Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures
NASA Astrophysics Data System (ADS)
Suzuki, Yuki; Endo, Masayuki; Sugiyama, Hiroshi
2015-08-01
Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed `lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space.
Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures
Endo, Masayuki; Sugiyama, Hiroshi
2015-01-01
Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed ‘lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space. PMID:26310995
Polymeric amphiphile branching leads to rare nanodisc shaped planar self-assemblies.
Qu, Xiaozhong; Omar, Leila; Le, Thi Bich Hang; Tetley, Laurence; Bolton, Katherine; Chooi, Kar Wai; Wang, Wei; Uchegbu, Ijeoma F
2008-09-16
Self-assembly is fundamental to the biological function of cells and the fabrication of nanomaterials. However, the origin of the shape of various self-assemblies, such as the shape of cells, is not altogether clear. Polymeric, oligomeric, or low molecular weight amphiphiles are a rich source of nanomaterials, and controlling their self-assembly is the route to tailored nanosystems with specific functionalities. Here, we provide direct evidence that a particular molecular architecture, polymeric branching, leads to a rare form of self-assembly, the planar nanodisc. Cholesterol containing self-assemblies formed from amphiphilic linear or branched cetyl poly(ethylenimine) (Mn approximately 1000 Da) or amphiphilic cetyl poly(propylenimine) dendrimer derivatives (Mn approximately 2000 Da) show that branching, by reducing the hydrophilic headgroup area, alters the shape of the self-assemblies transforming closed 60 nm spherical bilayer vesicles to rare 50 nm x 10 nm planar bilayer discs. Increasing the hydrophilic headgroup area, by the inclusion of methoxy poly(ethylene glycol) moieties into the amphiphilic headgroup, transforms the planar discs to 100 nm spherical bilayer vesicles. This study provides insight into the key role played by molecular shape on molecular self-organization into rare nanodiscs.
Self-assembled PCBM bilayers on graphene and HOPG examined by AFM and STM
NASA Astrophysics Data System (ADS)
Li, Yanlong; Chen, Chuanhui; Burton, John; Park, Kyungwha; Heflin, James R.; Tao, Chenggang
2018-05-01
In this work we report fabrication and characterization of phenyl-C61-butyric acid methyl ester (PCBM) bilayer structures on graphene and highly oriented pyrolytic graphite (HOPG). Through careful control of the PCBM solution concentration (from 0.1 to 2 mg ml-1) and the deposition conditions, we demonstrate that PCBM molecules self-assemble into bilayer structures on graphene and HOPG substrates. Interestingly, the PCBM bilayers are formed with two distinct heights on HOPG, but only one unique representative height on graphene. At elevated annealing temperatures, edge diffusion allows neighboring vacancies to merge into a more ordered structure. This is, to the best of our knowledge, the first experimental realization of PCBM bilayer structures on graphene. This work could provide valuable insight into fabrication of new hybrid, ordered structures for applications to organic solar cells.
Self-assembled PCBM bilayers on graphene and HOPG examined by AFM and STM.
Li, Yanlong; Chen, Chuanhui; Burton, John; Park, Kyungwha; Heflin, James R; Tao, Chenggang
2018-05-04
In this work we report fabrication and characterization of phenyl-C61-butyric acid methyl ester (PCBM) bilayer structures on graphene and highly oriented pyrolytic graphite (HOPG). Through careful control of the PCBM solution concentration (from 0.1 to 2 mg ml -1 ) and the deposition conditions, we demonstrate that PCBM molecules self-assemble into bilayer structures on graphene and HOPG substrates. Interestingly, the PCBM bilayers are formed with two distinct heights on HOPG, but only one unique representative height on graphene. At elevated annealing temperatures, edge diffusion allows neighboring vacancies to merge into a more ordered structure. This is, to the best of our knowledge, the first experimental realization of PCBM bilayer structures on graphene. This work could provide valuable insight into fabrication of new hybrid, ordered structures for applications to organic solar cells.
Zykwinska, Agata; Pihet, Marc; Radji, Sadia; Bouchara, Jean-Philippe; Cuenot, Stéphane
2014-06-01
Hydrophobins are small surface active proteins that fulfil a wide spectrum of functions in fungal growth and development. The human fungal pathogen Aspergillus fumigatus expresses RodA hydrophobins that self-assemble on the outer conidial surface into tightly organized nanorods known as rodlets. AFM investigation of the conidial surface allows us to evidence that RodA hydrophobins self-assemble into rodlets through bilayers. Within bilayers, hydrophilic domains of hydrophobins point inward, thus making a hydrophilic core, while hydrophobic domains point outward. AFM measurements reveal that several rodlet bilayers are present on the conidial surface thus showing that proteins self-assemble into a complex three-dimensional multilayer system. The self-assembly of RodA hydrophobins into rodlets results from attractive interactions between stacked β-sheets, which conduct to a final linear cross-β spine structure. A Monte Carlo simulation shows that anisotropic interactions are the main driving forces leading the hydrophobins to self-assemble into parallel rodlets, which are further structured in nanodomains. Taken together, these findings allow us to propose a mechanism, which conducts RodA hydrophobins to a highly ordered rodlet structure. The mechanism of hydrophobin assembly into rodlets offers new prospects for the development of more efficient strategies leading to disruption of rodlet formation allowing a rapid detection of the fungus by the immune system. Copyright © 2014 Elsevier B.V. All rights reserved.
Self-assembling layers created by membrane proteins on gold.
Shah, D S; Thomas, M B; Phillips, S; Cisneros, D A; Le Brun, A P; Holt, S A; Lakey, J H
2007-06-01
Membrane systems are based on several types of organization. First, amphiphilic lipids are able to create monolayer and bilayer structures which may be flat, vesicular or micellar. Into these structures membrane proteins can be inserted which use the membrane to provide signals for lateral and orientational organization. Furthermore, the proteins are the product of highly specific self-assembly otherwise known as folding, which mostly places individual atoms at precise places in three dimensions. These structures all have dimensions in the nanoscale, except for the size of membrane planes which may extend for millimetres in large liposomes or centimetres on planar surfaces such as monolayers at the air/water interface. Membrane systems can be assembled on to surfaces to create supported bilayers and these have uses in biosensors and in electrical measurements using modified ion channels. The supported systems also allow for measurements using spectroscopy, surface plasmon resonance and atomic force microscopy. By combining the roles of lipids and proteins, highly ordered and specific structures can be self-assembled in aqueous solution at the nanoscale.
Bifurcation of self-folded polygonal bilayers
NASA Astrophysics Data System (ADS)
Abdullah, Arif M.; Braun, Paul V.; Hsia, K. Jimmy
2017-09-01
Motivated by the self-assembly of natural systems, researchers have investigated the stimulus-responsive curving of thin-shell structures, which is also known as self-folding. Self-folding strategies not only offer possibilities to realize complicated shapes but also promise actuation at small length scales. Biaxial mismatch strain driven self-folding bilayers demonstrate bifurcation of equilibrium shapes (from quasi-axisymmetric doubly curved to approximately singly curved) during their stimulus-responsive morphing behavior. Being a structurally instable, bifurcation could be used to tune the self-folding behavior, and hence, a detailed understanding of this phenomenon is appealing from both fundamental and practical perspectives. In this work, we investigated the bifurcation behavior of self-folding bilayer polygons. For the mechanistic understanding, we developed finite element models of planar bilayers (consisting of a stimulus-responsive and a passive layer of material) that transform into 3D curved configurations. Our experiments with cross-linked Polydimethylsiloxane samples that change shapes in organic solvents confirmed our model predictions. Finally, we explored a design scheme to generate gripper-like architectures by avoiding the bifurcation of stimulus-responsive bilayers. Our research contributes to the broad field of self-assembly as the findings could motivate functional devices across multiple disciplines such as robotics, artificial muscles, therapeutic cargos, and reconfigurable biomedical devices.
Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.
2017-01-01
Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current–voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor–acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure. PMID:28281557
NASA Astrophysics Data System (ADS)
Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.
2017-03-01
Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current-voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor-acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure.
Lipid self-assembly and lectin-induced reorganization of the plasma membrane.
Sych, Taras; Mély, Yves; Römer, Winfried
2018-05-26
The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears-globally speaking-homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).
Oda, Reiko; Artzner, Franck; Laguerre, Michel; Huc, Ivan
2008-11-05
A detailed molecular organization of racemic 16-2-16 tartrate self-assembled multi-bilayer ribbons in the hydrated state is proposed where 16-2-16 amphiphiles, tartrate ions, and water molecules are all accurately positioned by comparing experimental X-ray powder diffraction and diffraction patterns derived from modeling studies. X-ray diffuse scattering studies show that molecular organization is not fundamentally altered when comparing the flat ribbons of the racemate to chirally twisted or helical ribbons of the pure tartrate enantiomer. Essential features of the three-dimensional molecular organizations of these structures include interdigitation of alkyl chains within each bilayer and well-defined networks of ionic and hydrogen bonds between cations, anions, and water molecules between bilayers. The detailed study of diffraction patterns also indicated that the gemini headgroups are oriented parallel to the long edge of the ribbons. The structure thus possesses a high cohesion and good crystallinity, and for the first time, we could relate the packing of the chiral molecules to the expression of the chirality at a mesoscopic scale. The organization of the ribbons at the molecular level sheds light on a number of their macroscopic features. Among these are the reason why enantiomerically pure 16-2-16 tartrate forms ribbons that consist of exactly two bilayers, and a plausible mechanism by which a chirally twisted or helical shape may emerge from the packing of chiral tartrate ions. Importantly, the distinction between commonly observed helical and twisted morphologies could be related to a subtle symmetry breaking. These results demonstrate that accurately solving the molecular structure of self-assembled soft materials--a process rarely achieved--is within reach, that it is a valid approach to correlate molecular parameters to macroscopic properties, and thus that it offers opportunities to modulate properties through molecular design.
NASA Astrophysics Data System (ADS)
Malassis, Ludivine; Jishkariani, Davit; Murray, Christopher B.; Donnio, Bertrand
2016-07-01
The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates.The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates. Electronic supplementary information (ESI) available: TEM microscope images. See DOI: 10.1039/c6nr03404g
Mimosa Origami: A nanostructure-enabled directional self-organization regime of materials
Wong, William S. Y.; Li, Minfei; Nisbet, David R.; Craig, Vincent S. J.; Wang, Zuankai; Tricoli, Antonio
2016-01-01
One of the innate fundamentals of living systems is their ability to respond toward distinct stimuli by various self-organization behaviors. Despite extensive progress, the engineering of spontaneous motion in man-made inorganic materials still lacks the directionality and scale observed in nature. We report the directional self-organization of soft materials into three-dimensional geometries by the rapid propagation of a folding stimulus along a predetermined path. We engineer a unique Janus bilayer architecture with superior chemical and mechanical properties that enables the efficient transformation of surface energy into directional kinetic and elastic energies. This Janus bilayer can respond to pinpoint water stimuli by a rapid, several-centimeters-long self-assembly that is reminiscent of the Mimosa pudica’s leaflet folding. The Janus bilayers also shuttle water at flow rates up to two orders of magnitude higher than traditional wicking-based devices, reaching velocities of 8 cm/s and flow rates of 4.7 μl/s. This self-organization regime enables the ease of fabricating curved, bent, and split flexible channels with lengths greater than 10 cm, demonstrating immense potential for microfluidics, biosensors, and water purification applications. PMID:28861471
Mimosa Origami: A nanostructure-enabled directional self-organization regime of materials.
Wong, William S Y; Li, Minfei; Nisbet, David R; Craig, Vincent S J; Wang, Zuankai; Tricoli, Antonio
2016-06-01
One of the innate fundamentals of living systems is their ability to respond toward distinct stimuli by various self-organization behaviors. Despite extensive progress, the engineering of spontaneous motion in man-made inorganic materials still lacks the directionality and scale observed in nature. We report the directional self-organization of soft materials into three-dimensional geometries by the rapid propagation of a folding stimulus along a predetermined path. We engineer a unique Janus bilayer architecture with superior chemical and mechanical properties that enables the efficient transformation of surface energy into directional kinetic and elastic energies. This Janus bilayer can respond to pinpoint water stimuli by a rapid, several-centimeters-long self-assembly that is reminiscent of the Mimosa pudica 's leaflet folding. The Janus bilayers also shuttle water at flow rates up to two orders of magnitude higher than traditional wicking-based devices, reaching velocities of 8 cm/s and flow rates of 4.7 μl/s. This self-organization regime enables the ease of fabricating curved, bent, and split flexible channels with lengths greater than 10 cm, demonstrating immense potential for microfluidics, biosensors, and water purification applications.
Carr, Rogan; Weinstock, Ira A; Sivaprasadarao, Asipu; Müller, Achim; Aksimentiev, Aleksei
2008-11-01
Porous polyoxometalate nanocapsules of Keplerate type are known to exhibit the functionality of biological ion channels; however, their use as an artificial ion channel is tempered by the high negative charge of the capsules, which renders their spontaneous incorporation into a lipid bilayer membrane unlikely. In this Letter we report coarse-grained molecular dynamics simulations that demonstrate a route for embedding negatively charged nanocapsules into lipid bilayer membranes via self-assembly. A homogeneous mixture of water, cationic detergent, and phospholipid was observed to spontaneously self-assemble around the nanocapsule into a layered, liposome-like structure, where the nanocapsule was enveloped by a layer of cationic detergent followed by a layer of phospholipid. Fusion of such a layered liposome with a lipid bilayer membrane was observed to embed the nanocapsule into the lipid bilayer. The resulting assembly was found to remain stable even after the surface of the capsule was exposed to electrolyte. In the latter conformation, water was observed to flow into and out of the capsule as Na(+) cations entered, suggesting that a polyoxometalate nanocapsule can form a functional synthetic ion channel in a lipid bilayer membrane.
Carr, Rogan; Weinstock, Ira A.; Sivaprasadarao, Asipu; Müller, Achim; Aksimentiev, Aleksei
2010-01-01
Porous polyoxometalate nanocapsules of Keplerate type are known to exhibit the functionality of biological ion channels, however, their use as artificial ion channel is tempered by the high negative charge of the capsules, which renders their spontaneous incorporation into a lipid bilayer membrane unlikely. In this letter we report coarse-grained molecular dynamics simulations that demonstrate a route for embedding negatively charged nanocapsules into lipid bilayer membranes via self-assembly. A homogeneous mixture of water, cationic detergent, and phospholipid was observed to spontaneously self-assemble around the nanocapsule into a layered, liposome-like structure, where the nanocapsule was enveloped by a layer of cationic detergent followed by a layer of phospholipid. Fusion of such a layered liposome with a lipid bilayer membrane was observed to embed the nanocapsule into the lipid bilayer. The resulting assembly was found to remain stable even after the surface of the capsule was exposed to electrolyte. In the latter conformation, water was observed to flow into and out of the capsule as Na+ cations entered, suggesting that a polyoxometalate nanocapsule can form a functional synthetic ion channel in a lipid bilayer membrane. PMID:18844424
Controlling the shape of membrane protein polyhedra
NASA Astrophysics Data System (ADS)
Li, Di; Kahraman, Osman; Haselwandter, Christoph A.
2017-03-01
Membrane proteins and lipids can self-assemble into membrane protein polyhedral nanoparticles (MPPNs). MPPNs have a closed spherical surface and a polyhedral protein arrangement, and may offer a new route for structure determination of membrane proteins and targeted drug delivery. We develop here a general analytic model of how MPPN self-assembly depends on bilayer-protein interactions and lipid bilayer mechanical properties. We find that the bilayer-protein hydrophobic thickness mismatch is a key molecular control parameter for MPPN shape that can be used to bias MPPN self-assembly towards highly symmetric and uniform MPPN shapes. Our results suggest strategies for optimizing MPPN shape for structural studies of membrane proteins and targeted drug delivery.
Self-assembled lipid bilayer materials
Sasaki, Darryl Y.; Waggoner, Tina A.; Last, Julie A.
2005-11-08
The present invention is a self-assembling material comprised of stacks of lipid bilayers formed in a columnar structure, where the assembly process is mediated and regulated by chemical recognition events. The material, through the chemical recognition interactions, has a self-regulating system that corrects the radial size of the assembly creating a uniform diameter throughout most of the structure. The materials form and are stable in aqueous solution. These materials are useful as structural elements for the architecture of materials and components in nanotechnology, efficient light harvesting systems for optical sensing, chemical processing centers, and drug delivery vehicles.
Self assembly properties of primitive organic compounds
NASA Technical Reports Server (NTRS)
Deamer, D. W.
1991-01-01
A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic amphiphiles. One possibility is photochemical oxidation of hydrocarbons.
Excitation of Cy5 in self-assembled lipid bilayers using optical microresonators
NASA Astrophysics Data System (ADS)
Freeman, Lindsay M.; Li, Su; Dayani, Yasaman; Choi, Hong-Seok; Malmstadt, Noah; Armani, Andrea M.
2011-04-01
Due to their sensitivity and temporal response, optical microresonators are used extensively in the biosensor arena, particularly in the development of label-free diagnostics and measurement of protein kinetics. In the present letter, we investigate using microcavities to probe molecules within biomimetic membranes. Specifically, a method for self-assembling lipid bilayers on spherical microresonators is developed and the bilayer-nature is verified. Subsequently, the microcavity is used to excite a Cy5-conjugated lipid located within the bilayer while the optical performance of the microcavity is characterized. The emission wavelength of the dye and the optical behavior of the microcavity agree with theoretical predictions.
A Two-Tailed Phosphopeptide Crystallizes to Form a Lamellar Structure.
Pellach, Michal; Mondal, Sudipta; Harlos, Karl; Mance, Deni; Baldus, Marc; Gazit, Ehud; Shimon, Linda J W
2017-03-13
The crystal structure of a designed phospholipid-inspired amphiphilic phosphopeptide at 0.8 Å resolution is presented. The phosphorylated β-hairpin peptide crystallizes to form a lamellar structure that is stabilized by intra- and intermolecular hydrogen bonding, including an extended β-sheet structure, as well as aromatic interactions. This first reported crystal structure of a two-tailed peptidic bilayer reveals similarities in thickness to a typical phospholipid bilayer. However, water molecules interact with the phosphopeptide in the hydrophilic region of the lattice. Additionally, solid-state NMR was used to demonstrate correlation between the crystal structure and supramolecular nanostructures. The phosphopeptide was shown to self-assemble into semi-elliptical nanosheets, and solid-state NMR provides insight into the self-assembly mechanisms. This work brings a new dimension to the structural study of biomimetic amphiphilic peptides with determination of molecular organization at the atomic level. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hossain, Anowar; Mandal, Tripti; Mitra, Monojit; Manna, Prankrishna; Bauzá, Antonio; Frontera, Antonio; Seth, Saikat Kumar; Mukhopadhyay, Subrata
2017-12-01
A Co(II)-based coordination polymer with tetranuclear cobalt(II)-malonate cluster has been easily generated by aqueous medium self-assembly from Cobalt(II) chloride hexahydrate and malonic acid. The structure exhibits a non-interpenetrating, highly undulating two-dimensional (2D) bi-layer network with (4,4) topology. The crystal structure is composed of infinite interdigitated 2D metal-organic bi-layers which extended to an intricate 3D framework through the interbilayer hydrogen bonds. We have studied energetically by means of Density Functional Theory (DFT) calculations the H-bonding interactions that connect the 2D metal-organic bi-layers. The finite theoretical models have been used to compute conventional O‒H•••O and unconventional C‒H•••O interactions which plays a key role to build 3D architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Andrew; Dergunov, Sergey; Ganus, Bill
2011-01-01
Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scatteringmore » (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Andrew G.; Dergunov, Sergey A.; Ganus, Bill
2011-03-10
Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scatteringmore » (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Finally, pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.« less
Membrane-Assisted Growth of DNA Origami Nanostructure Arrays
2015-01-01
Biological membranes fulfill many important tasks within living organisms. In addition to separating cellular volumes, membranes confine the space available to membrane-associated proteins to two dimensions (2D), which greatly increases their probability to interact with each other and assemble into multiprotein complexes. We here employed two DNA origami structures functionalized with cholesterol moieties as membrane anchors—a three-layered rectangular block and a Y-shaped DNA structure—to mimic membrane-assisted assembly into hierarchical superstructures on supported lipid bilayers and small unilamellar vesicles. As designed, the DNA constructs adhered to the lipid bilayers mediated by the cholesterol anchors and diffused freely in 2D with diffusion coefficients depending on their size and number of cholesterol modifications. Different sets of multimerization oligonucleotides added to bilayer-bound origami block structures induced the growth of either linear polymers or two-dimensional lattices on the membrane. Y-shaped DNA origami structures associated into triskelion homotrimers and further assembled into weakly ordered arrays of hexagons and pentagons, which resembled the geometry of clathrin-coated pits. Our results demonstrate the potential to realize artificial self-assembling systems that mimic the hierarchical formation of polyhedral lattices on cytoplasmic membranes. PMID:25734977
Membrane-assisted growth of DNA origami nanostructure arrays.
Kocabey, Samet; Kempter, Susanne; List, Jonathan; Xing, Yongzheng; Bae, Wooli; Schiffels, Daniel; Shih, William M; Simmel, Friedrich C; Liedl, Tim
2015-01-01
Biological membranes fulfill many important tasks within living organisms. In addition to separating cellular volumes, membranes confine the space available to membrane-associated proteins to two dimensions (2D), which greatly increases their probability to interact with each other and assemble into multiprotein complexes. We here employed two DNA origami structures functionalized with cholesterol moieties as membrane anchors--a three-layered rectangular block and a Y-shaped DNA structure--to mimic membrane-assisted assembly into hierarchical superstructures on supported lipid bilayers and small unilamellar vesicles. As designed, the DNA constructs adhered to the lipid bilayers mediated by the cholesterol anchors and diffused freely in 2D with diffusion coefficients depending on their size and number of cholesterol modifications. Different sets of multimerization oligonucleotides added to bilayer-bound origami block structures induced the growth of either linear polymers or two-dimensional lattices on the membrane. Y-shaped DNA origami structures associated into triskelion homotrimers and further assembled into weakly ordered arrays of hexagons and pentagons, which resembled the geometry of clathrin-coated pits. Our results demonstrate the potential to realize artificial self-assembling systems that mimic the hierarchical formation of polyhedral lattices on cytoplasmic membranes.
NASA Astrophysics Data System (ADS)
Steinhauser, Martin O.; Schindler, Tanja
2017-01-01
We report on the results of particle-based, coarse-grained molecular dynamics simulations of amphiphilic lipid molecules in aqueous environment where the membrane structures at equilibrium are subsequently exposed to strong shock waves, and their damage is analyzed. The lipid molecules self-assemble from unbiased random initial configurations to form stable bilayer membranes, including closed vesicles. During self-assembly of lipid molecules, we observe several stages of clustering, starting with many small clusters of lipids, gradually merging together to finally form one single bilayer membrane. We find that the clustering of lipids sensitively depends on the hydrophobic interaction h_c of the lipid tails in our model and on temperature T of the system. The self-assembled bilayer membranes are quantitatively analyzed at equilibrium with respect to their degree of order and their local structure. We also show that—by analyzing the membrane fluctuations and using a linearized theory— we obtain area compression moduli K_A and bending stiffnesses κ _B for our bilayer membranes which are within the experimental range of in vivo and in vitro measurements of biological membranes. We also discuss the density profile and the pair correlation function of our model membranes at equilibrium which has not been done in previous studies of particle-based membrane models. Furthermore, we present a detailed phase diagram of our lipid model that exhibits a sol-gel transition between quasi-solid and fluid domains, and domains where no self-assembly of lipids occurs. In addition, we present in the phase diagram the conditions for temperature T and hydrophobicity h_c of the lipid tails of our model to form closed vesicles. The stable bilayer membranes obtained at equilibrium are then subjected to strong shock waves in a shock tube setup, and we investigate the damage in the membranes due to their interaction with shock waves. Here, we find a transition from self-repairing membranes (reducing their damage after impact) and permanent (irreversible) damage, depending on the shock front speed. The here presented idea of using coarse-grained (CG) particle models for soft matter systems in combination with the investigation of shock-wave effects in these systems is a quite new approach.
Bernardo-Maestro, Beatriz; Garrido-Martín, Elisa; López-Arbeloa, Fernando; Pérez-Pariente, Joaquín; Gómez-Hortigüela, Luis
2018-03-28
In an attempt to promote the crystallization of chiral inorganic frameworks, we explore the ability of chiral (1R,2S)-ephedrine and its diastereoisomer (1S,2S)-pseudoephedrine to act as organic building blocks for the crystallization of hybrid organo-inorganic aluminophosphate frameworks in the presence of fluoride. These molecules were selected because of their particular molecular asymmetric structure, which enables a rich supramolecular chemistry and a potential chiral recognition phenomenon during crystallization. Up to four new low-dimensional materials have been produced, wherein the organic molecules form an organic bilayer in-between the inorganic networks. We analyze by molecular simulations the trend of these chiral molecules to form these types of framework, which is directly related to their amphiphilic nature that triggers a strong self-assembly through hydrophobic interactions between aromatic rings and hydrophilic interactions with the fluoro-aluminophosphate inorganic units. Such a self-assembly process is strongly dependent on the concentration of the organic molecules.
Self-Assembly of Phosphate Amphiphiles in Mixtures of Prebiotically Plausible Surfactants
Albertsen, A.N.; Duffy, C.D.; Sutherland, J.D.
2014-01-01
Abstract The spontaneous formation of closed bilayer structures from prebiotically plausible amphiphiles is an essential requirement for the emergence of early cells on prebiotic Earth. The sources of amphiphiles could have been both endo- and exogenous (accretion of meteorite carbonaceous material or interstellar dust particles). Among all prebiotic possible amphiphile candidates, those containing phosphate are the least investigated species because their self-assembly occurs in a seemingly too narrow range of conditions. The self-assembly of simple phosphate amphiphiles should, however, be of great interest, as contemporary membranes predominantly contain phospholipids. In contrast to common expectations, we show that these amphiphiles can be easily synthesized under prebiotically plausible environmental conditions and can efficiently form bilayer structures in the presence of various co-surfactants across a large range of pH values. Vesiculation was even observed in crude reaction mixtures that contained 1-decanol as the amphiphile precursor. The two best co-surfactants promoted vesicle formation over the entire pH range in aqueous solutions. Expanding the pH range where bilayer membranes self-assemble and remain intact is a prerequisite for the emergence of early cell-like compartments and their preservation under fluctuating environmental conditions. These mixed bilayers also retained small charged solutes, such as dyes. These results demonstrate that alkyl phosphate amphiphiles might have played a significant role as early compartment building blocks. Key Words: Vesicles—Alkyl phosphate—Prebiotic synthesis—Amphiphile mixtures. Astrobiology 14, 462–472. PMID:24885934
Self-Folded Gripper-Like Architectures from Stimuli-Responsive Bilayers.
Abdullah, Arif M; Li, Xiuling; Braun, Paul V; Rogers, John A; Hsia, K Jimmy
2018-06-19
Self-folding microgrippers are an emerging class of smart structures that have widespread applications in medicine and micro/nanomanipulation. To achieve their functionalities, these architectures rely on spatially patterned hinges to transform into 3D configurations in response to an external stimulus. Incorporating hinges into the devices requires the processing of multiple layers which eventually increases the fabrication costs and actuation complexities. The goal of this work is to demonstrate that it is possible to achieve gripper-like configurations in an on-demand manner from simple planar bilayers that do not require hinges for their actuation. Finite element modeling of bilayers is performed to understand the mechanics behind their stimuli-responsive shape transformation behavior. The model predictions are then experimentally validated and axisymmetric gripper-like shapes are realized using millimeter-scale poly(dimethylsiloxane) bilayers that undergo differential swelling in organic solvents. Owing to the nature of the computational scheme which is independent of length scales and material properties, the guidelines reported here would be applicable to a diverse array of gripping systems and functional devices. Thus, this work not only demonstrates a simple route to fabricate functional microgrippers but also contributes to self-assembly in general. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Umbach, T. R.; Bernien, M.; Hermanns, C. F.; Krüger, A.; Sessi, V.; Fernandez-Torrente, I.; Stoll, P.; Pascual, J. I.; Franke, K. J.; Kuch, W.
2012-12-01
The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surroundings. Using scanning tunneling microscopy, we resolve the self-assembled formation of highly ordered bilayer structures of Fe atoms and organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe atoms are encaged in a three-dimensional coordination motif by three T4PT molecules in the surface plane and an additional T4PT unit on top. Within this crystal field, the Fe atoms retain a magnetic ground state with easy-axis anisotropy, as evidenced by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. The magnetization curves reveal the existence of ferromagnetic coupling between the Fe centers.
Reticulated Organic Photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiros T.; Yager K.; Mannsfeld S.
2012-03-21
This paper shows how the self-assembled interlocking of two nanostructured materials can lead to increased photovoltaic performance. A detailed picture of the reticulated 6-DBTTC/C{sub 60} organic photovoltaic (OPV) heterojunction, which produces devices approaching the theoretical maximum for these materials, is presented from near edge X-ray absorption spectroscopy (NEXAFS), X-ray photoelectron spectroscopy (XPS), Grazing Incidence X-ray diffraction (GIXD) and transmission electron microscopy (TEM). The complementary suite of techniques shows how self-assembly can be exploited to engineer the interface and morphology between the cables of donor (6-DBTTC) material and a polycrystalline acceptor (C{sub 60}) to create an interpenetrating network of pure phasesmore » expected to be optimal for OPV device design. Moreover, we find that there is also a structural and electronic interaction between the two materials at the molecular interface. The data show how molecular self-assembly can facilitate 3-D nanostructured photovoltaic cells that are made with the simplicity and control of bilayer device fabrication. The significant improvement in photovoltaic performance of the reticulated heterojunction over the flat analog highlights the potential of these strategies to improve the efficiency of organic solar cells.« less
Effect of Lipid Bilayer on Human Islet Amyloid Polypeptide Self Assembly
NASA Astrophysics Data System (ADS)
Chiu, Chi-Cheng; Singh, Sadanand; de Pablo, Juan J.
2012-02-01
Aggregates of human islet amyloid polypeptides (hIAPP, also known as human amylin) are commonly found in the pancreatic β-cells of type II diabetes patients. Experimental studies have shown that small aggregates of hIAPP, that arise during the assembly process, lead to membrane leakage and are highly cytotoxic. Due to the fast assembly kinetics, it is difficult to study the early aggregation of hIAPP experimentally. In this work, we use molecular simulation with a coarse grained (CG) model to investigate the oligomerization of hIAPP with and without the presence of lipid bilayers. We develop a CG protein model that reproduces the three thremodynamically stable structures of hIAPP, namely α-helix, β-hairpin, and unstructured coil, and the corresponding free energy differences calculated by atomistic molecular simulations. The aggregated structure of hIAPP also agrees with that proposed by NMR experiments. We further investigate the assembly of hIAPP in the presence of a lipid bilayer and its effect on the membrane leakage. Comparing our results with the mechanism proposed based on experimental data provides a better understanding of the origins of hIAPP self assembly and its toxicity.
Structure formation in binary mixtures of lipids and detergents: self-assembly and vesicle division.
Noguchi, Hiroshi
2013-01-14
Self-assembly dynamics in binary surfactant mixtures and structure changes of lipid vesicles induced by detergent solution are studied using coarse-grained molecular simulations. Disk-shaped micelles, the bicelles, are stabilized by detergents surrounding the rim of a bilayer disk of lipids. The self-assembled bicelles are considerably smaller than bicelles formed from vesicle rupture, and their size is determined by the concentrations of lipids and detergents and the interactions between the two species. The detergent-adsorption induces spontaneous curvature of the vesicle bilayer and results in vesicle division into two vesicles or vesicle rupture into worm-like micelles. The division occurs mainly via the inverse pathway of the modified stalk model. For large spontaneous curvature of the monolayers of the detergents, a pore is often opened, thereby leading to vesicle division or worm-like micelle formation.
Electrostatically self-assembled polyoxometalates on molecular-dye-functionalized diamond.
Zhong, Yu Lin; Ng, Wibowo; Yang, Jia-Xiang; Loh, Kian Ping
2009-12-30
We have successfully immobilized phosphotungstic acid (PTA), a polyoxometalate, on the surface of boron-doped diamond (BDD) surface through electrostatic self-assembly of PTA on pyridinium dye-functionalized-BDD. The inorganic/organic bilayer structure on BDD is found to exhibit fast surface-confined reversible electron transfer. The molecular dye-grafted BDD can undergo controllable electrical stripping and regeneration of PTA which can be useful for electronics or sensing applications. Furthermore, we have demonstrated the use of PTA as a molecular switch in which the direction of photocurrent from diamond to methyl viologen is reversed by the surface bound PTA. Robust photocurrent converter based on such molecular system-diamond platform can operate in corrosive medium which is not tolerated by indium tin oxide electrodes.
Chen, Ying; Xu, Pengcheng; Li, Xinxin
2010-07-02
This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO(2) surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO(2) cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.
The behaviour of tributyl phosphate in an organic diluent
NASA Astrophysics Data System (ADS)
Leay, Laura; Tucker, Kate; Del Regno, Annalaura; Schroeder, Sven L. M.; Sharrad, Clint A.; Masters, Andrew J.
2014-09-01
Tributyl phosphate (TBP) is used as a complexing agent in the Plutonium Uranium Extraction (PUREX) liquid-liquid phase extraction process for recovering uranium and plutonium from spent nuclear reactor fuel. Here, we address the molecular and microstructure of the organic phases involved in the extraction process, using molecular dynamics to show that when TBP is mixed with a paraffinic diluent, the TBP self-assembles into a bi-continuous phase. The underlying self-association of TBP is driven by intermolecular interaction between its polar groups, resulting in butyl moieties radiating out into the organic solvent. Simulation predicts a TBP diffusion constant that is anomalously low compared to what might normally be expected for its size; experimental nuclear magnetic resonance (NMR) studies also indicate an extremely low diffusion constant, consistent with a molecular aggregation model. Simulation of TBP at an oil/water interface shows the formation of a bilayer system at low TBP concentrations. At higher concentrations, a bulk bi-continuous structure is observed linking to this surface bilayer. We suggest that this structure may be intimately connected with the surprisingly rapid kinetics of the interfacial mass transport of uranium and plutonium from the aqueous to the organic phase in the PUREX process.
Self-organization of a wedge-shaped surfactant in monolayers and multilayers.
Cain, Nicholas; Van Bogaert, Josh; Gin, Douglas L; Hammond, Scott R; Schwartz, Daniel K
2007-01-16
The self-organization behavior of a wedge-shaped surfactant, disodium-3,4,5-tris(dodecyloxy)phenylmethylphosphonate, was studied in Langmuir monolayers (at the air-water interface), Langmuir-Blodgett (LB) monolayers and multilayers, and films adsorbed spontaneously from isooctane solution onto a mica substrate (self-assembled films). This compound forms an inverted hexagonal lyotropic liquid crystal phase in the bulk and in thick adsorbed films. Surface pressure isotherm and Brewster angle microscope (BAM) studies of Langmuir monolayers revealed three phases: gas (G), liquid expanded (LE), and liquid condensed (LC). The surface pressure-temperature phase diagram was determined in detail; a triple point was found at approximately 10 degrees C. Atomic force microscope (AFM) images of LB monolayers transferred from various regions of the phase diagram were consistent with the BAM images and indicated that the LE regions are approximately 0.5 nm thinner than the LC regions. AFM images were also obtained of self-assembled films after various adsorption times. For short adsorption times, when monolayer self-assembly was incomplete, the film topography indicated the coexistence of two distinct monolayer phases. The height difference between these two phases was again 0.5 nm, suggesting a correspondence with the LE/LC coexistence observed in the Langmuir monolayers. For longer immersion times, adsorbed multilayers assembled into highly organized periodic arrays of inverse cylindrical micelles. Similar periodic structures, with the same repeat distance of 4.5 nm, were also observed in three-layer LB films. However, the regions of organized periodic structure were much smaller and more poorly correlated in the LB multilayers than in the films adsorbed from solution. Collectively, these observations indicate a high degree of similarity between the molecular organization in Langmuir layers/LB films and adsorbed self-assembled films. In both cases, monolayers progress through an LE phase, into LE/LC coexistence, and finally into LC phase as surface density increases. Following the deposition of an additional bilayer, the film reorganizes to form an array of inverted cylindrical micelles.
Advances in nanopatterned and nanostructured supported lipid membranes and their applications.
Reimhult, Erik; Baumann, Martina; Kaufmann, Stefan; Kumar, Karthik; Spycher, Philipp
2010-01-01
Lipid membranes are versatile and convenient alternatives to study the properties of natural cell membranes. Self-assembled, artificial, substrate-supported lipid membranes have taken a central role in membrane research due to a combination of factors such as ease of creation, control over complexity, stability and the applicability of a large range of different analytical techniques. While supported lipid bilayers have been investigated for several decades, recent advances in the understanding of the assembly of such membranes from liposomes have spawned a renaissance in the field. Supported lipid bilayers are a highly promising tool to study transmembrane proteins in their native state, an application that could have tremendous impact on, e.g. drug discovery, development of biointerfaces and as platforms for glycomics and probing of multivalent binding which requires ligand mobility. Parallel advances in microfluidics, biosensor design, micro- and nanofabrication have converged to bring self-assembled supported lipid bilayers closer to a versatile and easy to use research tool as well as closer to industrial applications. The field of supported lipid bilayer research and application is thus rapidly expanding and diversifying with new platforms continuously being proposed and developed. In order to use supported lipid bilayers for such applications several advances have to be made: decoupling of the membrane from the support while maintaining it close to the surface, making use of biologically relevant lipid compositions, patterning of lipid membranes into arrays, and application to nanostructured substrates and sensors. This review summarizes recent advances in the field which addresses these challenges.
Comparison of Extruded and Sonicated Vesicles for Planar Bilayer Self-Assembly
Cho, Nam-Joon; Hwang, Lisa Y.; Solandt, Johan J.R.; Frank, Curtis W.
2013-01-01
Lipid vesicles are an important class of biomaterials that have a wide range of applications, including drug delivery, cosmetic formulations and model membrane platforms on solid supports. Depending on the application, properties of a vesicle population such as size distribution, charge and permeability need to be optimized. Preparation methods such as mechanical extrusion and sonication play a key role in controlling these properties, and yet the effects of vesicle preparation method on vesicular properties and integrity (e.g., shape, size, distribution and tension) remain incompletely understood. In this study, we prepared vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid by either extrusion or sonication, and investigated the effects on vesicle size distribution over time as well as the concomitant effects on the self-assembly of solid-supported planar lipid bilayers. Dynamic light scattering (DLS), quartz crystal microbalance with dissipation (QCM-D) monitoring, fluorescence recovery after photobleaching (FRAP) and atomic force microscopy (AFM) experiments were performed to characterize vesicles in solution as well as their interactions with silicon oxide substrates. Collectively, the data support that sonicated vesicles offer more robust control over the self-assembly of homogenous planar lipid bilayers, whereas extruded vesicles are vulnerable to aging and must be used soon after preparation. PMID:28811437
NASA Astrophysics Data System (ADS)
Shaik, Jameel
Several approaches such as self-assembled monolayers and layer-by-layer assembled multilayer films are being used as tools to study the interactions of cells with biomaterials in vitro. In this study, the layer-by-layer assembly approach was used to create monolayer, bilayer, trilayer, five, ten and twenty-bilayer beds of eleven different biomaterials. The various biomaterials used were poly(styrene-sulfonate), fibronectin, poly-L-lysine, poly-D-lysine, laminin, bovine serum albumin, chondroitin sulfate, poly(ethyleneimine), polyethylene glycol amine, collagen and poly(dimethyldiallyl-ammonium chloride) with unmodified tissue-culture polystyrene as standard control. Three different cell lines---primary bovine articular chondrocytes, and two secondary cell lines, human chondrosarcoma cells and canine chondrocytes were used in these studies. Chondrocyte morphology and attachment, viability, proliferation, and functionality were determined using bright field microscopy, the Live/Dead viability assay, MTT assay, and immunocytochemistry, respectively. Atomic force microscopy of the nanofilms indicated an increase in surface roughness with increasing number of layers. The most important observations from the studies on primary bovine articular chondrocytes were that these cells exhibited increasing viability and cell metabolic activity with increasing number of bilayers. The increase in viability was more pronounced than the increase in cell metabolic activity. Also, bovine chondrocytes on bilayers of poly(dimethyldiallyl-ammonium chloride, poly-L-lysine, poly(styrene-sulfonate), and bovine serum albumin were substantially bigger in size and well-attached when compared to the cells grown on monolayer and trilayers. Lactate dehydrogenase assay performed on chondrosarcoma cells grown on 5- and 10-bilayer multilayer beds indicated that the 10-bilayer beds had reduced cytotoxicity compared to the 5-bilayer beds. MTT assay performed on canine chondrocytes grown on 5-, 10-, and 20-bilayer nanofilm beds revealed increasing cell metabolic activity for BSA with increasing bilayers. Micropatterned multilayer beds having poly-L-lysine, poly-D-lysine, laminin poly(dimethyldiallyl-ammonium chloride) and poly(ethyleneimine) as the terminating layers were fabricated using the Layer-by-layer Lift-off (LbL-LO) method that combines photolithography and LbL self-assembly. Most importantly, micropatterned co-culture platforms consisting of anti-CD 44 rat monoclonal and anti-rat osteopontin (MPIIIB101) antibodies were constructed using the LbL-LO method for the first time. These co-culture platforms have several applications especially for studies of stem and progenitor cells. Co-culture platforms exhibiting spatiotempora-based differentiation can be built with LbL-LO for the differentiation of stem cells into the desired cell lineage.
Kavitha, M K; Gopinath, Pramod; John, Honey
2015-06-14
ZnO is a wide direct bandgap semiconductor; its absorption can be tuned to the visible spectral region by controlling the intrinsic defect levels. Combining graphene with ZnO can improve its performance by photo-induced charge separation by ZnO and electronic transport through graphene. When reduced graphene oxide-ZnO is prepared by a hydrothermal method, the photophysical studies indicate that oxygen vacancy defect states are healed out by diffusion of oxygen from GO to ZnO during its reduction. Because of the passivation of oxygen vacancies, the visible light photoconductivity of the hybrid is depleted, compared to pure ZnO. In order to overcome this reduction in photocurrent, a photoelectrode is fabricated by layer-by-layer (LBL) self-assembly of ZnO and reduced graphene oxide. The multilayer films are fabricated by the electrostatic LBL self-assembly technique using negatively charged poly(sodium 4-styrene sulfonate)-reduced graphene oxide (PSS-rGO) and positively charged polyacrylamide-ZnO (PAM-ZnO) as building blocks. The multilayer films fabricated by this technique will be highly interpenetrating; it will enhance the interaction between the ZnO and rGO perpendicular to the electrode surface. Upon illumination under bias voltage defect assisted excitation occurs in ZnO and the photogenerated charge carriers can transfer to graphene. The electron transferred to graphene sheets can recombine in two ways; either it can recombine with the holes in the valence band of ZnO in its bilayer or the ZnO in the next bilayer. This type of tunnelling of electrons from graphene to the successive bilayers will result in efficient charge transfer. This transfer and propagation of electron will enhance as the number of bilayers increases, which in turn improve the photocurrent of the multilayer films. Therefore this self-assembly technique is an effective approach to fabricate semiconductor-graphene films with excellent conductivity.
Reusable biocompatible interface for immobilization of materials on a solid support
Salamon, Zdzislaw; Schmidt, Richard A.; Tollin, Gordon; Macleod, H. Angus
1996-01-01
A method for the formation of a biocompatible film composed of a self-assembled bilayer membrane deposited on a planar surface. This bilayer membrane is capable of immobilizing materials to be analyzed in an environment very similar to their native state. Materials so immobilized may be subject to any of a number of analytical techniques.
Self-assembly of chlorophenols in water
Rogalska, Ewa; Rogalski, Marek; Gulik-Krzywicki, Tadeusz; Gulik, Annette; Chipot, Christophe
1999-01-01
In saturated solutions of some di- and trichlorophenols, structures with complex morphologies, consisting of thin, transparent sheets often coiling into helices and ultimately twisting into filaments, were observed under the optical microscope. Freeze-fracture electron microscopy, x-ray diffraction, phase diagrams, and molecular modeling were performed to elucidate the observed phenomena. Here, we present evidence that the chlorophenols studied, when interacting with water, self-assemble into bilayers. The fact that some chlorophenols form the same supramolecular structures as those described previously for structurally nonrelated surfactants sheds light on the mechanisms of self-assembly. PMID:10359753
High coverage fluid-phase floating lipid bilayers supported by ω-thiolipid self-assembled monolayers
Hughes, Arwel V.; Holt, Stephen A.; Daulton, Emma; Soliakov, Andrei; Charlton, Timothy R.; Roser, Steven J.; Lakey, Jeremy H.
2014-01-01
Large area lipid bilayers, on solid surfaces, are useful in physical studies of biological membranes. It is advantageous to minimize the interactions of these bilayers with the substrate and this can be achieved via the formation of a floating supported bilayer (FSB) upon either a surface bound phospholipid bilayer or monolayer. The FSB's independence is enabled by the continuous water layer (greater than 15 Å) that remains between the two. However, previous FSBs have had limited stability and low density. Here, we demonstrate by surface plasmon resonance and neutron reflectivity, the formation of a complete self-assembled monolayer (SAM) on gold surfaces by a synthetic phosphatidylcholine bearing a thiol group at the end of one fatty acyl chain. Furthermore, a very dense FSB (more than 96%) of saturated phosphatidylcholine can be formed on this SAM by sequential Langmuir–Blodgett and Langmuir–Schaefer procedures. Neutron reflectivity used both isotopic and magnetic contrast to enhance the accuracy of the data fits. This system offers the means to study transmembrane proteins, membrane potential effects (using the gold as an electrode) and even model bacterial outer membranes. Using unsaturated phosphatidylcholines, which have previously failed to form stable FSBs, we achieved a coverage of 73%. PMID:25030385
Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanne, A.; Movva, H. C. P.; Kang, S.
We investigate poly(methyl methacrylate) (PMMA) as a low thermal budget organic gate dielectric for graphene field effect-transistors (GFETs) based on a simple process flow. We show that high temperature baking steps above the glass transition temperature (∼130 °C) can leave a self-assembled, thin PMMA film on graphene, where we get a gate dielectric almost for “free” without additional atomic layer deposition type steps. Electrical characterization of GFETs with PMMA as a gate dielectric yields a dielectric constant of k = 3.0. GFETs with thinner PMMA dielectrics have a lower dielectric constant due to decreased polarization arising from neutralization of dipoles and charged carriersmore » as baking temperatures increase. The leakage through PMMA gate dielectric increases with decreasing dielectric thickness and increasing electric field. Unlike conventional high-k gate dielectrics, such low-k organic gate dielectrics are potentially attractive for devices such as the proposed Bilayer pseudoSpin Field-Effect Transistor or flexible high speed graphene electronics.« less
Arnould, Audrey; Perez, Adrian A; Gaillard, Cédric; Douliez, Jean-Paul; Cousin, Fabrice; Santiago, Liliana G; Zemb, Thomas; Anton, Marc; Fameau, Anne-Laure
2015-05-01
Salt-free catanionic systems based on fatty acids exhibit a broad polymorphism by simply tuning the molar ratio between the two components. For fatty acid combined with organic amino counter-ions, very few data are available on the phase behavior obtained as a function of the molar ratio between the counter-ion and the fatty acid. We investigated the choline hydroxide/myristic acid system by varying the molar ratio, R=n(choline hydroxide)/n(myristic acid), and the temperature. Myristic acid ionization state was determined by coupling pH, conductivity and infra-red spectroscopy measurements. Self-assemblies were characterized by small angle neutron scattering and microscopy experiments. Self-assembly thermal behavior was investigated by differential scanning calorimetry, wide angle X-ray scattering and nuclear magnetic resonance. For R<1, ionized and protonated myristic acid molecules coexisted leading to the formation of facetted self-assemblies and lamellar phases. The melting process between the gel and the fluid state of these bilayers induced a structural change from facetted or lamellar objects to spherical vesicles. For R>1, myristic acid molecules were ionized and formed spherical micelles. Our study highlights that both R and temperature are two key parameters to finely control the self-assembly structure formed by myristic acid in the presence of choline hydroxide. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Talham, Daniel R.; Adair, James H.
1999-01-01
There is a growing need for inorganic anisotropic particles in a variety of materials science applications. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. While considerable progress has been made toward developing an understanding of the synthesis of powders composed of monodispersed, spherical particles, these efforts have not been transferred to the synthesis of anisotropic nanoparticles. The major objective of the program is to develop a fundamental understanding of the growth of anisotropic particles at organic templates, with emphasis on the chemical and structural aspects of layered organic assemblies that contribute to the formation of anisotropic inorganic particles.
Lipid nanotechnologies for structural studies of membrane-associated proteins.
Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy
2014-11-01
We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.
Hematite/silica nanoparticle bilayers on mica: AFM and electrokinetic characterization.
Morga, Maria; Adamczyk, Zbigniew; Kosior, Dominik; Oćwieja, Magdalena
2018-06-06
Quantitative studies on self-assembled hematite/silica nanoparticle (NP) bilayers on mica were performed by applying scanning electron microscopy (SEM), atomic force microscopy (AFM), and streaming potential measurements. The coverage of the supporting hematite layers was adjusted by changing the bulk concentration of the suspension and the deposition time. The coverage was determined by direct enumeration of deposited particles from AFM images and SEM micrographs. Afterward, silica nanoparticle monolayers were assembled under diffusion-controlled transport. A unique functional relationship was derived connecting the silica coverage with the hematite precursor layer coverage. The formation of the hematite monolayer and the hematite/silica bilayer was also monitored in situ by streaming potential measurements. It was confirmed that the zeta potential of the bilayers was independent of the supporting layer coverage, exceeding 0.15. These measurements were theoretically interpreted in terms of the general electrokinetic model that allowed for deriving a formula for calculating nanoparticle coverage in the bilayers. Additionally, from desorption experiments, the interactions among hematite/silica particles in the bilayers were determined using DLVO theory. These results facilitate the development of a robust method of preparing nanoparticle bilayers with controlled properties, with potential applications in catalytic processes.
Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells
Chanson, Lea; Brownfield, Douglas; Garbe, James C.; Kuhn, Irene; Stampfer, Martha R.; Bissell, Mina J.; LaBarge, Mark A.
2011-01-01
Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells. PMID:21300877
Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanson, L.; Brownfield, D.; Garbe, J. C.
Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal humanmore » mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells.« less
Reusable biocompatible interface for immobilization of materials on a solid support
Salamon, Z.; Schmidt, R.A.; Tollin, G.; Macleod, H.A.
1996-05-28
A method is presented for the formation of a biocompatible film composed of a self-assembled bilayer membrane deposited on a planar surface. This bilayer membrane is capable of immobilizing materials to be analyzed in an environment very similar to their native state. Materials so immobilized may be subject to any of a number of analytical techniques. 3 figs.
Simple mechanisms of early life - simulation model on the origin of semi-cells.
Klein, Adrian; Bock, Martin; Alt, Wolfgang
2017-01-01
The development of first cellular structures played an important role in the early evolution of life. Early evolution of life probably took place on a molecular level in a reactive environment. The iron-sulfur theory postulates the formation of cell-like structures on catalytic surfaces. Experiments show that H 2 S together with FeS and other metallic centers drive auto-catalytic surface reactions, in which organic molecules such as pyruvic and amino acids occur. It is questionable which mechanisms are needed to form cell-like structures under these conditions. To address this question, we implemented a model system featuring the fundamentals of molecular dynamics: heat, attraction, repulsion and formation of covalent bonds. Our basic model exhibits a series of essential processes: self-organization of lipid micelles and bilayers, formation of fluid filled cavities, flux of molecules along membranes, transport of energized groups towards sinks and whole colonies of cell-like structures on a larger scale. The results demonstrate that only a few features are sufficient for discovering hitherto non described phenomena of self-assembly and dynamics of cell-like structures as candidates for early evolving proto-cells. Significance statement The quest for a possible origin of life continues to be one of the most fascinating problems in biology. In one theoretical scenario, early life originated from a solution of reactive chemicals in the ancient deep sea, similar to conditions as to be found in thermal vents. Experiments have shown that a variety of organic molecules, the building blocks of life, form under these conditions. Based on such experiments, the iron-sulfur theory postulates the growth of cell-like structures at certain catalytic surfaces. For an explanation and proof of such a process we have developed a computer model simulating molecular assembly of lipid bilayers and formation of semi-cell cavities. The results demonstrate the possibility of cell-like self-organization under appropriate physico-chemical conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Memory effects in annealed hybrid gold nanoparticles/block copolymer bilayers
2011-01-01
We report on the use of the self-organization process of sputtered gold nanoparticles on a self-assembled block copolymer film deposited by horizontal precipitation Langmuir-Blodgett (HP-LB) method. The morphology and the phase-separation of a film of poly-n-butylacrylate-block-polyacrylic acid (PnBuA-b-PAA) were studied at the nanometric scale by using atomic force microscopy (AFM) and Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS). The templating capability of the PnBuA-b-PAA phase-separated film was studied by sputtering gold nanoparticles (NPs), forming a film of nanometric thickness. The effect of the polymer chain mobility onto the organization of gold nanoparticle layer was assessed by heating the obtained hybrid PnBuA-b-PAA/Au NPs bilayer at T >Tg. The nanoparticles' distribution onto the different copolymer domains was found strongly affected by the annealing treatment, showing a peculiar memory effect, which modifies the AFM phase response of the Au NPs layer onto the polar domains, without affecting their surfacial composition. The effect is discussed in terms of the peculiar morphological features induced by enhanced mobility of polymer chains on the Au NPs layer. PMID:21711674
NASA Astrophysics Data System (ADS)
Patil, Avinash J.; Li, Mei; Mann, Stephen
2013-07-01
Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of ``inorganic molecular wrapping'' of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as ``armour-plated'' enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.
Patil, Avinash J; Li, Mei; Mann, Stephen
2013-08-21
Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of "inorganic molecular wrapping" of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as "armour-plated" enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.
Frkanec, Leo; Zinić, Mladen
2010-01-28
Bis(amino acid)- and bis(amino alcohol)oxalamide gelators represent the class of versatile gelators whose gelation ability is a consequence of strong and directional intermolecular hydrogen bonding provided by oxalamide units and lack of molecular symmetry due to the presence of two chiral centres. Bis(amino acid)oxalamides exhibit ambidextrous gelation properties, being capable to form gels with apolar and also highly polar solvent systems and tend to organise into bilayers or inverse bilayers in hydrogel or organic solvent gel assemblies, respectively. (1)H NMR and FTIR studies of gels revealed the importance of the equilibrium between the assembled network and smaller dissolved gelator assemblies. The organisation in gel assemblies deduced from spectroscopic structural studies are in certain cases closely related to organisations found in the crystal structures of selected gelators, confirming similar organisations in gel assemblies and in the solid state. The pure enantiomer/racemate gelation controversy is addressed and the evidence provided that rac-16 forms a stable toluene gel due to resolution into enantiomeric bilayers, which then interact giving gel fibres and a network of different morphology compared to its (S,S)-enantiomer gel. The TEM investigation of both gels confirmed distinctly different gel morphologies, which allowed the relationship between the stereochemical form of the gelator, the fibre and the network morphology and the network solvent immobilisation capacity to be proposed. Mixing of the constitutionally different bis(amino acid) and bis(amino alcohol)oxalamide gelators resulted in some cases in highly improved gelation efficiency denoted as synergic gelation effect (SGE), being highly dependent also on the stereochemistry of the component gelators. Examples of photo-induced gelation based on closely related bis(amino acid)-maleic acid amide and -fumaramide and stilbene derived oxalamides where gels form by irradiation of the solution of a non-gelling isomer and its photo-isomerisation into gelling isomer are provided, as well as examples of luminescent gels, gel-based fluoride sensors, LC-gels and nanoparticle-hydrogel composites.
Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu
2017-01-01
Abstract Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlOx), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers. PMID:28634499
Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu
2017-01-01
Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.
Crafting threads of diblock copolymer micelles via flow-enabled self-assembly.
Li, Bo; Han, Wei; Jiang, Beibei; Lin, Zhiqun
2014-03-25
Hierarchically assembled amphiphilic diblock copolymer micelles were exquisitely crafted over large areas by capitalizing on two concurrent self-assembling processes at different length scales, namely, the periodic threads composed of a monolayer or a bilayer of diblock copolymer micelles precisely positioned by flow-enabled self-assembly (FESA) on the microscopic scale and the self-assembly of amphiphilic diblock copolymer micelles into ordered arrays within an individual thread on the nanometer scale. A minimum spacing between two adjacent threads λmin was observed. A model was proposed to rationalize the relationship between the thread width and λmin. Such FESA of diblock copolymer micelles is remarkably controllable and easy to implement. It opens up possibilities for lithography-free positioning and patterning of diblock copolymer micelles for various applications in template fabrication of periodic inorganic nanostructures, nanoelectronics, optoelectronics, magnetic devices, and biotechnology.
Larsson, Marcus; Larsson, Kåre
2014-03-01
The existence of infinite periodic lipid bilayer structures in biological systems was first demonstrated in cell membrane assemblies. Such periodicity is only possible in symmetric bilayers, and their occurrence is discussed here in relation to the asymmetry of cell membranes in vivo. A periodic membrane conformation in the prolamellar body of plants corresponds to a dormant state without photosynthesis. A similar reversible formation of a dormant state has also been observed in the mitochondria of the amoeba Chaos. In these cases the energy production has become insufficient to maintain the membrane asymmetry. Formation of membranes that are symmetric over the bilayer is proposed to be a principal mechanism behind formation of cubic membrane systems. Another type of bicontinuous minimal surface structure is considered to form the alveolar lining of mammals at normal breathing conditions. The CLP surface corresponds to such a tetragonal surface phase. It is also a symmetric bilayer and in a state of zero energy expenditure. Structural alternatives of the bilayer conformation in this latter system are also discussed here. © 2013 Elsevier B.V. All rights reserved.
