also shown. Copyright © 2012 Elsevier B.V. All rights reserved.
Diamanti, Eleftheria; Muzzio, Nicolas; Gregurec, Danijela; Irigoyen, Joseba; Pasquale, Miguel; Azzaroni, Omar; Brinkmann, Martin; Moya, Sergio Enrique
2016-09-01
Polyelectrolyte multilayers (PEMs) of poly-l-lysine (PLL) and alginic acid sodium salt (Alg) are fabricated applying the layer by layer technique and annealed at a constant temperature; 37, 50 and 80°C, for 72h. Atomic force microscopy reveals changes in the topography of the PEM, which is changing from a fibrillar to a smooth surface. Advancing contact angle in water varies from 36° before annealing to 93°, 77° and 95° after annealing at 37, 50 and 80°C, respectively. Surface energy changes after annealing were calculated from contact angle measurements performed with organic solvents. Quartz crystal microbalance with dissipation, contact angle and fluorescence spectroscopy measurements show a significant decrease in the adsorption of the bovine serum albumin protein to the PEMs after annealing. Changes in the physical properties of the PEMs are interpreted as a result of the reorganization of the polyelectrolytes in the PEMs from a layered structure into complexes where the interaction of polycations and polyanions is enhanced. This work proposes a simple method to endow bio-PEMs with antifouling characteristics and tune their wettability. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Detsri, Ekarat; Rujipornsakul, Sirilak; Treetasayoot, Tanapong; Siriwattanamethanon, Pawarit
2016-10-01
In the present study, multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs), and glutathione (GSH) were used to fabricate multilayer nanoscale thin films. The composite thin films were fabricated by layer-by-layer technique as the films were constructed by the alternate deposition of cationic and anionic polyelectrolytes. The MWCNTs were modified via a noncovalent surface modification method using poly(diallydimethylammonium chloride) to form a cationic polyelectrolyte. An anionic polyelectrolyte was prepared by the chemical reduction of HAuCl4 using sodium citrate as both the stabilizing and reducing agent to form anionic AuNPs. GSH was used as an electrocatalyst toward the electro-oxidation of dopamine. The constructed composite electrode exhibits excellent electrocatalytic activity toward dopamine with a short response time and a wide linear range from 1 to 100 μmol/L. The limits of detection and quantitation of dopamine are (0.316 ± 0.081) μmol/L and (1.054 ± 0.081) μmol/L, respectively. The method is satisfactorily applied for the determination of dopamine in plasma and urine samples to obtain the recovery in the range from 97.90% to 105.00%.
Faure, Emilie; Halusiak, Emilie; Farina, Fabrice; Giamblanco, Nicoletta; Motte, Cécile; Poelman, Mireille; Archambeau, Catherine; Van de Weerdt, Cécile; Martial, Joseph; Jérôme, Christine; Duwez, Anne-Sophie; Detrembleur, Christophe
2012-02-07
A facile and green approach is developed to impart remarkable protection against corrosion to galvanized steel. A protecting multilayer film is formed by alternating the deposition of a polycation bearing catechol groups, used as corrosion inhibitors, with clay that induces barrier properties. This coating does not affect the esthetical aspect of the surface and does not release any toxic molecules in the environment.
Electrochromic switching in ionically self-assembled nanostructures
NASA Astrophysics Data System (ADS)
Janik, Jerzy A.; Heflin, James R.; Marciu, Daniela; Miller, Michael B.; Wang, Hong; Gibson, Harry W.; Davis, Rick M.
2001-11-01
Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub- nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS). Due to the precise nanometer scale control of thickness and composition of the electrochromic composite system, switching times faster than 50 ms have been demonstrated.
Muppalla, Ravikumar; Jewrajka, Suresh K; Prasad, Kamalesh
2013-06-01
Polysaccharide-based copolymers are promising biomaterials due to their biocompatibility and biodegradability. For potential biomedical applications the copolymer as a whole and all the degraded species must be biocompatible and easily removable from the system. In this regards, new model pH-responsive seaweed agarose (Agr) grafted with weak polyelectrolyte-based well-defined amphiphilic block copolymers ca. poly[(methyl methacrylate)-b-(2-dimethylamino)ethyl methacrylate)] (PMMA-b-PDMA) were designed and synthesized to study the self-assembly, degradation, and in vitro hydrophobic/hydrophilic drug release behavior. The graft copolymer solutions display extremely low critical micelle concentration (CMC) and form pH responsive stable micelles. The degradation study of the graft copolymer reveals that the entire degraded components are well soluble/dispersible in water due to formation of mixed micelles. The micelles are also strongly adsorbed on the mica surface owing to electrostatic interaction. One application of the graft copolymer micelles is that it can entrap both hydrophilic and poorly water soluble hydrophobic drugs effectively and exhibit slow release kinetics. The release kinetics of both the hydrophilic and poorly water soluble hydrophobic drugs change with pH as well as with the composition of the graft copolymer. Copyright © 2012 Wiley Periodicals, Inc.
Electrochemical Analysis of Conducting Polymer Thin Films
Vyas, Ritesh N.; Wang, Bin
2010-01-01
Polyelectrolyte multilayers built via the layer-by-layer (LbL) method has been one of the most promising systems in the field of materials science. Layered structures can be constructed by the adsorption of various polyelectrolyte species onto the surface of a solid or liquid material by means of electrostatic interaction. The thickness of the adsorbed layers can be tuned precisely in the nanometer range. Stable, semiconducting thin films are interesting research subjects. We use a conducting polymer, poly(p-phenylene vinylene) (PPV), in the preparation of a stable thin film via the LbL method. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to characterize the ionic conductivity of the PPV multilayer films. The ionic conductivity of the films has been found to be dependent on the polymerization temperature. The film conductivity can be fitted to a modified Randle’s circuit. The circuit equivalent calculations are performed to provide the diffusion coefficient values. PMID:20480052
Piccinini, Esteban; Bliem, Christina; Reiner-Rozman, Ciril; Battaglini, Fernando; Azzaroni, Omar; Knoll, Wolfgang
2017-06-15
We present the construction of layer-by-layer (LbL) assemblies of polyethylenimine and urease onto reduced-graphene-oxide based field-effect transistors (rGO FETs) for the detection of urea. This versatile biosensor platform simultaneously exploits the pH dependency of liquid-gated graphene-based transistors and the change in the local pH produced by the catalyzed hydrolysis of urea. The use of an interdigitated microchannel resulted in transistors displaying low noise, high pH sensitivity (20.3µA/pH) and transconductance values up to 800 µS. The modification of rGO FETs with a weak polyelectrolyte improved the pH response because of its transducing properties by electrostatic gating effects. In the presence of urea, the urease-modified rGO FETs showed a shift in the Dirac point due to the change in the local pH close to the graphene surface. Markedly, these devices operated at very low voltages (less than 500mV) and were able to monitor urea in the range of 1-1000µm, with a limit of detection (LOD) down to 1µm, fast response and good long-term stability. The urea-response of the transistors was enhanced by increasing the number of bilayers due to the increment of the enzyme surface coverage onto the channel. Moreover, quantification of the heavy metal Cu 2+ (with a LOD down to 10nM) was performed in aqueous solution by taking advantage of the urease specific inhibition. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mehrotra, Sumit
Tissues and organs in vivo are structured in three dimensional (3-D) ordered assemblies to maintain their metabolic functions. In the case of an injury, certain tissues lack the regenerative abilities without an external supportive environment. In order to regenerate the natural in vivo environment post-injury, there is a need to design three-dimensional (3-D) tissue engineered constructs of appropriate dimensions along with strategies that can deliver growth factors or drugs at a controlled rate from such constructs. This thesis focuses on the applications of hydrogen bonded (H-bonded) nanoscale layer-by-layer (LbL) assembled multilayers for time controlled drug delivery, fabrication of polymeric nanoparticles as drug delivery carriers, and engineering 3-D cellular constructs. Axonal regeneration in the central nervous system after spinal cord injury is often disorganized and random. To support linear axonal growth into spinal cord lesion sites, certain growth factors, such as brain-derived neurotrophic factor (BDNF), needs to be delivered at a controlled rate from an array of uniaxial channels patterned in a scaffold. In this study, we demonstrate for the first time that H-bonded LbL assembled degradable thin films prepared over agarose hydrogel, whereby the protein was loaded separately from the agarose fabrication, provided sustained release of protein under physiological conditions for more than four weeks. Further, patterned agarose scaffolds implanted at the site of a spinal cord injury forms a reactive cell layer of leptomeningeal fibroblasts in and around the scaffold. This limits the ability of axons to reinnervate the spinal cord. To address this challenge, we demonstrate the time controlled release of an anti-mitotic agent from agarose hydrdgel to control the growth of the reactive cell layer of fibroblasts. Challenges in tissue engineering can also be addressed using gene therapy approaches. Certain growth factors in the body are known to inhibit axonal growth and nerve repair. Therefore, another possible method to promote axonal growth is to silence the genes to inhibit the production of such growth factors. Small interfering RNA (siRNA) is a powerful therapeutic tool which knocks-down the gene function. Gene therapy approaches to knock-down a gene in mammalian cells, requires optimal selection of a transfection carrier for the siRNA. In this study, 25 kDa linear polyethylenimine (LPEI) was shown as a promising transfection carrier for siRNA delivery in-vitro. LPEI-siRNA complex nanoparticles were optimized for efficient siRNA delivery. Further, effort was made to fabricate LPEI particles of novel shapes, as particle shapes potentially have an impact on gene delivery efficiency. Finally, LbL assembled polyelectrolyte multilayers (PEMs) were engineered to tune surface properties to modulate the cell adhesion on a surface, to stamp and fabricate self-standing thin PEMs to create 3-D cellular constructs.
Cai, Rui; Tao, Gang; Guo, Pengchao; Yang, Meirong; Ding, Chaoxiang; Zuo, Hua; Wang, Lingyan; Zhao, Ping; Wang, Yejing
2017-01-01
To develop silk sericin (SS) as a potential antibacterial biomaterial, a novel composite of polyelectrolyte multilayers (PEMs) coated sericin/poly(vinyl alcohol) (SS/PVA) film modified with silver nanoparticles (AgNPs) has been developed using a layer-by-layer assembly technique and ultraviolet-assisted AgNPs synthesis method. Ag ions were enriched by PEMs via the electrostatic attraction between Ag ions and PEMs, and then reduced to AgNPs in situ with the assistance of ultraviolet irradiation. PEMs facilitated the high-density growth of AgNPs and protected the synthesized AgNPs due to the formation of a 3D matrix, and thus endowed SS/PVA film with highly effective and durable antibacterial activity. Scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, Fourier transfer infrared spectroscopy, water contact angle, mechanical property and thermogravimetric analysis were applied to characterize SS/PVA, PEMs-SS/PVA and AgNPs-PEMs-SS/PVA films, respectively. AgNPs-PEMs-SS/PVA film has exhibited good mechanical performance, hydrophilicity, water absorption capability as well as excellent and durable antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and good stability and degradability. This study has developed a simple method to design and prepare AgNPs-PEMs-SS/PVA film for potential antibacterial application. PMID:28820482
NASA Astrophysics Data System (ADS)
Goswami, Monojoy; Sumpter, Bobby; Kilbey, Michael
Here we report the formation of phase separated BCP-surfactant complexes resulting from the electrostatic self-assembly of charge-neutral block copolymers with oppositely charged surfactants. Complexation behaviors of oppositely charged polyelectrolytes has gained considerable attention in the field of soft condensed matter physics due to their potential application as functional nanomaterials for batteries, wastewater treatment and drug delivery systems. Numerous experiments have examined the self-assembled structures resulting from complexation of charge-neutral BCP and surfactants, however, there is a lack of comprehensive understanding at the fundamental level. To help bridge this gap, we use, MD simulations to study self-assembly and dynamics of the BCP-surfactant complex at the molecular level. Our results show an overcharging effect in BCPs with hydrophobic neutral blocks and a formation of core-shell colloidal structure. Hydrophilic neutral blocks, on the other hand, show stable, hairy colloidal structures with neutral blocks forming a loosely-bound, fuzzy outer layer. Our results qualitatively agree with previous SANS and SAXS experiments. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division.
ERIC Educational Resources Information Center
Gerber, Ralph W.; Oliver-Hoyo, Maria T.
2008-01-01
This experiment is designed to expose undergraduate students to the process of selective etching by using soft lithography and the resulting electrical properties of multilayered films fabricated via self-assembly of gold nanoparticles. Students fabricate a conductive film of gold on glass, apply a patterned resist using a polydimethylsiloxane…
NASA Astrophysics Data System (ADS)
Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han
2015-08-01
Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02384j
Self assembled materials: design strategies and drug delivery perspectives.
Verma, Gunjan; Hassan, P A
2013-10-28
Self assembly of small molecules in complex supramolecular structures provides a new avenue in the development of materials for drug delivery applications. Owing to the low aqueous solubility of various drugs, an effective delivery system is often required to reach sufficient drug bioavailability and/or to facilitate clinical use. Micelles, amphiphilic gels, vesicles (liposomes), nanodisks, cubosomes, colloidosomes, tubules, microemulsions, lipid particles, polyelectrolyte capsules etc. are some of the intriguing structures formed via self assembly. As well as enabling improved solubilization, such materials can be tuned to offer a range of other advantages, including controlled or stimuli sensitive drug release, protection from drug hydrolysis and chemical or enzymatic degradation, a reduction in toxicity, improvement of drug availability, prevention of RES uptake or selective targeting to organelles etc. Such multiple functionalities can be brought together by self assembly of different functional molecules. This route offers a cost effective means of developing drug delivery carriers tailored to specific needs. Our current understanding of the microstructure evolution of self assembled materials will go a long way towards designing/selecting molecules to create well defined structures. We believe that most of the potential resources mentioned above are untapped and that there is a need to further strengthen research in this area to fully exploit their potential. Selective cross linking of core or shell, stimuli sensitive amphiphiles, prodrug amphiphiles, antibody coupled amphiphiles etc. are only some of the new approaches for the development of effective drug delivery systems via self assembly.
Baldassarre, Francesca; Vergaro, Viviana; Scarlino, Flavia; De Santis, Flavia; Lucarelli, Giovanna; Torre, Antonio Della; Ciccarella, Giuseppe; Rinaldi, Ross; Giannelli, Gianluigi; Leporatti, Stefano
2012-05-01
The efficient internalization of TGF-beta inhibitor-loaded polyelectrolyte capsules and particles is studied in two HCC cell lines. Two polyelectrolyte pairs (biocompatible but not degradable and biodegradable crosslinked with gluteraldehyde) are employed for coating. The capsules are characterized by SEM. LY is successfully loaded inside the core and embedded between polymer layers. MS is used to quantify the loading efficiency by comparing post-loading and core-loading methods, since both coated templates and hollow shells are used as carriers. CLSM confirms dissolution of the pre-formed multilayer upon enzymatic degradation as the method of release, and migration assays demonstrate a higher inhibition efficiency of TGF-beta in tailored biodegradable capsules compared to free LY administration. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reibetanz, Uta; Chen, Min Hui Averil; Mutukumaraswamy, Shaillender; Liaw, Zi Yen; Oh, Bernice Hui Lin; Donath, Edwin; Neu, Björn
2011-01-01
In recent years colloidal particles and capsules, layer-by-layer (LbL) coated with biocompatible polyelectrolytes, have received much attention as drug-delivery systems. In this study an LbL-assembled, biopolymer-based multilayer system was established as a combined transporter and sensor for monitoring intracellular degradation and processing. CaCO(3) cores were functionalized with fluorescein isothiocyanatelabelled poly(allylamine hydrochloride) (FITC-PAH). This pH-sensitive fluorescent dye allows identifying the location of these LbL-coated particles in cell compartments of different pH, like the endo-lysosome and cytoplasm. The labelled core was then coated with consecutive layers of protamine (PRM) and dextran sulfate (DXS). Finally, plasmid DNA (pEGFP-C1) as a reporter agent for drug release in the cytoplasm was integrated into the biocompatible and degradable PRM/DXS multilayer. The system was tested regarding its long-term stability and interaction with HEK 293T/17 cells. These multifunctional microparticles allow the simultaneous investigation of particle localization and processing within cells, and should thus provide a valuable tool for studying and improving the controlled LbL-based release of active agents into cells. © Koninklijke Brill NV, Leiden, 2011
NASA Astrophysics Data System (ADS)
Wang, L.; Jiang, M.; Wang, E. B.; Duan, L. Y.; Hao, N.; Lan, Y.; Xu, L.; Li, Z.
2003-11-01
Ultrathin multilayer films of the wheel-shaped molybdenum polyoxometalate cluster (Mo 38) n and poly(allylamine hydrochloride)(PAH) have been prepared by the layer-by-layer (LbL) self-assembly method. The ((Mo 38) n/PAH) m multilayer films have been characterized by X-ray photoelectron spectra (XPS) and atomic force microscopy (AFM). UV-VIS measurements reveal regular film growth with each (Mo 38) n adsorption. The electrochemistry behavior of the film at room temperature was investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vögele, Martin; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt a. M.; Holm, Christian
2015-12-28
We present simulations of aqueous polyelectrolyte complexes with new MARTINI models for the charged polymers poly(styrene sulfonate) and poly(diallyldimethylammonium). Our coarse-grained polyelectrolyte models allow us to study large length and long time scales with regard to chemical details and thermodynamic properties. The results are compared to the outcomes of previous atomistic molecular dynamics simulations and verify that electrostatic properties are reproduced by our MARTINI coarse-grained approach with reasonable accuracy. Structural similarity between the atomistic and the coarse-grained results is indicated by a comparison between the pair radial distribution functions and the cumulative number of surrounding particles. Our coarse-grained models aremore » able to quantitatively reproduce previous findings like the correct charge compensation mechanism and a reduced dielectric constant of water. These results can be interpreted as the underlying reason for the stability of polyelectrolyte multilayers and complexes and validate the robustness of the proposed models.« less
Bioresorbable polyelectrolytes for smuggling drugs into cells.
Jaganathan, Sripriya
2016-06-01
There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.
Polymer Self-Assembled Nanostructures as Innovative Drug Nanocarrier Platforms.
Pippa, Natassa; Pispas, Stergios; Demetzos, Costas
2016-01-01
Polymer self-assembled nanostructures are used in pharmaceutical sciences as bioactive molecules' delivery systems for therapeutic and diagnostic purposes. Micelles, polyelectrolyte complexes, polymersomes, polymeric nanoparticles, nanogels and polymer grafted liposomes represent delivery vehicles that are marketed and/or under clinical development, as drug formulations. In this mini-review, these, recently appeared in the literature, innovative polymer drug nanocarrier platforms are discussed, starting from their technological development in the laboratory to their potential clinical use, through studies of their biophysics, thermodynamics, physical behavior, morphology, bio-mimicry, therapeutic efficacy and safety. The properties of an ideal drug delivery system are the structural control over size and shape of drug or imaging agent cargo/domain, biocompatibility, nontoxic polymer/ pendant functionality and the precise, nanoscale container and/or scaffolding properties with high drug or imaging agent capacity features. Self-assembled polymer nanostructures exhibit all these properties and could be considered as ideal drug nanocarriers through control of their size, structure and morphology, with the aid of a large variety of parameters, in vitro and in vivo. These modern trends reside at the interface of soft matter self-assembly and pharmaceutical sciences and the technologies for health. Great advantages related to basic science and applications are expected by understanding the self-assembly behavior of these polymeric nanotechnological drug delivery systems, created through bio-inspiration and biomimicry and have potential utilization into clinical applications.
NASA Astrophysics Data System (ADS)
Wu, Lijuan; Wu, Changlin; Liu, Guangwan; Liao, Nannan; Zhao, Fang; Yang, Xuxia; Qu, Hongyuan; Peng, Bo; Chen, Li; Yang, Guang
2016-12-01
siRNA delivery remains highly challenging because of its hydrophilic and anionic nature and its sensitivity to nuclease degradation. Effective siRNA loading and improved transfection efficiency into cells represents a key problem. In our study, we prepared Chitosan/Hyaluronic acid-siRNA multilayer films through layer-by-layer self-assembly, in which siRNAs can be effectively loaded and protected. The construction process was characterized by FTIR, 13C NMR (CP/MAS), UV-vis spectroscopy, and atomic force microscopy (AFM). We presented the controlled-release performance of the films during incubation in 1 M NaCl solution for several days through UV-vis spectroscopy and polyacrylamide gel electrophoresis (PAGE). Additionally, we verified the stability and integrity of the siRNA loaded on multilayer films. Finally, the biological efficacy of the siRNA delivery system was evaluated via cells adhesion and gene silencing analyses in eGFP-HEK 293T cells. This new type of surface-mediated non-viral multilayer films may have considerable potential in the localized and controlled-release delivery of siRNA in mucosal tissues, and tissue engineering application.
Characterization of a Biomimetic Polymeric-Lipid Bilayer by Phase Sensitive Neutron Reflectivity
NASA Astrophysics Data System (ADS)
Perez-Salas, Ursula A.; Krueger, Susan; Majkrzak, Charles F.; Berk, Norman F.; Faucher, Keith M.; Chaikof, Elliot L.
2003-03-01
Lipid membranes, the boundaries for cellular and intracellular structures, regulate many crucial biological processes. Planar supported mimics of cell membranes are of great interest as model systems for the study of membrane structure/function phenomena in fundamental biophysics research. We studied a supported biomedically relevant membrane-mimetic system composed of a polyelectrolyte cushion, a terpolymer and a self-assembled phospholipid monolayer and obtained a detailed profile characterization of the system by neutron reflectometry. The water-swellable hydrophilic polyelectrolyte acts as a support for the biomembrane, not unlike the cytoskeletal support found in actual mammalian cell membranes. The "cushion" polymers are fixed to the flat, hard surface by having the polymer interact with it electrostatically. The terpolymer has the following desirable features: it tethers to the polyelectrolyte layer and it creates a hydrophilic and a hydrophobic region. Unilamellar phospholipid vesicle fusion on to the hydrophobic region of the terpolymer creates the hybrid tethered membrane. For added stability to external force fields (such as shear flow), the phospholipid monolayer is then polymerized in situ, effectively anchoring the lipid layer to the hydrophobic region of the terpolymer. Neutron reflectivity measurements were done on the polyelectrolyte layer, the polyelectrolyte layer plus terpolymer and the polylectrolyte layer plus terpolymer plus phospholipid. The layers were studied dry and hydrated and under 95α D_2O and 50% \\ 50% α H_2O \\ α D_2O) on the polyelectrolyte layer plus terpolymer and the polylectrolyte layer plus terpolymer plus phospholipid the distribution of water in the layers was obtained. The results will be correlated to impedance measurements flourescence measurements and infrared spectroscopy measurements made on equivalent samples.
Xie, Yong; Guo, Shengming; Ji, Yinglu; Guo, Chuanfei; Liu, Xinfeng; Chen, Ziyu; Wu, Xiaochun; Liu, Qian
2011-09-20
The self-assembly of anisotropic gold nanorods (GNRs) into ordered phases remains a challenge. Herein, we demonstrated the fabrication of symmetric circular- or semicircular-like self-assembled superlattices composed of multilayers of standing GNRs by fine-tuning the repulsive interactions among GNRs. The repulsive force is tailored from electrostatic interaction to steric force by replacing the surface coating of cetyltrimethylammonium bromide (CTAB) (ζ potential of 20-50 mV) with an OH-terminated hexa(ethylene glycol) alkanethiol (here termed as EG(6)OH, ζ potential of -10 mV). The assembly mechanism is discussed via theoretical analyses of the major interactions, and an effective balance between the repulsive steric and attractive depletion interactions is the main driving force for the self-assembly. The real-time observations of solution assembly (UV-vis-NIR absorption spectroscopy) supports the mechanism that we suggested. The superlattices obtained here not only enrich the categories of the self-assembled structures but more importantly deepen the insight of the self-assembly process and pave the way for various potential applications. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Pristinski, Denis; Kharlampieva, Evguenia; Sukhishvili, Svetlana
2002-03-01
Fluorescence Correlation Spectroscopy (FCS) has been used to probe molecular motions within polymer multilayers formed by hydrogen-bonding sequential self-assembly. Polyethylene glycol (PEG) molecules were end-labeled with the fluorescent tags, and self-assembled with polymethacrylic acid (PMAA) using layer-by-layer deposition. We have found that molecules included in the top adsorbed layer have significant mobility at the millisecond time scale, probably due to translational diffusion. However, their dynamics deviate from classical Brownian motion with a single diffusion time. Possible reasons for the deviation are discussed. We found that motions were significantly slowed with increasing depth within the PEG/PMAA multilayer. This phenomena occured in a narrow pH range around 4.0 in which intermolecular interactions were relatively weak.
Layer-by-Layer Assembly of a Self-Healing Anticorrosion Coating on Magnesium Alloys.
Fan, Fan; Zhou, Chunyu; Wang, Xu; Szpunar, Jerzy
2015-12-16
Fabrication of self-healing anticorrosion coatings has attracted attention as it has the ability to extend the service life and prevent the substrate from corrosive attack. However, a coating system with a rapid self-healing ability and an improved corrosion resistance is rarely reported. In this work, we developed a self-healing anticorrosion coating on a magnesium alloy (AZ31). The coating comprises a cerium-based conversion layer, a graphene oxide layer, and a branched poly(ethylene imine) (PEI)/poly(acrylic acid) (PAA) multilayer. We incorporated the graphene oxide as corrosion inhibitors and used the PEI/PAA multilayers to provide the self-healing ability to the coating systems. X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the composition of the multilayers, and scanning electron microscopy (SEM) was used to analyze the surface morphology. The electrochemical impedance spectroscopy (EIS) results illustrate the improved corrosion resistance of the coating. The proposed coating also has a rapid self-healing ability in the presence of water.
Gel phase formation in dilute triblock copolyelectrolyte complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less
Gel phase formation in dilute triblock copolyelectrolyte complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less
Gel phase formation in dilute triblock copolyelectrolyte complexes
Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; ...
2017-02-23
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less
Gel Phase Formation in Dilute Triblock Copolyelectrolyte Complexes
NASA Astrophysics Data System (ADS)
Srivastava, Samanvaya; Andreev, Marat; Prabhu, Vivek; de Pablo, Juan; Tirrell, Matthew
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at extremely low polymer concentrations (<1 % by mass) has been observed in scattering experiments and molecular dynamics simulations. In contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing polymer concentrations, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assemblies of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously upon solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of triblock copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries not only contribute to our fundamental understanding of the structure and pathways of complexation driven assemblies, but also raise intriguing prospects for formation of gel structures at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.
Gel phase formation in dilute triblock copolyelectrolyte complexes
NASA Astrophysics Data System (ADS)
Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.
2017-02-01
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.
Gonçalves, Raquel M; Antunes, Joana C; Barbosa, Mário A
2012-04-10
Human mesenchymal stem cells (hMSCs) have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration. Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch)/Poly(γ-glutamic acid) (γ-PGA) complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc. Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs) with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1) was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.
DNA hydrogel-based supercapacitors operating in physiological fluids
Hur, Jaehyun; Im, Kyuhyun; Hwang, Sekyu; Choi, ByoungLyong; Kim, Sungjee; Hwang, Sungwoo; Park, Nokyoung; Kim, Kinam
2013-01-01
DNA nanostructures have been attractive due to their structural properties resulting in many important breakthroughs especially in controlled assemblies and many biological applications. Here, we report a unique energy storage device which is a supercapacitor that uses nanostructured DNA hydrogel (Dgel) as a template and layer-by-layer (LBL)-deposited polyelectrolyte multilayers (PEMs) as conductors. Our device, named as PEM-Dgel supercapacitor, showed excellent performance in direct contact with physiological fluids such as artificial urine and phosphate buffered saline without any need of additional electrolytes, and exhibited almost no cytotoxicity during cycling tests in cell culture medium. Moreover, we demonstrated that the PEM-Dgel supercapacitor has greater charge-discharge cycling stability in physiological fluids than highly concentrated acid electrolyte solution which is normally used for supercapacitor operation. These conceptually new supercapacitors have the potential to be a platform technology for the creation of implantable energy storage devices for packageless applications directly utilizing biofluids. PMID:23412432
Zhang, Tao; Yan, Hongqiang; Peng, Mao; Wang, Lili; Ding, Hongliang; Fang, Zhengping
2013-04-07
A new flame retardant nanocoating has been constructed by the alternate adsorption of polyelectrolyte amino-functionalized multiwall carbon nanotube (MWNT-NH2) and ammonium polyphosphate (APP) onto flexible and porous ramie fabric. Scanning electron microscopy indicates that the adsorbed carbon nanotube coating is a randomly oriented and overlapped network structure, which is a promising candidate for flame retardancy applications. Attenuated total reflection Fourier transform infrared spectroscopy and energy-dispersive X-ray analysis confirm that the APP is successfully incorporated into the multilayers sequentially. Assessment of the thermal and flammability properties for the pristine and nanocoated ramie fabrics shows that the thermal stability, flame retardancy and residual char are enhanced as the concentration of MWNT-NH2 suspension and number of deposition cycles increases. The enhancements are mostly attributed to the barrier effect of intumescent network structure, which is composed of MWNT-NH2 and the absorbed APP.
NASA Astrophysics Data System (ADS)
Rabor, Janice B.; Kawamura, Koki; Muko, Daiki; Kurawaki, Junichi; Niidome, Yasuro
2017-07-01
Fabrication of surface-immobilized silver nanostructures with reproducible plasmonic properties by dip-coating technique is difficult due to shape alteration. To address this challenge, we used a polyelectrolyte multilayer to promote immobilization of as-received triangular silver nanoplates (TSNP) on a glass substrate through electrostatic interaction. The substrate-immobilized TSNP were characterized by absorption spectrophotometry and scanning electron microscopy. The bandwidth and peak position of localized surface plasmon resonance (LSPR) bands can be tuned by simply varying the concentration of the colloidal solution and immersion time. TSNP immobilized from a higher concentration of colloidal solution with longer immersion time produced broadened LSPR bands in the near-IR region, while a lower concentration with shorter immersion time produced narrower bands in the visible region. The shape of the nanoplates was retained even at long immersion time. Analysis of peak positions and bandwidths also revealed the point at which the main species of the immobilization had been changed from isolates to aggregates.
Zhang, Shichao; Xing, Malcolm; Li, Bingyun
2018-06-01
Achieving surface design and control of biomaterial scaffolds with nanometer- or micrometer-scaled functional films is critical to mimic the unique features of native extracellular matrices, which has significant technological implications for tissue engineering including cell-seeded scaffolds, microbioreactors, cell assembly, tissue regeneration, etc. Compared with other techniques available for surface design, layer-by-layer (LbL) self-assembly technology has attracted extensive attention because of its integrated features of simplicity, versatility, and nanoscale control. Here we present a brief overview of current state-of-the-art research related to the LbL self-assembly technique and its assembled biomaterials as scaffolds for tissue engineering. An overview of the LbL self-assembly technique, with a focus on issues associated with distinct routes and driving forces of self-assembly, is described briefly. Then, we highlight the controllable fabrication, properties, and applications of LbL self-assembly biomaterials in the forms of multilayer nanofilms, scaffold nanocoatings, and three-dimensional scaffolds to systematically demonstrate advances in LbL self-assembly in the field of tissue engineering. LbL self-assembly not only provides advances for molecular deposition but also opens avenues for the design and development of innovative biomaterials for tissue engineering.
Lin, Donghai; Tang, Thompson; Jed Harrison, D; Lee, William E; Jemere, Abebaw B
2015-06-15
We report on the development of a regenerable sensitive immunosensor based on electrochemical impedance spectroscopy for the detection of type 5 adenovirus. The multi-layered immunosensor fabrication involved successive modification steps on gold electrodes: (i) modification with self-assembled layer of 1,6-hexanedithiol to which gold nanoparticles were attached via the distal thiol groups, (ii) formation of self-assembled monolayer of 11-mercaptoundecanoic acid onto the gold nanoparticles, (iii) covalent immobilization of monoclonal anti-adenovirus 5 antibody, with EDC/NHS coupling reaction on the nanoparticles, completing the immunosensor. The immunosensor displayed a very good detection limit of 30 virus particles/ml and a wide linear dynamic range of 10(5). An electrochemical reductive desorption technique was employed to completely desorb the components of the immunosensor surface, then re-assemble the sensing layer and reuse the sensor. On a single electrode, the multi-layered immunosensor could be assembled and disassembled at least 30 times with 87% of the original signal intact. The changes of electrode behavior after each assembly and desorption processes were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
Manipulating fluids: Advances in micro-fluidics, opto-fluidics and fluidic self assembly
NASA Astrophysics Data System (ADS)
Vyawahare, Saurabh
This dissertation describes work in three inter-related areas---micro-fluidics, opto-fluidics and fluidic self-assembly. Micro-fluidics has gotten a boost in recent years with the development of multilayered elastomeric devices made of poly (dimethylsiloxane) (PDMS), allowing active elements like valves and pumps. However, while PDMS has many advantages, it is not resistant to organic solvents. New materials and/or new designs are needed for solvent resistance. I describe how novel fluorinated elastomers can replace PDMS when combined with the three dimensional (3-D) solid printing. I also show how another 3-D fabrication method, multilayer photo-lithography, allows for fabrication of devices integrating filters. In general, 3-D fabrications allow new kinds of micro-fluidic devices to be made that would be impossible to emulate with two dimensional chips. In opto-fluidics, I describe a number of experiments with quantum dots both inside and outside chips. Inside chips, I manipulate quantum dots using hydrodynamic focusing to pattern fine lines, like a barcode. Outside chips, I describe our attempts to create quantum dot composites with micro-spheres. I also show how evaporated gold films and chemical passivation can then be used to enhance the emission of quantum dots. Finally, within fluids, self assembly is an attractive way to manipulate materials, and I provide two examples: first, a DNA-based energy transfer molecule that relies on quantum mechanics and self-assembles inside fluids. This kind of molecular photonics mimics parts of the photosynthetic apparatus of plants and bacteria. The second example of self-assembly in fluids describes a new phenomena---the surface tension mediated self assembly of particles like quantum dots and micro-spheres into fine lines. This self assembly by capillary flows can be combined with photo-lithography, and is expected to find use in future nano- and micro-fabrication schemes. In conclusion, advances in fludics, integrating materials like quantum dots and solvent resistant elastomers along with 3-D fabrication and methods of self assembly, provide a new set of tools that significantly expand our control over fluids.