Assembly of RNA nanostructures on supported lipid bilayers
Dabkowska, Aleksandra P.; Michanek, Agnes; Jaeger, Luc; Rabe, Michael; Chworos, Arkadiusz; Höök, Fredrik; Nylander, Tommy; Sparr, Emma
2014-01-01
The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nanostructures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces. PMID:25417592
Versatile assembly of p-carboxylatocalix[4]arene-O-alkyl ethers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Stuart; Teat, Simon J.; Dalgarno, Scott J.
Crystallisation of lower-rim tetra-O-alkylated p-carboxylatocalix[4]arenes from pyridine results in the formation of both bi-layer and pillar type supramolecular motifs. Full alkylation at the calixarene lower rim has significant influence over the supramolecular self-assembly motif, including preclusion of pyridine guest molecules from the calixarene cavity in the solid state.
NASA Astrophysics Data System (ADS)
Zeng, Xianghui; de Groot, Anne Marit; Sijts, Alice J. A. M.; Broere, Femke; Oude Blenke, Erik; Colombo, Stefano; van Eden, Willem; Franzyk, Henrik; Nielsen, Hanne Mørck; Foged, Camilla
2015-11-01
Cationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine and homoarginine residues was shown to self-assemble with small interfering RNA (siRNA). The resulting well-defined nanocomplexes were coated with anionic lipids giving rise to net anionic liposomes. These complexes and the corresponding liposomes were optimized towards efficient gene silencing and low adverse effects. The optimal anionic liposomes mediated a high silencing effect, which was comparable to that of the control (cationic Lipofectamine 2000), and did not display any noticeable cytotoxicity and immunogenicity in vitro. In contrast, the corresponding nanocomplexes mediated a reduced silencing effect with a more narrow safety window. The surface coating with anionic lipid bilayers led to partial decomplexation of the siRNA-peptidomimetic nanocomplex core of the liposomes, which facilitated siRNA release. Additionally, the optimal anionic liposomes showed efficient intracellular uptake and endosomal escape. Therefore, these findings suggest that a more efficacious and safe formulation can be achieved by surface coating of the siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers.Cationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine and homoarginine residues was shown to self-assemble with small interfering RNA (siRNA). The resulting well-defined nanocomplexes were coated with anionic lipids giving rise to net anionic liposomes. These complexes and the corresponding liposomes were optimized towards efficient gene silencing and low adverse effects. The optimal anionic liposomes mediated a high silencing effect, which was comparable to that of the control (cationic Lipofectamine 2000), and did not display any noticeable cytotoxicity and immunogenicity in vitro. In contrast, the corresponding nanocomplexes mediated a reduced silencing effect with a more narrow safety window. The surface coating with anionic lipid bilayers led to partial decomplexation of the siRNA-peptidomimetic nanocomplex core of the liposomes, which facilitated siRNA release. Additionally, the optimal anionic liposomes showed efficient intracellular uptake and endosomal escape. Therefore, these findings suggest that a more efficacious and safe formulation can be achieved by surface coating of the siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers. Electronic supplementary information (ESI) available: Non-fusogenic liposomes; cytotoxicity of naked siRNA and the empty vector; immunogenicity; low-magnification images; DOPE/DPPC liposomes. See DOI: 10.1039/c5nr04807a
Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides
Ting, Christina L.; Frischknecht, Amalie L.; Stevens, Mark J.; ...
2014-06-19
Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the designmore » and utility of functional materials based on peptides.« less
NASA Astrophysics Data System (ADS)
Salamon, Z.; Hazzard, J. T.; Tollin, G.
1993-07-01
Direct cyclic voltage-current responses, produced in the absence of redox mediators, for two detergent-solubilized integral membrane proteins, spinach cytochrome f and beef heart cytochrome c oxidase, have been obtained at an optically transparent indium oxide electrode modified with a self-assembled lipid-bilayer membrane. The results indicate that both proteins interact with the lipid membrane so as to support quasi-reversible electron transfer redox reactions at the semiconductor electrode. The redox potentials that were obtained from analysis of the cyclic "voltammograms," 365 mV for cytochrome f and 250 and 380 mV for cytochrome c oxidase (vs. normal hydrogen electrode), compare quite well with the values reported by using conventional titration methods. The ability to obtain direct electrochemical measurements opens up another approach to the investigation of the properties of integral membrane redox proteins.
Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Yeongseon; Choi, Won Tae; Heller, William T.
Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less
Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins
Jang, Yeongseon; Choi, Won Tae; Heller, William T.; ...
2017-07-27
Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less
Wang, Dongrui; Wang, Xiaogong
2011-03-01
Graphene/azo polyelectrolyte multilayer films were fabricated through electrostatic layer-by-layer (LbL) self-assembly, and their performance as electrochemical capacitor electrode was investigated. Cationic azo polyelectrolyte (QP4VP-co-PCN) was synthesized through radical polymerization, postpolymerization azo coupling reaction, and quaternization. Negatively charged graphene nanosheets were prepared by a chemically modified method. The LbL films were obtained by alternately dipping a piece of the pretreated substrates in the QP4VP-co-PCN and nanosheet solutions. The processes were repeated until the films with required numbers of bilayers were obtained. The self-assembly and multilayer surface morphology were characterized by UV-vis spectroscopy, AFM, SEM, and TEM. The performance of the LbL films as electrochemical capacitor electrode was estimated using cyclic voltammetry. Results show that the graphene nanosheets are densely packed in the multilayers and form random graphene network. The azo polyelectrolyte cohesively interacts with the nanosheets in the multilayer structure, which prevents agglomeration of graphene nanosheets. The sheet resistance of the LbL films decreases with the increase of the layer numbers and reaches the stationary value of 1.0 × 10(6) Ω/square for the film with 15 bilayers. At a scanning rate of 50 mV/s, the LbL film with 9 bilayers shows a gravimetric specific capacitance of 49 F/g in 1.0 M Na(2)SO(4) solution. The LbL films developed in this work could be a promising type of the electrode materials for electric energy storage devices.
Assembly of RNA nanostructures on supported lipid bilayers
NASA Astrophysics Data System (ADS)
Dabkowska, Aleksandra P.; Michanek, Agnes; Jaeger, Luc; Rabe, Michael; Chworos, Arkadiusz; Höök, Fredrik; Nylander, Tommy; Sparr, Emma
2014-12-01
The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces.The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces. Electronic supplementary information (ESI) available: Table with sequences of tRNA units used in this study; schematic structures of the RNA polyhedron and its building blocks; gel electrophoresis characterization of the RNA polyhedron and squares; AFM characterization of RNA tectosquare; schematic structures of RNA-9 and RNA-10 and their association with lipid bilayers; QCM-D frequency and dissipation data (as function of time) for adsorption of RNA polyhedrons, RNA squares and RNA9-10 TIRF images of RNA with Gelstar after photobleaching with analysis; Correlation plot in change of shear viscosity for TS3 and TO3-4 models for the stoichiometry of TS; QCM-D dissipation data for the sequential experiment in Fig. 5a; QCM-D and for the assembly of building blocks at the bilayer scaffold at varying bulk concentrations; QCM-D of adsorption of TS3. See DOI: 10.1039/c4nr05968a
Beaudoin Cloutier, Chanel; Goyer, Benjamin; Perron, Cindy; Guignard, Rina; Larouche, Danielle; Moulin, Véronique J; Germain, Lucie; Gauvin, Robert; Auger, François A
2017-04-01
As time to final coverage is the essence for better survival outcome in severely burned patients, we have continuously strived to reduce the duration for the preparation of our bilayered self-assembled skin substitutes (SASS). These SASS produced in vitro by the self-assembly approach have a structure and functionality very similar to native skin. Recently, we have shown that a decellularized dermal matrix preproduced by the self-assembly approach could be used as a template to further obtain self-assembled skin substitute using a decellularized dermal template (SASS-DM) in vitro. Thus, the production period with patient cells was then reduced to about 1 month. Herein, preclinical animal experiments have been performed to confirm the integration and evolution of such a graft and compare the maturation of SASS and SASS-DM in vivo. Both tissues, reconstructed from adult or newborn cells, were grafted on athymic mice. Green fluorescent protein-transfected keratinocytes were also used to follow grafted tissues weekly for 6 weeks using an in vivo imaging system (IVIS). Cell architecture and differentiation were studied with histological and immunofluorescence analyses at each time point. Graft integration, macroscopic evolution, histological analyses, and expression of skin differentiation markers were similar between both skin substitutes reconstructed from either newborn or adult cells, and IVIS observations confirmed the efficient engraftment of SASS-DM. In conclusion, our in vivo graft experiments on a mouse model demonstrated that the SASS-DM had equivalent macroscopic, histological, and differentiation evolution over a 6-week period, when compared with the SASS. The tissue-engineered SASS-DM could improve clinical availability and advantageously shorten the time necessary for the definitive wound coverage of severely burned patients.
Structural Diversity of Arthropod Biophotonic Nanostructures Spans Amphiphilic Phase-Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saranathan, Vinod Kumar; Seago, Ainsley E.; Sandy, Alec
2015-05-04
Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, precise structural knowledge of many biophotonic nanostructures and the mechanisms controlling their development remain tentative, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multifunctional materials. Here, we use synchrotron small-angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 integumentary scales and setae from ~127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply periodicmore » bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered spongelike morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding lipid-bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.« less
NASA Astrophysics Data System (ADS)
La, Yunju; Park, Chiyoung; Shin, Tae Joo; Joo, Sang Hoon; Kang, Sebyung; Kim, Kyoung Taek
2014-06-01
Analogous to the complex membranes found in cellular organelles, such as the endoplasmic reticulum, the inverse cubic mesophases of lipids and their colloidal forms (cubosomes) possess internal networks of water channels arranged in crystalline order, which provide a unique nanospace for membrane-protein crystallization and guest encapsulation. Polymeric analogues of cubosomes formed by the direct self-assembly of block copolymers in solution could provide new polymeric mesoporous materials with a three-dimensionally organized internal maze of large water channels. Here we report the self-assembly of amphiphilic dendritic-linear block copolymers into polymer cubosomes in aqueous solution. The presence of precisely defined bulky dendritic blocks drives the block copolymers to form spontaneously highly curved bilayers in aqueous solution. This results in the formation of colloidal inverse bicontinuous cubic mesophases. The internal networks of water channels provide a high surface area with tunable surface functional groups that can serve as anchoring points for large guests such as proteins and enzymes.
Silica metal-oxide vesicles catalyze comprehensive prebiotic chemistry.
Bizzarri, Bruno Mattia; Botta, Lorenzo; Pérez-Valverde, Maritza Iveth; Saladino, Raffaele; Di Mauro, Ernesto; Garcia Ruiz, Juan Manuel
2018-03-30
It has recently been demonstrated that mineral self-assembled structures catalyzing prebiotic chemical reactions may form in natural waters derived from serpentinization, a geological process widespread in the early stages of Earth-like planets. We have synthesized self-assembled membranes by mixing microdrops of metal solutions with alkaline silicate solutions in the presence of formamide (NH2CHO), a single carbon molecule, at 80ºC. We found that these bilayer membranes, made of amorphous silica and metal oxide-hydroxide nanocrystals, catalyze the condensation of formamide, yielding the four nucleobases of RNA, three aminoacids and several carboxylic acids in a single pot experiment. Besides manganese, iron and magnesium, two abundant elements in the earliest Earth crust that are key in serpentinization reactions, are enough to produce all these biochemical compounds. These results suggest that the transition from inorganic geochemistry to prebiotic organic chemistry is common on a universal scale and, most probably, earlier than ever thought for our planet. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
de Gracia Lux, Caroline; Gallani, Jean-Louis; Waton, Gilles; Krafft, Marie Pierre
2010-06-25
Understanding and controlling the molecular organization of amphiphilic molecules at interfaces is essential for materials and biological sciences. When spread on water, the model amphiphiles constituted by C(n)F(2n+1)C(m)H(2m+1) (FnHm) diblocks spontaneously self-assemble into surface hemimicelles. Therefore, compression of monolayers of FnHm diblocks is actually a compression of nanometric objects. Langmuir films of F8H16, F8H18, F8H20, and F10H16 can actually be compressed far beyond the "collapse" of their monolayers at approximately 30 A(2). For molecular areas A between 30 and 10 A(2), a partially reversible, 2D/3D transition occurs between a monolayer of surface micelles and a multilayer that coexist on a large plateau. For A<10 A(2), surface pressure increases again, reaching up to approximately 48 mN m(-1) before the film eventually collapses. Brewster angle microscopy and AFM indicate a several-fold increase in film thickness when scanning through the 2D/3D coexistence plateau. Compression beyond the plateau leads to a further increase in film thickness and, eventually, to film disruption. Reversibility was assessed by using compression-expansion cycles. AFM of F8H20 films shows that the initial monolayer of micelles is progressively covered by one (and eventually two) bilayers, which leads to a hitherto unknown organized composite arrangement. Compression of films of the more rigid F10H16 results in crystalline-like inflorescences. For both diblocks, a hexagonal array of surface micelles is consistently seen, even when the 3D structures eventually disrupt, which means that this monolayer persists throughout the compression experiments. Two examples of pressure-driven transformations of films of self-assembled objects are thus provided. These observations further illustrate the powerful self-assembling capacity of perfluoroalkyl chains.
Geist, Brian; Spillman, William B; Claus, Richard O
2005-10-20
Some laser applications produce high power densities that can be dangerous to equipment and operators. We have fabricated thin-film coatings by using molecular electrostatic self-assembly to create a spectrally selective absorbing coating that is able to withstand thermal fluctuations from -20 degrees C to 120 degrees C. We made the thin-film coatings by alternating deposition of an organic dye and gold colloidal nanoparticles onto glass substrates. Nile Blue A perchlorate, with a maximum absorbance slightly above 632 nm, was chosen as the organic dye. Strong coupling between the dye molecules and the gold nanoparticles provides a redshift that increases as the film's thickness is increased. The incorporation of the gold colloidal nanoparticles also decreases the resistivity of the film. The resistivity of the film was measured with a four-point probe and found to be approximately 10 omega/cm for the two samples measured. Atomic-force microscopy was used to show that film thickness increased 2.4 nm per bilayer. The optical properties of the film were measured at the end of every 5 thermal cycles from -20 degrees C to 120 degrees C, and negligible degradation was observed after 30 cycles.
NASA Astrophysics Data System (ADS)
Chou, George; Vaughn, Mark; Cheng, K.
2011-10-01
Multicomponent lipid bilayers represent an important model system for studying cell membranes. At present, an ordered multicomponent phospholipid/cholesterol bilayer system involving charged lipid is still not available. Using a lipid superlattice (SL) model, a 13 x 15 x 15 nm^3 ternary phosphatidylcholine/phosphatidylserine/cholesterol bilayer system in water with simultaneous headgroup SL and acyl chain SL at different depths, or epitaxial SL, of the bilayer has been designed with atomistic detail. The arrangements of this epitaxial SL system were optimized by only two molecular parameters, lattice space and rotational angle of the lipids. Using atomistic MD simulations, we demonstrated the stability of the ordered structures for more than 100 ns. A positional restrained system was also used as a control. This system will provide new insights into understanding the nanodomain structures of cell membranes at the molecular level.
Arai, Noriyoshi; Yasuoka, Kenji; Zeng, Xiao Cheng
2016-08-23
A vesicle in a cell is an enclosed structure in which the interior fluid is encompassed by a lipid bilayer. Synthetic vesicles are known as the liposomes. Liposomes with a single phospholipid bilayer are called unilamellar liposomes; otherwise, they are called multilamellar liposomes or onion-like liposomes (vesicles). One prototype synthetic onion-like vesicle, namely, onion-like dendrimersomes, have been recently produced via the self-assembly of amphiphilic Janus dendrimers (Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 1162). Herein, we show computer simulation evidence of another type of onion-like vesicle, namely, onion-like oligomersomes, via the self-assembly of amphiphilic Janus oligomers in water. Specifically, we investigate the minimum-sized oligomers (or minimalist model) that can give rise to the onion-like oligomersomes as well as the composition-dependent phase diagrams. Insights into the formation condition and formation process of the onion-like oligomersomes are obtained. We demonstrate that the discharge of the in-vesicle water is through the remarkable "peeling-one-onion-layer-at-a-time" fashion, a feature that can be utilized for a clinical dosing regimen. The ability to control the formation of onion-like oligomersomes by design can be exploited for applications in drug and gene delivery.
NASA Astrophysics Data System (ADS)
Xu, Weixin; Wei, Guanghong; Su, Haibin; Nordenskiöld, Lars; Mu, Yuguang
2011-11-01
Disruption of the cellular membrane by the amyloidogenic peptide, islet amyloid polypeptide (IAPP), has been considered as one of the mechanisms of β-cell death during type 2 diabetes. The N-terminal region (residues 1-19) of the human version of IAPP is suggested to be primarily responsible for the membrane-disrupting effect of the full-length hIAPP peptide. However, the detailed assembly mode of hIAPP1-19 with membrane remains unclear. To gain insight into the interactions of hIAPP1-19 oligomer with the model membrane, we have employed coarse-grained molecular dynamics self-assembly simulations to study the aggregation of hIAPP1-19 fragments in the binary lipid made of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and anionic dipalmitoylphosphatidylserine (DPPS) in the presence and absence of different levels of cholesterol content. The membrane-destabilizing effect of hIAPP1-19 is found to be modulated by the presence of cholesterol. In the absence of cholesterol, hIAPP1-19 aggregates prefer to locate inside the bilayer, forming pore-like assemblies. While in the presence of cholesterol molecules, the lipid bilayer becomes more ordered and stiff, and the hIAPP1-19 aggregates are dominantly positioned at the bilayer-water interface. The action of cholesterol may suggest a possible way to maintain the membrane integrity by small molecule interference.
Lipid oxidation in bilayer liposomes induced by radicals from the surrounding water phases
NASA Astrophysics Data System (ADS)
Sprinz, H.; Brede, O.
1996-03-01
Some features of the radiation chemistry of organized assemblies were studied in aqueous dispersions of small unilamellar vesicles of egg yolk lecithin. The kinetics for the reaction of OH radicals with the bilayer was determined by pulse radiolysis. The conversion of OH radicals into N 3 radicals results in a remarkable reduction of the radiolysis of the hydrophylic part of the phospholipid and in an enhanced degradation of the most radiosensitive group of polyunsaturated fatty acid residues. The transverse proton relaxation of the choline head group is very sensitive to the radical attack on the bilayer.
Self-assembly of amphiphilic molecules in organic liquids
NASA Astrophysics Data System (ADS)
Tung, Shih-Huang
2007-12-01
Amphiphilic molecules are well-known for their ability to self-assemble in water to form structures such as micelles and vesicles. In comparison, much less is known about amphiphilic self-assembly in nonpolar organic liquids. Such "reverse" self assembly can produce many of the counterparts to structures found in water. In this dissertation, we focus on the formation and dynamics of such reverse structures. We seek to obtain fundamental insight into the driving forces for reverse self-assembly processes. Three specific types of reverse structures are studied: (a) reverse wormlike micelles, i.e., long, flexible micellar chains; (b) reverse vesicles, i.e., hollow containers enclosed by reverse bilayers; and (c) organogel networks. While our focus is on the fundamentals, we note that reverse structures can be useful in a variety of applications ranging from drug delivery, controlled release, hosts for enzymatic reactions, and templates for nanomaterials synthesis. In the first part of this study, we describe a new route for forming reverse wormlike micelles in nonpolar organic liquids. This route involves the addition of trace amounts of a bile salt to solutions of the phospholipid, lecithin. We show that bile salts, due to their unique "facially amphiphilic" structure, can promote the aggregation of lecithin molecules into these reverse micellar chains. The resulting samples are viscoelastic and show interesting rheological properties. Unusual trends are seen in the temperature dependence of their rheology, which indicates the importance of hydrogen-bonding interactions in the formation of these micelles. Another remarkable feature of their rheology is the presence of strain-stiffening, where the material becomes stiffer at high deformations. Strain-stiffening has been seen before for elastic gels of biopolymers; here, we demonstrate the same properties for viscoelastic micellar solutions. The second reverse aggregate we deal with is the reverse vesicle. We present a new route for forming stable unilamellar reverse vesicles, and this involves mixing short- and long-chain lipids (lecithins) with a trace of sodium chloride. The ratio of the short to long-chain lipid controls the type and size of self-assembled structure formed, and as this ratio is increased, a transition from reverse micelles to vesicles occurs. The structural changes can be explained in terms of molecular geometry, with the sodium chloride acting as a "glue" in binding lipid headgroups together through electrostatic interactions. The final part of this dissertation focuses on organogels. The two-tailed anionic surfactant, AOT, is well-known to form spherical reverse micelles in organic solvents. We have found that trace amounts (e.g., less than 1 mM) of the dihydroxy bile salt, sodium deoxycholate (SDC) can transform these dilute micellar solutions into self-supporting, transparent organogels. The structure and rheology of these organogels is reminiscent of the self-assembled networks formed by proteins such as actin in water. The organogels are based on networks of long, rigid, cylindrical filaments, with SDC molecules stacked together in the filament core.
Cargo self-assembly rescues affinity of cell-penetrating peptides to lipid membranes
NASA Astrophysics Data System (ADS)
Weinberger, Andreas; Walter, Vivien; MacEwan, Sarah R.; Schmatko, Tatiana; Muller, Pierre; Schroder, André P.; Chilkoti, Ashutosh; Marques, Carlos M.
2017-03-01
Although cationic cell-penetrating peptides (CPPs) are able to bind to cell membranes, thus promoting cell internalization by active pathways, attachment of cargo molecules to CPPs invariably reduces their cellular uptake. We show here that CPP binding to lipid bilayers, a simple model of the cell membrane, can be recovered by designing cargo molecules that self-assemble into spherical micelles and increase the local interfacial density of CPP on the surface of the cargo. Experiments performed on model giant unilamellar vesicles under a confocal laser scanning microscope show that a family of thermally responsive elastin-like polypeptides that exhibit temperature-triggered micellization can promote temperature triggered attachment of the micelles to membranes, thus rescuing by self-assembly the cargo-induced loss of the CPP affinity to bio-membranes.
Diamanti, Eleftheria; Gregurec, Danijela; Rodríguez-Presa, María José; Gervasi, Claudio A; Azzaroni, Omar; Moya, Sergio E
2016-06-28
Supported membranes on top of polymer cushions are interesting models of biomembranes as cell membranes are supported on a polymer network of proteins and sugars. In this work lipid vesicles formed by a mixture of 30% 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 70% 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) are assembled on top of a polyelectrolyte multilayer (PEM) cushion of poly(allylamine hydrochloride) (PAH) and poly(styrene sodium sulfonate) (PSS). The assembly results in the formation of a bilayer on top of the PEM as proven by means of the quartz crystal microbalance with dissipation technique (QCM-D) and by cryo-transmission electron microscopy (cryo-TEM). The electrical properties of the bilayer are studied by electrochemical impedance spectroscopy (EIS). The bilayer supported on the PEMs shows a high resistance, on the order of 10(7) Ω cm(2), which is indicative of a continuous, dense bilayer. Such resistance is comparable with the resistance of black lipid membranes. This is the first time that such values are obtained for lipid bilayers supported on PEMs. The assembly of polyelectrolytes on top of a lipid bilayer decreases the resistance of the bilayer up to 2 orders of magnitude. The assembly of the polyelectrolytes on the lipids induces defects or pores in the bilayer which in turn prompts a decrease in the measured resistance.
Membrane on a Chip: A Functional Tethered Lipid Bilayer Membrane on Silicon Oxide Surfaces
Atanasov, Vladimir; Knorr, Nikolaus; Duran, Randolph S.; Ingebrandt, Sven; Offenhäusser, Andreas; Knoll, Wolfgang; Köper, Ingo
2005-01-01
Tethered membranes have been proven during recent years to be a powerful and flexible biomimetic platform. We reported in a previous article on the design of a new architecture based on the self-assembly of a thiolipid on ultrasmooth gold substrates, which shows extremely good electrical sealing properties as well as functionality of a bilayer membrane. Here, we describe the synthesis of lipids for a more modular design and the adaptation of the linker part to silane chemistry. We were able to form a functional tethered bilayer lipid membrane with good electrical sealing properties covering a silicon oxide surface. We demonstrate the functional incorporation of the ion carrier valinomycin and of the ion channel gramicidin. PMID:16127170
NASA Astrophysics Data System (ADS)
Chen, Zhongbi; Krishnaswamy, Sridhar
2014-03-01
In earlier work, we have demonstrated an assisted self-assembly fabrication method for unidirectional submicron patterns using pre-programmed shape memory polymers (SMP) as the substrate in an organic/inorganic bilayer structure. In this paper, we propose a complete bottom-up method for fabrication of uniaxial wrinkles whose wavelength is below 300 nm. The method starts with using the aforementioned self-assembled bi-layer wrinkled surface as the template to make a replica of surface wrinkles on a PDMS layer which is spin-coated on a pre-programmed SMP substrate. When the shape recovery of the substrate is triggered by heating it to its transition temperature, the substrate has been programmed in such a way that it shrinks uniaxially to return to its permanent shape. Consequently, the wrinkle wavelength on PDMS reduces accordingly. A subsequent contact molding process is carried out on the PDMS layer spin-coated on another pre-programmed SMP substrate, but using the wrinkled PDMS surface obtained in the previous step as the master. By activating the shape recovery of the substrate, the wrinkle wavelength is further reduced a second time in a similar fashion. Our experiments showed that the starting wavelength of 640 nm decreased to 290 nm after two cycles of recursive molding. We discuss the advantages and limitations of our recursive molding approach compared to the prevalent top-down fabrication methods represented by lithography. The present study is expected to o er a simple and cost-e ective fabrication method of nano-scale uniaxial wrinkle patterns with the potential for large-scale mass-production.
Morrow, Brian H.; Koenig, Peter H.; Shen, Jana K.
2014-01-01
Recent interest in the development of surfactant-based nano delivery systems targeting tumor sites has sparked our curiosity to understand the detailed mechanism of the self-assembly and phase transitions of pH-sensitive surfactants. Towards this goal we applied a state-of-the-art simulation technique, continuous constant pH molecular dynamics (CpHMD) with the hybrid-solvent scheme and pH-based replica-exchange protocol, to study de novo self-assembly of 30 and 40 lauric acids, a simple model titratable surfactant. We observed the formation of a gel-state bilayer at low and intermediate pH and a spherical micelle at high pH, with the phase transition starting at 20–30% ionization and completing at 50%. The degree of cooperativity for the transition increases from the 30-mer to the 40-mer. The calculated apparent or bulk pKa value is 7.0 for the 30-mer and 7.5 for the 40-mer. Congruent with experiment, these data demonstrate that CpHMD is capable of accurately modeling large conformational transitions of surfactant systems while allowing simultaneous proton titration of constituent molecules. We suggest that CpHMD simulations may become a useful tool to aid in the design and development of pH-sensitive nanocarriers for a variety of biomedical and technological applications. PMID:24215478
Photogeneration of Charge Carriers in Bilayer Assemblies of Conjugated Rigid-Rod Polymers
1994-07-08
photoinduced electron transfer and exciplex formation at the bilayer interface. Thus photocarrier generation on photoexcitation of the conjugated rigid...rod polymers in the bilayer occurs by photoinduced electron transfer, forming intermolecular exciplexes which dissociate efficiently in electric field...photogeneration, conjugated rigid-rod polymers, is. MACI COD bilayer assemblies, electron transfer, exciplexes . 11. SEOJUTY CLASUICA 10. 51(11MIE CLASSIMIAVION
NASA Technical Reports Server (NTRS)
Talham, Daniel R.; Adair, James H.
2005-01-01
Materials with directional properties are opening new horizons in a variety of applications including chemistry, electronics, and optics. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. The new applications and the need for model particles in scientific investigations are rapidly out-distancing the ability to synthesize anisotropic particles with specific chemistries and narrowly distributed physical characteristics (e.g. size distribution, shape, and aspect ratio).
Superhydrogels of nanotubes capable of capturing heavy-metal ions.
Song, Shasha; Wang, Haiqiao; Song, Aixin; Hao, Jingcheng
2014-01-01
Self-assembly regulated by hydrogen bonds was successfully achieved in the system of lithocholic acid (LCA) mixed with three organic amines, ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA), in aqueous solutions. The mixtures of DEA/LCA exhibit supergelation capability and the hydrogels consist of plenty of network nanotubes with uniform diameters of about 60 nm determined by cryogenic TEM. Interestingly, the sample with the same concentration in a system of EA and LCA is a birefringent solution, in which spherical vesicles and can be transformed into nanotubes as the amount of LCA increases. The formation of hydrogels could be driven by the delicate balance of diverse noncovalent interactions, including electrostatic interactions, hydrophobic interactions, steric effects, van der Waals forces, and mainly hydrogen bonds. The mechanism of self-assembly from spherical bilayer vesicles into nanotubes was proposed. The dried hydrogels with nanotubes were explored to exhibit the excellent capability for capturing heavy-metal ions, for example, Cu(2+), Co(2+), Ni(2+), Pb(2+), and Hg(2+). The superhydrogels of nanotubes from the self-assembly of low-molecular-weight gelators mainly regulated by hydrogen bonds used for the removal of heavy-metal ions is simple, green, and high efficiency, and provide a strategic approach to removing heavy-metal ions from industrial sewage. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhou, Xinjian; Moran-Mirabal, Jose Manuel; Craighead, Harold; McEuen, Paul
2006-03-01
We have formed supported lipid bilayers (SLBs) by small unilamellar vesicle fusion on substrates containing single-walled carbon nanotube field-effect transistors (SWNT-FETs). We are able to detect the self-assembly of SLBs electrically with SWNT-FETs since their threshold voltages are shifted by this event. The SLB fully covers the NT surface and lipid molecules can diffuse freely in the bilayer surface across the NT. To study the interactions of important biological entities with receptors imbedded within the membrane, we have also integrated a membrane protein, GT1b ganglioside, in the bilayer. While bare gangliosides can diffuse freely across the NT, interestingly the NT acts as a diffusion barrier for the gangliosides when they are bound with tetanus toxin. This experiment opens the possibility of using SWNT-FETs as biosensors for label-free detection.
Polyunsaturated Fatty Acids in Lipid Bilayers and Tubules
NASA Astrophysics Data System (ADS)
Hirst, Linda S.; Yuan, Jing; Pramudya, Yohannes; Nguyen, Lam T.
2007-03-01
Omega-3 polyunsaturated fatty acids (PUFAs) are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, typical molecules include DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) which have been the focus of considerable attention in recent years. We are interested in the phase behavior of these molecules in the lipid bilayer. The addition of lipid molecules with polyunsaturated chains has a clear effect on the fluidity and curvature of the membrane and we investigate the effects the addition of polyunsaturated lipids on bilayer structure and tubule formation. Self-assembled cylindrical lipid tubules have attracted considerable attention because of their interesting structures and potential technological applications. Using x-ray diffraction techniques, Atomic Force Microscopy and confocal fluorescence imaging, both symmetric and mixed chain lipids were incorporated into model membranes and the effects on bilayer structure and tubule formation investigated.
Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly
NASA Astrophysics Data System (ADS)
Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min
2017-03-01
The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena.
Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly
Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min
2017-01-01
The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena. PMID:28266537
Investigating the interfacial dynamics of thin films
NASA Astrophysics Data System (ADS)
Rosenbaum, Aaron W.
This thesis probes the interfacial dynamics and associated phenomena of thin films. Surface specific tools were used to study the self-assembly of alkanethiols, the mono- and bilayer dynamics of SF6, and the surface motion of poly(methyl methacrylate). Non-pertubative helium atom scattering was the principal technique used to investigate these systems. A variety of other complementary tools, including scanning tunneling microscopy, electron diffraction, Auger spectroscopy, atomic force microscopy, and ellipsometry were used in tandem with the neutral atom scattering studies. Controlling the spontaneous assembly of alkanethiols on Au(111) requires a better fundamental understanding of the adsorbate-adsorbate and substrate-adsorbate interactions. Our characterization focused on two key components, the surface structure and adsorbate vibrations. The study indicates that the Au(111) reconstruction plays a larger role than anticipated in the low-density phase of alkanethiol monolayers. A new structure is proposed for the 1-decanethiol monolayer that impacts the low-energy vibrational mode. Varying the alkane chain lengths imparts insight into the assembly process via characterization of a dispersionless phonon mode. Studies of SF6 physisorbed on Au(111) bridge surface research on rare gas adsorbates with complicated dynamical organic thin films. Mono- and bilayer coverages of SF6/Au(111) were studied at cryogenic temperatures. Our experiments probed the surface properties of SF6 yielding insights into substrate and coverage effects. The study discovered a dispersionless Einstein oscillation with multiple harmonic overtones. A second layer of SF6 softened the mode, but did not show any indications of bulk or cooperative interactions. The vibrational properties of SF 6 showed both striking similarities and differences when compared with physisorbed rare gases. Lastly, this thesis will discuss studies of thin film poly(methyl methacrylate) on Si. The non-pertubative and surface specific nature of helium atom scattering allows for a deft study of the relationship between surface motion and the glass transition temperature. An added parameter in this complex organic system is the film thickness. The confinement effects and enhanced surface displacement were examined as a function of the thermal attenuation of both inelastic and elastic helium atom scattering. The Debye-Waller factor for these thin films of PMMA is similar to the low-density alkanethiol self-assembled monolayers discussed earlier.
Structure and dynamics in self-organized C60 fullerenes.
Patnaik, Archita
2007-01-01
This manuscript on 'structure and dynamics in self-organized C60 fullerenes' has three sections dealing with: (A) pristine C60 aggregate structure and geometry in solvents of varying dielectric constant. Here, using positronium (Ps) as a fundamental probe which maps changes in the local electron density of the microenvironment, the onset concentration for stable C60 aggregate formation and its phase behavior is deduced from the specific interactions of the Ps atom with the surrounding. (B) A novel methanofullerene dyad, based on a hydrophobic (acceptor C60 moiety)-hydrophilic (bridge with benzene and ester functionalities)-hydrophobic (donor didodecyloxybenzene) network is chosen for investigation of characteristic self-assembly it undergoes leading to supramolecular aggregates. The pi-electronic amphiphile, necessitating a critical dielectric constant epsilon > or = 30 in binary THF-water mixtures, dictated the formation of bilayer vesicles as precursors for spherical fractal aggregates upon complete dyad extraction into a more polar water phase. (C) While the molecular orientation is dependent on the packing density, the ordering of the molecular arrangement, indispensable for self-assembly depends on the balance between the structures demanded by inter-molecular and molecule-substrate interactions. The molecular orientation in a monolayer affects the orientation in a multilayer, formed on the monolayer, suggesting the possibility of the latter to act as a template for controlling the structure of the three dimensionally grown self-assembled molecular aggregation. A systematic study on the electronic structure and orientation associated with C60 functionalized aminothiol self-assembled monolayers on Au(111) surface is presented using surface sensitive Ultra-Violet Photoelectron Spectroscopy (UPS) and C-K edge Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. The results revealed drastic modifications to d-band structure of Au(111) and the electronic structure was found sensitive towards the S-Au interface and the C60 end functional moiety with formation of localized sigma-(S-Au) and sigma(N-C) bonds, respectively. Upon binding C60 to the amine-terminated alkanethiol SAM, a drastically reduced HOMO-LUMO gap of 2.7 eV as compared to a large electronic gap of approximately 8 eV in alkanethiols enables the SAM to be a potential electron transport medium.
2016-01-01
Self-assembling amphiphilic designer peptides have been successfully applied as nanomaterials in biomedical applications. Understanding molecular interactions at the peptide–membrane interface is crucial, since interactions at this site often determine (in)compatibility. The present study aims to elucidate how model membrane systems of different complexity (in particular single-component phospholipid bilayers and lipoproteins) respond to the presence of amphiphilic designer peptides. We focused on two short anionic peptides, V4WD2 and A6YD, which are structurally similar but showed a different self-assembly behavior. A6YD self-assembled into high aspect ratio nanofibers at low peptide concentrations, as evidenced by synchrotron small-angle X-ray scattering and electron microscopy. These supramolecular assemblies coexisted with membranes without remarkable interference. In contrast, V4WD2 formed only loosely associated assemblies over a large concentration regime, and the peptide promoted concentration-dependent disorder on the membrane arrangement. Perturbation effects were observed on both membrane systems although most likely induced by different modes of action. These results suggest that membrane activity critically depends on the peptide’s inherent ability to form highly cohesive supramolecular structures. PMID:27741400
NASA Astrophysics Data System (ADS)
Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin
2014-08-01
Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.
Engineering plant membranes using droplet interface bilayers.
Barlow, N E; Smpokou, E; Friddin, M S; Macey, R; Gould, I R; Turnbull, C; Flemming, A J; Brooks, N J; Ces, O; Barter, L M C
2017-03-01
Droplet interface bilayers (DIBs) have become widely recognised as a robust platform for constructing model membranes and are emerging as a key technology for the bottom-up assembly of synthetic cell-like and tissue-like structures. DIBs are formed when lipid-monolayer coated water droplets are brought together inside a well of oil, which is excluded from the interface as the DIB forms. The unique features of the system, compared to traditional approaches (e.g., supported lipid bilayers, black lipid membranes, and liposomes), is the ability to engineer multi-layered bilayer networks by connecting multiple droplets together in 3D, and the capability to impart bilayer asymmetry freely within these droplet architectures by supplying droplets with different lipids. Yet despite these achievements, one potential limitation of the technology is that DIBs formed from biologically relevant components have not been well studied. This could limit the reach of the platform to biological systems where bilayer composition and asymmetry are understood to play a key role. Herein, we address this issue by reporting the assembly of asymmetric DIBs designed to replicate the plasma membrane compositions of three different plant species; Arabidopsis thaliana , tobacco, and oats, by engineering vesicles with different amounts of plant phospholipids, sterols and cerebrosides for the first time. We show that vesicles made from our plant lipid formulations are stable and can be used to assemble asymmetric plant DIBs. We verify this using a bilayer permeation assay, from which we extract values for absolute effective bilayer permeation and bilayer stability. Our results confirm that stable DIBs can be assembled from our plant membrane mimics and could lead to new approaches for assembling model systems to study membrane translocation and to screen new agrochemicals in plants.
Measuring excess free energies of self-assembled membrane structures.
Norizoe, Yuki; Daoulas, Kostas Ch; Müller, Marcus
2010-01-01
Using computer simulation of a solvent-free, coarse-grained model for amphiphilic membranes, we study the excess free energy of hourglass-shaped connections (i.e., stalks) between two apposed bilayer membranes. In order to calculate the free energy by simulation in the canonical ensemble, we reversibly transfer two apposed bilayers into a configuration with a stalk in three steps. First, we gradually replace the intermolecular interactions by an external, ordering field. The latter is chosen such that the structure of the non-interacting system in this field closely resembles the structure of the original, interacting system in the absence of the external field. The absence of structural changes along this path suggests that it is reversible; a fact which is confirmed by expanded-ensemble simulations. Second, the external, ordering field is changed as to transform the non-interacting system from the apposed bilayer structure to two-bilayers connected by a stalk. The final external field is chosen such that the structure of the non-interacting system resembles the structure of the stalk in the interacting system without a field. On the third branch of the transformation path, we reversibly replace the external, ordering field by non-bonded interactions. Using expanded-ensemble techniques, the free energy change along this reversible path can be obtained with an accuracy of 10(-3)k(B)T per molecule in the n VT-ensemble. Calculating the chemical potential, we obtain the free energy of a stalk in the grandcanonical ensemble, and employing semi-grandcanonical techniques, we calculate the change of the excess free energy upon altering the molecular architecture. This computational strategy can be applied to compute the free energy of self-assembled phases in lipid and copolymer systems, and the excess free energy of defects or interfaces.
Investigation of Porphyrin and Lipid Supramolecular Assemblies for Cancer Imaging and Therapy
NASA Astrophysics Data System (ADS)
Ng, Kenneth Ka-Seng
Aerobic life on earth is made possible through the functions of the porphyrin. These colorful and ubiquitous chromophores are efficient at concentrating and converting sunlight into chemical energetic potential which sustain biological life. Humans have had a longstanding fascination with these molecules, especially for their applications in photodynamic therapy. The photophysical properties of porphyrins are highly influenced by their surrounding environment. Intermolecular interactions between these pigments can lead to excited state quenching, energy transfer and large changes to their absorption and fluorescence spectra. This thesis is focused on utilizing molecular self-assembly strategies to develop nanoscale porphyrin and phospholipid structures. The rationale being that intermolecular interactions between porphyrins in these nanostructures can induce changes which can be exploited in novel biomedical imaging and therapeutic applications. Four lipid-based structural platforms are studied including: nanoemulsions, bilayer discs and nanovesicles. In Chapter 1, I provide a background on the photophysics of porphyrins and the effect of intermolecular porphyrin interactions on photophysical properties. I also discuss phospholipids and their self-assembly process. Lastly I review current biomedical photonics techniques and discuss how these strategies can be used in conjugation with porphyrin and lipid supramolecular assemblies. In Chapter 2, I investigate the influence that loading a novel bacteriochlorin photosensitizer into a protein-stabilized lipid emulsion has on its spectral properties. I discovered that while the dye can be incorporated into the lipid emulsion, no changes were observed in its spectral properties. In Chapter 3, an amphipathic alpha-helical protein is used to stabilize and organize porphyrin-lipid molecules into bilayer discs. Close packing between porphyrin molecules causes quenching, which can be reversed by structural degradation of the nanoparticle. This enables application as an activatable photodynamic therapy agent. In Chapter 4, energy transfer between porphyrin-lipid dyes in porphysome nanovesicles is explored as a way to track the structural fate of the nanovesicle in vivo. I successfully demonstrate monitoring of the porphysome structure in the tumor of xenografts mice. Lastly, in Chapter 5, coherent coupling between ordered porphyrin-lipids in a temperature sensitive phospholipid membrane is explored as a photoacoustic-based nanosensor for temperature threshold sensing.
NASA Astrophysics Data System (ADS)
Wilhelmina de Groot, G.; Demarche, Sophie; Santonicola, M. Gabriella; Tiefenauer, Louis; Vancso, G. Julius
2014-01-01
Nanopores in arrays on silicon chips are functionalized with pH-responsive poly(methacrylic acid) (PMAA) brushes and used as supports for pore-spanning lipid bilayers with integrated membrane proteins. Robust platforms are created by the covalent grafting of polymer brushes using surface-initiated atom transfer radical polymerization (ATRP), resulting in sensor chips that can be successfully reused over several assays. His-tagged proteins are selectively and reversibly bound to the nitrilotriacetic acid (NTA) functionalization of the PMAA brush, and consequently lipid bilayer membranes are formed. The enhanced membrane resistance as determined by electrochemical impedance spectroscopy and free diffusion of dyed lipids observed as fluorescence recovery after photobleaching confirmed the presence of lipid bilayers. Immobilization of the His-tagged membrane proteins on the NTA-modified PMAA brush near the pore edges is characterized by fluorescence microscopy. This system allows us to adjust the protein density in free-standing bilayers, which are stabilized by the polymer brush underneath. The potential application of the integrated platform for ion channel protein assays is demonstrated.
Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform
Barroso, M Fátima; Luna, M Alejandra; Tabares, Juan S Flores; Delerue-Matos, Cristina; Correa, N Mariano
2016-01-01
Summary In this contribution a strategy is shown to covalently immobilize gold nanoparticles (AuNPs) onto vesicle bilayers with the aim of using this nanomaterial as platform for the future design of immunosensors. A novel methodology for the self-assembly of AuNPs onto large unilamellar vesicle structures is described. The vesicles were formed with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-undecanethiol (SH). After, the AuNPs photochemically synthesized in pure glycerol were mixed and anchored onto SH–DOPC vesicles. The data provided by voltammetry, spectrometry and microscopy techniques indicated that the AuNPs were successfully covalently anchored onto the vesicle bilayer and decorated vesicles exhibit a spherical shape with a size of 190 ± 10 nm. The developed procedure is easy, rapid and reproducible to start designing a possible immunosensor by using environmentally friendly procedures. PMID:27335755
Molecular dynamics simulation of sodium dodecylsulfate (SDS) bilayers.
Zhang, Hongshu; Yuan, Shiling; Sun, Jichao; Liu, Jianqiang; Li, Haiping; Du, Na; Hou, Wanguo
2017-11-15
Sodium dodecylsulfate (SDS) - a simple single tailed surfactant (STS) can form stable vesicles from its micellar solution without any additives under the mediation of solid surfaces. To further understand the mechanism of this transition on the molecular level, molecular dynamics simulations are performed to study segments of SDS bilayers (as part of vesicles) in the bulk solution systematically, at the moment that the lower leaflet of bilayers already detached from solid surfaces. The SDS membrane would rather keep their bilayers structure than return to micelles when the initial interdigitated degree (δ i ) between alkyl chains is more than 8.0±1.4%. And the interdigitated degree is always approaching to 31.7±2.0% while the equilibrium is reached. The aggregates behave as curved bilayers, planar bilayers, perforated bilayers, and micelles with the increase of the lower leaflet cross-sectional area. Besides, the structures of salt bridge and water bridge structures are formed between DS - and Na + ions or water molecules, which contribute to the stability of SDS bilayers. The distribution difference of the salt bridges along the direction of S-O axis between the two leaflets leads to the asymmetry of the bilayers, which plays supplementary role to the formation of bilayers curvature. We expect that this work help to shed light on the understanding of interface phenomena and the mechanism of simple single-tailed surfactant vesicle self-assembly on the molecular level. Copyright © 2017 Elsevier Inc. All rights reserved.
From self-organization to self-assembly: a new materialism?
Vincent, Bernadette Bensaude
2016-09-01
While self-organization has been an integral part of academic discussions about the distinctive features of living organisms, at least since Immanuel Kant's Critique of Judgement, the term 'self-assembly' has only been used for a few decades as it became a hot research topic with the emergence of nanotechnology. Could it be considered as an attempt at reducing vital organization to a sort of assembly line of molecules? Considering the context of research on self-assembly I argue that the shift of attention from self-organization to self-assembly does not really challenge the boundary between chemistry and biology. Self-assembly was first and foremost investigated in an engineering context as a strategy for manufacturing without human intervention and did not raise new perspectives on the emergence of vital organization itself. However self-assembly implies metaphysical assumptions that this paper tries to disentangle. It first describes the emergence of self-assembly as a research field in the context of materials science and nanotechnology. The second section outlines the metaphysical implications and will emphasize a sharp contrast between the ontology underlying two practices of self-assembly developed under the umbrella of synthetic biology. And unexpectedly, we shall see that chemists are less on the reductionist side than most synthetic biologists. Finally, the third section ventures some reflections on the kind of design involved in self-assembly practices.
Elahi, M. Fazley; Guan, Guoping; Wang, Lu; King, Martin W.
2014-01-01
To enhance the hemocompatibility of silk fibroin fabric as biomedical material, polyelectrolytes architectures have been assembled through the layer-by-layer (LbL) technique on silk fibroin fabric (SFF). In particular, 1.5 and 2.5 bilayer of oppositely charged polyelectrolytes were assembled onto SFF using poly(allylamine hydrochloride) (PAH) as polycationic polymer and poly(acrylic acid) (PAA) as polyanionic polymer with PAH topmost. Low molecular weight heparin (LMWH) activated with 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) was then immobilized on its surface. Alcian Blue staining, toluidine blue assay and X-ray photoelectron spectroscopy (XPS) confirmed the presence of heparin on modified SFF surfaces. The surface morphology of the modified silk fibroin fabric surfaces was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and obtained increased roughness. Negligible hemolytic effect and a higher concentration of free hemoglobin by a kinetic clotting time test ensured the improved biological performance of the modified fibroin fabric. Overall, the deposition of 2.5 bilayer was found effective in terms of biological and surface properties of the modified fibroin fabric compared to 1.5 bilayer self-assembly technique. Therefore, this novel approach to surface modification may demonstrate long term patency in future in vivo animal trials of small diameter silk fibroin vascular grafts. PMID:28788601
Ganguly, Sreerupa; Mukherjee, Amarshi; Mazumdar, Budhaditya; Ghosh, Amar N.; Banerjee, Kalyan K.
2014-01-01
Vibrio cholerae cytolysin/hemolysin (VCC) is an amphipathic 65-kDa β-pore-forming toxin with a C-terminal β-prism lectin domain. Because deletion or point mutation of the lectin domain seriously compromises hemolytic activity, it is thought that carbohydrate-dependent interactions play a critical role in membrane targeting of VCC. To delineate the contributions of the cytolysin and lectin domains in pore formation, we used wild-type VCC, 50-kDa VCC (VCC50) without the lectin domain, and mutant VCCD617A with no carbohydrate-binding activity. VCC and its two variants with no carbohydrate-binding activity moved to the erythrocyte stroma with apparent association constants on the order of 107 m−1. However, loss of the lectin domain severely reduced the efficiency of self-association of the VCC monomer with the β-barrel heptamer in the synthetic lipid bilayer from ∼83 to 27%. Notably, inactivation of the carbohydrate-binding activity by the D617A mutation marginally reduced oligomerization to ∼77%. Oligomerization of VCC50 was temperature-insensitive; by contrast, VCC self-assembly increased with increasing temperature, suggesting that the process is driven by entropy and opposed by enthalpy. Asialofetuin, the β1-galactosyl-terminated glycoprotein inhibitor of VCC-induced hemolysis, promoted oligomerization of 65-kDa VCC to a species that resembled the membrane-inserted heptamer in stoichiometry and morphology but had reduced global amphipathicity. In conclusion, we propose (i) that the β-prism lectin domain facilitated toxin assembly by producing entropy during relocation in the heptamer and (ii) that glycoconjugates inhibited VCC by promoting its assembly to a water-soluble, less amphipathic oligomer variant with reduced ability to penetrate the bilayer. PMID:24356964
2016-01-01
Monodisperse oligodimethylsiloxanes end-functionalized with the hydrogen-bonding ureidopyrimidinone (UPy) motif undergo phase separation between their aromatic end groups and dimethylsiloxane midblocks to form ordered nanostructures with domain spacings of <5 nm. The self-assembly behavior of these well-defined oligomers resembles that of high degree of polymerization (N)–high block interaction parameter (χ) linear diblock copolymers despite their small size. Specifically, the phase morphology varies from lamellar to hexagonal to body-centered cubic with increasing asymmetry in molecular volume fraction. Mixing molecules with different molecular weights to give dispersity >1.13 results in disorder, showing importance of molecular monodispersity for ultrasmall ordered phase separation. In contrast, oligodimethylsiloxanes end-functionalized with an O-benzylated UPy derivative self-assemble into lamellar nanostructures regardless of volume fraction because of the strong preference of the end groups to aggregate in a planar geometry. Thus, these molecules display more classically liquid-crystalline self-assembly behavior where the lamellar bilayer thickness is determined by the siloxane midblock. Here the lamellar nanostructure is tolerant to molecular polydispersity. We show the importance of end groups in high χ–low N block molecules, where block-copolymer-like self-assembly in our UPy-functionalized oligodimethylsiloxanes relies upon the dominance of phase separation effects over directional end group aggregation. PMID:27054381
Multilayer Ferritin Array for Bionanobattery
NASA Technical Reports Server (NTRS)
Chu, Sang-Hyon (Inventor); Choi, Sang H. (Inventor); Kim, Jae-Woo (Inventor); Lillehei, Peter T. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R., Jr. (Inventor)
2009-01-01
A thin-film electrode for a bio-nanobattery is produced by consecutively depositing arrays of a ferritin protein on a substrate, employing a spin self-assembly procedure. By this procedure, a first ferritin layer is first formed on the substrate, followed by building a second, oppositely-charged ferritin layer on the top of the first ferritin layer to form a bilayer structure. Oppositely-charged ferritin layers are subsequently deposited on top of each other until a desired number of bilayer structures is produced. An ordered, uniform, stable and robust, thin-film electrode material of enhanced packing density is presented, which provides optimal charge density for the bio-nanobattery.
Inducing morphological changes in lipid bilayer membranes with microfabricated substrates
NASA Astrophysics Data System (ADS)
Liu, Fangjie; Collins, Liam F.; Ashkar, Rana; Heberle, Frederick A.; Srijanto, Bernadeta R.; Collier, C. Patrick
2016-11-01
Lateral organization of lipids and proteins into distinct domains and anchoring to a cytoskeleton are two important strategies employed by biological membranes to carry out many cellular functions. However, these interactions are difficult to emulate with model systems. Here we use the physical architecture of substrates consisting of arrays of micropillars to systematically control the behavior of supported lipid bilayers - an important step in engineering model lipid membrane systems with well-defined functionalities. Competition between attractive interactions of supported lipid bilayers with the underlying substrate versus the energy cost associated with membrane bending at pillar edges can be systematically investigated as functions of pillar height and pitch, chemical functionalization of the microstructured substrate, and the type of unilamellar vesicles used for assembling the supported bilayer. Confocal fluorescent imaging and AFM measurements highlight correlations that exist between topological and mechanical properties of lipid bilayers and lateral lipid mobility in these confined environments. This study provides a baseline for future investigations into lipid domain reorganization on structured solid surfaces and scaffolds for cell growth.
Encapsulating Networks of Droplet Interface Bilayers in a Thermoreversible Organogel.
Challita, Elio J; Najem, Joseph S; Monroe, Rachel; Leo, Donald J; Freeman, Eric C
2018-04-24
The development of membrane-based materials that exhibit the range and robustness of autonomic functions found in biological systems remains elusive. Droplet interface bilayers (DIBs) have been proposed as building blocks for such materials, owing to their simplicity, geometry, and capability for replicating cellular phenomena. Similar to how individual cells operate together to perform complex tasks and functions in tissues, networks of functionalized DIBs have been assembled in modular/scalable networks. Here we present the printing of different configurations of picoliter aqueous droplets in a bath of thermoreversible organogel consisting of hexadecane and SEBS triblock copolymers. The droplets are connected by means of lipid bilayers, creating a network of aqueous subcompartments capable of communicating and hosting various types of chemicals and biomolecules. Upon cooling, the encapsulating organogel solidifies to form self-supported liquid-in-gel, tissue-like materials that are robust and durable. To test the biomolecular networks, we functionalized the network with alamethicin peptides and alpha-hemolysin (αHL) channels. Both channels responded to external voltage inputs, indicating the assembly process does not damage the biomolecules. Moreover, we show that the membrane properties may be regulated through the deformation of the surrounding gel.
Construction and manipulation of functional three-dimensional droplet networks.
Wauer, Tobias; Gerlach, Holger; Mantri, Shiksha; Hill, Jamie; Bayley, Hagan; Sapra, K Tanuj
2014-01-28
Previously, we reported the manual assembly of lipid-coated aqueous droplets in oil to form two-dimensional (2D) networks in which the droplets are connected through single lipid bilayers. Here we assemble lipid-coated droplets in robust, freestanding 3D geometries: for example, a 14-droplet pyramidal assembly. The networks are designed, and each droplet is placed in a designated position. When protein pores are inserted in the bilayers between specific constituent droplets, electrical and chemical communication pathways are generated. We further describe an improved means to construct 3D droplet networks with defined organizations by the manipulation of aqueous droplets containing encapsulated magnetic beads. The droplets are maneuvered in a magnetic field to form simple construction modules, which are then used to form larger 2D and 3D structures including a 10-droplet pyramid. A methodology to construct freestanding, functional 3D droplet networks is an important step toward the programmed and automated manufacture of synthetic minimal tissues.
Self-Organization in Coordination-Driven Self-Assembly
Northrop, Brian H.; Zheng, Yao-Rong; Chi, Ki-Whan; Stang, Peter J.
2009-01-01
Conspectus Self-assembly allows for the preparation of highly complex molecular and supramolecular systems from relatively simple starting materials. Typically, self-assembled supramolecules are constructed by combining complementary pairs of two highly symmetric molecular components, thus limiting the chances of forming unwanted side products. Combining asymmetric molecular components or multiple complementary sets of molecules in one complex mixture can produce myriad different ordered and disordered supramolecular assemblies. Alternatively, spontaneous self-organization phenomena can promote the formation of specific product(s) out of a collection of multiple possibilities. Self-organization processes are common throughout much of nature and are especially common in biological systems. Recently, researchers have studied self-organized self-assembly in purely synthetic systems. This Account describes our investigations of self-organization in the coordination-driven self-assembly of platinum(II)-based metallosupramolecules. The modularity of the coordination-driven approach to self-assembly has allowed us to systematically study a wide variety of different factors that can control the extent of supramolecular self-organization. In particular, we have evaluated the effects of the symmetry and polarity of ambidentate donor subunits, differences in geometrical parameters (e.g. the size, angularity, and dimensionality) of Pt(II)-based acceptors and organic donors, the influence of temperature and solvent, and the effects of intermolecular steric interactions and hydrophobic interactions on self-organization. Our studies have shown that the extent of self-organization in the coordination-driven self-assembly of both 2D polygons and 3D polyhedra ranges from no organization (a statistical mixture of multiple products), to amplified organization (wherein a particular product or products are favored over others), and all the way to the absolute self-organization of discrete supramolecular assemblies. In many cases, inputs such as dipolar interactions, steric interactions, and differences in the geometric parameters of subunits—used either alone or as multiple factors simultaneously—can achieve absolute self-organization of discrete supramolecules. We have also observed instances where self-organization is not absolute and varies in its deviation from statistical results. Steric interactions are particularly useful control factors for driving such amplified self-organization because they can be subtly tuned through small structural variations. Having the ability to fully understand and control the self-organization of complex mixtures into specific synthetic supramolecules can provide a better understanding of analogous processes in biological systems. Furthermore, self-organization may allow for the facile synthesis of complex multifunctional, multicomponent systems from simply mixing a collection of much simpler, judiciously designed individual molecular components. PMID:19555073
Elizondo-García, Mariana E; Márquez-Miranda, Valeria; Araya-Durán, Ingrid; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D
2018-04-21
Amphiphilic Janus dendrimers (JDs) are repetitively branched molecules with hydrophilic and hydrophobic components that self-assemble in water to form a variety of morphologies, including vesicles analogous to liposomes with potential pharmaceutical and medical application. To date, the self-assembly of JDs has not been fully investigated thus it is important to gain insight into its mechanism and dependence on JDs’ molecular structure. In this study, the aggregation behavior in water of a second-generation bis-MPA JD was evaluated using experimental and computational methods. Dispersions of JDs in water were carried out using the thin-film hydration and ethanol injection methods. Resulting assemblies were characterized by dynamic light scattering, confocal microscopy, and atomic force microscopy. Furthermore, a coarse-grained molecular dynamics (CG-MD) simulation was performed to study the mechanism of JDs aggregation. The obtaining of assemblies in water with no interdigitated bilayers was confirmed by the experimental characterization and CG-MD simulation. Assemblies with dendrimersome characteristics were obtained using the ethanol injection method. The results of this study establish a relationship between the molecular structure of the JD and the properties of its aggregates in water. Thus, our findings could be relevant for the design of novel JDs with tailored assemblies suitable for drug delivery systems.
A Coarse-grained Model of Stratum Corneum Lipids: Free Fatty Acids and Ceramide NS
Moore, Timothy C.; Iacovella, Christopher R.; Hartkamp, Remco; Bunge, Annette L.; McCabe, Clare
2017-01-01
Ceramide (CER)-based biological membranes are used both experimentally and in simulations as simplified model systems of the skin barrier. Molecular dynamics studies have generally focused on simulating preassembled structures using atomistically detailed models of CERs, which limit the system sizes and timescales that can practically be probed, rendering them ineffective for studying particular phenomena, including self-assembly into bilayer and lamellar superstructures. Here, we report on the development of a coarse-grained (CG) model for CER NS, the most abundant CER in human stratum corneum. Multistate iterative Boltzmann inversion is used to derive the intermolecular pair potentials, resulting in a force field that is applicable over a range of state points and suitable for studying ceramide self-assembly. The chosen CG mapping, which includes explicit interaction sites for hydroxyl groups, captures the directional nature of hydrogen bonding and allows for accurate predictions of several key structural properties of CER NS bilayers. Simulated wetting experiments allow the hydrophobicity of CG beads to be accurately tuned to match atomistic wetting behavior, which affects the whole system since inaccurate hydrophobic character is found to unphysically alter the lipid packing in hydrated lamellar states. We find that CER NS can self-assemble into multilamellar structures, enabling the study of lipid systems more representative of the multilamellar lipid structures present in the skin barrier. The coarse-grained force field derived herein represents an important step in using molecular dynamics to study the human skin barrier, which gives a resolution not available through experiment alone. PMID:27564869
NASA Astrophysics Data System (ADS)
Kelly, Kathleen
Materials that take advantage of the exceptional properties of nano-meter sized aggregates of atoms are poised to play an important role in future technologies. Prime examples for such nano-materials that have an extremely large surface to volume ratio and thus are physically determined by surface related effects are quantum dots (qdots) and carbon nanotubes (CNTs). The production of such manmade nano-objects has by now become routine and even commercialized. However, the controlled assembly of individual nano-sized building blocks into larger structures of higher geometric and functional complexity has proven to be much more challenging. Yet, this is exactly what is required for many applications that have transformative potential for new technologies. If the tedious procedure to sequentially position individual nano-objects is to be forgone, the assembly of such objects into larger structures needs to be implicitly encoded and many ways to bestow such self-assembly abilities onto nano objects are being developed. Yet, as overall size and complexity of such self-assembled structures increases, kinetic and geometric frustration begin to prevent the system to achieve the desired configuration. In nature, this problem is solved by relying on guided or forced variants of the self-assembly approach. To translate such concepts into the realm of man-made nano-technology, ways to dynamically manipulate nano-materials need to be devised. Thus, in the first part of this work, I provide a proof of concept that supported lipid bilayers (SLBs) that exhibit free lateral diffusion of their constituents can be utilized as a two-dimensional platform for active nano-material manipulation. We used streptavidin coated quantum dots (Q-dots) as a model nano-building-block. Q-dots are 0-dimensional nanomaterials engineered to be fluorescent based solely on their diameter making visualization convenient. Biotinylated lipids were used to tether Q-dots to a SLB and we observed that the 2-dimensional fluidity of the bilayer was translated to the quantum dots as they freely diffused. The quantum dots were visualized using wide-field fluorescent microscopy and single particle tracking techniques were employed to analyze their dynamic behavior. Next, an electric field was applied to the system to induce electroosmotic flow (EOF) which creates a bulk flow of the buffer solution. The quantum dots were again tracked and ballistic motion was observed in the particle tracks due to the electroosmosis in the system. This proved that SLBs could be used as a two-dimensional fluid platform for nanomaterials and electroosmosis can be used to manipulate the motion of the Q-dots once they are tethered to the membrane. Next, we set out to employ the same technique to carbon nanotubes (CNTs), which are known for their highly versatile mechanical and electrical properties. However, carbon nanotubes are extremely hydrophobic and tend to aggregate in aqueous solutions which negatively impacts the viability of tethering the CNTs to the bilayer, fluorescently staining and then imaging them. First, we had to solubilize the CNTs such that they were monodisperse and characterize the CNT-detergent solutions. We were able to create monodisperse solutions of CNTs such that the detergent levels were low enough that the integrity of the bilayer was intact. We were also able to fluorescently label the CNTs in order to visualize them, and tether them to a SLB using a peptide sequence. Future directions of this project would include employing EOF to mobilize the CNTs and use a more sophisticated single particle tracking software to track individual CNTs and analyze their motion.
Self-Organization and the Self-Assembling Process in Tissue Engineering
Eswaramoorthy, Rajalakshmanan; Hadidi, Pasha; Hu, Jerry C.
2015-01-01
In recent years, the tissue engineering paradigm has shifted to include a new and growing subfield of scaffoldless techniques which generate self-organizing and self-assembling tissues. This review aims to provide a cogent description of this relatively new research area, with special emphasis on applications toward clinical use and research models. Particular emphasis is placed on providing clear definitions of self-organization and the self-assembling process, as delineated from other scaffoldless techniques in tissue engineering and regenerative medicine. Significantly, during formation, self-organizing and self-assembling tissues display biological processes similar to those that occur in vivo. These help lead to the recapitulation of native tissue morphological structure and organization. Notably, functional properties of these tissues also approach native tissue values; some of these engineered tissues are already in clinical trials. This review aims to provide a cohesive summary of work in this field, and to highlight the potential of self-organization and the self-assembling process to provide cogent solutions to current intractable problems in tissue engineering. PMID:23701238
NASA Astrophysics Data System (ADS)
Mfuh, Adelphe Mbufung
This thesis focuses mainly on the synthesis, characterization, and self-assembly of a novel series of asparagine-derived amphiphiles and their use in the preparation and stabilization of nano and microcapsules for the encapsulation of proteins, and hydrophilic and hydrophobic drug models. Chapter 1 gives a brief literature overview of lipid molecular assembly, which covers some aspects of morphological analyses, encapsulation of chemical entity and some reported characterization techniques of supramolecular assemblies. It introduces the scope of this dissertation and contains some information on stimulus responsive liposomal systems for controlled release of drug models. Chapter 2 introduces a novel asparagine-derived lipid bearing two fatty chains (C11 and C17) and a tetrahydropyrimidinone head group. It presents information on the synthesis and characterization of this lipid and describes the self-assembly and effects of this lipid in distearoyl phosphatidyl choline bilayer. Chapter 3 presents the synthesis and characterization of a series of ALAn,m (where n and m represent the length of the hydrocarbon chains on the asparagine-derived, heterocyclic head group). It contains data on the effect of chain length, solvent media and head group ionization on the conformational equilibrium about a tertiary amide bond in ALAn,m. The chapter also examines the influence of chain length on ALAn,m on the colloidal stability of DSPC liposomes. Chapter 4 presents the first example of an N,N-acetal linkage in a novel pH responsive nanocarrier system obtained from the cyclocondensation of dodecanal with sodium asparaginate. Data is presented on the spontaneous self-assembly, encapsulation studies and morphological characterization of the nano-systems with the inclusion of cholesterol as additive. Chapter 5 presents the development of a photoresponsive nanocarrier via the self- assembly of an asparagine-derived lipid containing a coumarin unit in the hydrophobic domain. The supramolecular assemblies of this lipid were examined for the ability to encapsulate and release chemical entity in response to UV-assisted [2+2]-photodimerization. Chapter 6 presents the fabrication of an organic core/inorganic shell microcapsules from the catanionic self-assemblies of a series of symmetrical asparagine-derived bolaamphiphiles and polyallyl amine, followed by surfacing coating with silica nanoparticles. Unlike layer-by-layer or polymer salt aggregates (PSA) capsules reported in the chemical literature, these particles show encapsulation for wider range of chemical entities with different solubility properties. Studies suggest that these particles efficiently encapsulated protoporphyrin IX. dimethylester, doxorubicin and a fluorescently labeled bovine serum albumin (FITC-BSA).
Proton Diffusion through Bilayer Pores
McDaniel, Jesse G.; Yethiraj, Arun
2017-09-26
The transport of protons through channels in complex environments is important in biology and materials science. In this work, we use multistate empirical valence bond simulations to study proton transport within a well-defined bilayer pore in a lamellar L β phase lyotropic liquid crystal (LLC). The LLC is formed from the self-assembly of dicarboxylate gemini surfactants in water, and a bilayer-spanning pore of radius of approximately 3–5 Å results from the uneven partitioning of surfactants between the two leaflets of the lamella. Local proton diffusion within the pore is significantly faster than diffusion at the bilayer surface, which is duemore » to the greater hydrophobicity of the surfactant/water interface within the pore. Proton diffusion proceeds by surface transport along exposed hydrophobic pockets at the surfactant/water interface and depends on the continuity of hydronium–water hydrogen bond networks. At the bilayer surface, there is a reduced fraction of the “Zundel” intermediates that are central to the Grotthuss transport mechanism, whereas the fraction of these species within the bilayer pore is similar to that in bulk water. Our results demonstrate that the chemical nature of the confining interface, in addition to confinement length scale, is an important determiner of local proton transport in nanoconfined aqueous environments.« less
Radial elasticity of self-assembled lipid tubules.
Zhao, Yue; Tamhane, Karan; Zhang, Xuejun; An, Linan; Fang, Jiyu
2008-07-01
Self-assembled lipid tubules with crystalline bilayer walls represent useful supramolecular architectures which hold promise as vehicles for the controlled release of preloaded drugs and templates for the synthesis of one-dimensional inorganic materials. We study the local elasticity of lipid tubules of 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine by radial atomic force microscope indentation, coupled with finite element analysis. A reduced stiffness is found to extend a distance of approximately 600 nm from the ends of lipid tubules. The middle section of lipid tubules is homogeneous in terms of their radial elasticity with a Young's modulus of approximately 703 MPa. The inhomogeneous radial elasticity likely arises from the variation of lipid packing density near the tubule ends.
Sikorska, Emilia; Dawgul, Małgorzata; Greber, Katarzyna; Iłowska, Emilia; Pogorzelska, Aneta; Kamysz, Wojciech
2014-10-01
In this work, the self-organization and the behavior of the surfactant-like peptides in the presence of biological membrane models were studied. The studies were focused on synthetic palmitic acid-containing lipopeptides, C16-KK-NH2 (I), C16-KGK-NH2 (II) and C16-KKKK-NH2 (III). The self-assembly was explored by molecular dynamics simulations using a coarse-grained force field. The critical micellar concentration was estimated by the surface tension measurements. The thermodynamics of the peptides binding to the anionic and zwitterionic lipids were established using isothermal titration calorimetry (ITC). The influence of the peptides on the lipid acyl chain ordering was determined using FTIR spectroscopy. The compounds studied show surface-active properties with a distinct CMC over the millimolar range. An increase in the steric and electrostatic repulsion between polar head groups shifts the CMC toward higher values and reduces the aggregation number. An analysis of the peptide-membrane binding revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions enabling the lipopeptides to interact with the lipid bilayer. In the case of C16-KKKK-NH2 (III), compensation of the electrostatic and hydrophobic interactions upon binding to the anionic membrane has been suggested and consequently no overall binding effects were noticed in ITC thermograms and FTIR spectra. Copyright © 2014 Elsevier B.V. All rights reserved.
Diamanti, Eleftheria; Gutiérrez-Pineda, Eduart; Politakos, Nikolaos; Andreozzi, Patrizia; Rodriguez-Presa, María José; Knoll, Wolfgang; Azzaroni, Omar; Gervasi, Claudio A; Moya, Sergio E
2017-12-06
Supported membranes on polymer cushions are of fundamental interest as models for cell membranes. The use of polyelectrolyte multilayers (PEMs) assembled by the layer by layer (LbL) technique as supports for a bilayer allows for easy integration of the lipid bilayer on surfaces and devices and for nanoscale tunable spacing of the lipid bilayer. Controlling ionic permeability in lipid bilayers supported on PEMs triggers potential applications in sensing and as models for transport phenomena in cell membranes. Lipid bilayers displaying gramicidin channels are fabricated on top of polyallylamine hydrochloride (PAH) and polystyrene sulfonate (PSS) multilayer films, by the assembly of vesicles of phosphatidylcholine and phosphatidylserine, 50 : 50 M/M, carrying gramicidin (GA). Quartz crystal microbalance with dissipation shows that the vesicles with GA fuse into a bilayer. Atomic force microscopy reveals that the presence of GA alters the bilayer topography resulting in depressions in the bilayer of around 70 nm in diameter. Electrochemical impedance spectroscopy (EIS) studies show that supported bilayers carrying GA have smaller resistances than the bilayers without GA. Lipid layers carrying GA display a higher conductance for K + than for Na + and are blocked in the presence of Ca 2+ .
NASA Astrophysics Data System (ADS)
Ishmukhametov, Robert R.; Russell, Aidan N.; Berry, Richard M.
2016-10-01
An important goal in synthetic biology is the assembly of biomimetic cell-like structures, which combine multiple biological components in synthetic lipid vesicles. A key limiting assembly step is the incorporation of membrane proteins into the lipid bilayer of the vesicles. Here we present a simple method for delivery of membrane proteins into a lipid bilayer within 5 min. Fusogenic proteoliposomes, containing charged lipids and membrane proteins, fuse with oppositely charged bilayers, with no requirement for detergent or fusion-promoting proteins, and deliver large, fragile membrane protein complexes into the target bilayers. We demonstrate the feasibility of our method by assembling a minimal electron transport chain capable of adenosine triphosphate (ATP) synthesis, combining Escherichia coli F1Fo ATP-synthase and the primary proton pump bo3-oxidase, into synthetic lipid vesicles with sizes ranging from 100 nm to ~10 μm. This provides a platform for the combination of multiple sets of membrane protein complexes into cell-like artificial structures.
Aligning nanodiscs at the air-water interface, a neutron reflectivity study.
Wadsäter, Maria; Simonsen, Jens B; Lauridsen, Torsten; Tveten, Erlend Grytli; Naur, Peter; Bjørnholm, Thomas; Wacklin, Hanna; Mortensen, Kell; Arleth, Lise; Feidenhans'l, Robert; Cárdenas, Marité
2011-12-20
Nanodiscs are self-assembled nanostructures composed of a belt protein and a small patch of lipid bilayer, which can solubilize membrane proteins in a lipid bilayer environment. We present a method for the alignment of a well-defined two-dimensional layer of nanodiscs at the air-water interface by careful design of an insoluble surfactant monolayer at the surface. We used neutron reflectivity to demonstrate the feasibility of this approach and to elucidate the structure of the nanodisc layer. The proof of concept is hereby presented with the use of nanodiscs composed of a mixture of two different lipid (DMPC and DMPG) types to obtain a net overall negative charge of the nanodiscs. We find that the nanodisc layer has a thickness or 40.9 ± 2.6 Å with a surface coverage of 66 ± 4%. This layer is located about 15 Å below a cationic surfactant layer at the air-water interface. The high level of organization within the nanodiscs layer is reflected by a low interfacial roughness (~4.5 Å) found. The use of the nanodisc as a biomimetic model of the cell membrane allows for studies of single membrane proteins isolated in a confined lipid environment. The 2D alignment of nanodiscs could therefore enable studies of high-density layers containing membrane proteins that, in contrast to membrane proteins reconstituted in a continuous lipid bilayer, remain isolated from influences of neighboring membrane proteins within the layer. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Siontorou, Christina G.
2012-12-01
Biosensors are analytic devices that incorporate a biochemical recognition system (biological, biologicalderived or biomimic: enzyme, antibody, DNA, receptor, etc.) in close contact with a physicochemical transducer (electrochemical, optical, piezoelectric, conductimetric, etc.) that converts the biochemical information, produced by the specific biological recognition reaction (analyte-biomolecule binding), into a chemical or physical output signal, related to the concentration of the analyte in the measuring sample. The biosensing concept is based on natural chemoreception mechanisms, which are feasible over/within/by means of a biological membrane, i.e., a structured lipid bilayer, incorporating or attached to proteinaceous moieties that regulate molecular recognition events which trigger ion flux changes (facilitated or passive) through the bilayer. The creation of functional structures that are similar to natural signal transduction systems, correlating and interrelating compatibly and successfully the physicochemical transducer with the lipid film that is self-assembled on its surface while embedding the reconstituted biological recognition system, and at the same time manage to satisfy the basic conditions for measuring device development (simplicity, easy handling, ease of fabrication) is far from trivial. The aim of the present work is to present a methodological framework for designing such molecular sensing interfaces, functioning within a knowledge-based system built on an ontological platform for supplying sub-systems options, compatibilities, and optimization parameters.
Simulations of Living Cell Origins Using a Cellular Automata Model
NASA Astrophysics Data System (ADS)
Ishida, Takeshi
2014-04-01
Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.
Simulations of living cell origins using a cellular automata model.
Ishida, Takeshi
2014-04-01
Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.
NASA Astrophysics Data System (ADS)
Leung, Cheuk Yui Curtis
Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale. We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes. Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.
Becucci, Lucia; Papini, Martina; Mullen, Daniel; Scaloni, Andrea; Veglia, Gianluigi; Guidelli, Rolando
2011-11-01
The mechanism of membrane permeabilization by the antimicrobial peptide distinctin was investigated by using two different mercury-supported biomimetic membranes, namely a lipid self-assembled monolayer and a lipid bilayer tethered to the mercury surface through a hydrophilic spacer (tethered bilayer lipid membrane: tBLM). Incorporation of distinctin into a lipid monolayer from its aqueous solution yields rapidly ion channels selective toward inorganic cations, such as Tl(+) and Cd(2+). Conversely, its incorporation in a tBLM allows the formation of ion channels permeable to potassium ions only at non-physiological transmembrane potentials, more negative than -340mV. These channels, once formed, are unstable at less negative transmembrane potentials. The kinetics of their formation is consistent with the disruption of distinctin clusters adsorbed on top of the lipid bilayer, incorporation of the resulting monomers and their aggregation into hydrophilic pores by a mechanism of nucleation and growth. Comparing the behavior of distinctin in tBLMs with that in conventional black lipid membranes strongly suggests that distinctin channel formation in lipid bilayer requires the partitioning of distinctin molecules between the two sides of the lipid bilayer. We can tentatively hypothesize that an ion channel is formed when one distinctin cluster on one side of the lipid bilayer matches another one on the opposite side. Copyright © 2011 Elsevier B.V. All rights reserved.
Self-Assembled Double-Quarter Antireflective Coatings using Silica and Titania Nanoparticles
NASA Astrophysics Data System (ADS)
Lal, Anitesh; Castedo Velasco, Raisa; Mazilu, Dan
2011-03-01
Antireflective coatings have a wide range of applications, from eyeglass and camera lenses, to solar panels and optoelectronic devices, to name just a few. Our study examines several factors that affect the quality of antireflective coatings created by the self-assembly of alternating layers of SiO2 and/or TiO2 nanoparticles and poly(diallyldimethylammonium chloride) polycation on glass substrates. We use a factorial design to investigate the effects of the molarity of the nanoparticle solution, the size of the nanoparticles, the pH of the nanoparticle and polycation solutions, and the number of nanoparticle-polycation bilayers on the optical properties of the films. The first order effects of these factors, as well as their interactions, on the reflectance, transmittance, and uniformity of the coatings are reported.
Interaction measurement of particles bound to a lipid membrane
NASA Astrophysics Data System (ADS)
Sarfati, Raphael; Dufresne, Eric
2015-03-01
The local shape and dynamics of the plasma membrane play important roles in many cellular processes. Local membrane deformations are often mediated by the adsorption of proteins (notably from the BAR family), and their subsequent self-assembly. The emerging hypothesis is that self-assembly arises from long-range interactions of individual proteins through the membrane's deformation field. We study these interactions in a model system of micron-sized colloidal particles adsorbed onto a lipid bilayer. We use fluorescent microscopy, optical tweezers and particle tracking to measure dissipative and conservative forces as a function of the separation between the particles. We find that particles are driven together with forces of order 100 fN and remain bound in a potential well with a stiffness of order 100 fN/micron.
Immobilization of acetylcholinesterase in lipid membranes deposited on self-assembled monolayers.
Milkani, Eftim; Khaing, Aung M; Huang, Fei; Gibson, Daniel G; Gridley, Scott; Garceau, Norman; Lambert, Christopher R; McGimpsey, W Grant
2010-12-21
Human red blood cell acetylcholinesterase was incorporated into planar lipid membranes deposited on alkanethiol self-assembled monolayers (SAMs) on gold substrates. Activity of the protein in the membrane was detected with a standard photometric assay and was determined to be similar to the protein in detergent solution or incorporated in lipid vesicles. Monolayer and bilayer lipid membranes were generated by fusing liposomes to hydrophobic and hydrophilic SAMs, respectively. Liposomes were formed by the injection method using the lipid dimyristoylphosphatidylcholine (DMPC). The formation of alkanethiol SAMs and lipid monolayers on SAMs was confirmed by sessile drop goniometry, ellipsometry, and electrochemical impedance spectroscopy. In this work, we report acetylcholinesterase immobilization in lipid membranes deposited on SAMs formed on the gold surface and compare its activity to enzyme in solution.
An exactly solvable model of hierarchical self-assembly
NASA Astrophysics Data System (ADS)
Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.
2009-06-01
Many living and nonliving structures in the natural world form by hierarchical organization, but physical theories that describe this type of organization are scarce. To address this problem, a model of equilibrium self-assembly is formulated in which dynamically associating species organize into hierarchical structures that preserve their shape at each stage of assembly. In particular, we consider symmetric m-gons that associate at their vertices into Sierpinski gasket structures involving the hierarchical association of triangles, squares, hexagons, etc., at their corner vertices, thereby leading to fractal structures after many generations of assembly. This rather idealized model of hierarchical assembly yields an infinite sequence of self-assembly transitions as the morphology progressively organizes to higher levels of the hierarchy, and these structures coexists at dynamic equilibrium, as found in real hierarchically self-assembling systems such as amyloid fiber forming proteins. Moreover, the transition sharpness progressively grows with increasing m, corresponding to larger and larger loops in the assembled structures. Calculations are provided for several basic thermodynamic properties (including the order parameters for assembly for each stage of the hierarchy, average mass of clusters, specific heat, transition sharpness, etc.) that are required for characterizing the interaction parameters governing this type of self-assembly and for elucidating other basic qualitative aspects of these systems. Our idealized model of hierarchical assembly gives many insights into this ubiquitous type of self-organization process.
Functional patterned coatings by thin polymer film dewetting.
Telford, Andrew M; Thickett, Stuart C; Neto, Chiara
2017-12-01
An approach for the fabrication of functional polymer surface coatings is introduced, where micro-scale structure and surface functionality are obtained by means of self-assembly mechanisms. We illustrate two main applications of micro-patterned polymer surfaces obtained through dewetting of bilayers of thin polymer films. By tuning the physical and chemical properties of the polymer bilayers, micro-patterned surface coatings could be produced that have applications both for the selective attachment and patterning of proteins and cells, with potential applications as biomaterials, and for the collection of water from the atmosphere. In all cases, the aim is to achieve functional coatings using approaches that are simple to realize, use low cost materials and are potentially scalable. Copyright © 2017 Elsevier Inc. All rights reserved.
Zheng, Min; Chiang, Ya-Ling; Lee, Hsiao-Lin; Kong, Lih-Ren; Hsu, Shang-Te Danny; Hwang, Ing-Shouh; Rothfield, Lawrence I.; Shih, Yu-Ling
2014-01-01
The pole-to-pole oscillation of the Min proteins in Escherichia coli results in the inhibition of aberrant polar division, thus facilitating placement of the division septum at the midcell. MinE of the Min system forms a ring-like structure that plays a critical role in triggering the oscillation cycle. However, the mechanism underlying the formation of the MinE ring remains unclear. This study demonstrates that MinE self-assembles into fibrillar structures on the supported lipid bilayer. The MinD-interacting domain of MinE shows amyloidogenic properties, providing a possible mechanism for self-assembly of MinE. Supporting the idea, mutations in residues Ile-24 and Ile-25 of the MinD-interacting domain affect fibril formation, membrane binding ability of MinE and MinD, and subcellular localization of three Min proteins. Additional mutations in residues Ile-72 and Ile-74 suggest a role of the C-terminal domain of MinE in regulating the folding propensity of the MinD-interacting domain for different molecular interactions. The study suggests a self-assembly mechanism that may underlie the ring-like structure formed by MinE-GFP observed in vivo. PMID:24914211
Satapathy, Sitakanta; Prasad, Edamana
2016-10-05
Alteration of native gelation properties of anthracene and pyrene cored first generation poly(aryl ether) dendrons, G1-An and G1-Py, by introducing a common acceptor, 2,4,7-trinitro-9H-fluoren-9-one (TNF), results in forming charge transfer gels in long chain alcoholic solvents. This strategy leads to significant perturbation of optical and electronic properties within the gel matrix. Consequently, a noticeable increase of their electrical conductivities is observed, making these poly(aryl ether) dendron based gels potential candidates for organic electronics. While the dc-conductivity (σ) value for the native gel from G1-An is 2.8 × 10 -4 S m -1 , the value increased 3 times (σ = 8.7 × 10 -4 S m -1 ) for its corresponding charge transfer gel. Further, the dc-conductivity for the native gel self-assembled from G1-Py dramatically enhanced by approximately an order of magnitude from 4.9 × 10 -4 to 1.3 × 10 -3 S m -1 , under the influence of an acceptor. Apart from H-bonding and π···π interactions, charge transfer results in the formation of a robust 3D network of fibers, with improved aspect ratio, providing high thermo-mechanical stability to the gels compared to the native ones. The charge transfer gels self-assembled from G1-An/TNF (1:1) and G1-Py/TNF exhibit a 7.3- and 2.5-fold increase in their yield stress, respectively, compared to their native assemblies. A similar trend follows in the case of their thermal stabilities. This is attributed to the typical bilayer self-assembly of the former which is not present in the case of G1-Py/TNF charge transfer gel. Density functional calculations provide deeper insights accounting for the role of charge transfer interactions in the mode of self-assembly. The 1D potential energy surface for the G1-An/TNF dimer and G1-Py/TNF dimer is found to be 11.8 and 1.9 kcal mol -1 more stable than their corresponding native gel dimers, G1-An/G1-An and G1-Py/G1-Py, respectively.
Organic doping of rotated double layer graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Lijin; Jaiswal, Manu, E-mail: manu.jaiswal@iitm.ac.in
2016-05-06
Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity \\ mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with differentmore » rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.« less
Stochastic simulations of fatty-acid proto-cell models
NASA Astrophysics Data System (ADS)
Mavelli, F.; Ruiz-Mirazo, K.
2007-06-01
In this contribution we tackle the problem of simulating the time behavior of self-assembling fatty acid vesicles in different experimental conditions. These systems have been (and are being) explored by various labs as possible precursor models of cellular compartments. By means of our recently developed stochastic simulation platform ('ENVIRONMENT') we are able to reproduce quite satisfactorily experimental data that have been reported on the different growth behavior of this type of proto-cellular systems, depending on the level of osmotic pressure they are under. The work here presented is part of a more general attempt to gain insight into the problem of how self-assembling vesicles (closed bilayer structures) could progressively turn into minimal self-producing and self-reproducing cells: i.e., into interesting candidates for (proto-)biological systems. This involves crossing the traditional gap between in silico and in vitro approaches, as we try to do here, convinced that major adavances in the field require the correct integration of both theoretical and experimental endeavors.
Fluctuations and differential contraction during regeneration of Hydra vulgaris tissue toroids
NASA Astrophysics Data System (ADS)
Krahe, Michael; Wenzel, Iris; Lin, Kao-Nung; Fischer, Julia; Goldmann, Joseph; Kästner, Markus; Fütterer, Claus
2013-03-01
We studied regenerating bilayered tissue toroids dissected from Hydra vulgaris polyps and relate our macroscopic observations to the dynamics of force-generating mesoscopic cytoskeletal structures. Tissue fragments undergo a specific toroid-spheroid folding process leading to complete regeneration towards a new organism. The time scale of folding is too fast for biochemical signalling or morphogenetic gradients, which forced us to assume purely mechanical self-organization. The initial pattern selection dynamics was studied by embedding toroids into hydro-gels, allowing us to observe the deformation modes over longer periods of time. We found increasing mechanical fluctuations which break the toroidal symmetry, and discuss the evolution of their power spectra for various gel stiffnesses. Our observations are related to single-cell studies which explain the mechanical feasibility of the folding process. In addition, we observed switching of cells from a tissue bound to a migrating state after folding failure as well as in tissue injury. We found a supra-cellular actin ring assembled along the toroid's inner edge. Its contraction can lead to the observed folding dynamics as we could confirm by finite element simulations. This actin ring in the inner cell layer is assembled by myosin-driven length fluctuations of supra-cellular F-actin bundles (myonemes) in the outer cell layer. This paper is dedicated to Malcolm Steinberg.
van 't Hag, Leonie; Gras, Sally L; Conn, Charlotte E; Drummond, Calum J
2017-05-22
Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).
Wald, Tomas; Spoutil, Frantisek; Osickova, Adriana; Prochazkova, Michaela; Benada, Oldrich; Kasparek, Petr; Bumba, Ladislav; Klein, Ophir D; Sedlacek, Radislav; Sebo, Peter; Prochazka, Jan; Osicka, Radim
2017-02-28
The formation of mineralized tissues is governed by extracellular matrix proteins that assemble into a 3D organic matrix directing the deposition of hydroxyapatite. Although the formation of bones and dentin depends on the self-assembly of type I collagen via the Gly-X-Y motif, the molecular mechanism by which enamel matrix proteins (EMPs) assemble into the organic matrix remains poorly understood. Here we identified a Y/F-x-x-Y/L/F-x-Y/F motif, evolutionarily conserved from the first tetrapods to man, that is crucial for higher order structure self-assembly of the key intrinsically disordered EMPs, ameloblastin and amelogenin. Using targeted mutations in mice and high-resolution imaging, we show that impairment of ameloblastin self-assembly causes disorganization of the enamel organic matrix and yields enamel with disordered hydroxyapatite crystallites. These findings define a paradigm for the molecular mechanism by which the EMPs self-assemble into supramolecular structures and demonstrate that this process is crucial for organization of the organic matrix and formation of properly structured enamel.
Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems.
Zhang, Xin; Rehm, Stefanie; Safont-Sempere, Marina M; Würthner, Frank
2009-11-01
Water-soluble, self-assembled nanocapsules composed of a functional bilayer membrane and enclosed guest molecules can provide smart (that is, condition responsive) sensors for a variety of purposes. Owing to their outstanding optical and redox properties, perylene bisimide chromophores are interesting building blocks for a functional bilayer membrane in a water environment. Here, we report water-soluble perylene bisimide vesicles loaded with bispyrene-based energy donors in their aqueous interior. These loaded vesicles are stabilized by in situ photopolymerization to give nanocapsules that are stable over the entire aqueous pH range. On the basis of pH-tunable spectral overlap of donors and acceptors, the donor-loaded polymerized vesicles display pH-dependent fluorescence resonance energy transfer from the encapsulated donors to the bilayer dye membrane, providing ultrasensitive pH information on their aqueous environment with fluorescence colour changes covering the whole visible light range. At pH 9.0, quite exceptional white fluorescence could be observed for such water-soluble donor-loaded perylene vesicles.
The Lipid domain Phase diagram in a Dipalmitoyl-PC/Docosahaexnoic Acid-PE/Cholesterol System
NASA Astrophysics Data System (ADS)
Lor, Chai; Hirst, Linda
2011-03-01
Lipid domains in bilayer membrane and polyunsaturated fatty acids (PUFAs) are thought to play an important role in cellular activities. In particular, lipids containing docosahaexnoic acid are an interesting class of PUFAs due to their health benefits. In this project, we perform oxidation measurements of DHA-PE to determine the rate of oxidation in combination with antioxidants. A ternary diagram of DPPC/DHA-PE/cholesterol is mapped out to identify phase separation phenomena using atomic force microscope (AFM). Fluorescence microscopy is also used to image lipid domains in a flat bilayer with fluorescent labels. As expected, we observe the phase, shape, and size of lipid domains changes with varying composition. Moreover, we find that the roughness of the domains changes possibly due to overpacking of cholesterol in domains. This model study provides further understanding of the role of cholesterol in the bilayer membrane leading towards a better understanding of cell membranes. NSF award # DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol In The Cell Membrane.''
Waveguide electro-optic modulators based on intrinsically polar self-assembled superlattices (SASs)
NASA Astrophysics Data System (ADS)
Liu, Zhifu; Ho, Seng Tiong; Chang, Seongsik; Zhao, Yiguang; Marks, Tobin J.; Kang, Hu; van der Boom, Milko E.; Zhu, Peiwang
2002-12-01
In this paper we describe methods of fabricating and characterizing organic electro-optic modulators based on intrinsically polar self-assembled superlattices. These structures are intrinsically acentric, and exhibit large second harmonic generation and electro-optic responses without the requirement of poling by an external electric field. A novel wet chemical protection-deprotection approach for the growth of self-assembled superlattices have been developed, and the refractive indices of self-assembled organic electro-optic superlattices may be tuned during the self-assembly process. Prototype electro-optic modulators based on chromophoric self-assembled superlattices have been designed and fabricated. The effective electro-optic coefficient of the self-assembled superlattice film in a phase modulator is estimated as about 20 pm/V at a wavelength of 1064 nm.
Jin, Haibao; Jiao, Fang; Daily, Michael D.; ...
2016-07-12
Two-dimensional (2D) materials with molecular-scale thickness have attracted increasing interest for separation, electronic, catalytic, optical, energy and biomedical applications. Although extensive research on 2D materials, such as graphene and graphene oxide, has been performed in recent years, progress is limited on self-assembly of 2D materials from sequence-specific macromolecules, especially from synthetic sequences that could exhibit lipid-like self-assembly of bilayer sheets and mimic membrane proteins for functions. The creation of such new class of materials could enable development of highly stable biomimetic membranes that exhibit cell-membrane-like molecular transport with exceptional selectively and high transport rates. Here we demonstrate self-assembly of lipid-likemore » 12-mer peptoids into extremely stable, crystalline, flexible and free-standing 2D membrane materials. As with cell membranes, upon exposure to external stimuli, these materials exhibit changes in thickness, varying from 3.5 nm to 5.6 nm. We find that self-assembly occurs through a facile crystallization process, in which inter-peptoid hydrogen bonds and enhanced hydrophobic interactions drive the formation of a highly-ordered structure. Molecular simulation confirms this is the energetically favored structure. Displaying functional groups at arbitrary locations of membrane-forming peptoids produces membranes with similar structures. This research further shows that single-layer membranes can be coated onto substrate surfaces. Moreover, membranes with mechanically-induced defects can self-repair. Given that peptoids are sequence-specific and exhibit protein-like molecular recognition with enhanced stability, we anticipate our membranes to be a robust platform tailored to specific applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Haibao; Jiao, Fang; Daily, Michael D.
Two-dimensional (2D) materials with molecular-scale thickness have attracted increasing interest for separation, electronic, catalytic, optical, energy and biomedical applications. Although extensive research on 2D materials, such as graphene and graphene oxide, has been performed in recent years, progress is limited on self-assembly of 2D materials from sequence-specific macromolecules, especially from synthetic sequences that could exhibit lipid-like self-assembly of bilayer sheets and mimic membrane proteins for functions. The creation of such new class of materials could enable development of highly stable biomimetic membranes that exhibit cell-membrane-like molecular transport with exceptional selectively and high transport rates. Here we demonstrate self-assembly of lipid-likemore » 12-mer peptoids into extremely stable, crystalline, flexible and free-standing 2D membrane materials. As with cell membranes, upon exposure to external stimuli, these materials exhibit changes in thickness, varying from 3.5 nm to 5.6 nm. We find that self-assembly occurs through a facile crystallization process, in which inter-peptoid hydrogen bonds and enhanced hydrophobic interactions drive the formation of a highly-ordered structure. Molecular simulation confirms this is the energetically favored structure. Displaying functional groups at arbitrary locations of membrane-forming peptoids produces membranes with similar structures. This research further shows that single-layer membranes can be coated onto substrate surfaces. Moreover, membranes with mechanically-induced defects can self-repair. Given that peptoids are sequence-specific and exhibit protein-like molecular recognition with enhanced stability, we anticipate our membranes to be a robust platform tailored to specific applications.« less
Light-activated control of protein channel assembly mediated by membrane mechanics
NASA Astrophysics Data System (ADS)
Miller, David M.; Findlay, Heather E.; Ces, Oscar; Templer, Richard H.; Booth, Paula J.
2016-12-01
Photochemical processes provide versatile triggers of chemical reactions. Here, we use a photoactivated lipid switch to modulate the folding and assembly of a protein channel within a model biological membrane. In contrast to the information rich field of water-soluble protein folding, there is only a limited understanding of the assembly of proteins that are integral to biological membranes. It is however possible to exploit the foreboding hydrophobic lipid environment and control membrane protein folding via lipid bilayer mechanics. Mechanical properties such as lipid chain lateral pressure influence the insertion and folding of proteins in membranes, with different stages of folding having contrasting sensitivities to the bilayer properties. Studies to date have relied on altering bilayer properties through lipid compositional changes made at equilibrium, and thus can only be made before or after folding. We show that light-activation of photoisomerisable di-(5-[[4-(4-butylphenyl)azo]phenoxy]pentyl)phosphate (4-Azo-5P) lipids influences the folding and assembly of the pentameric bacterial mechanosensitive channel MscL. The use of a photochemical reaction enables the bilayer properties to be altered during folding, which is unprecedented. This mechanical manipulation during folding, allows for optimisation of different stages of the component insertion, folding and assembly steps within the same lipid system. The photochemical approach offers the potential to control channel assembly when generating synthetic devices that exploit the mechanosensitive protein as a nanovalve.
Cheng, H.-W.; Dienemann, J.-N.; Stock, P.; Merola, C.; Chen, Y.-J.; Valtiner, M.
2016-01-01
Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations. PMID:27452615
Cheng, H-W; Dienemann, J-N; Stock, P; Merola, C; Chen, Y-J; Valtiner, M
2016-07-25
Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations.
Supramolecular Control in Nanostructured Film Architectures for Detecting Breast Cancer.
Soares, Juliana Coatrini; Shimizu, Flavio Makoto; Soares, Andrey Coatrini; Caseli, Luciano; Ferreira, Jacqueline; Oliveira, Osvaldo N
2015-06-10
The need for early detection of various diseases, including breast cancer, has motivated research into nanomaterials that can be assembled in organized films which serve as biosensors. Owing to the variety of possible materials and film architectures, procedures are required to design optimized biosensors. In this study, we combine surface-specific methods to monitor the assembly of antibodies on nanostructured films with two distinct architectures. In the first, a layer of the antibody type mouse anti-HER2 (clone tab250) was immobilized on a self-assembled monolayer (SAM) of 11-mercaptoundecanoic acid modified with N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC). In the second approach, a SAM of cysteamine was coated with a biotin/spreptavidin bilayer on which a layer of biotinylated antibody type MSx2HUp185/her biotin was adsorbed. The rougher, less passivating coating with cysteamine determined from cyclic voltammetry and scanning electron microscopy led to biosensors that are more sensitive to detect the breast cancer ERBB2 (HER2) biomarker in impedance spectroscopy measurements. This higher distinguishing ability of the cysteamine-containing film architecture was proven with information visualization methods to treat the impedance data. Polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) confirmed that biosensing resulted from the antibody-ERBB2 antigen affinity.
Sarker, Ashis K; Hong, Jong-Dal
2012-08-28
Multilayer assemblies of uniform ultrathin film electrodes with good electrical conductivity and very large surface areas were prepared for use as electrochemical capacitors. A layer-by-layer self-assembly approach was employed in an effort to improve the processability of highly conducting polyaniline (PANi) and chemically modified graphene. The electrochemical properties of the multilayer film (MF-) electrodes, including the sheet resistance, volumetric capacitance, and charge/discharge ratio, were determined by the morphological modification and the method used to reduce the graphene oxide (GO) to reduced graphene oxide (RGO) in the multilayer films. The PANi and GO concentrations could be modulated to control the morphology of the GO monolayer film in the multilayer assemblies. Optical ellipsometry was used to determine the thickness of the GO film in a single layer (1.32 nm), which agreed well with the literature value (~1.3 nm). Hydroiodic acid (HI), hydrazine, or pyrolysis were tested for the reduction of GO to RGO. HI was found to be the most efficient technique for reducing the GO to RGO in the multilayer assemblies while minimizing damage to the virgin state of the acid-doped PANi. Ultimately, the MF-electrode, which could be optimized by fine-tuning the nanostructure and selecting a suitable reduction method, exhibited an excellent volumetric capacitance, good cycling stability, and a rapid charge/discharge rate, which are required for supercapacitors. A MF-electrode composed of 15 PANi/RGO bilayers yielded a volumetric capacitance of 584 F/cm(3) at a current density of 3.0 A/cm(3). Although this value decreased exponentially as the current density increased, approaching a value of 170 F/cm(3) at 100 A/cm(3), this volumetric capacitance is one of the best yet reported for the other carbon-based materials. The intriguing features of the MF-electrodes composed of PANi/RGO multilayer films offer a new microdimensional design for high energy storage devices for use in small portable electronic devices.
Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures.
Imura, Tomohiro; Ohta, Noboru; Inoue, Katsuaki; Yagi, Naoto; Negishi, Hideyuki; Yanagishita, Hiroshi; Kitamoto, Dai
2006-03-08
Self-assembling properties of "natural" glycolipid biosurfactants, mannosyl-erythritol lipids A and B (MEL-A, MEL-B), which are abundantly produced from yeast strains, were investigated by using the fluorescence-probe method, dynamic light-scattering (DLS) analysis, freeze-fracture transmission electron microscopy (FF-TEM), and synchrotron small/wide-angle X-ray scattering (SAXS/WAXS) analysis, among other methods. Both MEL-A and MEL-B exhibit excellent self-assembly properties at extremely low concentrations; they self-assemble into large unilamellar vesicles (LUV) just above their critical-aggregation concentration (CAC). The CAC(I) value was found to be 4.0x10(-6) M for MEL-A and 6.0x10(-6) M for MEL-B. Moreover, the self-assembled structure of MEL-A above a CAC(II) value of 2.0x10(-5) M was found to drastically change into sponge structures (L3) composed of a network of randomly connected bilayers that are usually obtained from a complicated multicomponent "synthetic" surfactant system. Interestingly, the average water-channel diameter of the sponge structure was 100 nm. This is relatively large compared with those obtained from "synthetic" surfactant systems. In addition, MEL-B, which has a hydroxyl group at the C-4' position on mannose instead of an acetyl group, gives only one CAC; the self-assembled structure of MEL-B seems to gradually move from LUV to multilamellar vesicles (MLV) with lattice constants of 4.4 nm, depending on the concentration. Furthermore, the lyotropic-liquid-crystal-phase observation at high concentrations demonstrates the formation of an inverted hexagonal phase (H2) for MEL-A, together with a lamella phase (L(alpha)) for MEL-B, indicating a difference between MEL-A and MEL-B molecules in the spontaneous curvature of the assemblies. These results clearly show that the difference in spontaneous curvature caused by the single acetyl group on the head group probably decides the direction of self-assembly of glycolipid biosurfactants. The unique and complex molecular structures with several chiral centers that are molecularly engineered by microorganisms must have led to the sophisticated self-assembling properties of the glycolipid biosurfactants.
Perlmutter, Jason D.; Hagan, Michael F.
2015-01-01
Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid, and in some cases surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assembles within their host cells and in vitro. We describe the thermodynamics and kinetics for assembly of protein subunits into icosahedral capsid shells, and how these are modified in cases where the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques that have been used to characterize capsid assembly, and we highlight aspects of virus assembly which are likely to receive significant attention in the near future. PMID:25532951
NASA Astrophysics Data System (ADS)
Qi, Wei; Ghoroghchian, P. Peter; Li, Guizhi; Hammer, Daniel A.; Therien, Michael J.
2013-10-01
Nanoparticles formed from diblock copolymers of FDA approved PEO and PCL have generated considerable interest as in vivo drug delivery vehicles. Herein, we report the synthesis of the most extensive family PEO-b-PCL copolymers that vary over the largest range of number-average molecular weights (Mn: 3.6-57k), PEO weight fractions (fPEO: 0.08-0.33), and PEO chain lengths (0.75-5.8k) reported to date. These polymers were synthesized in order to establish the full range of aqueous phase behaviours of these diblock copolymers and to specifically identify formulations that were able to generate bilayered vesicles (polymersomes). Cryogenic transmission electron microscopy (cryo-TEM) was utilized in order to visualize the morphology of these structures upon aqueous self-assembly of dry polymer films. Nanoscale polymersomes were formed from PEO-b-PCL copolymers over a wide range of PEO weight fractions (fPEO: 0.14-0.27) and PEO molecular weights (0.75-3.8k) after extrusion of aqueous suspensions. Comparative morphology diagrams, which describe the nature of self-assembled structures as a function of diblock copolymer molecular weight and PEO weight fraction, show that in contrast to micron-scale polymersomes, which form only from a limited range of PEO-b-PCL diblock copolymer compositions, a multiplicity of PEO-b-PCL diblock copolymer compositions are able to give rise to nanoscale vesicles. These data underscore that PEO-b-PCL compositions that spontaneously form micron-sized polymersomes, as well as those that have previously been reported to form polymersomes via a cosolvent fabrication system, provide only limited insights into the distribution of PEO-b-PCL diblocks that give rise to nanoscale vesicles. The broad range of polymersome-forming PEO-b-PCL compositions described herein suggest the ability to construct extensive families of nanoscale vesicles of varied bilayer thickness, providing the ability to tune the timescales of vesicle degradation and encapsulant release based on the intended in vivo application.Nanoparticles formed from diblock copolymers of FDA approved PEO and PCL have generated considerable interest as in vivo drug delivery vehicles. Herein, we report the synthesis of the most extensive family PEO-b-PCL copolymers that vary over the largest range of number-average molecular weights (Mn: 3.6-57k), PEO weight fractions (fPEO: 0.08-0.33), and PEO chain lengths (0.75-5.8k) reported to date. These polymers were synthesized in order to establish the full range of aqueous phase behaviours of these diblock copolymers and to specifically identify formulations that were able to generate bilayered vesicles (polymersomes). Cryogenic transmission electron microscopy (cryo-TEM) was utilized in order to visualize the morphology of these structures upon aqueous self-assembly of dry polymer films. Nanoscale polymersomes were formed from PEO-b-PCL copolymers over a wide range of PEO weight fractions (fPEO: 0.14-0.27) and PEO molecular weights (0.75-3.8k) after extrusion of aqueous suspensions. Comparative morphology diagrams, which describe the nature of self-assembled structures as a function of diblock copolymer molecular weight and PEO weight fraction, show that in contrast to micron-scale polymersomes, which form only from a limited range of PEO-b-PCL diblock copolymer compositions, a multiplicity of PEO-b-PCL diblock copolymer compositions are able to give rise to nanoscale vesicles. These data underscore that PEO-b-PCL compositions that spontaneously form micron-sized polymersomes, as well as those that have previously been reported to form polymersomes via a cosolvent fabrication system, provide only limited insights into the distribution of PEO-b-PCL diblocks that give rise to nanoscale vesicles. The broad range of polymersome-forming PEO-b-PCL compositions described herein suggest the ability to construct extensive families of nanoscale vesicles of varied bilayer thickness, providing the ability to tune the timescales of vesicle degradation and encapsulant release based on the intended in vivo application. Electronic supplementary information (ESI) available: Materials and methods, characterization data. See DOI: 10.1039/c3nr03250g
Coherent assembly of heterostructures in ternary and quaternary carbonitrides
NASA Astrophysics Data System (ADS)
Caicedo, J. C.; Aperador, W.; Saldarriaga, W.
2018-05-01
In this study, ternary and quaternary carbonitride heterostructure systems were grown on silicon (100) substrates in order to investigate coherent assembly in TiCN/TiNbCN. The heterostructure films were grown using the reactive r. f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n), while maintaining a constant total coating thickness (∼3 μm). The heterostructures were characterized by high angle X-ray diffraction (HA-XRD) and low angle X-ray diffraction, while the TiCN and TiNbCN layers were analyzed by X-ray photoelectron spectroscopy and transmission electron microscopy. The HA-XRD results indicated preferential growth in the face-centered cubic (111) crystal structure for the [TiCN/TiNbCN]n heterostructures. The maximum coherent assembly was observed with the presence of satellite peaks. Thus, ternary and quaternary carbonitride films were designed and deposited on Si (100) substrates with bilayer periods (Λ) in a broad range from nanometers to hundreds of nanometers in order to study the structural evolution and coherent assembly progress as the bilayer thickness decreased. We determined physical properties comprising the critical angle (θc) (0.362°), electronic density (ρe) (0.521 × 1033 el/m3), dispersion coefficient (δ) (0.554 el/m3), and refractive index (n) (0.999944) as functions of the number of bilayers (n).
Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.
2011-01-01
One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1–S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and indicate retention of the protein’s folded three-dimensional tertiary structure upon completion of membrane bilayer reconstitution. Moreover, the resulting high in-plane density of vectorially oriented protein within a fully hydrated single phospholipid bilayer membrane at the solid-liquid interface will enable investigation of their conformational states as a function of the transmembrane electric potential. PMID:22060407
Solid-Supported Lipid Membranes: Formation, Stability and Applications
NASA Astrophysics Data System (ADS)
Goh, Haw Zan
This thesis presents a comprehensive investigation of the formation of supported lipid membranes with vesicle hemifusion, their stability under detergents and organic solvents and their applications in molecular biology. In Chapter 3, we describe how isolated patches of DOPC bilayers supported on glass surfaces are dissolved by various detergents (decyl maltoside, dodecyl maltoside, CHAPS, CTAB, SDS, TritonX-100 and Tween20) at their CMC, as investigated by fluorescence video microscopy. In general, detergents partition into distal leaflets of bilayers and lead to the expansion of the bilayers through a rolling motion of the distal over the proximal leaflets, in agreement with the first stage of the established 3-stage model of lipid vesicle solubilization by detergents. Subsequently, we study the partitioning of organic solvents (methanol, ethanol, isopropanol, propanol, acetone and chloroform) into isolated bilayer patches on glass in Chapter 4 with fluorescence microscopy. The area expansion of bilayers due to the partitioning of organic solvents is measured. From the titration of organic solvents, we measured the rate of area expansion as a function of the volume fraction of organic solvents, which is proposed to be a measure of strength of interactions between solvents and membranes. From the same experiments, we also measure the maximum expansion of bilayers (or the maximum binding stoichiometry between organic solvents and lipids) before structural breakdown, which depends on the depth of penetration of solvents to the membranes. In Chapter 5, we investigate the formation of sparsely-tethered bilayer lipid membranes (stBLMs) with vesicle hemifusion. In vesicle hemifusion, lipid vesicles in contact with a hydrophobic alkyl-terminated self-assembled monolayer (SAM) deposit a lipid monolayer to the SAM surface, thus completing the bilayer. Electrical Impedance Spectroscopy and Neutron Reflectivity are used to probe the integrity of stBLMs in terms of their insulating and structural properties. Preparation conditions are screened for those that are optimal for stBLM formation. Concentrations of lipid vesicles, hydrophobicity of SAMs, the presence of calcium and high concentrations of salt are identified as the key parameters. We show that stBLMs can be formed with vesicles of different compositions. Vesicle hemifusion opens up a new route in preserving the chemical compositions of stBLMs and facilitating membrane proteins incorporation. In Chapter 6, we visualize the hemifusion pathway of giant unilamellar vesicles (GUVs) with planar hydrophobic surfaces at the single vesicle level with fluorescence video microscopy. When a GUV hemifuses to a surface, its outer leaflet breaks apart and remains connected to the surface presumably through a hemifusion diaphragm. Lipids from the outer leaflet are transferred to the surface as a lipid monolayer that expands radially outward from the hemifusion diaphragm, thereby forming the loosely packed outer hemifusion zone. In Chapter 7, we develop an in vitro assay employing stBLMs and lipid vesicles to examine the functionality of GRASP in membrane tethering. Membrane-bound GRASP on opposing membranes dimerizes and tethers fluorescently-labeled vesicles to stBLMs. The fluorescence intensity of images taken at stBLM surfaces is used to quantify the tethering activity. Both wild type and mutant proteins were studied to shed light on the molecular mechanism of tethering. We show that the GRASP domain is sufficient and necessary for membrane tethering. In addition, the tethering capability of GRASP is impaired when the internal ligands and the binding pockets participating in dimerization are deleted and mutated. Membrane anchors, sizes of vesicles and membrane compositions are explored for their influence on the outcomes of the assay. Furthermore, preliminary analysis from neutron reflectivity measurements shows that both the internal ligands and binding pockets are exposed instead of buried toward the membrane surface. In summary, we establish a functional assay for studying GRASP activity in vitro. (Abstract shortened by UMI.)
Self assembly of organic nanostructures and dielectrophoretic assembly of inorganic nanowires.
NASA Astrophysics Data System (ADS)
Dholakia, Geetha; Kuo, Steven; Allen, E. L.
2007-03-01
Self assembly techniques enable the organization of organic molecules into nanostructures. Currently engineering strategies for efficient assembly and routine integration of inorganic nanoscale objects into functional devices is very limited. AC Dielectrophoresis is an efficient technique to manipulate inorganic nanomaterials into higher dimensional structures. We used an alumina template based sol-gel synthesis method for the growth of various metal oxide nanowires with typical diameters of 100-150 nm, ranging in length from 3-10 μm. Here we report the dielectrophoretic assembly of TiO2 nanowires, an important material for photocatalysis and photovoltaics, onto interdigitated devices. Self assembly in organic nanostructures and its dependence on structure and stereochemistry of the molecule and dielectrophoretic field dependence in the assembly of inorganic nanowires will be compared and contrasted. Tunneling spectroscopy and DOS of these nanoscale systems will also be discussed.
Cheng, Tzu-Yun; Chen, Ming-Hong; Chang, Wen-Han; Huang, Ming-Yuan; Wang, Tzu-Wei
2013-03-01
Brain injury is almost irreparable due to the poor regenerative capability of neural tissue. Nowadays, new therapeutic strategies have been focused on stem cell therapy and supplying an appropriate three dimensional (3D) matrix for the repair of injured brain tissue. In this study, we specifically linked laminin-derived IKVAV motif on the C-terminal to enrich self-assembling peptide RADA(16) as a functional peptide-based scaffold. Our purpose is providing a functional self-assembling peptide 3D hydrogel with encapsulated neural stem cells to enhance the reconstruction of the injured brain. The physiochemical properties reported that RADA(16)-IKVAV can self-assemble into nanofibrous morphology with bilayer β-sheet structure and become gelationed hydrogel with mechanical stiffness similar to brain tissue. The in vitro results showed that the extended IKVAV sequence can serve as a signal or guiding cue to direct the encapsulated neural stem cells (NSCs) adhesion and then towards neuronal differentiation. Animal study was conducted in a rat brain surgery model to demonstrate the damage in cerebral neocortex/neopallium loss. The results showed that the injected peptide solution immediately in situ formed the 3D hydrogel filling up the cavity and bridging the gaps. The histological analyses revealed the RADA(16)-IKVAV self-assembling peptide hydrogel not only enhanced survival of encapsulated NSCs but also reduced the formation of glial astrocytes. The peptide hydrogel with IKVAV extended motifs also showed the support of encapsulated NSCs in neuronal differentiation and the improvement in brain tissue regeneration after 6 weeks post-transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Minghui; Yang, Hui; Wang, Shujuan; Zhang, Wei; Hou, Qingfeng; Guo, Donghong; Liu, Fanghui; Chen, Ting; Wu, Xu; Wang, Jinben
2018-06-20
Amphiphilic poly(amidoamine) (PAMAM) dendrimers are a well-known dendritic family due to their remarkable ability to self-assemble on solid surface. However, the relationship between molecular conformation (or adsorption kinetics) of a self-assembled layer and molecular amphiphilicity of such kind of dendrimer is still lacking, which limits the development of modulating self-assembling structures and surface functionality. With this in mind, we synthesized a series of amphiphilic PAMAM-based dendrimers, denoted as G 1 C n , with different alkyl chains ( n = 8, 12, and 16), and investigated the molecular aggregation on silica surfaces by means of quartz crystal microbalance with dissipation, atomic force microscopy, and contact angle. After rinsing, remaining adsorption amounts of G 1 C 12 were higher than those of G 1 C 8 at high concentrations, suggesting that G 1 C 12 adlayers were more stable due to the stronger intermolecular hydrophobic interactions, whereas it preferred to adopt the intramolecular hydrophobic interactions for G 1 C 16 , with low adsorption amounts and unstable adlayers. Bilayer-like structures were inferred in G 1 C 8 and G 1 C 12 adlayers with loose conformation, whereas monolayer structures were likely to exist in the sparse adsorption film of G 1 C 16 . Our results provided more detailed understanding of the effect of molecular structure on the self-assembled structures of amphiphilic dendrimers on solid surfaces, shedding light on the controlled microstructure and wettability of functional surface by modulating the length of hydrophobic chains of dendrimers and a potential application of dendrimer-substrate combinations.