Rouster, Paul; Pavlovic, Marko; Horváth, Endre; Forró, László; Dey, Sandwip K; Szilagyi, Istvan
2017-09-26
The colloidal stability of titanium oxide nanosheets (TNS) and nanowires (TiONW) was studied in the presence of protamine (natural polyelectrolyte) in aqueous dispersions, where the nanostructures possessed negative net charge, and the protamine was positively charged. Regardless of their shape, similar charging and aggregation behaviors were observed for both TNS and TiONW. Electrophoretic experiments performed at different protamine loadings revealed that the adsorption of protamine led to charge neutralization and charge inversion depending on the polyelectrolyte dose applied. Light scattering measurements indicated unstable dispersions once the surface charge was close to zero or slow aggregation below and above the charge neutralization point with negatively or positively charged nanostructures, respectively. These stability regimes were confirmed by the electron microscopy images taken at different polyelectrolyte loadings. The protamine dose and salt-dependent colloidal stability confirmed the presence of DLVO-type interparticle forces, and no experimental evidence was found for additional interactions (e.g., patch-charge, hydrophobic, or steric forces), which are usually present in similar polyelectrolyte-particle systems. These findings indicate that the polyelectrolyte adsorbs on the TNS and TiONW surfaces in a flat and extended conformation giving rise to the absence of surface heterogeneities. Therefore, protamine is an excellent biocompatible candidate to form smooth surfaces, for instance in multilayers composed of polyelectrolytes and particles to be used in biomedical applications.
N-halamine biocidal coatings via a layer-by-layer assembly technique.
Cerkez, Idris; Kocer, Hasan B; Worley, S D; Broughton, R M; Huang, T S
2011-04-05
Two N-halamine copolymer precursors, poly(2,2,6,6-tetramethyl-4-piperidyl methacrylate-co-acrylic acid potassium salt) and poly(2,2,6,6-tetramethyl-4-piperidyl methacrylate-co-trimethyl-2-methacryloxyethylammonium chloride) have been synthesized and successfully coated onto cotton fabric via a layer-by-layer (LbL) assembly technique. A multilayer thin film was deposited onto the fiber surfaces by alternative exposure to polyelectrolyte solutions. The coating was rendered biocidal by a dilute household bleach treatment. The biocidal efficacies of tested swatches composed of treated fibers were evaluated against Staphylococcus aureus and Escherichia coli. It was determined that chlorinated samples inactivated both S. aureus and E. coli O157:H7 within 15 min of contact time, whereas the unchlorinated control samples did not exhibit significant biocidal activities. Stabilities of the coatings toward washing and ultraviolet light exposure have also been studied. It was found that the stability toward washing was superior, whereas the UVA light stability was moderate compared to previously studied N-halamine moieties. The layer-by-layer assembly technique can be used to attach N-halamine precursor polymers onto cellulose surfaces without using covalently bonding tethering groups which limit the structure designs. In addition, ionic precursors are very soluble in water, thus promising for biocidal coatings without the use of organic solvents.
Pattabhi, Sudhakara Rao; Lehaf, Ali M; Schlenoff, Joseph B; Keller, Thomas C S
2015-05-01
Polyelectrolyte multilayer (PEMU) coatings built layer by layer with alternating pairs of polyelectrolytes can be tuned to improve cell interactions with surfaces and may be useful as biocompatible coatings to improve fixation between implants and tissues. Here, we show that human mesenchymal stromal cells (hMSCs) induced with bone differentiation medium (BDM) to become osteoblasts biomineralize crosslinked PEMUs built with the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(acrylic acid) (PAA). Degrees of hMSC osteoblast differentiation and surface biomineralization on the smooth PAH-terminated PEMUs (PAH-PEMUs) and microstructured PAA-terminated PEMUs (PAA-PEMUs) reflect differences in cell-deposited extracellular matrix (ECM). BDM-induced hMSCs expressed higher levels of the early osteoblast differentiation marker alkaline phosphatase and collagen 1 (COL1) sooner on PAA-PEMUs than on PAH-PEMUs. Cells on both types of PEMUs proceeded to express the later stage osteoblast differentiation marker bone sialoprotein (BSP), but the BDM-induced cells organized a more amorphous Collagen I and denser BSP localization on PAA-PEMUs than on PAH-PEMUs. These ECM properties correlated with greater biomineralization on the PAA-PEMUs than on PAH-PEMUs. Together, these results confirm the suitability of PAH/PAA PEMUs as a substrate for hMSC osteogenesis and highlight the importance of substrate effects on ECM organization and BSP presentation on biomineralization. © 2014 Wiley Periodicals, Inc.
The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Sarah; Li, Yue; Priftis, Dimitrios
2014-06-01
Complex coacervation is an electrostatically-driven phase separation phenomenon that is utilized in a wide range of everyday applications and is of great interest for the creation of self-assembled materials. Here, we utilized turbidity to characterize the effect of salt type on coacervate formation using two vinyl polyelectrolytes, poly(acrylic acid sodium salt) (pAA) and poly(allylamine hydrochloride) (pAH), as simple models for industrial and biological coacervates. We confirmed the dominant role of salt valence on the extent of coacervate formation, while demonstrating the presence of significant secondary effects, which can be described by Hofmeister-like behavior. These results revealed the importance of ion-specificmore » interactions, which are crucial for the informed design of coacervate-based materials for use in complex ionic environments, and can enable more detailed theoretical investigations on the role of subtle electrostatic and thermodynamic effects in complex coacervation.« less
Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films
NASA Astrophysics Data System (ADS)
Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine
2007-03-01
In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media).
Schneider, Aurore; Vodouhê, Constant; Richert, Ludovic; Francius, Gregory; Le Guen, Erell; Schaaf, Pierre; Voegel, Jean-Claude; Frisch, Benoît; Picart, Catherine
2008-01-01
Cross-linked polyelectrolyte multilayer films (CL PEM) have an increased rigidity and are mechanically more resistant than native (e.g. uncrosslinked) films. However, they are still biodegradable, which make them interesting candidates for biomedical applications. In this study, CL PEM films have been explored for their multifunctional properties as i) mechanically resistant ii) biodegradable and iii) bioactive films. Toward this end, we investigated drug loading into CL chitosan/hyaluronan (CHI/HA) and poly(L-lysine)/hyaluronan (PLL/HA) films by simple diffusion of the drugs. Sodium diclofenac and paclitaxel were chosen as model drugs and were successfully loaded into the films. The effect of varying the number of layers in the (CHI/HA) films as well as the cross-linker concentration on diclofenac loading were studied. Diclofenac was released from the film in about ten hours. Paclitaxel was also found to diffuse within CL films. Its activity was maintained after loading in the CL films and cellular viability could be reduced by about 55% over three days. Such simple approach may be applied to other types of cross-linked films and to other drugs. These results prove that it is possible to design multifunctional multilayer films that combine mechanical resistance, biodegradability and bioactivity properties into a single PEM architecture. PMID:17206799
Bhalkaran, Savi; Wilson, Lee D.
2016-01-01
The presence of contaminants in wastewater poses significant challenges to water treatment processes and environmental remediation. The use of coagulation-flocculation represents a facile and efficient way of removing charged particles from water. The formation of stable colloidal flocs is necessary for floc aggregation and, hence, their subsequent removal. Aggregation occurs when these flocs form extended networks through the self-assembly of polyelectrolytes, such as the amine-based polysaccharide (chitosan), which form polymer “bridges” in a floc network. The aim of this overview is to evaluate how the self-assembly process of chitosan and its derivatives is influenced by factors related to the morphology of chitosan (flocculant) and the role of the solution conditions in the flocculation properties of chitosan and its modified forms. Chitosan has been used alone or in conjunction with a salt, such as aluminum sulphate, as an aid for the removal of various waterborne contaminants. Modified chitosan relates to grafted anionic or cationic groups onto the C-6 hydroxyl group or the amine group at C-2 on the glucosamine monomer of chitosan. By varying the parameters, such as molecular weight and the degree of deacetylation of chitosan, pH, reaction and settling time, dosage and temperature, self-assembly can be further investigated. This mini-review places an emphasis on the molecular-level details of the flocculation and the self-assembly processes for the marine-based biopolymer, chitosan. PMID:27706052
Enhancing proliferation and osteogenic differentiation of HMSCs on casein/chitosan multilayer films.
Li, Yan; Zheng, Zebin; Cao, Zhinan; Zhuang, Liangting; Xu, Yong; Liu, Xiaozhen; Xu, Yue; Gong, Yihong
2016-05-01
Creating a bioactive surface is important in tissue engineering. Inspired by the natural calcium binding property of casein (CA), multilayer films ((CA/CS)n) with chitosan (CS) as polycation were fabricated to enhance biomineralization, cell adhesion and differentiation. LBL self-assembly technique was used and the assembly process was intensively studied based on changes of UV absorbance, zeta potential and water contact angle. The increasing content of chitosan and casein with bilayers was further confirmed with XPS and TOF-SIMS analysis. To improve the biocompatibility, gelatin was surface grafted. In vitro mineralization test demonstrated that multilayer films had more hydroxyapatite crystal deposition. Human mesenchymal stem cells (HMSCs) were seeded onto these films. According to fluorescein diacetate (FDA) and cell cytoskeleton staining, MTT assay, expression of osteogenic marker genes, ALP activity, and calcium deposition quantification, it was found that these multilayer films significantly promoted HMSCs attachment, proliferation and osteogenic differentiation than TCPS control. Copyright © 2016. Published by Elsevier B.V.
Tunable drug loading and release from polypeptide multilayer nanofilms
Jiang, Bingbing; Li, Bingyun
2009-01-01
Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369
NASA Astrophysics Data System (ADS)
Minaeva, O. V.; Brodovskaya, E. P.; Pyataev, M. A.; Gerasimov, M. V.; Zharkov, M. N.; Yurlov, I. A.; Kulikov, O. A.; Kotlyarov, A. A.; Balykova, L. A.; Kokorev, A. V.; Zaborovskiy, A. V.; Pyataev, N. A.; Sukhorukov, G. B.
2017-01-01
The cytotoxicity of magnetite nanoparticles (MNP) stabilized with citrate acidand polyelectrolyte multilayer microcapsules containing these particles in the shell is analyzed. Microcapsules were prepared by co-precipitation of iron (II) and (III) chlorides. Polyelectrolyte microcapsules synthesized by the layer-by-layer method from biodegradable polymers polyarginine and dextran sulfate. Cytotoxicity of the synthesized objects was studied on the L929 cells culture and human leucocytes. It was also investigated the phagocytic activity of leukocytes for the MNP and magnetite containing polyelectrolyte microcapsules (MCPM). A set of tests (MTT assay, neutral red uptake assay, lactate dehydrogenase release assay) was used to study the cytotoxicity in vitro. All the tests have shown that the magnetic nanoparticles have a greater cytotoxicity in comparison with microcapsules containing an equivalent amount of magnetite. In contrast to the mouse fibroblast culture, human leukocytes were more resistant to the toxic effects of magnetite. At the concentrations used in our studies no significant reduction in the viability of leukocytes has been registered. Both MNP and MCPM undergo phagocytosis, however, the phagocytic activity of leukocytes for these particles was lower than for the standard objects (latex microparticles).
Byun, Hye-Ran; You, Eun-Ah; Ha, Young-Geun
2017-03-01
For large-area, printable, and flexible electronic applications using advanced semiconductors, novel dielectric materials with excellent capacitance, insulating property, thermal stability, and mechanical flexibility need to be developed to achieve high-performance, ultralow-voltage operation of thin-film transistors (TFTs). In this work, we first report on the facile fabrication of multifunctional hybrid multilayer gate dielectrics with tunable surface energy via a low-temperature solution-process to produce ultralow-voltage organic and amorphous oxide TFTs. The hybrid multilayer dielectric materials are constructed by iteratively stacking bifunctional phosphonic acid-based self-assembled monolayers combined with ultrathin high-k oxide layers. The nanoscopic thickness-controllable hybrid dielectrics exhibit the superior capacitance (up to 970 nF/cm 2 ), insulating property (leakage current densities <10 -7 A/cm 2 ), and thermal stability (up to 300 °C) as well as smooth surfaces (root-mean-square roughness <0.35 nm). In addition, the surface energy of the hybrid multilayer dielectrics are easily changed by switching between mono- and bifunctional phosphonic acid-based self-assembled monolayers for compatible fabrication with both organic and amorphous oxide semiconductors. Consequently, the hybrid multilayer dielectrics integrated into TFTs reveal their excellent dielectric functions to achieve high-performance, ultralow-voltage operation (< ± 2 V) for both organic and amorphous oxide TFTs. Because of the easily tunable surface energy, the multifunctional hybrid multilayer dielectrics can also be adapted for various organic and inorganic semiconductors, and metal gates in other device configurations, thus allowing diverse advanced electronic applications including ultralow-power and large-area electronic devices.
Formation and Properties of Multilayer Films Based on Polyethyleneimine and Bovine Serum Albumin
NASA Astrophysics Data System (ADS)
Kulikouskaya, V. I.; Lazouskaya, M. E.; Kraskouski, A. N.; Agabekov, V. E.
2018-01-01
(Polyethyleneimine/bovine serum albumin) n ((PEI/BSA) n) multilayer films ( n = 1-10) are produced via the layer-by-later deposition of polyelectrolytes. It is shown that thickness and morphology of the formed coatings can be controlled by varying the solution's ionic strength during alternating adsorption of the components. (PEI/BSA)10 multilayer systems that contain up to 0.6 mg of antiseptic miramistin per 1 cm2 of film were created. It is established that the kinetics of miramistin release from (PEI/BSA)10 films in phosphate buffers and physiological solutions obey the Korsmeyer-Peppas equation with a high degree of accuracy ( R 2 > 0.95).
Single- and Multilayered Nanostructures via Laser-Induced Block Copolymer Self-Assembly
NASA Astrophysics Data System (ADS)
Majewski, Pawel; Yager, Kevin; Rahman, Atikur; Black, Charles
We present a novel method of accelerated self-assembly of block copolymer thin films utilizing laser light, called Laser Zone Annealing (LZA). In our approach, steep temperature transients are induced in block copolymer films by rastering narrowly focused laser line over the light-absorbing substrate. Extremely steep temperature gradients accelerate the process of self-assembly by several orders-of-magnitude compared to conventional oven annealing, and, when coupled to photo-thermal shearing, lead to global alignment of block copolymer domains assessed by GISXAS diffraction studies and real-space SEM imaging. We demonstrate monolithic alignment of various block-copolymer thin films including PS-b-PMMA, PS-b-PEO, PS-b-P2VP, PS-b-PI and observe different responsiveness to the shearing rate depending on the characteristic relaxation timescale of the particular material. Subsequently, we use the aligned polymeric films as templates for synthesis of single- and multi-layered arrays of inorganic, metallic or semiconducting nanowires and nanomeshes and investigate their anisotropic electro-optical properties. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.
He, Lijun; Cui, Wenhang; Wang, Yali; Zhao, Wenjie; Xiang, Guoqiang; Jiang, Xiuming; Mao, Pu; He, Juan; Zhang, Shusheng
2017-11-03
In this study, layer-by-layer assembly of polyelectrolyte multilayer films on magnetic silica provided a convenient and controllable way to prepare polymeric ionic liquid-based magnetic adsorbents. The resulting particles were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and magnetic measurements. The data showed that the magnetic particles had more homogeneous spherical shapes with higher saturation magnetization when compared to those obtained by free radical polymerization method. This facilitated the convenient collection of magnetic particles, with higher extraction repeatability. The extraction performance of the multilayer polymeric ionic liquid-based adsorbents was evaluated by magnetic solid-phase extraction of four pesticides including quinalphos, fenthion, phoxim, and chlorpropham. The data suggested that the extraction efficiency depended on the number of layers in the film. The parameters affecting the extraction efficiency were optimized, and good linearity ranging from 2 to 250μgL -1 was obtained with correlation coefficients of 0.9994-0.9998. Moreover, the proposed method presented low limit of detection (0.5μgL -1 , S/N=3) and limit of quantification (1.5μgL -1 , S/N=10), and good repeatability expressed by the relative standard deviation (2.0%-4.6%, n=5). The extraction recoveries of four pesticides were found to range from 58.9% to 85.8%. The reliability of the proposed method was demonstrated by analyzing environmental water samples, and the results revealed satisfactory spiked recovery, relative standard deviation, and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Weng, Xuexiang; Cao, Qingxue; Liang, Lixin; Chen, Jianrong; You, Chunping; Ruan, Yongmin; Lin, Hongjun; Wu, Lanju
2013-12-15
Multilayer films containing graphene (Gr) and chitosan (CS) were prepared on glassy carbon electrodes with layer-by-layer (LBL) assembly technique. After being characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM), the electrochemical sensor based on the resulted films was developed to simultaneously determine dopamine (DA) and uric acid (UA). The LBL assembled electrode showed excellent electrocatalytic activity towards the oxidation of DA and UA. In addition, the self-assembly electrode possessed an excellent sensing performance for detection of DA and UA with a linear range from 0.1 μM to 140 µM and from 1.0 µM to 125 µM with the detection limit as low as 0.05 µM and 0.1 µM based on S/N=3, respectively. © 2013 Elsevier B.V. All rights reserved.
Multi-layer assemblies with predetermined stress profile and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)
2003-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.
Maity, Kuntal; Mandal, Dipankar
2018-05-30
Rapid development of wearable electronics, piezoelectric nanogenerator (PNG), has been paid a special attention because of its sustainable and accessible energy generation. In this context, we present a simple yet highly efficient design strategy to enhance the output performance of an all-organic PNG (OPNG) based on multilayer assembled electrospun poly(vinylidene fluoride) (PVDF) nanofiber (NF) mats where vapor-phase polymerized poly(3,4-ethylenedioxythiophene)-coated PVDF NFs are assembled as electrodes and neat PVDF NFs are utilized as an active component. In addition to the multilayer assembly, electrode compatibility and durability remain a challenging task to mitigate the primary requirements of wearable electronics. A multilayer networked three-dimensional structure integrated with a compatible electrode thereby provides enhanced output voltage and current (e.g., open-circuit voltage, V oc ≈ 48 V, and short-circuit current, I sc ≈ 6 μA, upon 8.3 kPa of the applied stress amplitude) with superior piezoelectric energy conversion efficiency of 66% compared to the single-mat device. Besides, OPNG also shows ultrasensitivity toward human movements such as foot strikes and walking. The weight measurement mapping is critically explored by principal component analysis that may have enormous applications in medical diagnosis to smart packaging industries. More importantly, fatigue test under continuous mechanical impact (over 6 months) shows great promise as a robust wearable mechanical energy harvester.
Kavitha, M K; Gopinath, Pramod; John, Honey
2015-06-14
ZnO is a wide direct bandgap semiconductor; its absorption can be tuned to the visible spectral region by controlling the intrinsic defect levels. Combining graphene with ZnO can improve its performance by photo-induced charge separation by ZnO and electronic transport through graphene. When reduced graphene oxide-ZnO is prepared by a hydrothermal method, the photophysical studies indicate that oxygen vacancy defect states are healed out by diffusion of oxygen from GO to ZnO during its reduction. Because of the passivation of oxygen vacancies, the visible light photoconductivity of the hybrid is depleted, compared to pure ZnO. In order to overcome this reduction in photocurrent, a photoelectrode is fabricated by layer-by-layer (LBL) self-assembly of ZnO and reduced graphene oxide. The multilayer films are fabricated by the electrostatic LBL self-assembly technique using negatively charged poly(sodium 4-styrene sulfonate)-reduced graphene oxide (PSS-rGO) and positively charged polyacrylamide-ZnO (PAM-ZnO) as building blocks. The multilayer films fabricated by this technique will be highly interpenetrating; it will enhance the interaction between the ZnO and rGO perpendicular to the electrode surface. Upon illumination under bias voltage defect assisted excitation occurs in ZnO and the photogenerated charge carriers can transfer to graphene. The electron transferred to graphene sheets can recombine in two ways; either it can recombine with the holes in the valence band of ZnO in its bilayer or the ZnO in the next bilayer. This type of tunnelling of electrons from graphene to the successive bilayers will result in efficient charge transfer. This transfer and propagation of electron will enhance as the number of bilayers increases, which in turn improve the photocurrent of the multilayer films. Therefore this self-assembly technique is an effective approach to fabricate semiconductor-graphene films with excellent conductivity.
Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar
2013-07-16
Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.
Wang, Zhenming; Jia, Zhanrong; Jiang, Yanan; Li, Pengfei; Han, Lu; Lu, Xiong; Ren, Fuzeng; Wang, Kefeng; Yuan, Huiping
2017-08-03
The assembly of nano-building blocks is an effective way to produce artificial extracellular matrix microenvironments with hierarchical micro/nano structures. However, it is hard to assemble different types of nano-building blocks, to form composite coatings with multiple functions, by traditional layer-by-layer (LbL) self-assembly methods. Inspired by the mussel adhesion mechanism, we developed polydopamine (PDA)-decorated bovine serum albumin microspheres (BSA-MS) and nano-hydroxyapatite (nano-HA), and assembled them to form bioactive coatings with micro/nano structures encapsulating bone morphogenetic protein-2 (BMP-2). First, PDA-decorated nano-HA (nano-pHA) was obtained by oxidative polymerization of dopamine on nano-HA. Second, BMP-2-encapsulated BSA microspheres were prepared through desolvation, and then were also decorated by PDA (pBSA-MS). Finally, the nano-pHA and pBSA-MS were assembled using the adhesive properties of PDA. Bone marrow stromal cell cultures and in vivo implantation, showed that the pHA/pBSA (BMP-2) coatings can promote cell adhesion, proliferation, and benefited for osteoinductivity. PDA decoration was also applied to assemble various functional nanoparticles, such as nano-HA, polystyrene, and Fe 3 O 4 nanoparticles. In summary, this study provides a novel strategy for the assembly of biofunctional nano-building blocks, which surpasses traditional LbL self-assembly of polyelectrolytes, and can find broad applications in bioactive agents delivery or multi-functional coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ying; Zhang, Sheng; Du, Dan
A nanohybrid of gold nanoparticles (Au NPs) and chemically reduced graphene oxide nanosheets (cr-Gs) was synthesized by in situ growth of Au NPs on the surface of graphene nanosheets in the presence of poly(diallyldimethylammonium chloride) (PDDA), which not only improved the dispersion of Au NPs but also stabilized cholinesterase with high activity and loading efficiency. The obtained nanohybrid was characterized by TEM, XRD, XPS, and electrochemistry. Then an enzyme nanoassembly (AChE/Au NPs/cr-Gs) was prepared by self-assembling acetylcholinesterase (AChE) on Au NP/cr-Gs nanohybrid. An electrochemical sensor based on AChE/Au NPs/cr-Gs was further developed for ultrasensitive detection of organophosphate pesticide. The resultsmore » demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors.« less
Calvo, E J; Danilowicz, C; Lagier, C M; Manrique, J; Otero, M
2004-05-15
Multilayer immobilization of antibody and redox polymer molecules on a gold electrode was achieved, as a strategy for the potential development of an amperometric immunosensor. The step-by-step assembly of antibiotin IgG on Os(bpy)(2)ClPyCH(2)NH poly(allylamine) redox polymer (PAH-Os) adsorbed on thiolated gold electrodes was proved by quartz crystal microbalance (QCM) and atomic force microscopy (AFM) experiments, confirming the electrochemical evidence. The increase of redox charge during the layer-by-layer deposition demonstrated that charge propagation within the layers is feasible. The multilayer structure proved to be effective for the molecular recognition of horseradish peroxidase-biotin conjugate (HRP-biotin), as confirmed by the QCM measurements and the electrocatalytic reduction current obtained upon H(2)O(2) addition. The catalytic current resulting from PAH-Os mediation was shown to increase with the number of assembled layers. Furthermore, the inventory of IgG molecules on the supramolecular self-assembled structure and the specific and non-specific binding of HRP-biotin conjugate were confirmed by the QCM transient studies, giving information on the kinetics of IgG deposition and HRP-biotin conjugate binding to the IgG.
Dressick, Walter J.; Soto, Carissa M.; Fontana, Jake; Baker, Colin C.; Myers, Jason D.; Frantz, Jesse A.; Kim, Woohong
2014-01-01
We present a method of Cu(In,Ga)S2 (CIGS) thin film formation via conversion of layer-by-layer (LbL) assembled Cu-In-Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles were created via a novel flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films were assembled by alternately dipping quartz, Si, and/or Mo substrates into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1–2 microns. PSS/CIGO-PAH films were found to be inadequate due to weak adhesion to the Si and Mo substrates, excessive particle diffusion during sulfurization, and mechanical softness ill-suited to further processing. PDA/CIGO-PAH films, in contrast, were more mechanically robust and more tolerant of high temperature processing. After LbL deposition, films were oxidized to remove polymer and sulfurized at high temperature under flowing hydrogen sulfide to convert CIGO to CIGS. Complete film conversion from the oxide to the sulfide is confirmed by X-ray diffraction characterization. PMID:24941104
Self-assemblies of luminescent rare earth compounds in capsules and multilayers.
Zhang, Renjie; Shang, Juanjuan; Xin, Jing; Xie, Beibei; Li, Ya; Möhwald, Helmuth
2014-05-01
This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out. Copyright © 2014 Elsevier B.V. All rights reserved.
Elastin-like Polypeptide (ELP) Charge Influences Self-Assembly of ELP-mCherry Fusion Proteins.
Mills, Carolyn E; Michaud, Zachary; Olsen, Bradley D
2018-05-23
Self-assembly of protein-polymer bioconjugates presents an elegant strategy for controlling nanostructure and orientation of globular proteins in functional materials. Recent work has shown that genetic fusion of globular protein mCherry to an elastin-like polypeptide (ELP) yields similar self-assembly behavior to these protein-polymer bioconjugates. In the context of studying protein-polymer bioconjugate self-assembly, the mutability of the ELP sequence allows several different properties of the ELP block to be tuned orthogonally while maintaining consistent polypeptide backbone chemistry. This work uses this ELP sequence tunability in combination with the precise control offered by genetic engineering of an amino acid sequence to generate a library of four novel ELP sequences that are used to study the combined effect of charge and hydrophobicity on ELP-mCherry fusion protein self-assembly. Concentrated solution self-assembly is studied by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). These experiments show that fusions containing a negatively charged ELP block do not assemble at all, and fusions with a charge balanced ELP block exhibit a weak propensity for assembly. By comparison, the fusion containing an uncharged ELP block starts to order at 40 wt % in solution and at all concentrations measured has sharper, more intense SAXS peaks than other fusion proteins. These experiments show that charge character of the ELP block is a stronger predictor of self-assembly behavior than the hydrophobicity of the ELP block. Dilute solution small-angle neutron scattering (SANS) on the ELPs alone suggests that all ELPs used in this study (including the uncharged ELP) adopt dilute solution conformations similar to those of traditional polymers, including polyampholytes and polyelectrolytes. Finally, dynamic light scattering studies on ELP-mCherry blends shows that there is no significant complexation between the charged ELPs and mCherry. Therefore, it is proposed that the superior self-assembly of fusion proteins containing uncharged ELP block is due to effective repulsions between charged and uncharged blocks due to local charge correlation effects and, in the case of anionic ELPs, repulsion between like charges within the ELP block.
Modeling the growth processes of polyelectrolyte multilayers using a quartz crystal resonator.
Salomäki, Mikko; Kankare, Jouko
2007-07-26
The layer-by-layer buildup of chitosan/hyaluronan (CH/HA) and poly(l-lysine)/hyaluronan (PLL/HA) multilayers was followed on a quartz crystal resonator (QCR) in different ionic strengths and at different temperatures. These polyelectrolytes were chosen to demonstrate the method whereby useful information is retrieved from acoustically thick polymer layers during their buildup. Surface acoustic impedance recorded in these measurements gives a single or double spiral when plotted in the complex plane. The shape of this spiral depends on the viscoelasticity of the layer material and regularity of the growth process. The polymer layer is assumed to consist of one or two zones. A mathematical model was devised to represent the separation of the layer to two zones with different viscoelastic properties. Viscoelastic quantities of the layer material and the mode and parameters of the growth process were acquired by fitting a spiral to the experimental data. In all the cases the growth process was mainly exponential as a function of deposition cycles, the growth exponent being between 0.250 and 0.275.
Wang, Liming; Wei, Jingjing; Su, Zhaohui
2011-12-20
High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis. © 2011 American Chemical Society
Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity.
Mishra, D; Benitez, M J; Petracic, O; Badini Confalonieri, G A; Szary, P; Brüssing, F; Theis-Bröhl, K; Devishvili, A; Vorobiev, A; Konovalov, O; Paulus, M; Sternemann, C; Toperverg, B P; Zabel, H
2012-02-10
We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole-dipole interaction is rather strong, dominating the collective magnetic properties at room temperature.
Rigid open-cell polyurethane foam for cryogenic insulation
NASA Technical Reports Server (NTRS)
Faddoul, J. R.; Lindquist, C. R.; Niendorf, L. R.; Nies, G. E.; Perkins, P. J., Jr.
1971-01-01
Lightweight polyurethane foam assembled in panels is effective spacer material for construction of self-evacuating multilayer insulation panels for cryogenic liquid tanks. Spacer material separates radiation shields with barrier that minimizes conductive and convective heat transfer between shields.
Guillot, R.; Pignot-Paintrand, I.; Lavaud, J.; Decambron, A.; Bourgeois, E.; Josserand, V.; Logeart-Avramoglou, D.; Viguier, E.; Picart, C.
2016-01-01
The aim of this study was to evaluate the osseointegration of titanium implants (Ti-6Al-4V, noted here TA6V) and poly(etheretherketone) PEEK implants induced by a BMP-2-delivering surface coating made of polyelectrolyte multilayer films. The in vitro bioactivity of the polyelectrolyte film-coated implants was assessed using the alkaline phosphatase assay. BMP-2-coated TA6V and PEEK implants with a total dose of 9.3 µg of BMP-2 were inserted into the femoral condyles of New Zealand white rabbits and compared to uncoated implants. Rabbits were sacrificed 4 and 8 weeks after implantation. Histomorphometric analyses on TA6V and PEEK implants and microcomputed tomography on PEEK implants revealed that the bone-to-implant contact and bone area around the implants were significantly lower for the BMP-2-coated implants than for the bare implants. This was confirmed by scanning electron microscopy imaging. This difference was more pronounced at 4 weeks in comparison to the 8-week time point. However, bone growth inside the hexagonal upper hollow cavity of the screws was higher in the case of the BMP-2 coated implants. Overall, this study shows that a high dose of BMP-2 leads to localized and temporary bone impairment, and that the dose of BMP-2 delivered at the surface of an implant needs to be carefully optimized. PMID:26965394
Hu, Liang; Sun, Hongrui; Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying; Wang, Siling
2015-02-01
We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. Copyright © 2014 Elsevier B.V. All rights reserved.
Song, Youngjun; Takahashi, Tsukasa; Kim, Sejung; Heaney, Yvonne C; Warner, John; Chen, Shaochen; Heller, Michael J
2017-01-11
We demonstrate a DNA double-write process that uses UV to pattern a uniquely designed DNA write material, which produces two distinct binding identities for hybridizing two different complementary DNA sequences. The process requires no modification to the DNA by chemical reagents and allows programmed DNA self-assembly and further UV patterning in the UV exposed and nonexposed areas. Multilayered DNA patterning with hybridization of fluorescently labeled complementary DNA sequences, biotin probe/fluorescent streptavidin complexes, and DNA patterns with 500 nm line widths were all demonstrated.
Katagiri, Kiyofumi; Shishijima, Yoshinori; Koumoto, Kunihito; Inumaru, Kei
2018-01-01
pH-Responsive smart capsules were developed by the layer-by-layer assembly with a colloidtemplating technique. Polystyrene (PS) particles were employed as core templates. Acid-soluble inorganic nanosheets were prepared from Mg-Al layered double hydroxide (LDH) by an exfoliation technique. LDH nanosheets and anionic polyelectrolytes were alternatively deposited on PS core particles by the layer-by-layer assembly using electrostatic interaction. Hollow capsules were obtained by the removal of the PS core particles. The hollow capsules obtained thus were collapsed at acidic conditions by dissolution of LDH nanosheets in the hollow shells. The dissolution rate, i.e., the responsiveness of capsule, is tunable according to the strength of acids.
Biomolecular strategies for cell surface engineering
NASA Astrophysics Data System (ADS)
Wilson, John Tanner
Islet transplantation has emerged as a promising cell-based therapy for the treatment of diabetes, but its clinical efficacy remains limited by deleterious host responses that underlie islet destruction. In this dissertation, we describe the assembly of ultrathin conformal coatings that confer molecular-level control over the composition and biophysicochemical properties of the islet surface with implications for improving islet engraftment. Significantly, this work provides novel biomolecular strategies for cell surface engineering with broad biomedical and biotechnological applications in cell-based therapeutics and beyond. Encapsulation of cells and tissue offers a rational approach for attenuating deleterious host responses towards transplanted cells, but a need exists to develop cell encapsulation strategies that minimize transplant volume. Towards this end, we endeavored to generate nanothin films of diverse architecture with tunable properties on the extracellular surface of individual pancreatic islets through a process of layer-by-layer (LbL) self assembly. We first describe the formation of poly(ethylene glycol) (PEG)-rich conformal coatings on islets via LbL self assembly of poly(L-lysine)-g-PEG(biotin) and streptavidin. Multilayer thin films conformed to the geometrically and chemically heterogeneous islet surface, and could be assembled without loss of islet viability or function. Significantly, coated islets performed comparably to untreated controls in a murine model of allogenic intraportal islet transplantation, and, to our knowledge, this is the first study to report in vivo survival and function of nanoencapsulated cells or cell aggregates. Based on these findings, we next postulated that structurally similar PLL-g-PEG copolymers comprised of shorter PEG grafts might be used to initiate and propagate the assembly of polyelectrolyte multilayer (PEM) films on pancreatic islets, while simultaneously preserving islet viability. Through control of PLL backbone molecular weight, PEG chain length, and grafting ratio, PLL-g-PEG copolymers were rendered cytocompatible and used to initiate and propagate the growth of cell surface-supported PEM films. Planar characterization of this novel class of PEM films indicated that film thickness and composition may be tailored through appropriate control of layer number and copolymer properties. Furthermore, these investigations have helped establish a conceptual framework for the rational design of cell surface-supported thin films, with the objective of translating the diverse biomedical and biotechnological applications of PEM films to cellular interfaces. Important to the development of effective conformal islet coatings is an inherent strategy through which to incorporate bioactive molecules for directing desired biochemical or cellular responses. Towards this end, PLL-g-PEG copolymers functionalized with biotin, azide, and hydrazide moieties were synthesized and used, either alone or in combination, to capture streptavidin-, triphenylphosphine-, and aldehyde-labeled probes, respectively, on the islet surface. Additionally, PEM films assembled using alginate chemically modified to contain aldehyde groups could be used to introduce hydrazide-functionalized molecules to the islet surface. Hence, modified film constituents may be used as modular elements for controlling the chemical composition cell and tissue surfaces. Finally, we report a strategy for tethering thrombomodulin (TM) to the islet surface. Through site-specific, C-terminal biotinylation of TM and optimization of cell surface biotinylation, TM could be integrated with the islet surface. Re-engineering of islet surfaces with TM resulted in an increased catalytic capacity of islets to generate the powerful anti-inflammatory agent, activated protein C (APC), thereby providing a facile strategy for increasing the local concentration of APC at the site of transplantation.