Soluble P3HT-Grafted Graphene for Efficient Bilayer - Heterojunction Photovoltaic Devices
2010-01-01
the building blocks for CNTs and other carbon nanomaterials , the two-dimensional (2-D) single atomic carbon sheets of graphene show remarkable elec...highest room- temperature mobility for electron and hole transport among all known carbon nanomaterials .25 Compared with CNTs, the one-atom thickness and...Nano 2010, 4, 887–894. 27. Yu, D.; Dai, L. Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors . J. Phys. Chem. Lett. 2010, 1, 467
NASA Astrophysics Data System (ADS)
Martinez-Espinoza, Maria Isabel; Maccagno, Massimo; Thea, Sergio; Alloisio, Marina
2018-01-01
Stable hydrosols of gold and silver nanoparticles coated with the quaternary-ammonium group endowed diacetylene DAAMM (N,N,N-trimethyl-3-(pentacosa-10,12-diynamido)propan-1-ammonium) were obtained through a ligand-exchange reaction leaving the morphology of the pristine cores unmodified. Photopolymerization of the chemisorbed diacetylene shell occurred in both red and blue phases thanks to the presence of internal, H-bondable amide functions in the monomer chain, which are supposed to help the formation of a packed bilayer on the metal surfaces. Multidisciplinary characterization of the polymerized samples, including spectroscopic, morphological and thermal techniques, highlighted that differences occur in the polymerization process on gold and silver nanoparticles under different experimental conditions, suggesting a higher affinity of the trimethylammonium headgroup for gold substrates in acidic media. With respect to the extensively investigated PCDA (pentacosa-10,12-diynoic acid), DAAMM showed reduced capability of photogenerating thick polymer shells, especially in the more delocalized blue form, probably because of the inefficiency of the cationic monomer to form the multi-bilayered architecture typical of the highly-performing, carboxyl-terminated diacetylene. On the other end, the inner cross-linked structure gives to poly(DAAMM)-coated nanohybrids increased stability in water with respect to self-assembled counterparts deriving from saturated cationic surfactants, making them a promising sensing platform for rapid and cost effective assays of real samples.
NASA Astrophysics Data System (ADS)
Sarles, Stephen A.; Sundaresan, Vishnu B.; Leo, Donald J.
2007-09-01
Bilayer lipid membranes (BLMs) have been studied extensively due to functional and structural similarities to cell membranes, fostering research to understand ion-channel protein functions, measure bilayer mechanical properties, and identify self-assembly mechanisms. BLMs have traditionally been formed across single pores in substrates such as PTFE (Teflon). The incorporation of ion-channel proteins into the lipid bilayer enables the selective transfer of ions and fluid through the BLM. Processes of this nature have led to the measurement of ion current flowing across the lipid membrane and have been used to develop sensors that signal the presence of a particular reactant (glucose, urea, penicillin), improve drug recognition in cells, and develop materials capable of creating chemical energy from light. Recent research at Virginia Tech has shown that the incorporation of proton transporters in a supported BLM formed across an array of pores can convert chemical energy available in the adenosine triphosphate (ATP) into electricity. Experimental results from this work show that the system-named Biocell-is capable of developing 2µW/cm2 of membrane area with 15μl of ATPase. Efforts to increase the power output and conversion efficiency of this process while moving toward a packaged device present a unique engineering problem. The bilayer, as host to the active proton transporters, must therefore be formed evenly across a porous substrate, remain stable and yet fluid-like for protein interaction, and exhibit a large seal resistance. This article presents the ongoing work to characterize the Biocell using impedance analysis. Electrical impedance spectroscopy (EIS) is used to study the effect of adding ATPase proteins to POPS:POPE bilayer lipid membranes and correlate structural changes evident in the impedance data to the energy-conversion capability of various partial and whole Biocell assemblies. The specific membrane resistance of a pure BLM drops from 40-120kΩ•cm2 to only a few hundred Ω•cm2 upon reconstitution of ATPase proteins. Power characterization indicates that ATP hydrolysis may result in charging of the silver-silver chloride electrodes.
Adams, Peter G.; Collins, Aaron M.; Sahin, Tuba; ...
2015-04-08
Here we report generation of modular, artificial light-harvesting assemblies where an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(butadiene), serves as the framework for noncovalent organization of BODIPY-based energy donor and bacteriochlorin-based energy acceptor chromophores. The assemblies are adaptive and form well-defined micelles in aqueous solution and high-quality monolayer and bilayer films on solid supports, with the latter showing greater than 90% energy transfer efficiency. Ultimately, this study lays the groundwork for further development of modular, polymer-based materials for light harvesting and other photonic applications.
Self-assembly patterning of organic molecules on a surface
Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing
2017-04-04
The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.
Crops: a green approach toward self-assembled soft materials.
Vemula, Praveen Kumar; John, George
2008-06-01
To date, a wide range of industrial materials such as solvents, fuels, synthetic fibers, and chemical products are being manufactured from petroleum resources. However, rapid depletion of fossil and petroleum resources is encouraging current and future chemists to orient their research toward designing safer chemicals, products, and processes from renewable feedstock with an increased awareness of environmental and industrial impact. Advances in genetics, biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting renewable biomass to valuable fuels and products, generally known as the biorefinery concept. The swift integration of crop-based materials synthesis and biorefinery manufacturing technologies offers the potential for new advances in sustainable energy alternatives and biomaterials that will lead to a new manufacturing paradigm. This Account presents a novel and emerging concept of generating various forms of soft materials from crops (an alternate feedstock). In future research, developing biobased soft materials will be a fascinating yet demanding practice, which will have direct impact on industrial applications as an economically viable alternative. Here we discuss some remarkable examples of glycolipids generated from industrial byproducts such as cashew nut shell liquid, which upon self-assembly produced soft nanoarchitectures including lipid nanotubes, twisted/helical nanofibers, low-molecular-weight gels, and liquid crystals. Synthetic methods applied to a "chiral pool" of carbohydrates using the selectivity of enzyme catalysis yield amphiphilic products derived from biobased feedstock including amygdalin, trehalose, and vitamin C. This has been achieved with a lipase-mediated regioselective synthetic procedure to obtain such amphiphiles in quantitative yields. Amygdalin amphiphiles showed unique gelation behavior in a broad range of solvents such as nonpolar hexanes to polar aqueous solutions. Importantly, an enzyme triggered drug-delivery model for hydrophobic drugs was demonstrated by using these supramolecularly assembled hydrogels. Following a similar biocatalytic approach, vitamin C amphiphiles were synthesized with different hydrocarbon chain lengths, and their ability to self-assemble into molecular gels and liquid crystals has been studied in detail. Such biobased soft materials were successfully used to develop novel organic-inorganic hybrid materials by in situ synthesis of metal nanoparticles. The self-assembled soft materials were characterized by several spectroscopic techniques, UV-visible, infrared, and fluorescence spectrophotometers, as well as microscopic methods including polarized optical, confocal, scanning, and transmission electron microscopes, and thermal analysis. The molecular packing of the hierarchically assembled bilayer membranes was fully elucidated by X-ray analysis. We envision that the results summarized in this Account will encourage interdisciplinary collaboration between scientists in the fields of organic synthesis, soft materials research, and green chemistry to develop functional materials from underutilized crop-based renewable feedstock, with innovation driven both by material needs and environmentally benign design principles.
Multifunctional Nanoparticles Self-Assembled from Small Organic Building Blocks for Biomedicine.
Xing, Pengyao; Zhao, Yanli
2016-09-01
Supramolecular self-assembly shows significant potential to construct responsive materials. By tailoring the structural parameters of organic building blocks, nanosystems can be fabricated, whose performance in catalysis, energy storage and conversion, and biomedicine has been explored. Since small organic building blocks are structurally simple, easily modified, and reproducible, they are frequently employed in supramolecular self-assembly and materials science. The dynamic and adaptive nature of self-assembled nanoarchitectures affords an enhanced sensitivity to the changes in environmental conditions, favoring their applications in controllable drug release and bioimaging. Here, recent significant research advancements of small-organic-molecule self-assembled nanoarchitectures toward biomedical applications are highlighted. Functionalized assemblies, mainly including vesicles, nanoparticles, and micelles are categorized according to their topological morphologies and functions. These nanoarchitectures with different topologies possess distinguishing advantages in biological applications, well incarnating the structure-property relationship. By presenting some important discoveries, three domains of these nanoarchitectures in biomedical research are covered, including biosensors, bioimaging, and controlled release/therapy. The strategies regarding how to design and characterize organic assemblies to exhibit biomedical applications are also discussed. Up-to-date research developments in the field are provided and research challenges to be overcome in future studies are revealed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of Solid-Gas Interfaces for Enhanced Thermal Transfer
2015-09-28
modifications. Specifically, for metal surfaces modified with organic self - assembled monolayers (SAMs), both TAC and MAC are close to its theoretical...we designed solid surfaces functionalized with organic self - assembled monolayers (SAMs) and demonstrated associated significant improvement of the...at solid-gas interfaces by self - assembled monolayers ” Applied Physics Letters 102, 061907 (2013). 2. Zhi Liang, William Evans, and Pawel Keblinski
Self-assembly kinetics of DNA functionalised liposomes
NASA Astrophysics Data System (ADS)
Mognetti, B. M.; Bachmann, S. J.; Kotar, J.; Parolini, L.; Petitzon, M.; Cicuta, P.; di Michele, L.
DNA has been largely used to program state-dependent interactions between functionalised Brownian units resulting in responsive systems featuring complex phase behaviours. In this talk I will show how DNA can also be used to control aggregation kinetics in systems of liposomes functionalised by three types of linkers that can simultaneously bind. In doing so, I will present a general coarse-graining strategy that allows calculating the adhesion free energy between pairs of compliant units functionalised by mobile binders. I will highlight the important role played by bilayer deformability and will calculate the free energy contribution due to the presence of complexes made by more than two binders. Finally we will demonstrate the importance of explicitly accounting for the kinetics underlying ligand-receptor reactions when studying large-scale self-assembly. We acknowledge support from ULB, the Oppenheimer Fund, and the EPSRC Programme Grant CAPITALS No. EP/J017566/1.
Fiber optic pH sensor with self-assembled polymer multilayer nanocoatings.
Shao, Li-Yang; Yin, Ming-Jie; Tam, Hwa-Yaw; Albert, Jacques
2013-01-24
A fiber-optic pH sensor based on a tilted fiber Bragg grating (TFBG) with electrostatic self-assembly multilayer sensing film is presented. The pH sensitive polymeric film, poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) was deposited on the circumference of the TFBG with the layer-by-layer (LbL) electrostatic self-assembly technique. The PDDA/PAA film exhibits a reduction in refractive index by swelling in different pH solutions. This effect results in wavelength shifts and transmission changes in the spectrum of the TFBG. The peak amplitude of the dominant spectral fringes over a certain window of the transmission spectrum, obtained by FFT analysis, has a near-linear pH sensitivity of 117 arbitrary unit (a.u.)/pH unit and an accuracy of ±1 a.u. (in the range of pH 4.66 to pH 6.02). The thickness and surface morphology of the sensing multilayer film were characterized to investigate their effects on the sensor's performance. The dynamic response of the sensor also has been studied (10 s rise time and 18 s fall time for a sensor with six bilayers of PDDA/PAA).
Su, ZhangFei; Shodiev, Muzaffar; Leitch, J Jay; Abbasi, Fatemeh; Lipkowski, Jacek
2018-05-29
The insertion and ion-conducting channel properties of alamethicin reconstituted into a 1,2-di- O-phytanyl- sn-glycero-3-phosphocholine bilayer floating on the surface of a gold (111) electrode modified with a 1-thio-β-d-glucose (β-Tg) self-assembled monolayer were investigated using a combination of electrochemical impedance spectroscopy (EIS) and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). The hydrophilic β-Tg monolayer separated the bilayer from the gold substrate and created a water-rich spacer region, which better represents natural cell membranes. The EIS measurements acquired information about the membrane resistivity (a measure of membrane porosity), and the PM-IRRAS experiments provided insight into the conformation and orientation of the membrane constituents as a function of the transmembrane potential. The results showed that the presence of alamethicin had a small effect on the conformation and orientation of phospholipid molecules within the bilayer for all studied potentials. In contrast, the alamethicin peptides assumed a surface state, where the helical axes adopted a large tilt angle with respect to the surface normal, at small transmembrane potentials, and inserted into the bilayer at sufficiently negative transmembrane potentials forming pores, which behaved as barrel-stave ion channels for ionic transport across the membrane. The results indicated that insertion of alamethincin peptides into the bilayer was driven by the dipole-field interactions and that the transitions between the inserted and surface states were electrochemically reversible. Additionally, the EIS measurements performed on phospholipid bilayers without alamethicin also showed that the application of negative transmembrane potentials introduces defects into the bilayer. The membrane resistances measured in both the absence and presence of alamethicin show similar dependencies on the electrode potential, suggesting that the insertion of the peptide may also be assisted by the electroporation of the membrane. The findings in this study provide new insights into the mechanism of alamethicin insertion into phospholipid bilayers.
Stepwise Synthesis of Giant Unilamellar Vesicles on a Microfluidic Assembly Line
2011-01-01
Among the molecular milieu of the cell, the membrane bilayer stands out as a complex and elusive synthetic target. We report a microfluidic assembly line that produces uniform cellular compartments from droplet, lipid, and oil/water interface starting materials. Droplets form in a lipid-containing oil flow and travel to a junction where the confluence of oil and extracellular aqueous media establishes a flow-patterned interface that is both stable and reproducible. A triangular post mediates phase transfer bilayer assembly by deflecting droplets from oil, through the interface, and into the extracellular aqueous phase to yield a continuous stream of unilamellar phospholipid vesicles with uniform and tunable size. The size of the droplet precursor dictates vesicle size, encapsulation of small-molecule cargo is highly efficient, and the single bilayer promotes functional insertion of a bacterial transmembrane pore. PMID:21309555
NASA Astrophysics Data System (ADS)
Xue, Yongzhou; Chen, Zesheng; Ni, Haiqiao; Niu, Zhichuan; Jiang, Desheng; Dou, Xiuming; Sun, Baoquan
2017-10-01
We report on 1.3 μm single-photon emission based on a self-assembled strain-coupled bilayer of InAs quantum dots (QDs) embedded in a micropillar Bragg cavity at temperature of liquid nitrogen or even as high as 120 K. The obtained single-photon flux into the first lens of the collection optics is 4.2 × 106 and 3.3 × 106/s at 82 and 120 K, respectively, corresponding to a second-order correlation function at zero delay times of 0.27(2) and 0.28(3). This work reports on the significant effect of the micropillar cavity-related enhancement of QD emission and demonstrates an opportunity to employ telecom band single-photon emitters at liquid nitrogen or even higher temperature.
Multicomponent Supramolecular Systems: Self-Organization in Coordination-Driven Self-Assembly
Zheng, Yao-Rong; Yang, Hai-Bo; Ghosh, Koushik; Zhao, Liang; Stang, Peter J.
2009-01-01
The self-organization of multicomponent supramolecular systems involving a variety of two-dimensional (2-D) polygons and three-dimensional (3-D) cages is presented. Nine self-organizing systems, SS1–SS9, have been studied. Each involving the simultaneous mixing of organoplatinum acceptors and pyridyl donors of varying geometry and their selective self-assembly into three to four specific 2-D (rectangular, triangular, and rhomboid) and/or 3-D (triangular prism and distorted and nondistorted trigonal bipyramidal) supramolecules. The formation of these discrete structures is characterized using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). In all cases, the self-organization process is directed by: (1) the geometric information encoded within the molecular subunits and (2) a thermodynamically driven dynamic self-correction process. The result is the selective self-assembly of multiple discrete products from a randomly formed complex. The influence of key experimental variables – temperature and solvent – on the self-correction process and the fidelity of the resulting self-organization systems is also described. PMID:19544512
Kett, Peter J N; Casford, Michael T L; Davies, Paul B
2010-06-15
Sum frequency generation (SFG) spectroscopy has been used to study the structure of phosphatidylethanolamine hybrid bilayer membranes (HBMs) under water at ambient temperatures. The HBMs were formed using a modified Langmuir-Schaefer technique and consisted of a layer of dipalmitoyl phosphatidylethanolamine (DPPE) physisorbed onto an octadecanethiol (ODT) self-assembled monolayer (SAM) at a series of surface pressures from 1 to 40 mN m(-1). The DPPE and ODT were selectively deuterated so that the contributions to the SFG spectra from the two layers could be determined separately. SFG spectra in both the C-H and C-D stretching regions confirmed that a monolayer of DPPE had been adsorbed to the ODT SAM and that there were gauche defects within the alkyl chains of the phospholipid. On adsorption of a layer of DPPE, methylene modes from the ODT SAM were detected, indicating that the phospholipid had partially disordered the alkanethiol monolayer. SFG spectra recorded in air indicated that removal of water from the surface of the HBM resulted in disruption of the DPPE layer and the formation of phospholipid bilayers.
Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J
2005-11-23
The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.
Lipid bilayers suspended on microfabricated supports
NASA Astrophysics Data System (ADS)
Ogier, Simon D.; Bushby, Richard J.; Cheng, Yaling; Cox, Tim I.; Evans, Stephen D.; Knowles, Peter F.; Miles, Robert E.; Pattison, Ian
2001-03-01
The plasma membrane, that exists as part of many animal and plant cells, is a regulator for the transport of ions and small molecules across cell boundaries. Two main components involved are the phospholipid bilayer and the transport proteins. This paper details the construction of a micromachined support for bilayers (MSB) as a first step towards the development of highly selective and highly sensitive ion-channel based biosensors. The device consists of a ~100 micrometer hole in a polymeric support above a cavity that can hold ~25 nL of electrolyte. Electrodes attached to the structure allow the resistance of the membranes to be measured using d.c. conductivity. The MSB is made in two halves, using SU8 ultra-thick resist, which are subsequently bonded together to make the final structure. A layer of gold, surrounding the aperture, enables self-assembled monolayers of alkanethiols to be used to make the polymeric structure biocompatible. Lipid membranes have been formed over these holes with resistances comparable with those of natural membranes >10 MOhmcm^2. The ion-channel gramicidin has successfully been incorporated into the bilayer and its activity monitored. It is proposed that this type of device could be used not only for studying membrane transport phenomena but also as part of an ion-channel based biosensor.
NASA Astrophysics Data System (ADS)
Mann, Stephen
2009-10-01
Understanding how chemically derived processes control the construction and organization of matter across extended and multiple length scales is of growing interest in many areas of materials research. Here we review present equilibrium and non-equilibrium self-assembly approaches to the synthetic construction of discrete hybrid (inorganic-organic) nano-objects and higher-level nanostructured networks. We examine a range of synthetic modalities under equilibrium conditions that give rise to integrative self-assembly (supramolecular wrapping, nanoscale incarceration and nanostructure templating) or higher-order self-assembly (programmed/directed aggregation). We contrast these strategies with processes of transformative self-assembly that use self-organizing media, reaction-diffusion systems and coupled mesophases to produce higher-level hybrid structures under non-equilibrium conditions. Key elements of the constructional codes associated with these processes are identified with regard to existing theoretical knowledge, and presented as a heuristic guideline for the rational design of hybrid nano-objects and nanomaterials.
Structure and Dynamics of Nonionic Surfactant Aggregates in Layered Materials.
Guégan, Régis; Veron, Emmanuel; Le Forestier, Lydie; Ogawa, Makoto; Cadars, Sylvian
2017-09-26
The aggregation of surfactants on solid surfaces as they are adsorbed from solution is the basis of numerous technological applications such as colloidal stabilization, ore flotation, and floor cleaning. The understanding of both the structure and the dynamics of surfactant aggregates applies to the development of alternative ways of preparing hybrid layered materials. For this purpose, we study the adsorption of the triethylene glycol mono n-decyl ether (C 10 E 3 ) nonionic surfactant onto a synthetic montmorillonite (Mt), an aluminosilicate clay mineral for organoclay preparation with important applications in materials sciences, catalysis, wastewater treatment, or as drug delivery. The aggregation mechanisms follow those observed in an analogous natural Mt, with the condensation of C 10 E 3 in a bilayer arrangement once the surfactant self-assembles in a lamellar phase beyond the critical micelle concentration, underlining the importance of the surfactant state in solution. Solid-state 1 H nuclear magnetic resonance (NMR) at fast magic-angle spinning (MAS) and high magnetic field combined with 1 H- 13 C correlation experiments and different types of 13 C NMR experiments selectively probes mobile or rigid moieties of C 10 E 3 in three different aggregate organizations: (i) a lateral monolayer, (ii) a lateral bilayer, and (iii) a normal bilayer. High-resolution 1 H{ 27 Al} CP- 1 H- 1 H spin diffusion experiments shed light on the proximities and dynamics of the different fragments and fractions of the intercalated surfactant molecules with respect to the Mt surface. 23 Na and 1 H NMR measurements combined with complementary NMR data, at both molecular and nanometer scales, precisely pointed out the location of the C 10 E 3 ethylene oxide hydrophilic group in close contact with the Mt surface interacting through ion-dipole or van der Waals interactions.
Self-assembled biomimetic nanoreactors I: Polymeric template
NASA Astrophysics Data System (ADS)
McTaggart, Matt; Malardier-Jugroot, Cecile; Jugroot, Manish
2015-09-01
The variety of nanoarchitectures made feasible by the self-assembly of alternating copolymers opens new avenues for biomimicry. Indeed, self-assembled structures allow the development of nanoreactors which combine the efficiency of high surface area metal active centres to the effect of confinement due to the very small cavities generated by the self-assembly process. A novel self-assembly of high molecular weight alternating copolymers is characterized in the present study. The self-assembly is shown to organize into nanosheets, providing a 2 nm hydrophobic cavity with a 1D confinement.
Rao, Siyuan; Si, Kae Jye; Yap, Lim Wei; Xiang, Yan; Cheng, Wenlong
2015-11-24
Natural cell membranes can directionally and selectively regulate the ion transport, which is critical for the functioning of living cells. Here, we report on the fabrication of an artificial membrane based on an asymmetric nanoparticle superlattice bilayered nanosheet, which exhibits similar ion transport characteristics. The superlattice nanosheets were fabricated via a drying-mediated self-assembly of polystyrene-capped gold nanoparticles at the liquid-air interface. By adopting a layer-by-layer assembly process, an asymmetric nanomembrane could be obtained consisting of two nanosheets with different nanoparticle size. The resulting nanomembranes exhibit an asymmetric ion transport behavior, and diode-like current-voltage curves were observed. The asymmetric ion transport is attributed to the cone-like nanochannels formed within the membranes, upon which a simulation map was established to illustrate the relationship between the channel structure and the ionic selectivity, in consistency with our experimental results. Our superlattice nanosheet-based design presents a promising strategy for the fabrication of next-generation smart nanomembranes for rationally and selectively regulating the ion transport even at a large ion flux, with potential applications in a wide range of fields, including biosensor devices, energy conversion, biophotonics, and bioelectronics.
Two sides of the coin. Part 1. Lipid and surfactant self-assembly revisited.
Ninham, Barry W; Larsson, Kåre; Lo Nostro, Pierandrea
2017-04-01
Hofmeister, specific ion effects, hydration and van der Waals forces at and between interfaces are factors that determine curvature and microstructure in self assembled aggregates of surfactants and lipids; and in microemulsions. Lipid and surfactant head group interactions and between aggregates vary enormously and are highly specific. They act on the hydrophilic side of a bilayer, micelle or other self assembled aggregate. It is only over the last three decades that the origin of Hofmeister effects has become generally understood. Knowledge of their systematics now provides much flexibility in designing nanostructured fluids. The other side of the coin involves equally specific forces. These (opposing) forces work on the hydrophobic side of amphiphilic interfaces. They are due to the interaction of hydrocarbons and other "oils" with hydrophobic tails of surfactants and lipids. The specificity of oleophilic solutes in microemulsions and lipid membranes provides a counterpoint to Hofmeister effects and hydration. Together with global packing constraints these effects determine microstructure. Another factor that has hardly been recognised is the role of dissolved gas. This introduces further, qualitative changes in forces that prescribe microstructure. The systematics of these effects and their interplay are elucidated. Awareness of these competing factors facilitates formulation of self assembled nanostructured fluids. New and predictable geometries that emerge naturally provide insights into a variety of biological phenomena like anaesthetic and pheromone action and transmission of the nervous impulse (see Part 2). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon
2018-03-01
Bimetallic alloy nanoparticles (NPs) are attractive materials for various applications with their morphology and elemental composition dependent optical, electronic, magnetic and catalytic properties. This work demonstrates the evolution of AuxPd1-x alloy nanostructures by the solid-state dewetting of sequentially deposited bilayers of Au and Pd on sapphire (0001). Various shape, size and configuration of AuxPd1‑x alloy NPs are fabricated by the systematic control of annealing temperature, deposition thickness, composition as well as stacking sequence. The evolution of alloy nanostructures is attributed to the surface diffusion, interface diffusion between bilayers, surface and interface energy minimization, Volmer-Weber growth model and equilibrium configuration. Depending upon the temperature, the surface morphologies evolve with the formation of pits, grains and voids and gradually develop into isolated semi-spherical alloy NPs by the expansion of voids and agglomeration of Au and Pd adatoms. On the other hand, small isolated to enlarged elongated and over-grown layer-like alloy nanostructures are fabricated due to the coalescence, partial diffusion and inter-diffusion with the increased bilayer thickness. In addition, the composition and stacking sequence of bilayers remarkably affect the final geometry of AuxPd1‑x nanostructures due to the variation in the dewetting process. The optical analysis based on the UV–vis-NIR reflectance spectra reveals the surface morphology dependent plasmonic resonance, scattering, reflection and absorption properties of AuxPd1‑x alloy nanostructures.
Liposome formation in microgravity.
Claassen, D E; Spooner, B S
1996-01-01
Liposomes are artificial vesicles with a phospholipid bilayer membrane. The formation of liposomes is a self-assembly process that is driven by the amphipathic nature of phospholipid molecules and can be observed during the removal of detergent from phospholipids dissolved in detergent micelles. As detergent concentration in the mixed micelles decreases, the non-polar tail regions of phospholipids produce a hydrophobic effect that drives the micelles to fuse and form planar bilayers in which phospholipids orient with tail regions to the center of the bilayer and polar head regions to the external surface. Remaining detergent molecules shield exposed edges of the bilayer sheet from the aqueous environment. Further removal of detergent leads to intramembrane folding and membrane folding and membrane vesiculation, forming liposomes. We have observed that the formation of liposomes is altered in microgravity. Liposomes that were formed at 1-g did not exceed 150 nm in diameter, whereas liposomes that were formed during spaceflight exhibited diameters up to 2000 nm. Using detergent-stabilized planar bilayers, we determined that the stage of liposome formation most influenced by gravity is membrane vesiculation. In addition, we found that small, equipment-induced fluid disturbances increased vesiculation and negated the size-enhancing effects of microgravity. However, these small disturbances had no effect on liposome size at 1-g, likely due to the presence of gravity-induced buoyancy-driven fluid flows (e.g., convection currents). Our results indicate that fluid disturbances, induced by gravity, influence the vesiculation of membranes and limit the diameter of forming liposomes.
Liposome formation in microgravity
NASA Astrophysics Data System (ADS)
Claassen, D. E.; Spooner, B. S.
Liposomes are artificial vesicles with a phospholipid bilayer membrane. The formation of liposomes is a self-assembly process that is driven by the amphipathic nature of phospholipid molecules and can be observed during the removal of detergent from phospholipids dissolved in detergent micelles. As detergent concentration in the mixed micelles decreases, the non-polar tail regions of phospholipids produce a hydrophobic effect that drives the micelles to fuse and form planar bilayers in which phospholipids orient with tail regions to the center of the bilayer and polar head regions to the external surface. Remaining detergent molecules shield exposed edges of the bilayer sheet from the aqueous environment. Further removal of detergent leads to intramembrane folding and membrane vesiculation, forming liposomes. We have observed that the formation of liposomes is altered in microgravity. Liposomes that were formed at 1-g did not exceed 150 nm in diameter, whereas liposomes that were formed during spaceflight exhibited diameters up to 2000 nm. Using detergent-stabilized planar bilayers, we determined that the stage of liposome formation most influenced by gravity is membrane vesiculation. In addition, we found that small, equipment-induced fluid disturbances increased vesiculation and negated the size-enhancing effects of microgravity. However, these small disturbances had no effect on liposome size at 1-g, likely due to the presence of gravity-induced buoyancy-driven fluid flows (e.g., convection currents). Our results indicate that fluid disturbances, induced by gravity, influence the vesiculation of membranes and limit the diameter of forming liposomes.
Structure and organization of nanosized-inclusion-containing bilayer membranes
NASA Astrophysics Data System (ADS)
Ren, Chun-Lai; Ma, Yu-Qiang
2009-07-01
Based on a considerable amount of experimental evidence for lateral organization of lipid membranes which share astonishingly similar features in the presence of different inclusions, we use a hybrid self-consistent field theory (SCFT)/density-functional theory (DFT) approach to deal with bilayer membranes embedded by nanosized inclusions and explain experimental findings. Here, the hydrophobic inclusions are simple models of hydrophobic drugs or other nanoparticles for biomedical applications. It is found that lipid/inclusion-rich domains are formed at moderate inclusion concentrations and disappear with the increase in the concentration of inclusions. At high inclusion content, chaining of inclusions occurs due to the effective depletion attraction between inclusions mediated by lipids. Meanwhile, the increase in the concentration of inclusions can also cause thickening of the membrane and the distribution of inclusions undergoes a layering transition from one-layer structure located in the bilayer midplane to two-layer structure arranged into the two leaflets of a bilayer. Our theoretical predictions address the complex interactions between membranes and inclusions suggesting a unifying mechanism which reflects the competition between the conformational entropy of lipids favoring the formation of lipid- and inclusion-rich domains in lipids and the steric repulsion of inclusions leading to the uniform dispersion.
Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.
Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël
2008-09-01
Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.
Jiao, Ti-Feng; Gao, Feng-Qing; Shen, Xi-Hai; Zhang, Qing-Rui; Zhang, Xian-Fu; Zhou, Jing-Xin; Gao, Fa-Ming
2013-01-01
The self-assembly of small functional molecules into supramolecular structures is a powerful approach toward the development of new nanoscale materials and devices. As a class of self-assembled materials, low weight molecular organic gelators, organized in special nanoarchitectures through specific non-covalent interactions, has become one of the hot topics in soft matter research due to their scientific values and many potential applications. Here, a bolaform cholesteryl imide compound with conjugated aromatic spacer was designed and synthesized. The gelation behaviors in 23 solvents were investigated as efficient low-molecular-mass organic gelator. The experimental results indicated that the morphologies and assembly modes of as-formed organogels can be regulated by changing the kinds of organic solvents. Scanning electron microscopy and atomic force microscopy observations revealed that the gelator molecule self-assemble into different aggregates, from wrinkle and belt to fiber with the change of solvents. Spectral studies indicated that there existed different H-bond formations between imide groups and assembly modes. Finally, some rational assembly modes in organogels were proposed and discussed. The present work may give some insight to the design and character of new organogelators and soft materials with special structures. PMID:28788428
NASA Astrophysics Data System (ADS)
Kwok, Connie Sau-Kuen
Nature in the form of DNA, proteins, and cells has the remarkable ability to interact with its environment by processing biological information through specific molecular recognition at the interface. As such, materials that are capable of triggering an appropriate biological response need to be engineered at the biomaterial surface. Chemically and structurally well-defined self-assembled monolayers (SAMs), biomimetics of the lipid bilayer in cell membranes, have been created and studied mostly on rigid metallic surfaces. This dissertation is motivated by the lack of methods to generate a molecularly designed surface for biomedical polymers and thus provides an enabling technology to engineer a polymeric surface precisely at a molecular and cellular level. To take this innovation one step further, we demonstrated that such self-assembled molecular structure coated on drug-containing polymeric devices could act as a stimulus-responsive barrier for controlled drug delivery. A simple, one-step procedure for generating ordered, crystalline methylene chains on polymeric surfaces via urethane linkages was successfully developed. The self-assemblies and molecular structures of these crystalline methylene chains are comparable to the SAM model surfaces, as evidenced by various surface characterization techniques (XPS, TOF-SIMS, and FTIR-ATR). For the first time, these self-assembled molecular structures are shown to function collectively as an ultrasound-responsive barrier membrane for pulsatile drug delivery, including delivery of low-molecular-weight ciprofloxacin and high-molecular-weight insulin. Encouraging results, based on the insulin-activated deoxyglucose uptakes in adipocytes, indicate that the released insulin remained biologically active. Both chemical and acoustic analyses suggest that the ultrasound-assisted release mechanism is primarily induced by transient cavitation, which causes temporary disruption of the self-assembled overlayer, and thus allows temporal release of the encapsulated drugs. In addition to acoustic energy, self-assembled surfaces experience order-disorder transition and have a transition temperature higher than body temperature if longer alkyl chains (C18) are used. The C18-assembled surface barrier membrane exhibits a relatively superior impermeable coating than the shorter C12 chains. The versatility of derivatizing the terminal groups of the self-assembled molecular structures is illustrated by attaching poly (ethyleneoxide) oligomers to the alkyl chains to minimize nonspecific protein adsorption. This study lays an important foundation for future work in conjugating other biomolecules to develop surface-based diagnostics and biomaterials. With much success, this original research work of forming self-assembled crystalline structures on synthetic materials still allows for numerous opportunities for new applications and possibly even more new discoveries.
Induced helical backbone conformations of self-organizable dendronized polymers.
Rudick, Jonathan G; Percec, Virgil
2008-12-01
Control of function through the primary structure of a molecule presents a significant challenge with valuable rewards for nanoscience. Dendritic building blocks encoded with information that defines their three-dimensional shape (e.g., flat-tapered or conical) and how they associate with each other are referred to as self-assembling dendrons. Self-organizable dendronized polymers possess a flat-tapered or conical self-assembling dendritic side chain on each repeat unit of a linear polymer backbone. When appended to a covalent polymer, the self-assembling dendrons direct a folding process (i.e., intramolecular self-assembly). Alternatively, intermolecular self-assembly of dendrons mediated by noncovalent interactions between apex groups can generate a supramolecular polymer backbone. Self-organization, as we refer to it, is the spontaneous formation of periodic and quasiperiodic arrays from supramolecular elements. Covalent and supramolecular polymers jacketed with self-assembling dendrons self-organize. The arrays are most often comprised of cylindrical or spherical objects. The shape of the object is determined by the primary structure of the dendronized polymer: the structure of the self-assembling dendron and the length of the polymer backbone. It is therefore possible to predictably generate building blocks for single-molecule nanotechnologies or arrays of supramolecules for bottom-up self-assembly. We exploit the self-organization of polymers jacketed with self-assembling dendrons to elucidate how primary structure determines the adopted conformation and fold (i.e., secondary and tertiary structure), how the supramolecules associate (i.e., quaternary structure), and their resulting functions. A combination of experimental techniques is employed to interrogate the primary, secondary, tertiary, and quaternary structure of the self-organizable dendronized polymers. We refer to the process by which we interpolate between the various levels of structural information to rationalize function as retrostructural analysis. Retrostructural analysis validates our hypothesis that the self-assembling dendrons induce a helical backbone conformation in cylindrical self-organizable dendronized polymers. This helical conformation mediates unprecedented functions. Self-organizable dendronized polymers have emerged as powerful building blocks for nanoscience by virtue of their dimensions and ability to self-organize. Discrete cylindrical and spherical structures with well-defined dimensions can be visualized and manipulated individually. More importantly, they provide a robust framework for elucidating functions available only at the nanoscale. This Account will highlight structures and functions generated from self-organizable dendronized polymers that enable integration of the nanoworld with its macroscopic universe. Emphasis is placed on those structures and functions derived from the induced helical backbone conformation of cylindrical self-organizable dendronized polymers.
Sivaramakrishna, D; Swamy, Musti J
2015-09-08
A homologous series of l-alanine alkyl ester hydrochlorides (AEs) bearing 9-18 C atoms in the alkyl chain have been synthesized and characterized with respect to self-assembly, supramolecular structure, and phase transitions. The CMCs of AEs bearing 11-18 C atoms were found to range between 0.1 and 10 mM. Differential scanning calorimetric (DSC) studies showed that the transition temperatures (Tt), enthalpies (ΔHt) and entropies (ΔSt) of AEs in the dry state exhibit odd-even alternation, with the odd-chain-length compounds having higher Tt values, but the even-chain-length homologues showing higher values of ΔHt and ΔSt. In DSC measurements on hydrated samples, carried out at pH 5.0 and pH 10.0 (where they exist in cationic and neutral forms, respectively), compounds with 13-18 C atoms in the alkyl chain showed sharp gel-to-liquid crystalline phase transitions, and odd-even alternation was not seen in the thermodynamic parameters. The molecular structure, packing properties, and intermolecular interactions of AEs with 9 and 10 C atoms in the alkyl chain were determined by single crystal X-ray diffraction, which showed that the alkyl chains are packed in a tilted interdigitated bilayer format. d-Spacings obtained from powder X-ray diffraction studies exhibited a linear dependence on the alkyl chain length, suggesting that the other AEs also adopt an interdigitated bilayer structure. Turbidimetric, fluorescence spectroscopic, and isothermal titration calorimetric (ITC) studies established that in aqueous dispersions l-alanine lauryl ester hydrochloride (ALE·HCl) and sodium dodecyl sulfate (SDS) form an equimolar complex. Transmission electron microscopic and DSC studies indicate that the complex exists as unilamellar liposomes, which exhibit a sharp phase transition at ∼39 °C. The aggregates were disrupted at high pH, suggesting that the catanionic complex would be useful to develop a base-labile drug delivery system. ITC studies indicated that ALE·HCl forms a strong complex with DNA, suggesting that the AEs may find use in DNA therapeutics as well.
Self-Assembly of Nanoparticles and Origin of Life
NASA Astrophysics Data System (ADS)
Kotov, Nicholas
Inorganic nanoparticles (NPs) have the ability to self-organize into variety of extended and terminal structures, as do many molecular and nanoscale compounds, given a sufficient number of translational and rotational degrees of freedom. Analysis of experimental data for all NPs (metal, semiconductor, ceramic ..) indicate a general trend of self-assembly under a much wider range of conditions and having much broader structural variability than building blocks from organic matter. Remarkably, the internal organization of self-assembled structures spontaneously produced by NPs rival in complexity and functional sophistication to those found in biology. Multiscale collective effects make NP-NP interactions no less fascinating than those of naturally occurring proteins. In this talk, I will address the following questions: 1. What are the differences and similarities of NP self-organization compared with similar phenomena involving organic and biological building blocks? 2. What are the forces and related theoretical assumptions essential for NP interactions? 3. What is the significance of NP self-assembly for understanding emergence of life? In this context, self-organization of chiral nanostructures will illustrate the importance of subtle anisotropic effects stemming from collective behavior of NPs and non-additivity of their interactions. Chirality transfer from circularly-polarized photons to NPs and its relationship to the origin of homochirality on Earth, spontaneous compartmentalization (protocells), and out-of-equilibrium chemical synthesis in nanoassemblies.
Exciplex formation and energy transfer in a self-assembled metal-organic hybrid system.
Haldar, Ritesh; Rao, K Venkata; George, Subi J; Maji, Tapas Kumar
2012-05-07
Exciting assemblies: A metal-organic self-assembly of pyrenebutyric acid (PBA), 1,10-phenanthroline (o-phen), and Mg(II) shows solid-state fluorescence originating from a 1:1 PBA-o-phen exciplex. This exciplex fluorescence is sensitized by another residual PBA chromophore through an excited-state energy-transfer process. The solvent polarity modulates the self-assembly and the corresponding exciplex as well as the energy transfer, resulting in tunable emission of the hybrid (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Super-Sensitive and Robust Biosensors from Supported Polymer Bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paxton, Walter F.
2015-09-01
Biological organisms are potentially the most sensitive and selective biological detection systems known, yet we are currently severely limited in our ability to exploit biological interactions in sensory devices, due in part to the limited stability of biological systems and derived materials. This proposal addresses an important aspect of integrating biological sensory materials in a solid state device. If successful, such technology could enable entirely new classes of robust biosensors that could be miniaturized and deployed in the field. The critical aims of the proposed work were 1) the calibration of a more versatile approach to measuring pH, 2) themore » use of this method to monitor pH changes caused by the light-induced pumping of protons across vesicles with bacteriorhodopsin integrated into the membranes (either polymer or lipid); 3) the preparation of bilayer assemblies on platinum surfaces; 4) the enhanced detection of lightinduced pH changes driven by bR-loaded supported bilayers. I have developed a methodology that may enable that at interfaces and developed a methodology to characterize the functionality of bilayer membranes with reconstituted membrane proteins. The integrity of the supported bilayer films however must be optimized prior to the full realization of the work originally envisioned in the original proposal. Nevertheless, the work performed on this project and the encouraging results it has produced has demonstrated that these goals are challenging yet within reach.« less
Self-assembly of inorganic nanoparticles: Ab ovo
NASA Astrophysics Data System (ADS)
Kotov, Nicholas A.
2017-09-01
There are numerous remarkable studies related to the self-organization of polymers, coordination compounds, microscale particles, biomolecules, macroscale particles, surfactants, and reactive molecules on surfaces. The focus of this paper is on the self-organization of nanoscale inorganic particles or simply nanoparticles (NPs). Although there are fascinating and profound discoveries made with other self-assembling structures, the ones involving NPs deserve particular attention because they (a) are omnipresent in Nature; (b) have relevance to numerous disciplines (physics, chemistry, biology, astronomy, Earth sciences, and others); (c) embrace most of the features, geometries, and intricacies observed for the self-organization of other chemical species; (d) offer new tools for studies of self-organization phenomena; and (e) have a large economic impact, extending from energy and construction industries, to optoelectronics, biomedical technologies, and food safety. Despite the overall success of the field it is necessary to step back from its multiple ongoing research venues and consider two questions: What is self-assembly of nanoparticles? and Why do we need to study it? The reason to bring them up is to achieve greater scientific depth in the understanding of these omnipresent phenomena and, perhaps, deepen their multifaceted impact. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.
Self-assembly of metal nanostructures on binary alloy surfaces
Duguet, T.; Han, Yong; Yuen, Chad; Jing, Dapeng; Ünal, Barış; Evans, J. W.; Thiel, P. A.
2011-01-01
Deposition of metals on binary alloy surfaces offers new possibilities for guiding the formation of functional metal nanostructures. This idea is explored with scanning tunneling microscopy studies and atomistic-level analysis and modeling of nonequilibrium island formation. For Au/NiAl(110), complex monolayer structures are found and compared with the simple fcc(110) bilayer structure recently observed for Ag/NiAl(110). We also consider a more complex codeposition system, (Ni + Al)/NiAl(110), which offers the opportunity for fundamental studies of self-growth of alloys including deviations for equilibrium ordering. A general multisite lattice-gas model framework enables analysis of structure selection and morphological evolution in these systems. PMID:21097706
Examination of the solution behaviors of the giant inorganic-organic amphiphilic hybrids
NASA Astrophysics Data System (ADS)
Zhang, Baofang
Presently, the self-assembly behaviors of traditional small surfactants and amphiphilic block copolymers are fairly well understood. In comparison, rather little is known about the self-assembly behaviors of the giant inorganic-organic amphiphilic hybrids in solution. It remains a wide open field to explore. Giant inorganic-organic amphiphilic hybrids, consisting of nanoscale inorganic clusters and organic functional groups, represent a novel class of functional hybrid materials. They have unique physical and chemical properties and potential applications in catalysis, electronic, optics, magnetic materials, medicine and biology. Therefore, as emerging building blocks, they have promising prospects in the advanced materials. In this PhD work, several representative giant inorganic-organic amphiphilic hybrids (triangular-shaped polyoxometalate (POM)-containing inorganic/organic amphiphilic hybrids, POM-containing fluorosurfactants hybrids, POM-containing peptide hybrids POM-peptide hybrids and polyhedral oligometric silsesquioxane (POSS)-polystyrene (PS) are chosen for studying their self-assembly behaviors in solution. Based on the knowledge of the physical chemistry, colloid and polymer science, we focus on the mechanism of the self-assembly process, and the morphology control of the supramolecular structures through the internal and external conditions, such as the composition of the giant amphiphilies, molecular architectures, solvent nature, temperature, concentration, and extrally added salts. It is found that the counterion-meditated interactions dominate the self-assembly of triangular-shaped hybrids in acetone/water mixed solutions, due to the highly dominant hydrophilic portions; the solvent-swelling effect, instead of the charge effect, dominates the whole self-assembly process of the POM-containing fluorosurfactants; the analogy between small surfactants and giant amphiphiles POSS-PS allows a rough assessment of the possible morphologies of the supramolecular structures, and the particular values of the molecular packing parameter can be translated via simple geometrical relations into specific shape of the equilibrium supramolecular structures. For the experiments, laser light scattering (LLS) technique is used to monitor the entire self-assembly processes. The morphology and size of the supramolecular structures are determined by using dynamic light scattering (DLS) and static light scattering (SLS). Electron microscopies (TEM, SEM and AFM) are used to confirm the assembly structures and size. The stability of the assembly solution system is characterized by zeta potential.
Sahoo, Dipankar; Peterca, Mihai; Aqad, Emad; Partridge, Benjamin E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Percec, Virgil
2016-11-09
Perylene bisimide derivatives (PBIs) are known to form only columnar or lamellar assemblies. There is no known example of a PBI self-assembling into a supramolecular sphere. Therefore, periodic and quasiperiodic arrays generated from spherical assemblies produced from PBIs are also not known. Here, a PBI functionalized at its imide groups with a second generation self-assembling dendron is reported to self-assemble into supramolecular spheres. These spheres self-organize in a body-centered cubic (BCC) periodic array, rarely encountered for self-assembling dendrons but often encountered in block copolymers. These supramolecular spheres also assemble into a columnar hexagonal array in which the supramolecular columns are unexpectedly and unprecedentedly made from spheres. At lower temperature, two additional columnar hexagonal phases consisting of symmetric and asymmetric tetrameric crowns of PBI are observed. Structural and retrostructural analysis via X-ray diffraction (XRD), molecular modeling, molecular simulation, and solid state NMR suggests that inversion of the symmetric tetrameric crowns at high temperature mediates their transformation into supramolecular spheres. The tetrameric crowns of PBIs are able to form an isotropic sphere in the cubic phase due to rapid molecular motion at high temperature, unobservable by XRD but demonstrated by solid state NMR studies. This mechanism of hierarchical self-organization of PBI into supramolecular spheres is most probably general and can be applied to other related planar molecules to generate new functions.
Wang, Zhuoshi; Lan, Yu; Zhong, Keli; Liang, Yongri; Chen, Tie; Jin, Long Yi
2014-01-01
In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide) (PEO) with a degree of polymerization (DP) of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC), thermal polarized optical microscopy (POM) and X-ray diffraction (XRD) reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7) self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies. PMID:24699045
Dynamic self-assembly and self-organized transport of magnetic micro-swimmers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokot, Gasper; Kolmakov, German V.; Aranson, Igor S.
We demonstrate experimentally and in computer simulations that magnetic microfloaters can self-organize into various functional structures while energized by an external alternating (ac) magnetic field. The structures exhibit self-propelled motion and an ability to carry a cargo along a pre-defined path. As a result, the morphology of the self-assembled swimmers is controlled by the frequency and amplitude of the magnetic field.
Dynamic self-assembly and self-organized transport of magnetic micro-swimmers
Kokot, Gasper; Kolmakov, German V.; Aranson, Igor S.; ...
2017-11-07
We demonstrate experimentally and in computer simulations that magnetic microfloaters can self-organize into various functional structures while energized by an external alternating (ac) magnetic field. The structures exhibit self-propelled motion and an ability to carry a cargo along a pre-defined path. As a result, the morphology of the self-assembled swimmers is controlled by the frequency and amplitude of the magnetic field.
Ikeda, Masato; Nobori, Tadahito; Schmutz, Marc; Lehn, Jean-Marie
2005-01-07
The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miroshnikova, Y. A.; Elsenbeck, M.; Zastavker, Y. V.
2009-04-19
Formation of biological self-assemblies at all scales is a focus of studies in fields ranging from biology to physics to biomimetics. Understanding the physico-chemical properties of these self-assemblies may lead to the design of bio-inspired structures and technological applications. Here we examine self-assembled filamentous, helical ribbon, and crystal microstructures formed in chemically defined lipid concentrate (CDLC), a model system for cholesterol crystallization in gallbladder bile. CDLC consists of cholesterol, bilayer-forming amphiphiles, micelle-forming amphiphiles, and water. Phase contrast and differential interference contrast (DIC) microscopy indicate the presence of three microstructure types in all samples studied, and allow for an investigation ofmore » the structures' unique geometries. Additionally, confocal microscopy is used for qualitative assessment of surface and internal composition. To complement optical observations, calorimetric (differential-scanning and modulation) experiments, provide the basis for an in-depth understanding of collective and individual thermal behavior. Observed ''transition'' features indicate clustering and ''straightening'' of helical ribbons into short, increasingly thickening, filaments that dissolve with increasing temperature. These results suggest that all microstructures formed in CDLC may coexist in a metastable chemical equilibrium. Further investigation of the CDLC thermal profile should uncover the process of cholesterol crystallization as well as the unique design and function of microstructures formed in this system.« less
Adamantane in Drug Delivery Systems and Surface Recognition.
Štimac, Adela; Šekutor, Marina; Mlinarić-Majerski, Kata; Frkanec, Leo; Frkanec, Ruža
2017-02-16
The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based structures and self-assembled supramolecular systems for basic chemical investigations as well as for biomedical application.
Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly.
Hnilova, Marketa; Karaca, Banu Taktak; Park, James; Jia, Carol; Wilson, Brandon R; Sarikaya, Mehmet; Tamerler, Candan
2012-05-01
Development of versatile and flexible assembly systems for fabrication of functional hybrid nanomaterials with well-defined hierarchical and spatial organization is of a significant importance in practical nanobiotechnology applications. Here we demonstrate a bio-enabled self-assembly technique for fabrication of multi-layered protein and nanometallic assemblies utilizing a modular gold-binding (AuBP1) fusion tag. To accomplish the bottom-up assembly we first genetically fused the AuBP1 peptide sequence to the C'-terminus of maltose-binding protein (MBP) using two different linkers to produce MBP-AuBP1 hetero-functional constructs. Using various spectroscopic techniques, surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR), we verified the exceptional binding and self-assembly characteristics of AuBP1 peptide. The AuBP1 peptide tag can direct the organization of recombinant MBP protein on various gold surfaces through an efficient control of the organic-inorganic interface at the molecular level. Furthermore using a combination of soft-lithography, self-assembly techniques and advanced AuBP1 peptide tag technology, we produced spatially and hierarchically controlled protein multi-layered assemblies on gold nanoparticle arrays with high molecular packing density and pattering efficiency in simple, reproducible steps. This model system offers layer-by-layer assembly capability based on specific AuBP1 peptide tag and constitutes novel biological routes for biofabrication of various protein arrays, plasmon-active nanometallic assemblies and devices with controlled organization, packing density and architecture. Copyright © 2011 Wiley Periodicals, Inc.
Isabettini, Stéphane; Baumgartner, Mirjam E; Fischer, Peter; Windhab, Erich J; Liebi, Marianne; Kuster, Simon
2018-01-03
Bicelles are tunable disk-like polymolecular assemblies formed from a large variety of lipid mixtures. Applications range from membrane protein structural studies by nuclear magnetic resonance (NMR) to nanotechnological developments including the formation of optically active and magnetically switchable gels. Such technologies require high control of the assembly size, magnetic response and thermal resistance. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and its lanthanide ion (Ln 3+ ) chelating phospholipid conjugate, 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA), assemble into highly magnetically responsive assemblies such as DMPC/DMPE-DTPA/Ln 3+ (molar ratio 4:1:1) bicelles. Introduction of cholesterol (Chol-OH) and steroid derivatives in the bilayer results in another set of assemblies offering unique physico-chemical properties. For a given lipid composition, the magnetic alignability is proportional to the bicelle size. The complexation of Ln 3+ results in unprecedented magnetic responses in terms of both magnitude and alignment direction. The thermo-reversible collapse of the disk-like structures into vesicles upon heating allows tailoring of the assemblies' dimensions by extrusion through membrane filters with defined pore sizes. The magnetically alignable bicelles are regenerated by cooling to 5 °C, resulting in assembly dimensions defined by the vesicle precursors. Herein, this fabrication procedure is explained and the magnetic alignability of the assemblies is quantified by birefringence measurements under a 5.5 T magnetic field. The birefringence signal, originating from the phospholipid bilayer, further enables monitoring of polymolecular changes occurring in the bilayer. This simple technique is complementary to NMR experiments that are commonly employed to characterize bicelles.
NASA Astrophysics Data System (ADS)
Liu, Ying-Feng; Hung, Wei-Ling; Hou, Tzh-Yin; Huang, Hsiu-Ying; Lin, Cheng-An J.
2016-04-01
Traditional fluorescent labelling techniques has severe photo-bleaching problem such as organic dyes and fluorescent protein. Quantum dots made up of traditional semiconductor (CdSe/ZnS) material has sort of biological toxicity. This research has developed novel Cd-free quantum dots divided into semiconductor (Indium phosphide, InP) and noble metal (Gold). Former has lower toxicity compared to traditional quantum dots. Latter consisting of gold (III) chloride (AuCl3) and toluene utilizes sonochemical preparation and different stimulus to regulate fluorescent wavelength. Amphoteric macromolecule surface technology and ligand Exchange in self-Assembled are involved to develop hydrophilic nanomaterials which can regulate the number of grafts per molecule of surface functional groups. Calcium phosphate (CaP) nanoparticle (NP) with an asymmetric lipid bilayer coating technology developed for intracellular delivery and labelling has synthesized Cd-free quantum dots possessing high brightness and multi-fluorescence successfully. Then, polymer coating and ligand exchange transfer to water-soluble materials to produce liposome nanomaterials as fluorescent probes and enhancing medical applications of nanotechnology.
Hybrid Perovskite/Perovskite Heterojunction Solar Cells.
Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo
2016-06-28
Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.
Saranathan, Vinodkumar; Osuji, Chinedum O; Mochrie, Simon G J; Noh, Heeso; Narayanan, Suresh; Sandy, Alec; Dufresne, Eric R; Prum, Richard O
2010-06-29
Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4(1)32) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration.
Saranathan, Vinodkumar; Osuji, Chinedum O.; Mochrie, Simon G. J.; Noh, Heeso; Narayanan, Suresh; Sandy, Alec; Dufresne, Eric R.; Prum, Richard O.
2010-01-01
Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4132) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration. PMID:20547870
Improved organic thin-film transistor performance using novel self-assembled monolayers
NASA Astrophysics Data System (ADS)
McDowell, M.; Hill, I. G.; McDermott, J. E.; Bernasek, S. L.; Schwartz, J.
2006-02-01
Pentacene-based organic thin-film transistors have been fabricated using a phosphonate-linked anthracene self-assembled monolayer as a buffer between the silicon dioxide gate dielectric and the active pentacene channel region. Vast improvements in the subthreshold slope and threshold voltage are observed compared to control devices fabricated without the buffer. Both observations are consistent with a greatly reduced density of charge trapping states at the semiconductor-dielectric interface effected by introduction of the self-assembled monolayer.
Jun, Indong; Ahmad, Taufiq; Bak, Seongwoo; Lee, Joong-Yup; Kim, Eun Mi; Lee, Jinkyu; Lee, Yu Bin; Jeong, Hongsoo; Jeon, Hojeong; Shin, Heungsoo
2017-05-01
Although the coculture of multiple cell types has been widely employed in regenerative medicine, in vivo transplantation of cocultured cells while maintaining the hierarchical structure remains challenging. Here, a spatially assembled bilayer cell sheet of human mesenchymal stem cells and human umbilical vein endothelial cells on a thermally expandable hydrogel containing fibronectin is prepared and its effect on in vitro proangiogenic functions and in vivo ischemic injury is investigated. The expansion of hydrogels in response to a temperature change from 37 to 4 °C allows rapid harvest and delivery of the bilayer cell sheet to two different targets (an in vitro model glass surface and in vivo tissue). The in vitro study confirms that the bilayer sheet significantly increases proangiogenic functions such as the release of nitric oxide and expression of vascular endothelial cell genes. In addition, transplantation of the cell sheet from the hydrogels into a hindlimb ischemia mice model demonstrates significant retardation of necrosis particularly in the group transplated with the bilayer sheet. Collectively, the bilayer cell sheet is readily transferrable from the thermally expandable hydrogel and represents an alternative approach for recovery from ischemic injury, potentially via improved cell-cell communication. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Complexing DNA Origami Frameworks through Sequential Self-Assembly Based on Directed Docking.