Selin, Victor; Ankner, John Francis; Sukhishvili, Svetlana
2018-01-11
Despite intense recent interest in weakly bound nonlinear (“exponential”) multilayers, the underlying structure-property relationships of these films are still poorly understood. This study explores the effect of time used for deposition of individual layers of nonlinearly growing layer-by-layer (LbL) films composed of poly(methacrylic acid) (PMAA) and quaternized poly-2-(dimethylamino)ethyl methacrylate (QPC) on film internal structure, swelling, and stability in salt solution, as well as the rate of penetration of invading polyelectrolyte chains. Thicknesses of dry and swollen films were measured by spectroscopic ellipsometry, film internal structure—by neutron reflectometry (NR), and degree of PMAA ionization—by Fourier-transform infrared spectroscopy (FTIR). The results suggestmore » that longer deposition times resulted in thicker films with higher degrees of swelling (up to swelling ratio as high as 4 compared to dry film thickness) and stronger film intermixing. The stronger intermixed films were more swollen in water, exhibited lower stability in salt solutions, and supported a faster penetration rate of invading polyelectrolyte chains. These results can be useful in designing polyelectrolyte nanoassemblies for biomedical applications, such as drug delivery coatings for medical implants or tissue engineering matrices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selin, Victor; Ankner, John Francis; Sukhishvili, Svetlana
Despite intense recent interest in weakly bound nonlinear (“exponential”) multilayers, the underlying structure-property relationships of these films are still poorly understood. This study explores the effect of time used for deposition of individual layers of nonlinearly growing layer-by-layer (LbL) films composed of poly(methacrylic acid) (PMAA) and quaternized poly-2-(dimethylamino)ethyl methacrylate (QPC) on film internal structure, swelling, and stability in salt solution, as well as the rate of penetration of invading polyelectrolyte chains. Thicknesses of dry and swollen films were measured by spectroscopic ellipsometry, film internal structure—by neutron reflectometry (NR), and degree of PMAA ionization—by Fourier-transform infrared spectroscopy (FTIR). The results suggestmore » that longer deposition times resulted in thicker films with higher degrees of swelling (up to swelling ratio as high as 4 compared to dry film thickness) and stronger film intermixing. The stronger intermixed films were more swollen in water, exhibited lower stability in salt solutions, and supported a faster penetration rate of invading polyelectrolyte chains. These results can be useful in designing polyelectrolyte nanoassemblies for biomedical applications, such as drug delivery coatings for medical implants or tissue engineering matrices.« less
Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng
2013-05-06
Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.
2016-01-01
A combined surface treatment (i.e., surface grafting and a layer-by-layer (LbL) approach) is presented to create advanced biomaterials, i.e., 3D poly(l-lactide) (PLLA) microsphere scaffolds, at room temperature. The grafted surface plays a crucial role in assembling polyelectrolyte multilayers (PEMs) onto the surface of the microspheres, thus improving the physicochemical properties of the 3D microsphere scaffolds. The grafted surface of the PLLA microspheres demonstrates much better PEM adsorption, improved surface coverage at low pH, and smoother surfaces at high pH compared with those of nongrafted surfaces of PLLA microspheres during the assembly of PEMs. They induce more swelling than nongrafted surfaces after the assembly of the PEMs and exhibit blue emission after functionalization of the microsphere surface with a fluorescent dye molecule. The 3D scaffolds functionalized with and without nanosheets not only exhibit good mechanical performance similar to the compressive modulus of cancellous bone but also exhibit the porosity required for cancellous bone regeneration. The magnetic nanoparticle-functionalized 3D scaffolds result in an electrical conductivity in the high range of semiconducting materials (i.e., 1–250 S cm–1). Thus, these 3D microsphere scaffolds fabricated by surface grafting and the LbL approach are promising candidates for bone tissue engineering. PMID:29503506
Martins, Jéssica G; de Oliveira, Ariel C; Garcia, Patrícia S; Kipper, Matt J; Martins, Alessandro F
2018-05-15
Processing water-soluble polysaccharides, like pectin (PT), into materials with desirable stability and mechanical properties has been challenging. Here we report a new method to create water stable and mechanical resistant polyelectrolyte complex (PEC) membranes from PT and chitosan (CS) assemblies, without covalent crosslinking. This new method overcomes challenges of obtaining stable and durable complexes, by performing the complexation at low pH, enabling complex formation even when using an excess of PT, and when using PT with high degree of O-methoxylation. By performing the complexation at low pH, the complexes form with a high degree of intermolecular association, instead of forming by electrostatic complexation. This method avoids precipitation, and overcomes the aqueous instability typical of PT/CS complexes. After neutralization, the PEC membranes display features characteristic of a high degree of intermolecular association because of the self-assembling of polymer chains. The PT/CS ratio can be tuned to enhance the mechanical strength (σ = 39 MPa) of the membranes. These polysaccharide-based materials can demonstrate advantages over synthetic materials for technological applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Relative size selection of a conjugated polyelectrolyte in virus-like protein structures.
Brasch, Melanie; Cornelissen, Jeroen J L M
2012-02-01
A conjugated polyelectrolyte poly[(2-methoxy-5-propyloxy sulfonate)-phenyl-ene vinylene] (MPS-PPV) drives the assembly of virus capsid proteins to form single virus-like particles (VLPs) and aggregates with more than two VLPs, with a relative selection of high molecular weight polymer in the latter. This journal is © The Royal Society of Chemistry 2012
Li, Xiaodong; Hu, Qiaoling; Yue, Linhai; Shen, Jiacong
2006-07-24
Size-controlled, low-dispersed calcium carbonate microparticles were synthesized in the presence of the amphiphilic block copolymer polystyrene-b-poly(acrylic acid) (PS-b-PAA) by modulating the concentration of block copolymer in the reactive system. This type of hybrid microparticles have acid-resistant properties. By investigating the aggregation behaviors of PS-b-PAA micelles by transmission electron microscopy (TEM), the mechanism of hybrid calcium carbonate formation illustrated that the block copolymer served not only as "pseudonuclei" for the growth of calcium carbonate nanocrystals, but also forms the supramicelle congeries, a spherical framework, as templates for calcium carbonate nanocrystal growth into hybrid CaCO(3) particles. Moreover, this pilot study shows that the hybrid microparticle is a novel candidate as a template for fabricating multilayer polyelectrolyte capsules, in which the block copolymer is retained within the capsule interior after core removal under soft conditions. This not only facilitates the encapsulation of special materials, but also provides "micelles-enhanced" polyelectrolyte capsules.
Low stress polysilicon film and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)
2001-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.
Low stress polysilicon film and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)
2002-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.
Zhang, Xun; Zhang, Junhu; Zhu, Difu; Li, Xiao; Zhang, Xuemin; Wang, Tieqiang; Yang, Bai
2010-12-07
We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.
Large area polysilicon films with predetermined stress characteristics and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)
2002-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.
Molecular Dynamics Simulation of Salt Diffusion in Polyelectrolyte Assemblies.
Zhang, Ran; Duan, Xiaozheng; Ding, Mingming; Shi, Tongfei
2018-06-05
The diffusion of salt ions and charged probe molecules in polyelectrolyte assemblies is often assumed to follow a theoretical hopping model, in which the diffusing ion is hopping between charged sites of chains based on electroneutrality. However, experimental verification of diffusing pathway at such microscales is difficult, and the corresponding molecular mechanisms remain elusive. In this study, we perform all-atom molecular dynamics (MD) simulations of salt diffusion in polyelectrolyte (PE) assembly of poly (sodium 4-styrenesulfonate) (PSS) and poly (diallyldimethylammonium chloride) (PDAC). Besides the ion hopping mode, the diffusing trajectories are found presenting common features of a jump process, i.e., subjecting to PE relaxation, water pockets in the structure open and close, thus the ion can move from one pocket to another. Anomalous subdiffusion of ions and water is observed due to the trapping scenarios in these water pockets. The jump events are much rarer compared with ion hopping but significantly increases salt diffusion with increasing temperature. Our result strongly indicates that salt diffusion in hydrated PDAC/PSS is a combined process of ion hopping and jump motion. This provides new molecular explanation for the coupling of salt motion with chain motion and the nonlinear increase of salt diffusion at glass transition temperature.
Construction and enzymatic degradation of multilayered poly-l-lysine/DNA films.
Ren, Kefeng; Ji, Jian; Shen, Jiacong
2006-03-01
The layer-by-layer (LbL) self-assembly of poly-l-lysine (PLL) and deoxyribonucleic acid (DNA) was used to construct the enzymatic biodegradable multilayered films. The LbL build up of DNA multilayers was monitored by UV-vis spectrometry, and atomic force microscopy (AFM). AFM, UV-vis spectrometry and fluorescence spectrometry measurements indicated that 90% of DNA within the films was released almost linearly under 5 U mL(-1)alpha-chymotrypsin in PBS at 37 degrees C in 35 h. TEM and zeta potential experiments revealed that the released DNA molecules were condensed into the slight positive complexes with size from 20 to several hundred nanometers. The well-structured, easy processed enzymatic biodegradable multilayered film may have great potential for gene applications in tissue engineering, medical implants, etc.
Robust lanthanide emitters in polyelectrolyte thin films for photonic applications
NASA Astrophysics Data System (ADS)
Greenspon, Andrew S.; Marceaux, Brandt L.; Hu, Evelyn L.
2018-02-01
Trivalent lanthanides provide stable emission sources at wavelengths spanning the ultraviolet through the near infrared with uses in telecommunications, lighting, and biological sensing and imaging. We describe a method for incorporating an organometallic lanthanide complex within polyelectrolyte multilayers, producing uniform, optically active thin films on a variety of substrates. These films demonstrate excellent emission with narrow linewidths, stable over a period of months, even when bound to metal substrates. Utilizing different lanthanides such as europium and terbium, we are able to easily tune the resulting wavelength of emission of the thin film. These results demonstrate the suitability of this platform as a thin film emitter source for a variety of photonic applications such as waveguides, optical cavities, and sensors.
Sergeeva, Alena; Sergeev, Roman; Lengert, Ekaterina; Zakharevich, Andrey; Parakhonskiy, Bogdan; Gorin, Dmitry; Sergeev, Sergey; Volodkin, Dmitry
2015-09-30
Biocompatibility and high loading capacity of mesoporous CaCO3 vaterite crystals give an option to utilize the polycrystals for a wide range of (bio)applications. Formation and transformations of calcium carbonate polymorphs have been studied for decades, aimed at both basic and applied research interests. Here, composite multilayer-coated calcium carbonate polycrystals containing Fe3O4 magnetite nanoparticles and model protein lysozyme are fabricated. The structure of the composite polycrystals and vaterite → calcite recrystallization kinetics are studied. The recrystallization results in release of both loaded protein and Fe3O4 nanoparticles (magnetic manipulation is thus lost). Fe3O4 nanoparticles enhance the recrystallization that can be induced by reduction of the local pH with citric acid and reduction of the polycrystal crystallinity. Oppositely, the layer-by-layer assembled poly(allylamine hydrochloride)/poly(sodium styrenesulfonate) polyelectrolyte coating significantly inhibits the vaterite → calcite recrystallization (from hours to days) most likely due to suppression of the ion exchange giving an option to easily tune the release kinetics for a wide time scale, for example, for prolonged release. Moreover, the recrystallization of the coated crystals results in formulation of multilayer capsules keeping the feature of external manipulation. This study can help to design multifunctional microstructures with tailor-made characteristics for loading and controlled release as well as for external manipulation.
Self-assembled biomimetic antireflection coatings
NASA Astrophysics Data System (ADS)
Linn, Nicholas C.; Sun, Chih-Hung; Jiang, Peng; Jiang, Bin
2007-09-01
The authors report a simple self-assembly technique for fabricating antireflection coatings that mimic antireflective moth eyes. Wafer-scale, nonclose-packed colloidal crystals with remarkable large hexagonal domains are created by a spin-coating technology. The resulting polymer-embedded colloidal crystals exhibit highly ordered surface modulation and can be used directly as templates to cast poly(dimethylsiloxane) (PDMS) molds. Moth-eye antireflection coatings with adjustable reflectivity can then be molded against the PDMS master. The specular reflection of replicated nipple arrays matches the theoretical prediction using a thin-film multilayer model. These biomimetic films may find important technological application in optical coatings and solar cells.
Etienne, O; Picart, C; Taddei, C; Haikel, Y; Dimarcq, J L; Schaaf, P; Voegel, J C; Ogier, J A; Egles, C
2004-10-01
Infection of implanted materials by bacteria constitutes one of the most serious complications following prosthetic surgery. In the present study, we developed a new strategy based on the insertion of an antimicrobial peptide (defensin from Anopheles gambiae mosquitoes) into polyelectrolyte multilayer films built by the alternate deposition of polyanions and polycations. Quartz crystal microbalance and streaming potential measurements were used to follow step by step the construction of the multilayer films and embedding of the defensin within the films. Antimicrobial assays were performed with two strains: Micrococcus luteus (a gram-positive bacterium) and Escherichia coli D22 (a gram-negative bacterium). The inhibition of E. coli D22 growth at the surface of defensin-functionalized films was found to be 98% when 10 antimicrobial peptide layers were inserted in the film architecture. Noticeably, the biofunctionalization could be achieved only when positively charged poly(l-lysine) was the outermost layer of the film. On the basis of the results of bacterial adhesion experiments observed by confocal or electron microscopy, these observations could result from the close interaction of the bacteria with the positively charged ends of the films, which allows defensin to interact with the bacterial membrane structure. These results open new possibilities for the use of such easily built and functionalized architectures onto any type of implantable biomaterial. The modified surfaces are active against microbial infection and represent a novel means of local host protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle
2011-03-14
The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMsmore » when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.« less
Li, Ye; Yip, Wai Tak
2004-12-07
We employed negatively charged fluorescein (FL), positively charged rhodamine 6G (R6G), and neutral Nile Red (NR) as molecular probes to investigate the influence of Coulombic interaction on their deposition into and rotational mobility inside polyelectrolyte multilayer (PEM) films. The entrapment efficiency of the dyes reveals that while Coulombic repulsion has little effect on dye deposition, Coulombic attraction can dramatically enhance the loading efficiency of dyes into a PEM film. By monitoring the emission polarization of single dye molecules in polyethylenimine (PEI) films, the percentages of mobile R6G, NR, and FL were determined to be 87 +/- 4%, 76 +/- 5%, and 68 +/- 3%, respectively. These mobility distributions suggest that cationic R6G enjoys the highest degree of rotational freedom, whereas anionic FL shows the least mobility because of Coulombic attraction toward cationic PEI. Regardless of charges, this high percentage of mobile molecules is in stark contrast to the 5-40% probe mobility reported from spun-cast polymer films, indicating that our PEI films contain more free volume and display richer polymer dynamics. These observations demonstrate the potential of using isolated fluorescent probes to interrogate the internal structure of a PEM film at a microscopic level.
Xu, Qingwen; Li, Xi; Jin, Yingying; Sun, Lin; Ding, Xiaoxu; Liang, Lin; Wang, Lei; Nan, Kaihui; Ji, Jian; Chen, Hao; Wang, Bailiang
2017-12-14
Implant-associated bacterial infections pose serious medical and financial issues due to the colonization and proliferation of pathogens on the surface of the implant. The as-prepared traditional antibacterial surfaces can neither resist bacterial adhesion nor inhibit the development of biofilm over the long term. Herein, novel (montmorillonite/poly-l-lysine-gentamicin sulfate) 8 ((MMT/PLL-GS) 8 ) organic-inorganic hybrid multilayer films were developed to combine enzymatic degradation PLL for on-demand self-defense antibiotics release. Small molecule GS was loaded into the multilayer films during self-assembly and the multilayer films showed pH-dependent and linear growth behavior. The chymotrypsin- (CMS) and bacterial infections-responsive film degradation led to the peeling of the films and GS release. Enzyme-responsive GS release exhibited CMS concentration dependence as measured by the size of the inhibition zone and SEM images. Notably, the obtained antibacterial films showed highly efficient bactericidal activity which killed more than 99.9% of S. aureus in 12 h. Even after 3 d of incubation in S. aureus, E. coli or S. epidermidis solutions, the multilayer films exhibited inhibition zones of more than 1.5 mm in size. Both in vitro and in vivo antibacterial tests indicated good cell compatibility, and anti-inflammatory, and long-term bacterial anti-adhesion and biofilm inhibition properties.
Park, Jooneon; Porter, Marc D.; Granger, Michael C.
2016-01-01
Stable suspensions of magnetic nanoparticles (MNPs) with large magnetic moment, m, per particle have tremendous utility in a wide range of biological applications. However, due to the strong magnetic coupling interactions often present in these systems, it is challenging to stabilize individual, high moment, ferro- and ferrimagnetic nanoparticles. A novel approach to encapsulate large, i.e., >100 nm, ferrimagnetic zinc ferrite nanocubes (ZFNCs) with silica after an intermediary layer-by-layer polyelectrolyte deposition step is described in this paper. The seed ZFNCs are uniform in shape and size and have high saturation mass magnetic moment (σs ~100 emu/g, m~4×10−13 emu/particle at 150 Oe). For the MNP system described within, successful silica encapsulation and creation of discrete ZFNCs were realized only after depositing polyelectrolyte multilayers composed of alternating polyallylamine and polystyrene sulfonate. Without the intermediary polyelectrolyte layers, magnetic dipole-dipole interactions led to the formation of linearly chained ZFNCs embedded in a silica matrix. Characterization of particle samples was performed by electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, powder X-ray diffraction, dynamic light scattering (hydrodynamic size and ζ-potential), and vibrating sample magnetometry. The results of these characterizations, which were performed after each of the synthetic steps, and synthetic details are presented. PMID:25756216
Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong
2015-09-18
A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD)₄/Au biosensor exhibited a good linear range of 0.01-8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ugur, Sule S., E-mail: sule@mmf.sdu.edu.tr; Sariisik, Merih; Aktas, A. Hakan
Highlights: {yields} Cationic charges were created on the cotton fibre surfaces with 2,3-epoxypropyltrimethylammonium chloride. {yields} Al{sub 2}O{sub 3} nanoparticles were deposited on the cotton fabrics by layer-by-layer deposition. {yields} The fabrics deposited with the Al{sub 2}O{sub 3} nanoparticles exhibit better UV-protection and significant flame retardancy properties. {yields} The mechanical properties were improved after surface film deposition. -- Abstract: Al{sub 2}O{sub 3} nanoparticles were used for fabrication of multilayer nanocomposite film deposition on cationic cotton fabrics by electrostatic self-assembly to improve the mechanical, UV-protection and flame retardancy properties of cotton fabrics. Cotton fabric surface was modified with a chemical reaction tomore » build-up cationic charge known as cationization. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy were used to verify the presence of deposited nanolayers. Air permeability, whiteness value, tensile strength, UV-transmittance and Limited Oxygen Index properties of cotton fabrics were analyzed before and after the treatment of Al{sub 2}O{sub 3} nanoparticles by electrostatic self-assemblies. It was proved that the flame retardancy, tensile strength and UV-transmittance of cotton fabrics can be improved by Al{sub 2}O{sub 3} nanoparticle additive through electrostatic self-assembly process.« less
2015-01-01
Non- and semipolar GaN have great potential to improve the efficiency of light emitting devices due to much reduced internal electric fields. However, heteroepitaxial GaN growth in these crystal orientations suffers from very high dislocation and stacking faults densities. Here, we report a facile method to obtain low defect density non- and semipolar heteroepitaxial GaN via selective area epitaxy using self-assembled multilayers of silica nanospheres (MSN). Nonpolar (11–20) and semipolar (11–22) GaN layers with high crystal quality have been achieved by epitaxial integration of the MSN and a simple one-step overgrowth process, by which both dislocation and basal plane stacking fault densities can be significantly reduced. The underlying defect reduction mechanisms include epitaxial growth through the MSN covered template, island nucleation via nanogaps in the MSN, and lateral overgrowth and coalescence above the MSN. InGaN/GaN multiple quantum wells structures grown on a nonpolar GaN/MSN template show more than 30-fold increase in the luminescence intensity compared to a control sample without the MSN. This self-assembled MSN technique provides a new platform for epitaxial growth of nitride semiconductors and offers unique opportunities for improving the material quality of GaN grown on other orientations and foreign substrates or heteroepitaxial growth of other lattice-mismatched materials. PMID:27065755
NASA Astrophysics Data System (ADS)
White, Nicholas
Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is <2. However, water-splitting at strongly overlimiting current densities may lead to a local pH increase close to the membrane surface and alter film permeability or allow passage of Mg(OH)x species to decrease selectivity. When the source phase contains high salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000 because the diffusion-limited K+ or Li+ currents exceed the applied current. However, ED selectivities gradually decline with time. Thus, future research should aim to increase membrane stability and limiting currents to fully exploit the remarkable selectivity of these membranes. PEMs deposited on commercial ultrafiltration (UF) membranes also show high rejections of organic dyes. Coating the surface of polyethersulfone (PES) membranes imparts a selective barrier to dye molecules used in textile production. These films achieve dye rejections >98% and may be useful for wastewater treatment and dye recovery. Other studies in microfluidic channels exploit ion transport phenomena in the vicinity of ion-selective junctions, such as cation-exchange membranes. These studies suggest that ion concentration polarization (ICP) could remove charged species from feed streams.
NASA Astrophysics Data System (ADS)
Wang, Duhua
Although current chromate coatings function very well in corrosion protection for aircraft alloys, such as aluminum alloy 2024 T3, the U.S. Environmental Protection Agency is planning to totally ban the use of chromates as coating materials in the next decade or so because of their extremely toxic effect. For this purpose, both self-assembled layers and silicate magnesium-rich primers were tested to provide the corrosion protection for aluminum alloy. The long-term goal of this research is to develop a coating system to replace the current chromate coating for aircraft corrosion protection. Aluminum alloy 2024 T3 substrates were modified with self-assembled monolayer or multilayer thin films from different alkylsilane compounds. Mono-functional silanes, such as octadecyltrichlorosilane (C18SiCl3), can form a mixed hydrophobic monolayer or multilayer thin film on the aluminum oxide surface to provide a barrier to water and other electrolytes, so the corrosion resistance of the SAMs modified surface was increased significantly. On the other hand, the bi-functional silane self-assembly could attach the aluminum surface through the silicon headgroup while using its functional tailgroup to chemically bond the polymer coating, thus improving the adhesion between the aluminum substrate and coating substantially, and seems to contribute more to corrosion protection of aluminum substrate. Organosilanes were also combined with tetraethyl orthosilicate (TEOS) in propel ratios to form a sol-gel binder to make silicate magnesium-rich primers. Analogue to the inorganic zinc-rich coatings, the silicate magnesium-rich primers also showed excellent adhesion and solvent resistance. The sacrificial magnesium pigments and the chemically inert silicate binder both contribute to the anti-corrosion properties. Future studies will be focused on the formula optimization for better toughness, chemical resistance and anticorrosion performance.
Matrix polyelectrolyte capsules based on polysaccharide/MnCO₃ hybrid microparticle templates.
Wei, Qingrong; Ai, Hua; Gu, Zhongwei
2011-06-15
An efficient strategy for biomacromolecule encapsulation based on spontaneous deposition into polysaccharide matrix-containing capsules is introduced in this study. First, hybrid microparticles composed of manganese carbonate and ionic polysaccharides including sodium hyaluronate (HA), sodium alginate (SA) and dextran sulfate sodium (DS) with narrow size distribution were synthesized to provide monodisperse templates. Incorporation of polysaccharide into the hybrid templates was successful as verified by thermogravimetric analysis (TGA) and confocal laser scanning microscopy (CLSM). Matrix polyelectrolyte microcapsules were fabricated through layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) onto the hybrid particles, followed by removal of the inorganic part of the cores, leaving polysaccharide matrix inside the capsules. The loading and release properties of the matrix microcapsules were investigated using myoglobin as a model biomacromolecule. Compared to matrix-free capsules, the matrix capsules had a much higher loading capacity up to four times; the driving force is mostly due to electrostatic interactions between myoglobin and the polysaccharide matrix. From our observations, for the same kind of polysaccharide, a higher amount of polysaccharide inside the capsules usually led to better loading capacity. The release behavior of the loaded myoglobin could be readily controlled by altering the environmental pH. These matrix microcapsules may be used as efficient delivery systems for various charged water-soluble macromolecules with applications in biomedical fields. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Greene, J. E.
2015-03-01
The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (˜1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ˜78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese "floating-ink" art (suminagashi) developed ˜1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO2 and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including controlled wetting, adhesion, electrochemistry, biocompatibility, molecular recognition, biosensing, cell biology, non-linear optics, molecular electronics, solar cells, read/write/erase memory, and magnetism.
Stability of self-assembled polymer films investigated by optical laser reflectometry.
Dejeu, Jérôme; Diziain, Séverine; Dange, Catherine; Membrey, François; Charraut, Daniel; Foissy, Alain
2008-04-01
We studied the influence of post-treatment rinsing after the formation of self-assembled polyelectrolyte films made with the weak base poly(allylamine hydrochloride) (PAH) and the strong acid poly(styrene sulfonate) (PSS). The stability of the film was studied using optical fixed-angle laser reflectometry to measure the release of polymeric material and AFM experiments to reveal the change of morphology and thickness. We found that the polymer films were stable upon rinsing when the pH was the same in the solution as that used in the buildup (pH 9). The films released most of the polymeric material when rinsed at higher pH values, but a layer remained that corresponded to a PAH monolayer directly bound with the silica surface. Films containing at least four bilayers were stable upon rinsing at lower pH values, but the stability of thinner films depended on the type of the last polymer deposited. They were stable in the case of PSS as an outermost deposit, but they released a large part of their material in the case of PAH. The stability results were determined using a simple model of the step-by-step assembly of the polymer film described formerly.
Germain, M; Paquereau, L; Winterhalter, M; Hochepied, J-F; Fournier, D
2007-03-01
Uses of enzymes for therapeutic purpose or for biosensing require a well-controlled nanoenvironnement to avoid degradation by proteolytic agents, pH variations or dilution effects. A solution is encapsulation under undenaturating conditions into a nanometer sized and stable capsule. The nanometer scall decreases recognition by the reticulo-endothelial system recognition and subsequent immune reaction. Liposomes are the method of choice since they allow protein encapsulation under mild conditions. However they lack in stability. In contrast, other type of capsules exhibit strong stability but with conditions required for formation that are incompatible with enzyme integrity. Here we combine different capsule formation techniques and use liposomes as templates for further stabilization. Here we demonstrate two types of multicomposite capsules. The first type is to coat the liposome surface with polyelectrolytes followed by secondary covalent crosslinking of the polyelectrolytes multilayer. In the second type of capsules we used silica to build an inorganic shell around liposome. Both techniques allow the formation of detergent stable nanocapsules which exhibits properties protective against acetylcholinesterase protein degradation, an enzyme of much interest for pesticide detection.
The fabrication of nanopatterns with Au nanoparticles-embedded micelles via nanoimprint lithography.
Lee, Jung-Pil; Kim, Eun-Uk; Koh, Haeng-Deog; Kang, Nam-Goo; Jung, Gun-Young; Lee, Jae-Suk
2009-09-09
We fabricated nanopatterns with Au nanoparticles-embedded micelles (Au-micelles) by self-assembly of block copolymers via nanoimprint lithography. The micelle structure prepared by self-assembled block copolymers was used as a template for the synthesis of Au nanoparticles (Au NPs). Au NPs were synthesized in situ inside the micelles of polystyrene-block-poly(2-vinylpyridine) (PS- b-P2VP). Au-micelles were arranged on the trenches of the polymer template, which was imprinted by nanoimprint lithography. The fabrication of line-type and dot-type nanopatterns was carried out by the combined method. In addition, multilayer nanopatterns of the Au-micelles were also proposed.
Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates
NASA Astrophysics Data System (ADS)
Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P.
2000-12-01
We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 × 1011 wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.
Zappalà, G; Motta, V; Tuccitto, N; Vitale, S; Torrisi, A; Licciardello, A
2015-12-15
Secondary ion mass spectrometry (SIMS) with polyatomic primary ions provides a successful tool for molecular depth profiling of polymer systems, relevant in many technological applications. Widespread C60 sources, however, cause in some polymers extensive damage with loss of molecular information along depth. We study a method, based on the use of a radical scavenger, for inhibiting ion-beam-induced reactions causing sample damage. Layered polystyrene sulfonate and polyacrylic acid based polyelectrolyte films, behaving differently towards C60 beam-induced damage, were selected and prepared as model systems. They were depth profiled by means of time-of-flight (TOF)-SIMS in dual beam mode, using fullerene ions for sputtering. Nitric oxide was introduced into the analysis chamber as a radical scavenger. The effect of sample cooling combined with NO-dosing on the quality of depth profiles was explored. NO-dosing during C60-SIMS depth profiling of >1 micrometer-thick multilayered polyelectrolytes allows detection, along depth, of characteristic fragments from systems otherwise damaged by C60 bombardment, and increases sputtering yield by more than one order of magnitude. By contrast, NO has little influence on those layers that are well profiled with C60 alone. Such leveling effect, more pronounced at low temperature, leads to a dramatic improvement of profile quality, with a clear definition of interfaces. NO-dosing provides a tool for extending the applicability, in SIMS depth profiling, of the widely spread fullerene ion sources. In view of the acceptable erosion rates on inorganics, obtainable with C60, the method could be of relevance also in connection with the 3D-imaging of hybrid polymer/inorganic systems. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya
2014-10-01
A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-visible absorption spectrum (UV-vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10-4 to 1.2×10-3 M with the detect limit of 5×10-6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor.
Mao, Xu; Zhang, Jia-Ning; Gao, Li-Hua; Su, Yu; Chen, Peng-Xia; Wang, Ke-Zhi
2016-04-01
An electrostatically self-assembled multilayer thin film consisting of alternating layers of Keggin polyoxometalate of Zn-substituted tungstoborate (BW11Zn) and Rhodamine B (RhB) has successfully been prepared on a quartz and indium-tin oxide (ITO) glass substrate. The ultraviolet-visible (UV-vis) absorption spectra demonstrated that the electrostatically self-assembled film of (BW11Zn/RhB)n was uniformly deposited layer by layer, and the RhB molecules in the film formed the J-aggregation. The photoelectrochemical investigations showed that the films generated stable cathodic photocurrents that originated from RhB, and the maximal cathodic photocurrent density generated by an eight-layer film was 4.9 µA/cm2 while the film was irradiated with 100 mW/cm2 polychromatic light of 730 nm > λ > 325 nm at an applied potential of 0 V versus a saturated calomel electrode.
NASA Astrophysics Data System (ADS)
Simon, Joseph R.; Carroll, Nick J.; Rubinstein, Michael; Chilkoti, Ashutosh; López, Gabriel P.
2017-06-01
Dynamic protein-rich intracellular structures that contain phase-separated intrinsically disordered proteins (IDPs) composed of sequences of low complexity (SLC) have been shown to serve a variety of important cellular functions, which include signalling, compartmentalization and stabilization. However, our understanding of these structures and our ability to synthesize models of them have been limited. We present design rules for IDPs possessing SLCs that phase separate into diverse assemblies within droplet microenvironments. Using theoretical analyses, we interpret the phase behaviour of archetypal IDP sequences and demonstrate the rational design of a vast library of multicomponent protein-rich structures that ranges from uniform nano-, meso- and microscale puncta (distinct protein droplets) to multilayered orthogonally phase-separated granular structures. The ability to predict and program IDP-rich assemblies in this fashion offers new insights into (1) genetic-to-molecular-to-macroscale relationships that encode hierarchical IDP assemblies, (2) design rules of such assemblies in cell biology and (3) molecular-level engineering of self-assembled recombinant IDP-rich materials.
A promising routine to fabricate GeSi nanowires via self-assembly on miscut Si (001) substrates.
Zhong, Zhenyang; Gong, Hua; Ma, Yingjie; Fan, Yongliang; Jiang, Zuimin
2011-04-11
: Very small and compactly arranged GeSi nanowires could self-assembled on vicinal Si (001) substrates with ~8° off toward ⟨110⟩ during Ge deposition. The nanowires were all oriented along the miscut direction. The small ration of height over width of the nanowire indicated that the nanowires were bordered partly with {1 0 5} facets. These self-assembled small nanowires were remarkably influenced by the growth conditions and the miscut angle of substrates in comparison with large dome-like islands obtained after sufficient Ge deposition. These results proposed that the formation of the nanowire was energetically driven under growth kinetic assistance. Three-dimensionally self-assembled GeSi nanowires were first realized via multilayer Ge growth separated with Si spacers. These GeSi nanowires were readily embedded in Si matrix and compatible with the sophisticated Si technology, which suggested a feasible strategy to fabricate nanowires for fundamental studies and a wide variety of applications.PACS: 81.07.Gf, 81.16.Dn, 68.65.-k, 68.37.Ps.
Biswas, Sanjib; Drzal, Lawrence T
2010-08-01
The diverse physical and chemical aspects of graphene nanosheets such as particle size surface area and edge chemistry were combined to fabricate a new supercapacitor electrode architecture consisting of a highly aligned network of large-sized nanosheets as a series of current collectors within a multilayer configuration of bulk electrode. Capillary driven self-assembly of monolayers of graphene nanosheets was employed to create a flexible, multilayer, free-standing film of highly hydrophobic nanosheets over large macroscopic areas. This nanoarchitecture exhibits a high-frequency capacitative response and a nearly rectangular cyclic voltammogram at 1000 mV/s scanning rate and possesses a rapid current response, small equivalent series resistance (ESR), and fast ionic diffusion for high-power electrical double-layer capacitor (EDLC) application.
NASA Astrophysics Data System (ADS)
Zheng, Huajun; Tang, Fengqiu; Lim, Melvin; Mukherji, Aniruddh; Yan, Xiaoxia; Wang, Lianzhou; (Max) Lu, Gao Qing
Multilayered films of cobalt oxyhydroxide nanowires (CoOOHNW) and exfoliated manganese oxide nanosheet (MONS) are fabricated by potentiostatic deposition and electrostatic self-assembly on indium-tin oxide coated glass substrates. The morphology and chemical composition of these films are characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS) and the potential application as electrochemical supercapacitors are investigated using cyclic voltammetry and charge-discharge measurements. These ITO/CoOOHNW/MONS multilayered film electrodes exhibit excellent electrochemical capacitance properties, including high specific capacitance (507 F g -1) and long cycling durability (less 2% capacity loss after 5000 charge/discharge cycles). These characteristics indicate that these newly developed films may find important application for electrochemical capacitors.
Deng, Jie; Liu, Xinyue; Ma, Lang; Cheng, Chong; Shi, Wenbin; Nie, Chuanxiong; Zhao, Changsheng
2014-12-10
In this study, multifunctional and heparin-mimicking star-shaped supramolecules-deposited 3D porous multilayer films with improved biocompatibility were fabricated via a layer-by-layer (LbL) self-assembly method on polymeric membrane substrates. Star-shaped heparin-mimicking polyanions (including poly(styrenesulfonate-co-sodium acrylate; Star-PSS-AANa) and poly(styrenesulfonate-co-poly(ethylene glycol)methyl ether methacrylate; Star-PSS-EGMA)) and polycations (poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate; Star-PMeDMA) were first synthesized by atom transfer radical polymerization (ATRP) from β-cyclodextrin (β-CD) based cores. Then assembly of 3D porous multilayers onto polymeric membrane surfaces was carried out by alternating deposition of the polyanions and polycations via electrostatic interaction. The surface morphology and composition, water contact angle, blood activation, and thrombotic potential as well as cell viability for the coated heparin-mimicking films were systematically investigated. The results of surface ATR-FTIR spectra and XPS spectra verified successful deposition of the star-shaped supramolecules onto the biomedical membrane surfaces; scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations revealed that the modified substrate had 3D porous surface morphology, which might have a great biological influence on the biointerface. Furthermore, systematic in vitro investigation of protein adsorption, platelet adhesion, human platelet factor 4 (PF4, indicates platelet activation), activate partial thromboplastin time (APTT), thrombin time (TT), coagulation activation (thrombin-antithrombin III complex (TAT, indicates blood coagulant)), and blood-related complement activation (C3a and C5a, indicates inflammation potential) confirmed that the heparin-mimicking multilayer coated membranes exhibited ultralow blood component activations and excellent hemocompatibility. Meanwhile, after surface coating, endothelial cell viability was also promoted, which indicated that the heparin-mimicking multilayer coating might extend the application fields of polymeric membranes in biomedical fields.
NASA Astrophysics Data System (ADS)
Hua, Feng
Nanoparticles are exciting materials because they exhibit unique electronic, catalytic, and optical properties. As a novel and promising nanobuilding block, it attracts considerable research efforts in its integration into a wide variety of thin film devices. Nanoparticles were adsorbed onto the substrate with layer-by-layer self-assembly which becomes of great interest due to its suitability in colloid particle assembly. Without extremely high temperatures and sophisticated equipment, molecularly organized films in an exactly pre-designed order can grow on almost all the substrates in nature. Two approaches generating spatially separated patterns comprised of nanoparticles are demonstrated, as well as two approaches patterning more than one type of nonoparticle on a silicon wafer. The structure of the thin film patterned by these approaches are analyzed and considered suitable to the thin film device. Finally, the combination of lithography and layer-by-layer (lbl) self-assembly is utilized to realize the microelectronic device with functional nonoparticles. The lbl self-assembly is the way to coat the nonoparticles and the lighography to pattern them. Based on the coating and patterning technique, a MOS-capacitor, a MOS field-effect-transistor and magnetic thin film cantilever are fabricated.
Strong and weak adsorptions of polyelectrolyte chains onto oppositely charged spheres
NASA Astrophysics Data System (ADS)
Cherstvy, A. G.; Winkler, R. G.
2006-08-01
We investigate the complexation of long thin polyelectrolyte (PE) chains with oppositely charged spheres. In the limit of strong adsorption, when strongly charged PE chains adapt a definite wrapped conformation on the sphere surface, we analytically solve the linear Poisson-Boltzmann equation and calculate the electrostatic potential and the energy of the complex. We discuss some biological applications of the obtained results. For weak adsorption, when a flexible weakly charged PE chain is localized next to the sphere in solution, we solve the Edwards equation for PE conformations in the Hulthén potential, which is used as an approximation for the screened Debye-Hückel potential of the sphere. We predict the critical conditions for PE adsorption. We find that the critical sphere charge density exhibits a distinctively different dependence on the Debye screening length than for PE adsorption onto a flat surface. We compare our findings with experimental measurements on complexation of various PEs with oppositely charged colloidal particles. We also present some numerical results of the coupled Poisson-Boltzmann and self-consistent field equation for PE adsorption in an assembly of oppositely charged spheres.
Niang, Pape Momar; Huang, Zhiwei; Dulong, Virginie; Souguir, Zied; Le Cerf, Didier; Picton, Luc
2016-03-30
Several thermo-sensitive polyelectrolyte complexes were prepared by ionic self-association between an anionic polysaccharide (alginate) and a monocationic copolymer (polyether amine, Jeffamine®-M2005) with a 'Low Critical Solubility Temperature' (LCST). We show that electro-association must be established below the aggregation temperature of the free Jeffamine®, after which the organization of the system is controlled by the thermo-association of Jeffamine® that was previously electro-associated with the alginate. Evidence for this comes primarily from the rheology in the semi-dilute region. Electro- and thermo-associative behaviours are optimal at a pH corresponding to maximum ionization of both compounds (around pH 7). High ionic strength could prevent the electro-association. The reversibility of the transition is possible only at temperatures lower than the LCST of Jeffamine®. Similar behaviour has been obtained with carboxymethyl cellulose (CMC), which suggests that this behaviour can be observed using a range of anionic polyelectrolytes. In contrast, no specific properties have been found for pullulan, which is a neutral polysaccharide. Copyright © 2015 Elsevier Ltd. All rights reserved.
Opto-electronic devices with nanoparticles and their assemblies
NASA Astrophysics Data System (ADS)
Nguyen, Chieu Van
Nanotechnology is a fast growing field; engineering matters at the nano-meter scale. A key nanomaterial is nanoparticles (NPs). These sub-wavelength (< 100nm) particles provide tremendous possibilities due to their unique electrical, optical, and mechanical properties. Plethora of NPs with various chemical composition, size and shape has been synthesized. Clever designs of sub-wavelength structures enable observation of unusual properties of materials, and have led to new areas of research such as metamaterials. This dissertation describes two self-assemblies of gold nanoparticles, leading to an ultra-soft thin film and multi-functional single electron device at room temperature. First, the layer-by-layer self-assembly of 10nm Au nanoparticles and polyelectrolytes is shown to behave like a cellular-foam with modulus below 100 kPa. As a result, the composite thin film (˜ 100nm) is 5 orders of magnitude softer than an equally thin typical polymer film. The thin film can be compressed reversibly to 60% strain. The extraordinarily low modulus and high compressibility are advantageous in pressure sensing applications. The unique mechanical properties of the composite film lead to development of an ultra-sensitive tactile imaging device capable of screening for breast cancer. On par with human finger sensitivity, the tactile device can detect a 5mm imbedded object up to 20mm below the surface with low background noise. The second device is based on a one-dimensional (1-D) self-directed self-assembly of Au NPs mediated by dielectric materials. Depending on the coverage density of the Au NPs assembly deposited on the device, electronic emission was observed at ultra-low bias of 40V, leading to low-power plasma generation in air at atmospheric pressure. Light emitted from the plasma is apparent to the naked eyes. Similarly, 1-D self-assembly of Au NPs mediated by iron oxide was fabricated and exhibits ferro-magnetic behavior. The multi-functional 1-D self-assembly of Au NPs has great potential in modern electronics such as solid state lighting, plasma-based nanoelectronics, and memory devices.
Elahi, M Fazley; Guan, Guoping; Wang, Lu; Zhao, Xinzhe; Wang, Fujun; King, Martin W
2015-03-03
There is an urgent need to develop a biologically active implantable small-diameter vascular prosthesis with long-term patency. Silk-fibroin-based small-diameter vascular prosthesis is a promising candidate having higher patency rate; however, the surface modification is indeed required to improve its further hemocompatibility. In this study, silk fibroin fabric was modified by a two-stage process. First, the surface of silk fibroin fabric was coated using a layer-by-layer polyelectrolyte deposition technique by stepwise dipping the silk fibroin fabric into a solution of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(acrylic acid) (PAA) solution. The dipping procedure was repeated to obtain the PAH/PAA multilayers deposited on the silk fibroin fabrics. Second, the polyelectrolyte-deposited silk fibroin fabrics were treated in EDC/NHS-activated low-molecular-weight heparin (LMWH) solution at 4 °C for 24 h, resulting in immobilization of LMWH on the silk fibroin fabrics surface. Scanning electron microscopy, atomic force microscopy, and energy-dispersive X-ray data revealed the accomplishment of LMWH immobilization on the polyelectrolyte-deposited silk fibroin fabric surface. The higher the number of PAH/PAA coating layers on the silk fibroin fabric, the more surface hydrophilicity could be obtained, resulting in a higher fetal bovine serum protein and platelets adhesion resistance properties when tested in vitro. In addition, compared with untreated sample, the surface-modified silk fibroin fabrics showed negligible loss of bursting strength and thus reveal the acceptability of polyelectrolytes deposition and heparin immobilization approach for silk-fibroin-based small-diameter vascular prostheses modification.
Liquid—liquid interface-mediated Au—ZnO composite membrane using ‘thiol-ene’ click chemistry
NASA Astrophysics Data System (ADS)
Ali, Mohammed; Ghosh, Sujit Kumar
2015-07-01
A nanoparticle-decorated composite membrane has been devised at the water/CCl4 interface based on the self-assembly of ligand-stabilized gold and zinc oxide nanoparticles, exploiting the ‘thiol-ene’ click chemistry between the thiol groups of 11-mercaptoundecanoic acid-stabilized ZnO nanoparticles and the ene functionality of cinnamic acid attached to gold nanoparticles. The interfacial assembly of ultrasmall particles leads to a multilayer film that exhibits charge-dependent permeability of amino acid molecules across the membrane.
Ardini, Matteo; Golia, Giordana; Passaretti, Paolo; Cimini, Annamaria; Pitari, Giuseppina; Giansanti, Francesco; Di Leandro, Luana; Ottaviano, Luca; Perrozzi, Francesco; Santucci, Sandro; Morandi, Vittorio; Ortolani, Luca; Christian, Meganne; Treossi, Emanuele; Palermo, Vincenzo; Angelucci, Francesco; Ippoliti, Rodolfo
2016-03-28
Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the "double-faced" Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml(-1). Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and "green" routes to 3D reduced GO-metal composite materials.
Architecture and assembly of the Bacillus subtilis spore coat.
Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J
2014-01-01
Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of "nanodot" particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism.
Architecture and Assembly of the Bacillus subtilis Spore Coat
Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J.
2014-01-01
Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism. PMID:25259857
Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong
2015-01-01
A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs-GOD)4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance. PMID:28347080
Regatos, David; Sepúlveda, Borja; Fariña, David; Carrascosa, Laura G; Lechuga, Laura M
2011-04-25
We present a theoretical and experimental study on the biosensing sensitivity of Au/Co/Au multilayers as transducers of the magneto-optic surface-plasmon-resonance (MOSPR) sensor. We demonstrate that the sensing response of these magneto-plasmonic (MP) transducers is a trade-off between the optical absorption and the magneto-optical activity, observing that the MP multilayer with larger MO effect does not provide the best sensing response. We show that it is possible to design highly-sensitive MP transducers able to largely surpass the limit of detection of the conventional surface-plasmon-resonance (SPR) sensor. This was proved comparing the biosensing performance of both sensors for the label-free detection of short DNA chains hybridization. For this purpose, we used and tested a novel label-free biofunctionalization protocol based on polyelectrolytes, which increases the resistance of MP transducers in aqueous environments.
Polymer multilayer tattooing for enhanced DNA vaccination
NASA Astrophysics Data System (ADS)
Demuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.
2013-04-01
DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.
NASA Astrophysics Data System (ADS)
Hayward, Stephen L.; Francis, David M.; Sis, Matthew J.; Kidambi, Srivatsan
2015-10-01
The ability to control the spatial distribution and temporal release of a therapeutic remains a central challenge for biomedical research. Here, we report the development and optimization of a novel substrate mediated therapeutic delivery system comprising of hyaluronic acid covalently functionalized liposomes (HALNPs) embedded into polyelectrolyte multilayer (PEM) platform via ionic stabilization. The PEM platform was constructed from sequential deposition of Poly-L-Lysine (PLL) and Poly(Sodium styrene sulfonate) (SPS) “(PLL/SPS)4.5” followed by adsorption of anionic HALNPs. An adsorption affinity assay and saturation curve illustrated the preferential HALNP deposition density for precise therapeutic loading. (PLL/SPS)2.5 capping layer on top of the deposited HALNP monolayer further facilitated complete nanoparticle immobilization, cell adhesion, and provided nanoparticle confinement for controlled linear release profiles of the nanocarrier and encapsulated cargo. To our knowledge, this is the first study to demonstrate the successful embedment of a translatable lipid based nanocarrier into a substrate that allows for temporal and spatial release of both hydrophobic and hydrophilic drugs. Specifically, we have utilized our platform to deliver chemotherapeutic drug Doxorubicin from PEM confined HALNPs. Overall, we believe the development of our HALNP embedded PEM system is significant and will catalyze the usage of substrate mediated delivery platforms in biomedical applications.
Yagi, Ichizo; Mikami, Kensuke; Okamura, Masayuki; Uosaki, Kohei
2013-07-22
The ultrafast dynamics of photogenerated electrons in multilayer assemblies of CdS nanoparticles prepared on quartz and indium-tin oxide (ITO) substrates were followed by femtosecond (fs) visible-pump/mid-IR probe spectroscopy. Based on the observation of the photoinduced transient absorption spectra in the broad mid-IR range at the multilayer assembly of CdS nanoparticles, the occupation and fast relaxation of higher electronic states (1P(e)) were clarified. As compared with the electron dynamics of isolated (dispersed in solution) nanoparticles, the decay of photoexcited electrons in the multilayer assembly was clearly accelerated probably due to both electron hopping and scattering during interparticle electron tunneling. By using an ITO electrode as a substrate, the effect of the electric field on the photoelectron dynamics in the multilayer assembly was also investigated in situ. Both the amplitude and lifetime of photoexcited electrons gradually reduced as the potential became more positive. This result was explained by considering the reduction of the interparticle tunneling probability and the increase in the electron-transfer rate from the CdS nanoparticle assembly to the ITO electrode. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Lichan; Zeng, Xiaoting; Dandapat, Anirban; Chi, Yuwu; Kim, Donghwan
2015-09-01
Proteases and nucleases are enzymes heavily involved in many important biological processes, such as cancer initiation, progression, and metastasis; hence, they are indicative of potential diagnostic biomarkers. Here, we demonstrate a new label free and sensitive electrochemiluminescent (ECL) sensing strategy for protease and nuclease assays that utilize target-triggered desorption of programmable polyelectrolyte films assembled on graphite-like carbon nitride (g-C3N4) film to regulate the diffusion flux of a coreactant. Furthermore, we have built Boolean logic gates OR and AND into the polyelectrolyte films, capable of simultaneously sensing proteases and nucleases in a complicated system by breaking it into simple functions. The developed intelligent permeability controlled enzyme sensor may prove valuable in future medical diagnostics.
Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates.
Thurn-Albrecht, T; Schotter, J; Kästle, G A; Emley, N; Shibauchi, T; Krusin-Elbaum, L; Guarini, K; Black, C T; Tuominen, M T; Russell, T P
2000-12-15
We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 x 10(11) wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.
Conformal self-assembled thin films for optical pH sensors
NASA Astrophysics Data System (ADS)
Topasna, Daniela M.; Topasna, Gregory A.; Liu, Minghanbo; Tseng, Ching-Hung
2016-04-01
Simple, reliable, lightweight, and inexpensive thin films based sensors are still in intense development and high demand in many applications such as biomedical, industrial, environmental, military, and consumer products. One important class of sensors is the optical pH sensor. In addition, conformal thin film based sensors extend the range of application for pH optical sensors. We present the results on the fabrication and characterization of optical pH sensing coatings made through ionic self-assembled technique. These thin films are based on the combination of a polyelectrolyte and water-soluble organic dye molecule Direct Yellow 4. A series of films was fabricated and characterized in order to determine the optimized parameters of the polymer and of the organic dye solutions. The optical pH responses of these films were also studied. The transparent films were immersed in solutions at various temperature and pH values. The films are stable when immersed in solutions with pH below 9.0 and temperatures below 90 °C and they maintain their performance after longer immersion times. We also demonstrate the functionality of these coatings as conformal films.
Forrest, Scott R; Elmore, Bill B; Palmer, James D
2005-01-01
Urease has been immobilized and layered onto the walls of manufactured silicon microchannels. Enzyme immobilization was performed using layer-by-layer nano self-assembly. Alternating layers of oppositely charged polyelectrolytes, with enzyme layers "encased" between them, were deposited onto the walls of the silicon microchannels. The polycations used were polyethylenimine (PEI), polydiallyldimethylammonium (PDDA), and polyallylamine (PAH). The polyanions used were polystyrenesulfonate (PSS) and polyvinylsulfate (PVS). The activity of the immobilized enzyme was tested by pumping a 1 g/L urea solution through the microchannels at various flow rates. Effluent concentration was measured using an ultraviolet/visible spectrometer by monitoring the absorbance of a pH sensitive dye. The architecture of PEI/PSS/PEI/urease/PEI with single and multiple layers of enzyme demonstrated superior performance over the PDDA and PAH architectures. The precursor layer of PEI/PSS demonstrably improved the performance of the reactor. Conversion rates of 70% were achieved at a residence time of 26 s, on d 1 of operation, and >50% at 51 s, on d 15 with a six-layer PEI/urease architecture.
Disc Antenna Enhanced Infrared Spectroscopy: From Self-Assembled Monolayers to Membrane Proteins.
Pfitzner, Emanuel; Seki, Hirofumi; Schlesinger, Ramona; Ataka, Kenichi; Heberle, Joachim
2018-05-25
Plasmonic surfaces have emerged as a powerful platform for biomolecular sensing applications and can be designed to optimize the plasmonic resonance for probing molecular vibrations at utmost sensitivity. Here, we present a facile procedure to generate metallic microdisc antenna arrays that are employed in surface-enhanced infrared absorption (SEIRA) spectroscopy of biomolecules. Transmission electron microscopy (TEM) grids are used as shadow mask deployed during physical vapor deposition of gold. The resulting disc-shaped antennas exhibit enhancement factors of the vibrational bands of 4 × 10 4 giving rise to a detection limit <1 femtomol (10 -15 mol) of molecules. Surface-bound monolayers of 4-mercaptobenzoic acid show polyelectrolyte behavior when titrated with cations in the aqueous medium. Conformational rigidity of the self-assembled monolayer is validated by density functional theory calculations. The membrane protein sensory rhodopsin II is tethered to the disc antenna arrays and is fully functional as inferred from the light-induced SEIRA difference spectra. As an advance to previous studies, the accessible frequency range is improved and extended into the fingerprint region.
Self assembled multi-layer nanocomposite of graphene and metal oxide materials
Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo
2013-10-22
Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.
Self assembled multi-layer nanocomposite of graphene and metal oxide materials
Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo
2015-04-28
Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.
Self assembled multi-layer nanocomposite of graphene and metal oxide materials
Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo
2014-09-16
Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaoyu; Graduate University of Chinese Academy of Sciences, Beijing 100049; He, Junhui, E-mail: jhhe@mail.ipc.ac.cn
Graphical abstract: High performance broadband antireflective and water-repellent coatings were fabricated on glass substrates, which can improve the short-circuit current of solar cells as much as 6.6% in comparison with glass substrates without the coatings. - Highlights: • Broadband anti-reflective and water-repellent coatings were fabricated. • Transmittance increased to 99.0%, significantly higher than that of commercial solar glasses. • The performance of standard solar cells with the AR coating was enhanced as much as 6.6%. - Abstract: High performance broadband antireflective (AR) and water-repellent coatings were fabricated on glass substrates by assembly of silica nanoparticles and polyelectrolytes via the layer-by-layermore » (LbL) assembly technique, followed by calcination and hydrophobic modification. A porous poly(diallyladimethylammonium chloride) (PDDA)/20 nm SiO{sub 2} nanoparticles (S-20) multilayer coating with AR property was prepared first. The maximum transmittance is as high as 99.0%, while that of the glass substrate is only 91.3%. After calcination and hydrophobic modification, the coating became water-repellent while maintaining the good AR property. Such water-repellent AR coatings can improve the short-circuit current of solar cells as much as 6.6% in comparison with glass substrates without the coatings. Scanning electron microscopy (SEM) was used to observe the morphology and thickness of coatings. Transmission spectra and reflection spectra were characterized by UV–vis spectrophotometer. The surface wettability was studied by a contact angle/interface system.« less
Emitter and absorber assembly for multiple self-dual operation and directional transparency
NASA Astrophysics Data System (ADS)
Kalozoumis, P. A.; Morfonios, C. V.; Kodaxis, G.; Diakonos, F. K.; Schmelcher, P.
2017-03-01
We demonstrate how to systematically design wave scattering systems with simultaneous coherent perfect absorbing and lasing operation at multiple and prescribed frequencies. The approach is based on the recursive assembly of non-Hermitian emitter and absorber units into self-dual emitter-absorber trimers at different composition levels, exploiting the simple structure of the corresponding transfer matrices. In particular, lifting the restriction to parity-time-symmetric setups enables the realization of emitter and absorber action at distinct frequencies and provides flexibility with respect to the choice of realistic parameters. We further show how the same assembled scatterers can be rearranged to produce unidirectional and bidirectional transparency at the selected frequencies. With the design procedure being generically applicable to wave scattering in single-channel settings, we demonstrate it with concrete examples of photonic multilayer setups.
2006-09-01
energy band diagram illustrating the allowed energies for valence and conducting electrons. The dashes within the band gap (Eg) represent localized ...allowed energies for valence and conducting electrons. The dashes within the band gap (Eg) represent localized electron energy states, or traps, that...been observed with the formation of alternating bond lengths along the backbone.43 The localization of the π-electrons while forming the shorter double
Development of Highly-Conductive Polyelectrolytes for Lithium Batteries
NASA Technical Reports Server (NTRS)
Shriver, D. F.; Ratner, M. A.; Vaynman, S.; Annan, K. O.; Snyder, J. F.
2003-01-01
Future NASA and Air Force missions require reliable and safe sources of energy with high specific energy and energy density that can provide thousands of charge-discharge cycles at more than 40% depth- of-discharge and that can operate at low temperatures. All solid-state batteries have substantial advantages with respect to stability, energy density, storage fife and cyclability. Among all solid-state batteries, those with flexible polymer electrolytes offer substantial advantages in cell dimensionality and commensurability, low temperature operation and thin film design. The above considerations suggest that lithium-polymer electrolyte systems are promising for high energy density batteries and should be the systems of choice for NASA and US Air Force applications. Polyelectrolytes (single ion conductors) are among most promising avenues for achieving a major breakthrough 'in the applicability of polymer- based electrolyte systems. Their major advantages include unit transference number for the cation, reduced cell polarization, minimal salt precipitation, and favorable electrolyte stability at interfaces. Our research is focused on synthesis, modeling and cell testing of single ion carriers, polyelectrolytes. During the first year of this project we attempted the synthesis of two polyelectrolytes. The synthesis of the first one, the poly(ethyleneoxide methoxy acrylateco-lithium 1,1,2-trifluorobutanesulfonate acrylate, was attempted few times and it was unsuccessful. We followed the synthetic route described by Cowie and Spence. The yield was extremely low and the final product could not be separated from the impurities. The synthesis of this polyelectrolyte is not described in this report. The second polyelectrolyte, comb polysiloxane polyelectrolyte containing oligoether and perfluoroether sidechains, was synthesized in sufficient quantity to study the range of properties such as thermal stability, Li- ion- conductivity and stability toward lithium metal. Also, the batteries containing this polyelectrolyte were assembled and tested. The results are detailed below. The synthesis of another polyelectrolyte similar to polysiloxane polyelectrolyte has been started, however, the synthesis was not completed due to termination of the project.
Borghol, N; Mora, L; Sakly, N; Lejeune, P; Jouenne, T; Jaffrézic-Renault, N; Othmane, A
2011-01-10
The electrochemical impedance spectroscopy (EIS) technique has been used as a sensitive method to explore the effect of antibacterial molecules on immobilized bacteria and biofilm formation. In this work, we describe the electrochemical spectroscopy as a powerful method to monitor the effect of chlorhexidine digluconate (CHX-Dg) on polyelectrolyte immobilized Escherichia coli K12 MG1655 and the kinetics of cell adhesion on gold electrodes. The experimental impedance data were modeled with a Zview program to find the best equivalent electrical circuit and analyse its parameter's properties. Polyelectrolyte multilayer formation on the electrode surface and bacteria immobilization greatly increased the electron-transfer resistance (R(et)) and reduced the constant phase element (CPE(dl)). The effect of CHX-Dg was studied in a 0.5 x 10⁻⁴ mmol l⁻¹ to 0.5 mmol l⁻¹ range. The relation between the evolution of R(et) and CHX-Dg concentration was found to be negatively correlated. When CHX-Dg was added, the electrochemical monitoring of the bacterial kinetic adhesion showed that the electrode's capacity (C(P)) variation remained stable, demonstrating that the addition of CHX-Dg in the broth inhibited bacterial adhesion. © 2010 Elsevier B.V. All rights reserved.
Kazakova, Lyubov I; Shabarchina, Lyudmila I; Sukhorukov, Gleb B
2011-06-21
Enzyme based micron sized sensing system with optical readout was fabricated by co-encapsulation of urease and dextran couple with pH sensitive dye SNARF-1 into polyelectrolyte multilayer capsules. Co-precipitation of calcium carbonate, urease and dextran followed up by multilayer film coating and Ca-extracting by EDTA resulted in the formation of 3.5-4 micron capsules, what enable the calibrated fluorescence response to urea in concentration range from 10(-6) to 10(-1) M. The presence of urea can be monitored on a single capsule level as illustrated by confocal fluorescent microscopy. Variations in urease:dye ratio in capsules, applicability and limits of use of that type multi-component microencapsulated sensors are discussed.
NASA Astrophysics Data System (ADS)
Xiao, Ming; Li, Yiwen; Deheyn, Dimitri; Yue, Xiujun; Gianneschi, Nathan; Shawkey, Matthew; Dhinojwala, Ali
2015-03-01
Melanin, a ubiquitous black or brown pigment in the animal kingdom, is a unique but poorly understood biomaterial. Many bird feathers contain melanosomes (melanin-containing organelles), which pack into ordered nanostructures, like multilayer or two-dimensional photonic crystal structures, to produce structural colors. To understand the optical properties of melanin and how melanosomes assemble into certain structures to produce colors, we prepared synthetic melanin (polydopamine) particles with variable sizes and aspect ratios. We have characterized the absorption and refractive index of the synthetic melanin particles. We have also shown that we can use an evaporative process to self-assemble melanin films with a wide range of colors. The colors obtained using this technique is modeled using a thin-film interference model and the optical properties of the synthetic melanin nanoparticles. Our results on self-assembly of synthetic melanin nanoparticles provide an explanation as why the use of melanosomes to produce colors is prevalent in the animal kingdom. National science foundation, air force office of scientific research, human frontier science program.
Ion distribution in dry polyelectrolyte multilayers: a neutron reflectometry study.
Ghoussoub, Yara E; Zerball, Maximilian; Fares, Hadi M; Ankner, John F; von Klitzing, Regine; Schlenoff, Joseph B
2018-02-28
Ultrathin films of complexed polycation poly(diallyldimethylammonium), PDADMA, and polyanion poly(styrenesulfonate), PSS, were prepared on silicon wafers using the layer-by-layer adsorption technique. When terminated with PDADMA, all films had excess PDADMA, which was balanced by counterions. Neutron reflectivity of these as-made multilayers was compared with measurements on multilayers which had been further processed to ensure 1 : 1 stoichiometry of PDADMA and PSS. The compositions of all films, including polymers and counterions, were determined experimentally rather than by fitting, reducing the number of fit parameters required to model the reflectivity. For each sample, acetate, either protiated, CH 3 COO - , or deuterated, CD 3 COO - , served as the counterion. All films were maintained dry under vacuum. Scattering length density profiles were constrained to fit reflectivity data from samples having either counterion. The best fits were obtained with uniform counterion concentrations, even for stoichiometric samples that had been exposed to PDADMA for ca. 5 minutes, showing that surprisingly fast and complete transport of excess cationic charge occurs throughout the multilayer during its construction.
NASA Astrophysics Data System (ADS)
Krupinski, M.; Perzanowski, M.; Zabila, Y.; Zarzycki, A.; Marszałek, M.
2017-03-01
In this paper the influence of surface topography on Rutherford backscattering spectrometry (RBS) is discussed. (Cu/Fe/Pd) multilayers with total thickness of about 10 nm were deposited by physical vapor deposition on self-organized array of SiO2 nanoparticles with the size of 50 nm and 100 nm. As a reference, the multilayered systems were also prepared on flat substrates under the same conditions. After the deposition, morphology of the systems was studied by scanning electron microscopy (SEM), while chemical analysis was performed using Rutherford backscattering spectrometry. It was found that the RBS spectra and determined compositions for flat and patterned multilayers differ. The difference is discussed by taking into account the effect of additional inelastic scattering and energy straggling occurring due to developed topography of patterned systems. Then, the multilayers were annealed in 600 °C in order to obtain FePdCu alloy. The phenomenon of solid-state dewetting resulted in the formation of isolated alloy islands on the top of SiO2 nanoparticles. The SEM and RBS analysis were repeated showing correlation between the size distribution of obtained alloy islands and broadening of peaks appearing in RBS spectra. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, J. E.; Linköping University, 581 83 Linköping; National Taiwan University of Science and Technology, Taipei 10607, Taiwan
The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development bymore » Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO{sub 2} and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including controlled wetting, adhesion, electrochemistry, biocompatibility, molecular recognition, biosensing, cell biology, non-linear optics, molecular electronics, solar cells, read/write/erase memory, and magnetism.« less
Characterization of casein and poly-L-arginine multilayer films.
Szyk-Warszyńska, Lilianna; Kilan, Katarzyna; Socha, Robert P
2014-06-01
Thin films containing casein appear to be a promising material for coatings used in the medical area to promote biomineralization. α- and β-casein and poly-L-arginine multilayer films were formed by the layer-by layer technique and their thickness and mass were analyzed by ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D). (PLArg/casein) films deposited in 0.15M NaCl exhibit fast (exponential-like) growth of the film thickness with the number of layers. The resulting films were c.a. 10 times thicker than obtained for poly-L-arginine and natural polyanions. We investigated the effect of the type of casein used for the film formation, finding that films with α-casein were slightly thicker than ones with β-casein. The effect of polyethylene imine anchoring layer on the thickness and mass of adsorbed films was similar as for linear polyelectrolyte pairs. Thickness of "wet" films was c.a. two times larger than measured after drying that suggests their large hydration. The analysis of the mass of films during their post-treatment with the solutions of various ionic strength and pH provided the information concerning films stability. Films remain stable in the neutral and weakly basic conditions that includes HEPES buffer, which is widely used in cell culture and biomedical experiments. At the conditions of high ionic strength films swell but their swelling is reversible. Films containing caseins as polyanion appear to be more elastic and the same time more viscous than one formed with polyelectrolyte pairs. XPS elemental analysis confirmed binding of calcium ions by the casein embedded in the multilayers. Copyright © 2014 Elsevier Inc. All rights reserved.
Self-assembly of dodecaphenyl POSS thin films
NASA Astrophysics Data System (ADS)
Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor
2017-12-01
The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.
NASA Astrophysics Data System (ADS)
He, Wen-Li; Fang, Fang; Ma, Dong-Mei; Chen, Meng; Qian, Dong-Jin; Liu, Minghua
2018-01-01
Multiporphyrin arrays are large, π-conjugated chromophores with high absorption efficiency and strong chemical stability that play an important role in supramolecular and advanced material sciences. Palladium-directed self-assembly of multiporphyrin array ultrathin films was achieved on substrate surfaces using oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium (IV) complex [TiO(TPyP)] as a linker and sodium tetrachloropalladate (Na2PdCl4) as a connector. The Pd-TiOTPyP films as prepared were characterized by using UV-vis absorption and X-ray photoelectron spectroscopy, as well as by atomic force and scanning electron microscopy. The Soret absorption band of TiOTPyP was observed to red shift by 6 nm when the Pd-TiOTPyP multilayer-modified quartz substrate was immersed in an aqueous solution containing hydrogen peroxide. This was attributed to the formation of a TiO2TPyP monoperoxo complex. This oxidation reaction could be accelerated in an acidic solution. Furthermore, the immobilized Pd-TiOTPyP multilayers could act as light-harvesting units for photocurrent generation and photochromism of viologens, with strong stability, reproducibility, and recyclability. The photocurrent density could be enhanced in electrolyte solutions containing electron donors such as triethanolamine, or electron acceptors such as viologens. Finally, photoinduced reduction (photochromism) of viologens was investigated using the Pd-TiOTPyP multilayers as light sensitizers and EDTA as the electron donors.
Mono- and multilayers of molecular spoked carbazole wheels on graphite
Aggarwal, A Vikas; Kalle, Daniel; Höger, Sigurd
2014-01-01
Summary Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system) and its synthetic precursor are investigated by scanning tunneling microscopy (STM) at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes – depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs), where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer. PMID:25550744
Mono- and multilayers of molecular spoked carbazole wheels on graphite.
Jester, Stefan-S; Aggarwal, A Vikas; Kalle, Daniel; Höger, Sigurd
2014-01-01
Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system) and its synthetic precursor are investigated by scanning tunneling microscopy (STM) at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes - depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs), where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer.
NASA Astrophysics Data System (ADS)
Uto, Koichiro; Yamamoto, Kazuya; Kishimoto, Naoko; Muraoka, Masahiro; Aoyagi, Takao; Yamashita, Ichiro
2013-04-01
We have fabricated electroactive multilayer thin films containing ferritin protein cages. The multilayer thin films were prepared on a solid substrate by the alternate electrostatic adsorption of (apo)ferritin and poly( N-isopropylacrylamide- co-2-carboxyisopropylacrylamide) (NIPAAm- co-CIPAAm) in pH 3.5 acetate buffer solution. The assembly process was monitored using a quartz crystal microbalance. The (apo)ferritin/poly(NIPAAm- co-CIPAAm) multilayer thin films were then cross-linked using a water-soluble carbodiimide, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide. The cross-linked films were stable under a variety of conditions. The surface morphology and thickness of the multilayer thin films were characterized by atomic force microscopy, and the ferritin iron cores were observed by scanning electron microscopy to confirm the assembly mechanism. Cyclic voltammetry measurements showed different electrochemical properties for the cross-linked ferritin and apoferritin multilayer thin films, and the effect of stability of the multilayer film on its electrochemical properties was also examined. Our method for constructing multilayer films containing protein cages is expected to be useful in building more complex functional inorganic nanostructures.