Suzuki, Yuki; Sugiyama, Hiroshi; Endo, Masayuki
2018-06-11
Ordered DNA origami arrays have the potential to compartmentalize space into distinct periodic domains that can incorporate a variety of nanoscale objects. Herein, we used the cavities of a preassembled 2D DNA origami framework to incorporate square-shaped DNA origami structures (SQ-origamis). The framework was self-assembled on a lipid bilayer membrane from cross-shaped DNA origami structures (CR-origamis) and subsequently exposed to the SQ-origamis. High-speed AFM revealed the dynamic adsorption/desorption behavior of the SQ-origamis, which resulted in continuous changing of their arrangements in the framework. These dynamic SQ-origamis were trapped in the cavities by increasing the Mg 2+ concentration or by introducing sticky-ended cohesions between extended staples, both from the SQ- and CR-origamis, which enabled the directed docking of the SQ-origamis. Our study offers a platform to create supramolecular structures or systems consisting of multiple DNA origami components. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abdelkader, Hamdy; Alani, Adam W G; Alany, Raid G
2014-03-01
Non-ionic surfactant vesicles, simply known as niosomes are synthetic vesicles with potential technological applications. Niosomes have the same potential advantages of phospholipid vesicles (liposomes) of being able to accommodate both water soluble and lipid soluble drug molecules control their release and as such serve as versatile drug delivery devices of numerous applications. Additionally, niosomes can be considered as more economically, chemically, and occasionally physically stable alternatives to liposomes. Niosomes can be fabricated using simple methods of preparations and from widely used surfactants in pharmaceutical technology. Many reports have discussed niosomes in terms of physicochemical properties and their applications as drug delivery systems. In this report, a brief and simplified summary of different theories of self-assembly will be given. Furthermore manufacturing methods, physical characterization techniques, bilayer membrane additives, unconventional niosomes (discomes, proniosomes, elastic and polyhedral niosomes), their recent applications as drug delivery systems, limitations and directions for future research will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Franz, A.; Theska, F.
2016-03-15
Self-assembly of ultrathin Au, W, and Au-W bilayer thin films is investigated using a rapid thermal annealing technique in an inert ambient. The solid-state dewetting of Au films is briefly revisited in order to emphasize the role of initial film thickness. W films deposited onto SiO{sub 2} evolve into needle-like nanocrystals rather than forming particle-like agglomerates upon annealing at elevated temperatures. Transmission electron microscopy reveals that such nanocrystals actually consist of tungsten (VI) oxide (WO{sub 3}) which is related to an anisotropic oxide crystal growth out of the thin film. The evolution of W films is highly sensitive to themore » presence of any residual oxygen. Combination of both the dewetting of Au and the oxide crystal growth of WO{sub 3} is realized by using various bilayer film configurations of the immiscible Au and W. At low temperature, Au dewetting is initiated while oxide crystal growth is still suppressed. Depending on the stacking sequence of the Au-W bilayer thin film, W acts either as a substrate or as a passivation layer for the dewetting of Au. Being the ground layer, W changes the wettability of Au which clearly modifies its initial state for the dewetting. Being the top layer, W prevents Au from dewetting regardless of Au film thickness. Moreover, regular pattern formation of Au-WO{sub 3} nanoparticles is observed at high temperature demonstrating how bilayer thin film dewetting can create unique nanostructure arrangements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilyushin, G. D., E-mail: ilyushin@nc.cryst.ras.ru; Dem'yanets, L. N.
2007-07-15
A combinatorial-topological analysis of the orthogermanates LiNdGeO{sub 4} (space group Pbcn) and CeGeO{sub 4} (space group I 4{sub 1}/a, the scheelite structure type), which have MT frameworks composed of polyhedral structural units in the form of M dodecahedra (NdO{sub 8} and CeO{sub 8}) and T tetrahedra (GeO{sub 4}), is performed using the method of coordination sequences with the TOPOS program package. It is established that the structures of both orthogermanates are characterized by equivalent crystal-forming nets 4444. The cluster precursors of the M{sub 2}T{sub 2} cyclic type are identified by the method of two-color decomposition. The local symmetry of four-polyhedralmore » clusters corresponds to the point group 2. In the precursor of the LiNdGeO{sub 4} orthogermanate, the Li atom is located above the M{sub 2}T{sub 2} ring. The number of Li-O bonds in this precursor is 4. The cluster precursors M{sub 2}T{sub 2} and LiM{sub 2}T{sub 2} are responsible for the formation of crystal-forming clusters of a higher level according to the mechanism of matrix self-assembly. The coordination numbers of the cluster precursors in two-dimensional nets for these structures are found to be equal to 4. The equivalent bilayer TR,Ge stacks that consist of eight cluster precursors are revealed in the structures under investigation. It is demonstrated that there exist three types of translational interlayer arrangements of cluster precursors upon the formation of macrostructures of the orthogermanates.« less
Biomimetic mineral self-organization from silica-rich spring waters.
García-Ruiz, Juan Manuel; Nakouzi, Elias; Kotopoulou, Electra; Tamborrino, Leonardo; Steinbock, Oliver
2017-03-01
Purely inorganic reactions of silica, metal carbonates, and metal hydroxides can produce self-organized complex structures that mimic the texture of biominerals, the morphology of primitive organisms, and that catalyze prebiotic reactions. To date, these fascinating structures have only been synthesized using model solutions. We report that mineral self-assembly can be also obtained from natural alkaline silica-rich water deriving from serpentinization. Specifically, we demonstrate three main types of mineral self-assembly: (i) nanocrystalline biomorphs of barium carbonate and silica, (ii) mesocrystals and crystal aggregates of calcium carbonate with complex biomimetic textures, and (iii) osmosis-driven metal silicate hydrate membranes that form compartmentalized, hollow structures. Our results suggest that silica-induced mineral self-assembly could have been a common phenomenon in alkaline environments of early Earth and Earth-like planets.
Specific Uptake of Lipid-Antibody-Functionalized LbL Microcarriers by Cells.
Göse, Martin; Scheffler, Kira; Reibetanz, Uta
2016-11-14
The modular construction of Layer-by-Layer biopolymer microcarriers facilitates a highly specific design of drug delivery systems. A supported lipid bilayer (SLB) contributes to biocompatibility and protection of sensitive active agents. The addition of a lipid anchor equipped with PEG (shielding from opsonins) and biotin (attachment of exchangeable outer functional molecules) enhances the microcarrier functionality even more. However, a homogeneously assembled supported lipid bilayer is a prerequisite for a specific binding of functional components. Our investigations show that a tightly packed SLB improves the efficiency of functional components attached to the microcarrier's surface, as illustrated with specific antibodies in cellular application. Only a low quantity of antibodies is needed to obtain improved cellular uptake rates independent from cell type as compared to an antibody-functionalized loosely packed lipid bilayer or directly assembled antibody onto the multilayer. A fast disassembly of the lipid bilayer within endolysosomes exposing the underlying drug delivering multilayer structure demonstrates the suitability of LbL-microcarriers as a multifunctional drug delivery system.
Bhanjadeo, Madhabi M; Nayak, Ashok K; Subudhi, Umakanta
2017-04-01
DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. Copyright © 2017 Elsevier Inc. All rights reserved.
Multifunctional Self-Assembled Monolayers for Organic Field-Effect Transistors
NASA Astrophysics Data System (ADS)
Cernetic, Nathan
Organic field effect transistors (OFETs) have the potential to reach commercialization for a wide variety of applications such as active matrix display circuitry, chemical and biological sensing, radio-frequency identification devices and flexible electronics. In order to be commercially competitive with already at-market amorphous silicon devices, OFETs need to approach similar performance levels. Significant progress has been made in developing high performance organic semiconductors and dielectric materials. Additionally, a common route to improve the performance metric of OFETs is via interface modification at the critical dielectric/semiconductor and electrode/semiconductor interface which often play a significant role in charge transport properties. These metal oxide interfaces are typically modified with rationally designed multifunctional self-assembled monolayers. As means toward improving the performance metrics of OFETs, rationally designed multifunctional self-assembled monolayers are used to explore the relationship between surface energy, SAM order, and SAM dipole on OFET performance. The studies presented within are (1) development of a multifunctional SAM capable of simultaneously modifying dielectric and metal surface while maintaining compatibility with solution processed techniques (2) exploration of the relationship between SAM dipole and anchor group on graphene transistors, and (3) development of self-assembled monolayer field-effect transistor in which the traditional thick organic semiconductor is replaced by a rationally designed self-assembled monolayer semiconductor. The findings presented within represent advancement in the understanding of the influence of self-assembled monolayers on OFETs as well as progress towards rationally designed monolayer transistors.
The Self-Assembly Properties of a Benzene-1,3,5-tricarboxamide Derivative
ERIC Educational Resources Information Center
Stals, Patrick J. M.; Haveman, Jan F.; Palmans, Anja R. A.; Schenning, Albertus P. H. J.
2009-01-01
A series of experiments involving the synthesis and characterization of a benzene-1,3,5-tricarboxamide derivative and its self-assembly properties are reported. These laboratory experiments combine organic synthesis, self-assembly, and physical characterization and are designed for upper-level undergraduate students to introduce the topic of…
Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion
Oertel, Jana; Keller, Adrian; Prinz, Julia; Schreiber, Benjamin; Hübner, René; Kerbusch, Jochen; Bald, Ilko; Fahmy, Karim
2016-01-01
Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the “outer shape” of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials. PMID:27216789
Stability of self-assembled polymer films investigated by optical laser reflectometry.
Dejeu, Jérôme; Diziain, Séverine; Dange, Catherine; Membrey, François; Charraut, Daniel; Foissy, Alain
2008-04-01
We studied the influence of post-treatment rinsing after the formation of self-assembled polyelectrolyte films made with the weak base poly(allylamine hydrochloride) (PAH) and the strong acid poly(styrene sulfonate) (PSS). The stability of the film was studied using optical fixed-angle laser reflectometry to measure the release of polymeric material and AFM experiments to reveal the change of morphology and thickness. We found that the polymer films were stable upon rinsing when the pH was the same in the solution as that used in the buildup (pH 9). The films released most of the polymeric material when rinsed at higher pH values, but a layer remained that corresponded to a PAH monolayer directly bound with the silica surface. Films containing at least four bilayers were stable upon rinsing at lower pH values, but the stability of thinner films depended on the type of the last polymer deposited. They were stable in the case of PSS as an outermost deposit, but they released a large part of their material in the case of PAH. The stability results were determined using a simple model of the step-by-step assembly of the polymer film described formerly.
Equilibrium polymerization models of re-entrant self-assembly
NASA Astrophysics Data System (ADS)
Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.
2009-04-01
As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
YU,KUI; BRINKER,C. JEFFREY; HURD,ALAN J.
2000-11-22
Since the discovery of surfactant-templated silica by Mobil scientists in 1992, mesostructured silica has been synthesized in various forms including thin films, powders, particles, and fibers. In general, mesostructured silica has potential applications, such as in separation, catalysis, sensors, and fluidic microsystems. In respect to these potential applications, mesostructured silica in the form of thin films is perhaps one of the most promising candidates. The preparation of mesostructured silica films through preferential solvent evaporation-induced self-assembly (EISA) has recently received much attention in the laboratories. However, no amphiphile/silica films with reverse mesophases have ever been made through this EISA procedure. Furthermore,more » templates employed to date have been either surfactants or poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers, such as pluronic P-123, both of which are water-soluble and alcohol-soluble. Due to their relatively low molecular weight, the templated silica films with mesoscopic order have been limited to relatively small characteristic length scales. In the present communication, the authors report a novel synthetic method to prepare mesostructured amphiphilic/silica films with regular and reverse mesophases of large characteristic length scales. This method involves evaporation-induced self-assembly (EISA) of amphiphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymers. In the present study, the PS-b-PEO diblocks are denoted as, for example, PS(215)-b-PEO(100), showing that this particular sample contains 215 S repeat units and 100 EO repeat units. This PS(215)-b-PEO(100) diblock possesses high molecular weight and does not directly mix with water or alcohol. To the authors knowledge, no studies have reported the use of water-insoluble and alcohol-insoluble amphiphilic diblocks as structure-directing agents in the synthesis of mesostructured silica films through EISA. It is believed that the present system is the first to yield amphiphile/silica films with regular and reverse mesophases, as well as curved multi-bilayer mesostructures, through EISA. The ready formation of the diblock/silica films with multi-bilayer vesicular mesostructures is discussed.« less
Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C
2017-09-21
Correction for 'An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells' by Abby-Jo Payne et al., Chem. Commun., 2017, 53, 10168-10171.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawthorne, M. Frederick
2005-04-07
Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer,more » incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic unimolecular nanoparticles presenting several advantages: tunable size through functionalization and branching, spherical shape due to the icosahedral B122 core, promising water solubility resulting from degradation of all pendant closo-carborane groups to their hydrophilic nido anion substituents, and efficient boron delivery owing to the presence of 120 boron atoms which gives rise to a boron content as high as 40% by weight. Keeping the new objective in mind, we have focused on the design, synthesis and evaluation of new and very boron-rich closomer species. Additionally, progress has also been made toward the evaluation of a newly synthesized boron-rich lipid as a substitute for DSPC in bilayer construction, and the boron content of the resulting liposomes has been greatly enhanced. Related research involving the synthesis and self-assembly of carborane-containing amphiphiles has been systematically studied. Combined hydrophobic and hydrophilic properties of the single-chain amphiphiles allow their spontaneous self-assembly to form rods under a variety of variable conditions, such as concentration in the bilayer, carborane cage structure, chain-length, counterion identity, solvents, methods of preparation, and the ionic charge. On the other hand, the number of attached chains affects the self-assembly process. Particles having totally different shapes have been observed for dual-chain amphiphiles.« less
The self-assembling process and applications in tissue engineering
Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.
2018-01-01
Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174
Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles
Zhou, Yunlong; Marson, Ryan L.; van Anders, Greg; ...
2016-02-22
Chiroptical materials found in butterflies, beetles, stomatopod crustaceans, and other creatures are attributed to biocomposites with helical motifs and multiscale hierarchical organization. These structurally sophisticated materials self-assemble from primitive nanoscale building blocks, a process that is simpler and more energy efficient than many top-down methods currently used to produce similarly sized three-dimensional materials. In this paper, we report that molecular-scale chirality of a CdTe nanoparticle surface can be translated to nanoscale helical assemblies, leading to chiroptical activity in the visible electromagnetic range. Chiral CdTe nanoparticles coated with cysteine self-organize around Te cores to produce helical supraparticles. D-/L-Form of the aminomore » acid determines the dominant left/right helicity of the supraparticles. Coarse-grained molecular dynamics simulations with a helical pair-potential confirm the assembly mechanism and the origin of its enantioselectivity, providing a framework for engineering three-dimensional chiral materials by self-assembly. Finally, the helical supraparticles further self-organize into lamellar crystals with liquid crystalline order, demonstrating the possibility of hierarchical organization and with multiple structural motifs and length scales determined by molecular-scale asymmetry of nanoparticle interactions.« less
Self-Assembly of Nanostructured Electronic Devices (454th Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Charles
2009-12-16
Given suitable atmospheric conditions, water vapor from the air will crystallize into beautiful structures: snowflakes. Nature provides many other examples of spontaneous organization of materials into regular patterns, which is a process known as self-assembly. Since self-assembly works at all levels, it can be a useful tool for organizing materials on the nanometer scale. In particular, self-assembly provides a precise method for designing materials with improved electronic properties, thereby enabling advances in semiconductor electronics and solar devices. On Wednesday, December 16, at 4 p.m. in Berkner Hall, Charles Black of the Center for Functional Nanomaterials (CFN) will explore this topicmore » during the 454th Brookhaven Lecture, entitled “Self-Assembly of Nanostructured Electronic Devices.” Refreshments will be offered before and after the lecture. To attend this open-to-the-public event, visitors to the Lab ages 16 and older must present photo ID at the Main Gate. During this talk, Dr. Black will discuss examples of how self-assembly is being integrated into semiconductor microelectronics, as advances in the ability to define circuit elements at higher resolution have fueled more than 40 years of performance improvements. Self-assembly also promises advances in the performance of solar devices; thus he will describe his group’s recent results with nanostructured photovoltaic devices.« less
Yataka, Yusuke; Sawada, Toshiki; Serizawa, Takeshi
2016-10-04
The self-assembly of biomolecules into highly ordered nano-to-macroscale structures is essential in the construction of biological tissues and organs. A variety of biomolecular assemblies composed of nucleic acids, peptides, and lipids have been used as molecular building units for self-assembled materials. However, crystalline polysaccharides have rarely been utilized in self-assembled materials. In this study, we describe multidimensional self-assembled structures of alkylated cellulose oligomers synthesized via in vitro enzymatic reactions. We found that the alkyl chain length drastically affected the assembled morphologies and allomorphs of cellulose moieties. The modulation of the intermolecular interactions of cellulose oligomers by alkyl substituents was highly effective at controlling their assembly into multidimensional structures. This study proposes a new potential of crystalline oligosaccharides for structural components of molecular assemblies with controlled morphologies and crystal structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavor, John
The realization of new supramolecular pi-conjugated organic structures inspired and driven by peptide-based self-assembly will offer a new approach to interface with the biotic environment in a way that will help to meet many DOE-recognized grand challenges. Previously, we developed pi-conjugated peptides that undergo supramolecular self-assembly into one-dimensional (1-D) organic electronic nanomaterials under benign aqueous conditions. The intermolecular interactions among the pi-conjugated organic segments within these nanomaterials lead to defined perturbations of their optoelectronic properties and yield nanoscale conduits that support energy transport within individual nanostructures and throughout bulk macroscopic collections of nanomaterials. Our objectives for future research are tomore » construct and study biomimetic electronic materials for energy-related technology optimized for harsher non-biological environments where peptide-driven self-assembly enhances pi-stacking within nanostructured biomaterials, as detailed in the following specific tasks: (1) synthesis and detailed optoelectronic characterization of new pi-electron units to embed within homogeneous self assembling peptides, (2) molecular and data-driven modeling of the nanomaterial aggregates and their higher-order assemblies, and (3) development of new hierarchical assembly paradigms to organize multiple electronic subunits within the nanomaterials leading to heterogeneous electronic properties (i.e. gradients and localized electric fields). These intertwined research tasks will lead to the continued development and fundamental mechanistic understanding of a powerful bioinspired materials set capable of making connections between nanoscale electronic materials and macroscopic bulk interfaces, be they those of a cell, a protein or a device.« less
Kim, Aryeon; Jang, Kwang-Suk; Kim, Jinsoo; Won, Jong Chan; Yi, Mi Hye; Kim, Hanim; Yoon, Dong Ki; Shin, Tae Joo; Lee, Myong-Hoon; Ka, Jae-Won; Kim, Yun Ho
2013-11-20
Highly ordered organic semiconductor micropatterns of the liquid-crystalline small molecule 2,7-didecylbenzothienobenzothiophene (C10 -BTBT) are fabricated using a simple method based on template-assisted self-assembly (TASA). The liquid crystallinity of C10 -BTBT allows solvent-free fabrication of high-performance printed organic field-effect transistors (OFETs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alivisatos, A. Paul; Colvin, Vicki L.
1998-01-01
Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.
Biomimetic particles for isolation and reconstitution of receptor function.
Moura, Sérgio P; Carmona-Ribeiro, Ana M
2006-01-01
Biomimetic particles supporting lipid bilayers are becoming increasingly important to isolate and reconstitute protein function. Cholera toxin (CT) from Vibrio cholerae, an 87-kDa AB5 hexameric protein, and its receptor, the monosialoganglioside GM1, a cell membrane glycolipid, self-assembled on phosphatidylcholine (PC) bilayer-covered silica particles at 1 CT/5 GM1 molar ratio in perfect agreement with literature. This receptor-ligand recognition represented a proof-of-concept that receptors in general can be isolated and their function reconstituted using biomimetic particles, i.e., bilayer-covered silica. After incubation of colloidal silica with small unilamellar PC vesicles in saline solution, pH 7.4, PC adsorption isotherms on silica from inorganic phosphorus analysis showed a high PC affinity for silica with maximal PC adsorption at bilayer deposition. At 0.3 mM PC, fluorescence of pyrene-labeled GM(1) showed that GM(1) incorporation in biomimetic particles increased as a function of particles concentration. At 1 mg/mL silica, receptor incorporation increased to a maximum of 40% at 0.2-0.3 mM PC and then decreased as a function of PC concentration. At 5 microM GM(1), 0.3 mM PC, and 1 mg/mL silica, CT binding increased as a function of CT concentration with a plateau at 2 mg bound CT/m2 silica, which corresponded to the 5 GM(1)/1 CT molar proportion and showed successful reconstitution of receptor-ligand interaction.
Liquid crystal organization of self-assembling cyclic peptides.
Amorín, Manuel; Pérez, Ana; Barberá, Joaquín; Ozores, Haxel Lionel; Serrano, José Luis; Granja, Juan R; Sierra, Teresa
2014-01-21
Self-assembling cyclic peptides decorated with mesogens form porous columnar mesophases in which, depending on the number of hydrocarbon chains, double or single channels are formed along each column.
Study of supported phospholipid bilayers by THz-TDS
NASA Astrophysics Data System (ADS)
Ionescu, Alina; Mernea, Maria; Vasile, Ionut; Brandus, Catalina Alice; Barbinta-Patrascu, Marcela Elisabeta; Tugulea, Laura; Mihailescu, Dan; Dascalu, Traian
2012-10-01
Terahertz Time-Domain Spectroscopy (THz-TDS) is a new technique in studying the conformational state of molecules. Cell membranes are important structures in the interaction with extra cellular entities. Their principal building blocks are lipids, amphiphilic molecules that spontaneously self-assemble when in contact with water. In this work we report the use of THz-TDS in transmission mode to examine the behavior of supported phospholipid bilayers (SPBs) within the frequency range of 0.2 THz to 3 THz. SPBs were obtained by vesicle adsorption method involving the spread of a suspension (50-100 μl) of small unilamellar vesicles (SUVs) or multilamellar vesicles (MLVs) dissolved in PBS (phosphate buffer solution) on a support of silicon wafers. Both SUVs and MLVs were obtained from dipalmitoyl phosphatidylcholine (DPPC) and lecithin by using the thin-film hydration method. Broadband THz pulses are generated and detected using photoconductive antennas optically excited by a femtosecond laser pulse emitted from a self-mode locked fiber laser at a wavelength of 780 nm with a pulse widths of 150 fs. THz-TDS was proven to be a useful method in studying SPBs and their hydration states. The absorption coefficient and refractive index of the samples were calculated from THz measurements data. The THz absorption spectra for different lipids in SPBs indicate specific absorption frequency lines. A difference in the magnitude of the refractive index was also observed due to the different structure of supported lipid bilayers. The THz spectrum of DPPC was obtained by using theoretical simulations and then the experimental and theoretical THz spectra were compared.
Molecular self-assembly approaches for supramolecular electronic and organic electronic devices
NASA Astrophysics Data System (ADS)
Yip, Hin-Lap
Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.
Percec, Virgil; Bera, Tushar K; Glodde, Martin; Fu, Qiongying; Balagurusamy, Venkatachalapathy S K; Heiney, Paul A
2003-02-17
The synthesis and structural analysis of the twin-dendritic benzamide 10, based on the first-generation, self-assembling, tapered dendrons 3,4,5-tris(4'-dodecyloxybenzyloxy)benzoic acid and 3,4,5-tris(4'-dodecyloxybenzyloxy)-1-aminobenzene, and the polymethacrylate, 20, which contains 10 as side groups, are presented. Benzamide 10 self-assembles into a supramolecular cylindrical dendrimer that self-organizes into a columnar hexagonal (Phi(h)) liquid crystalline (LC) phase. Polymer 20 self-assembles into an imperfect four-cylinder-bundle supramolecular dendrimer, and creates a giant vesicular supercylinder that self-organizes into a columnar nematic (N(c)) LC phase which displays short-range hexagonal order. In mixtures of 20 and 10, 10 acts as a guest and 20 as a host to create a perfect four-cylinder-bundle host-guest supramolecular dendrimer that coorganizes with 10. A diversity of Phi(h), simple rectangular columnar (Phi(r-s)) and centered rectangular columnar (Phi(r-c)), superlattices are produced at different ratios between 20 and 10. This diversity of LC lattices and superlattices is facilitated by the architecture of the twin-dendritic building block, polymethacrylate, the host-guest supramolecular assembly, and by hydrogen bonding along the center of the supramolecular cylinders generated from 10 and 20.
Self-Assembly of Organic Ferroelectrics by Evaporative Dewetting: A Case of β-Glycine.
Seyedhosseini, Ensieh; Romanyuk, Konstantin; Vasileva, Daria; Vasilev, Semen; Nuraeva, Alla; Zelenovskiy, Pavel; Ivanov, Maxim; Morozovska, Anna N; Shur, Vladimir Ya; Lu, Haidong; Gruverman, Alexei; Kholkin, Andrei L
2017-06-14
Self-assembly of ferroelectric materials attracts significant interest because it offers a promising fabrication route to novel structures useful for microelectronic devices such as nonvolatile memories, integrated sensors/actuators, or energy harvesters. In this work, we demonstrate a novel approach for self-assembly of organic ferroelectrics (as exemplified by ferroelectric β-glycine) using evaporative dewetting, which allows forming quasi-regular arrays of nano- and microislands with preferred orientation of polarization axes. Surprisingly, self-assembled islands are crystallographically oriented in a radial direction from the center of organic "grains" formed during dewetting process. The kinetics of dewetting process follows the t -1/2 law, which is responsible for the observed polygon shape of the grain boundaries and island coverage as a function of radial position. The polarization in ferroelectric islands of β-glycine is parallel to the substrate and switchable under a relatively small dc voltage applied by the conducting tip of piezoresponse force microscope. Significant size effect on polarization is observed and explained within the Landau-Ginzburg-Devonshire phenomenological formalism.
Low-dimensional materials for organic electronic applications
NASA Astrophysics Data System (ADS)
Beniwal, Sumit
This thesis explores the self-assembly, surface interactions and electronic properties of functional molecules that have potential applications in electronics. Three classes of molecules - organic ferroelectric, spin-crossover complex, and molecules that assemble into a 2D semiconductor, have been studied through scanning tunneling microscopy and surfacesensitive spectroscopic methods. The scientific goal of this thesis is to understand the self-assembly of these molecules in low-dimensional (2D) configurations and the influence of substrate on their properties.
Molecular structure of the dioctadecyldimethylammonium bromide (DODAB) bilayer.
Jamróz, Dorota; Kepczynski, Mariusz; Nowakowska, Maria
2010-10-05
Dioctadecyldimethylammonium bromide (DODAB) is a double-chained quaternary ammonium surfactant that assembles in water into bilayer structures. This letter reports the molecular dynamics (MD) computer simulations of the DODAB bilayer at 25 °C. The simulations show that the surfactant membrane arranges spontaneously into the rippled phase (P(β)(')) at that temperature. The ordering within the chain fragment closest to the hydrophilic head (carbon atoms 1-5) is relatively low. It grows significantly for the carbon atoms located in the center of the membrane (atoms 6-17). The C6-C17 chain fragments are well aligned and tilted by ca. 15° with respect to the bilayer normal.
Protein machines and self assembly in muscle organization
NASA Technical Reports Server (NTRS)
Barral, J. M.; Epstein, H. F.
1999-01-01
The remarkable order of striated muscle is the result of a complex series of protein interactions at different levels of organization. Within muscle, the thick filament and its major protein myosin are classical examples of functioning protein machines. Our understanding of the structure and assembly of thick filaments and their organization into the regular arrays of the A-band has recently been enhanced by the application of biochemical, genetic, and structural approaches. Detailed studies of the thick filament backbone have shown that the myosins are organized into a tubular structure. Additional protein machines and specific myosin rod sequences have been identified that play significant roles in thick filament structure, assembly, and organization. These include intrinsic filament components, cross-linking molecules of the M-band and constituents of the membrane-cytoskeleton system. Muscle organization is directed by the multistep actions of protein machines that take advantage of well-established self-assembly relationships. Copyright 1999 John Wiley & Sons, Inc.
Deformed soft matter under constraints
NASA Astrophysics Data System (ADS)
Bertrand, Martin
In the last few decades, an increasing number of physicists specialized in soft matter, including polymers, have turned their attention to biologically relevant materials. The properties of various molecules and fibres, such as DNA, RNA, proteins, and filaments of all sorts, are studied to better understand their behaviours and functions. Self-assembled biological membranes, or lipid bilayers, are also the focus of much attention as many life processes depend on these. Small lipid bilayers vesicles dubbed liposomes are also frequently used in the pharmaceutical and cosmetic industries. In this thesis, work is presented on both the elastic properties of polymers and the response of lipid bilayer vesicles to extrusion in narrow-channels. These two areas of research may seem disconnected but they both concern deformed soft materials. The thesis contains four articles: the first presenting a fundamental study of the entropic elasticity of circular chains; the second, a simple universal description of the effect of sequence on the elasticity of linear polymers such as DNA; the third, a model of the symmetric thermophoretic stretch of a nano-confined polymer; the fourth, a model that predicts the final sizes of vesicles obtained by pressure extrusion. These articles are preceded by an extensive introduction that covers all of the essential concepts and theories necessary to understand the work that has been done.
Effect of Amphotericin B antibiotic on the properties of model lipid membrane
NASA Astrophysics Data System (ADS)
Kiryakova, S.; Dencheva-Zarkova, M.; Genova, J.
2014-12-01
Model membranes formed from natural and synthetic lipids are an interesting object for scientific investigations due to their similarity to biological cell membrane and their simple structure with controlled composition and properties. Amphotericin B is an important polyene antifungal antibiotic, used for treatment of systemic fungal infections. It is known from the literature that the studied antibiotic has a substantial effect on the transmembrane ionic channel structures. When applied to the lipid membranes it has the tendency to create pores and in this way to affect the structure and the properties of the membrane lipid bilayer. In this work the thermally induced shape fluctuations of giant quasi-spherical liposomes have been used to study the influence of polyene antibiotic amphotericin B on the elastic properties of model lipid membranes. It have been shown experimentally that the presence of 3 mol % of AmB in the lipid membrane reduces the bending elasticity of the lipid membrane for both studied cases: pure SOPC membrane and mixed SOPC-Cholesterol membrane. Interaction of the amphotericin B with bilayer lipid membranes containing channels have been studied in this work. Model membranes were self-assembled using the patch-clamp and tip-dip patch clamp technique. We have found that amphotericin B is an ionophore and reduces the resistance of the lipid bilayer.
Li, Hongguang; Choi, Jiyoung; Nakanishi, Takashi
2013-05-07
The engineering of single molecules into higher-order hierarchical assemblies is a current research focus in molecular materials chemistry. Molecules containing π-conjugated units are an important class of building blocks because their self-assembly is not only of fundamental interest, but also the key to fabricating functional systems for organic electronic and photovoltaic applications. Functionalizing the π-cores with "alkyl chains" is a common strategy in the molecular design that can give the system desirable properties, such as good solubility in organic solvents for solution processing. Moreover, the alkylated-π system can regulate the self-assembly behavior by fine-tuning the intermolecular forces. The optimally assembled structures can then exhibit advanced functions. However, while some general rules have been revealed, a comprehensive understanding of the function played by the attached alkyl chains is still lacking, and current methodology is system-specific in many cases. Better clarification of this issue requires contributions from carefully designed libraries of alkylated-π molecular systems in both self-assembly and nonassembly materialization strategies. Here, based on recent efforts toward this goal, we show the power of the alkyl chains in controlling the self-assembly of soft molecular materials and their resulting optoelectronic properties. The design of alkylated-C60 is selected from our recent research achievements, as the most attractive example of such alkylated-π systems. Some other closely related systems composed of alkyl chains and π-units are also reviewed to indicate the universality of the methodology. Finally, as a contrast to the self-assembled molecular materials, nonassembled, solvent-free, novel functional liquid materials are discussed. In doing so, a new journey toward the ultimate organic "soft" materials is introduced, based on alkylated-π molecular design.
Ikezoe, Yasuhiro; Washino, Gosuke; Uemura, Takashi; Kitagawa, Susumu; Matsui, Hiroshi
2012-01-01
There have developed a variety of microsystems that harness energy and convert it to mechanical motion. Here we developed new autonomous biochemical motors by integrating metal-organic framework (MOF) and self-assembling peptides. MOF is applied as an energy-storing cell that assembles peptides inside nanoscale pores of the coordination framework. The robust assembling nature of peptides enables reconfiguring their assemblies at the water-MOF interface, which is converted to fuel energy. Re-organization of hydrophobic peptides could create the large surface tension gradient around the MOF and it efficiently powers the translation motion of MOF. As a comparison, the velocity of normalized by volume for the DPA-MOF particle is faster and the kinetic energy per the unit mass of fuel is more than twice as large as the one for previous gel motor systems. This demonstration opens the new application of MOF and reconfigurable molecular self-assembly and it may evolve into the smart autonomous motor that mimic bacteria to swim and harvest target chemicals by integrating recognition units. PMID:23104155
Self-assembly of a double-helical complex of sodium.
Bell, T W; Jousselin, H
1994-02-03
Spontaneous self-organization of helical and multiple-helical molecular structures occurs on several levels in living organisms. Key examples are alpha-helical polypeptides, double-helical nucleic acids and helical protein structures, including F-actin, microtubules and the protein sheath of the tobacco mosaic virus. Although the self-assembly of double-helical transition-metal complexes bears some resemblance to the molecular organization of double-stranded DNA, selection between monohelical, double-helical and triple-helical structures is determined largely by the size and geometrical preference of the tightly bound metal. Here we present an example of double-helical assembly induced by the weaker and non-directional interactions of an alkali-metal ion with an organic ligand that is pre-organized into a coil. We have characterized the resulting complex by two-dimensional NMR and fast-atom-bombardment mass spectrometry. These results provide a step toward the creation of molecular tubes or ion channels consisting of intertwined coils.
Jin Lee, Su; Kim, Yong-Jae; Young Yeo, So; Lee, Eunji; Sun Lim, Ho; Kim, Min; Song, Yong-Won; Cho, Jinhan; Ah Lim, Jung
2015-01-01
Here we report the first demonstration for centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend. Key feature of this work is that organic semiconductor molecules were vertically segregated on top of the polymer phase and simultaneously crystallized at the center of the printed line pattern after solvent evaporation without an additive process. The thickness and width of the centro-apically segregated organic semiconductor crystalline stripe in the printed blend pattern were controlled by varying the relative content of the organic semiconductors, printing speed, and solution concentrations. The centro-apical self-organization of organic semiconductor molecules in a printed polymer blend may be attributed to the combination of an energetically favorable vertical phase-separation and hydrodynamic fluids inside the droplet during solvent evaporation. Finally, a centro-apically phase-separated bilayer structure of organic semiconductor: polymer blend was successfully demonstrated as a facile method to form the semiconductor and dielectric layer for OFETs in one- step. PMID:26359068
Lee, Su Jin; Kim, Yong-Jae; Yeo, So Young; Lee, Eunji; Lim, Ho Sun; Kim, Min; Song, Yong-Won; Cho, Jinhan; Lim, Jung Ah
2015-09-11
Here we report the first demonstration for centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend. Key feature of this work is that organic semiconductor molecules were vertically segregated on top of the polymer phase and simultaneously crystallized at the center of the printed line pattern after solvent evaporation without an additive process. The thickness and width of the centro-apically segregated organic semiconductor crystalline stripe in the printed blend pattern were controlled by varying the relative content of the organic semiconductors, printing speed, and solution concentrations. The centro-apical self-organization of organic semiconductor molecules in a printed polymer blend may be attributed to the combination of an energetically favorable vertical phase-separation and hydrodynamic fluids inside the droplet during solvent evaporation. Finally, a centro-apically phase-separated bilayer structure of organic semiconductor: polymer blend was successfully demonstrated as a facile method to form the semiconductor and dielectric layer for OFETs in one- step.
Self-Assembly, Guest Capture, and NMR Spectroscopy of a Metal-Organic Cage in Water
ERIC Educational Resources Information Center
Go, Eun Bin; Srisuknimit, Veerasak; Cheng, Stephanie L.; Vosburg, David A.
2016-01-01
A green organic-inorganic laboratory experiment has been developed in which students prepare a self-assembling iron cage in D[subscript 2]O at room temperature. The tetrahedral cage captures a small, neutral molecule such as cyclohexane or tetrahydrofuran. [Superscript 1]H NMR analysis distinguishes captured and free guests through diagnostic…
Li, Xuezhao; Wu, Jinguo; He, Cheng; Zhang, Rong; Duan, Chunying
2016-04-14
By incorporating a fac-tris(4-(2-pyridinyl)phenylamine)iridium as the backbone of the tripodal ligand to constrain the coordination geometry of Zn(II) ions, a pentanuclear Ir-Zn heterometal-organic luminescent polyhedron was obtained via a subcomponent self-assembly for carbon dioxide fixation and sulfite sequestration.
Organic supernanostructures self-assembled via solution process for explosive detection.
Wang, Lei; Zhou, Yan; Yan, Jing; Wang, Jian; Pei, Jian; Cao, Yong
2009-02-03
Three different polymorphic crystalline structures, including microbelts and flowerlike supernanostructures, were obtained via a simple solution process by utilizing different solvents from an oligoarene derivative. Explosive chemosensors based on these self-assembled organic crystalline nanostructures were successfully fabricated. The differences in the structures on the microscopic level and in the film morphologies led to dramatic enhancements of the explosive detection speed. With the evolution of structures from the netted 1D microbelts to the flowerlike supernanostructures, the detection speed of the chemosensors for DNT and TNT was improved by more than 700 times. Our discovery demonstrates that the morphology control through self-assembly provides a new platform to utilize organic crystalline microstructures for chemosensors, optoelectronics, biosensors and bioelectronics, and so forth.
Protein-directed self-assembly of a fullerene crystal.
Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B; Acharya, Rudresh; DeGrado, William F; Kim, Yong Ho; Grigoryan, Gevorg
2016-04-26
Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design.
Guided molecular self-assembly: a review of recent efforts
NASA Astrophysics Data System (ADS)
Huie, Jiyun C.
2003-04-01
This paper serves as an introductory review of significant and novel successes achieved in the fields of nanotechnology, particularly in the formation of nanostructures using guided molecular self-assembly methods. Self-assembly is a spontaneous process by which molecules and nanophase entities may materialize into organized aggregates or networks. Through various interactive mechanisms of self-assembly, such as electrostatics, chemistry, surface properties, and via other mediating agents, the technique proves indispensable to recent functional materials and device realizations. The discussion will extend to spontaneous and Langmuir-Blodgett formation of self-assembled monolayers on various substrates, and a number of different categories of self-assembly techniques based on the type of interaction exploited. Combinatorial techniques, known as soft lithography, of micro-contact printing and dip-pen nanolithography, which can be effectively used to up-size nanostructured molecular assemblies to submicrometer and micrometer scale patterns, will also be mentioned.
Alivisatos, A.P.; Colvin, V.L.
1998-05-12
Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.
2014-01-24
Interfacial Tuning via Electron-Blocking/Hole-Transport Layers and Indium Tin Oxide Surface Treatment in Bulk- Heterojunction Organic Photovoltaic Cells...devices Figure 3 shows the compounds we prepared to assemble on gold (Au) surfaces. Results of TPA-C60 dyads (1 and 2) self-assembled on Au electrodes...surface hydroxyl groups, respectively, we decided to prepare compounds 5-7 to attach as SAMs, see Figure 5. Difficulties and unexpected problems
Customization and design of directed self-assembly using hybrid prepatterns
NASA Astrophysics Data System (ADS)
Cheng, Joy; Doerk, Gregory S.; Rettner, Charles T.; Singh, Gurpreet; Tjio, Melia; Truong, Hoa; Arellano, Noel; Balakrishnan, Srinivasan; Brink, Markus; Tsai, Hsinyu; Liu, Chi-Chun; Guillorn, Michael; Sanders, Daniel P.
2015-03-01
Diminishing error tolerance renders the customization of patterns created through directed self-assembly (DSA) extremely challenging at tighter pitch. A self-aligned customization scheme can be achieved using a hybrid prepattern comprising both organic and inorganic regions that serves as a guiding prepattern to direct the self-assembly of the block copolymers as well as a cut mask pattern for the DSA arrays aligned to it. In this paper, chemoepitaxy-based self-aligned customization is demonstrated using two types of organic-inorganic prepatterns. CHEETAH prepattern for "CHemoepitaxy Etch Trim using a self-Aligned Hardmask" of preferential hydrogen silsesquioxane (HSQ, inorganic resist), non-preferential organic underlayer is fabricated using electron beam lithography. Customized trench or hole arrays can be achieved through co-transfer of DSA-formed arrays and CHEETAH prepattern. Herein, we also introduce a tone-reversed version called reverse-CHEETAH (or rCHEETAH) in which customized line segments can be achieved through co-transfer of DSA-formed arrays formed on a prepattern wherein the inorganic HSQ regions are nonpreferential and the organic regions are PMMA preferential. Examples of two-dimensional self-aligned customization including 25nm pitch fin structures and an 8-bar "IBM" illustrate the versatility of this customization scheme using rCHEETAH.
Isabettini, Stéphane; Massabni, Sarah; Hodzic, Arnel; Durovic, Dzana; Kohlbrecher, Joachim; Ishikawa, Takashi; Fischer, Peter; Windhab, Erich J; Walde, Peter; Kuster, Simon
2017-08-09
Lanthanide ion (Ln 3+ ) chelating amphiphiles are powerful molecules for tailoring the magnetic response of polymolecular assemblies. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA) complexed to Ln 3+ deliver highly magnetically responsive bicelles. Their magnetic properties are readily tuned by changing the bicellar size or the magnetic susceptibility Δχ of the bilayer lipids. The former technique is intrinsically bound to the region of the phase diagram guarantying the formation of bicelles. Methods aiming towards manipulating the Δχ of the bilayer are comparatively more robust, flexible and lacking. Herein, we synthesized a new Ln 3+ chelating phospholipid using glutamic acid as a backbone: DMPE-Glu-DTPA. The chelate polyhedron was specifically engineered to alter the Δχ, whilst remaining geometrically similar to DMPE-DTPA. Planar asymmetric assemblies hundreds of nanometers in size were achieved presenting unprecedented magnetic alignments. The DMPE-Glu-DTPA/Ln 3+ complex switched the Δχ, achieving perpendicular alignment of assemblies containing Dy 3+ and parallel alignment of those containing Tm 3+ . Moreover, samples with chelated Yb 3+ were more alignable than the Tm 3+ chelating counterparts. Such a possibility has never been demonstrated for planar Ln 3+ chelating polymolecular assemblies. The physico-chemical properties of these novel assemblies were further studied by monitoring the alignment behavior at different temperatures and by including 16 mol% of cholesterol (Chol-OH) in the phospholipid bilayer. The DMPE-Glu-DTPA/Ln 3+ complex and the resulting assemblies are promising candidates for applications in numerous fields including pharmaceutical technologies, structural characterization of membrane biomolecules by NMR spectroscopy, as contrasting agents for magnetic resonance imaging, and for the development of smart optical gels.
NASA Astrophysics Data System (ADS)
Xue, Mingshan; Xu, Tao; Xie, Xiaolin; Ou, Junfei; Wang, Fajun; Li, Wen
2015-11-01
Synthesis and understanding of hierarchically nanostructured materials are significant for exploring peculiar functional properties and underlying applications. In this study, the self-assembly formation and detailed transformation process of ZnO nanoplatelets grown by hydrothermal methods with the addition of compound surfactants (CTAB and Tween-20) have been investigated. The initial growth of ZnO nanoplatelets as well as the subsequent formation of bilayer nanorod arrays and divergent nanocone arrays on the surface and side face of these nanoplatelets were found. Compared with the formation of bulk/block crystals without the case of surfactants, the addition of compound surfactants into zinc nitrate solution is responsible for the self-assembly processes of ZnO because of the effective role of CTAB in decreasing the degree of crystallinity and the positive effect of Tween-20 on decreasing the particle size owing to the space hindered effect. As-formed hierarchically micro-nanostructured ZnO exhibits superhydrophobicity without any chemical modification, which can make water droplets suspend on the air film trapped between the nanoplatelet and nanoplatelet as well as between nanocone and nanocone.
NASA Astrophysics Data System (ADS)
Mubeena, Shaikh; Chatterji, Apratim
2015-03-01
We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhanjadeo, Madhabi M.; Academy of Scientific and Innovative Research; Nayak, Ashok K.
DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Fieldmore » emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.« less
Two-dimensional honeycomb network through sequence-controlled self-assembly of oligopeptides.
Abb, Sabine; Harnau, Ludger; Gutzler, Rico; Rauschenbach, Stephan; Kern, Klaus
2016-01-12
The sequence of a peptide programs its self-assembly and hence the expression of specific properties through non-covalent interactions. A large variety of peptide nanostructures has been designed employing different aspects of these non-covalent interactions, such as dispersive interactions, hydrogen bonding or ionic interactions. Here we demonstrate the sequence-controlled fabrication of molecular nanostructures using peptides as bio-organic building blocks for two-dimensional (2D) self-assembly. Scanning tunnelling microscopy reveals changes from compact or linear assemblies (angiotensin I) to long-range ordered, chiral honeycomb networks (angiotensin II) as a result of removal of steric hindrance by sequence modification. Guided by our observations, molecular dynamic simulations yield atomistic models for the elucidation of interpeptide-binding motifs. This new approach to 2D self-assembly on surfaces grants insight at the atomic level that will enable the use of oligo- and polypeptides as large, multi-functional bio-organic building blocks, and opens a new route towards rationally designed, bio-inspired surfaces.
Tessarek, C; Sarau, G; Kiometzis, M; Christiansen, S
2013-02-11
Self-assembled GaN rods were grown on sapphire by metal-organic vapor phase epitaxy using a simple two-step method that relies first on a nitridation step followed by GaN epitaxy. The mask-free rods formed without any additional catalyst. Most of the vertically aligned rods exhibit a regular hexagonal shape with sharp edges and smooth sidewall facets. Cathodo- and microphotoluminescence investigations were carried out on single GaN rods. Whispering gallery modes with quality factors greater than 4000 were measured demonstrating the high morphological and optical quality of the self-assembled GaN rods.
Grooved nanowires from self-assembling hairpin molecules for solar cells.
Tevis, Ian D; Tsai, Wei-Wen; Palmer, Liam C; Aytun, Taner; Stupp, Samuel I
2012-03-27
One of the challenges facing bulk heterojunction organic solar cells is obtaining organized films during the phase separation of intimately mixed donor and acceptor components. We report here on the use of hairpin-shaped sexithiophene molecules to generate by self-assembly grooved nanowires as the donor component in bulk heterojunction solar cells. Photovoltaic devices were fabricated via spin-casting to produce by solvent evaporation a percolating network of self-assembled nanowires and fullerene acceptors. Thermal annealing was found to increase power conversion efficiencies by promoting domain growth while still maintaining this percolating network of nanostructures. The benefits of self-assembly and grooved nanowires were examined by building devices from a soluble sexithiophene derivative that does not form one-dimensional structures. In these systems, excessive phase separation caused by thermal annealing leads to the formation of defects and lower device efficiencies. We propose that the unique hairpin shape of the self-assembling molecules allows the nanowires as they form to interact well with the fullerenes in receptor-ligand type configurations at the heterojunction of the two domains, thus enhancing device efficiencies by 23%. © 2012 American Chemical Society
Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles
NASA Astrophysics Data System (ADS)
Xia, Yunsheng; Nguyen, Trung Dac; Yang, Ming; Lee, Byeongdu; Santos, Aaron; Podsiadlo, Paul; Tang, Zhiyong; Glotzer, Sharon C.; Kotov, Nicholas A.
2011-09-01
Nanoparticles are known to self-assemble into larger structures through growth processes that typically occur continuously and depend on the uniformity of the individual nanoparticles. Here, we show that inorganic nanoparticles with non-uniform size distributions can spontaneously assemble into uniformly sized supraparticles with core-shell morphologies. This self-limiting growth process is governed by a balance between electrostatic repulsion and van der Waals attraction, which is aided by the broad polydispersity of the nanoparticles. The generic nature of the interactions creates flexibility in the composition, size and shape of the constituent nanoparticles, and leads to a large family of self-assembled structures, including hierarchically organized colloidal crystals.
ERIC Educational Resources Information Center
Albin, Tyler J.; Fry, Melany M.; Murphy, Amanda R.
2014-01-01
This laboratory experiment gives upper-division organic or biochemistry undergraduate students a comprehensive look at the synthesis, chemical characterization, self-assembly, and secondary structure determination of small, N-acylated peptides inspired by the protein structure of silkworm silk. All experiments can be completed in one 4 h lab…
NASA Astrophysics Data System (ADS)
Yang, Xiaoli; Wu, Suilan; Wang, Panhao; Yang, Lin
2018-02-01
The synthesis of well-ordered hierarchical metal-organic frameworks (MOFs) in an efficient manner is a great challenge. Here, a 3D regular ordered meso-/macroporous MOF of Cu-TATAB (referred to as MM-MOF) was synthesized through a facile template-free self-assembly process with pore sizes of 31 nm and 119 nm.
Li, Yantao; Zhang, Daojun; Gai, Fangyuan; Zhu, Xingqi; Guo, Ya-nan; Ma, Tianliang; Liu, Yunling; Huo, Qisheng
2012-08-18
Metal-organic polyhedra (MOP) nanocages were successfully surface functionalized via ionic self-assembly and the ordered honeycomb architecture of the encapsulated MOP nanocages was also fabricated at the air/water surface. The results provide a novel synthetic method and membrane processing technique of amphiphilic MOP nanocages for various applications.
Molecular Motor-Induced Instabilities and Cross Linkers Determine Biopolymer Organization
Smith, D.; Ziebert, F.; Humphrey, D.; Duggan, C.; Steinbeck, M.; Zimmermann, W.; Käs, J.
2007-01-01
All eukaryotic cells rely on the active self-organization of protein filaments to form a responsive intracellular cytoskeleton. The necessity of motility and reaction to stimuli additionally requires pathways that quickly and reversibly change cytoskeletal organization. While thermally driven order-disorder transitions are, from the viewpoint of physics, the most obvious method for controlling states of organization, the timescales necessary for effective cellular dynamics would require temperatures exceeding the physiologically viable temperature range. We report a mechanism whereby the molecular motor myosin II can cause near-instantaneous order-disorder transitions in reconstituted cytoskeletal actin solutions. When motor-induced filament sliding diminishes, the actin network structure rapidly and reversibly self-organizes into various assemblies. Addition of stable cross linkers was found to alter the architectures of ordered assemblies. These isothermal transitions between dynamic disorder and self-assembled ordered states illustrate that the interplay between passive crosslinking and molecular motor activity plays a substantial role in dynamic cellular organization. PMID:17604319
Self-assembly micro optical filter
NASA Astrophysics Data System (ADS)
Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.
2006-01-01
Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.
Driving Forces of the Self-Assembly of Supramolecular Systems: Partially Ordered Mesophases
NASA Astrophysics Data System (ADS)
Shcherbina, M. A.; Chvalun, S. N.
2018-06-01
The main aspects are considered of the self-organization of a new class of liquid crystalline compounds, rigid sector-shaped and cone-shaped dendrons. Theoretical approaches to the self-assembly of different amphiphilic compounds (lipids, bolaamphiphiles, block copolymers, and polyelectrolytes) are described. Particular attention is given to the mesophase structures that emerge during the self-organization of mesophases characterized by intermediate degrees of ordering, e.g., plastic crystals, the rotation-crystalline phase in polymers, ordered and disordered two-dimensional columnar phases, and bicontinuous cubic phases of different symmetry.
From Solvolysis to Self-Assembly*
Stang, Peter J.
2009-01-01
My sojourn from classical physical-organic chemistry and solvolysis to self-assembly and supramolecular chemistry, over the last forty years, is described. My contributions to unsaturated reactive intermediates, namely vinyl cations and unsaturated carbenes, along with my decade long involvement with polyvalent iodine chemistry, especially alkynyliodonium salts, as well as my more recent research with metal-ligand, coordination driven and directed self-assembly of finite supramolecular ensembles are discussed. PMID:19111062
The Evolution of Thin-Film Structure in pi-Conjugated System: Implications for Devices
2015-07-09
dependent, polymer self - assembly (Chem Matls, 2015). The results provide vital insights into factors leading to organized conjugated polymer nanostructures...34Liquid Crystalline Poly(3-hexylthiophene) Solutions Revisited: Role of Time- dependent Self - Assembly ", Chemistry of Materials (2015), 27(7), 2687-2694...period (if none, report none): For the first time, we demonstrated that π-conjugated polymers self - assemble and exhibit liquid crystal ordering
Structure and property relations of macromolecular self-assemblies at interfaces
NASA Astrophysics Data System (ADS)
Yang, Zhihao
Hydrophilic polymer chains, poly(ethylene glycol) (PEG), are attached to glass surfaces by silylation of the silanol groups on glass surfaces with the omega-(methoxyl terminated PEG) trimethoxysilanes. These tethered polymer chains resemble the self-assembled monolayers (SAMs) of PEG, which exhibit excellent biocompatibility and provide a model system for studying the interactions of proteins with polymer surfaces. The low molecular weight PEGs tend to extend, forming a brush-like monolayer, whereas the longer polymer chains tend to interpenetrate each other, forming a mushroom-like PEG monolayer at the interface. Interactions between a plasma protein, bovine serum albumin, and the PEG-SAMs are investigated in terms of protein adsorption and diffusion on the surfaces by the technique of fluorescence recovery after photobleaching (FRAP). The diffusion and aggregation behaviors of the protein on the two monolayers are found to be quite different despite the similarities in adsorption and desorption behaviors. The results are analyzed with a hypothesis of the hydrated surface dynamics. A method of covalently bonding phospholipid molecules to silica substrates followed by loading with free phospholipids is demonstrated to form well organized and stable phospholipid self-assembled monolayers. Surfaces of such SAMs structurally mimic the aqueous sides of phospholipid bilayer membranes. The dynamics of phospholipids and an adsorbed protein, lipase, in the SAMs are probed with FRAP, in terms of lateral diffusion of both phospholipids and protein molecules. The esterase activity of lipase on the SAM surfaces is confirmed by the hydrolysis reaction of a substrate, umbelliferone stearate, showing such lipid SAMs posess biomembrane functionality in terms of interfacial activation of the membranous enzymes. Dynamics of polyethylene oxide and polypropylene oxide tri-block copolymers, PEO-PPO-PEO and PPO-PEO-PPO, at the air/water interface upon thermal stimulation is studied by surface light scattering, in terms of the dynamic surface tension changes in response to a temperature jump. The characteristic of the surface tension relaxation is found to be highly related to the molecular structure and concentration of the copolymers at the interface.
Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory
ERIC Educational Resources Information Center
McFarland, Adam D.; Huffman, Lauren M.; Parent, Kathryn, E.; Hutchison, James E.; Thompson, John E.
2004-01-01
An experiment demonstrating self-assembled monolayer (SAM) chemistry, organic thin-film patterning and the use of molecular functionality to control macroscopic properties is described. Several important green chemistry principles are introduced.
Integrating DNA strand-displacement circuitry with DNA tile self-assembly
Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik
2013-01-01
DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381
Self-assembly strategies for the synthesis of functional nanostructured materials
NASA Astrophysics Data System (ADS)
Perego, M.; Seguini, G.
2016-06-01
Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer self-assembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process. Moreover the capability to precisely organize these nano-objects on appropriate substrates is the key point to support the technological development of new device concepts with predictable characteristics based on these nano-materials. In the next coming years this area of research, at the intersection between fundamental science and technology, is expected to disclose additional insights in the physics of the self-assembly process and to delineate unforeseen applications for these exciting materials.
Angelova, Miglena I; Bitbol, Anne-Florence; Seigneuret, Michel; Staneva, Galya; Kodama, Atsuji; Sakuma, Yuka; Kawakatsu, Toshihiro; Imai, Masayuki; Puff, Nicolas
2018-03-06
Most biological molecules contain acido-basic groups that modulate their structure and interactions. A consequence is that pH gradients, local heterogeneities and dynamic variations are used by cells and organisms to drive or regulate specific biological functions including energetic metabolism, vesicular traffic, migration and spatial patterning of tissues in development. While the direct or regulatory role of pH in protein function is well documented, the role of hydrogen and hydroxyl ions in modulating the properties of lipid assemblies such as bilayer membranes is only beginning to be understood. Here, we review approaches using artificial lipid vesicles that have been instrumental in providing an understanding of the influence of pH gradients and local variations on membrane vectorial motional processes: migration, membrane curvature effects promoting global or local deformations, crowding generation by segregative polarization processes. In the case of pH induced local deformations, an extensive theoretical framework is given and an application to a specific biological issue, namely the structure and stability of mitochondrial cristae, is described. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2018 Elsevier B.V. All rights reserved.
Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto
2015-10-14
The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.
Infrared spectroscopy of organic semiconductors modified by self-assembled monolayers
NASA Astrophysics Data System (ADS)
Khatib, O.; Lee, B.; Podzorov, V.; Yuen, J.; Heeger, A. J.; Li, Z. Q.; di Ventra, M.; Basov, D. N.
2009-03-01
Recently, self-assembled monolayers (SAMs) were used to modify electronic surface properties of organic single crystals, leading to several orders of magnitude increase in the electrical conductivity^1. Motivated by this discovery, the same technique was applied to polymers. Here we present a thorough spectroscopic investigation of organic semiconductors based on poly(3-hexlthiophene) (P3HT) that have been treated with a fluorinated trichlorosilane SAM. Infrared spectroscopy offers access to details of charge injection, electrostatic doping, and the electronic structure that are not always available from transport measurements, which can be dominated by defects and contact effects. In polymer films, the SAM molecules penetrate into the bulk, leading to a rich spectrum of electronic excitations in the mid-infrared energy range. ^1 M. F. Calhoun, J. Sanchez, D. Olaya, M. E. Gershenson, V. Podzorov, Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers, Nature Mater. 7, 84--89 (2008)
Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals.
Li, Yunfeng; Prince, Elisabeth; Cho, Sangho; Salari, Alinaghi; Mosaddeghian Golestani, Youssef; Lavrentovich, Oleg D; Kumacheva, Eugenia
2017-02-28
An important goal of the modern soft matter science is to discover new self-assembly modalities to precisely control the placement of small particles in space. Spatial inhomogeneity of liquid crystals offers the capability to organize colloids in certain regions such as the cores of the topological defects. Here we report two self-assembly modes of nanoparticles in linear defects-disclinations in a lyotropic colloidal cholesteric liquid crystal: a continuous helicoidal thread and a periodic array of discrete beads. The beads form one-dimensional arrays with a periodicity that matches half a pitch of the cholesteric phase. The periodic assembly is governed by the anisotropic surface tension and elasticity at the interface of beads with the liquid crystal. This mode of self-assembly of nanoparticles in disclinations expands our ability to use topological defects in liquid crystals as templates for the organization of nanocolloids.
2015-11-05
AFRL-AFOSR-VA-TR-2015-0396 (HBCU) Photo-switchable Donor-Acceptor for Organic Photovoltaic Cells Luis Echegoyen UNIVERSITY OF TEXAS AT EL PASO Final...Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0053 5c...demonstrated using impedance spectroscopy for several triphenylamine-fullerene dyads, but their performance in photovoltaic devices was not remarkable, likely
2000-12-15
NASA is looking to biological techniques that are millions of years old to help it develop new materials and technologies for the 21st century. Sponsored by NASA, Jeffrey Brinker of the University of New Mexico is studying how multiple elements can assemble themselves into a composite material that is clear, tough, and impermeable. His research is based on the model of how an abalone builds the nacre, also called mother-of-pearl, inside its shell. Strong thin coatings, or lamellae, in Brinker's research are formed when objects are dip-coated. Evaporation drives the self-assembly of molecular aggregates (micelles) of surfactant, soluble silica, and organic monomers and their further self-organization into layered organic and inorganic assemblies.
Self-folding mechanics of graphene tearing and peeling from a substrate
NASA Astrophysics Data System (ADS)
He, Ze-Zhou; Zhu, Yin-Bo; Wu, Heng-An
2018-06-01
Understanding the underlying mechanism in the tearing and peeling processes of graphene is crucial for the further hierarchical design of origami-like folding and kirigami-like cutting of graphene. However, the complex effects among bending moduli, adhesion, interlayer interaction, and local crystal structure during origami-like folding and kirigami-like cutting remain unclear, resulting in challenges to the practical applications of existing theoretical and experimental findings as well as to potential manipulations of graphene in metamaterials and nanodevices. Toward this end, classical molecular dynamics (MD) simulations are performed with synergetic theoretical analysis to explore the tearing and peeling of self-folded graphene from a substrate driven by external force and by thermal activation. It is found that the elastic energy localized at the small folding ridge plays a significant role in the crack trajectory. Due to the extremely small bending modulus of monolayer graphene, its taper angle when pulled by an external force follows a scaling law distinct from that in case of bilayer graphene. With the increase in the initial width of the folding ridge, the self-folded graphene, motivated by thermal fluctuations, can be self-assembled by spontaneous self-tearing and peeling from a substrate. Simultaneously, the scaling law between the taper angle and adhesive energy is independent of the motivations for thermal activation-induced self-assembly and external force tearing, providing effective insights into the underlying physics for graphene-based origami-like folding and kirigami-like cutting.
Stewart, Sarah E; D'Angelo, Michael E; Paintavigna, Stefania; Tabor, Rico F; Martin, Lisandra L; Bird, Phillip I
2015-01-01
Streptolysin O (SLO) is a bacterial pore forming protein that is part of the cholesterol dependent cytolysin (CDC) family. We have used quartz crystal microbalance with dissipation monitoring (QCM-D) to examine SLO membrane binding and pore formation. In this system, SLO binds tightly to cholesterol-containing membranes, and assembles into partial and complete pores confirmed by atomic force microscopy. SLO binds to the lipid bilayer at a single rate consistent with the Langmuir isotherm model of adsorption. Changes in dissipation illustrate that SLO alters the viscoelastic properties of the bilayer during pore formation, but there is no loss of material from the bilayer as reported for small membrane-penetrating peptides. SLO mutants were used to further dissect the assembly and insertion processes by QCM-D. This shows the signature of SLO in QCM-D changes when pore formation is inhibited, and that bound and inserted SLO forms can be distinguished. Furthermore a pre-pore locked SLO mutant binds reversibly to lipid, suggesting that the partially complete wtSLO forms observed by AFM are anchored to the membrane. Copyright © 2014 Elsevier B.V. All rights reserved.
Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature.
Cheney, Philip P; Weisgerber, Alan W; Feuerbach, Alec M; Knowles, Michelle K
2017-03-15
The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl- sn -glycero-3-phosphoethanolamine (DHPE) and hexadecanoic acid (HDA), using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.
Low, Harry H.; Sachse, Carsten; Amos, Linda A.; Löwe, Jan
2009-01-01
Summary Proteins of the dynamin superfamily mediate membrane fission, fusion, and restructuring events by polymerizing upon lipid bilayers and forcing regions of high curvature. In this work, we show the electron cryomicroscopy reconstruction of a bacterial dynamin-like protein (BDLP) helical filament decorating a lipid tube at ∼11 Å resolution. We fitted the BDLP crystal structure and produced a molecular model for the entire filament. The BDLP GTPase domain dimerizes and forms the tube surface, the GTPase effector domain (GED) mediates self-assembly, and the paddle region contacts the lipids and promotes curvature. Association of BDLP with GMPPNP and lipid induces radical, large-scale conformational changes affecting polymerization. Nucleotide hydrolysis seems therefore to be coupled to polymer disassembly and dissociation from lipid, rather than membrane restructuring. Observed structural similarities with rat dynamin 1 suggest that our results have broad implication for other dynamin family members. PMID:20064379
Chemin, Caroline; Bourgaux, Claudie; Péan, Jean-Manuel; Pabst, Georg; Wüthrich, Patrick; Couvreur, Patrick; Ollivon, Michel
2008-06-01
For drug delivery purpose the anticancer drug S12363 was loaded into ESM/Chol-liposomes using either a pH or an ammonium gradient. Association between the drug and the liposome depends markedly on the liposome membrane structure. Thus, ESM and ESM/Chol bilayer organization had been characterized by coupled DSC and XRDT as a function of both cholesterol concentration and aqueous medium composition. ESM bilayers exhibited a ripple lamellar gel phase P(beta') below the melting temperature and adopted a L(beta)-like gel phase upon Chol insertion. Supramolecular organization of ESM and ESM/Chol bilayers was not modified by citrate buffer or ammonium sulfate solution whatever the pH (3< or = pH < or =7). Nevertheless, in ESM bilayer, ammonium sulfate salt induced a peculiar organization of head groups, leading to irregular d-spacing and weakly correlated bilayers. Moreover, in the presence of salts, a weakening of van der Waals attraction forces was seen and led to a swelling of the water layer.
NASA Astrophysics Data System (ADS)
Montano, Gabriel
Lipids serve as the organizing matrix material for biological membranes, the site of interaction of cells with the external environment. . As such, lipids play a critical role in structure/function relationships of an extraordinary number of critical biological processes. In this talk, we will look at bio-inspired membrane assemblies to better understand the roles of lipids in biological systems as well as attempt to generate materials that can mimic and potentially advance upon biological membrane processes. First, we will investigate the response of lipids to adverse conditions. In particular, I will present data that demonstrates the response of lipids to harsh conditions and how such responses can be exploited to generate nanocomposite rearrangements. I will also show the effect of adding the endotoxin lipopolysaccharide (LPS) to lipid bilayer assemblies and describe implications on our understanding of LPS organization in biological systems as well as describe induced lipid modifications that can be exploited to organize membrane composites with precise, two-dimensional geometric control. Lastly, I will describe the use of amphiphilic block copolymers to create membrane nanocomposites capable of mimicking biological systems. In particular, I will describe the use of our polymer-based membranes in creating artificial photosynthetic assemblies that rival biological systems in function in a more flexible, dynamic matrix.
Vecchiarelli, Anthony G.; Li, Min; Mizuuchi, Michiyo; Hwang, Ling Chin; Seol, Yeonee; Neuman, Keir C.; Mizuuchi, Kiyoshi
2016-01-01
The Escherichia coli Min system self-organizes into a cell-pole to cell-pole oscillator on the membrane to prevent divisions at the cell poles. Reconstituting the Min system on a lipid bilayer has contributed to elucidating the oscillatory mechanism. However, previous in vitro patterns were attained with protein densities on the bilayer far in excess of those in vivo and failed to recapitulate the standing wave oscillations observed in vivo. Here we studied Min protein patterning at limiting MinD concentrations reflecting the in vivo conditions. We identified “burst” patterns—radially expanding and imploding binding zones of MinD, accompanied by a peripheral ring of MinE. Bursts share several features with the in vivo dynamics of the Min system including standing wave oscillations. Our data support a patterning mechanism whereby the MinD-to-MinE ratio on the membrane acts as a toggle switch: recruiting and stabilizing MinD on the membrane when the ratio is high and releasing MinD from the membrane when the ratio is low. Coupling this toggle switch behavior with MinD depletion from the cytoplasm drives a self-organized standing wave oscillator. PMID:26884160
Vecchiarelli, Anthony G; Li, Min; Mizuuchi, Michiyo; Hwang, Ling Chin; Seol, Yeonee; Neuman, Keir C; Mizuuchi, Kiyoshi
2016-03-15
The Escherichia coli Min system self-organizes into a cell-pole to cell-pole oscillator on the membrane to prevent divisions at the cell poles. Reconstituting the Min system on a lipid bilayer has contributed to elucidating the oscillatory mechanism. However, previous in vitro patterns were attained with protein densities on the bilayer far in excess of those in vivo and failed to recapitulate the standing wave oscillations observed in vivo. Here we studied Min protein patterning at limiting MinD concentrations reflecting the in vivo conditions. We identified "burst" patterns--radially expanding and imploding binding zones of MinD, accompanied by a peripheral ring of MinE. Bursts share several features with the in vivo dynamics of the Min system including standing wave oscillations. Our data support a patterning mechanism whereby the MinD-to-MinE ratio on the membrane acts as a toggle switch: recruiting and stabilizing MinD on the membrane when the ratio is high and releasing MinD from the membrane when the ratio is low. Coupling this toggle switch behavior with MinD depletion from the cytoplasm drives a self-organized standing wave oscillator.
Tran, Nhiem; Bye, Nicole; Moffat, Bradford A; Wright, David K; Cuddihy, Andrew; Hinton, Tracey M; Hawley, Adrian M; Reynolds, Nicholas P; Waddington, Lynne J; Mulet, Xavier; Turnley, Ann M; Morganti-Kossmann, M Cristina; Muir, Benjamin W
2017-02-01
Engineered nanoparticles with multiple complementary imaging modalities are of great benefit to the rapid treatment and diagnosis of disease in various organs. Herein, we report the formulation of cubosomes and hexosomes that carry multiple amphiphilic imaging contrast agents in their self-assembled lipid bilayers. This is the first report of the use of both near infrared fluorescent (NIRF) imaging and gadolinium lipid based magnetic resonance (MR) imaging modalities in cubosomes and hexosomes. High-throughput screening was used to rapidly optimize formulations with desirable nano-architectures and low in vitro cytotoxicity. The dual-modal imaging nanoparticles in vivo biodistribution and organ specific contrast enhancement were then studied. The NIRF in vivo imaging results indicated accumulation of both cubosomes and hexosomes in the liver and spleen of mice up to 20h post-injection. Remarkably, the biodistribution of the nanoparticle formulations was affected by the mesophase (i.e. cubic or hexagonal), a finding of significant importance for the future use of these compounds, with hexosomes showing higher accumulation in the spleen than the liver compared to cubosomes. Furthermore, in vivo MRI data of animals injected with either type of lyotropic liquid crystal nanoparticle displayed enhanced contrast in the liver and spleen. Copyright © 2016 Elsevier B.V. All rights reserved.
Seki, Takakazu; So, Christopher R; Page, Tamon R; Starkebaum, David; Hayamizu, Yuhei; Sarikaya, Mehmet
2018-02-06
The nanoscale self-organization of biomolecules, such as proteins and peptides, on solid surfaces under controlled conditions is an important issue in establishing functional bio/solid soft interfaces for bioassays, biosensors, and biofuel cells. Electrostatic interaction between proteins and surfaces is one of the most essential parameters in the adsorption and self-assembly of proteins on solid surfaces. Although the adsorption of proteins has been studied with respect to the electrochemical surface potential, the self-assembly of proteins or peptides forming well-organized nanostructures templated by lattice structure of the solid surfaces has not been studied in the relation to the surface potential. In this work, we utilize graphite-binding peptides (GrBPs) selected by the phage display method to investigate the relationship between the electrochemical potential of the highly ordered pyrolytic graphite (HOPG) and peptide self-organization forming long-range-ordered structures. Under modulated electrical bias, graphite-binding peptides form various ordered structures, such as well-ordered nanowires, dendritic structures, wavy wires, amorphous (disordered) structures, and islands. A systematic investigation of the correlation between peptide sequence and self-organizational characteristics reveals that the presence of the bias-sensitive amino acid modules in the peptide sequence has a significant effect on not only surface coverage but also on the morphological features of self-assembled structures. Our results show a new method to control peptide self-assembly by means of applied electrochemical bias as well as peptide design-rules for the construction of functional soft bio/solid interfaces that could be integrated in a wide range of practical implementations.
Zhang, Meng; Zhai, Qingyu; Wan, Liping; Chen, Li; Peng, Yu; Deng, Chunyan; Xiang, Juan; Yan, Jiawei
2018-06-19
Layer-by-layer dissolution and permeable pore formation are two typical membrane damage pathways, which induce membrane function disorder and result in serious disease, such as Alzheimer's disease, Keshan disease, Sickle-cell disease, and so on. To effectively distinguish and sensitively monitor these two typical membrane damage pathways, a facile electrochemical impedance strategy was developed on a porous self-assembly monolayer (pSAM) supported bilayer lipid membrane (BLM). The pSAM was prepared by selectively electrochemical reductive desorption of the mercaptopropionic acid in a mixed mercaptopropionic acid/11-mercaptoundecanoic acid self-assembled monolayer, which created plenty of nanopores with tens of nanometers in diameter and several nanometers in height (defined as inner-pores). The ultralow aspect ratio of the inner-pores was advantageous to the mass transfer of electrochemical probe [Fe(CN) 6 ] 3-/4- , simplifying the equivalent electric circuit for electrochemical impedance spectroscopy analysis at the electrode/membrane interface. [Fe(CN) 6 ] 3-/4- transferring from the bulk solution into the inner-pore induce significant changes of the interfacial impedance properties, improving the detection sensitivity. Based on these, the different membrane damage pathways were effectively distinguished and sensitively monitored with the normalized resistance-capacitance changes of inner-pore-related parameters including the electrolyte resistance within the pore length ( R pore ) and the metal/inner-pore interfacial capacitance ( C pore ) and the charge-transfer resistance ( R ct-in ) at the metal/inner-pore interface.
Mechanistic insights for block copolymer morphologies: how do worms form vesicles?
Blanazs, Adam; Madsen, Jeppe; Battaglia, Giuseppe; Ryan, Anthony J; Armes, Steven P
2011-10-19
Amphiphilic diblock copolymers composed of two covalently linked, chemically distinct chains can be considered to be biological mimics of cell membrane-forming lipid molecules, but with typically more than an order of magnitude increase in molecular weight. These macromolecular amphiphiles are known to form a wide range of nanostructures (spheres, worms, vesicles, etc.) in solvents that are selective for one of the blocks. However, such self-assembly is usually limited to dilute copolymer solutions (<1%), which is a significant disadvantage for potential commercial applications such as drug delivery and coatings. In principle, this problem can be circumvented by polymerization-induced block copolymer self-assembly. Here we detail the synthesis and subsequent in situ self-assembly of amphiphilic AB diblock copolymers in a one pot concentrated aqueous dispersion polymerization formulation. We show that spherical micelles, wormlike micelles, and vesicles can be predictably and efficiently obtained (within 2 h of polymerization, >99% monomer conversion) at relatively high solids in purely aqueous solution. Furthermore, careful monitoring of the in situ polymerization by transmission electron microscopy reveals various novel intermediate structures (including branched worms, partially coalesced worms, nascent bilayers, "octopi", "jellyfish", and finally pure vesicles) that provide important mechanistic insights regarding the evolution of the particle morphology during the sphere-to-worm and worm-to-vesicle transitions. This environmentally benign approach (which involves no toxic solvents, is conducted at relatively high solids, and requires no additional processing) is readily amenable to industrial scale-up, since it is based on commercially available starting materials.
Kumar, Kuppusamy Senthil; Studniarek, Michał; Heinrich, Benoît; Arabski, Jacek; Schmerber, Guy; Bowen, Martin; Boukari, Samy; Beaurepaire, Eric; Dreiser, Jan; Ruben, Mario
2018-03-01
The realization of spin-crossover (SCO)-based applications requires study of the spin-state switching characteristics of SCO complex molecules within nanostructured environments, especially on surfaces. Except for a very few cases, the SCO of a surface-bound thin molecular film is either quenched or heavily altered due to: (i) molecule-surface interactions and (ii) differing intermolecular interactions in films relative to the bulk. By fabricating SCO complexes on a weakly interacting surface, the interfacial quenching problem is tackled. However, engineering intermolecular interactions in thin SCO active films is rather difficult. Here, a molecular self-assembly strategy is proposed to fabricate thin spin-switchable surface-bound films with programmable intermolecular interactions. Molecular engineering of the parent complex system [Fe(H 2 B(pz) 2 ) 2 (bpy)] (pz = pyrazole, bpy = 2,2'-bipyridine) with a dodecyl (C 12 ) alkyl chain yields a classical amphiphile-like functional and vacuum-sublimable charge-neutral Fe II complex, [Fe(H 2 B(pz) 2 ) 2 (C 12 -bpy)] (C 12 -bpy = dodecyl[2,2'-bipyridine]-5-carboxylate). Both the bulk powder and 10 nm thin films sublimed onto either quartz glass or SiO x surfaces of the complex show comparable spin-state switching characteristics mediated by similar lamellar bilayer like self-assembly/molecular interactions. This unprecedented observation augurs well for the development of SCO-based applications, especially in molecular spintronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-assembled one dimensional functionalized metal-organic nanotubes (MONTs) for proton conduction.
Panda, Tamas; Kundu, Tanay; Banerjee, Rahul
2012-06-04
Two self-assembled isostructural functionalized metal-organic nanotubes have been synthesized using 5-triazole isophthalic acid (5-TIA) with In(III) and Cd(II). In- and Cd-5TIA possess one-dimensional (1D) nanotubular architecture and show proton conductivity along regular 1D channels, measured as 5.35 × 10(-5) and 3.61 × 10(-3) S cm(-1) respectively.
NASA Astrophysics Data System (ADS)
Sbrana, F.; Parodi, M. T.; Ricci, D.; Di Zitti, E.
We present the results of a Scanning Probe Microscopy (SPM) investigation of ordered nanosized metallo-organic structures. Our aim is to investigate the organization and stability of thiolated gold nanoparticles in a compact pattern when deposited onto gold substrates functionalized with self-assembled monolayers made from two molecules that differ essentially in their terminating group: 1,4-benzenedimethanethiol and 4-methylbenzylthiol.
Hou, Xiang; Cheng, Xue-Feng; Zhou, Jin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei
2017-11-16
Recently, surface engineering of the indium tin oxide (ITO) electrode of sandwich-like organic electric memory devices was found to effectively improve their memory performances. However, there are few methods to modify the ITO substrates. In this paper, we have successfully prepared alkyltrichlorosilane self-assembled monolayers (SAMs) on ITO substrates, and resistive random access memory devices are fabricated on these surfaces. Compared to the unmodified ITO substrates, organic molecules (i.e., 2-((4-butylphenyl)amino)-4-((4-butylphenyl)iminio)-3-oxocyclobut-1-en-1-olate, SA-Bu) grown on these SAM-modified ITO substrates have rougher surface morphologies but a smaller mosaicity. The organic layer on the SAM-modified ITO further aged to eliminate the crystalline phase diversity. In consequence, the ternary memory yields are effectively improved to approximately 40-47 %. Our results suggest that the insertion of alkyltrichlorosilane self-assembled monolayers could be an efficient method to improve the performance of organic memory devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat
2018-01-01
The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multistep hierarchical self-assembly of chiral nanopore arrays
Kim, Hanim; Lee, Sunhee; Shin, Tae Joo; Korblova, Eva; Walba, David M.; Clark, Noel A.; Lee, Sang Bok; Yoon, Dong Ki
2014-01-01
A series of simple hierarchical self-assembly steps achieve self-organization from the centimeter to the subnanometer-length scales in the form of square-centimeter arrays of linear nanopores, each one having a single chiral helical nanofilament of large internal surface area and interfacial interactions based on chiral crystalline molecular arrangements. PMID:25246585
Veneziano, Rémi; Rossi, Claire; Chenal, Alexandre; Brenner, Catherine; Ladant, Daniel; Chopineau, Joël
2017-09-28
Biological membranes and their related molecular mechanisms are essential for all living organisms. Membranes host numerous proteins and are responsible for the exchange of molecules and ions, cell signaling, and cell compartmentation. Indeed, the plasma membrane delimits the intracellular compartment from the extracellular environment and intracellular membranes. Biological membranes also play a major role in metabolism regulation and cellular physiology (e.g., mitochondrial membranes). The elaboration of membrane based biomimetic systems allows us to reconstitute and investigate, in controlled conditions, biological events occurring at the membrane interface. A whole variety of model membrane systems have been developed in the last few decades. Among these models, supported membranes were developed on various hydrophilic supports. The use of solid supports enables the direct use of surface sensitive techniques (e.g., surface plasmon resonance, quartz crystal microbalance, and atomic force microscopy) to monitor and quantify events occurring at the membrane surface. Tethered bilayer membranes (tBLMs) could be considered as an achievement of the first solid supported membranes described by the McConnell group. Tethered bilayers on solid supports were designed to delimit an inside compartment from an outside one. They were used for measuring interactions with ligands or incorporating large membrane proteins or complexes without interference with the support. In this context, the authors developed an easy concept of versatile tBLMs assembled on amino coated substrates that are formed upon the vesicle fusion rupture process applicable to protein-free vesicles as well as proteoliposomes. The phospholipid bilayer (natural or synthetic lipids) incorporated 5% of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly ethylene glycol-N-hydroxy succinimide to ensure the anchorage of the bilayer to the amino coated surface. The conditions for the formation of tBLMs on amino-coated gold and glass were optimized for protein-free vesicles. This biomimetic membrane delimits an inside "trans" compartment separated from an outside reservoir "cis." Using this tBLM construction, the authors were interested in deciphering two complex molecular mechanisms involving membrane-associated proteins. The first one concerns two mitochondrial proteins, i.e., the porin voltage dependent anion channel (VDAC) embedded in the outer membrane and the nucleotide transporter (adenine nucleotide translocase) that interacts dynamically during mitochondrial pathophysiology. The purified VDAC porin was first reconstituted in proteoliposomes that were subsequently assembled on an amino coated support to form a biomimetic membrane. As a major result, VDAC was reconstituted in this tBLM and calcium channeling was demonstrated across the lipid bilayer. The same two-compartment biomimetic membrane design was further engineered to study the translocation mechanism of a bacterial toxin, the adenylate cyclase toxin, CyaA, from Bordetella pertussis. As a result, the authors developed an elegant in vitro translocation toolkit applicable to potentially a large panel of proteins transported across membranes.
NASA Astrophysics Data System (ADS)
Nandiyanto, Asep Bayu Dani
2016-02-01
When synthesizing particles using a liquid-phase synthesis method, reactant components show interaction with the reaction system itself. However, current reports described successful synthesis of material with only partial information on the component-component interaction and possible self-assembly mechanism occurring during the material synthesis process. Here, self-assembly concepts in the formation of nanostructured particles are presented. Influences of self-assembly parameters (i.e., surface charge, size, and concentration of components involving the reaction) on self-organized material fabrication are described. Because understanding the interaction of the component provides significant information in regard to practical uses, this report can be relevant to further material development and fabrication.
Self-assembling DNA nanotubes to connect molecular landmarks
NASA Astrophysics Data System (ADS)
Mohammed, Abdul M.; Šulc, Petr; Zenk, John; Schulman, Rebecca
2017-05-01
Within cells, nanostructures are often organized using local assembly rules that produce long-range order. Because these rules can take into account the cell's current structure and state, they can enable complexes, organelles or cytoskeletal structures to assemble around existing cellular components to form architectures. Although many methods for self-assembling biomolecular nanostructures have been developed, few can be programmed to assemble structures whose form depends on the identity and organization of structures already present in the environment. Here, we demonstrate that DNA nanotubes can grow to connect pairs of molecular landmarks with different separation distances and relative orientations. DNA tile nanotubes nucleate at these landmarks and grow while their free ends diffuse. The nanotubes can then join end to end to form stable connections, with unconnected nanotubes selectively melted away. Connections form between landmark pairs separated by 1-10 µm in more than 75% of cases and can span a surface or three dimensions. This point-to-point assembly process illustrates how self-assembly kinetics can be designed to produce structures with a desired physical property rather than a specific shape.
Self-Assembly of a [1+1] Ionic Hexagonal Macrocycle and its Antiproliferative Activity
NASA Astrophysics Data System (ADS)
Singh, Khushwant; Gangrade, Ankit; Bhowmick, Sourav; Jana, Achintya; Mandal, Biman B.; Das, Neeladri
2018-04-01
A unique irregular hexagon was self-assembled using an organic donor clip (bearing terminal pyridyl units) and a complementary organometallic acceptor clip. The resulting metallamacrocycle was characterized by multinuclear NMR, mass spectrometry, and elemental analyses. Molecular modeling confirmed hexagonal shaped cavity for this metallamacrocycle which is a unique example of a discrete hexagonal framework self-assembled from only two building blocks. Cytotoxicity of the Pt-based acceptor tecton and the self-assembled PtII-based macrocycle was evaluated using three cancer cell lines and results were compared with cisplatin. Results confirmed a positive effect of the metallamacrocycle formation on cell growth inhibition.
Czarnecki, Sebastian; Bertin, Annabelle
2018-03-07
Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gong, Jian-Ru; Wan, Li-Jun; Yuan, Qun-Hui; Bai, Chun-Li; Jude, Hershel; Stang, Peter J
2005-01-25
A self-assembled supramolecular metallacyclic rectangle was investigated with scanning tunneling microscopy on highly oriented pyrolytic graphite and Au(111) surfaces. The rectangles spontaneously adsorb on both surfaces and self-organize into well ordered adlayers. On highly oriented pyrolytic graphite, the long edge of the rectangle stands on the surface, forming a 2D molecular network. In contrast, the face of the rectangle lays flat on the Au(111) surface, forming linear chains. The structures and intramolecular features obtained through high-resolution scanning tunneling microscopy imaging are discussed.
NASA Astrophysics Data System (ADS)
Jing, Benxin; Lan, Nan; Zhu, Y. Elaine
2013-03-01
An explosion in the research activities using ionic liquids (ILs) as new ``green'' chemicals in several chemical and biomedical processes has resulted in the urgent need to understand their impact in term of their transport and toxicity towards aquatic organisms. Though a few experimental toxicology studies have reported that some ionic liquids are toxic with increased hydrophobicity of ILs while others are not, our understanding of the molecular level mechanism of IL toxicity remains poorly understood. In this talk, we will discuss our recent study of the interaction of ionic liquids with model cell membranes. We have found that the ILs could induce morphological change of lipid bilayers when a critical concentration is exceeded, leading to the swelling and tube-like formation of lipid bilayers. The critical concentration shows a strong dependence on the length of hydrocarbon tails and hydrophobic counterions. By SAXS, Langmuir-Blodgett (LB) and fluorescence microscopic measurement, we have confirmed that tube-like lipid complexes result from the insertion of ILs with long hydrocarbon chains to minimize the hydrophobic interaction with aqueous media. This finding could give insight to the modification and adoption of ILs for the engineering of micro-organisms.
Pre-transition effects mediate forces of assembly between transmembrane proteins
Katira, Shachi; Mandadapu, Kranthi K.; Vaikuntanathan, Suriyanarayanan; ...
2016-02-24
We present a mechanism for a generic, powerful force of assembly and mobility for transmembrane proteins in lipid bilayers. This force is a pre-transition (or pre-melting) effect for the first-order transition between ordered and disordered phases in the membrane. Using large-scale molecular simulation, we show that a protein with hydrophobic thickness equal to that of the disordered phase embedded in an ordered bilayer stabilizes a microscopic order–disorder interface. The stiffness of that interface is finite. When two such proteins approach each other, they assemble because assembly reduces the net interfacial energy. Analogous to the hydrophobic effect, we refer to thismore » phenomenon as the 'orderphobic effect'. The effect is mediated by proximity to the order–disorder phase transition and the size and hydrophobic mismatch of the protein. The strength and range of forces arising from this effect are significantly larger than those that could arise from membrane elasticity for the membranes considered.« less
Pre-transition effects mediate forces of assembly between transmembrane proteins
Katira, Shachi; Mandadapu, Kranthi K; Vaikuntanathan, Suriyanarayanan; Smit, Berend; Chandler, David
2016-01-01
We present a mechanism for a generic, powerful force of assembly and mobility for transmembrane proteins in lipid bilayers. This force is a pre-transition (or pre-melting) effect for the first-order transition between ordered and disordered phases in the membrane. Using large-scale molecular simulation, we show that a protein with hydrophobic thickness equal to that of the disordered phase embedded in an ordered bilayer stabilizes a microscopic order–disorder interface. The stiffness of that interface is finite. When two such proteins approach each other, they assemble because assembly reduces the net interfacial energy. Analogous to the hydrophobic effect, we refer to this phenomenon as the 'orderphobic effect'. The effect is mediated by proximity to the order–disorder phase transition and the size and hydrophobic mismatch of the protein. The strength and range of forces arising from this effect are significantly larger than those that could arise from membrane elasticity for the membranes considered. DOI: http://dx.doi.org/10.7554/eLife.13150.001 PMID:26910009
Pre-transition effects mediate forces of assembly between transmembrane proteins
Katira, Sachi; Mandadapu, Kranthi K.; Vaikuntanathan, Suriyanarayanan; ...
2016-02-24
We present a mechanism for a generic, powerful force of assembly and mobility for transmembrane proteins in lipid bilayers. This force is a pre-transition (or pre-melting) effect for the first-order transition between ordered and disordered phases in the membrane. Using large-scale molecular simulation, we show that a protein with hydrophobic thickness equal to that of the disordered phase embedded in an ordered bilayer stabilizes a microscopic order-disorder interface. The stiffness of that interface is finite. When two such proteins approach each other, they assemble because assembly reduces the net interfacial energy. Analogous to the hydrophobic effect, we refer to thismore » phenomenon as the ‘orderphobic effect’. The effect is mediated by proximity to the order-disorder phase transition and the size and hydrophobic mismatch of the protein. Furthermore, the strength and range of forces arising from this effect are significantly larger than those that could arise from membrane elasticity for the membranes considered.« less
Pre-transition effects mediate forces of assembly between transmembrane proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katira, Shachi; Mandadapu, Kranthi K.; Vaikuntanathan, Suriyanarayanan
We present a mechanism for a generic, powerful force of assembly and mobility for transmembrane proteins in lipid bilayers. This force is a pre-transition (or pre-melting) effect for the first-order transition between ordered and disordered phases in the membrane. Using large-scale molecular simulation, we show that a protein with hydrophobic thickness equal to that of the disordered phase embedded in an ordered bilayer stabilizes a microscopic order–disorder interface. The stiffness of that interface is finite. When two such proteins approach each other, they assemble because assembly reduces the net interfacial energy. Analogous to the hydrophobic effect, we refer to thismore » phenomenon as the 'orderphobic effect'. The effect is mediated by proximity to the order–disorder phase transition and the size and hydrophobic mismatch of the protein. The strength and range of forces arising from this effect are significantly larger than those that could arise from membrane elasticity for the membranes considered.« less
Pre-transition effects mediate forces of assembly between transmembrane proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katira, Sachi; Mandadapu, Kranthi K.; Vaikuntanathan, Suriyanarayanan
We present a mechanism for a generic, powerful force of assembly and mobility for transmembrane proteins in lipid bilayers. This force is a pre-transition (or pre-melting) effect for the first-order transition between ordered and disordered phases in the membrane. Using large-scale molecular simulation, we show that a protein with hydrophobic thickness equal to that of the disordered phase embedded in an ordered bilayer stabilizes a microscopic order-disorder interface. The stiffness of that interface is finite. When two such proteins approach each other, they assemble because assembly reduces the net interfacial energy. Analogous to the hydrophobic effect, we refer to thismore » phenomenon as the ‘orderphobic effect’. The effect is mediated by proximity to the order-disorder phase transition and the size and hydrophobic mismatch of the protein. Furthermore, the strength and range of forces arising from this effect are significantly larger than those that could arise from membrane elasticity for the membranes considered.« less
NASA Astrophysics Data System (ADS)
Jen, Alex
2010-03-01
The performance of polymer solar cells are strongly dependent on the efficiency of light harvesting, exciton dissociation, charge transport, and charge collection at the metal/organic, metal/metal oxide, and organic/metal oxide interfaces. To improve the device performance, two parallel approaches were used: 1) developing novel low band gap conjugated polymers with good charge-transporting properties and 2) modifying the interfaces between the organic/metal oxide and organic/metal layers with functional self-assembling monolayers to tune their energy barriers. Moreover, the molecule engineering approach was also used to tune the energy level, charge mobility, and morphology of organic semiconductors.
Carter, Joshua D; LaBean, Thomas H
2011-03-22
An interesting alternative to top-down nanofabrication is to imitate biology, where nanoscale materials frequently integrate organic molecules for self-assembly and molecular recognition with ordered, inorganic minerals to achieve mechanical, sensory, or other advantageous functions. Using biological systems as inspiration, researchers have sought to mimic the nanoscale composite materials produced in nature. Here, we describe a combination of self-assembly, molecular recognition, and templating, relying on an oligonucleotide covalently conjugated to a high-affinity gold-binding peptide. After integration of the peptide-coupled DNA into a self-assembling superstructure, the templated peptides recognize and bind gold nanoparticles. In addition to providing new ways of building functional multinanoparticle systems, this work provides experimental proof that a single peptide molecule is sufficient for immobilization of a nanoparticle. This molecular construction strategy, combining DNA assembly and peptide recognition, can be thought of as programmable, granular, artificial biomineralization. We also describe the important observation that the addition of 1-2% Tween 20 surfactant to the solution during gold particle binding allows the gold nanoparticles to remain soluble within the magnesium-containing DNA assembly buffer under conditions that usually lead to the aggregation and precipitation of the nanoparticles.
Ancient techniques for new materials
NASA Technical Reports Server (NTRS)
2000-01-01
NASA is looking to biological techniques that are millions of years old to help it develop new materials and technologies for the 21st century. Sponsored by NASA, Jeffrey Brinker of the University of New Mexico is studying how multiple elements can assemble themselves into a composite material that is clear, tough, and impermeable. His research is based on the model of how an abalone builds the nacre, also called mother-of-pearl, inside its shell. Strong thin coatings, or lamellae, in Brinker's research are formed when objects are dip-coated. Evaporation drives the self-assembly of molecular aggregates (micelles) of surfactant, soluble silica, and organic monomers and their further self-organization into layered organic and inorganic assemblies.
Fresnel Lorentz Microscopy Imaging of Domains in Fe3O4 Nanoparticle Arrays
NASA Astrophysics Data System (ADS)
Majetich, S. A.; Evarts, E. R.; Hogg, C.; Yamamoto, K.; Hirayama, T.
2009-03-01
Fresnel Lorentz microscopy was used to study the magnetic domain structures of self-assembled nanoparticle arrays as a function of temperature, from 24 to 605 C. 11 nm diameter Fe3O4 nanoparticles with an edge-to-edge spacing of 2.5 nm form magnetic domains through magnetostatic interactions alone. At room temperature stripe domains were evident in monolayer arrays. The average domain size in monolayer regions is larger than that in bilayers. Mean field theories predict a reduced stabilization energy for bilayers, relative to that for monolayers. The domain wall positions were fairly stable up to 500 C, though the contrast in the walls diminished, indicating reduced magnetic order. Above 500 C there were large temperature-dependent changes. The walls surrounding the smaller domains disappeared at lower temperatures than those of the larger domains. Some magnetic contrast was visible up to 575 C, close to the Curie temperature of Fe3O4 (585 C). Transmission electron microscopy after cooling showed that the particle shape and position in the ordered arrays had been preserved during the high temperature imaging experiments.
Disruption of Phosphatidylcholine Monolayers and Bilayers by Perfluorobutane Sulfonate
Oldham, E. Davis; Xie, Wei; Farnoud, Amir M.; Fiegel, Jennifer; Lehmler, Hans-Joachim
2012-01-01
Perfluoroalkyl acids (PFAAs) are persistent environmental contaminants resistant to biological and chemical degradation due to the presence of carbon-fluorine bonds. These compounds exhibit developmental toxicity in vitro and in vivo. The mechanisms of toxicity may involve partitioning into lipid bilayers. We investigated the interaction between perfluorobutane sulfonate (PFBS), an emerging PFAA, and model phosphatidylcholine (PC) lipid assemblies (i.e., dimyristoyl-, dipalmitoyl- and distearylphosphatidylcholine) using fluorescence anisotropy and Langmuir monolayer techniques. PFBS decreased the transition temperature and transition width of PC bilayers. The apparent membrane partition coefficients ranged from 4.9 × 102 to 8.2 × 102. The effects on each PC were comparable. The limiting molecular area of PC monolayers increased and the surface pressure at collapse decreased in a concentration-dependent manner. The compressibility of all three PCs was decreased by PFBS. In summary, PFBS disrupted different model lipid assemblies indicating potential for PFBS to be a human toxicant. However the effects of PFBS are not as pronounced as those seen with longer chain PFAAs. PMID:22834732
Membrane architectures for ion-channel switch-based electrochemical biosensors
Sansinena, Jose-Maria; Redondo, Antonio; Swanson, Basil I.; Yee, Chanel Kitmon; Sapuri/Butti, Annapoorna R.; Parikh, Atul N.; Yang, Calvin
2008-10-28
The present invention is directed to a process of forming a bilayer lipid membrane structure by depositing an organic layer having a defined surface area onto an electrically conductive substrate, removing portions of said organic layer upon said electrically conductive substrate whereby selected portions of said organic layer are removed to form defined voids within said defined surface area of said organic layer and defined islands of organic layer upon said electrically conductive substrate, and, depositing a bilayer lipid membrane over the defined voids and defined islands of organic layer upon said substrate whereby aqueous reservoirs are formed between said electrically conductive substrate and said bilayer lipid membrane, said bilayer lipid membrane characterized as spanning across the defined voids between said defined islands. A lipid membrane structure is also described together with an array of such lipid membrane structure.
ARO-YIP (Materials By Design): Organic Photovoltaic Multiferroics
Materials-by- design and self-assembly principles are applied to organic functional materials to control their morphology, interface, and crystalline...multifunctional properties, such as dielectric, magnetic, optoelectronic, and magnetoelectric coupling behaviors. The control of organic crystallization and...electronics. In this project, we aim at utilizing the material design and assembly strategies to rationally develop organic multiferroic-photovoltaics
Teslaphoresis of Carbon Nanotubes.
Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul
2016-04-26
This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale.
Enabling complex nanoscale pattern customization using directed self-assembly.
Doerk, Gregory S; Cheng, Joy Y; Singh, Gurpreet; Rettner, Charles T; Pitera, Jed W; Balakrishnan, Srinivasan; Arellano, Noel; Sanders, Daniel P
2014-12-16
Block copolymer directed self-assembly is an attractive method to fabricate highly uniform nanoscale features for various technological applications, but the dense periodicity of block copolymer features limits the complexity of the resulting patterns and their potential utility. Therefore, customizability of nanoscale patterns has been a long-standing goal for using directed self-assembly in device fabrication. Here we show that a hybrid organic/inorganic chemical pattern serves as a guiding pattern for self-assembly as well as a self-aligned mask for pattern customization through cotransfer of aligned block copolymer features and an inorganic prepattern. As informed by a phenomenological model, deliberate process engineering is implemented to maintain global alignment of block copolymer features over arbitrarily shaped, 'masking' features incorporated into the chemical patterns. These hybrid chemical patterns with embedded customization information enable deterministic, complex two-dimensional nanoscale pattern customization through directed self-assembly.
Assembly of the MHC I peptide-loading complex determined by a conserved ionic lock-switch
Blees, Andreas; Reichel, Katrin; Trowitzsch, Simon; Fisette, Olivier; Bock, Christoph; Abele, Rupert; Hummer, Gerhard; Schäfer, Lars V.; Tampé, Robert
2015-01-01
Salt bridges in lipid bilayers play a decisive role in the dynamic assembly and downstream signaling of the natural killer and T-cell receptors. Here, we describe the identification of an inter-subunit salt bridge in the membrane within yet another key component of the immune system, the peptide-loading complex (PLC). The PLC regulates cell surface presentation of self-antigens and antigenic peptides via molecules of the major histocompatibility complex class I. We demonstrate that a single salt bridge in the membrane between the transporter associated with antigen processing TAP and the MHC I-specific chaperone tapasin is essential for the assembly of the PLC and for efficient MHC I antigen presentation. Molecular modeling and all-atom molecular dynamics simulations suggest an ionic lock-switch mechanism for the binding of TAP to tapasin, in which an unfavorable uncompensated charge in the ER-membrane is prevented through complex formation. Our findings not only deepen the understanding of the interaction network within the PLC, but also provide evidence for a general interaction principle of dynamic multiprotein membrane complexes in immunity. PMID:26611325
NASA Astrophysics Data System (ADS)
Qiu, T.; Wu, X. L.; Mei, Y. F.; Chu, P. K.; Siu, G. G.
2005-09-01
Unique silver dendritic nanostructures, with stems, branches, and leaves, were synthesized with self-organization via a simple electroless metal deposition method in a conventional autoclave containing aqueous HF and AgNO3 solution. Their growth mechanisms are discussed in detail on the basis of a self-assembled localized microscopic electrochemical cell model. A process of diffusion-limited aggregation is suggested for the formation of the silver dendritic nanostructures. This nanostructured material is of great potential to be building blocks for assembling mini-functional devices of the next generation.
NASA Astrophysics Data System (ADS)
Monnard, Pierre-Alain; Maurer, Sarah, E.; Albertsen, Anders, N.; Boncella, James, M.; Cape, Jonathan, L.
Living cells are in many respects the ultimate nanoscale chemical system. Within a very small volume they can produce highly specific useful products by extracting resources and free energy from the environment. They are also self-organized, self-controlled, and capable of self-repair and self-replication. Designing artificial chemical systems (artificial cells or protocells) that would be endowed with these powerful capabilities has been investigated extensively in the recent years. Chemical systems usually studied were based on the encapsulation of a set of genes along with catalytic protein machinery within the self-assembled boundaries of liposome/vesicles. The generated systems have many of the characteristics of a living system, but lack the regulation by genetic information of all protocell functions. Departing from these encapsulated models, we have been attempting to implement a simple, chemical system in which the regulation of the metabolism is truly mediated by information molecules. Our proposed system is composed of a chemical mixture composed of fatty acids that form bilayers (compartment), amphiphilic information molecules (nucleic acids -NA), and metabolic complexes (photosensitizers). Due to the intrinsic properties of all its components, a chemical system will self-assemble into aqueous, colloid mixtures that will be conducive to the metabolic steps, the non-enzymatic polymerization of the information, and the photochemical fatty acid production from its oil-like precursor. The reaction products (e.g., the container molecules) will in turn promote system growth and replication. In this scheme, the NA acts as an information molecule mediating the metabolic catalysis (electron donor/relay system) with a ruthenium metal complex as a cofactor and sensitizer, which is used to convert the hydrophobic precursor container molecules into amphiphiles, thus directly linking protocell metabolism with information. In a first experimental design, NA has been replaced by a single nucleobase, 8-oxoguanine, which is tethered to one bipyridine ligand of the metal center. We report here the following major steps towards this chemical protocell: 1) the spontaneous formation of chemical structures consisting of decanoic acid, its precursor, and the simplified NA-ruthenium complexes. 2) the metabolism mediation by a nucleobase to effectively promote the photochemical amphiphile synthesis. 3) the demonstration of reaction selectivity dependent on the nature of the information molecule since only one specific nucleobase that has the required redox potential allows the metabolism to function. Finally, 4) the photochemical formation of amphiphiles can occur efficiently within a preformed membrane, i.e., the protocell compartment. The next step is the integration of short nucleic acid oligomers as opposed to a single nucleobase as the information material to study their photocatalytic activity mediation and polymerization.
Nanocrystal assembly for tandem catalysis
Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu
2014-10-14
The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.
Confinement of surface state electrons in self-organized Co islands on Au(111)
NASA Astrophysics Data System (ADS)
Schouteden, Koen; Lijnen, Erwin; Janssens, Ewald; Ceulemans, Arnout; Chibotaru, Liviu F.; Lievens, Peter; Van Haesendonck, Chris
2008-04-01
We report on detailed low temperature scanning tunneling spectroscopy measurements performed on nanoscale Co islands on Au(111) films. At low coverages, Co islands self-organize in arrays of mono- and bilayer nanoscale structures that often have an hexagonal shape. The process of self-organization is induced by the Au(111) 'herringbone' reconstruction. By means of mapping of the local density of states with lock-in detection, electron standing wave patterns are resolved on top of the atomically flat Co islands. The surface state electrons are observed to be strongly confined laterally inside the Co nanosized islands, with their wavefunctions reflecting the symmetry of the islands. To complement the experimental work, particle-in-a-box calculations were performed. The calculations are based on a newly developed variational method that can be applied to '2D boxes' of arbitrary polygonal shape. The experimental patterns are found to fit nicely to the calculated wavefunctions for a box having a symmetry corresponding to the experimental island symmetry. The small size of the Co islands under study (down to 7.7 nm2) is observed to induce a strong discretization of the energy levels, with very large energy separations between the eigenstates up to several 100 meV. The observed standing wave patterns are identified either as individual eigenstates or as a 'mixture' of two or more energetically close-lying eigenstates of the cobalt island. Additionally, the Co surface state appears not to be limited to mono- and bilayer islands, but this state remains observable for multilayered islands up to five monolayers of Co.
Hernández-Hernández, Abrahan; Masich, Sergej; Fukuda, Tomoyuki; Kouznetsova, Anna; Sandin, Sara; Daneholt, Bertil; Höög, Christer
2016-06-01
The synaptonemal complex transiently stabilizes pairing interactions between homologous chromosomes during meiosis. Assembly of the synaptonemal complex is mediated through integration of opposing transverse filaments into a central element, a process that is poorly understood. We have, here, analyzed the localization of the transverse filament protein SYCP1 and the central element proteins SYCE1, SYCE2 and SYCE3 within the central region of the synaptonemal complex in mouse spermatocytes using immunoelectron microscopy. Distribution of immuno-gold particles in a lateral view of the synaptonemal complex, supported by protein interaction data, suggest that the N-terminal region of SYCP1 and SYCE3 form a joint bilayered central structure, and that SYCE1 and SYCE2 localize in between the two layers. We find that disruption of SYCE2 and TEX12 (a fourth central element protein) localization to the central element abolishes central alignment of the N-terminal region of SYCP1. Thus, our results show that all four central element proteins, in an interdependent manner, contribute to stabilization of opposing N-terminal regions of SYCP1, forming a bilayered transverse-filament-central-element junction structure that promotes synaptonemal complex formation and synapsis. © 2016. Published by The Company of Biologists Ltd.
Cellular self-assembly and biomaterials-based organoid models of development and diseases.
Shah, Shivem B; Singh, Ankur
2017-04-15
Organogenesis and morphogenesis have informed our understanding of physiology, pathophysiology, and avenues to create new curative and regenerative therapies. Thus far, this understanding has been hindered by the lack of a physiologically relevant yet accessible model that affords biological control. Recently, three-dimensional ex vivo cellular cultures created through cellular self-assembly under natural extracellular matrix cues or through biomaterial-based directed assembly have been shown to physically resemble and recapture some functionality of target organs. These "organoids" have garnered momentum for their applications in modeling human development and disease, drug screening, and future therapy design or even organ replacement. This review first discusses the self-organizing organoids as materials with emergent properties and their advantages and limitations. We subsequently describe biomaterials-based strategies used to afford more control of the organoid's microenvironment and ensuing cellular composition and organization. In this review, we also offer our perspective on how multifunctional biomaterials with precise spatial and temporal control could ultimately bridge the gap between in vitro organoid platforms and their in vivo counterparts. Several notable reviews have highlighted PSC-derived organoids and 3D aggregates, including embryoid bodies, from a development and cellular assembly perspective. The focus of this review is to highlight the materials-based approaches that cells, including PSCs and others, adopt for self-assembly and the controlled development of complex tissues, such as that of the brain, gut, and immune system. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Groehn, Franziska
2015-03-01
With regard to the world's decreasing energy resources, developing strategies to exploit solar energy become more and more important. One approach is to take advantage of photocatalysis. Inspired by natural systems such as assemblies performing photosynthesis, it is highly promising to self-assemble synthetic functional species to form more effective or tailored supramolecular units. In this contribution, a new type of photocatalytically active self-assembled nanostructures in aqueous solution will be presented: supramolecular nano-objects obtained through self-assembly of macroions and multivalent organic or inorganic counterions. Polyelectrolyte-porphyrin nanoscale assemblies exhibit up to 10-fold higher photocatalytic activity than the corresponding porphyrins without polymeric template. Other self-assembled catalysts based on polyelectrolytes can exhibit expressed selectivity in a photocatalytic model reaction or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, current results on combining different functional units at the polyelectrolyte template represent a next step towards more complex supramolecular structures for solar energy conversion.
2015-08-24
microcontact printing techniques to deposit and pattern intrinsically polar self - assembled monolayers (SAMs) on smooth template-stripped gold films...and large piezoresponse. Stamp Stamp Gold Gold 10 μm 10 μ m 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 nm Fig. 7. Patterned self - assembled monolayers of...SAM. Importantly, deposition and patterning of thiol self - assembled monolayers on gold surfaces is facile, creating in intrinsically polar film for
Cametti, C
2008-10-01
This review focusses on recent developments in the experimental study of polyion-induced charged colloidal particle aggregation, with particular emphasis on the formation of cationic liposome clusters induced by the addition of anionic adsorbing polyions. These structures can be considered, under certain points of view, a new class of colloidal systems, with intriguing properties that opens interesting and promising new opportunities in various biotechnological applications. Lipidic structures of different morphologies and different structural complexities interacting with oppositely charged polyions give rise to a rich variety of self-assembled structures that present various orders of hierarchy in the sense that, starting from a basic level, for example a lipid bilayer, they arrange themselves into superstructures as, for example, multilamellar stacks or liquid-crystalline structures. These structures can be roughly divided into two classes according to the fact that the elementary structure, involved in building a more complex one, keeps or does not keeps its basic arrangement. To the first one, belong those aggregates composed by single structures that maintain their integrity, for example, lipidic vesicles assembled together by an appropriate external agent. The second one encompasses structures that do not resemble the ones of the original objects which form them, but, conversely, derive from a deep restructuring and rearrangement process, where the original morphology of the initial constitutive elements is completely lost. In this review, I will only briefly touch on higher level hierarchy structures and I will focus on the assembling processes involving preformed lipid bilayer vesicles that organize themselves into clusters, the process being induced by the adsorption of oppositely charged polyions. The scientific interest in polyion-induced liposome aggregates is two-fold. On the one hand, in soft-matter physics, they represent an interesting colloidal system, governed by a balance between long-range electrostatic repulsion and short-range attraction, resulting in relatively large, equilibrium clusters, whose size and overall charge can be continuously tunable by simple environmental parameters. These structures present a variety of behaviors with a not yet completely understood phenomenology. On the other hand, the resulting structures possess some peculiar properties that justify their employment as drug delivery systems. Bio-compatibility, stability and ability to deliver various bio-active molecules and, moreover, their environmental responsiveness make liposome-based clusters a versatile carrier, with possibility of efficient targeting to different organs and tissues. Among the different structures made possible by the aggregating mechanism (cationic particles stuck together by anionic polyions or conversely anionic particles stuck together by cationic polyions), I will review the main experimental evidences for the existence of cationic liposome clusters. Especial attention is paid to our own work, mainly aimed at the characterization of these novel structures from a physical point of view.
NASA Astrophysics Data System (ADS)
Vaidya, Nilesh; Lehman, Niles
The RNA world hypothesis suggests RNA-based catalysis and information storage as the first step in the evolution of life on the Earth. The central process of the RNA world was the replica-tion of RNA, which may have involved the joining of oligonucleotides, perhaps by recombination rather than organization along a linear template. To assist this build-up of information, a hy-percycle may have played a significant role by allowing cooperation between autocatalytic units in a cyclic linkage in such a way that there is a mutual survival and regulated growth of all the units involved (1). Compared to non-coupled self-replicating units, which can only sustain a limited amount of genetic information, the hypercycle allows the maintenance of large amounts of information through cooperation among otherwise competitive units. However, hypercycles have never been empirically demonstrated in the absence of cell-like compartmentalization. In the current work, hypercyclic behavior is demonstrated in the autocatalytic assembly of Azoar-cus group I ribozyme (2). Three different constructs of the Azoarcus ribozyme with different internal guide sequences (IGS) -GUG (canonical), GAG, and GCG -are capable of a min-imal amount of self-assembly when broken into two fragments. Here, self-assembly depends on a mismatch with non-complementary sequences, CGU, CAU and CUU, respectively, to be recognized by IGS via autocatalysis. Yet when all three constructs are present in the same reaction vessel, concomitant assembly of all three is enhanced through an interdependent hy-percyclic reaction network. Analysis of these reactions indicates that each system is capable of guiding its own reproduction weakly, along with providing enhanced catalytic support for the reproduction of one other construct system through matched IGS-tag interactions. Also, when co-incubated with non-interacting (i.e., selfish) yet efficient self-assembly systems, the hypercyclic assembly outcompetes the selfish self-assembly systems, demonstrating the ability of a hypercyclic organization to possess an evolutionary advantage. 1. Eigen, M. and Schuster, P. (1977). The Hypercycle: A principle of natural self-organization. Die Naturwissenschaften 64, 541-565. 2. Hayden, E.J. and Lehman, N. (2006). Self-Assembly of a Group I Intron from inactive oligonucleotide fragments. Chemistry and Biology 13, 909-918.
NASA Astrophysics Data System (ADS)
Zhou, Tianle; Wei, Hao; Tan, Huaping; Wang, Xin; Zeng, Haibo; Liu, Xiaoheng; Nagao, Shijo; Koga, Hirotaka; Nogi, Masaya; Sugahara, Tohru; Suganuma, Katsuaki
2018-07-01
Thin-film wearable electronics are required to be directly laminated on to human skin for reliable, sensitive bio-sensing but with minimal irritation to the user after long-time use. Excellent heat management films with strongly anisotropic thermal conductivity (K) and adequate breathability are increasingly desirable for shielding the skin from heating while allowing the skin to breathe properly. Here, interfacial self-assembly of a graphene oxide (GO) film covering an ambient-dried bacterial cellulose aerogel (AD-BCA) film followed by laser reduction was proposed to prepare laser-reduced GO (L-rGO)/AD-BCA bilayered films. The AD-BCA substrate provides low cross-plane K (K ⊥ ≈ 0.052 W mK‑1), high breathability, and high compressive and tensile resistance by ‘partially’ inheriting the pore structure from bacterial cellulose (BC) gel. The introduction of an upper L-rGO film, which is only 0.31 wt% content, dramatically increases the in-plane K (K // ) from 0.3 W mK‑1 in AD-BCA to 10.72 W mK‑1 owing to the highly in-plane oriented, continuous, uniform assembling geometry of the GO film; while K ⊥ decreases to a lower value of 0.033 W mK‑1, mainly owing to the air pockets between L-rGO multilayers caused by the laser reduction. The bilayered films achieve a K // /K ⊥ of 325, which is substantially larger even than that of graphite and similar polymer composites. They permit high transmission rates for water vapor (416.78 g/m2/day, >204 g/m2/day of normal skin) and O2 (449.35 cm3/m2/day). The combination of strongly anisotropic thermal conductivity and adequate breathability facilitates applications in heat management in on-skin electronics.
Self-organization of network dynamics into local quantized states
Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis
2016-02-17
Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of themore » Swift-Hohenberg continuum model—a minimal-ingredients model of nodal activation and interaction within a complex network—is able to produce a complex suite of localized patterns. Thus, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.« less
Self-organization of network dynamics into local quantized states.
Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis
2016-02-17
Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of the Swift-Hohenberg continuum model-a minimal-ingredients model of nodal activation and interaction within a complex network-is able to produce a complex suite of localized patterns. Hence, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.
Self-organization of network dynamics into local quantized states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis
Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of themore » Swift-Hohenberg continuum model—a minimal-ingredients model of nodal activation and interaction within a complex network—is able to produce a complex suite of localized patterns. Thus, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.« less
Scalable Directed Self-Assembly Using Ultrasound Waves
2015-09-04
SECURITY CLASSIFICATION OF: We aim to understand how ultrasound waves can be used to create organized patterns of nanoparticles in a host medium such...as a polymer matrix material. The critical difference between the ultrasound technology studied in this project, and other directed self-assembly...of nanoparticles dispersed in a host medium are assembled by means of standing ultrasound waves. Additionally, we have obtained experimental
Supramolecule-to-supramolecule transformations of coordination-driven self-assembled polygons.