Tagliazucchi, Mario; de la Cruz, Mónica Olvera; Szleifer, Igal
2010-03-23
The competition between chemical equilibrium, for example protonation, and physical interactions determines the molecular organization and functionality of biological and synthetic systems. Charge regulation by displacement of acid-base equilibrium induced by changes in the local environment provides a feedback mechanism that controls the balance between electrostatic, van der Waals, steric interactions and molecular organization. Which strategies do responsive systems follow to globally optimize chemical equilibrium and physical interactions? We address this question by theoretically studying model layers of end-grafted polyacids. These layers spontaneously form self-assembled aggregates, presenting domains of controlled local pH and whose morphologies can be manipulated by the composition of the solution in contact with the film. Charge regulation stabilizes micellar domains over a wide range of pH by reducing the local charge in the aggregate at the cost of chemical free energy and gaining in hydrophobic interactions. This balance determines the boundaries between different aggregate morphologies. We show that a qualitatively new form of organization arises from the coupling between physical interactions and protonation equilibrium. This optimization strategy presents itself with polyelectrolytes coexisting in two different and well-defined protonation states. Our results underline the need of considering the coupling between chemical equilibrium and physical interactions due to their highly nonadditive behavior. The predictions provide guidelines for the creation of responsive polymer layers presenting self-organized patterns with functional properties and they give insights for the understanding of competing interactions in highly inhomogeneous and constrained environments such as those relevant in nanotechnology and those responsible for biological cells function.
UV and NIR-Responsive Layer-by-Layer Films Containing 6-Bromo-7-hydroxycoumarin Photolabile Groups
2017-01-01
This paper describes polyelectrolyte multilayer films prepared by the layer-by-layer (LbL) technique capable of undergoing dissolution upon exposure to either ultraviolet or near-infrared light. Film dissolution is driven by photochemical deprotection of a random methacrylic copolymer with two types of side chains: (i) 6-bromo-7-hydroxycoumarinyl esters, photocleavable groups that are known to have substantial two-photon photolysis cross sections, and (ii) cationic residues from the commercially available monomer N,N-dimethylaminoethyl methacrylate (DMAEMA). In addition, the dependence of stability of both unirradiated and irradiated films on pH provides experimental evidence for the necessity of disrupting both ion-pairing and hydrophobic interactions between polyelectrolytes to realize film dissolution. This work therefore provides both new fundamental insight regarding photolabile LbL films and expands their applied capabilities to nonlinear photochemical processes. PMID:28967754
Hedayati, Mohammadhasan; Kipper, Matt J
2018-06-15
Blood vessels present a dense, non-uniform, polysaccharide-rich layer, called the endothelial glycocalyx. The polysaccharides in the glycocalyx include polyanionic glycosaminoglycans (GAGs). This polysaccharide-rich surface has excellent and unique blood compatibility. We report new methods for preparing and characterizing dense GAG surfaces that can serve as models of the vascular endothelial glycocalyx. The GAG-rich surfaces are prepared by adsorbing heparin or chondroitin sulfate-containing polyelectrolyte complex nanoparticles (PCNs) to chitosan-hyaluronan polyelectrolyte multilayers (PEMs). The surfaces are characterized by PeakForce tapping atomic force microscopy, both in air and in aqueous pH 7.4 buffer, and by PeakForce quantitative nanomechanics (PF-QNM) mode with high spatial resolution. These new surfaces provide access to heparin-rich or chondroitin sulfate-rich coatings that mimic both composition and nanoscale structural features of the vascular endothelial glycocalyx. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Schipper, F. J. M.; Hollander, J. G.; Leyte, J. C.
1998-10-01
The self-diffusion coefficient of tetra-methylammonium counterion in solutions of polymethacrylic acid in 0953-8984/10/41/004/img1 has been measured over a broad polyion concentration range at a constant degree of neutralization and at different ratios of added monovalent or bivalent salt to polyions. A maximum counterion self-diffusion coefficient was observed as a function of polyion concentration. The value of the self-diffusion coefficient at the maximum did not depend on the valency of the added salt. The maximum was found at lower polymer concentrations and with a higher value, when the ratio of added salt to polyions was increased, as predicted by the Poisson-Boltzmann-Smoluchowski equation in the cylindrical cell model for polyelectrolytes. At higher polyion concentrations a maximum counterion self-diffusion coefficient against the ratio of added salt and polyions was observed, which has not been reported before. Upon increasing this ratio the electrostatic potential of the polyelectrolyte gets screened, leading to an increase of the counterion self-diffusion coefficient. Concentration effects of the added salt on the other hand ultimately lead to a decrease of the counterion self-diffusion coefficient, which explains the occurrence of a maximum.
Monitoring cyclodextrin-polyviologen pseudopolyrotaxanes with the Bradford assay.
Belitsky, Jason M; Nelson, Alshakim; Stoddart, J Fraser
2006-01-21
Self-assembled multivalent pseudopolyrotaxanes, composed of lactoside-bearing cyclodextrin (CD) rings threaded on linear polyviologen polymers, have been introduced recently as flexible and dynamic neoglycoconjugates. In the course of this research, it was found that polyviologens are responsive to the Bradford assay, which is traditionally highly selective for proteins. The response of the pseudopolyrotaxanes to the Bradford assay was dependant on, and thus indicative of, the degree of threading of the CD rings onto the polyelectrolyte. The assay was then used to report on the threading and dethreading of native and lactoside-bearing alpha-CD rings onto and off of polyviologen chains, a phenomenon which demonstrates the utility of biochemical assays to address problems unique to supramolecular chemistry.
NASA Astrophysics Data System (ADS)
Ridley, Jason I.; Heflin, James R.; Ritter, Alfred L.
2007-09-01
Antireflection coatings have been fabricated by self-assembly using silica nanoparticles. The ionic self-assembled multilayer (ISAM) films are tightly packed and homogeneous. While the geometric properties of a matrix of spherical particles with corresponding void interstices are highly suitable to meet the conditions for minimal reflectivity, it is also a cause for the lack of cohesion within the constituent body, as well as to the substrate surface. This study investigates methods for improving the interconnectivity of the nanoparticle structure. One such method involves UV curing of diazo-resin (DAR)/silica nanoparticle films, thereby converting the ionic interaction into a stronger covalent bond. Factorial analysis and response surface methods are incorporated to determine factors that affect film properties, and to optimize their optical and adhesive capabilities. The second study looks at the adhesive strength of composite multilayer films. Films are fabricated with silica nanoparticles and poly(allylamine hydrochloride) (PAH), and dipped into aqueous solutions of PAH and poly(methacrylic acid, sodium salt) (PMA) to improve cohesion of silica nanoparticles in the matrix, as well as binding strength to the substrate surface. The results of the two studies are discussed.
Supra-Nanoparticle Functional Assemblies through Programmable Stacking
Tian, Cheng; Cordeiro, Marco Aurelio L.; Lhermitte, Julien; ...
2017-05-25
The quest for the by-design assembly of material and devices from nanoscale inorganic components is well recognized. Conventional self-assembly is often limited in its ability to control material morphology and structure simultaneously. We report a general method of assembling nanoparticles in a linear “pillar” morphology with regulated internal configurations. Our approach is inspired by supramolecular systems, where intermolecular stacking guides the assembly process to form diverse linear morphologies. Programmable stacking interactions were realized through incorporation of DNA coded recognition between the designed planar nanoparticle clusters. This resulted in the formation of multilayered pillar architectures with a well-defined internal nanoparticle organization.more » Furthermore, by controlling the number, position, size, and composition of the nanoparticles in each layer, a broad range of nanoparticle pillars were assembled and characterized in detail. In addition, we demonstrated the utility of this stacking assembly strategy for investigating plasmonic and electrical transport properties.« less
Supra-Nanoparticle Functional Assemblies through Programmable Stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Cheng; Cordeiro, Marco Aurelio L.; Lhermitte, Julien
The quest for the by-design assembly of material and devices from nanoscale inorganic components is well recognized. Conventional self-assembly is often limited in its ability to control material morphology and structure simultaneously. We report a general method of assembling nanoparticles in a linear “pillar” morphology with regulated internal configurations. Our approach is inspired by supramolecular systems, where intermolecular stacking guides the assembly process to form diverse linear morphologies. Programmable stacking interactions were realized through incorporation of DNA coded recognition between the designed planar nanoparticle clusters. This resulted in the formation of multilayered pillar architectures with a well-defined internal nanoparticle organization.more » Furthermore, by controlling the number, position, size, and composition of the nanoparticles in each layer, a broad range of nanoparticle pillars were assembled and characterized in detail. In addition, we demonstrated the utility of this stacking assembly strategy for investigating plasmonic and electrical transport properties.« less
Supra-Nanoparticle Functional Assemblies through Programmable Stacking.
Tian, Cheng; Cordeiro, Marco Aurelio L; Lhermitte, Julien; Xin, Huolin L; Shani, Lior; Liu, Mingzhao; Ma, Chunli; Yeshurun, Yosef; DiMarzio, Donald; Gang, Oleg
2017-07-25
The quest for the by-design assembly of material and devices from nanoscale inorganic components is well recognized. Conventional self-assembly is often limited in its ability to control material morphology and structure simultaneously. Here, we report a general method of assembling nanoparticles in a linear "pillar" morphology with regulated internal configurations. Our approach is inspired by supramolecular systems, where intermolecular stacking guides the assembly process to form diverse linear morphologies. Programmable stacking interactions were realized through incorporation of DNA coded recognition between the designed planar nanoparticle clusters. This resulted in the formation of multilayered pillar architectures with a well-defined internal nanoparticle organization. By controlling the number, position, size, and composition of the nanoparticles in each layer, a broad range of nanoparticle pillars were assembled and characterized in detail. In addition, we demonstrated the utility of this stacking assembly strategy for investigating plasmonic and electrical transport properties.
2015-01-01
Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimulus-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimulus-responsive surfaces may help integrate synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically switchable rotaxanes on gold surfaces. Rotaxane mono- and multilayers are shown to reversibly switch in a coupled manner between two ordered states as revealed by linear dichroism effects in angle-resolved NEXAFS spectra. Such a concerted switching process is observed only when the surfaces are well packed, while less densely packed surfaces lacking lateral order do not exhibit such effects. PMID:25782057
Polymer multilayer tattooing for enhanced DNA vaccination
DeMuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.
2014-01-01
DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These “multilayer tattoo” DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination. PMID:23353628
Self-assembly of protein-based biomaterials initiated by titania nanotubes.
Forstater, Jacob H; Kleinhammes, Alfred; Wu, Yue
2013-12-03
Protein-based biomaterials are a promising strategy for creating robust highly selective biocatalysts. The assembled biomaterials must sufficiently retain the near-native structure of proteins and provide molecular access to catalytically active sites. These requirements often exclude the use of conventional assembly techniques, which rely on covalent cross-linking of proteins or entrapment within a scaffold. Here we demonstrate that titania nanotubes can initiate and template the self-assembly of enzymes, such as ribonuclease A, while maintaining their catalytic activity. Initially, the enzymes form multilayer thick ellipsoidal aggregates centered on the nanotube surface; subsequently, these nanosized entities assemble into a micrometer-sized enzyme material that has enhanced enzymatic activity and contains as little as 0.1 wt % TiO2 nanotubes. This phenomenon is uniquely associated with the active anatase (001)-like surface of titania nanotubes and does not occur on other anatase nanomaterials, which contain significantly fewer undercoordinated Ti surface sites. These findings present a nanotechnology-enabled mechanism of biomaterial growth and open a new route for creating stable protein-based biomaterials and biocatalysts without the need for chemical modification.
Xun, Ren; Jing, Yao; Qin, Du; Chuhang, Liao; Kun, Tian
2014-10-01
To modify biomacromolecules, such as chitosan and collagen, to synthesize a mineralized template that will induce self-growing remineralization of tooth enamel. Natural polycation polysaccharide chitosan was modified through phosphorylation to synthesize the polyanion derivative ofphosphorylated chitosan. Parent hydrogels com- bined with chitosan and collagen I were built through peptide binding reaction using genipin as a crosslinker. The gels self- assembled on the tooth's inert surface, which was stimulated by ultraviolet radiation. The bionic saliva provided mineralized ion, and then the hydroxyapatite assembled and grew in situ on the tooth. The functional group P04(3-) (3,446 cm(-1)) was grafted on chitosan as confirmed by the Fourier transform infrared spectroscopy. The porous polyelectrolyte complex hydrogel formed by the interaction between the polycation chitosan and the polyanion phosphorylated chitosan could induce hydroxyapatite crystal nucleation and growth on the hydrogel fiber surfaces. The neonatal crystal was hydroxyapatite as confirmed by X-ray diffraction and was tightly connected to the tooth. A continuous structure of column crystals with sizes ranging from 30 nm to 60 nm was observed. The structure was in parallel direction similar to the direction of the enamel rod, and its hardness was close to dentin. The parent hydrogels that were easily obtained and controlled could mimic the template of the enamel mineralization and induce a self-growing hydroxyapatite, which is an important step in the structural bionics of enamel.
Takeoka, Yuko; Saito, Fumihiko; Rikukawa, Masahiro
2013-07-09
Regioregular polythiophenes containing an optically active substituent in the third position of the thiophene ring, head-to-tail poly(3-[2-((S)-1-methyloctyloxy)ethyl]thiophene)s (HT-P(S)MOETs), were synthesized using highly reactive zinc. For comparison, HT-P(R)MOET and achiral HT-P(±)MOET also were synthesized from R-type monomers and racemic monomers, respectively. The HT-PMOET possessed greater than 95% head-to-tail coupling with a weight-average molecular weight (Mw) between 1.96 × 10(4) and 2.94 × 10(4). The polymers were characterized using (1)H and (13)C NMR, optical rotatory power measurements, circular dichroism (CD), and UV-vis spectroscopy. X-ray diffraction patterns of the cast films demonstrated that regioregular HT-PMOET possessed a strong tendency to self-assemble into highly ordered, crystalline structures. The HT-P(S)MOET and HT-P(R)MOET showed strong Cotton effects, while HT-P(±)MOET showed very weak Cotton effects. The presence of a circular dichroism effect indicated that the side chain chirality induced optical activity in poly(thiophene) main chains. The monolayer formation of HT-PMOET spread on the water surface was characterized using a pressure-area (π-A) isotherm. The molecular areas of HT-P(S)MOET and HT-P(R)MOET molecules on the water surface were 33.5 and 32.9 Å(2), respectively, at 10 °C, which were larger than that of HT-P(±)MOET (27.9 Å(2)), suggesting that optically active HT-PMOET expanded because of the chiral repulsion between side chains. Multilayer films of HT-PMOET were prepared by repeating horizontal deposition of the monolayer on the water surface. The multilayer films of optically active HT-PMOET obtained showed stronger Cotton effects than did the cast films. In addition, electrical conductivities of HT-PMOET multilayer films were superior to those of spin-coated films. Head-to-tail poly(3-[2-((S)-1-methylpropyloxy)ethyl]thiophene) (HT-P(S)MPET), which contained shorter side chain lengths compared to HT-P(S)MOET, also was synthesized. The CD intensities of HT-P(S)MPET multilayer films were smaller than those of HT-P(S)MOET multilayer films, suggesting that the optically active side-chain length is critically important to the optically active self-assembly.
Bae, Dong Geun; Jeong, Ji-Eun; Kang, Seok Hee; Byun, Myunghwan; Han, Dong-Wook; Lin, Zhiqun; Woo, Han Young; Hong, Suck Won
2016-08-01
DNA molecules have been widely recognized as promising building blocks for constructing functional nanostructures with two main features, that is, self-assembly and rich chemical functionality. The intrinsic feature size of DNA makes it attractive for creating versatile nanostructures. Moreover, the ease of access to tune the surface of DNA by chemical functionalization offers numerous opportunities for many applications. Herein, a simple yet robust strategy is developed to yield the self-assembly of DNA by exploiting controlled evaporative assembly of DNA solution in a unique confined geometry. Intriguingly, depending on the concentration of DNA solution, highly aligned nanostructured fibrillar-like arrays and well-positioned concentric ring-like superstructures composed of DNAs are formed. Subsequently, the ring-like negatively charged DNA superstructures are employed as template to produce conductive organic nanowires on a silicon substrate by complexing with a positively charged conjugated polyelectrolyte poly[9,9-bis(6'-N,N,N-trimethylammoniumhexyl)fluorene dibromide] (PF2) through the strong electrostatic interaction. Finally, a monolithic integration of aligned arrays of DNA-templated PF2 nanowires to yield two DNA/PF2-based devices is demonstrated. It is envisioned that this strategy can be readily extended to pattern other biomolecules and may render a broad range of potential applications from the nucleotide sequence and hybridization as recognition events to transducing elements in chemical sensors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zheng, Jia N; Xie, Hong G; Yu, Wei T; Liu, Xiu D; Xie, Wei Y; Zhu, Jing; Ma, Xiao J
2010-11-16
The chemical modification of the alginate/chitosan/alginate (ACA) hydrogel microcapsule with methoxy poly(ethylene glycol) (MPEG) was investigated to reduce nonspecific protein adsorption and improve biocompatibility in vivo. The graft copolymer chitosan-g-MPEG (CS-g-MPEG) was synthesized, and then alginate/chitosan/alginate/CS-g-MPEG (ACAC(PEG)) multilayer hydrogel microcapsules were fabricated by the layer-by-layer (LBL) polyelectrolyte self-assembly method. A quantitative study of the modification was carried out by the gel permeation chromatography (GPC) technique, and protein adsorption on the modified microcapsules was also investigated. The results showed that the apparent graft density of the MPEG side chain on the microcapsules decreased with increases in the degree of substitution (DS) and the MPEG chain length. During the binding process, the apparent graft density of CS-g-MPEG showed rapid growth-plateau-rapid growth behavior. CS-g-MPEG was not only bound to the surface but also penetrated a certain depth into the microcapsule membranes. The copolymers that penetrated the microcapsules made a smaller contribution to protein repulsion than did the copolymers on the surfaces of the microcapsules. The protein repulsion ability decreased with the increase in DS from 7 to 29% with the same chain length of MPEG 2K. CS-g-MPEG with MPEG 2K was more effective at protein repulsion than CS-g-MPEG with MPEG 550, having a similar DS below 20%. In this study, the microcapsules modified with CS-g-MPEG2K-DS7% had the lowest IgG adsorption of 3.0 ± 0.6 μg/cm(2), a reduction of 61% compared to that on the chitosan surface.
2018-01-01
ABSTRACT The use of polyelectrolyte multilayer microcapsules as carriers for fluorescent molecular probes is a prospective technique for monitoring the physiological characteristics of animal vasculature and interstitial environment in vivo. Polyelectrolyte microcapsules have many features that favor their use as implantable carriers of optical sensors, but little information is available on their interactions with complex living tissues, distribution or residence time following different routes of administration in the body of vertebrates. Using the common fish model, the zebrafish Danio rerio, we studied in vivo the distribution of non-biodegradable microcapsules covered with polyethylene glycol (PEG) over time in the adults and evaluated potential side effects of their delivery into the fish bloodstream and muscles. Fluorescent microcapsules administered into the bloodstream and interstitially (in concentrations that were sufficient for visualization and spectral signal recording) both showed negligible acute toxicity to the fishes during three weeks of observation. The distribution pattern of microcapsules delivered into the bloodstream was stable for at least one week, with microcapsules prevalent in capillaries-rich organs. However, after intramuscular injection, the phagocytosis of the microcapsules by immune cells was manifested, indicating considerable immunogenicity of the microcapsules despite PEG coverage. The long-term negative effects of chronic inflammation were also investigated in fish muscles by histological analysis. PMID:29305467
Luo, Rongcong; Venkatraman, Subbu S; Neu, Björn
2013-07-08
A two-step process is developed to form layer-by-layer (LbL) polyelectrolyte microcapsules, which are able to encapsulate and deliver hydrophobic drugs. Spherical porous calcium carbonate (CaCO3) microparticles were used as templates and coated with a poly(lactic acid-co-glycolic acid) (PLGA) layer containing hydrophobic compounds via an in situ precipitation gelling process. PLGA layers that precipitated from N-methyl-2-pyrrolidone (NMP) had a lower loading and smoother surface than those precipitated from acetone. The difference may be due to different viscosities and solvent exchange dynamics. In the second step, the successful coating of multilayer polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) onto the PLGA coated CaCO3 microparticles was confirmed with AFM and ζ-potential studies. The release of a model hydrophobic drug, ibuprofen, from these hybrid microcapsules with different numbers of PAH/PSS layers was investigated. It was found that the release of ibuprofen decreases with increasing layer numbers demonstrating the possibility to control the release of ibuprofen with these novel hybrid microcapsules. Besides loading of hydrophobic drugs, the interior of these microcapsules can also be loaded with hydrophilic compounds and functional nanoparticles as demonstrated by loading with Fe3O4 nanoparticles, forming magnetically responsive dual drug releasing carriers.
Akasov, Roman; Gileva, Anastasia; Zaytseva-Zotova, Daria; Burov, Sergey; Chevalot, Isabelle; Guedon, Emmanuel; Markvicheva, Elena
2017-01-01
To design novel 3D in vitro co-culture models based on the RGD-peptide-induced cell self-assembly technique. Multicellular spheroids from M-3 murine melanoma cells and L-929 murine fibroblasts were obtained directly from monolayer culture by addition of culture medium containing cyclic RGD-peptide. To reach reproducible architecture of co-culture spheroids, two novel 3D in vitro models with well pronounced core-shell structure from tumor spheroids and single mouse fibroblasts were developed based on this approach. The first was a combination of a RGD-peptide platform with the liquid overlay technique with further co-cultivation for 1-2 days. The second allowed co-culture spheroids to generate within polyelectrolyte microcapsules by cultivation for 2 weeks. M-3 cells (a core) and L-929 fibroblasts (a shell) were easily distinguished by confocal microscopy due to cell staining with DiO and DiI dyes, respectively. The 3D co-culture spheroids are proposed as a tool in tumor biology to study cell-cell interactions as well as for testing novel anticancer drugs and drug delivery vehicles.
Silva, Joana M; Georgi, Nicole; Costa, Rui; Sher, Praveen; Reis, Rui L; Van Blitterswijk, Clemens A; Karperien, Marcel; Mano, João F
2013-01-01
Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs.
Kocgozlu, Leyla; Lavalle, Philippe; Koenig, Géraldine; Senger, Bernard; Haikel, Youssef; Schaaf, Pierre; Voegel, Jean-Claude; Tenenbaum, Henri; Vautier, Dominique
2010-01-01
Actin cytoskeleton forms a physical connection between the extracellular matrix, adhesion complexes and nuclear architecture. Because tissue stiffness plays key roles in adhesion and cytoskeletal organization, an important open question concerns the influence of substrate elasticity on replication and transcription. To answer this major question, polyelectrolyte multilayer films were used as substrate models with apparent elastic moduli ranging from 0 to 500 kPa. The sequential relationship between Rac1, vinculin adhesion assembly, and replication becomes efficient at above 200 kPa because activation of Rac1 leads to vinculin assembly, actin fiber formation and, subsequently, to initiation of replication. An optimal window of elasticity (200 kPa) is required for activation of focal adhesion kinase through auto-phosphorylation of tyrosine 397. Transcription, including nuclear recruitment of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), occurred above 50 kPa. Actin fiber and focal adhesion signaling are not required for transcription. Above 50 kPa, transcription was correlated with alphav-integrin engagement together with histone H3 hyperacetylation and chromatin decondensation, allowing little cell spreading. By contrast, soft substrate (below 50 kPa) promoted morphological changes characteristic of apoptosis, including cell rounding, nucleus condensation, loss of focal adhesions and exposure of phosphatidylserine at the outer cell surface. On the basis of our data, we propose a selective and uncoupled contribution from the substrate elasticity to the regulation of replication and transcription activities for an epithelial cell model.
NASA Astrophysics Data System (ADS)
Milliken, Sarah; Fraser, Jeff; Poirier, Shawn; Hulse, John; Tay, Li-Lin
2018-05-01
Self-assembled multi-layered vertically aligned gold nanorod (AuNR) arrays have been fabricated by a simple preparation process that requires a balance between the particle concentration and the ionic strength of the solvent. An experimentally determined critical AuNR concentration of 2.0 nM and 50 mM NaCl produces well-ordered vertically aligned hexagonally close-packed AuNR arrays. We demonstrate surface treatment via UV Ozone cleaning of such samples to allow introduction of analyte molecules (benzenethiol and cannabinol) for effective surface enhanced Raman scattering detection. This is the first demonstration of the SERS analysis of cannabinol. This approach demonstrates a cost-effective, high-yield and simple fabrication route to SERS sensors with application in the screening for the cannabinoids.
Karim, Md Nurul; Lee, Ji Eun; Lee, Hye Jin
2014-11-15
A novel amperometric biosensor for catechol was developed using the layer-by-layer (LbL) self-assembly of positively charged hexadecyltrimethylammonium stabilized gold nanocubes (AuNCs), negatively charged poly(sodium 4-styrenesulfonate) and tyrosinase on a screen printed carbon electrode (SPCE). A carboxylic acid terminated alkanethiol assembled on electrochemically deposited Au nanoparticles on a SPCE was used as a platform for LbL assembly. Each SPCE sensor surface was terminated with tyrosinase and the electrocatalytic response due to the tyrosinase reaction with catechol was measured using cyclic voltammetry and square wave voltammetry (SWV). The effect of introducing AuNCs into the LbL assembly to further enhance the catechol detection performance was then investigated by comparing the SWV results to those from biosensors created using both the tyrosinase modified LbL assembly in the absence of NCs and the covalent attachment of tyrosinase. A wide dynamic range from 10nM to 80 µM of catechol with an excellent sensitivity of 13.72 A/M and a detection limit of 0.4 nM were both achieved alongside a good selectivity and reproducibility for the AuNC-modified electrodes. As a demonstration, the optimized biosensor design was applied to determine catechol concentrations in tea samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kang, Hui; Shi, Jie; Liu, Liyan; Shan, Mingjing; Xu, Zhiwei; Li, Nan; Li, Jing; Lv, Hanming; Qian, Xiaoming; Zhao, Lihuan
2018-01-01
To tune interlayer spacing, regulate water channel and improve stability of composite membrane, graphene oxide (GO) and oxidized carbon nanotubes (OCNTs) were assembled alternately to form sandwich morphology on a polyacrylonitrile substrate by layer-by-layer self-assembly technique. Polyelectrolyte played a part in cross-linking between GO and OCNTs. The effects about concentration ratio of GO and OCNTs on nanofiltration performance were investigated in detail. The composite membrane was used for dye rejection. When composite membrane with concentration ratio of GO and OCNTs was 10:1, water flux and rejection rate for methyl blue reached 21.71 L/(m2 h) and 99.3%, respectively. Meanwhile, this composite membrane had higher flux compared with reported literatures in which rejection also reached up to 99%. When concentration ratio of composite membranes about GO and OCNTs were 10:1 and 15:1, dye rejection for methyl blue remained 99.3% and 99.6% respectively after operating time of 50 h. Irreversible fouling ratio of composite membrane in a concentration ratio of 10:1 was only 4.4%, indicating that composite membrane had excellent antifouling performance for Bovine Serum Albumin. It was speculated that proper distribution of OCNTs in the sandwich morphology formed proper support points and water channels which benefited for a more stable performance.
Cyborg cells: functionalisation of living cells with polymers and nanomaterials.
Fakhrullin, Rawil F; Zamaleeva, Alsu I; Minullina, Renata T; Konnova, Svetlana A; Paunov, Vesselin N
2012-06-07
Living cells interfaced with a range of polyelectrolyte coatings, magnetic and noble metal nanoparticles, hard mineral shells and other complex nanomaterials can perform functions often completely different from their original specialisation. Such "cyborg cells" are already finding a range of novel applications in areas like whole cell biosensors, bioelectronics, toxicity microscreening, tissue engineering, cell implant protection and bioanalytical chemistry. In this tutorial review, we describe the development of novel methods for functionalisation of cells with polymers and nanoparticles and comment on future advances in this technology in the light of other literature approaches. We review recent studies on the cell viability and function upon direct deposition of nanoparticles, coating with polyelectrolytes, polymer assisted assembly of nanomaterials and hard shells on the cell surface. The cell toxicity issues are considered for many practical applications in terms of possible adverse effects of the deposited polymers, polyelectrolytes and nanoparticles on the cell surface.
Wang, Bailiang; Liu, Huihua; Sun, Lin; Jin, Yingying; Ding, Xiaoxu; Li, Lingli; Ji, Jian; Chen, Hao
2018-01-08
Bacterial infections and biofilm formation on the surface of implants are important issues that greatly affect biomedical applications and even cause device failure. Construction of high drug loading systems on the surface and control of drug release on-demand is an efficient way to lower the development of resistant bacteria and biofilm formation. In the present study, (montmorillonite/hyaluronic acid-gentamicin) 10 ((MMT/HA-GS) 10 ) organic/inorganic hybrid multilayer films were alternately self-assembled on substrates. The loading dosage of GS was as high as 0.85 mg/cm 2 , which could be due the high specific surface area of MMT. The obtained multilayer film with high roughness gradually degraded in hyaluronidase (HAS) solutions or a bacterial infection microenvironment, which caused the responsive release of GS. The release of GS showed dual enzyme and bacterial infection responsiveness, which also indicated good drug retention and on-demand self-defense release properties of the multilayer films. Moreover, the GS release responsiveness to E. coli showed higher sensitivity than that to S. aureus. There was only ∼5 wt % GS release from the film in PBS after 48 h of immersion, and the amount quickly increased to 30 wt % in 10 5 CFU/mL of E. coli. Importantly, the high drug dosage, smart drug release, and film peeling from the surface contributed to the efficient antibacterial properties and long-term biofilm inhibition functions. Both in vitro and in vivo antibacterial tests indicated efficient sterilization function and good mammalian cell and tissue compatibility.
Origin of translocation barriers for polyelectrolyte chains.
Kumar, Rajeev; Muthukumar, M
2009-11-21
For single-file translocations of a charged macromolecule through a narrow pore, the crucial step of arrival of an end at the pore suffers from free energy barriers, arising from changes in intrachain electrostatic interaction, distribution of ionic clouds and solvent molecules, and conformational entropy of the chain. All contributing factors to the barrier in the initial stage of translocation are evaluated by using the self-consistent field theory for the polyelectrolyte and the coupled Poisson-Boltzmann description for ions without radial symmetry. The barrier is found to be essentially entropic due to conformational changes. For moderate and high salt concentrations, the barriers for the polyelectrolyte chain are quantitatively equivalent to that of uncharged self-avoiding walks. Electrostatic effects are shown to increase the free energy barriers, but only slightly. The degree of ionization, electrostatic interaction strength, decreasing salt concentration, and the solvent quality all result in increases in the barrier.
Effects of fluid shear stress on polyelectrolyte multilayers by neutron scattering studies
Singh, Saurabh; Junghans, Ann; Watkins, Erik; ...
2015-02-17
The structure of layer-by-layer (LbL) deposited nanofilm coatings consists of alternating polyethylenimine (PEI) and polystyrenesulfonate (PSS) films deposited on a single crystal quartz substrate. LbL-deposited nanofilms were investigated by neutron reflectomery (NR) in contact with water in the static and fluid shear stress conditions. The fluid shear stress was applied through a laminar flow of the liquid parallel to the quartz/polymer interface in a custom-built solid–liquid interface cell. The scattering length density profiles obtained from NR results of these polyelectrolyte multilayers (PEM), measured under different shear conditions, showed proportional decrease of volume fraction of water hydrating the polymers. For themore » highest shear rate applied (ca. 6800 s –1) the water volume fraction decreased by approximately 7%. The decrease of the volume fraction of water was homogeneous through the thickness of the film. Since there were not any significant changes in the total polymer thickness, it resulted in negative osmotic pressures in the film. The PEM films were compared with the behavior of thin films of thermoresponsive poly(N-isopropylacrylamide) (pNIPAM) deposited via spin-coating. The PEM and pNIPAM differ in their interactions with water molecules, and they showed opposite behaviors under the fluid shear stress. In both cases the polymer hydration was reversible upon the restoration of static conditions. Furthermore, a theoretical explanation is given to explain this difference in the effect of shear on hydration of polymeric thin films.« less
NASA Astrophysics Data System (ADS)
Sousa, Fernanda; Mandal, Subhra; Garrovo, Chiara; Astolfo, Alberto; Bonifacio, Alois; Latawiec, Diane; Menk, Ralf Hendrik; Arfelli, Fulvia; Huewel, Sabine; Legname, Giuseppe; Galla, Hans-Joachim; Krol, Silke
2010-12-01
In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex.In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c0nr00345j
Luces, Candace A.; Warner, Isiah M.
2014-01-01
Mixed mode separation using a combination of micellar electrokinetic chromatography (MEKC) and polyelectrolyte multilayer (PEM) coatings is herein reported for the separation of achiral and chiral analytes. Many analytes are difficult to separate by MEKC and PEM coatings alone. Therefore, the implementation of a mixed mode separation provides several advantages for overcoming the limitations of these well-established methods. In this study, it was observed that achiral separations using MEKC and PEM coatings individually resulted in partial resolution of 8 very similar aryl ketones when the molecular micelle (sodium poly(N-undecanoyl-l-glycinate) (poly-SUG)) concentration was varied from 0.25% – 1.00% (w/v) and the bilayer number varied from 2 – 4. However, when mixed mode separation was introduced, baseline resolution was achieved for all 8 analytes. In the case of chiral separations, temazepam, aminoglutethimide, benzoin, benzoin methyl ether and coumachlor were separated using the three separation techniques. For chiral separations, the chiral molecular micelle, sodium poly(N-undecanoyl-l-leucylvalinate) (poly-l-SULV), was employed at concentrations of 0.25–1.50% (w/v) for both MEKC and PEM coatings. Overall, the results revealed partial separation with MEKC and PEM coatings individually. However, mixed mode separation enabled baseline separation of each chiral mixture. The separation of achiral and chiral compounds from different compound classes demonstrates the versatility of this mixed mode approach. PMID:20155738
Origin of the Reflectin Gene and Hierarchical Assembly of Its Protein.
Guan, Zhe; Cai, Tiantian; Liu, Zhongmin; Dou, Yunfeng; Hu, Xuesong; Zhang, Peng; Sun, Xin; Li, Hongwei; Kuang, Yao; Zhai, Qiran; Ruan, Hao; Li, Xuanxuan; Li, Zeyang; Zhu, Qihui; Mai, Jingeng; Wang, Qining; Lai, Luhua; Ji, Jianguo; Liu, Haiguang; Xia, Bin; Jiang, Taijiao; Luo, Shu-Jin; Wang, Hong-Wei; Xie, Can
2017-09-25
Cephalopods, the group of animals including octopus, squid, and cuttlefish, have remarkable ability to instantly modulate body coloration and patterns so as to blend into surrounding environments [1, 2] or send warning signals to other animals [3]. Reflectin is expressed exclusively in cephalopods, filling the lamellae of intracellular Bragg reflectors that exhibit dynamic iridescence and structural color change [4]. Here, we trace the possible origin of the reflectin gene back to a transposon from the symbiotic bioluminescent bacterium Vibrio fischeri and report the hierarchical structural architecture of reflectin protein. Intrinsic self-assembly, and higher-order assembly tightly modulated by aromatic compounds, provide insights into the formation of multilayer reflectors in iridophores and spherical microparticles in leucophores and may form the basis of structural color change in cephalopods. Self-assembly and higher-order assembly in reflectin originated from a core repeating octapeptide (here named protopeptide), which may be from the same symbiotic bacteria. The origin of the reflectin gene and assembly features of reflectin protein are of considerable biological interest. The hierarchical structural architecture of reflectin and its domain and protopeptide not only provide insights for bioinspired photonic materials but also serve as unique "assembly tags" and feasible molecular platforms in biotechnology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hu, Qiong-Zheng; Jang, Chang-Hyun
2012-03-01
In this study, we developed a new type of liquid crystal (LC)-based sensor for the real-time and label-free monitoring of enzymatic activity through changes in the orientation of LCs coupled to the interactions between polyelectrolyte and phospholipid. The LCs changed from dark to bright after an aqueous solution of poly-l-lysine (PLL) was transferred onto a self-assembled monolayer of the phospholipid, dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG), at the aqueous/LC interface. Interactions between the positively charged PLL and the negatively charged DOPG drove the reorganization of the phospholipid membrane, which induced an orientational transition in the LCs from a homeotropic to planar state. Since the serine endopeptidase trypsin can enzymatically catalyze the hydrolysis of PLL, the dark-to-bright shift in the optical response was not observed after transferring a mixed solution of PLL and trypsin onto the DOPG-decorated LC interface, indicating that no orientational transitions in the LCs occurred. However, the optical response from dark to bright was observed when the mixture in the optical cell was replaced by an aqueous solution of PLL. Control experiments with trypsin or an aqueous mixture of PLL and deactivated trypsin further confirmed the feasibility of this approach. The detection limit of trypsin was determined to be ~1 μg/mL. This approach holds great promise for use in the development of LC-based sensors for the detection of enzymatic reactions in cases where the biological polyelectrolyte substrates of enzymes could disrupt the organization of the membrane and induce orientational transitions of LCs at the aqueous/LC interface. © 2012 American Chemical Society
Dul, Maria; Paluch, Krzysztof J; Kelly, Hazel; Healy, Anne Marie; Sasse, Astrid; Tajber, Lidia
2015-06-05
The aim of this work was to investigate the feasibility of cross-linker free polyelectrolyte complex formation at the nanoscale between carrageenan (CAR) and protamine (PROT). The properties of CAR/PROT nanoparticles (NPs) were dependent on the carrageenan type: kappa (KC), iota (IC) and lambda (LC), concentration of components, addition of divalent cations, weight mixing ratio (WMR) of constituents and mode of component addition. In the case of 0.1% w/v solutions, IC-based NPs had the smallest particle sizes (100-150nm) and low polydispersity indices (0.1-0.4). A decrease in the solution concentration from 0.1% to 0.05% w/v enabled the formation of KC/PROT NPs. All carrageenans exhibited the ability to form NPs with surface charge ranging from -190 to 40mV. The inclusion of divalent cations caused an increase in the particle size and zeta potential. Infrared analysis confirmed the presence of a complex between CAR and PROT and showed that IC chains undergo structural changes when forming NPs. Colloidal stability of NPs was related to the initial surface charge of particles and was time- and pH-dependent. IC was found to be the most suitable type of CAR when forming nanoplexes with PROT. Copyright © 2015 Elsevier Ltd. All rights reserved.
Podsiadlo, Paul; Qin, Ming; Cuddihy, Meghan; Zhu, Jian; Critchley, Kevin; Kheng, Eugene; Kaushik, Amit K; Qi, Ying; Kim, Hyoung-Sug; Noh, Si-Tae; Arruda, Ellen M; Waas, Anthony M; Kotov, Nicholas A
2009-12-15
Multilayered thin films prepared with the layer-by-layer (LBL) assembly technique are typically "brittle" composites, while many applications such as flexible electronics or biomedical devices would greatly benefit from ductile, and tough nanostructured coatings. Here we present the preparation of highly ductile multilayered films via LBL assembly of oppositely charged polyurethanes. Free-standing films were found to be robust, strong, and tough with ultimate strains as high as 680% and toughness of approximately 30 MJ/m(3). These results are at least 2 orders of magnitude greater than most LBL materials presented until today. In addition to enhanced ductility, the films showed first-order biocompatibility with animal and human cells. Multilayered structures incorporating polyurethanes open up a new research avenue into the preparation of multifunctional nanostructured films with great potential in biomedical applications.
Fabrication of nanocapsule carriers from multilayer-coated vaterite calcium carbonate nanoparticles.
Biswas, Aniket; Nagaraja, Ashvin T; McShane, Michael J
2014-12-10
Nanosized luminescent sensors were prepared as reagents for optical sensing and imaging of oxygen using ratiometric emission properties of a two-dye system. Polymeric capsules were fabricated utilizing poly(vinylsulfonic acid) (PVSA)-stabilized vaterite CaCO3 nanoparticles (CCNPs) as sacrificial templates. The buffer and polymeric surfactant requirements of the layer-by-layer (LbL) process were evaluated toward deposition of multilayer coatings and, ultimately, formation of hollow capsules using these interesting materials. CCNPs were found to be more stable in alkaline NaHCO3 buffer after repeated cycles of washing under sonication and resuspension. An intermediate PVSA concentration was required to maximize the loading of oxygen-sensitive porphyrin and oxygen-insensitive fluorescent nanoparticles in the CCNPs while maintaining minimal nanoparticle size. The CCNPs were then coated with polyelectrolyte multilayers and subsequent removal of the CaCO3 core yielded nanocapsules containing dye and fluorescent nanoparticles. The resulting nanocapsules with encapsulated luminophores functioned effectively as oxygen sensors with a quenching response of 89.28 ± 2.59%, and O2 (S = 1/2) = 20.91 μM of dissolved oxygen.
Milliken, Sarah; Fraser, Jeff; Poirier, Shawn; Hulse, John; Tay, Li-Lin
2018-05-05
Self-assembled multi-layered vertically aligned gold nanorod (AuNR) arrays have been fabricated by a simple preparation process that requires a balance between the particle concentration and the ionic strength of the solvent. An experimentally determined critical AuNR concentration of 2.0nM and 50mM NaCl produces well-ordered vertically aligned hexagonally close-packed AuNR arrays. We demonstrate surface treatment via UV Ozone cleaning of such samples to allow introduction of analyte molecules (benzenethiol and cannabinol) for effective surface enhanced Raman scattering detection. This is the first demonstration of the SERS analysis of cannabinol. This approach demonstrates a cost-effective, high-yield and simple fabrication route to SERS sensors with application in the screening for the cannabinoids. Copyright © 2018. Published by Elsevier B.V.
Layer-by-layer strippable Ag multilayer films fabricated by modular assembly.
Li, Yan; Chen, Xiaoyan; Li, Qianqian; Song, Kai; Wang, Shihui; Chen, Xiaoyan; Zhang, Kai; Fu, Yu; Jiao, Yong-Hua; Sun, Ting; Liu, Fu-Chun; Han, En-Hou
2014-01-21
We have developed a new method to fabricate multilayer films, which uses prepared thin films as modular blocks and transfer as operation mode to build up multilayer structures. In order to distinguish it from the in situ fabrication manner, this method is called modular assembly in this study. On the basis of such concept, we have fabricated a multilayer film using the silver mirror film as the modular block and poly(lactic acid) as the transfer tool. Due to the special double-layer structure of the silver mirror film, the resulting multilayer film had a well-defined stratified architecture with alternate porous/compact layers. As a consequence of the distinct structure, the interaction between the adjacent layers was so weak that the multilayer film could be layer-by-layer stripped. In addition, the top layer in the film could provide an effective protection on the morphology and surface property of the underlying layers. This suggests that if the surface of the film was deteriorated, the top layer could be peeled off and the freshly exposed surface would still maintain the original function. The successful preparation of the layer-by-layer strippable silver multilayer demonstrates that modular assembly is a feasible and effective method to build up multilayer films capable of creating novel and attractive micro/nanostructures, having great potential in the fabrication of nanodevices and coatings.
Assessment of DNA complexation onto polyelectrolyte-coated magnetic silica nanoparticles.
Dávila-Ibáñez, Ana B; Buurma, Niklaas J; Salgueiriño, Verónica
2013-06-07
The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear evidence of the type of interactions established, reflects the importance of the DNA length, the nanoparticle size and the ionic strength, and permits the identification of the parameters controlling both the stability and the type of magnetoplexes formed. This information can be used to develop targeted systems with properties optimized for the various proposed applications of magnetoplexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrova, V. A.; Orekhov, A. S.; Chernyakov, D. D.
A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan–hyaluronic acid, chitosan–alginic acid, and chitosan–carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.
Abouzar, M H; Poghossian, A; Razavi, A; Williams, O A; Bijnens, N; Wagner, P; Schöning, M J
2009-01-01
The feasibility of a capacitive field-effect EDIS (electrolyte-diamond-insulator-semiconductor) platform for multi-parameter sensing is demonstrated by realising EDIS sensors with an O-terminated nanocrystalline-diamond (NCD) film as transducer material for the detection of pH and penicillin concentration as well as for the label-free electrical monitoring of adsorption and binding of charged macromolecules, like polyelectrolytes. The NCD films were grown on p-Si-SiO(2) substrates by microwave plasma-enhanced chemical vapour deposition. To obtain O-terminated surfaces, the NCD films were treated in an oxidising medium. The NCD-based field-effect sensors have been characterised by means of constant-capacitance method. The average pH sensitivity of the O-terminated NCD film was 40 mV/pH. A low detection limit of 5 microM and a high penicillin G sensitivity of 65-70 mV/decade has been obtained for an EDIS penicillin biosensor with the adsorptively immobilised enzyme penicillinase. Alternating potential changes, having tendency to decrease with increasing the number of adsorbed polyelectrolyte layers, have been observed after the layer-by-layer deposition of polyelectrolyte multilayers, using positively charged PAH (poly (allylamine hydrochloride)) and a negatively charged PSS (poly (sodium 4-styrene sulfonate)) as a model system. The response mechanism of the developed EDIS sensors is discussed.
Design and function of biomimetic multilayer water purification membranes
Ling, Shengjie; Qin, Zhao; Huang, Wenwen; Cao, Sufeng; Kaplan, David L.; Buehler, Markus J.
2017-01-01
Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences. PMID:28435877
Design and function of biomimetic multilayer water purification membranes.
Ling, Shengjie; Qin, Zhao; Huang, Wenwen; Cao, Sufeng; Kaplan, David L; Buehler, Markus J
2017-04-01
Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences.
NASA Astrophysics Data System (ADS)
Lahiner, Guillaume; Nicollet, Andrea; Zapata, James; Marín, Lorena; Richard, Nicolas; Rouhani, Mehdi Djafari; Rossi, Carole; Estève, Alain
2017-10-01
Thermite multilayered films have the potential to be used as local high intensity heat sources for a variety of applications. Improving the ability of researchers to more rapidly develop Micro Electro Mechanical Systems devices based on thermite multilayer films requires predictive modeling in which an understanding of the relationship between the properties (ignition and flame propagation), the multilayer structure and composition (bilayer thicknesses, ratio of reactants, and nature of interfaces), and aspects related to integration (substrate conductivity and ignition apparatus) is achieved. Assembling all these aspects, this work proposes an original 2D diffusion-reaction modeling framework to predict the ignition threshold and reaction dynamics of Al/CuO multilayered thin films. This model takes into consideration that CuO first decomposes into Cu2O, and then, released oxygen diffuses across the Cu2O and Al2O3 layers before reacting with pure Al to form Al2O3. This model is experimentally validated from ignition and flame velocity data acquired on Al/CuO multilayers deposited on a Kapton layer. This paper discusses, for the first time, the importance of determining the ceiling temperature above which the multilayers disintegrate, possibly before their complete combustion, thus severely impacting the reaction front velocity and energy release. This work provides a set of heating surface areas to obtain the best ignition conditions, i.e., with minimal ignition power, as a function of the substrate type.
Structure of Weakly Charged Polyelectrolyte Brushes: Monomer Density Profiles
NASA Astrophysics Data System (ADS)
Borisov, O. V.; Zhulina, E. B.
1997-03-01
The internal structure (the monomer density profiles) of weakly charged polyelectrolyte brushes of different morphologies has been analyzed on the basis of the self-consistent-field approach. In contrast to previous studies based on the local electroneutrality approximation valid for sufficiently strongly charged or densely grafted (“osmotic") brushes we consider the opposite limit of sparse brushes which are unable to retain the counterions inside the brush. We have shown that an exact analytical solution of the SCF-equations is available in the case of a planar brush. In contrast to Gaussian monomer density profile known for “osmotic" polyelectrolyte brushes we have found that weakly charged brushes are characterized by constant monomer density. At the same time free ends of grafted polyions are distributed throughout the brush. Thus, the structural cross-over between polyelectrolyte “mushrooms" and dense brush regimes is established.
NASA Astrophysics Data System (ADS)
Ardini, Matteo; Golia, Giordana; Passaretti, Paolo; Cimini, Annamaria; Pitari, Giuseppina; Giansanti, Francesco; Leandro, Luana Di; Ottaviano, Luca; Perrozzi, Francesco; Santucci, Sandro; Morandi, Vittorio; Ortolani, Luca; Christian, Meganne; Treossi, Emanuele; Palermo, Vincenzo; Angelucci, Francesco; Ippoliti, Rodolfo
2016-03-01
Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the ``double-faced'' Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml-1. Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and ``green'' routes to 3D reduced GO-metal composite materials.Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the ``double-faced'' Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml-1. Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and ``green'' routes to 3D reduced GO-metal composite materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08632a
Abioye, Amos Olusegun; Kola-Mustapha, Adeola
2015-06-01
The direct effect of electrostatic interaction between ibuprofen and cationic dextran on the system-specific physicochemical parameters and intrinsic dissolution characteristics of ibuprofen was evaluated in order to develop drug-polymer nanoconjugate as a delivery strategy for poorly soluble drugs. Amorphous ibuprofen-DEAE dextran (Ddex) nanoconjugate was prepared using a low energy, controlled amphiphile-polyelectrolyte electrostatic self-assembly technique optimized by ibuprofen critical solubility and Ddex charge screening. Physicochemical characteristics of the nanoconjugates were evaluated using FTIR, DSC, TGA, NMR and SEM relative to pure ibuprofen. The in vitro release profiles and mechanism of ibuprofen release were determined using mathematical models including zero and first order kinetics; Higuchi; Hixson-Crowell and Korsmeyer-Peppas. Electrostatic interaction between ibuprofen and Ddex was confirmed with FT-IR, (1)H NMR and (13)C NMR spectroscopy. The broad and diffused DSC peaks of the nanoconjugate as well as the disappearance of ibuprofen melting peak provided evidence for their highly amorphous state. Low concentrations of Ddex up to 1.0 × 10(-6) g/dm(3) enhanced dissolution of ibuprofen to a maximum of 81.32% beyond which retardation occurred steadily. Multiple release mechanisms including diffusion; discrete drug dissolution; anomalous transport and super case II transport were noted. Controlled assembly of ibuprofen and Ddex produced a novel formulation with potential extended drug release dictated by Ddex concentration.
Secchi, Valeria; Franchi, Stefano; Santi, Marta; Vladescu, Alina; Braic, Mariana; Skála, Tomáš; Nováková, Jaroslava; Dettin, Monica; Zamuner, Annj; Iucci, Giovanna; Battocchio, Chiara
2018-03-07
In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH₂ that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5-200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization.
Kinetics of polyelectrolyte adsorption
NASA Astrophysics Data System (ADS)
Cohen Stuart, M. A.; Hoogendam, C. W.; de Keizer, A.
1997-09-01
The kinetics of polyelectrolyte adsorption has been investigated theoretically. In analogy with Kramers' rate theory for chemical reactions we present a model which is based on the assumption that a polyelectrolyte encounters a barrier in its motion towards an adsorbing surface. The height of the barrier, which is of electrostatic origin, is calculated with a self-consistent-field (SCF) model. The salt concentration strongly affects the height of the barrier. At moderate salt concentrations (0953-8984/9/37/009/img1) equilibrium in the adsorption is attained; at low salt concentration (0953-8984/9/37/009/img2) equilibrium is not reached on the time scale of experiments. The attachment process shows resemblances to the classical DLVO theory.
Polyelectrolyte Multilayer-Treated Electrodes for Real-Time Electronic Sensing of Cell Proliferation
Mijares, Geraldine I.; Reyes, Darwin R.; Geist, Jon; Gaitan, Michael; Polk, Brian J.; DeVoe, Don L.
2010-01-01
We report on the use of polyelectrolyte multilayer (PEM) coatings as a non-biological surface preparation to facilitate uniform cell attachment and growth on patterned thin-film gold (Au) electrodes on glass for impedance-based measurements. Extracellular matrix (ECM) proteins are commonly utilized as cell adhesion promoters for electrodes; however, they exhibit degradation over time, thereby imposing limitations on the duration of conductance-based biosensor experiments. The motivation for the use of PEM coatings arises from their long-term surface stability as promoters for cell attachment, patterning, and culture. In this work, a cell proliferation monitoring device was fabricated. It consisted of thin-film Au electrodes deposited with a titanium-tungsten (TiW) adhesion layer that were patterned on a glass substrate and passivated to create active electrode areas. The electrode surfaces were then treated with a poly(ethyleneimine) (PEI) anchoring layer and subsequent bilayers of sodium poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH). NIH-3T3 mouse embryonic fibroblast cells were cultured on the device, observed by optical microscopy, and showed uniform growth characteristics similar to those observed on a traditional polystyrene cell culture dish. The optical observations were correlated to electrical measurements on the PEM-treated electrodes, which exhibited a rise in impedance with cell proliferation and stabilized to an approximate 15 % increase as the culture approached confluency. In conclusion, cells proliferate uniformly over gold and glass PEM-treated surfaces, making them useful for continuous impedance-based, real-time monitoring of cell proliferation and for the determination of cell growth rate in cellular assays. PMID:27134780
Multiple internalization pathways of polyelectrolyte multilayer capsules into mammalian cells.
Kastl, Lena; Sasse, Daniel; Wulf, Verena; Hartmann, Raimo; Mircheski, Josif; Ranke, Christiane; Carregal-Romero, Susana; Martínez-López, José Antonio; Fernández-Chacón, Rafael; Parak, Wolfgang J; Elsasser, Hans-Peter; Rivera Gil, Pilar
2013-08-27
Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigated. In particular the following experiments were performed: (i) the study of capsule co-localization with established endocytic markers, (ii) switching-off endocytotic pathways with pharmaceutical/chemical inhibitors, and (iii) characterization and quantification of capsule uptake with confocal and electron microscopy. As result, capsules co-localized with lipid rafts and with phagolysosomes, but not with other endocytic vesicles. Chemical interference of endocytosis with chemical blockers indicated that PEM capsules enter the investigated cell lines through a mechanism slightly sensitive to electrostatic interactions, independent of clathrin and caveolae, and strongly dependent on cholesterol-rich domains and organelle acidification. Microscopic characterization of cells during capsule uptake showed the formation of phagocytic cups (vesicles) to engulf the capsules, an increased number of mitochondria, and a final localization in the perinuclear cytoplasma. Combining all these indicators we conclude that PEM capsule internalization in general occurs as a combination of different sequential mechanisms. Initially, an adsorptive mechanism due to strong electrostatic interactions governs the stabilization of the capsules at the cell surface. Membrane ruffling and filopodia extensions are responsible for capsule engulfing through the formation of a phagocytic cup. Co-localization with lipid raft domains activates the cell to initiate a lipid-raft-mediated macropinocytosis. Internalization vesicles are very acidic and co-localize only with phagolysosome markers, excluding caveolin-mediated pathways and indicating that upon phagocytosis the capsules are sorted to heterophagolysosomes.
Saurer, Eric M.; Yamanouchi, Dai; Liu, Bo; Lynn, David M.
2010-01-01
We report an approach for the localized delivery of plasmid DNA to vascular tissue from the surfaces of inflatable embolectomy catheter balloons. Using a layer-by-layer approach, ultrathin multilayered polyelectrolyte films were fabricated on embolectomy catheter balloons by alternately adsorbing layers of a hydrolytically degradable poly(β-amino ester) and plasmid DNA. Fluorescence microscopy revealed that the films coated the surfaces of the balloons uniformly. Coated balloons that were incubated in phosphate-buffered saline at 37 °C released ~25 μg DNA/cm2 over 24 hours. Analysis of the DNA by gel electrophoresis showed that the DNA was released in open-circular (‘nicked’) and supercoiled conformations, and in vitro cell transfection assays confirmed that the released DNA was transcriptionally active. Arterial injury was induced in the internal carotid arteries of Sprague-Dawley rats using uncoated balloons, followed by treatment with film-coated balloons for 20 minutes. X-gal, immunohistochemical, and immunofluorescence staining of sectioned arteries indicated high levels of β-galactosidase or enhanced green fluorescent protein (EGFP) expression in arteries treated with film-coated balloons. β-galactosidase and EGFP expression were observed throughout the medial layers of arterial tissue, and around approximately two-thirds of the circumference of the treated arteries. The layer-by-layer approach reported here provides a general platform for the balloon-mediated delivery of DNA to vascular tissue. Our results suggest the potential of this approach to deliver therapeutically relevant DNA to prevent complications such as intimal hyperplasia that arise after vascular interventions. PMID:20933275
Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.
2014-01-01
Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093
The stability of BMP loaded polyelectrolyte multilayer coatings on titanium
Guillot, R.; Gilde, F.; Becquart, P.; Sailhan, F.; Lapeyrere, A.; Logeart-Avramoglou, D.; Picart, C.
2014-01-01
Immobilization of bone morphogenetic proteins (BMP) onto material surfaces is a promising, but still challenging, strategy for achieving dependable and consistent osseointegration of long-term metal implants. In the present study, we have developed an osteoinductive coating of a porous titanium implant using biomimetic polyelectrolyte multilayer (PEM) films loaded with BMP-2. The amount of BMP-2 loaded in these films was tuned -over a large range - depending on the cross-linking extent of the film and of the BMP-2 initial concentration. The air-dried PEM films were stable for at least one year of storage at 4°C. In addition, they resisted exposure to γ-irradiation at clinically approved doses. The preservation of the growth factor bioactivity upon long-term storage and sterilization were evaluated both in vitro (using C2C12 cells) and in vivo (in a rat ectopic model) for the perspective of industrial and clinical development. BMP-2 loaded in dried PEM films exhibited shelf-life stability over one year. However, their bioactivity in vitro decreased from 50 to 80% after irradiation depending on the γ-irradiation dose. Remarkably, the in vivo studies showed that the osteoinductive potential of BMP-2 contained in PEM-coated Ti implants was fully preserved after air-drying of the implants and sterilization at 25 kGy. Film drying or irradiation did not affect the amount of new bone tissue formation. This “off-the-shelf” novel technology of functionalized implants opens promising applications in prosthetic and tissue engineering fields. PMID:23642539
Guthrie, Kathleen M.; Agarwal, Ankit; Teixeira, Leandro B. C.; Dubielzig, Richard R.; Abbott, Nicholas L.; Murphy, Christopher J.; Singh, Harpreet; McAnulty, Jonathan F.; Schurr, Michael J.
2013-01-01
Silver is a commonly used topical antimicrobial. However, technologies to immobilize silver at the wound surface are lacking, while currently available silver-containing wound dressings release excess silver that can be cytotoxic and impair wound healing. We have shown that precise concentrations of silver at lower levels can be immobilized into a wound bed using a polyelectrolyte multilayer (PEM) attachment technology. These silver nanoparticle-impregnated PEMs are non-cytotoxic yet bactericidal in vitro, but their effect on wound healing in vivo was previously unknown. Objective The purpose of this study was to determine the effect on wound healing of integrating silver nanoparticle/PEMs into the wound bed. Methods A full-thickness, splinted, excisional murine wound healing model was employed in both phenotypically normal mice and spontaneously diabetic mice (healing impaired model). Results Gross image measurements showed an initial small lag in healing in the silver-treated wounds in diabetic mice, but no difference in time to complete wound closure in either normal or diabetic mice. Histological analysis showed modest differences between silver-treated and control groups on day 9, but no difference between groups at the time of wound closure. Conclusions We conclude that silver nanoparticle/PEMs can be safely integrated into the wound beds of both normal and diabetic mice without delaying wound closure, and with transient histological effects. The results of this study suggest the feasibility of this technology for use as a platform to effect nanoscale wound engineering approaches to microbial prophylaxis or to augment wound healing. PMID:23511285
Scaling laws for van der Waals interactions in nanostructured materials.
Gobre, Vivekanand V; Tkatchenko, Alexandre
2013-01-01
Van der Waals interactions have a fundamental role in biology, physics and chemistry, in particular in the self-assembly and the ensuing function of nanostructured materials. Here we utilize an efficient microscopic method to demonstrate that van der Waals interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of van der Waals interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly.
NASA Astrophysics Data System (ADS)
Metzman, Jonathan S.; Ridley, Jason I.; Khalifa, Moataz B.; Heflin, James R.
2015-12-01
A modified silica nanoparticle (MSNP) solution was formed by the encapsulation of negatively charged silica nanoparticles by the UV-crosslinkable polycation oligomer diazo-resin (DAR). Appropriate DAR encapsulation concentrations were determined by use of zeta-potential and dynamic light scattering measurements. The MSNPs were used in conjunction with poly(styrene sulfonate) (PSS) to grow homogenous ionic self-assembled multilayer anti-reflection coatings. Stability was induced within the films by the exposure of UV-irradiation that allowed for crosslinking of the DAR and PSS. The films were characterized by UV/vis/IR spectroscopy and field emission scanning electron microscopy. The transmission and reflection levels were >98.5% and <0.05%, respectively. The refractive indices resided in the 1.25-1.26 range. The solvent stability was tested by sonication of the films in a ternary solvent (H2O/DMF/ZnCl2 3:5:2 w/w/w).
NASA Astrophysics Data System (ADS)
Shaik, Jameel
Several approaches such as self-assembled monolayers and layer-by-layer assembled multilayer films are being used as tools to study the interactions of cells with biomaterials in vitro. In this study, the layer-by-layer assembly approach was used to create monolayer, bilayer, trilayer, five, ten and twenty-bilayer beds of eleven different biomaterials. The various biomaterials used were poly(styrene-sulfonate), fibronectin, poly-L-lysine, poly-D-lysine, laminin, bovine serum albumin, chondroitin sulfate, poly(ethyleneimine), polyethylene glycol amine, collagen and poly(dimethyldiallyl-ammonium chloride) with unmodified tissue-culture polystyrene as standard control. Three different cell lines---primary bovine articular chondrocytes, and two secondary cell lines, human chondrosarcoma cells and canine chondrocytes were used in these studies. Chondrocyte morphology and attachment, viability, proliferation, and functionality were determined using bright field microscopy, the Live/Dead viability assay, MTT assay, and immunocytochemistry, respectively. Atomic force microscopy of the nanofilms indicated an increase in surface roughness with increasing number of layers. The most important observations from the studies on primary bovine articular chondrocytes were that these cells exhibited increasing viability and cell metabolic activity with increasing number of bilayers. The increase in viability was more pronounced than the increase in cell metabolic activity. Also, bovine chondrocytes on bilayers of poly(dimethyldiallyl-ammonium chloride, poly-L-lysine, poly(styrene-sulfonate), and bovine serum albumin were substantially bigger in size and well-attached when compared to the cells grown on monolayer and trilayers. Lactate dehydrogenase assay performed on chondrosarcoma cells grown on 5- and 10-bilayer multilayer beds indicated that the 10-bilayer beds had reduced cytotoxicity compared to the 5-bilayer beds. MTT assay performed on canine chondrocytes grown on 5-, 10-, and 20-bilayer nanofilm beds revealed increasing cell metabolic activity for BSA with increasing bilayers. Micropatterned multilayer beds having poly-L-lysine, poly-D-lysine, laminin poly(dimethyldiallyl-ammonium chloride) and poly(ethyleneimine) as the terminating layers were fabricated using the Layer-by-layer Lift-off (LbL-LO) method that combines photolithography and LbL self-assembly. Most importantly, micropatterned co-culture platforms consisting of anti-CD 44 rat monoclonal and anti-rat osteopontin (MPIIIB101) antibodies were constructed using the LbL-LO method for the first time. These co-culture platforms have several applications especially for studies of stem and progenitor cells. Co-culture platforms exhibiting spatiotempora-based differentiation can be built with LbL-LO for the differentiation of stem cells into the desired cell lineage.
Formation and enzymatic degradation of poly-l-arginine/fucoidan multilayer films.
Webber, Jessie L; Benbow, Natalie L; Krasowska, Marta; Beattie, David A
2017-11-01
A polyelectrolyte multilayer (PEM) system based on biopolymers has been constructed and studied in its formation and enzymatic breakdown. The multilayer is composed of fucoidan (a proven antimicrobial/anti-inflammatory seaweed-based polysaccharide) and poly-l-arginine (a polypeptide that can be readily degraded with trypsin to yield arginine, a known NO donor), thus making the multilayer a potential dual action surface treatment for wound dressings. Studies on the formation of the multilayer revealed that the film built-up in the expected stepwise manner with consistent reversal of the zeta potential upon the adsorption of each subsequent polyion. The completed film (8 bilayers) was seen to have low hydration (30% water), as determined by H 2 O/D 2 O solvent replacement studies using the quartz crystal microbalance, with an adsorbed mass (without hydration water) of approx. 4.8μgcm -2 , as determined by quantitative attenuated total reflectance Fourier transform infrared (ATR FTIR) spectroscopy. The enzymatic breakdown of the film in response to exposure to trypsin was also investigated, and the film was seen to release both polymers over time, with a projected complete film removal period of approximately 24h. Critically, this information was determined using ATR FTIR spectroscopy experiments, which allowed unambiguous deconvolution of the removal rates of the two polyions, which is information that cannot be obtained from other methodologies used to study enzymatic breakdown of surface films. Copyright © 2017 Elsevier B.V. All rights reserved.
Amancha, Kiran Prakash; Balkundi, Shantanu; Lvov, Yuri; Hussain, Alamdar
2014-05-15
The present study tests the hypothesis that layer-by-layer (LbL) nanoassembly of thin polyelectrolyte films on insulin particles provides sustained release of the drug after pulmonary delivery. LbL insulin microparticles were formulated using cationic and anionic polyelectrolytes. The microparticles were characterized for particle size, particle morphology, zeta potential and in vitro release. The pharmacokinetics and pharmacodynamics of drug were assessed by measuring serum insulin and glucose levels after intrapulmonary administration in rats. Bronchoalveolar lavage (BAL) and evans blue (EB) extravasation studies were performed to investigate the cellular or biochemical changes in the lungs caused by formulation administration. The mass median aerodynamic diameter (MMAD) of the insulin microparticles was 2.7 μm. Confocal image of the formulation particles confirmed the polyelectrolyte deposition around the insulin particles. Zeta potential measurements showed that there was charge reversal after each layering. Pulmonary administered LbL insulin formulation resulted in sustained serum insulin levels and concomitant decrease in serum glucose levels. The BAL and EB extravasation studies showed that the LbL insulin formulation did not elicit significant increase in marker enzymes activities compared to control group. These results demonstrate that the sustained release of insulin could be achieved using LbL nanoassembly around the insulin particles. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
de Lucena, Nathalia C.; Miyazaki, Celina M.; Shimizu, Flávio M.; Constantino, Carlos J. L.; Ferreira, Marystela
2018-04-01
Dopamine (DA) abnormal levels are related to diseases which makes important the development of fast, reliable, low-cost and sensitive devices for diagnosis and pharmaceutical controls. Nanostructured film composite of sodium montmorillonite clay (Na+MMT) and nickel phthalocyanine (NiTsPc) was self-assembled by layer-by-layer (LbL) technique and applied as electrochemical sensor for DA in the presence of common natural interferents as ascorbic acid (AA) and uric acid (UA). Three different LbL architecture films were investigated: LbL films of clay (PEI/Na+MMT) and phthalocyanine (PEI/NiTsPc) in a bilayer structure with a conventional polyelectrolyte (PEI) and a composite film formed by both materials to verify the synergistic effect in the LbL film in a quadri-layer assembly (PEI/Na+MMT/PEI/NiTsPc). Structural characterization indicated molecular level interactions between the layers forming the LbL films. The ITO/(PEI/Na+MMT/PEI/NiTsPc)10 electrode exhibited a LOD of 1.0 μmol L-1 and linear range 5-150 μmol L-1.
Multi-colored fibers by self-assembly of DNA, histone proteins, and cationic conjugated polymers.
Wang, Fengyan; Liu, Zhang; Wang, Bing; Feng, Liheng; Liu, Libing; Lv, Fengting; Wang, Yilin; Wang, Shu
2014-01-07
The development of biomolecular fiber materials with imaging ability has become more and more useful for biological applications. In this work, cationic conjugated polymers (CCPs) were used to construct inherent fluorescent microfibers with natural biological macromolecules (DNA and histone proteins) through the interfacial polyelectrolyte complexation (IPC) procedure. Isothermal titration microcalorimetry results show that the driving forces for fiber formation are electrostatic and hydrophobic interactions, as well as the release of counterions and bound water molecules. Color-encoded IPC fibers were also obtained based on the co-assembly of DNA, histone proteins, and blue-, green-, or red- (RGB-) emissive CCPs by tuning the fluorescence resonance energy-transfer among the CCPs at a single excitation wavelength. The fibers could encapsulate GFP-coded Escherichia coli BL21, and the expression of GFP proteins was successfully regulated by the external environment of the fibers. These multi-colored fibers show a great potential in biomedical applications, such as biosensor, delivery, and release of biological molecules and tissue engineering. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biocatalytic response of multi-layer assembled collagen/hyaluronic acid nanoengineered capsules.
Sousa, Fernanda; Kreft, Oliver; Sukhorukov, Gleb B; Möhwald, Helmuth; Kokol, Vanja
2014-01-01
Biodegradable hollow capsules filled with fluorescently labelled bovine serum albumin (BSA) as a model drug were prepared via layer-by-layer (LbL) self-assembly of type-I collagen (COL) and hyaluronic acid (HA) using calcium carbonate micro-particles and co-precipitation method. Capsules loaded with fluorescein isothiocyanate (FITC)-BSA, tetramethylrhodamin isothiocyanate (TRITC)-BSA or Alex-Fluor-488-BSA, respectively, were characterised before and after core removal using Confocal Laser Scanning Microscopy (CLSM), whilst the morphologies of individual hollow capsules were assessed using Atomic Force Microscopy (AFM). The sustained release of the encapsulated FITC-BSA protein was attained using enzymatic degradation of the capsule shells by collagenase. The released profile of the fluorescently-labelled BSA indicated that it could be successfully controlled by modulating the number of layers and/or by collagen crosslinking either before or after the capsule's assembly.
Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions
NASA Astrophysics Data System (ADS)
Nakashima, Takuya; Zhu, Jian; Qin, Ming; Ho, Szushen; Kotov, Nicholas A.
2010-10-01
The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best ``green'' processing solvents, and hence, are advantageous in respect to traditional organic solvents. Poly(ethyleneimine) (PEI) and poly(sodium styrenesulfonate) (PSS) were dispersed in a hydrophilic IL and successfully deposited in the LBL fashion. To produce electroactive thin films with significance to electronics, a similar process was realized for PSS-modified single-walled carbon nanotubes (SWNT-PSS) and poly(vinyl alcohol) (PVA). Characterization of the coating using standard spectroscopy and microscopy techniques typical of the multilayer field indicated that there are both similarities and differences in the structure and properties of LBL films build from ILs and aqueous solutions. The films exhibited electrical conductivity of 102 S m-1 with transparency as high as 98% for visible light, which is comparable to similar parameters for many carbon nanotube and graphene films prepared by both aqueous LBL and other methods.The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best ``green'' processing solvents, and hence, are advantageous in respect to traditional organic solvents. Poly(ethyleneimine) (PEI) and poly(sodium styrenesulfonate) (PSS) were dispersed in a hydrophilic IL and successfully deposited in the LBL fashion. To produce electroactive thin films with significance to electronics, a similar process was realized for PSS-modified single-walled carbon nanotubes (SWNT-PSS) and poly(vinyl alcohol) (PVA). Characterization of the coating using standard spectroscopy and microscopy techniques typical of the multilayer field indicated that there are both similarities and differences in the structure and properties of LBL films build from ILs and aqueous solutions. The films exhibited electrical conductivity of 102 S m-1 with transparency as high as 98% for visible light, which is comparable to similar parameters for many carbon nanotube and graphene films prepared by both aqueous LBL and other methods. Electronic supplementary information (ESI) available: Aggregation of PEI and PSS in [EMIm][EtSO4], detailed FTIR data, water-contact angle for (PEI/PSS)10 multilayers, and XPS survey spectra. See DOI: 10.1039/b9nr00333a
Avidin/PSS membrane microcapsules with biotin-binding activity.
Endo, Yoshihiro; Sato, Katsuhiko; Sugimoto, Kentaro; Anzai, Jun-ichi
2011-08-15
Polyelectrolyte microcapsules with avidin-poly(styrene sulfonate) (PSS) membrane were prepared by a layer-by-layer deposition technique. The uptake and release of biotin-labeled fluorescein (b-FITC) as well as immobilization of biotin-labeled glucose oxidase (b-GOx) to the microcapsule were studied. The polyelectrolyte microcapsules were prepared by coating the surface of calcium carbonate (CaCO(3)) microparticles with an avidin/PSS multilayer membrane, followed by dissolution of CaCO(3) core in an ethylenediaminetetraacetic acid solution. Inner and outer poly(allylamine)/PSS films were required to isolate the microcapsules, whereas microcapsules could not be formed without the support. The uptake of b-FITC into the microcapsule was highly enhanced through a strong binding of b-FITC to avidin as compared with the uptake of biotin-free FITC. Release of b-FITC from the microcapsule was accelerated upon addition of biotin due to a competitive binding of the added biotin to the binding site of avidin. Similarly, the surface of microcapsule was modified with b-GOx with retaining its catalytic activity. Copyright © 2011 Elsevier Inc. All rights reserved.
Folic-Acid-Targeted Self-Assembling Supramolecular Carrier for Gene Delivery.
Liao, Rongqiang; Yi, Shouhui; Liu, Manshuo; Jin, Wenling; Yang, Bo
2015-07-27
A targeting gene carrier for cancer-specific delivery was successfully developed through a "multilayer bricks-mortar" strategy. The gene carrier was composed of adamantane-functionalized folic acid (FA-AD), an adamantane-functionalized poly(ethylene glycol) derivative (PEG-AD), and β-cyclodextrin-grafted low-molecular-weight branched polyethylenimine (PEI-CD). Carriers produced by two different self-assembly schemes, involving either precomplexation of the PEI-CD with the FA-AD and PEG-AD before pDNA condensation (Method A) or pDNA condensation with the PEI-CD prior to addition of the FA-AD and PEG-AD to engage host-guest complexation (Method B) were investigated for their ability to compact pDNA into nanoparticles. Cell viability studies show that the material produced by the Method A assembly scheme has lower cytotoxicity than branched PEI 25 kDa (PEI-25KD) and that the transfection efficiency is maintained. These findings suggest that the gene carrier, based on multivalent host-guest interactions, could be an effective, targeted, and low-toxicity carrier for delivering nucleic acid to target cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Muthukumar, M.
2012-01-01
Polyelectrolyte chains are well known to be strongly correlated even in extremely dilute solutions in the absence of additional strong electrolytes. Such correlations result in severe difficulties in interpreting light scattering measurements in the determination of the molecular weight, radius of gyration, and the second virial coefficient of charged macromolecules at lower ionic strengths from added strong electrolytes. By accounting for charge-regularization of the polyelectrolyte by the counterions, we present a theory of the apparent molecular weight, second virial coefficient, and the intermolecular structure factor in dilute polyelectrolyte solutions in terms of concentrations of the polymer and the added strong electrolyte. The counterion adsorption of the polyelectrolyte chains to differing levels at different concentrations of the strong electrolyte can lead to even an order of magnitude discrepancy in the molecular weight inferred from light scattering measurements. Based on counterion-mediated charge regularization, the second virial coefficient of the polyelectrolyte and the interchain structure factor are derived self-consistently. The effect of the interchain correlations, dominating at lower salt concentrations, on the inference of the radius of gyration and on molecular weight is derived. Conditions for the onset of nonmonotonic scattering wave vector dependence of scattered intensity upon lowering the electrolyte concentration and interpretation of the apparent radius of gyration are derived in terms of the counterion adsorption mechanism. PMID:22830728
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Jessica S.; Schlenoff, Joseph B.; Keller, Thomas C.S., E-mail: tkeller@bio.fsu.edu
Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion andmore » migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all surfaces. Interestingly, cells throughout the interior region of the sheets on uncrosslinked PEMUs retained their actin and vinculin organization at adherens junctions after treatment with Blebbistatin. Like Blebbistatin, a Rho-kinase (ROCK) inhibitor, Y27632, promoted loss of cell-cell connections between edge cells, whereas a Rac1 inhibitor, NSC23766, primarily altered the lamellipodial protrusion in edge cells. Compliance gradient PAH-PEMUs promoted durotaxis of the cell sheets but not of individual keratocytes, demonstrating durotaxis, like plithotaxis, is an emergent property of cell sheet organization. - Highlights: • Fish scale cell sheets migrate on PAH-PAABp polyelectrolyte multilayers. • Sheets migrating on softer PEMUs periodically retract. • Sheets durotax on modulus gradients. • Myosin II inhibitors inhibit sheet integrity and migration.« less
Directed Self-Assembly of Epitaxial CoFe2O4-BiFeO3 Multiferroic Nanocomposites
2012-04-09
has been limited. One method to produce patterned magneto- electric composites is to use a porous anodic aluminum oxide ( AAO ) film as a liftoff mask...control found in the BFO−CFO 1-3 epitaxial nanocomposites.6,8 Additionally, the AAO and membrane masks are not practical for the formation of a square...during deposition, which produces a hexagonal array pattern.12,13 In one approach, a BTO−CFO multilayer is deposited onto the AAO film on a STO substrate
Design of a K-Band Transmit Phased Array For Low Earth Orbit Satellite Communications
NASA Technical Reports Server (NTRS)
Watson, Thomas; Miller, Stephen; Kershner, Dennis; Anzic, Godfrey
2000-01-01
The design of a light weight, low cost phased array antenna is presented. Multilayer printed wiring board (PWB) technology is utilized for Radio Frequencies (RF) and DC/Logic manifold distribution. Transmit modules are soldered on one side and patch antenna elements are on the other, allowing the use of automated assembly processes. The 19 GHz antenna has two independently steerable beams, each capable of transferring data at 622 Mbps. A passive, self-contained phase change thermal management system is also presented.
Xu, Qingwen; Liu, Huihua; Ye, Zi; Nan, Kaihui; Lin, Sen; Chen, Hao; Wang, Bailiang
2017-04-01
The adhesion of bacteria and subsequent formation of biofilm on the surface of implants greatly affect the long-term use of the implants. The low molar mass gentamicin (GS) cations could hardly be directly incorporated into the multilayer films through alternately deposition with a polyanion. Herein, we have designed and constructed a (poly(acrylic acid)/(polyvinylpyrrolidone/chitosan)) n ((PAA/(PVP/CHI)) n ) multilayer films through layer-by-layer self-assembly method. Through increasing the pH to destroy hydrogen bonding between PAA and PVP, PVP released into the solution and GS simultaneously combined with PAA through electrostatic interactions. The loading dosage of GS into the (PAA/(PVP/CHI)) 10 multilayer film was up to 153.84±18.64μg/cm 2 and could be precisely tuned through changing the thickness of the films. The release behaviour of GS in phosphate buffer saline could also be regulated through thermal cross-linking of the films. The drug-loaded multilayer films displayed efficient against three kinds of Gram-positive and three kinds of Gram-negative bacteria and one kind of fungi, and good biocompatibility towards human lens epithelial cells. GS-loaded multilayer films-coated polydimethylsiloxane (PDMS) were compared with pristine PDMS in the rabbit subcutaneous S. aureus infection model. The antimicrobial-coated implants yielded a much lower degree of infections than pristine implants at day seven. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas
2015-11-14
Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.
Liu, Yung-Chiang; Lee, I-Chi; Lei, Kin Fong
2018-02-14
An in vitro model mimicking the in vivo environment of the brain must be developed to study neural communication and regeneration and to obtain an understanding of cellular and molecular responses. In this work, a multilayered neural network was successfully constructed on a biochip by guiding and promoting neural stem/progenitor cell differentiation and network formation. The biochip consisted of 3 × 3 arrays of cultured wells connected with channels. Neurospheroids were cultured on polyelectrolyte multilayer (PEM) films in the culture wells. Neurite outgrowth and neural differentiation were guided and promoted by the micropatterns and the PEM films. After 5 days in culture, a 3 × 3 neural network was constructed on the biochip. The function and the connections of the network were evaluated by immunocytochemistry and impedance measurements. Neurons were generated and produced functional and recyclable synaptic vesicles. Moreover, the electrical connections of the neural network were confirmed by measuring the impedance across the neurospheroids. The current work facilitates the development of an artificial brain on a chip for investigations of electrical stimulations and recordings of multilayered neural communication and regeneration.
Salt dependence of compression normal forces of quenched polyelectrolyte brushes
NASA Astrophysics Data System (ADS)
Hernandez-Zapata, Ernesto; Tamashiro, Mario N.; Pincus, Philip A.
2001-03-01
We obtained mean-field expressions for the compression normal forces between two identical opposing quenched polyelectrolyte brushes in the presence of monovalent salt. The brush elasticity is modeled using the entropy of ideal Gaussian chains, while the entropy of the microions and the electrostatic contribution to the grand potential is obtained by solving the non-linear Poisson-Boltzmann equation for the system in contact with a salt reservoir. For the polyelectrolyte brush we considered both a uniformly charged slab as well as an inhomogeneous charge profile obtained using a self-consistent field theory. Using the Derjaguin approximation, we related the planar-geometry results to the realistic two-crossed cylinders experimental set up. Theoretical predictions are compared to experimental measurements(Marc Balastre's abstract, APS March 2001 Meeting.) of the salt dependence of the compression normal forces between two quenched polyelectrolyte brushes formed by the adsorption of diblock copolymers poly(tert-butyl styrene)-sodium poly(styrene sulfonate) [PtBs/NaPSS] onto an octadecyltriethoxysilane (OTE) hydrophobically modified mica, as well as onto bare mica.
High-performance mussel-inspired adhesives of reduced complexity.
Ahn, B Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H; Israelachvili, Jacob N; Waite, J Herbert
2015-10-19
Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.
Release-rate calorimetry of multilayered materials for aircraft seats
NASA Technical Reports Server (NTRS)
Fewell, L. L.; Duskin, F. E.; Spieth, H.; Trabold, E.; Parker, J. A.
1979-01-01
Multilayered samples of contemporary and improved fire resistant aircraft seat materials (foam cushion, decorative fabric, slip sheet, fire blocking layer, and cushion reinforcement layer) were evaluated for their rates of heat release and smoke generation. Top layers (decorative fabric, slip sheet, fire blocking, and cushion reinforcement) with glass fiber block cushion were evaluated to determine which materials based on their minimum contributions to the total heat release of the multilayered assembly may be added or deleted. Top layers exhibiting desirable burning profiles were combined with foam cushion materials. The smoke and heat release rates of multilayered seat materials were then measured at heat fluxes of 1.5 and 3.5 W/sq cm. Choices of contact and silicone adhesives for bonding multilayered assemblies were based on flammability, burn and smoke generation, animal toxicity tests, and thermal gravimetric analysis. Abrasion tests were conducted on the decorative fabric covering and slip sheet to ascertain service life and compatibility of layers.
Polymer mediated layer-by-layer assembly of different shaped gold nanoparticles.
Budy, Stephen M; Hamilton, Desmond J; Cai, Yuheng; Knowles, Michelle K; Reed, Scott M
2017-02-01
Gold nanoparticles (GNPs) have a wide range of properties with potential applications in electronics, optics, catalysis, and sensing. In order to demonstrate that dense, stable, and portable samples could be created for these applications, multiple layers of GNPs were assembled via drop casting on glass substrates by layer-by-layer (LBL) techniques. Two cationic polyelectrolytes, poly(diallyldimethylammonium chloride) and polyethyleneimine, one anionic polyelectrolyte, poly(sodium 4-styrene sulfonate), and one neutral polymer, polyvinylpyrrolidone, were combined with four different shapes of GNPs (spherical, rod, triangular prismatic, and octahedral) to prepare thin films. A subset of these polymer nanoparticle combinations were assembled into thin films. Synthesized GNPs were characterized via dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy and the LBL thin films were characterized using UV-vis spectroscopy and atomic force microscopy. Sensing applications of the nanoparticles in solution and thin films were tested by monitoring the localized surface plasmon resonance of the GNPs. LBL thin films were prepared ranging from 25 to 100 layers with optical densities at plasmon from 0.5 to 3.0. Sensitivity in solutions ranged from 14 to 1002nm/refractive index units (RIU) and films ranged from 18.8 to 135.1nm/RIU suggesting reduced access to the GNPs within the films. Copyright © 2016 Elsevier Inc. All rights reserved.
Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming
2016-03-21
The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces.
Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming
2016-01-01
The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces. PMID:26996815
NASA Astrophysics Data System (ADS)
Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming
2016-03-01
The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces.
Nap, R J; Tagliazucchi, M; Szleifer, I
2014-01-14
This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads to systematic, but in general small, corrections to earlier theoretical predictions describing the behavior of weak polyelectrolyte layers. However, polyelectrolyte uncharging results in a decrease in the concentration of counterions and inclusion of the Born Energy can result in a substantial decrease of the counterion concentration. The effect of considering the Born energy contribution is explored for end-grafted weak polyelectrolyte layers by calculating experimental observables which are known to depend on the presence of charges within the polyelectrolyte layer: inclusion of the Born energy contribution leads to a decrease in the capacitance of polyelectrolyte-modified electrodes, a decrease of conductivity of polyelectrolyte-modified nanopores and an increase in the repulsion exerted by a planar polyelectrolyte layer confined by an opposing wall.
Highly scalable, closed-loop synthesis of drug-loaded, layer-by-layer nanoparticles.
Correa, Santiago; Choi, Ki Young; Dreaden, Erik C; Renggli, Kasper; Shi, Aria; Gu, Li; Shopsowitz, Kevin E; Quadir, Mohiuddin A; Ben-Akiva, Elana; Hammond, Paula T
2016-02-16
Layer-by-layer (LbL) self-assembly is a versatile technique from which multicomponent and stimuli-responsive nanoscale drug carriers can be constructed. Despite the benefits of LbL assembly, the conventional synthetic approach for fabricating LbL nanoparticles requires numerous purification steps that limit scale, yield, efficiency, and potential for clinical translation. In this report, we describe a generalizable method for increasing throughput with LbL assembly by using highly scalable, closed-loop diafiltration to manage intermediate purification steps. This method facilitates highly controlled fabrication of diverse nanoscale LbL formulations smaller than 150 nm composed from solid-polymer, mesoporous silica, and liposomal vesicles. The technique allows for the deposition of a broad range of polyelectrolytes that included native polysaccharides, linear polypeptides, and synthetic polymers. We also explore the cytotoxicity, shelf life and long-term storage of LbL nanoparticles produced using this approach. We find that LbL coated systems can be reliably and rapidly produced: specifically, LbL-modified liposomes could be lyophilized, stored at room temperature, and reconstituted without compromising drug encapsulation or particle stability, thereby facilitating large scale applications. Overall, this report describes an accessible approach that significantly improves the throughput of nanoscale LbL drug-carriers that show low toxicity and are amenable to clinically relevant storage conditions.
Integration of micro nano and bio technologies with layer-by-layer self-assembly
NASA Astrophysics Data System (ADS)
Kommireddy, Dinesh Shankar
In the past decade, layer-by-layer (LbL) nanoassembly has been used as a tool for immobilization and surface modification of materials with applications in biology and physical sciences. Often, in such applications, LbL assembly is integrated with various techniques to form functional surface coatings and immobilized matrices. In this work, integration of LbL with microfabrication and microfluidics, and tissue engineering are explored. In an effort to integrate microfabrication with LbL nanoassembly, microchannels were fabricated using soft-lithography and the surface of these channels was used for the immobilization of materials using LbL and laminar flow patterning. Synthesis of poly(dimethyldiallyl ammonium chloride)/poly(styrene sulfonate) and poly(dimethyldiallyl ammonium chloride)/bovine serum albumin microstrips is demonstrated with the laminar flow microfluidic reactor. Resulting micropatterns are 8-10 mum wide, separated with few micron gaps. The width of these microstrips as well as their position in the microchannel is controlled by varying the flow rate, time of interaction and concentration of the individual components, which is verified by numerical simulation. Spatially resolved pH sensitivity was observed by modifying the surface of the channel with a pH sensitive dye. In order to investigate the integration of LbL assembly with tissue engineering, glass substrates were coated with nanoparticle/polyelectrolyte layers, and two different cell types were used to test the applicability of these coatings for the surface modification of medical implants. Titanium dioxide (TiO 2), silicon dioxide, halloysite and montmorillonite nanoparticles were assembled with oppositely charged polyelectrolytes. In-vitro cytotoxicity tests of the nanoparticle substrates on human dermal firbroblasts (HDFs) showed that the nanoparticle surfaces do not have toxic effects on the cells. HDFs retained their phenotype on the nanoparticle coatings, by synthesizing type-I collagen. These cells also showed active proliferation on the nanoparticle substrates. Cells attached on TiO2 substrates showed faster rate of spreading compared with the other types of nanoparticle coatings. Mesenchymal stem cells (MSCs) were used as a second cell type to support and elaborate on the results obtained with the HDFs. Increasing surface roughness was observed with increasing number of layers of TiO2. Tests with a higher number of layers of TiO2, showed an increased attachment, proliferation and faster spreading of the MSCs on a larger number of layers of TiO2.
Niu, Zhiqiang; Du, Jianjun; Cao, Xuebo; Sun, Yinghui; Zhou, Weiya; Hng, Huey Hoon; Ma, Jan; Chen, Xiaodong; Xie, Sishen
2012-10-22
Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid particle-field molecular dynamics simulation for polyelectrolyte systems.
Zhu, You-Liang; Lu, Zhong-Yuan; Milano, Giuseppe; Shi, An-Chang; Sun, Zhao-Yan
2016-04-14
To achieve simulations on large spatial and temporal scales with high molecular chemical specificity, a hybrid particle-field method was proposed recently. This method is developed by combining molecular dynamics and self-consistent field theory (MD-SCF). The MD-SCF method has been validated by successfully predicting the experimentally observable properties of several systems. Here we propose an efficient scheme for the inclusion of electrostatic interactions in the MD-SCF framework. In this scheme, charged molecules are interacting with the external fields that are self-consistently determined from the charge densities. This method is validated by comparing the structural properties of polyelectrolytes in solution obtained from the MD-SCF and particle-based simulations. Moreover, taking PMMA-b-PEO and LiCF3SO3 as examples, the enhancement of immiscibility between the ion-dissolving block and the inert block by doping lithium salts into the copolymer is examined by using the MD-SCF method. By employing GPU-acceleration, the high performance of the MD-SCF method with explicit treatment of electrostatics facilitates the simulation study of many problems involving polyelectrolytes.
Self-assembling triblock proteins for biofunctional surface modification
NASA Astrophysics Data System (ADS)
Fischer, Stephen E.
Despite the tremendous promise of cell/tissue engineering, significant challenges remain in engineering functional scaffolds to precisely regulate the complex processes of tissue growth and development. As the point of contact between the cells and the scaffold, the scaffold surface plays a major role in mediating cellular behaviors. In this dissertation, the development and utility of self-assembling, artificial protein hydrogels as biofunctional surface modifiers is described. The design of these recombinant proteins is based on a telechelic triblock motif, in which a disordered polyelectrolyte central domain containing embedded bioactive ligands is flanked by two leucine zipper domains. Under moderate conditions of temperature and pH, the leucine zipper end domains form amphiphilic alpha-helices that reversibly associate into homo-trimeric aggregates, driving hydrogel formation. Moreover, the amphiphilic nature of these helical domains enables surface adsorption to a variety of scaffold materials to form biofunctional protein coatings. The nature and stability of these coatings in various solution conditions, and their interaction with mammalian cells is the primary focus of this dissertation. In particular, triblock protein coatings functionalized with cell recognition sequences are shown to produce well-defined surfaces with precise control over ligand density. The impact of this is demonstrated in multiple cell types through ligand density-dependent cell-substrate interactions. To improve the stability of these physically self-assembled coatings, two covalent crosslinking strategies are described---one in which a zero-length chemical crosslinker (EDC) is utilized and a second in which disulfide bonds are engineered into the recombinant proteins. These targeted crosslinking approaches are shown to increase the stability of surface adsorbed protein layers with minimal effect on the presentation of many bioactive ligands. Finally, to demonstrate the versatility of the triblock protein hydrogels, and the ease of introducing multiple functionalities to a substrate surface, a surface coating is tailored for neural stem cell culture in order to improve proliferation on the scaffold, while maintaining the stem cell phenotype. These studies demonstrate the unique advantages of genetic engineering over traditional techniques for surface modification. In addition to their unmatched sequence fidelity, recombinant proteins can easily be modified with bioactive ligands and their organization into coherent, supramolecular structures mimics natural self-assembly processes.
Nanomedicine for Early Disease Detection and Treatment
2013-09-01
AD_________________ Award Number: W81XWH-11-1-0442 TITLE: Nanomedicine for early disease ...been developed to report and cure diseases . ESNM is prepared with multiple layers of polyelectrolytes, sequentially assembled on an inert gold...molecular characteristics of the patient and his/her specific diseased tissues with the treatment. In order to maximize therapeutic effects and
Wang, Yu; Cui, Min; Jiao, Mingxia; Luo, Xiliang
2018-06-25
Accurate detection of protein biomarkers in complex media remains a challenge due to severe nonspecific adsorption and biofouling, and sensing interfaces that combine the high sensitivity and antifouling ability are highly desirable. Herein, an antifouling sensing interface capable of sensitively assaying immunoglobulin E (IgE) in biological samples was constructed. The sensing interface was fabricated through the self-assembly of a zwitterionic peptide and the IgE aptamer onto a macroporous Au substrate, which was electrochemically fabricated with the aid of multilayer polystyrene nanospheres self-assembled on glassy carbon electrode. Due to the huge surface area arising from porous morphology and high specificity of aptamer, the developed electrochemical biosensor exhibits ultrahigh sensitivity and selectivity towards IgE, with the linear range of 0.1-10 pg mL -1 , and a very low limit of detection down to 42 fg mL -1 . Interestingly, owing to the presence of the zwitterionic peptide, the biosensing interface can satisfyingly reduce the nonspecific adsorption and fouling effect. Consequently, the biosensor was successfully applied to detect IgE in complex biological samples, indicating great promise of this peptide-based sensing interface for antifouling assays. Graphical abstract ᅟ.
Franchi, Stefano; Braic, Mariana; Skála, Tomáš; Nováková, Jaroslava; Zamuner, Annj
2018-01-01
In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH2 that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5–200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization. PMID:29518968
Conductive paper fabricated by layer-by-layer assembly of polyelectrolytes and ITO nanoparticles
NASA Astrophysics Data System (ADS)
Peng, C. Q.; Thio, Y. S.; Gerhardt, R. A.
2008-12-01
A new salt-free approach was developed for fabricating conductive paper by layer-by-layer (LBL) assembly of conductive indium tin oxide (ITO) nanoparticles and polyelectrolytes onto wood fibers. Subsequent to the coating procedure, the fibers were manufactured into conductive paper using traditional paper making methods. The wood fibers were first coated with polyethyleneimine (PEI) and then LBL assembled with poly(sodium 4-styrenesulfonate) (PSS) and ITO for several bilayers. The surface charge intensity of both the ITO nanoparticles and the coated wood fibers were evaluated by measuring the ζ-potential of the nanoparticles and short fibers, respectively. The ITO nanoparticles were found to preferentially aggregate on defects on the fiber surfaces and formed interconnected paths, which led to the formation of conductive percolation paths throughout the whole paper. With ten bilayer coatings, the as-made paper was made DC conductive, and its σdc was measured to be 5.2 × 10-6 S cm-1 in the in-plane (IP) direction, while the conductivity was 1.9 × 10-8 S cm-1 in the through-the-thickness (TT) direction. The percolation phenomena in these LBL-assembled ITO-coated paper fibers was evaluated using scanning electron microscopy (SEM), current atomic force microscopy (I-AFM), and impedance measurements. The AC electrical properties are reported for frequencies ranging from 0.01 Hz to 1 MHz. A clear transition from insulating to conducting behavior is observed in the AC conductivity.
Guo, Limin; Ma, Lipo; Zhang, Yelong; Cheng, Xun; Xu, Ye; Wang, Jin; Wang, Erkang; Peng, Zhangquan
2016-11-08
Electroreduction of aryl diazonium salts on gold can produce organic films that are more robust than their analogous self-assembled monolayers formed from chemical adsorption of organic thiols on gold. However, whether the enhanced stability is due to the Au-C bond formation remains debated. In this work, we report the electroreduction of an aryl diazonium salt of 4,4'-disulfanediyldibenzenediazonium on gold forming a multilayer of Au-(Ar-S-S-Ar) n , which can be further degraded to a monolayer of Au-Ar-S - by electrochemical cleavage of the S-S moieties within the multilayer. By conducting an in situ surface-enhanced Raman spectroscopic study of both the multilayer formation/degradation and the monolayer reduction/oxidation processes, coupled to density functional theory calculations, we provide compelling evidence that an Au-C bond does form upon electroreduction of aryl diazonium salts on gold and that the enhanced stability of the electrografted organic films is due to the Au-C bond being intrinsically stronger than the Au-S bond for a given phenylthiolate compound by ca. 0.4 eV.
Palo, Emilia; Salomäki, Mikko; Lastusaari, Mika
2017-12-15
Modificating and protecting the upconversion luminescence nanoparticles is important for their potential in various applications. In this work we demonstrate successful coating of the nanoparticles by a simple layer-by-layer method using negatively charged polyelectrolytes and neodymium ions. The layer fabrication conditions such as number of the bilayers, solution concentrations and selected polyelectrolytes were studied to find the most suitable conditions for the process. The bilayers were characterized and the presence of the desired components was studied and confirmed by various methods. In addition, the upconversion luminescence of the bilayered nanoparticles was studied to see the effect of the surface modification on the overall intensity. It was observed that with selected deposition concentrations the bilayer successfully shielded the particle resulting in stronger upconversion luminescence. The layer-by-layer method offers multiple possibilities to control the bilayer growth even further and thus gives promises that the use of upconverting nanoparticles in applications could become even easier with less modification steps in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Inhibiting surface crystallization of amorphous indomethacin by nanocoating.
Wu, Tian; Sun, Ye; Li, Ning; de Villiers, Melgardt M; Yu, Lian
2007-04-24
An amorphous solid (glass) may crystallize faster at the surface than through the bulk, making surface crystallization a mechanism of failure for amorphous pharmaceuticals and other materials. An ultrathin coating of gold or polyelectrolytes inhibited the surface crystallization of amorphous indomethacin (IMC), an anti-inflammatory drug and model organic glass. The gold coating (10 nm) was deposited by sputtering, and the polyelectrolyte coating (3-20 nm) was deposited by an electrostatic layer-by-layer assembly of cationic poly(dimethyldiallyl ammonium chloride) (PDDA) and anionic sodium poly(styrenesulfonate) (PSS) in aqueous solution. The coating also inhibited the growth of existing crystals. The inhibition was strong even with one layer of PDDA. The polyelectrolyte coating still permitted fast dissolution of amorphous IMC and improved its wetting and flow. The finding supports the view that the surface crystallization of amorphous IMC is enabled by the mobility of a thin layer of surface molecules, and this mobility can be suppressed by a coating of only a few nanometers. This technique may be used to stabilize amorphous drugs prone to surface crystallization, with the aqueous coating process especially suitable for drugs of low aqueous solubility.
Vitorazi, L; Ould-Moussa, N; Sekar, S; Fresnais, J; Loh, W; Chapel, J-P; Berret, J-F
2014-12-21
Recent studies have pointed out the importance of polyelectrolyte assembly in the elaboration of innovative nanomaterials. Beyond their structures, many important questions on the thermodynamics of association remain unanswered. Here, we investigate the complexation between poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium acrylate) (PANa) chains using a combination of three techniques: isothermal titration calorimetry (ITC), static and dynamic light scattering and electrophoresis. Upon addition of PDADMAC to PANa or vice-versa, the results obtained by the different techniques agree well with each other, and reveal a two-step process. The primary process is the formation of highly charged polyelectrolyte complexes of size 100 nm. The secondary process is the transition towards a coacervate phase made of rich and poor polymer droplets. The binding isotherms measured are accounted for using a phenomenological model that provides the thermodynamic parameters for each reaction. Small positive enthalpies and large positive entropies consistent with a counterion release scenario are found throughout this study. Furthermore, this work stresses the importance of the underestimated formulation pathway or mixing order in polyelectrolyte complexation.
Liu, Yihang; Zhang, Wei; Zhu, Yujie; Luo, Yanting; Xu, Yunhua; Brown, Adam; Culver, James N; Lundgren, Cynthia A; Xu, Kang; Wang, Yuan; Wang, Chunsheng
2013-01-09
This work enables an elegant bottom-up solution to engineer 3D microbattery arrays as integral power sources for microelectronics. Thus, multilayers of functional materials were hierarchically architectured over tobacco mosaic virus (TMV) templates that were genetically modified to self-assemble in a vertical manner on current-collectors, so that optimum power and energy densities accompanied with excellent cycle-life could be achieved on a minimum footprint. The resultant microbattery based on self-aligned LiFePO(4) nanoforests of shell-core-shell structure, with precise arrangement of various auxiliary material layers including a central nanometric metal core as direct electronic pathway to current collector, delivers excellent energy density and stable cycling stability only rivaled by the best Li-ion batteries of conventional configurations, while providing rate performance per foot-print and on-site manufacturability unavailable from the latter. This approach could open a new avenue for microelectromechanical systems (MEMS) applications, which would significantly benefit from the concept that electrochemically active components be directly engineered and fabricated as an integral part of the integrated circuit (IC).
Development of functionalised polyelectrolyte capsules using filamentous Escherichia coli cells.
Lederer, Franziska L; Günther, Tobias J; Weinert, Ulrike; Raff, Johannes; Pollmann, Katrin
2012-12-23
Escherichia coli is one of the best studied microorganisms and finds multiple applications especially as tool in the heterologous production of interesting proteins of other organisms. The heterologous expression of special surface (S-) layer proteins caused the formation of extremely long E. coli cells which leave transparent tubes when they divide into single E. coli cells. Such natural structures are of high value as bio-templates for the development of bio-inorganic composites for many applications. In this study we used genetically modified filamentous Escherichia coli cells as template for the design of polyelectrolyte tubes that can be used as carrier for functional molecules or particles. Diversity of structures of biogenic materials has the potential to be used to construct inorganic or polymeric superior hybrid materials that reflect the form of the bio-template. Such bio-inspired materials are of great interest in diverse scientific fields like Biology, Chemistry and Material Science and can find application for the construction of functional materials or the bio-inspired synthesis of inorganic nanoparticles. Genetically modified filamentous E. coli cells were fixed in 2% glutaraldehyde and coated with alternating six layers of the polyanion polyelectrolyte poly(sodium-4styrenesulfonate) (PSS) and polycation polyelectrolyte poly(allylamine-hydrochloride) (PAH). Afterwards we dissolved the E. coli cells with 1.2% sodium hypochlorite, thus obtaining hollow polyelectrolyte tubes of 0.7 μm in diameter and 5-50 μm in length. For functionalisation the polyelectrolyte tubes were coated with S-layer protein polymers followed by metallisation with Pd(0) particles. These assemblies were analysed with light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. The thus constructed new material offers possibilities for diverse applications like novel catalysts or metal nanowires for electrical devices. The novelty of this work is the use of filamentous E. coli templates and the use of S-layer proteins in a new material construct.
Yin, Lichen; Ding, Jieying; He, Chunbai; Cui, Liming; Tang, Cui; Yin, Chunhua
2009-10-01
Trimethyl chitosan-cysteine conjugate (TMC-Cys) was synthesized in an attempt to combine the mucoadhesion and the permeation enhancing effects of TMC and thiolated polymers related to different mechanisms for oral absorption. TMC-Cys with various molecular weights (30, 200, and 500 kDa) and quaternization degrees (15 and 30%) was allowed to form polyelectrolyte nanoparticles with insulin through self-assembly, which demonstrated particle size of 100-200 nm, zeta potential of +12 to +18 mV, and high encapsulation efficiency. TMC-Cys/insulin nanoparticles (TMC-Cys NP) showed a 2.1-4.7-fold increase in mucoadhesion compared to TMC/insulin nanoparticles (TMC NP), which might be partly attributed to disulfide formation between TMC-Cys and mucin as evidenced by DSC measurement. Compared to insulin solution and TMC NP, TMC-Cys NP induced increased insulin transport through rat intestine by 3.3-11.7 and 1.7-2.6 folds, promoted Caco-2 cell internalization by 7.5-12.7 and 1.7-3.0 folds, and augmented uptake in Peyer's patches by 14.7-20.9 and 1.7-5.0 folds, respectively. Such results were further confirmed by in vivo experiment with the optimal TMC-Cys NP. Biocompatibility assessment revealed lack of toxicity of TMC-Cys NP. Therefore, self-assembled nanoparticles between TMC-Cys and protein drugs could be an effective and safe oral delivery system.