Zhao, Liang; Northrop, Brian H; Stang, Peter J
2008-09-10
Two types of supramolecular transformations, wherein a self-assembled Pt(II)-pyridyl metal-organic polygon is controllably converted into an alternative polygon, have been achieved through the reaction between cobalt carbonyl and the acetylene moiety of a dipyridyl donor ligand. A [6 + 6] hexagon is transformed into two [3 + 3] hexagons, and a triangle-square mixture is converted into [2 + 2] rhomboids. 1H and 31P NMR spectra are used to track the transformation process and evaluate the yield of new self-assembled polygons. Such transformed species are identified by electrospray ionization (ESI) mass spectrometry. This new kind of supramolecule-to-supramolecule transformations provides a viable means for constructing, and then converting, new self-assembled polygons.
Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia
2016-12-21
A two-dimensional (2D) bi-layered composite nanofibrous film assembled by one-dimensional (1D) nanofibers with trifunctionality of electrical conduction, magnetism and photoluminescence has been successfully fabricated by layer-by-layer electrospinning. The composite film consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticle (NP)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional layer on one side and a Tb(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent layer on the other side, and the two layers are tightly combined face-to-face together into the novel bi-layered composite film of trifunctionality. The brand-new film has totally different characteristics at the double layers. The electrical conductivity and magnetism of the electrical-magnetic bifunctional layer can be, respectively, tunable via modulating the PANI and Fe 3 O 4 NP contents, and the highest electrical conductivity can reach up to the order of 10 -2 S cm -1 , and predominant intense green emission at 545 nm is obviously observed in the photoluminescent layer under the excitation of 357 nm single-wavelength ultraviolet light. More importantly, the luminescence intensity of the photoluminescent layer remains almost unaffected by the electrical-magnetic bifunctional layer because the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. By comparing with the counterpart single-layered composite nanofibrous film, it is found that the bi-layered composite nanofibrous film has better performance. The novel bi-layered composite nanofibrous film with trifunctionality has potential in the fields of nanodevices, molecular electronics and biomedicine. Furthermore, the design conception and fabrication technique for the bi-layered multifunctional film provide a new and facile strategy towards other films of multifunctionality.
He, Huiwen; Chen, Si; Tong, Xiaoqian; An, Zhihang; Ma, Meng; Wang, Xiaosong; Wang, Xu
2017-11-21
Aromatic groups are introduced into the end peripherals of polyhedral oligomeric silsesquioxane (POSS) core-based organic/inorganic hybrid supramolecules to get a novel dendrimer gelator POSS-Z-Asp(OBzl) (POSS-ASP), which have eight aspartate derivative arms to make full use of strong π-π stacking forces to get strong supramolecular gels in addition to multiple hydrogen bindings and van der Waals interactions. POSS-ASP can self-assemble into three-dimensional nanoscale gel networks to provide hybrid physical gels especially with strong mechanical properties and fast-recovery behaviors. Two totally different morphologies of the connected spherical particle structures and banded ultralong fibers are observed owing to the polarity of solvents confirmed by the scanning electron microscopy, polarized optical microscopy, and transmission electron microscopy techniques, expecting the existing various self-assembly models and illustrating the peripherals of the dendrimer and the polarity of solvents having huge influences in the supramolecular self-assembly mechanism. What is more, the thermal stability, rheological properties, and network architecture information have also been investigated via tube-inversion, rotational rheometer, and powder X-ray diffraction methods, the results of which confirm the two different gel formation mechanisms that make POSS-ASP to exhibit two totally different thermal and mechanical properties. Such a study reports a new gelation system in organic or organic/aqueous mixed solvents, which can be helpful for investigating the relationship of dendritic supramolecular gelation and different polarity solvents during the supramolecular self-assembly process of gelators.
NASA Astrophysics Data System (ADS)
Zhang, Xinming; Li, Zhaoyang; Yuan, Xubo; Cui, Zhenduo; Yang, Xianjin
2013-11-01
The bare inert surface of titanium (Ti) alloy typically causes early failures in implants. Layer-by-layer self-assembly is one of the simple methods for fabricating bioactive multilayer coatings on titanium implants. In this study, a dopamine-modified hyaluronic acid/chitosan (DHA/CHI) bioactive multilayer was built on the surface of Ti-24Nb-2Zr (TNZ) alloy. Zeta potential oscillated between -2 and 17 mV for DHA- and CHI-ending layers during the assembly process, respectively. The DHA/CHI multilayer considerably decreased the contact angle and dramatically improved the wettability of TNZ alloy. Atomic force microscopy results revealed a rough surface on the original TNZ alloy, while the surface became smoother and more homogeneous after the deposition of approximately 5 bilayers (TNZ/(DHA/CHI)5). X-ray photoelectron spectroscopy analysis indicated that the TNZ/(DHA/CHI)5 sample was completely covered by polyelectrolytes. Pre-osteoblast MC3T3-E1 cells were cultured on the original TNZ alloy and TNZ/(DHA/CHI)5 to evaluate the effects of DHA/CHI multilayer on osteoblast proliferation in vitro. The proliferation of osteoblasts on TNZ/(DHA/CHI)5 was significantly higher than that on the original TNZ alloy. The results of this study indicate that the proposed technique improves the biocompatibility of TNZ alloy and can serve as a potential modification method in orthopedic applications.
Medrano, María; Fuertes, Miguel Ángel; Valbuena, Alejandro; Carrillo, Pablo J P; Rodríguez-Huete, Alicia; Mateu, Mauricio G
2016-11-30
Understanding the fundamental principles underlying supramolecular self-assembly may facilitate many developments, from novel antivirals to self-organized nanodevices. Icosahedral virus particles constitute paradigms to study self-assembly using a combination of theory and experiment. Unfortunately, assembly pathways of the structurally simplest virus capsids, those more accessible to detailed theoretical studies, have been difficult to study experimentally. We have enabled the in vitro self-assembly under close to physiological conditions of one of the simplest virus particles known, the minute virus of mice (MVM) capsid, and experimentally analyzed its pathways of assembly and disassembly. A combination of electron microscopy and high-resolution atomic force microscopy was used to structurally characterize and quantify a succession of transient assembly and disassembly intermediates. The results provided an experiment-based model for the reversible self-assembly pathway of a most simple (T = 1) icosahedral protein shell. During assembly, trimeric capsid building blocks are sequentially added to the growing capsid, with pentamers of building blocks and incomplete capsids missing one building block as conspicuous intermediates. This study provided experimental verification of many features of self-assembly of a simple T = 1 capsid predicted by molecular dynamics simulations. It also demonstrated atomic force microscopy imaging and automated analysis, in combination with electron microscopy, as a powerful single-particle approach to characterize at high resolution and quantify transient intermediates during supramolecular self-assembly/disassembly reactions. Finally, the efficient in vitro self-assembly achieved for the oncotropic, cell nucleus-targeted MVM capsid may facilitate its development as a drug-encapsidating nanoparticle for anticancer targeted drug delivery.
Cuccia, Louis A; Ruiz, Eliseo; Lehn, Jean-Marie; Homo, Jean-Claude; Schmutz, Marc
2002-08-02
The synthesis and characterization of an alternating pyridine-pyridazine strand comprising thirteen heterocycles are described. Spontaneous folding into a helical secondary structure is based on a general molecular self-organization process enforced by the conformational information encoded within the primary structure of the molecular strand itself. Conformational control based on heterocyclic "helicity codons" illustrates a strategy for designing folding properties into synthetic oligomers (foldamers). Strong intermolecular interactions of the highly ordered lock-washer subunits of compound 3 results in hierarchical supramolecular self-assembly into protofibrils and fibrils. Compound 3 also forms mechanically stable two-dimensional Langmuir-Blodgett and cast thin films.
NASA Astrophysics Data System (ADS)
Lin, Tao
Organic molecules are envisioned as the building blocks for design and fabrication of functional devices in future, owing to their versatility, low cost and flexibility. Although some devices such as organic light-emitting diode (OLED) have been already applied in our daily lives, the field is still in its infancy and numerous challenges still remain. In particular, fundamental understanding of the process of organic material fabrication at a molecular level is highly desirable. This thesis focuses on the design and fabrication of supramolecular and macromolecular nanostructures on a Au(111) surface through self-assembly, polymerization and a combination of two. We used scanning tunneling microscopy (STM) as an experimental tool and Monte Carlo (MC) and kinetic Monte Carlo (KMC) simulations as theoretical tools to characterize the structures of these systems and to investigate the mechanisms of the self-assembly and polymerization processes at a single-molecular level. The results of this thesis consist of four parts as below: Part I addresses the mechanisms of two-dimensional multicomponent supramolecular self-assembly via pyridyl-Fe-terpyridyl coordination. Firstly, we studied four types of self-assembled metal-organic systems exhibiting different dimensionalities using specifically-designed molecular building blocks. We found that the two-dimensional system is under thermodynamic controls while the systems of lower dimension are under kinetic controls. Secondly, we studied the self-assembly of a series of cyclic supramolecular polygons. Our results indicate that the yield of on-surface cyclic polygon structures is very low independent of temperature and concentration and this phenomenon can be attributed to a subtle competition between kinetic and thermodynamic controls. These results shed light on thermodynamic and kinetic controls in on-surface coordination self-assembly. Part II addresses the two-dimensional supramolecular self-assembly of porphyrin derivatives. Firstly, we investigated the coordination self-assembly of a series of peripheral bromo-phenyl and pyridyl substituted porphyrins with Fe. The self-assembly of the porphyrin derivatives in which phenyl groups are substituted by bromo-phenyl results in coordination networks exhibiting identical structures to that of the parent compounds, but contained nanopores that are functionalized by bromine substitutes. Secondly, we studied a two-dimensional coordination networks formed by 5,10,15,20-tetra(4-pyridyl)porphyrin and Fe. We discovered a novel coordination motif in which a pair of vertically aligned Fe atoms is ligated by four equatorial pyridyl groups. Lateral manipulation, vertical manipulation and tunneling spectroscopy were employed to characterize the networks. These novel coordination networks decorated with Br or vertically aligned Fe atoms may provide potential functions as nano-receptor, molecular magnetism or catalyst. Part III addresses the mechanism of on-surface Ullmann coupling reaction. We studied Pd- and Cu-catalyzed Ullmann coupling reactions between phenyl bromide functionalized porphyrin derivatives. We discovered that the reactions catalyzed by Pd or Cu can be described as a two-phase process that involves an initial activation followed by C-C bond formation. Analysis of rate constants of the Pd-catalyzed reactions allowed us to determine its activation energy as (0.41 +/- 0.03) eV. These results provide a quantitative understanding of on-surface Ullmann coupling reaction. Part IV addresses the on-surface self-assembly driven by a combination of coordination bonds and covalent bonds. Firstly, we utilized metal-directed template to control the on-surface polymerization process. Taking advantage of efficient topochemical enhancement owing to the conformation flexibility of the Cu-pyridyl bonds, macromolecular porphyrin structures that exhibit a narrow size distribution were synthesized. The results reveal that the polymerization process profited from the rich chemistry of Cu which catalyzed the C-C bond formation, controlled the size of the macromolecular products, and organized the macromolecules in a highly ordered manner on the surface. Secondly, we demonstrated a two-step approach for assembling metal-organic coordination network exhibiting very large pores. The first step involves obtaining one kind of building blocks via on-surface Ullmann coupling and the second step is coordination self-assembly. Moreover, the modulation of the surface-state electrons in the network was studied. These results provide new approaches to design and fabricate on-surface nanostructures. In summary, we resolved the structures and studied the on-surface assembly and reaction mechanisms of supramolecular and macromolecular nanostructures at a sub-molecular level. These fundamental studies may shed lights on design and fabrication of low-dimensional organic materials.
Gallagher, Elyssia S.; Adem, Seid M.; Baker, Christopher A.; Ratnayaka, Saliya N.; Jones, Ian W.; Hall, Henry K.; Saavedra, S. Scott; Aspinwall, Craig A.
2015-01-01
The ability to rapidly screen complex libraries of pharmacological modulators is paramount to modern drug discovery efforts. This task is particularly challenging for agents that interact with lipid bilayers or membrane proteins due to the limited chemical, physical, and temporal stability of conventional lipid-based chromatographic stationary phases. Here, we describe the preparation and characterization of a novel stationary phase material composed of highly stable, polymeric-phospholipid bilayers self-assembled onto silica microparticles. Polymer lipid membranes were prepared by photochemical or redox initiated polymerization of 1,2-bis[10-(2′,4′-hexadieoyloxy)decanoyl]-sn-glycero-2-phosphocholine (bis-SorbPC), a synthetic, polymerizable lipid. The resulting polymerized bis-SorbPC (poly(bis-SorbPC)) stationary phases exhibited enhanced stability compared to particles coated with 1,2-dioleoyl-sn-glycero-phosphocholine (unpolymerized) phospholipid bilayers when exposed to chemical (50mM triton X-100 or 50% acetonitrile) and physical (15 min sonication) insults after 30 days of storage. Further, poly(bis-SorbPC)-coated particles survived slurry packing into fused silica capillaries, compared to unpolymerized lipid membranes, where the lipid bilayer was destroyed during packing. Frontal chromatographic analyses of the lipophilic small molecules acetylsalicylic acid, benzoic acid, and salicylic acid showed > 44% increase in retention times (P < 0.0001) for all analytes on poly(bis-SorbPC)-functionalized stationary phase compared to bare silica microspheres, suggesting a lipophilic retention mechanism. Phospholipid membrane-functionalized stationary phases that withstand the chemical and physical rigors of capillary LC conditions can substantially increase the efficacy of lipid membrane affinity chromatography, and represents a key advance towards the development of robust membrane protein-functionalized chromatographic stationary phases. PMID:25670414
NASA Astrophysics Data System (ADS)
Li, Jie; Zhan, Guangming; Yu, Ying; Zhang, Lizhi
2016-05-01
Although photocatalytic hydrogen evolution (PHE) is ideal for solar-to-fuel conversion, it remains challenging to construct a highly efficient PHE system by steering the charge flow in a precise manner. Here we tackle this challenge by assembling 1T MoS2 monolayers selectively and chemically onto (Bi12O17) end-faces of Bi12O17Cl2 monolayers to craft two-dimensional (2D) Janus (Cl2)-(Bi12O17)-(MoS2) bilayer junctions, a new 2D motif different from van der Waals heterostructure. Electrons and holes from visible light-irradiated Bi12O17Cl2 are directionally separated by the internal electric field to (Bi12O17) and (Cl2) end-faces, respectively. The separated electrons can further migrate to MoS2 via Bi-S bonds formed between (Bi12O17) and MoS2 monolayers. This atomic-level directional charge separation endows the Janus bilayers with ultralong carrier lifetime of 3,446 ns and hence a superior visible-light PHE rate of 33 mmol h-1 g-1. Our delineated Janus bilayer junctions on the basis of the oriented assembly of monolayers presents a new design concept to effectively steer the charge flow for PHE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franz, Johannes; Graham, Daniel J.; Schmüser, Lars
2015-03-01
Biophysical studies of the interaction of peptides with model membranes provide a simple yet effective approach to understand the transport of peptides and peptide based drug carriers across the cell membrane. Therein, the authors discuss the use of self-assembled monolayers fabricated from the full membrane-spanning thiol (FMST) 3-((14-((4'-((5-methyl-1-phenyl-35-(phytanyl)oxy-6,9,12,15,18,21,24,27,30,33,37-undecaoxa-2,3-dithiahenpentacontan-51-yl)oxy)-[1,1'-biphenyl]-4-yl)oxy)tetradecyl)oxy)-2-(phytanyl)oxy glycerol for ultrahigh vacuum (UHV) based experiments. UHV-based methods such as electron spectroscopy and mass spectrometry can provide important information about how peptides bind and interact with membranes, especially with the hydrophobic core of a lipid bilayer. Moreover, near-edge x-ray absorption fine structure spectra and x-ray photoelectron spectroscopy (XPS) data showed thatmore » FMST forms UHV-stable and ordered films on gold. XPS and time of flight secondary ion mass spectrometry depth profiles indicated that a proline-rich amphipathic cell-penetrating peptide, known as sweet arrow peptide is located at the outer perimeter of the model membrane.« less
NASA Astrophysics Data System (ADS)
Yoon, Myung-Han
Two novel classes of organic semiconductors based on perfluoroarene/arene-modified oligothiophenes and perfluoroacyl/acyl-derivatized quaterthiophens are developed. The frontier molecular orbital energies of these compounds are studied by optical spectroscopy and electrochemistry while solid-state/film properties are investigated by thermal analysis, x-ray diffraction, and scanning electron microscopy. Organic thin film transistors (OTFTs) performance parameters are discussed in terms of the interplay between semiconductor molecular energetics and film morphologies/microstructures. For perfluoroarene-thiophene oligomer systems, majority charge carrier type and mobility exhibit a strong correlation with the regiochemistry of perfluoroarene incorporation. In quaterthiophene-based semiconductors, carbonyl-functionalization allows tuning of the majority carrier type from p-type to ambipolar and to n-type. In situ conversion of a p-type semiconducting film to n-type film is also demonstrated. Very thin self-assembled or spin-on organic dielectric films have been integrated into OTFTs to achieve 1 - 2 V operating voltages. These new dielectrics are deposited either by layer-by-layer solution phase deposition of molecular precursors or by spin-coating a mixture of polymer and crosslinker, resulting in smooth and virtually pinhole-free thin films having exceptionally large capacitances (300--700 nF/cm2) and low leakage currents (10 -9 - 10-7 A/cm2). These organic dielectrics are compatible with various vapor- or solution-deposited p- and n-channel organic semiconductors. Furthermore, it is demonstrated that spin-on crosslinked-polymer-blend dielectrics can be employed for large-area/patterned electronics, and complementary inverters. A general approach for probing semiconductor-dielectric interface effects on OTFT performance parameters using bilayer gate dielectrics is presented. Organic semiconductors having p-, n-type, or ambipolar majority charge carriers are grown on six different bilayer dielectrics consisting of various spin-coated polymers/HMDS on 300 nm SiO2/p+-Si, followed by transistor fabrication. In case of air-sensitive n-type semiconductors, dielectric surface modifications induce large variations in the corresponding OTFT performance parameters while film morphologies and microstructures remain unchanged. In contrast, the device performance of air-stable n-type and p-type semiconductors is not significantly affected by dielectric surface modifications. The origin of the mobility sensitivity to the various surface chemistries in the case of air sensitive n-type semiconductors is found to be due to electron trapping by silanol and carbonyl functionalities at the semiconductor-dielectric interface.
From molecular to macroscopic engineering: shaping hydrogen-bonded organic nanomaterials.
Yoosaf, K; Llanes-Pallas, Anna; Marangoni, Tomas; Belbakra, Abdelhalim; Marega, Riccardo; Botek, Edith; Champagne, Benoît; Bonifazi, Davide; Armaroli, Nicola
2011-03-07
The self-assembly and self-organization behavior of chromophoric acetylenic scaffolds bearing 2,6-bis(acetylamino)pyridine (1, 2) or uracyl-type (3-9) terminal groups has been investigated by photophysical and microscopic methods. Systematic absorption and luminescence studies show that 1 and 2, thanks to a combination of solvophilic/solvophobic forces and π-π stacking interactions, undergo self-organization in apolar solvents (i.e., cyclohexane) and form spherical nanoparticles, as evidenced by wide-field optical microscopy, TEM, and AFM analysis. For the longer molecular module, 2, a more uniform size distribution is found (80-200 nm) compared to 1 (20-1000 nm). Temperature scans in the range 283-353 K show that the self-organized nanoparticles are reversibly formed and destroyed, being stable at lower temperatures. Molecular modules 1 and 2 were then thoroughly mixed with the complementary triply hydrogen-bonding units 3-9. Depending on the specific geometrical structure of 3-9, different nanostructures are evidenced by microscopic investigations. Combination of modules 1 or 2 with 3, which bears only one terminal uracyl unit, leads to the formation of vesicular structures; instead, when 1 is combined with bis-uracyl derivative 4 or 5, a structural evolution from nanoparticles to nanowires is observed. The length of the wires obtained by mixing 1 and 4 or 1 and 5 can be controlled by addition of 3, which prompts transformation of the wires into shorter rods. The replacement of linear system 5 with the related angular modules 6 and 7 enables formation of helical nanostructures, unambiguously evidenced by AFM. Finally, thermally induced self-assembly was studied in parallel with modules 8 and 9, in which the uracyl recognition sites are protected with tert-butyloxycarbonyl (BOC) groups. This strategy allows further control of the self-assembly/self-organization process by temperature, since the BOC group is completely removed on heating. Microscopy studies show that the BOC-protected ditopic modules 8 self-assemble and self-organize with 1 into ordered linear nanostructures, whereas BOC-protected tritopic system 9 gives rise to extended domains of circular nano-objects in combination with 1. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energetics and Kinetics of trans-SNARE Zippering
NASA Astrophysics Data System (ADS)
Rebane, Aleksander A.; Shu, Tong; Krishnakumar, Shyam; Rothman, James E.; Zhang, Yongli
Synaptic exocytosis relies on assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins into a four-helix bundle to drive membrane fusion. Complementary SNAREs anchored to the synaptic vesicle (v-SNARE) and the plasma membrane (t-SNARE) associate from their N-termini, transiting a half-assembled intermediate (trans-SNARE), and ending at their C-termini with a rapid power stroke that leads to membrane fusion. Although cytosolic SNARE assembly has been characterized, it remains unknown how membranes modulate the energetics and kinetics of SNARE assembly. Here, we present optical tweezers measurements on folding of single membrane proteins in phospholipid bilayers. To our knowledge, this is the first such report. We measured the energetics, kinetics, and assembly intermediates of trans-SNAREs formed between a t-SNARE inserted into a bead-supported bilayer and a v-SNARE in a nanodisc. We found that the repulsive force of the apposed membranes increases the lifetime of the half-assembled intermediate. Our findings provide a single-molecule platform to study the regulation of trans-SNARE assembly by proteins that act on the half-assembled state, and thus reveal the mechanistic basis of the speed and high fidelity of synaptic transmission. This work was supported by US National Institutes of Health Grants F31 GM119312-01 (to A.A.R) and R01 GM093341 (to Y.Z.).
Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.; ...
2017-08-23
Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.
Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less
Vinogradova, Tatiana; Paul, Raja; Grimaldi, Ashley D.; Loncarek, Jadranka; Miller, Paul M.; Yampolsky, Dmitry; Magidson, Valentin; Khodjakov, Alexey; Mogilner, Alex; Kaverina, Irina
2012-01-01
Assembly of an integral Golgi complex is driven by microtubule (MT)-dependent transport. Conversely, the Golgi itself functions as an unconventional MT-organizing center (MTOC). This raises the question of whether Golgi assembly requires centrosomal MTs or can be self-organized, relying on its own MTOC activity. The computational model presented here predicts that each MT population is capable of gathering Golgi stacks but not of establishing Golgi complex integrity or polarity. In contrast, the concerted effort of two MT populations would assemble an integral, polarized Golgi complex. Indeed, while laser ablation of the centrosome did not alter already-formed Golgi complexes, acentrosomal cells fail to reassemble an integral complex upon nocodazole washout. Moreover, polarity of post-Golgi trafficking was compromised under these conditions, leading to strong deficiency in polarized cell migration. Our data indicate that centrosomal MTs complement Golgi self-organization for proper Golgi assembly and motile-cell polarization. PMID:22262454
Nanopatched Graphene with Molecular Self-Assembly Toward Graphene-Organic Hybrid Soft Electronics.
Kang, Boseok; Lee, Seong Kyu; Jung, Jaehyuck; Joe, Minwoong; Lee, Seon Baek; Kim, Jinsung; Lee, Changgu; Cho, Kilwon
2018-06-01
Increasing the mechanical durability of large-area polycrystalline single-atom-thick materials is a necessary step toward the development of practical and reliable soft electronics based on these materials. Here, it is shown that the surface assembly of organosilane by weak epitaxy forms nanometer-thick organic patches on a monolayer graphene surface and dramatically increases the material's resistance to harsh postprocessing environments, thereby increasing the number of ways in which graphene can be processed. The nanopatched graphene with the improved mechanical durability enables stable operation when used as transparent electrodes of wearable strain sensors. Also, the nanopatched graphene applied as an electrode modulates the molecular orientation of deposited organic semiconductor layers, and yields favorable nominal charge injection for organic transistors. These results demonstrate the potential for use of self-assembled organic nanopatches in graphene-based soft electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Logical NAND and NOR Operations Using Algorithmic Self-assembly of DNA Molecules
NASA Astrophysics Data System (ADS)
Wang, Yanfeng; Cui, Guangzhao; Zhang, Xuncai; Zheng, Yan
DNA self-assembly is the most advanced and versatile system that has been experimentally demonstrated for programmable construction of patterned systems on the molecular scale. It has been demonstrated that the simple binary arithmetic and logical operations can be computed by the process of self assembly of DNA tiles. Here we report a one-dimensional algorithmic self-assembly of DNA triple-crossover molecules that can be used to execute five steps of a logical NAND and NOR operations on a string of binary bits. To achieve this, abstract tiles were translated into DNA tiles based on triple-crossover motifs. Serving as input for the computation, long single stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. Our method shows that engineered DNA self-assembly can be treated as a bottom-up design techniques, and can be capable of designing DNA computer organization and architecture.
Thermal conductivity and rectification in asymmetric archaeal lipid membranes
NASA Astrophysics Data System (ADS)
Youssefian, Sina; Rahbar, Nima; Van Dessel, Steven
2018-05-01
Nature employs lipids to construct nanostructured membranes that self-assemble in an aqueous environment to separate the cell interior from the exterior environment. Membrane composition changes among species and according to environmental conditions, which allows organisms to occupy a wide variety of different habitats. Lipid bilayers are phase-change materials that exhibit strong thermotropic and lyotropic phase behavior in an aqueous environment, which may also cause thermal rectification. Among different types of lipids, archaeal lipids are of great interest due to their ability to withstand extreme conditions. In this paper, nonequilibrium molecular dynamics simulations were employed to study the nanostructures and thermal properties of different archaeols and to investigate thermal rectification effects in asymmetric archaeal membranes. In particular, we are interested in understanding the role of bridged phytanyl chains and cyclopentane groups in controlling the phase transition temperature and heat flow across the membrane. Our results indicate that the bridged phytanyl chains decrease the molecular packing of lipids, whereas the existence of cyclopentane rings on the tail groups increases the molecular packing by enhancing the interactions between isoprenoid chains. We found that macrocyclic archaeols have the highest thermal conductivity, whereas macrocyclic archaeols with two cyclopentane rings have the lowest. The effect of the temperature on the variation of thermal conductivity was found to be progressive. Our results further indicate that small thermal rectification effects occur in asymmetric archaeol bilayer membranes at around 25 K temperature gradient. The calculated thermal rectification factor was around 0.09 which is in the range of rectification factor obtained experimentally for nanostructures such as carbon nanotubes (0.07). Such phenomena may be of biological significance and could also be optimized for use in various engineering applications.
Solvent-assisted lipid bilayer formation on silicon dioxide and gold.
Tabaei, Seyed R; Choi, Jae-Hyeok; Haw Zan, Goh; Zhdanov, Vladimir P; Cho, Nam-Joon
2014-09-02
Planar lipid bilayers on solid supports mimic the fundamental structure of biological membranes and can be investigated using a wide range of surface-sensitive techniques. Despite these advantages, planar bilayer fabrication is challenging, and there are no simple universal methods to form such bilayers on diverse material substrates. One of the novel methods recently proposed and proven to form a planar bilayer on silicon dioxide involves lipid deposition in organic solvent and solvent exchange to influence the phase of adsorbed lipids. To scrutinize the specifics of this solvent-assisted lipid bilayer (SALB) formation method and clarify the limits of its applicability, we have developed a simplified, continuous solvent-exchange version to form planar bilayers on silicon dioxide, gold, and alkanethiol-coated gold (in the latter case, a lipid monolayer is formed to yield a hybrid bilayer) and varied the type of organic solvent and rate of solvent exchange. By tracking the SALB formation process with simultaneous quartz crystal microbalance-dissipation (QCM-D) and ellipsometry, it was determined that the acoustic, optical, and hydration masses along with the acoustic and optical thicknesses, measured at the end of the process, are comparable to those observed by employing conventional fabrication methods (e.g., vesicle fusion). As shown by QCM-D measurements, the obtained planar bilayers are highly resistant to protein adsorption, and several, but not all, water-miscible organic solvents could be successfully used in the SALB procedure, with isopropanol yielding particularly high-quality bilayers. In addition, fluorescence recovery after photobleaching (FRAP) measurements demonstrated that the coefficient of lateral lipid diffusion in the fabricated bilayers corresponds to that measured earlier in the planar bilayers formed by vesicle fusion. With increasing rate of solvent exchange, it was also observed that the bilayer became incomplete and a phenomenological model was developed in order to explain this feature. The results obtained allowed us to clarify and discriminate likely steps of the SALB formation process as well as determine the corresponding influence of organic solvent type and flow conditions on these steps. Taken together, the findings demonstrate that the SALB formation method can be adapted to a continuous solvent-exchange procedure that is technically minimal, quick, and efficient to form planar bilayers on solid supports.
Self-consistent perturbation theory for two dimensional twisted bilayers
NASA Astrophysics Data System (ADS)
Shirodkar, Sharmila N.; Tritsaris, Georgios A.; Kaxiras, Efthimios
Theoretical modeling and ab-initio simulations of two dimensional heterostructures with arbitrary angles of rotation between layers involve unrealistically large and expensive calculations. To overcome this shortcoming, we develop a methodology for weakly interacting heterostructures that treats the effect of one layer on the other as perturbation, and restricts the calculations to their primitive cells. Thus, avoiding computationally expensive supercells. We start by approximating the interaction potential between the twisted bilayers to that of a hypothetical configuration (viz. ideally stacked untwisted layers), which produces band structures in reasonable agreement with full-scale ab-initio calculations for commensurate and twisted bilayers of graphene (Gr) and Gr/hexagonal boron nitride (h-BN) heterostructures. We then self-consistently calculate the charge density and hence, interaction potential of the heterostructures. In this work, we test our model for bilayers of various combinations of Gr, h-BN and transition metal dichalcogenides, and discuss the advantages and shortcomings of the self-consistently calculated interaction potential. Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Lowry, Troy W.; Hariri, Hanaa; Prommapan, Plengchart; Kusi-Appiah, Aubrey; Vafai, Nicholas; Bienkiewicz, Ewa A.; Van Winkle, David H.; Stagg, Scott M.
2016-01-01
The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid–protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached. PMID:26649649
Self-organized architectures from assorted DNA-framed nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Wenyan; Halverson, Jonathan; Tian, Ye; Tkachenko, Alexei V.; Gang, Oleg
2016-09-01
The science of self-assembly has undergone a radical shift from asking questions about why individual components self-organize into ordered structures, to manipulating the resultant order. However, the quest for far-reaching nanomanufacturing requires addressing an even more challenging question: how to form nanoparticle (NP) structures with designed architectures without explicitly prescribing particle positions. Here we report an assembly concept in which building instructions are embedded into NPs via DNA frames. The integration of NPs and DNA origami frames enables the fabrication of NPs with designed anisotropic and selective interactions. Using a pre-defined set of different DNA-framed NPs, we show it is possible to design diverse planar architectures, which include periodic structures and shaped meso-objects that spontaneously emerge on mixing of the different topological types of NP. Even objects of non-trivial shapes, such as a nanoscale model of Leonardo da Vinci's Vitruvian Man, can be self-assembled successfully.
Self-organized architectures from assorted DNA-framed nanoparticles.
Liu, Wenyan; Halverson, Jonathan; Tian, Ye; Tkachenko, Alexei V; Gang, Oleg
2016-09-01
The science of self-assembly has undergone a radical shift from asking questions about why individual components self-organize into ordered structures, to manipulating the resultant order. However, the quest for far-reaching nanomanufacturing requires addressing an even more challenging question: how to form nanoparticle (NP) structures with designed architectures without explicitly prescribing particle positions. Here we report an assembly concept in which building instructions are embedded into NPs via DNA frames. The integration of NPs and DNA origami frames enables the fabrication of NPs with designed anisotropic and selective interactions. Using a pre-defined set of different DNA-framed NPs, we show it is possible to design diverse planar architectures, which include periodic structures and shaped meso-objects that spontaneously emerge on mixing of the different topological types of NP. Even objects of non-trivial shapes, such as a nanoscale model of Leonardo da Vinci's Vitruvian Man, can be self-assembled successfully.
Self-organized architectures from assorted DNA-framed nanoparticles
Liu, Wenyan; Halverson, Jonathan; Tian, Ye; ...
2016-06-13
The science of self-assembly has undergone a radical shift from asking questions about why individual components self-organize into ordered structures, to manipulating the resultant order. However, the quest for far-reaching nanomanufacturing requires addressing an even more challenging question: how to form nanoparticle (NP) structures with designed architectures without explicitly prescribing particle positions. Here we report an assembly concept in which building instructions are embedded into NPs via DNA frames. The integration of NPs and DNA origami frames enables the fabrication of NPs with designed anisotropic and selective interactions. Using a pre-defined set of different DNA-framed NPs, we show it ismore » possible to design diverse planar architectures, which include periodic structures and shaped meso-objects that spontaneously emerge on mixing of the different topological types of NP. Even objects of non-trivial shapes, such as a nanoscale model of Leonardo da Vinci's Vitruvian Man, can be self-assembled successfully.« less
NASA Astrophysics Data System (ADS)
Sarles, Stephen A.
2013-09-01
The droplet interface bilayer (DIB) is a simple technique for constructing a stable lipid bilayer at the interface of two lipid-encased water droplets submerged in oil. Networks of DIBs formed by connecting more than two droplets constitute a new form of modular biomolecular smart material, where the transduction properties of a single lipid bilayer can affect the actions performed at other interface bilayers in the network via diffusion through the aqueous environments of shared droplet connections. The passive electrical properties of a lipid bilayer and the arrangement of droplets that determine the paths for transport in the network require specific electrical control to stimulate and interrogate each bilayer. Here, we explore the use of virtual ground for electrodes inserted into specific droplets in the network and employ a multichannel patch clamp amplifier to characterize bilayer formation and ion-channel activity in a serial DIB array. Analysis of serial connections of DIBs is discussed to understand how assigning electrode connections to the measurement device can be used to measure activity across all lipid membranes within a network. Serial arrays of DIBs are assembled using the regulated attachment method within a multi-compartment flexible substrate, and wire-type electrodes inserted into each droplet compartment of the substrate enable the application of voltage and measurement of current in each droplet in the array.
NASA Astrophysics Data System (ADS)
Yang, Guang; Nanda, Jagjit; Wang, Boya; Chen, Gang; Hallinan, Daniel T., Jr.
An effective self-assembly technique was developed to prepare centimeter-scale monolayer gold nanoparticle (Au NP) films of long-range order with hydrophobic ligands. Aqueous Au NPs were entrapped in the organic/aqueous interface where the Au NP surface was in situ modified with different types of amine ligands, including amine-terminated polystyrene. The Au NPs then spontaneously relocated to the air/water interface to form an NP monolayer. The spontaneous formation of an Au NP film at the organic/water interface was due to the minimization of the system Helmholtz free energy. Self-assembled Au NP films has a hexagonal close packed structure. The interparticle spacing was dictated by the amine ligand length. Thus-assembled Au NP monolayers exhibit tunable surface plasma resonance and excellent spacial homogeneity of surface-enhanced Raman-scattering. The ``air/water/oil'' self-assembly method developed in this study not only benefits the fundamental understanding of NP ligand conformations, but is also promising to scale up the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. This study was financially supported by start-up funding supplied by the Florida State University and the FAMU-FSU College of Engineering.
PREFACE: Self-organized nanostructures
NASA Astrophysics Data System (ADS)
Rousset, Sylvie; Ortega, Enrique
2006-04-01
In order to fabricate ordered arrays of nanostructures, two different strategies might be considered. The `top-down' approach consists of pushing the limit of lithography techniques down to the nanometre scale. However, beyond 10 nm lithography techniques will inevitably face major intrinsic limitations. An alternative method for elaborating ultimate-size nanostructures is based on the reverse `bottom-up' approach, i.e. building up nanostructures (and eventually assemble them to form functional circuits) from individual atoms or molecules. Scanning probe microscopies, including scanning tunnelling microscopy (STM) invented in 1982, have made it possible to create (and visualize) individual structures atom by atom. However, such individual atomic manipulation is not suitable for industrial applications. Self-assembly or self-organization of nanostructures on solid surfaces is a bottom-up approach that allows one to fabricate and assemble nanostructure arrays in a one-step process. For applications, such as high density magnetic storage, self-assembly appears to be the simplest alternative to lithography for massive, parallel fabrication of nanostructure arrays with regular sizes and spacings. These are also necessary for investigating the physical properties of individual nanostructures by means of averaging techniques, i.e. all those using light or particle beams. The state-of-the-art and the current developments in the field of self-organization and physical properties of assembled nanostructures are reviewed in this issue of Journal of Physics: Condensed Matter. The papers have been selected from among the invited and oral presentations of the recent summer workshop held in Cargese (Corsica, France, 17-23 July 2005). All authors are world-renowned in the field. The workshop has been funded by the Marie Curie Actions: Marie Curie Conferences and Training Courses series named `NanosciencesTech' supported by the VI Framework Programme of the European Community, by the EUROCORES SONS Programme under the auspices of the European Science Foundation and the VI Framework Programme of the European Community. It was also funded by CNRS `formation permanente'. Major topics relevant to self-organization are covered in these papers. The first two papers deal with the physics of self-organized nucleation and growth. Both metal and semiconductor templates are investigated. The paper by Meyer zu Heringdorf focuses on the mesoscopic patterns formed by the Au-induced faceting of vicinal Si (001). Repain et al describe how uniform and long-range ordered nanostructures are built on a surface by using nucleation on a point-defect array. Electronic properties of such self-organized systems are reviewed by Mugarza and Ortega. The next three papers deal with molecules and self-organization. In the paper presented by Kröger, molecules are deposited on vicinal Au surfaces and are studied by STM. A very active field in self-organized nanostructures is the chemical route for nanoparticle synthesis. The paper by Piléni deals with self-organization of inorganic crystals produced by evaporation of a solution, also called colloids. Their physical properties are also treated. Gacoin et al illustrate chemical synthesis, including the template approach, using organized mesoporous silica films for the production of semiconductor or metal arrays of particles. An alternative method is developed in the paper by Allongue and Maroun which is the electrochemical method of building arrays of nanostructures. Ultimately, self-organization is a very interdisciplinary field. There is also an attempt in this issue to present some of the challenges using biology. The paper by Belamie et al deals with the self-assembly of biological macromolecules, such as chitin and collagen. Finally, Molodtsov and co-workers describe how a biological template can be used in order to achieve novel materials made of hybrid metallo-organic nanostructures.
Grubač, Z; Metikoš-Huković, M; Babić, R; Rončević, I Škugor; Petravić, M; Peter, R
2013-05-01
Mg and Mg-alloys are promising materials for biodegradable implants. In order to slowdown the Mg-alloy (AZ91D) degradation and enhance its biocompatibility, the alloy surface was modified with alkylphosphonate self-assembling films. The binding configuration and the structural organization of alkylphosphonate monolayers on the Mg-alloy surface were investigated using contact angle measurements, FTIR, and XPS. Combination of FTIR and XPS data indicated the presence of several different bonding modes (mono-, di-, and tri dentate) of phosphonate head groups with the alloy surface. The existence of well organized and ordered self-assembled alkylphosphonate monolayers with good barrier protecting properties in a physiological solution is a key step in the development of biocompatible Mg-alloy implants. Copyright © 2013 Elsevier B.V. All rights reserved.
Oh, Yong-Jun; Kim, Jung-Hwan; Thompson, Carl V; Ross, Caroline A
2013-01-07
Templated dewetting of a Co/Pt metal bilayer film on a topographic substrate was used to assemble arrays of Co-Pt alloy nanoparticles, with highly uniform particle size, shape and notably composition compared to nanoparticles formed on an untemplated substrate. Solid-state and liquid-state dewetting processes, using furnace annealing and laser irradiation respectively, were compared. Liquid state dewetting produced more uniform, conformal nanoparticles but they had a polycrystalline disordered fcc structure and relatively low magnetic coercivity. In contrast, solid state dewetting enabled formation of magnetically hard, ordered L1(0) Co-Pt single-crystal particles with coercivity >12 kOe. Furnace annealing converted the nanoparticles formed by liquid state dewetting into the L1(0) phase.
Managing lifelike behavior in a dynamic self-assembled system
NASA Astrophysics Data System (ADS)
Ropp, Chad; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang
Self-organization can arise outside of thermodynamic equilibrium in a process of dynamic self-assembly. This is observed in nature, for example in flocking birds, but can also be created artificially with non-living entities. Such dynamic systems often display lifelike properties, including the ability to self-heal and adapt to environmental changes, which arise due to the collective and often complex interactions between the many individual elements. Such interactions are inherently difficult to predict and control, and limit the development of artificial systems. Here, we report a fundamentally new method to manage dynamic self-assembly through the direct external control of collective phenomena. Our system consists of a waveguide filled with mobile scattering particles. These particles spontaneously self-organize when driven by a coherent field, self-heal when mechanically perturbed, and adapt to changes in the drive wavelength. This behavior is governed by particle interactions that are completely mediated by coherent wave scattering. Compared to hydrodynamic interactions which lead to compact ordered structures, our system displays sinusoidal degeneracy and many different steady-state geometries that can be adjusted using the external field.
Structures of SAS-6 suggest its organization in centrioles.
van Breugel, Mark; Hirono, Masafumi; Andreeva, Antonina; Yanagisawa, Haru-aki; Yamaguchi, Shoko; Nakazawa, Yuki; Morgner, Nina; Petrovich, Miriana; Ebong, Ima-Obong; Robinson, Carol V; Johnson, Christopher M; Veprintsev, Dmitry; Zuber, Benoît
2011-03-04
Centrioles are cylindrical, ninefold symmetrical structures with peripheral triplet microtubules strictly required to template cilia and flagella. The highly conserved protein SAS-6 constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. We determined the x-ray structure of the amino-terminal domain of SAS-6 from zebrafish, and we show that recombinant SAS-6 self-associates in vitro into assemblies that resemble cartwheel centers. Point mutations are consistent with the notion that centriole formation in vivo depends on the interactions that define the self-assemblies observed here. Thus, these interactions are probably essential to the structural organization of cartwheel centers.
Porous Hydrogen-Bonded Organic Frameworks.
Han, Yi-Fei; Yuan, Ying-Xue; Wang, Hong-Bo
2017-02-13
Ordered porous solid-state architectures constructed via non-covalent supramolecular self-assembly have attracted increasing interest due to their unique advantages and potential applications. Porous metal-coordination organic frameworks (MOFs) are generated by the assembly of metal coordination centers and organic linkers. Compared to MOFs, porous hydrogen-bonded organic frameworks (HOFs) are readily purified and recovered via simple recrystallization. However, due to lacking of sufficiently ability to orientate self-aggregation of building motifs in predictable manners, rational design and preparation of porous HOFs are still challenging. Herein, we summarize recent developments about porous HOFs and attempt to gain deeper insights into the design strategies of basic building motifs.
Supramolecule-to-Supramolecule Transformations of Coordination-Driven Self-Assembled Polygons
Zhao, Liang; Northrop, Brian H.; Stang, Peter J.
2009-01-01
Two types of supramolecular transformations, wherein a self-assembled Pt(II)-pyridyl metal-organic polygon is controllably converted into an alternative polygon, have been achieved through the reaction between cobalt carbonyl and the acetylene moiety of a dipyridyl donor ligand. A [6+6] hexagon is transformed into two [3+3] hexagons and a triangle-square mixture is converted into [2+2] rhomboids. 1H and 31P NMR spectra are used to track the transformation process and evaluate the yield of new self-assembled polygons. Such transformed species are identified by electrospray ionization (ESI) mass spectrometry. This new kind of supramolecule-to-supramolecule transformations provides a viable means for constructing, and then converting, new self-assembled polygons. PMID:18702485
Photoswitching in azobenzene self-assembled monolayers capped on zinc oxide: nanodots vs nanorods.
Shah, Syed Mujtaba; Martini, Cyril; Ackermann, Jörg; Fages, Frédéric
2012-02-01
We report the synthesis and spectroscopic characterization of nanohybrid structures consisting of an azobenzene compound grafted on the surface of zinc oxide nanoparticles. Characteristic bathochromic shifts indicate that the azobenzene photochromic molecules self-assemble onto the surface of the nanocrystals. The extent of packing is dependent on the shape of the nanoparticle. ZnO nanorods, with flat facets, enable a tighter organization of the molecules in the self-assembled monolayer than in the case of nanodots that display a more curvated shape. Consistently, the efficiency of photochromic switching of the self-assembled monolayer on ZnO nanoparticles is also shown to be strongly affected by nanoparticle shape. Copyright © 2011 Elsevier Inc. All rights reserved.
Predicting supramolecular self-assembly on reconstructed metal surfaces
NASA Astrophysics Data System (ADS)
Roussel, Thomas J.; Barrena, Esther; Ocal, Carmen; Faraudo, Jordi
2014-06-01
The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern. GA image adapted from refs: (a) Phys. Chem. Chem. Phys., 2001, 3, 3399-3404, with permission from the PCCP Owner Societies, and (b) J. Phys. Chem. C, 2008, 112 (18), 7168-7172, reprinted with permission from the American Chemical Society, copyright © 2008.
Self-assembled tethered bimolecular lipid membranes.
Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang
2009-01-01
This chapter describes some of the strategies developed in our group for designing, constructing and structurally and functionally characterizing tethered bimolecular lipid membranes (tBLM). We introduce this platform as a novel model membrane system that complements the existing ones, for example, Langmuir monolayers, vesicular liposomal dispersions and bimolecular ("black") lipid membranes. Moreover, it offers the additional advantage of allowing for studies of the influence of membrane structure and order on the function of integral proteins, for example, on how the composition and organization of lipids in a mixed membrane influence the ion translocation activity of integral channel proteins. The first strategy that we introduce concerns the preparation of tethered monolayers by the self-assembly of telechelics. Their molecular architecture with a headgroup, a spacer unit (the "tether") and the amphiphile that mimics the lipid molecule allows them to bind specifically to the solid support thus forming the proximal layer of the final architecture. After fusion of vesicles that could contain reconstituted proteins from a liposomal dispersion in contact to this monolayer the tethered bimolecular lipid membrane is obtained. This can then be characterized by a broad range of surface analytical techniques, including surface plasmon spectroscopies, the quartz crystal microbalance, fluorescence and IR spectroscopies, and electrochemical techniques, to mention a few. It is shown that this concept allows for the construction of tethered lipid bilayers with outstanding electrical properties including resistivities in excess of 10 MOmega cm2. A modified strategy uses the assembly of peptides as spacers that couple covalently via their engineered sulfhydryl or lipoic acid groups at the N-terminus to the employed gold substrate, while their C-terminus is being activated afterward for the coupling of, for example, dimyristoylphosphatidylethanol amine (DMPE) lipid molecules via the NH2 moiety of their headgroups. It is demonstrated that these membranes are well suited for the in situ synthesis of membrane protein by a cell-free expression approach. The vectorial integration of an in vitro synthesized odorant receptor, OR5 from the rat, is demonstrated by means of antibodies that specifically bind to a tag at the N-terminus of the receptor and is read out by surface plasmon fluorescence spectroscopy. A completely different strategy employs his-tagged membrane proteins in their solubilized form binding to a surface-attached Ni(+)-NTA monolayer generating a well-oriented protein layer the density of which can be easily controlled by online monitoring the binding (assembly) step by surface plasmon spectroscopy. Moreover, the attachment of the his-tag to either the C- or the N-terminus allows for the complete control of the protein orientation. After the exchange of the detergent micelle by a lipid bilayer via a surface dialysis procedure an electrically very well isolating protein-tethered membrane is formed. We show that this "wiring" of the functional units allows for the (external) manipulation of the oxidation state of the redox-protein cytochrome c Oxidase by the control of the potential applied to the gold substrate which is used as the working electrode in an electrochemical attachment.
Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces.
Wang, Gang; Or, Dani
2014-10-24
The spatial context of microbial interactions common in natural systems is largely absent in traditional pure culture-based microbiology. The understanding of how interdependent microbial communities assemble and coexist in limited spatial domains remains sketchy. A mechanistic model of cell-level interactions among multispecies microbial populations grown on hydrated rough surfaces facilitated systematic evaluation of how trophic dependencies shape spatial self-organization of microbial consortia in complex diffusion fields. The emerging patterns were persistent irrespective of initial conditions and resilient to spatial and temporal perturbations. Surprisingly, the hydration conditions conducive for self-assembly are extremely narrow and last only while microbial cells remain motile within thin aqueous films. The resulting self-organized microbial consortia patterns could represent optimal ecological templates for the architecture that underlie sessile microbial colonies on natural surfaces. Understanding microbial spatial self-organization offers new insights into mechanisms that sustain small-scale soil microbial diversity; and may guide the engineering of functional artificial microbial consortia.
Self-Assembling Organic Nanopores as Synthetic Transmembrane Channels with Tunable Functions
NASA Astrophysics Data System (ADS)
Wei, Xiaoxi
A long-standing goal in the area of supramolecular self-assembly involves the development of synthetic ion/water channels capable of mimicking the mass-transport characteristics of biological channels and pores. Few examples of artificial transmembrane channels with large lumen, high conductivity and selectivity are known. A review of pronounced biological transmembrane protein channels and some representative synthetic models have been provided in Chapter 1, followed by our discovery and initial investigation of shape-persistent oligoamide and phenylene ethynylene macrocycles as synthetic ion/water channels. In Chapter 2, the systematic structural modification of oligoamide macrocycles 1, the so-called first-generation of these shape-persistent macrocycles, has led to third-generation macrocycles 3. The third generation was found to exhibit unprecedented, strong intermolecular association in both the solid state and solution via multiple techniques including X-ray diffraction (XRD), SEM, and 1H NMR. Fluorescence spectroscopy paired with dynamic light scattering (DLS) revealed that macrocycles 3 can assemble into a singly dispersed nanotubular structure in solution. The resultant self-assembling pores consisting of 3 were examined by HPTS-LUVs assays and BLM studies (Chapter 3) and found to form cation-selective (PK+/PCl- = 69:1) transmembrane ion channels with large conductance (200 ˜ 2000 pS for alkali cations) and high stability with open times reaching to 103 seconds. Tuning the aggregation state of macrocycles by choosing an appropriate polar solvent mixture (i.e., 3:1, THF:DMF, v/v) and concentration led to the formation of ion channels with well-defined square top behavior. A parallel study using DLS to examine the size of aggregates was used in conjunction with channel activity assays (LUVs/BLM) to reveal the effects of the aggregation state on channel activity. Empirical evidence now clearly indicates that a preassembled state, perhaps that of a nanotubular assembly, rather than the individual molecules of 3, is required to partition into the lipid bilayer in order for these macrocycles to act as channels. Further structural modification has led to fourth-generation macrocycles 4 having readily-tunable cavities (Chapter 4). Macrocycles 4 , with a hybrid backbone composed half of the oligoamide and half of the phenylene ethynylene moieties, exhibits similar self-assembling behavior by forming nanotubular stacks. The results of a preliminary study based on LUVs-assays and BLM single channel recording experiments are summarized and clearly indicate that ion channels formed by this fourth-generation exhibit high stability and differing ion selectivity largely consistent with the corresponding structural modification of the interior cavity. Especially, the increased anion conductance observed for 4d indicates that our strategy of tuning supramolecular function based on synthetic modification of the backbone and pore is effective. In Chapter 5, our four-residue tetraurea macrocycles 5 have shown significant potency to selectively interact with the G-quadruplex, leading to a strong stabilization effect for G-quadruplex without binding to duplex DNA as observed by UV-melt assays. The ready synthetic availability of these macrocycles makes them amenable to future chemical modification, which allows systematic improvement of binding affinity and specificity. Moreover, it has been discovered that these macrocycles can partition into lipid bilayers and form very stable transmembrane ion channels with a pore size of ˜5 A. Preliminary data shows that this smaller ion channel may lead to exceptional ion conducting selectivity, which is rarely seen in the field of synthetic ion pores. These molecules may serve as a unique platform for the rational development of potent and versatile therapeutic agents. The exceptional ion conducting properties of these channels place aromatic oligoamide macrocycles 3 and 4 at a unique position with both high conductance and long channel-opening duration. These results demonstrate that oligoamide macrocycles provide us a reliable platform based on which further development of highly conducting and selective synthetic mass-transporting channels, with functions that are comparable to or even rival those of natural channels and pores, may be developed. Further improvement of these synthetic channels could lead to numerous applications, such as those for complementing ion channel deficiency in clinical medicine, designing biosensors, and the development of new materials, as well as their use in separation and purifications.
Centrioles: some self-assembly required.
Song, Mi Hye; Miliaras, Nicholas B; Peel, Nina; O'Connell, Kevin F
2008-12-01
Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also selfassemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a common mechanism and that a mother centriole spatially constrains the self-assembly process to occur within its immediate vicinity. Other recently identified mechanisms further regulate canonical assembly so that during each cell cycle, one and only one daughter centriole is assembled per mother centriole.
Shear-driven motion of supported lipid bilayers in microfluidic channels.
Jönsson, Peter; Beech, Jason P; Tegenfeldt, Jonas O; Höök, Fredrik
2009-04-15
In this work, we demonstrate how a lateral motion of a supported lipid bilayer (SLB) and its constituents can be created without relying on self-spreading forces. The force driving the SLB is instead a viscous shear force arising from a pressure-driven bulk flow acting on the SLB that is formed on a glass wall inside a microfluidic channel. In contrast to self-spreading bilayers, this method allows for accurate control of the bilayer motion by altering the bulk flow in the channel. Experiments showed that an egg yolk phosphatidylcholine SLB formed on a glass support moved in a rolling motion under these shear forces, with the lipids in the upper leaflet of the bilayer moving at twice the velocity of the bilayer front. The drift velocity of different lipid probes in the SLB was observed to be sensitive to the interactions between the lipid probe and the surrounding molecules, resulting in drift velocities that varied by up to 1 order of magnitude for the different lipid probes in our experiments. Since the method provides a so far unattainable control of the motion of all molecules in an SLB, we foresee great potential for this technique, alone or in combination with other methods, for studies of lipid bilayers and different membrane-associated molecules.
Molecular simulations of self-assembly processes in metal-organic frameworks: Model dependence
NASA Astrophysics Data System (ADS)
Biswal, Debasmita; Kusalik, Peter G.
2017-07-01
Molecular simulation is a powerful tool for investigating microscopic behavior in various chemical systems, where the use of suitable models is critical to successfully reproduce the structural and dynamic properties of the real systems of interest. In this context, molecular dynamics simulation studies of self-assembly processes in metal-organic frameworks (MOFs), a well-known class of porous materials with interesting chemical and physical properties, are relatively challenging, where a reasonably accurate representation of metal-ligand interactions is anticipated to play an important role. In the current study, we both investigate the performance of some existing models and introduce and test new models to help explore the self-assembly in an archetypal Zn-carboxylate MOF system. To this end, the behavior of six different Zn-ion models, three solvent models, and two ligand models was examined and validated against key experimental structural parameters. To explore longer time scale ordering events during MOF self-assembly via explicit solvent simulations, it is necessary to identify a suitable combination of simplified model components representing metal ions, organic ligands, and solvent molecules. It was observed that an extended cationic dummy atom (ECDA) Zn-ion model combined with an all-atom carboxylate ligand model and a simple dipolar solvent model can reproduce characteristic experimental structures for the archetypal MOF system. The successful use of these models in extensive sets of molecular simulations, which provide key insights into the self-assembly mechanism of this archetypal MOF system occurring during the early stages of this process, has been very recently reported.
NASA Astrophysics Data System (ADS)
Podzorov, Vitaly
2009-03-01
Certain types of self-assembled monolayers (SAM) grown directly at the surface of organic semiconductors can induce a high surface conductivity in these materials [1]. For example, the conductivity induced by perfluorinated alkyl silanes in organic molecular crystals approaches 10 to -5 Siemens per square. The observed large electronic effect opens new opportunities for nanoscale surface functionalization of organic semiconductors and provides experimental access to the regime of high carrier density. Here, we will discuss temperature variable measurements of SAM-induced conductivity in several types of organic semiconductors. [1]. M. F. Calhoun, J. Sanchez, D. Olaya, M. E. Gershenson and V. Podzorov, ``Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers'', Nature Mat. 7, 84 (2008).
Wang, Ming; Vajpayee, Vaishali; Shanmugaraju, Sankarasekaran; Zheng, Yao-Rong; Zhao, Zhigang; Kim, Hyunuk
2011-01-01
The design and preparation of novel M3L2 trigonal cages via coordination-driven self-assembly of pre-organized metalloligands containing octahedral aluminum(III), gallium(III), or ruthenium(II) centers is described. By employing tritopic or dinuclear linear metalloligands and appropriate complementary subunits, M3L2 trigonal-bipyramidal and trigonal prismatic cages are self-assembled under mild conditions. These 3-D cages were characterized with multinuclear NMR spectroscopy (1H and 31P) and high-resolution electronic spray mass spectrometry (HR-ESI-MS). The structure of one such trigonal prismatic cage, self-assembled from an arene ruthenium metalloligand, was confirmed via single-crystal X-ray crystallography. The fluorescent nature of these prisms, due to the presence of their electron-rich ethynyl functionalities, prompted photophysical studies which revealed that electron-deficient nitroaromatics are effective quenchers of the cages' emission. Excited state charge transfer from the prisms to the nitroaromatic substrates can be used as the basis for developing selective and discriminatory turn-off fluorescent sensors for nitroaromatics. PMID:21214171
Chemical solution route to self-assembled epitaxial oxide nanostructures.