NASA Astrophysics Data System (ADS)
Ganesan, Venkat; Fredrickson, Glenn H.
The science and engineering of materials is entering a new era of so-called "designer materials", wherein, based upon the properties required for a particular application, a material is designed by exploiting the self-assembly of appropriately chosen molecular constituents [1]. The desirable and marketable properties of such materials, which include plastic alloys, block and graft copolymers, and polyelectrolyte solutions, complexes, and gels, depend critically on the ability to control and manipulate morphology by adjusting a combination of molecular and macroscopic variables. For example, styrenebutadiene block copolymers can be devised that serve either as rigid, tough, transparent thermoplastics or as soft, flexible, thermoplastic elastomers, by appropriate control of copolymer architecture and styrene/butadiene ratio. In this case, the property profiles are intimately connected to the extent and type of nanoscale self-assembly that is established within the material. One of the main challenges confronting the successful design of nano-structured polymers is the development of a basic understanding of the relationship between the molecular details of the polymer formulation and the morphology that is achieved. Unfortunately, such relationships are still mainly determined by trial and error experimentation. A purely experimental-based program in pursuit of this objective proves cumbersome — primarily, due to the broad parameter space accessible at the time of synthesis and formulation. Consequently, there is a significant motivation for the development of computational tools that can enable a rational exploration of the parameter space.
Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin
2016-01-28
This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further investigation of their unique time-dependent properties.
Desktop aligner for fabrication of multilayer microfluidic devices.
Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping
2015-07-01
Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.
Desktop aligner for fabrication of multilayer microfluidic devices
Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping
2015-01-01
Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm−1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices. PMID:26233409
Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts.
Tang, Cindy G; Ang, Mervin C Y; Choo, Kim-Kian; Keerthi, Venu; Tan, Jun-Kai; Syafiqah, Mazlan Nur; Kugler, Thomas; Burroughes, Jeremy H; Png, Rui-Qi; Chua, Lay-Lay; Ho, Peter K H
2016-11-24
To make high-performance semiconductor devices, a good ohmic contact between the electrode and the semiconductor layer is required to inject the maximum current density across the contact. Achieving ohmic contacts requires electrodes with high and low work functions to inject holes and electrons respectively, where the work function is the minimum energy required to remove an electron from the Fermi level of the electrode to the vacuum level. However, it is challenging to produce electrically conducting films with sufficiently high or low work functions, especially for solution-processed semiconductor devices. Hole-doped polymer organic semiconductors are available in a limited work-function range, but hole-doped materials with ultrahigh work functions and, especially, electron-doped materials with low to ultralow work functions are not yet available. The key challenges are stabilizing the thin films against de-doping and suppressing dopant migration. Here we report a general strategy to overcome these limitations and achieve solution-processed doped films over a wide range of work functions (3.0-5.8 electronvolts), by charge-doping of conjugated polyelectrolytes and then internal ion-exchange to give self-compensated heavily doped polymers. Mobile carriers on the polymer backbone in these materials are compensated by covalently bonded counter-ions. Although our self-compensated doped polymers superficially resemble self-doped polymers, they are generated by separate charge-carrier doping and compensation steps, which enables the use of strong dopants to access extreme work functions. We demonstrate solution-processed ohmic contacts for high-performance organic light-emitting diodes, solar cells, photodiodes and transistors, including ohmic injection of both carrier types into polyfluorene-the benchmark wide-bandgap blue-light-emitting polymer organic semiconductor. We also show that metal electrodes can be transformed into highly efficient hole- and electron-injection contacts via the self-assembly of these doped polyelectrolytes. This consequently allows ambipolar field-effect transistors to be transformed into high-performance p- and n-channel transistors. Our strategy provides a method for producing ohmic contacts not only for organic semiconductors, but potentially for other advanced semiconductors as well, including perovskites, quantum dots, nanotubes and two-dimensional materials.
Protein encapsulation via porous CaCO3 microparticles templating.
Volodkin, Dmitry V; Larionova, Natalia I; Sukhorukov, Gleb B
2004-01-01
Porous microparticles of calcium carbonate with an average diameter of 4.75 microm were prepared and used for protein encapsulation in polymer-filled microcapsules by means of electrostatic layer-by-layer assembly (ELbL). Loading of macromolecules in porous CaCO3 particles is affected by their molecular weight due to diffusion-limited permeation inside the particles and also by the affinity to the carbonate surface. Adsorption of various proteins and dextran was examined as a function of pH and was found to be dependent both on the charge of the microparticles and macromolecules. The electrostatic effect was shown to govern this interaction. This paper discusses the factors which can influence the adsorption capacity of proteins. A new way of protein encapsulation in polyelectrolyte microcapsules is proposed exploiting the porous, biocompatible, and decomposable microparticles from CaCO3. It consists of protein adsorption in the pores of the microparticles followed by ELbL of oppositely charged polyelectrolytes and further core dissolution. This resulted in formation of polyelectrolyte-filled capsules with protein incorporated in interpenetrating polyelectrolyte network. The properties of CaCO3 microparticles and capsules prepared were characterized by scanning electron microscopy, microelectrophoresis, and confocal laser scanning microscopy. Lactalbumin was encapsulated by means of the proposed technique yielding a content of 0.6 pg protein per microcapsule. Horseradish peroxidase saves 37% of activity after encapsulation. However, the thermostability of the enzyme was improved by encapsulation. The results demonstrate that porous CaCO3 microparticles can be applied as microtemplates for encapsulation of proteins into polyelectrolyte capsules at neutral pH as an optimal medium for a variety of bioactive material, which can also be encapsulated by the proposed method. Microcapsules filled with encapsulated material may find applications in the field of biotechnology, biochemistry, and medicine.
Programming Cells for Dynamic Assembly of Inorganic Nano-Objects with Spatiotemporal Control.
Wang, Xinyu; Pu, Jiahua; An, Bolin; Li, Yingfeng; Shang, Yuequn; Ning, Zhijun; Liu, Yi; Ba, Fang; Zhang, Jiaming; Zhong, Chao
2018-04-01
Programming living cells to organize inorganic nano-objects (NOs) in a spatiotemporally precise fashion would advance new techniques for creating ordered ensembles of NOs and new bio-abiotic hybrid materials with emerging functionalities. Bacterial cells often grow in cellular communities called biofilms. Here, a strategy is reported for programming dynamic biofilm formation for the synchronized assembly of discrete NOs or hetero-nanostructures on diverse interfaces in a dynamic, scalable, and hierarchical fashion. By engineering Escherichia coli to sense blue light and respond by producing biofilm curli fibers, biofilm formation is spatially controlled and the patterned NOs' assembly is simultaneously achieved. Diverse and complex fluorescent quantum dot patterns with a minimum patterning resolution of 100 µm are demonstrated. By temporally controlling the sequential addition of NOs into the culture, multilayered heterostructured thin films are fabricated through autonomous layer-by-layer assembly. It is demonstrated that biologically dynamic self-assembly can be used to advance a new repertoire of nanotechnologies and materials with increasing complexity that would be otherwise challenging to produce. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Switchable friction enabled by nanoscale self-assembly on graphene
Gallagher, Patrick; Lee, Menyoung; Amet, Francois; ...
2016-02-23
Graphene monolayers are known to display domains of anisotropic friction with twofold symmetry and anisotropy exceeding 200%. This anisotropy has been thought to originate from periodic nanoscale ripples in the graphene sheet, which enhance puckering around a sliding asperity to a degree determined by the sliding direction. Here we demonstrate that these frictional domains derive not from structural features in the graphene but from self-assembly of environmental adsorbates into a highly regular superlattice of stripes with period 4–6 nm. The stripes and resulting frictional domains appear on monolayer and multilayer graphene on a variety of substrates, as well as onmore » exfoliated flakes of hexagonal boron nitride. We show that the stripe-superlattices can be reproducibly and reversibly manipulated with submicrometre precision using a scanning probe microscope, allowing us to create arbitrary arrangements of frictional domains within a single flake. In conclusion, our results suggest a revised understanding of the anisotropic friction observed on graphene and bulk graphite in terms of adsorbates.« less
High-performance mussel-inspired adhesives of reduced complexity
Ahn, B. Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R.; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H.; Israelachvili, Jacob N.; Waite, J. Herbert
2015-01-01
Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m−2) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule. PMID:26478273
Zhang, Jian; Lakowicz, Joseph R.
2013-01-01
It has been suggested that narrow gaps between metallic nanostructures can be practical for producing large field enhancement. We design a hybrid silver nanostructure geometry in which fluorescent emitters are sandwiched between silver nanoparticles and silver island film (SIF). A desired number of polyelectrolyte layers are deposited on the SIF surface before the self-assembly of a second silver nanoparticle layer. Layer-by-layer configuration provides a well-defined dye position. It allows us to study the photophyical behaviors of fluorophores in the resulting gap at the single molecule level. The enhancement factor of a fluorophore located in the gap is much higher than those on silver surfaces alone and on glass. These effects may be used for increased detectability of single molecules bound to surfaces which contain metallic structures for either biophysical studies or high sensitivity assays. PMID:23373787
Wu, Qian; Gong, Li-Xiu; Li, Yang; Cao, Cheng-Fei; Tang, Long-Cheng; Wu, Lianbin; Zhao, Li; Zhang, Guo-Dong; Li, Shi-Neng; Gao, Jiefeng; Li, Yongjin; Mai, Yiu-Wing
2018-01-23
Design and development of smart sensors for rapid flame detection in postcombustion and early fire warning in precombustion situations are critically needed to improve the fire safety of combustible materials in many applications. Herein, we describe the fabrication of hierarchical coatings created by assembling a multilayered graphene oxide (GO)/silicone structure onto different combustible substrate materials. The resulting coatings exhibit distinct temperature-responsive electrical resistance change as efficient early warning sensors for detecting abnormal high environmental temperature, thus enabling fire prevention below the ignition temperature of combustible materials. After encountering a flame attack, we demonstrate extremely rapid flame detection response in 2-3 s and excellent flame self-extinguishing retardancy for the multilayered GO/silicone structure that can be synergistically transformed to a multiscale graphene/nanosilica protection layer. The hierarchical coatings developed are promising for fire prevention and protection applications in various critical fire risk and related perilous circumstances.
PUA/PSS multilayer coated CaCO3 microparticles as smart drug delivery vehicles.
Du, Chao; Shi, Jun; Shi, Jin; Zhang, Li; Cao, Shaokui
2013-10-01
Hybrid CaCO3 microparticles coated by sodium poly(styrene sulfonate) (PSS) and aliphatic poly(urethane-amine) (PUA) were developed as thermal-/pH-responsive drug delivery vehicles via LbL self-assembly technique. The DOX release from the CaCO3 microparticles was higher than 60% within 36 h, whereas the value of PUA/PSS-coated microparticles was only 20%. The results demonstrated that the PUA/PSS multilayer coating could reduce the drug release rate and significantly assuage the initial burst release of DOX. In addition, the drug release of the hybrid microparticles was found to be thermal-/pH-dual responsive. More interestingly, more than 90% of DOX was released in 36 h at pH2.1 and 55 °C owing to the combined action of the dissolution of the CaCO3 core and the shrinkage of aliphatic PUA. Copyright © 2013 Elsevier B.V. All rights reserved.
Schmidbauer, M; Schäfer, P; Besedin, S; Grigoriev, D; Köhler, R; Hanke, M
2008-11-01
A new scattering technique in grazing-incidence X-ray diffraction geometry is described which enables three-dimensional mapping of reciprocal space by a single rocking scan of the sample. This is achieved by using a two-dimensional detector. The new set-up is discussed in terms of angular resolution and dynamic range of scattered intensity. As an example the diffuse scattering from a strained multilayer of self-assembled (In,Ga)As quantum dots grown on GaAs substrate is presented.
NASA Astrophysics Data System (ADS)
Colocci, M.; Vinattieri, A.; Lippi, L.; Bogani, F.; Rosa-Clot, M.; Taddei, S.; Bosacchi, A.; Franchi, S.; Frigeri, P.
1999-01-01
Multilayer structures of InAs quantum dots have been studied by means of photoluminescence techniques. A strong increase of the radiative lifetime with increasing number of stacked dot layers has been observed at low temperatures. Moreover, a strong temperature dependence of the radiative lifetime, which is not present in the single layer samples, has been found in the multistacked structures. The observed effects are nicely explained as a consequence of the electronic coupling between electrons and holes induced by vertical ordering.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-09
... Wood Flooring From China; Scheduling of the Final Phase of Countervailing Duty and Antidumping... retarded, by reason of subsidized and less-than-fair-value imports from China of multilayered wood flooring... as `` * * * multilayered wood flooring, composed of an assembly of two or more layers or plies of...
Yang, Jie; Xiong, Liu; Li, Man; Sun, Qingjie
2018-06-20
The pursuit of sustainable functional materials requires the development of materials based on renewable resources and efficient fabrication methods. Here, we first fabricated chitosan-sodium phytate films via one-step-stripping and layer-by-layer-casting technologies. The proposed film-fabrication methods are general, facile, environmentally benign, cost-effective, and easy to scale up. The resultant one-step-stripped film was thin (9 ± 1 μm), soft, transparent, and strong, whereas the thickness of the layer-by-layer-cast film was 70 ± 3 μm. FTIR analysis of the films indicated the formation of interactions between the phosphoric groups in sodium phytate and the amino groups in chitosan. More importantly, the water-vapor-permeability values of the one-step-stripped and cast films were 4-5 orders of magnitude lower than chitosan films reported before. Layer-by-layer-cast films in particular exhibited high tensile strength (49.21 ± 1.12 MPa) and were more than three times stronger than other polyelectrolyte multilayer films. Both types of films remained stable in an acidic environment. Furthermore, the layer-by-layer-assembled films presented greater antimicrobial activity than the stripped films. The developed chitosan-sodium phytate films can enhance several biomedical and environmental applications, such as packaging, drug delivery, diagnostics, microfluidics, and biosensing.
Inhibition of human neutrophil elastase by α1-antitrypsin functionalized colloidal microcarriers.
Reibetanz, Uta; Schönberg, Maria; Rathmann, Sophie; Strehlow, Vincent; Göse, Martin; Leßig, Jacqueline
2012-07-24
Layer-by-layer (LbL)-coated microcarriers offer a good opportunity as transport systems for active agents into specific cells and tissues. The assembling of oppositely charged polyelectrolytes enables a modular construction of the carriers and therefore an optimized integration and application of drug molecules. Here, we report the multilayer incorporation and transport of α(1)-antitrypsin (AT) by colloidal microcarriers. AT is an anti-inflammatory agent and shows inhibitory effects toward its pro-inflammatory antagonist, human neutrophil elastase (HNE). The highly proteolytic enzyme HNE is released by polymorphonuclear leukocytes (PMNs) during inflammatory processes and can cause host tissue destruction and pain. The high potential of this study is based on a simultaneous intra- and extracellular application of AT-functionalized LbL carriers. Carrier application in PMNs results in significant HNE inhibition within 21 h. Microcarriers phagocytosed by PMNs were time dependently decomposed inside phagolysosomes, which enables the step-by-step release of AT. Here, AT inactivates HNE before being released, which avoids a further HNE concentration increase in the extracellular space and, subsequently, reduces the risk of further tissue destruction. Additionally, AT surface-functionalized microcarriers allow the inhibition of already released HNE in the extracellular space. Finally, this study demonstrates the successful application of LbL carriers for a concurrent extra- and intracellular HNE inhibition aiming the rebalancing of protease and antiprotease concentrations and the subsequent termination of chronic inflammations.
Kim, Myeong-Seong; Bak, Seong-Min; Lee, Suk-Woo; ...
2017-09-26
Here in this paper, we report on Li 3V 2(PO 4) 3 (LVP)/reduced graphene oxide (rGO) multilayer composites prepared via a sequential adsorption method and subsequent heat treatment, and their use as cathodes for high-rate lithium-ion batteries. The sequential adsorption process includes adsorbing oppositely charged components of anionic inorganic species and cationic head of a surfactant adsorbed to graphite oxide sheets, which is a key step in the fabrication of the LVP/rGO multilayer composites. The multilayer structure has open channels between the highly conductive rGO layers while achieving a relatively high tap density, which could effectively improve the rate capability.more » Consequently, the LVP/rGO multilayer composites exhibit a high tap density (0.6 g cm -3) and good electrochemical properties. Specifically, in the voltage range of 3.0–4.3 V, the composite exhibits a specific capacity of 131 mAh g -1 at 0.1C, a good rate capabilities (88% capacity retention at 60C), and long cycling performance (97% capacity retention after 500 cycles at 10C). Moreover, in the extended voltage range of 3.0–4.8 V, it exhibits a high specific capacity of 185 mAh g -1 at 0.2C, a good rate capability (66% capacity retention at 30C), and stable cycling performance (96% capacity retention after 500 cycles at 10C).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Myeong-Seong; Bak, Seong-Min; Lee, Suk-Woo
Here in this paper, we report on Li 3V 2(PO 4) 3 (LVP)/reduced graphene oxide (rGO) multilayer composites prepared via a sequential adsorption method and subsequent heat treatment, and their use as cathodes for high-rate lithium-ion batteries. The sequential adsorption process includes adsorbing oppositely charged components of anionic inorganic species and cationic head of a surfactant adsorbed to graphite oxide sheets, which is a key step in the fabrication of the LVP/rGO multilayer composites. The multilayer structure has open channels between the highly conductive rGO layers while achieving a relatively high tap density, which could effectively improve the rate capability.more » Consequently, the LVP/rGO multilayer composites exhibit a high tap density (0.6 g cm -3) and good electrochemical properties. Specifically, in the voltage range of 3.0–4.3 V, the composite exhibits a specific capacity of 131 mAh g -1 at 0.1C, a good rate capabilities (88% capacity retention at 60C), and long cycling performance (97% capacity retention after 500 cycles at 10C). Moreover, in the extended voltage range of 3.0–4.8 V, it exhibits a high specific capacity of 185 mAh g -1 at 0.2C, a good rate capability (66% capacity retention at 30C), and stable cycling performance (96% capacity retention after 500 cycles at 10C).« less
Pu, Ying-Chih; Hwu, Jih Ru; Su, Wu-Chou; Shieh, Dar-Bin; Tzeng, Yonhua; Yeh, Chen-Sheng
2006-09-06
This study presents the synthesis of water-dissolvable sodium sulfate nanowires, where Na(2)SO(4) nanowires were produced by an easy reflux process in an organic solvent, N,N-dimethylformamide (DMF) and formed from the coexistence of AgNO(3), SnCl(2), dodecylsodium sulfate (SDS), and cetyltrimethylammonium bromide (CTAB). Na(2)SO(4) nanowires were derived from SDS, and the morphology control of the Na(2)SO(4) nanowires was established by the cooperative effects of Sn and NO(3)(-), while CTAB served as the template and led to homogeneous nanowires with a smooth surface. Since the as-synthesized sodium sulfate nanowires are readily dissolved in water, these nanowires can be treated as soft templates for the fabrication of nanotubes by removing the Na(2)SO(4) core. This process is therefore significantly better than other reported methodologies to remove the templates under harsh condition. We have demonstrated the preparation of biocompatible polyelectrolyte (PE) nanotubes using a layer-by-layer (LbL) method on the Na(2)SO(4) nanowires and the formation of Au nanotubes by the self-assembly of Au nanoparticles. In both nanotube synthesis processes, PEI (polyethylenimine), PAA (poly(acrylic acid)), and Au nanoparticles served as the building blocks on the Na(2)SO(4) templates, which were then rinsed with water to remove the core templates. This unique water-dissolvable template is anticipated to bring about versatile and flexible downstream applications.
Complex coacervation of supercharged proteins with polyelectrolytes.
Obermeyer, Allie C; Mills, Carolyn E; Dong, Xue-Hui; Flores, Romeo J; Olsen, Bradley D
2016-04-21
Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.
NASA Astrophysics Data System (ADS)
Noh, Kunbae
2011-12-01
Self-ordered arrangements observed in various materials systems such as anodic aluminum oxide, polystyrene nanoparticles, and block copolymer are of great interest in terms of providing new opportunities in nanofabrication field where lithographic techniques are broadly used in general. Investigations on self-assembled nano arrays to understand how to obtain periodic nano arrays in an efficient yet inexpensive way, and how to realize advanced material and device systems thereof, can lead to significant impacts on science and technology for many forefront device applications. In this thesis, various aspects of periodic nano-arrays have been discussed including novel preparations, properties and applications of anodized aluminum oxide (AAO) and PS-b-P4VP (S4VP) di-block copolymer self-assembly. First, long-range ordered AAO arrays have been demonstrated. Nanoimprint lithography (NIL) process allowed a faithful pattern transfer of the imprint mold pattern onto Al thin film, and interesting self-healing and pattern tripling phenomena were observed, which could be applicable towards fabrication of the NIL master mold having highly dense pattern over large area, useful for fabrication of a large-area substrate for predictable positioning of arrayed devices. Second, S4VP diblock copolymer self-assembly and S4VP directed AAO self-assembly have been demonstrated in the Al thin film on Si substrate. Such a novel combination of two dissimilar self-assembly techniques demonstrated a potential as a versatile tool for nanopatterning formation on a Si substrate, capable of being integrated into Si process technology. As exemplary applications, vertically aligned Ni nanowires have been synthesized into an S4VP-guided AAO membrane on a Si substrate in addition to anti-dot structured [Co/Pd]n magnetic multilayer using S4VP self assembly. Third, a highly hexagonally ordered, vertically parallel aluminum oxide nanotube array was successfully fabricated via hard anodization technique. The Al2O3 nanotube arrays so fabricated exhibit a uniform and reproducible dimension, and a quite high aspect ratio of greater than ˜1,000. Such high-aspect-ratio, mechanically robust, large-surface-area nanotube array structure can be useful for many technical applications. As a potential application in biomedical research, drug storage/controlled drug release from such AAO nanotubes was investigated, and the advantageous potential of using AAO nanotubes for biological implant surface coatings alternative to TiO2 nanotubes has been discussed.
Raoufi, Mohammad; Schönherr, Holger
2014-02-18
We report on the fabrication of unprecedented free-standing complex polymeric nanoobjects, which possess both concave and convex curvatures, by exploiting the layer-by-layer (LBL) deposition of polyelectrolytes. In a combined top-down/bottom-up replication approach pore diameter-modulated anodic aluminum oxide (AAO) templates, fabricated by temperature modulation hard anodization (TMHA), were replicated with multilayers of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) to yield open nanotubes with diameters in the wide and narrow segments of 210 and 150 nm, respectively. To obtain stable pore diameter-modulated nanopores, which possess segment lengths between 1 and 5 μm and 5 and 10 μm in the narrow and wide pore portion, respectively, conventional hard anodization of aluminum was followed by a subsequent temperature-modulated anodization. After removing the backside aluminum electrode, silanizing the aluminum oxide, and passivating the exposed membrane surface with a thin layer of gold, PSS and PAH were deposited alternatingly to yield LBL multilayers. For optimized LBL multilayer thicknesses and compactness, established in separate experiments on silicon substrates and nanoporous AAO with straight pores, free-standing polymeric nanoobjects with concave and convex curvatures, were obtained. These were stable for wall thickness to pore diameter ratios of ≥0.08.
Xanthan/chitosan gold chip for metal enhanced protein biomarker detection.
Domnanich, Patrick; Peña, Dacimoneida Brito; Preininger, Claudia
2011-01-15
Protein microarrays for disease diagnostics are required to accurately quantify analytes in the low pg/mL range. This task is hampered by weak signal strengths and too low detector sensitivity. Herein we present reflective gold chips coated with polyelectrolyte multilayers (PEMs) for signal enhancement in immunoassays for melanoma-relevant biomarkers. Among tested (semi)natural polysaccharides (xanthan, chitosan, carboxymethylcellulose, hyaluronic acid) PEMs composed of xanthan and chitosan performed best in terms of detection of low analyte concentrations (ED10), spot morphology, fluorescence background and variability (<10%). Fluorescence signals on gold slides with a 75 nm coating of seven crosslinked polyelectrolyte double layers were up to 50 times higher than on bare glass slides. In comparison to commercial substrates the signal to noise ratio is enhanced by up to factor 11. Furthermore sandwich assays for interleukins 6, 8, 10, tumour necrosis factor alpha (TNFα), vascular endothelial growth factor A (VEGF-A) and S100B show working ranges which cover significantly lower concentrations (up to 38-fold). Not limited to above assays the presented substrates, which combine a biocompatible interface with metal-based signal amplification, are a valuable tool in a variety of biosensor applications. Copyright © 2010 Elsevier B.V. All rights reserved.
Nacre-nanomimetics: Strong, Stiff, and Plastic.
De Luca, Francois; Menzel, Robert; Blaker, Jonny J; Birkbeck, John; Bismarck, Alexander; Shaffer, Milo S P
2015-12-09
The bricks and mortar in the classic structure of nacre have characteristic geometry, aspect ratios and relative proportions; these key parameters can be retained while scaling down the absolute length scale by more than 1 order of magnitude. The results shed light on fundamental scaling behavior and provide new opportunities for high performance, yet ductile, lightweight nanocomposites. Reproducing the toughening mechanisms of nacre at smaller length scales allows a greater volume of interface per unit volume while simultaneously increasing the intrinsic properties of the inorganic constituents. Layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS) polyelectrolyte and well-defined [Mg2Al(OH)6]CO3.nH2O layered double hydroxide (LDH) platelets produces a dense, oriented, high inorganic content (∼90 wt %) nanostructure resembling natural nacre, but at a shorter length scale. The smaller building blocks enable the (self-) assembly of a higher quality nanostructure than conventional mimics, leading to improved mechanical properties, matching those of natural nacre, while allowing for substantial plastic deformation. Both strain hardening and crack deflection mechanisms were observed in situ by scanning electron microscopy (SEM) during nanoindentation. The best properties emerge from an ordered nanostructure, generated using regular platelets, with narrow size dispersion.
Assembly of large-area, highly ordered, crack-free inverse opal films
Hatton, Benjamin; Mishchenko, Lidiya; Davis, Stan; Sandhage, Kenneth H.; Aizenberg, Joanna
2010-01-01
Whereas considerable interest exists in self-assembly of well-ordered, porous “inverse opal” structures for optical, electronic, and (bio)chemical applications, uncontrolled defect formation has limited the scale-up and practicality of such approaches. Here we demonstrate a new method for assembling highly ordered, crack-free inverse opal films over a centimeter scale. Multilayered composite colloidal crystal films have been generated via evaporative deposition of polymeric colloidal spheres suspended within a hydrolyzed silicate sol-gel precursor solution. The coassembly of a sacrificial colloidal template with a matrix material avoids the need for liquid infiltration into the preassembled colloidal crystal and minimizes the associated cracking and inhomogeneities of the resulting inverse opal films. We discuss the underlying mechanisms that may account for the formation of large-area defect-free films, their unique preferential growth along the 〈110〉 direction and unusual fracture behavior. We demonstrate that this coassembly approach allows the fabrication of hierarchical structures not achievable by conventional methods, such as multilayered films and deposition onto patterned or curved surfaces. These robust SiO2 inverse opals can be transformed into various materials that retain the morphology and order of the original films, as exemplified by the reactive conversion into Si or TiO2 replicas. We show that colloidal coassembly is available for a range of organometallic sol-gel and polymer matrix precursors, and represents a simple, low-cost, scalable method for generating high-quality, chemically tailorable inverse opal films for a variety of applications. PMID:20484675
Ivanova, Kristina; Fernandes, Margarida M; Francesko, Antonio; Mendoza, Ernest; Guezguez, Jamil; Burnet, Michael; Tzanov, Tzanko
2015-12-16
Bacteria often colonize in-dwelling medical devices and grow as complex biofilm communities of cells embedded in a self-produced extracellular polymeric matrix, which increases their resistance to antibiotics and the host immune system. During biofilm growth, bacterial cells cooperate through specific quorum-sensing (QS) signals. Taking advantage of this mechanism of biofilm formation, we hypothesized that interrupting the communication among bacteria and simultaneously degrading the extracellular matrix would inhibit biofilm growth. To this end, coatings composed of the enzymes acylase and α-amylase, able to degrade bacterial QS molecules and polysaccharides, respectively, were built on silicone urinary catheters using a layer-by-layer deposition technique. Multilayer coatings of either acylase or amylase alone suppressed the biofilm formation of corresponding Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Further assembly of both enzymes in hybrid nanocoatings resulted in stronger biofilm inhibition as a function of acylase or amylase position in the layers. Hybrid coatings, with the QS-signal-degrading acylase as outermost layer, demonstrated 30% higher antibiofilm efficiency against medically relevant Gram-negative bacteria compared to that of the other assemblies. These nanocoatings significantly reduced the occurrence of single-species (P. aeruginosa) and mixed-species (P. aeruginosa and Escherichia coli) biofilms on silicone catheters under both static and dynamic conditions. Moreover, in an in vivo animal model, the quorum quenching and matrix degrading enzyme assemblies delayed the biofilm growth up to 7 days.
NASA Astrophysics Data System (ADS)
Eleftheriou, E.; Karatasos, K.
2012-10-01
Models of mixtures of peripherally charged dendrimers with oppositely charged linear polyelectrolytes in the presence of explicit solvent are studied by means of molecular dynamics simulations. Under the influence of varying strength of electrostatic interactions, these systems appear to form dynamically arrested film-like interconnected structures in the polymer-rich phase. Acting like a pseudo-thermodynamic inverse temperature, the increase of the strength of the Coulombic interactions drive the polymeric constituents of the mixture to a gradual dynamic freezing-in. The timescale of the average density fluctuations of the formed complexes initially increases in the weak electrostatic regime reaching a finite limit as the strength of electrostatic interactions grow. Although the models are overall electrically neutral, during this process the dendrimer/linear complexes develop a polar character with an excess charge mainly close to the periphery of the dendrimers. The morphological characteristics of the resulted pattern are found to depend on the size of the polymer chains on account of the distinct conformational features assumed by the complexed linear polyelectrolytes of different length. In addition, the length of the polymer chain appears to affect the dynamics of the counterions, thus affecting the ionic transport properties of the system. It appears, therefore, that the strength of electrostatic interactions together with the length of the linear polyelectrolytes are parameters to which these systems are particularly responsive, offering thus the possibility for a better control of the resulted structure and the electric properties of these soft-colloidal systems.
Kumarasamy, Jayakumar; Camarada, María Belén; Venkatraman, Dharuman; Ju, Huangxian; Dey, Ramendra Sundar; Wen, Yangping
2018-01-18
A layer-by-layer (LBL) assembly was employed for preparing multilayer thin films with a controlled architecture and composition. In this study, we report the one-step coelectrodeposition-assisted LBL assembly of both gold nanoparticles (AuNPs) and reduced graphene oxide (rGO) on the surface of a glassy carbon electrode (GCE) for the ultrasensitive electrochemical impedance sensing of DNA hybridization. A self-healable nanohybrid thin film with a three-dimensional (3D) alternate-layered nanoarchitecture was obtained by the one-step simultaneous electro-reduction of both graphene oxide and gold chloride in a high acidic medium of H 2 SO 4 using cyclic voltammetry and was confirmed by different characterization techniques. The DNA bioelectrode was prepared by immobilizing the capture DNA onto the surface of the as-obtained self-healable AuNP/rGO/AuNP/GCE with a 3D LBL nanoarchitecture via gold-thiol interactions, which then served as an impedance sensing platform for the label-free ultrasensitive electrochemical detection of DNA hybridization over a wide range from 1.0 × 10 -9 to 1.0 × 10 -13 g ml -1 , a low limit of detection of 3.9 × 10 -14 g ml -1 (S/N = 3), ultrahigh sensitivity, and excellent selectivity. This study presents a promising electrochemical sensing platform for the label-free ultrasensitive detection of DNA hybridization with potential application in cancer diagnostics and the preparation of a self-healable nanohybrid thin film with a 3D alternate-layered nanoarchitecture via a one-step coelectrodeposition-assisted LBL assembly.
Mousseau, F; Vitorazi, L; Herrmann, L; Mornet, S; Berret, J-F
2016-08-01
The electrostatic charge density of particles is of paramount importance for the control of the dispersion stability. Conventional methods use potentiometric, conductometric or turbidity titration but require large amount of samples. Here we report a simple and cost-effective method called polyelectrolyte assisted charge titration spectrometry or PACTS. The technique takes advantage of the propensity of oppositely charged polymers and particles to assemble upon mixing, leading to aggregation or phase separation. The mixed dispersions exhibit a maximum in light scattering as a function of the volumetric ratio X, and the peak position XMax is linked to the particle charge density according to σ∼D0XMax where D0 is the particle diameter. The PACTS is successfully applied to organic latex, aluminum and silicon oxide particles of positive or negative charge using poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). The protocol is also optimized with respect to important parameters such as pH and concentration, and to the polyelectrolyte molecular weight. The advantages of the PACTS technique are that it requires minute amounts of sample and that it is suitable to a broad variety of charged nano-objects. Copyright © 2016 Elsevier Inc. All rights reserved.
Microfluidic perfusion culture system for multilayer artery tissue models.
Yamagishi, Yuka; Masuda, Taisuke; Matsusaki, Michiya; Akashi, Mitsuru; Yokoyama, Utako; Arai, Fumihito
2014-11-01
We described an assembly technique and perfusion culture system for constructing artery tissue models. This technique differed from previous studies in that it does not require a solid biodegradable scaffold; therefore, using sheet-like tissues, this technique allowed the facile fabrication of tubular tissues can be used as model. The fabricated artery tissue models had a multilayer structure. The assembly technique and perfusion culture system were applicable to many different sizes of fabricated arteries. The shape of the fabricated artery tissue models was maintained by the perfusion culture system; furthermore, the system reproduced the in vivo environment and allowed mechanical stimulation of the arteries. The multilayer structure of the artery tissue model was observed using fluorescent dyes. The equivalent Young's modulus was measured by applying internal pressure to the multilayer tubular tissues. The aim of this study was to determine whether fabricated artery tissue models maintained their mechanical properties with developing. We demonstrated both the rapid fabrication of multilayer tubular tissues that can be used as model arteries and the measurement of their equivalent Young's modulus in a suitable perfusion culture environment.