Obradors, X; Puig, T; Gibert, M; Queraltó, A; Zabaleta, J; Mestres, N
2014-04-07
Self-assembly of oxides as a bottom-up approach to functional nanostructures goes beyond the conventional nanostructure formation based on lithographic techniques. Particularly, chemical solution deposition (CSD) is an ex situ growth approach very promising for high throughput nanofabrication at low cost. Whereas strain engineering as a strategy to define nanostructures with tight control of size, shape and orientation has been widely used in metals and semiconductors, it has been rarely explored in the emergent field of functional complex oxides. Here we will show that thermodynamic modeling can be very useful to understand the principles controlling the growth of oxide nanostructures by CSD, and some attractive kinetic features will also be presented. The methodology of strain engineering is applied in a high degree of detail to form different sorts of nanostructures (nanodots, nanowires) of the oxide CeO2 with fluorite structure which then is used as a model system to identify the principles controlling self-assembly and self-organization in CSD grown oxides. We also present, more briefly, the application of these ideas to other oxides such as manganites or BaZrO3. We will show that the nucleation and growth steps are essentially understood and manipulated while the kinetic phenomena underlying the evolution of the self-organized networks are still less widely explored, even if very appealing effects have been already observed. Overall, our investigation based on a CSD approach has opened a new strategy towards a general use of self-assembly and self-organization which can now be widely spread to many functional oxide materials.
Swell Gels to Dumbbell Micelles: Construction of Materials and Nanostructure with Self-assembly
NASA Astrophysics Data System (ADS)
Pochan, Darrin
2007-03-01
Bionanotechnology, the emerging field of using biomolecular and biotechnological tools for nanostructure or nanotecnology development, provides exceptional opportunity in the design of new materials. Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic or charged synthetic polymer molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic interactions; in addition to more traditional self-assembling molecular attributes such as amphiphilicty, to define hierarchical material structure and consequent properties. Several molecular systems will be discussed. Synthetic block copolymers with charged corona blocks can be assembled in dilute solution containing multivalent organic counterions to produce micelle structures such as toroids. These ring-like micelles are similar to the toroidal bundling of charged semiflexible biopolymers like DNA in the presence of multivalent counterions. Micelle structure can be tuned between toroids, cylinders, and disks simply by using different concentrations or molecular volumes of organic counterion. In addition, these charged blocks can consist of amino acids as monomers producing block copolypeptides. In addition to the above attributes, block copolypeptides provide the control of block secondary structure to further control self-assembly. Design strategies based on small (less than 24 amino acids) beta-hairpin peptides will be discussed. Self-assembly of the peptides is predicated on an intramolecular folding event caused by desired solution properties. Importantly, the intramolecular folding event impart a molecular-level mechanism for environmental responsiveness at the material level (e.g. infinite change in viscosity of a solution to a gel with changes in pH, ionic strength, temperature).
Self-assembly of bimodal particles inside emulsion droplets
NASA Astrophysics Data System (ADS)
Cho, Young-Sang; Yi, Gi-Ra; Yang, Seung-Man; Kim, Young-Kuk; Choi, Chul-Jin
2010-08-01
Colloidal dispersion of bimodal particles were self-organized inside water-in-oil emulsion droplets by evaporationdriven self-assembly method. After droplet shrinkage by heating the complex fluid system, small numbers of microspheres were packed into minimal second moment clusters, which are partially coated with silica nanospheres, resulting in the generation of patchy particles. The patchy particles in this study possess potential applications for selfassembly of non-isotropic particles such as dimmers or tetramers for colloidal photonic crystals with diamond lattice structures. The composite micro-clusters of amidine polystyrene microspheres and titania nanoparticles were also generated by evaporation-driven self-assembly to fabricate nonspherical hollow micro-particles made of titania shell.
Enhancing proliferation and osteogenic differentiation of HMSCs on casein/chitosan multilayer films.
Li, Yan; Zheng, Zebin; Cao, Zhinan; Zhuang, Liangting; Xu, Yong; Liu, Xiaozhen; Xu, Yue; Gong, Yihong
2016-05-01
Creating a bioactive surface is important in tissue engineering. Inspired by the natural calcium binding property of casein (CA), multilayer films ((CA/CS)n) with chitosan (CS) as polycation were fabricated to enhance biomineralization, cell adhesion and differentiation. LBL self-assembly technique was used and the assembly process was intensively studied based on changes of UV absorbance, zeta potential and water contact angle. The increasing content of chitosan and casein with bilayers was further confirmed with XPS and TOF-SIMS analysis. To improve the biocompatibility, gelatin was surface grafted. In vitro mineralization test demonstrated that multilayer films had more hydroxyapatite crystal deposition. Human mesenchymal stem cells (HMSCs) were seeded onto these films. According to fluorescein diacetate (FDA) and cell cytoskeleton staining, MTT assay, expression of osteogenic marker genes, ALP activity, and calcium deposition quantification, it was found that these multilayer films significantly promoted HMSCs attachment, proliferation and osteogenic differentiation than TCPS control. Copyright © 2016. Published by Elsevier B.V.
Dendrimersomes Exhibit Lamellar-to-Sponge Phase Transitions.
Wilner, Samantha E; Xiao, Qi; Graber, Zachary T; Sherman, Samuel E; Percec, Virgil; Baumgart, Tobias
2018-05-15
Lamellar to nonlamellar membrane shape transitions play essential roles in key cellular processes, such as membrane fusion and fission, and occur in response to external stimuli, including drug treatment and heat. A subset of these transitions can be modeled by means of thermally inducible amphiphile assemblies. We previously reported on mixtures of hydrogenated, fluorinated, and hybrid Janus dendrimers (JDs) that self-assemble into complex dendrimersomes (DMSs), including dumbbells, and serve as promising models for understanding the complexity of biological membranes. Here we show, by means of a variety of complementary techniques, that DMSs formed by single JDs or by mixtures of JDs undergo a thermally induced lamellar-to-sponge transition. Consistent with the formation of a three-dimensional bilayer network, we show that DMSs become more permeable to water-soluble fluorophores after transitioning to the sponge phase. These DMSs may be useful not only in modeling isotropic membrane rearrangements of biological systems but also in drug delivery since nonlamellar delivery vehicles can promote endosomal disruption and cargo release.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasielewski, Michael R.
In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised ofmore » chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the dependencies of electron transfer rate constants on donor?acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular 'wires' that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular recognition properties to facilitate self-assembly of complete, functional artificial photosynthetic systems. In this Account, we explore how self-assembly strategies involving ?-stacking can be used to integrate light harvesting with charge separation and transport.« less
Xue, Pengchong; Yao, Boqi; Wang, Panpan; Gong, Peng; Zhang, Zhenqi; Lu, Ran
2015-11-23
An L-phenylalanine derivative (C12PhBPCP) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self-assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self-assemble into 1 D nanofibers in the gels. UV/Vis absorption spectral results show H-aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self-assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796 ppt and 25 ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Silly, Fabien
2012-02-01
Complex supramolecular two-dimensional (2D) networks are attracting considerable interest as highly ordered functional materials for applications in nanotechnology. The challenge consists in tailoring the ordering of one or more molecular species into specific architectures over an extended length scale with molecular precision. Highly organized supramolecular arrays can be obtained through self-assembly of complementary molecules which can interlock via intermolecular interactions. Molecules forming hydrogen bonds (H-bonds) are especially interesting building blocks for creating sophisticated organic architectures due to high selectivity and directionality of these bindings. We used scanning tunnelling microscopy to investigate at the atomic scale the formation of H-bonded 2D organic nanoarchitectures on surfaces. We mixed perylene derivatives having rectangular shape with melamine and DNA base having triangular and non symmetric shape respectively. We observe that molecule substituents play a key role in formation of the multicomponent H-bonded architectures. We show that the 2D self-assembly of these molecules can be tailored by adjusting the temperature and molecular ratio. We used these stimuli to successfully create numerous close-packed and porous 2D multicomponent structures.
Lawrence, Melanie L.; Chang, C-Hong; Davies, Jamie A.
2015-01-01
Recent advances in renal tissue engineering have shown that dissociated, early renogenic tissue from the developing embryo can self-assemble into morphologically accurate kidney-like organs arranged around a central collecting duct tree. In order for such self-assembled kidneys to be useful therapeutically or as models for drug screening, it is necessary to demonstrate that they are functional. One of the main functional characteristics of mature kidneys is transport of organic anions and cations into and out of the proximal tubule. Here, we show that the transport function of embryonic kidneys allowed to develop in culture follows a developmental time-course that is comparable to embryonic kidney development in vivo. We also demonstrate that serially-reaggregated engineered kidneys can transport organic anions and cations through specific uptake and efflux channels. These results support the physiological relevance of kidneys grown in culture, a commonly used model for kidney development and research, and suggest that serially-reaggregated kidneys self-assembled from separated cells have some functional characteristics of intact kidneys. PMID:25766625
NASA Astrophysics Data System (ADS)
Hu, Yufen; Li, Wei; Lu, Yan; Wang, Zhongping; Leng, Xinli; Liao, Qinghua; Liu, Xiaoqing; Wang, Li
The self-assembly structures of 2,2‧:6‧,2‧‧-terpyridine-4‧-carboxylic acid (C16H11N3O2; YN) molecules and 3,5-diphenylbenzoic acid (C19H14O2; YC) molecules on Ag(110) surface have been investigated by scanning tunneling microscopy (STM) and Density Functional Theory (DFT) calculation. The YC molecules form two different well-organized structures due to the π-π stacking and dipole-dipole interactions. When three C atoms of YC molecules are replaced by three N atoms to form YN molecules, the main driving force to form ordered assembly structures of YN molecule is changed to metal-organic coordination bond and hydrogen bond. The dramatic changes of main driving force between YC/Ag(110) and YN/Ag(110) system demonstrate that the N atoms are apt to form metal-organic coordination bond and hydrogen bond but dipole-dipole interactions and π-π stacking are relative to C atoms. These findings further reveal that the optimization design of organic molecules could vary the main driving force and then lead to the change of the molecular self-assembly structures.
Nandiyanto, Asep Bayu Dani; Suhendi, Asep; Arutanti, Osi; Ogi, Takashi; Okuyama, Kikuo
2013-05-28
Studies on preparation of porous material have attracted tremendous attention because existence of pores can provide material with excellent performances. However, current preparation reports described successful production of porous material with only partial information on charges, interactions, sizes, and compositions of the template and host materials. In this report, influences of self-assembly parameters (i.e., surface charge, size, and concentration of colloidal nanoparticles) on self-organized porous material fabrication were investigated. Silica nanoparticles (as a host material) and polystyrene (PS) spheres (as a template) were combined to produce self-assembly porous materials in film and particle forms. The experimental results showed that the porous structure and pore size were controllable and strongly depended on the self-assembly parameters. Materials containing highly ordered pores were effectively created only when process parameters fall within appropriate conditions (i.e., PS surface charge ≤ -30 mV; silica-to-PS size ratio ≤0.078; and silica-to-PS mass ratio of about 0.50). The investigation of the self-assembly parameter landscape was also completed using geometric considerations. Because optimization of these parameters provides significant information in regard to practical uses, results of this report could be relevant to other functional properties.
Electron-transfer dynamics of photosynthetic reaction centers in thermoresponsive soft materials.
Laible, Philip D; Kelley, Richard F; Wasielewski, Michael R; Firestone, Millicent A
2005-12-15
Poly(ethylene glycol)-grafted, lipid-based, thermoresponsive, soft nanostructures are shown to serve as scaffolding into which reconstituted integral membrane proteins, such as the bacterial photosynthetic reaction centers (RCs) can be stabilized, and their packing arrangement, and hence photophysical properties, can be controlled. The self-assembled nanostructures exist in two distinct states: a liquid-crystalline gel phase at temperatures above 21 degrees C and a non-birefringent, reduced viscosity state at lower temperatures. Characterization of the effect of protein introduction on the mesoscopic structure of the materials by 31P NMR and small-angle X-ray scattering shows that the expanded lamellar structure of the protein-free material is retained. At reduced temperatures, however, the aggregate structure is found to convert from a two-dimensional normal hexagonal structure to a three-dimensional cubic phase upon introduction of the RCs. Structural and functional characteristics of the RCs were determined by ground-state and femtosecond transient absorption spectroscopy. Time-resolved results indicate that the kinetics of primary electron transfer for the RCs in the low-viscosity cold phase of the self-assembled nanostructures are identical to those observed in a detergent-solubilized state in buffered aqueous solutions (approximately 4 ps) over a wide range of protein concentrations and experimental conditions. This is also true for RCs held within the lamellar gel phase at low protein concentrations and at short sample storage times. In contrast are kinetics from samples that are prepared with high RC concentrations and stored for several hours, which display additional kinetic components with extended electron-transfer times (approximately 10-12 ps). This observation is tentatively attributed to energy transfer between RCs that have laterally (in-plane) organized within the lipid bilayers of the lamellar gel phase prior to charge separation. These results not only demonstrate the use of soft nanostructures as a matrix in which to stabilize and organize membrane proteins but also suggest the possibility of using them to control the interactions between proteins and thus to tune their collective optical/electronic properties.
Harb, Frédéric; Prunetti, Laurence; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne; Tinland, Bernard
2015-10-01
Monotopic proteins constitute a class of membrane proteins that bind tightly to cell membranes, but do not span them. We present a FRAPP (Fluorescence Recovery After Patterned Photobleaching) study of the dynamics of a bacterial monotopic protein, SQR (sulfide quinone oxidoreductase) from the thermophilic bacteria Aquifex aeolicus, inserted into two different types of lipid bilayers (EggPC: L-α-phosphatidylcholine (Egg, Chicken) and DMPC: 1,2-dimyristoyl-sn-glycero-3-phosphocholine) supported on two different types of support (mica or glass). It sheds light on the behavior of a monotopic protein inside the bilayer. The insertion of SQR is more efficient when the bilayer is in the fluid phase than in the gel phase. We observed diffusion of the protein, with no immobile fraction, and deduced from the diffusion coefficient measurements that the resulting inserted object is the same whatever the incubation conditions, i.e. homogeneous in terms of oligomerization state. As expected, the diffusion coefficient of the SQR is smaller in the gel phase than in the fluid phase. In the supported lipid bilayer, the diffusion coefficient of the SQR is smaller than the diffusion coefficient of phospholipids in both gel and fluid phase. SQR shows a diffusion behavior different from the transmembrane protein α-hemolysin, and consistent with its monotopic character. Preliminary experiments in the presence of the substrate of SQR, DecylUbiquinone, an analogue of quinone, component of transmembrane electrons transport systems of eukaryotic and prokaryotic organisms, have been carried out. Finally, we studied the behavior of SQR, in terms of insertion and diffusion, in bilayers formed with lipids from Aquifex aeolicus. All the conclusions that we have found in the biomimetic systems applied to the biological system.
Photoinitated charge separation in a hybrid titanium dioxide metalloporphyrin peptide material
NASA Astrophysics Data System (ADS)
Fry, H. Christopher; Liu, Yuzi; Dimitrijevic, Nada M.; Rajh, Tijana
2014-08-01
In natural systems, electron flow is mediated by proteins that spatially organize donor and acceptor molecules with great precision. Achieving this guided, directional flow of information is a desirable feature in photovoltaic media. Here, we design self-assembled peptide materials that organize multiple electronic components capable of performing photoinduced charge separation. Two peptides, c16-AHL3K3-CO2H and c16-AHL3K9-CO2H, self-assemble into fibres and provide a scaffold capable of binding a metalloporphyrin via histidine axial ligation and mineralize titanium dioxide (TiO2) on the lysine-rich surface of the resulting fibrous structures. Electron paramagnetic resonance studies of this self-assembled material under continuous light excitation demonstrate charge separation induced by excitation of the metalloporphyrin and mediated by the peptide assembly structure. This approach to dye-sensitized semiconducting materials offers a means to spatially control the dye molecule with respect to the semiconducting material through careful, strategic peptide design.
NASA Astrophysics Data System (ADS)
Avci, Civan; Imaz, Inhar; Carné-Sánchez, Arnau; Pariente, Jose Angel; Tasios, Nikos; Pérez-Carvajal, Javier; Alonso, Maria Isabel; Blanco, Alvaro; Dijkstra, Marjolein; López, Cefe; Maspoch, Daniel
2018-01-01
Self-assembly of particles into long-range, three-dimensional, ordered superstructures is crucial for the design of a variety of materials, including plasmonic sensing materials, energy or gas storage systems, catalysts and photonic crystals. Here, we have combined experimental and simulation data to show that truncated rhombic dodecahedral particles of the metal-organic framework (MOF) ZIF-8 can self-assemble into millimetre-sized superstructures with an underlying three-dimensional rhombohedral lattice that behave as photonic crystals. Those superstructures feature a photonic bandgap that can be tuned by controlling the size of the ZIF-8 particles and is also responsive to the adsorption of guest substances in the micropores of the ZIF-8 particles. In addition, superstructures with different lattices can also be assembled by tuning the truncation of ZIF-8 particles, or by using octahedral UiO-66 MOF particles instead. These well-ordered, sub-micrometre-sized superstructures might ultimately facilitate the design of three-dimensional photonic materials for applications in sensing.
Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles
NASA Astrophysics Data System (ADS)
Xu, Qian-Feng; Wang, Jian-Nong
2010-06-01
Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.
Tang, Zhenhua; Gao, Ziwei; Jia, Shuhai; Wang, Fei; Wang, Yonglin
2017-05-01
3D structure assembly in advanced functional materials is important for many areas of technology. Here, a new strategy exploits IR light-driven bilayer polymeric composites for autonomic origami assembly of 3D structures. The bilayer sheet comprises a passive layer of poly(dimethylsiloxane) (PDMS) and an active layer comprising reduced graphene oxides (RGOs), thermally expanding microspheres (TEMs), and PDMS. The corresponding fabrication method is versatile and simple. Owing to the large volume expansion of the TEMs, the two layers exhibit large differences in their coefficients of thermal expansion. The RGO-TEM-PDMS/PDMS bilayers can deflect toward the PDMS side upon IR irradiation via the cooperative effect of the photothermal effect of the RGOs and the expansion of the TEMs, and exhibit excellent light-driven, a large bending deformation, and rapid responsive properties. The proposed RGO-TEM-PDMS/PDMS composites with excellent light-driven bending properties are demonstrated as active hinges for building 3D geometries such as bidirectionally folded columns, boxes, pyramids, and cars. The folding angle (ranging from 0° to 180°) is well-controlled by tuning the active hinge length. Furthermore, the folded 3D architectures can permanently preserve the deformed shape without energy supply. The presented approach has potential in biomedical devices, aerospace applications, microfluidic devices, and 4D printing.
Free-standing supramolecular hydrogel objects by reaction-diffusion
Lovrak, Matija; Hendriksen, Wouter E. J.; Maity, Chandan; Mytnyk, Serhii; van Steijn, Volkert; Eelkema, Rienk; van Esch, Jan H.
2017-01-01
Self-assembly provides access to a variety of molecular materials, yet spatial control over structure formation remains difficult to achieve. Here we show how reaction–diffusion (RD) can be coupled to a molecular self-assembly process to generate macroscopic free-standing objects with control over shape, size, and functionality. In RD, two or more reactants diffuse from different positions to give rise to spatially defined structures on reaction. We demonstrate that RD can be used to locally control formation and self-assembly of hydrazone molecular gelators from their non-assembling precursors, leading to soft, free-standing hydrogel objects with sizes ranging from several hundred micrometres up to centimeters. Different chemical functionalities and gradients can easily be integrated in the hydrogel objects by using different reactants. Our methodology, together with the vast range of organic reactions and self-assembling building blocks, provides a general approach towards the programmed fabrication of soft microscale objects with controlled functionality and shape. PMID:28580948
NMR detects molecular interactions of graphene with aromatic and aliphatic hydrocarbons in water
NASA Astrophysics Data System (ADS)
Bichenkova, Elena V.; Raju, Arun P. A.; Burusco, Kepa K.; Kinloch, Ian A.; Novoselov, Kostya S.; Clarke, David J.
2018-03-01
Polyaromatic carbon is widely held to be strongly diamagnetic and hydrophobic, with textbook van der Waals and ‘π-stacked’ binding of hydrocarbons, which disrupt their self-assembled supramolecular structures. The NMR of organic molecules sequestered by polyaromatic carbon is expected to be dominated by shielding from the orbital diamagnetism of π electrons. We report the first evidence of very different polar and magnetic behavior in water, wherein graphene remained well-dispersed after extensive dialysis and behaved as a 1H-NMR-silent ghost. Magnetic effects dominated the NMR of organic structures which interacted with graphene, with changes in spin-spin coupling, vast increase in relaxation, line broadening and decrease in NMR peak heights when bound to graphene. However, the interactions were weak, reversible and did not disrupt organic self-assemblies reliant on hydrophobic ‘π-stacking’, even when substantially sequestered on the surface of graphene by the high surface area available. Interacting assemblies of aromatic molecules retained their strongly-shielded NMR signals and remained within self-assembled structures, with slower rates of diffusion from association with graphene, but with no further shielding from graphene. Binding to graphene was selective for positively-charged organic assemblies, weaker for non-aromatic and negligible for strongly-negatively-charged molecules, presumably repelled by a negative zeta potential of graphene in water. Stronger binders, or considerable excess of weaker binders readily reversed physisorption, with no evidence of structural changes from chemisorption. The fundamental nature of these different electronic interactions between organic and polyaromatic carbon is considered with relevance to electronics, charge storage, sensor, medical, pharmaceutical and environmental research.
NASA Technical Reports Server (NTRS)
Yang, Yi; Lu, Yunfeng; Lu, Mengcheng; Huang, Jinman; Haddad, Raid; Xomeritakis, George; Liu, Nanguo; Malanoski, Anthony P.; Sturmayr, Dietmar; Fan, Hongyou;
2003-01-01
Conjugated polymer/silica nanocomposites with hexagonal, cubic, or lamellar mesoscopic order were synthesized by self-assembly using polymerizable amphiphilic diacetylene molecules as both structure-directing agents and monomers. The self-assembly procedure is rapid and incorporates the organic monomers uniformly within a highly ordered, inorganic environment. By tailoring the size of the oligo(ethylene glycol) headgroup of the diacetylene-containing surfactant, we varied the resulting self-assembled mesophases of the composite material. The nanostructured inorganic host altered the diacetylene polymerization behavior, and the resulting nanocomposites show unique thermo-, mechano-, and solvatochromic properties. Polymerization of the incorporated surfactants resulted in polydiacetylene (PDA)/silica nanocomposites that were optically transparent and mechanically robust. Molecular modeling and quantum calculations and (13)C spin-lattice relaxation times (T(1)) of the PDA/silica nanocomposites indicated that the surfactant monomers can be uniformly organized into precise spatial arrangements prior to polymerization. Nanoindentation and gas transport experiments showed that these nanocomposite films have increased hardness and reduced permeability as compared to pure PDA. Our work demonstrates polymerizable surfactant/silica self-assembly to be an efficient, general approach to the formation of nanostructured conjugated polymers. The nanostructured inorganic framework serves to protect, stabilize, and orient the polymer, mediate its performance, and provide sufficient mechanical and chemical stability to enable integration of conjugated polymers into devices and microsystems.
NASA Astrophysics Data System (ADS)
Lee, Hye Sun; Sung, Dae Kyung; Kim, Sung Hyun; Choi, Won Il; Hwang, Ee Tag; Choi, Doo Jin; Chang, Jeong Ho
2017-12-01
Nanoporous silicified-phospholipids assembled boron nitride (nSPLs@BN) powder was prepared and demonstrated for use in controlled release of anti-oxidant astaxanthin (AX) as a cosmetic application. The nanoporous silicified phospholipids (nSPLs) were obtained by the silicification with tetraethyl orthosilicate (TEOS) of the hydrophilic region of phospholipid bilayers. This process involved the co-assembly of chemically active phospholipid bilayers within the porous silica matrix. In addition, nSPLs@BN was characterized using several analytical techniques and tested to assess their efficiency as drug delivery systems. We calculated the maximum release amounts as a function of time and various pH. The release rate of AX from the nSPLs@BN for the initial 24 h was 10.7 μmol/(h mg) at pH 7.4. Furthermore, we determined the antioxidant activity (KD) for the released AX with DPPH (1,1-diphenyl-2-picryl-hydrazyl) radical and the result was 34.6%.
Monte Carlo and mean-field studies of phase evolution in concentrated surfactant solutions
NASA Astrophysics Data System (ADS)
Bohbot, Yardena; Ben-Shaul, Avinoam; Granek, Rony; Gelbart, William M.
1995-11-01
A two-dimensional lattice model, originally introduced by Granek et al. [J. Chem. Phys. 101, 4331 (1994)], is used to demonstrate the intricate coupling between the intramicellar interactions that determine the optimal aggregation geometry of surfactant molecules in dilute solution, and the intermicellar interactions that govern the phase behavior at higher concentrations. Three very different scenarios of self-assembly and phase evolution are analyzed in detail, based on Monte Carlo studies and theoretical interpretations involving mean-field, Landau-Ginzburg, Bethe-Peierls, and virial expansion schemes. The basic particles in the model are ``unit micelles'' which, due to spontaneous self-assembly or because of excluded area interactions, can fuse to form larger aggregates. These aggregates are envisaged as flat micelles composed of a bilayerlike body surrounded by a curved semitoroidal rim. The system's Hamiltonian involves one- through four-body potentials between the unit micelles, which account for their tendency to form aggregates of different shapes, e.g., elongated vs disklike micelles. Equivalently, the configurational energy of the system is a sum of micellar self-energies involving the packing free energies of the constituent molecules in the bilayer body and in rim segments of different local curvature. The rim energy is a sum of a line tension term and a 1D curvature energy which depends on the rim spontaneous curvature and bending rigidity. Different combinations of these molecular parameters imply different optimal packing geometries and hence different self-assembly and phase behaviors. The emphasis in this paper is on systems of ``curvature loving'' amphiphiles which, in our model, are characterized by negative line tension. The three systems studied are: (i) A dilute solution of stable disklike micelles which, upon increasing the concentration, undergoes a first-order phase transition to a continuous bilayer with isolated hole defects. An intermediate modulated ``checkerboard'' phase appears under certain conditions at low temperatures. (ii) A system of unit micelles which in dilute solution tend to associate into linear micelles. These micelles are rodlike at low temperatures, becoming increasingly more flexible as the temperature increases. Upon increasing the concentration the micelles grow and undergo (in 2D) a continuous transition into nematic and ``stripe'' phases of long rods. At still higher concentrations the micellar stripes fuse into continuous sheets with line defects. (iii) A system in which, already in dilute solution, the micelles favor the formation of branched aggregates, analogous to the branched cylindrical micelles recently observed in certain surfactant solutions. As the concentration increases the micelles associate into networks (``gels'') composed of a mesh of linear micelles linked by ``T-like'' intermicellar junctions. The network may span the entire system or phase separate and coexist with a dilute micellar phase, depending on the details of the molecular packing parameters.
Role of the array geometry in multi-bilayer hair cell sensors
NASA Astrophysics Data System (ADS)
Tamaddoni, Nima J.; Sarles, Stephen A.
2014-03-01
Recently, a bio-inspired, synthetic membrane-based hair cell sensor was fabricated and characterized. This sensor generates current in response to mechanical stimuli, such as airflow or free vibration, which perturb the sensor's hair. Vibration transferred from the hair to a lipid membrane (lipid bilayer) causes a voltage-dependent time rate of change in electrical capacitance of the membrane, which produces measurable current. Studies to date have been performed on systems containing only two droplets and a single bilayer, even though an array of multiple bilayers can be formed with more than 2 droplets. Thus, it is yet to be determined how multiple lipid bilayers affect the sensing response of a membrane-based hair cell sensor. In this work, we assemble serial droplet arrays with more than 1 bilayer to experimentally study the current generated by each membrane in response to perturbation of a single hair element. Two serial array configurations are studied: The first consists of a serial array of 3 bilayers formed using 4 droplets with the hair positioned in an end droplet. The second configuration consists of 3 droplets and 2 bilayers in series with the hair positioned in the central droplet. In serial arrays of up to four droplets, we observe that mechanotransduction of the hair's motion into a capacitive current occurs at every membrane, with bilayers positioned adjacent to the droplet containing the hair generating the largest sensing current. The measured currents suggest the total current generated by all bilayers in a 4-droplet, 3-bilaye array is greater than the current produced by a single-membrane sensor and similar in magnitude to the sum of currents output by 3, single-bilayer sensors operated independently. Moreover, we learned that bilayers positioned on the same side of the hair produce sensing currents that are in-phase, whereas bilayers positioned on opposite sides of the droplet containing the hair generate out-of-phase responses.
Reversible Self-Assembly of 3D Architectures Actuated by Responsive Polymers.
Zhang, Cheng; Su, Jheng-Wun; Deng, Heng; Xie, Yunchao; Yan, Zheng; Lin, Jian
2017-11-29
An assembly of three-dimensional (3D) architectures with defined configurations has important applications in broad areas. Among various approaches of constructing 3D structures, a stress-driven assembly provides the capabilities of creating 3D architectures in a broad range of functional materials with unique merits. However, 3D architectures built via previous methods are simple, irreversible, or not free-standing. Furthermore, the substrates employed for the assembly remain flat, thus not involved as parts of the final 3D architectures. Herein, we report a reversible self-assembly of various free-standing 3D architectures actuated by the self-folding of smart polymer substrates with programmed geometries. The strategically designed polymer substrates can respond to external stimuli, such as organic solvents, to initiate the 3D assembly process and subsequently become the parts of the final 3D architectures. The self-assembly process is highly controllable via origami and kirigami designs patterned by direct laser writing. Self-assembled geometries include 3D architectures such as "flower", "rainbow", "sunglasses", "box", "pyramid", "grating", and "armchair". The reported self-assembly also shows wide applicability to various materials including epoxy, polyimide, laser-induced graphene, and metal films. The device examples include 3D architectures integrated with a micro light-emitting diode and a flex sensor, indicting the potential applications in soft robotics, bioelectronics, microelectromechanical systems, and others.
Controlling Self-Assembly of Engineered Peptides on Graphite by Rational Mutation
So, Christopher R.; Hayamizu, Yuhei; Yazici, Hilal; Gresswell, Carolyn; Khatayevich, Dmitriy; Tamerler, Candan; Sarikaya, Mehmet
2012-01-01
Self-assembly of proteins on surfaces is utilized in many fields to integrate intricate biological structures and diverse functions with engineered materials. Controlling proteins at bio-solid interfaces relies on establishing key correlations between their primary sequences and resulting spatial organizations on substrates. Protein self-assembly, however, remains an engineering challenge. As a novel approach, we demonstrate here that short dodecapeptides selected by phage display are capable of self-assembly on graphite and form long-range ordered biomolecular nanostructures. Using atomic force microscopy and contact angle studies, we identify three amino-acid domains along the primary sequence that steer peptide ordering and lead to nanostructures with uniformly displayed residues. The peptides are further engineered via simple mutations to control fundamental interfacial processes, including initial binding, surface aggregation and growth kinetics, and intermolecular interactions. Tailoring short peptides via their primary sequence offers versatile control over molecular self-assembly, resulting in well-defined surface properties essential in building engineered, chemically rich, bio-solid interfaces. PMID:22233341
Patterning of supported lipid bilayers and proteins using material selective nitrodopamine-mPEG.
Spycher, Philipp R; Hall, Heike; Vogel, Viola; Reimhult, Erik
2015-01-01
We present a generic patterning process by which biomolecules in a passivated background are patterned directly from physiological buffer to microfabricated surfaces without the need for further processing. First, nitrodopamine-mPEG is self-assembled to selectively render TiO2 patterns non-fouling to biomolecule adsorption on hydrophilic and adhesive glass surfaces. After the controlled TiO2 passivation, the biomolecules can be directly adsorbed from solution in a single step creating large scale micropatterned and highly homogeneous arrays of biomolecules with very high pattern definition. We demonstrate the formation of fluid supported lipid bilayers (SLBs) down to the single μm-level limited only by the photolithographic process. Non-specific adsorption of lipid vesicles to the TiO2 background was found to be almost completely suppressed. The SLB patterns can be further selectively functionalized with retained mobility, which we demonstrate through biotin-streptavidin coupling. We envision this single step patterning approach to be very beneficial for membrane-based biosensors and for pattering of cells on a passivated background with complex, sub-cellular geometries; in each application the adherent areas have a tunable mobility of interaction sites controlled by the fluidity of the membrane.
Micro- and nanofabrication methods for ion channel reconstitution in bilayer lipid membranes
NASA Astrophysics Data System (ADS)
Tadaki, Daisuke; Yamaura, Daichi; Arata, Kohei; Ohori, Takeshi; Ma, Teng; Yamamoto, Hideaki; Niwano, Michio; Hirano-Iwata, Ayumi
2018-03-01
The self-assembled bilayer lipid membrane (BLM) forms the basic structure of the cell membrane and serves as a major barrier against ion movement. Ion channel proteins function as gated pores that permit ion permeation across the BLM. The reconstitution of ion channel proteins in artificially formed BLMs represents a well-defined system for investigating channel functions and screening drug effects on ion channels. In this review, we will discuss our recent microfabrication approaches to the formation of stable BLMs containing ion channel proteins as a potential platform for next-generation drug screening systems. BLMs formed in a microaperture having a tapered edge exhibited highly stable properties, such as a lifetime of ∼65 h and tolerance to solution changes even after the incorporation of the human ether-a-go-go-related gene (hERG) channel. We also explore a new method of efficiently incorporating human ion channels into BLMs by centrifugation. Our approaches to the formation of stable BLMs and efficient channel incorporation markedly improve the experimental efficiency of BLM reconstitution systems, leading to the realization of a BLM-based high-throughput platform for functional assays of various ion channels.
Hybrid films with phase-separated domains: A new class of functional materials
NASA Astrophysics Data System (ADS)
Kang, Minjee; Leal, Cecilia
The cell membrane is highly compartmentalized over micro-and nano scale. The compartmentalized domains play an important role in regulating the diffusion and distribution of species within and across the membrane. In this work, we introduced nanoscale heterogeneities into lipid films for the purpose of developing nature-mimicking phase-separated materials. The mixtures of phospholipids and amphiphilic block copolymers self-assemble into supported 1D multi-bilayers. We observed that in each lamella, mixtures of lipid and polymer phase-separate into domains that differ in their composition akin to sub-phases in cholesterol-containing lipid bilayers. Interestingly, we found evidence that like-domains are in registry across multilayers, making phase separation three-dimensional. To exploit such distinctive domain structure for surface-mediated drug delivery, we incorporated pharmaceutical molecules into the films. The drug release study revealed that the presence of domains in hybrid films modifies the diffusion pathways of drugs that become confined within phase-separated domains. A comprehensive domain structure coupled with drug diffusion pathways in films will be presented, offering new perspectives in designing a thin-film matrix system for controlled drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1554435.
Self-assembly of nucleic acids, silk and hybrid materials thereof.
Humenik, Martin; Scheibel, Thomas
2014-12-17
Top-down approaches based on etching techniques have almost reached their limits in terms of dimension. Therefore, novel assembly strategies and types of nanomaterials are required to allow technological advances. Self-assembly processes independent of external energy sources and unlimited in dimensional scaling have become a very promising approach. Here,we highlight recent developments in self-assembled DNA-polymer, silk-polymer and silk-DNA hybrids as promising materials with biotic and abiotic moieties for constructing complex hierarchical materials in ‘bottom-up’ approaches. DNA block copolymers assemble into nanostructures typically exposing a DNA corona which allows functionalization, labeling and higher levels of organization due to its specific addressable recognition properties. In contrast, self-assembly of natural silk proteins as well as their recombinant variants yields mechanically stable β-sheet rich nanostructures. The combination of silk with abiotic polymers gains hybrid materials with new functionalities. Together, the precision of DNA hybridization and robustness of silk fibrillar structures combine in novel conjugates enable processing of higher-order structures with nanoscale architecture and programmable functions.
Formation of Polymer Particles by Direct Polymerization on the Surface of a Supramolecular Template.
Schmuck, Carsten; Li, Mao; Zellermann, Elio
2018-04-06
Formation of polymeric materials on the surface of supramolecular assemblies is rather challenging due to the often weak non-covalent interactions between the self-assembled template and the monomers before polymerization. We herein describe that the introduction of a supramolecular anion recognition motif, the guanidiniocarbonyl pyrrole cation (GCP), into a short Fmoc-dipeptide 1 leads to self-assembled spherical nanoparticles in aqueous solution. Onto the surface of these nanoparticles negatively charged diacetylene monomers can be attached which after UV polymerization lead to the formation of a polymer shell around the self-assembled template. The hybrid supramolecular and polymeric nanoparticles demonstrated intriguing thermal hysteresis phenomenon. The template nanoparticle could be disassembled through the treatment with organic base which cleaved the Fmoc moiety on 1. This strategy thus showed that a supramolecular anion recognition motif allows the post-assembly formation of polymeric nanomaterials from anionic monomers around a cationic self-assembled template. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-assembly of nucleic acids, silk and hybrid materials thereof
NASA Astrophysics Data System (ADS)
Humenik, Martin; Scheibel, Thomas
2014-12-01
Top-down approaches based on etching techniques have almost reached their limits in terms of dimension. Therefore, novel assembly strategies and types of nanomaterials are required to allow technological advances. Self-assembly processes independent of external energy sources and unlimited in dimensional scaling have become a very promising approach. Here, we highlight recent developments in self-assembled DNA-polymer, silk-polymer and silk-DNA hybrids as promising materials with biotic and abiotic moieties for constructing complex hierarchical materials in ‘bottom-up’ approaches. DNA block copolymers assemble into nanostructures typically exposing a DNA corona which allows functionalization, labeling and higher levels of organization due to its specific addressable recognition properties. In contrast, self-assembly of natural silk proteins as well as their recombinant variants yields mechanically stable β-sheet rich nanostructures. The combination of silk with abiotic polymers gains hybrid materials with new functionalities. Together, the precision of DNA hybridization and robustness of silk fibrillar structures combine in novel conjugates enable processing of higher-order structures with nanoscale architecture and programmable functions.
Motegi, Toshinori; Nabika, Hideki; Fu, Yingqiang; Chen, Lili; Sun, Yinlu; Zhao, Jianwei; Murakoshi, Kei
2014-07-01
A new molecular manipulation method in the self-spreading lipid bilayer membrane by combining Brownian ratchet and molecular filtering effects is reported. The newly designed ratchet obstacle was developed to effectively separate dye-lipid molecules. The self-spreading lipid bilayer acted as both a molecular transport system and a manipulation medium. By controlling the size and shape of ratchet obstacles, we achieved a significant increase in the separation angle for dye-lipid molecules compared to that with the previous ratchet obstacle. A clear difference was observed between the experimental results and the simple random walk simulation that takes into consideration only the geometrical effect of the ratchet obstacles. This difference was explained by considering an obstacle-dependent local decrease in molecular diffusivity near the obstacles, known as the molecular filtering effect at nanospace. Our experimental findings open up a novel controlling factor in the Brownian ratchet manipulation that allow the efficient separation of molecules in the lipid bilayer based on the combination of Brownian ratchet and molecular filtering effects.
Measuring the change in hydration of a polypeptide-based block polymer vesicle as a function of pH
NASA Astrophysics Data System (ADS)
Smith, Ian; Charlier, Alban; Shishlov, Alexander; Savin, Daniel
Amphiphilic AB2 star polymers undergo directed self-assembly into vesicles in aqueous solution. The overall structure of the assembly is responsive to a change in solution pH by incorporating an ionizable polypeptide as the A-block and two lipid-like tails for the B-blocks. Herein, we present some recent results in the solution characterization of polyglutamate-octadecanethiol2 (PE-DDT2) star polymers using static and dynamic light scattering, as well as transmission electron microscopy. An increase in pH will induce a transition in secondary structure of the PE block from an α-helix to an extended coil, thereby perturbing the morphological structure and resulting in an expansion of the vesicle. The magnitude of this response is much larger than what is expected based on the conformational transition of the peptide. The mechanism of this process can be probed by measuring the change in hydration at the surface of the hydrophobic bilayer. Towards this end, we utilize 2,4,6-trichloro-1,3,5-triazine (TCT) as a modular linker to install spin labels into the assembly as a mechanism to directly interrogate local hydrophobicity using electron paramagnetic resonance (EPR). NSF 1539347.
Nanosensor for detection of glucose
NASA Astrophysics Data System (ADS)
Del Villar, Ignacio; Matias, Ignacio R.; Arregui, Francisco J.
2004-06-01
A novel fiber-optic sensor sensitive to glucose has been designed based on electrostatic self-assembly method. The polycation of the structure is a mixture of poly(allylamine hydrochloride) (PAH) and Prussian Blue, whereas the polyanion is well-known enzyme gluocose oxidase (GOx). The range of glucose concentration that can be measured is submilimolar and is located between 0.1 and 2 mM. Measures are based on a new detection scheme based on the slope of the change of signal produced by injection of glucose, yielding to a linear response. The sensor responses in a PH range between 4 and 7.4, which includes the physiological PH of blood. Some rules for esitmation of the refractive index of the material deposited and the thickness of bilayers are also given.
Guerra, Sebastiano; Iehl, Julien; Holler, Michel; Peterca, Mihai; Wilson, Daniela A; Partridge, Benjamin E; Zhang, Shaodong; Deschenaux, Robert; Nierengarten, Jean-François; Percec, Virgil
2015-06-01
Twelve chiral and achiral self-assembling dendrons have been grafted onto a [60]fullerene hexa-adduct core by copper-catalyzed alkyne azide "click" cycloaddition. The structure adopted by these compounds was determined by the self-assembling peripheral dendrons. These twelve dendrons mediate the self-organisation of the dendronized [60]fullerene into a disc-shaped structure containing the [60]fullerene in the centre. The fullerene-containing discs self-organise into helical supramolecular columns with a fullerene nanowire-like core, forming a 2D columnar hexagonal periodic array. These unprecedented supramolecular structures and their assemblies are expected to provide new developments in chiral complex molecular systems and their application to organic electronics and solar cells.
Nonequilibrium Self-Assembly of π-Conjugated Oligopeptides in Solution.
Li, Bo; Li, Songsong; Zhou, Yuecheng; Ardoña, Herdeline Ann M; Valverde, Lawrence R; Wilson, William L; Tovar, John D; Schroeder, Charles M
2017-02-01
Supramolecular assembly is a powerful method that can be used to generate materials with well-defined structures across multiple length scales. Supramolecular assemblies consisting of biopolymer-synthetic polymer subunits are specifically known to exhibit exceptional structural and functional diversity as well as programmable control of noncovalent interactions through hydrogen bonding in biopolymer subunits. Despite recent progress, there is a need to control and quantitatively understand assembly under nonequilibrium conditions. In this work, we study the nonequilibrium self-assembly of π-conjugated synthetic oligopeptides using a combination of experiments and analytical modeling. By isolating an aqueous peptide solution droplet within an immiscible organic layer, the rate of peptide assembly in the aqueous solution can be controlled by tuning the transport rate of acid that is used to trigger assembly. Using this approach, peptides are guided to assemble under reaction-dominated and diffusion-dominated conditions, with results showing a transition from a diffusion-limited reaction front to spatially homogeneous assembly as the transport rate of acid decreases. Interestingly, our results show that the morphology of self-assembled peptide fibers is controlled by the assembly kinetics such that increasingly homogeneous structures of self-assembled synthetic oligopeptides were generally obtained using slower rates of assembly. We further developed an analytical reaction-diffusion model to describe oligopeptide assembly, and experimental results are compared to the reaction-diffusion model across a range of parameters. Overall, this work highlights the importance of molecular self-assembly under nonequilibrium conditions, specifically showing that oligopeptide assembly is governed by a delicate balance between reaction kinetics and transport processes.
Milardi, Danilo; Sciacca, Michele F M; Pappalardo, Matteo; Grasso, Domenico M; La Rosa, Carmelo
2011-01-01
Human islet amyloid polypeptide (hIAPP) is known to misfold and aggregate into amyloid deposits that may be found in pancreatic tissues of patients affected by type 2 diabetes. Recent studies have shown that the highly amyloidogenic peptide LANFLVH, corresponding the N-terminal 12-18 region of IAPP, does not induce membrane damage. Here we assess the role played by the aromatic residue Phe in driving both amyloid formation and membrane interaction of LANFLVH. To this aim, a set of variant heptapeptides in which the aromatic residue Phe has been substituted with a Leu and Ala is studied. Differential scanning calorimetry (DSC) and membrane-leakage experiments demonstrated that Phe substitution noticeably affects the peptide-induced changes in the thermotropic properties of the lipid bilayer but not its membrane damaging potential. Atomic force microscopy (AFM), ThT fluorescence and Congo red birefringence assays evidenced that the Phe residue is not required for fibrillogenesis, but it can influence the self-assembling kinetics. Molecular dynamics simulations have paralleled the outcome of the experimental trials also providing informative details about the structure of the different peptide assemblies. These results support a general theory suggesting that aromatic residues, although capable of affecting the self-assembly kinetics of small peptides and peptide-membrane interactions, are not essential either for amyloid formation or membrane leakage, and indicate that other factors such as β-sheet propensity, size and hydrophobicity of the side chain act synergistically to determine peptide properties.
De Riccardis, Francesco; Izzo, Irene; Montesarchio, Daniela; Tecilla, Paolo
2013-12-17
The ion-coupled processes that occur in the plasma membrane regulate the cell machineries in all the living organisms. The details of the chemical events that allow ion transport in biological systems remain elusive. However, investigations of the structure and function of natural and artificial transporters has led to increasing insights about the conductance mechanisms. Since the publication of the first successful artificial system by Tabushi and co-workers in 1982, synthetic chemists have designed and constructed a variety of chemically diverse and effective low molecular weight ionophores. Despite their relative structural simplicity, ionophores must satisfy several requirements. They must partition in the membrane, interact specifically with ions, shield them from the hydrocarbon core of the phospholipid bilayer, and transport ions from one side of the membrane to the other. All these attributes require amphipathic molecules in which the polar donor set used for ion recognition (usually oxygens for cations and hydrogen bond donors for anions) is arranged on a lipophilic organic scaffold. Playing with these two structural motifs, donor atoms and scaffolds, researchers have constructed a variety of different ionophores, and we describe a subset of interesting examples in this Account. Despite the ample structural diversity, structure/activity relationships studies reveal common features. Even when they include different hydrophilic moieties (oxyethylene chains, free hydroxyl, etc.) and scaffolds (steroid derivatives, neutral or polar macrocycles, etc.), amphipathic molecules, that cannot span the entire phospholipid bilayer, generate defects in the contact zone between the ionophore and the lipids and increase the permeability in the bulk membrane. Therefore, topologically complex structures that span the entire membrane are needed to elicit channel-like and ion selective behaviors. In particular the alternate-calix[4]arene macrocycle proved to be a versatile platform to obtain 3D-structures that can form unimolecular channels in membranes. In these systems, the selection of proper donor groups allows us to control the ion selectivity of the process. We can switch from cation to anion transport by substituting protonated amines for the oxygen donors. Large and stable tubular structures with nanometric sized transmembrane nanopores that provide ample internal space represent a different approach for the preparation of synthetic ion channels. We used the metal-mediated self-assembly of porphyrin ligands with Re(I) corners as a new method for producing to robust channel-like structures. Such structures can survive in the complex membrane environment and show interesting ionophoric behavior. In addition to the development of new design principles, the selective modification of the biological membrane permeability could lead to important developments in medicine and technology.
Afonin, Sergii; Kubyshkin, Vladimir; Mykhailiuk, Pavel K; Komarov, Igor V; Ulrich, Anne S
2017-07-13
The cell-penetrating peptide SAP, which was designed as an amphipathic poly-l-proline helix II (PPII), was suggested to self-assemble into regular fibrils that are relevant for its internalization. Herein we have analyzed the structure of SAP in the membrane-bound state by solid-state 19 F-NMR, which revealed other structural states, in addition to the expected surface-aligned PPII. Trifluoromethyl-bicyclopentyl-glycine (CF 3 -Bpg) and two rigid isomers of trifluoromethyl-4,5-methanoprolines (CF 3 -MePro) were used as labels for 19 F-NMR analysis. The equilibria between different conformations of SAP were studied and were found to be shifted by the substituents at Pro-11. Synchrotron-CD results suggested that substituting Pro-11 by CF 3 -MePro governed the coil-to-PPII equilibrium in solution and in the presence of a lipid bilayer. Using CD and 19 F-NMR, we examined the slow kinetics of the association of SAP with membranes and the dependence of the SAP conformational dynamics on the lipid composition. The peptide did not bind to lipids in the solid ordered phase and aggregated only in the liquid ordered "raft"-like bilayers. Self-association could not be detected in solution or in the presence of liquid disordered membranes. Surface-bound amphipathic SAP in a nonaggregated state was structured as a mixture of nonideal extended conformations reflecting the equilibrium already present in solution, i.e., before binding to the membrane.
Wei, Kun; Li, Lei; Zheng, Sixun; Wang, Ge; Liang, Qi
2014-01-14
In this contribution, we report the synthesis of organic-inorganic random polymers from methacrylate-terminated poly(ethylene oxide) (MAPEO) (Mn = 950) and 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane (MAPOSS) macromers via reversible addition-fragmentation chain transfer (RAFT) polymerization with 4-cyano-4-(thiobenzoylthio) valeric acid (CTBTVA) as the chain transfer agent. The organic-inorganic random copolymers were characterized by means of (1)H NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The results of GPC indicate that the polymerizations were carried out in a controlled fashion. Transmission electron microscopy (TEM) showed that the organic-inorganic random copolymers in bulk were microphase-separated and the POSS microdomains were formed via POSS-POSS interactions. In aqueous solutions the organic-inorganic random copolymers were capable of self-assembling into spherical nanoobjects as evidenced by transmission electron microscopy (TEM) and dynamic laser scattering (DLS). The self-assembly behavior of the organic-inorganic random copolymers was also found to occur in the mixtures with the precursors of epoxy. The nanostructures were further fixed via subsequent curing reaction and thus the organic-inorganic nanocomposites were obtained. The formation of nanophases in epoxy thermosets was confirmed by transmission electron microscopy (TEM) and dynamic mechanical thermal analysis (DMTA). The organic-inorganic nanocomposites displayed the enhanced surface hydrophobicity as evidenced by surface contact angle measurements.
Temperature-dependent self-assembly of NC–Ph{sub 5}–CN molecules on Cu(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pivetta, Marina, E-mail: marina.pivetta@epfl.ch; Pacchioni, Giulia E.; Fernandes, Edgar
2015-03-14
We present the results of temperature-dependent self-assembly of dicarbonitrile-pentaphenyl molecules (NC–Ph{sub 5}–CN) on Cu(111). Our low-temperature scanning tunneling microscopy study reveals the formation of metal-organic and purely organic structures, depending on the substrate temperature during deposition (160–300 K), which determines the availability of Cu adatoms at the surface. We use tip functionalization with CO to obtain submolecular resolution and image the coordination atoms, enabling unequivocal identification of metal-coordinated nodes and purely organic ones. Moreover, we discuss the somewhat surprising structure obtained for deposition and measurement at 300 K.
Programming self-organizing multicellular structures with synthetic cell-cell signaling.
Toda, Satoshi; Blauch, Lucas R; Tang, Sindy K Y; Morsut, Leonardo; Lim, Wendell A
2018-05-31
A common theme in the self-organization of multicellular tissues is the use of cell-cell signaling networks to induce morphological changes. We used the modular synNotch juxtacrine signaling platform to engineer artificial genetic programs in which specific cell-cell contacts induced changes in cadherin cell adhesion. Despite their simplicity, these minimal intercellular programs were sufficient to yield assemblies with hallmarks of natural developmental systems: robust self-organization into multi-domain structures, well-choreographed sequential assembly, cell type divergence, symmetry breaking, and the capacity for regeneration upon injury. The ability of these networks to drive complex structure formation illustrates the power of interlinking cell signaling with cell sorting: signal-induced spatial reorganization alters the local signals received by each cell, resulting in iterative cycles of cell fate branching. These results provide insights into the evolution of multi-cellularity and demonstrate the potential to engineer customized self-organizing tissues or materials. Copyright © 2018, American Association for the Advancement of Science.
Biomimetic membrane arrays on cast hydrogel supports.
Roerdink Lander, Monique; Ibragimova, Sania; Rein, Christian; Vogel, Jörg; Stibius, Karin; Geschke, Oliver; Perry, Mark; Hélix-Nielsen, Claus
2011-06-07
Lipid bilayers are intrinsically fragile and require mechanical support in technical applications based on biomimetic membranes. Tethering the lipid bilayer membranes to solid substrates, either directly through covalent or ionic substrate-lipid links or indirectly on substrate-supported cushions, provides mechanical support but at the cost of small molecule transport through the membrane-support sandwich. To stabilize biomimetic membranes while allowing transport through a membrane-support sandwich, we have investigated the feasibility of using an ethylene tetrafluoroethylene (ETFE)/hydrogel sandwich as the support. The sandwich is realized as a perforated surface-treated ETFE film onto which a hydrogel composite support structure is cast. We report a simple method to prepare arrays of lipid bilayer membranes with low intrinsic electrical conductance on the highly permeable, self-supporting ETFE/hydrogel sandwiches. We demonstrate how the ETFE/hydrogel sandwich support promotes rapid self-thinning of lipid bilayers suitable for hosting membrane-spanning proteins.
Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis
2017-01-01
ABSTRACT Cells have an intrinsic ability to self-assemble and self-organize into complex and functional tissues and organs. By taking advantage of this ability, embryoids, organoids and gastruloids have recently been generated in vitro, providing a unique opportunity to explore complex embryological events in a detailed and highly quantitative manner. Here, we examine how such approaches are being used to answer fundamental questions in embryology, such as how cells self-organize and assemble, how the embryo breaks symmetry, and what controls timing and size in development. We also highlight how further improvements to these exciting technologies, based on the development of quantitative platforms to precisely follow and measure subcellular and molecular events, are paving the way for a more complete understanding of the complex events that help build the human embryo. PMID:28292844
NASA Astrophysics Data System (ADS)
Hansda, Chaitali; Maiti, Pradip; Singha, Tanmoy; Pal, Manisha; Hussain, Syed Arshad; Paul, Sharmistha; Paul, Pabitra Kumar
2018-10-01
In this study, we investigated the spectroscopic properties of the water-soluble globular protein bovine serum albumin (BSA) while interacting with zinc oxide (ZnO) semiconductor nanoparticles (NPs) in aqueous medium and in a ZnO/BSA layer-by-layer (LbL) self-assembled film fabricated on poly (acrylic acid) (PAA)-coated quartz or a Si substrate via electrostatic interactions. BSA formed a ground state complex due to its interaction with ZnO NPs, which was confirmed by ultraviolet-visible absorption, and steady state and time-resolved fluorescence emission spectroscopic techniques. However, due to its interaction with ZnO, the photophysical properties of BSA depend significantly on the concentration of ZnO NPs in the mixed solution. The quenching of the fluorescence intensity of BSA in the presence of ZnO NPs was due to the interaction between ZnO and BSA, and the formation of their stable ground state complex, as well as energy transfer from the excited BSA to ZnO NPs in the complex nano-bioconjugated species. Multilayer growth of the ZnO/BSA LbL self-assembled film on the quartz substrate was confirmed by monitoring the characteristic absorption band of BSA (280 nm), where the nature of the film growth depends on the number of bilayers deposited on the quartz substrate. BSA formed a well-ordered molecular network-type morphology due to its adsorption onto the surface of the ZnO nanostructure in the backbone of the PAA-coated Si substrate in the LbL film according to atomic force microscopic study. The as-synthesized ZnO NPs were characterized by field emission scanning electron microscopy, X-ray powder diffraction, and dynamic light scattering techniques.
Folding and self-assembly of polypeptides: Dynamics and thermodynamics from molecular simulation
NASA Astrophysics Data System (ADS)
Fluitt, Aaron Michael
Empowered by their exquisite three-dimensional structures, or "folds," proteins carry out biological tasks with high specificity, efficiency, and fidelity. The fold that optimizes biological function represents a stable configuration of the constituent polypeptide molecule(s) under physiological conditions. Proteins and polypeptides are not static, however: battered by thermal motion, they explore a distribution of folds that is determined by the sequence of amino acids, the presence and identity of other molecules, and the thermodynamic conditions. In this dissertation, we apply molecular simulation techniques to the study of two polypeptides that have unusually diffuse distributions of folds under physiological conditions: polyglutamine (polyQ) and islet amyloid polypeptide (IAPP). Neither polyQ nor IAPP adopts a predominant fold in dilute aqueous solution, but at sufficient concentrations, both are prone to self-assemble into stable, periodic, and highly regular aggregate structures known as amyloid. The appearance of amyloid deposits of polyQ in the brain, and of IAPP in the pancreas, are associated with Huntington's disease and type 2 diabetes, respectively. A molecular view of the mechanism(s) by which polyQ and IAPP fold and self-assemble will enhance our understanding of disease pathogenesis, and it has the potential to accelerate the development of therapeutics that target early-stage aggregates. Using molecular simulations with spatial and temporal resolution on the atomic scale, we present analyses of the structural distributions of polyQ and IAPP under various conditions, both in and out of equilibrium. In particular, we examine amyloid fibers of polyQ, the IAPP dimer in solution, and single IAPP fragments at a lipid bilayer. We also benchmark the molecular models, or "force fields," available for such studies, and we introduce a novel simulation algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guozhen; Conn, Charlotte E.; Drummond, Calum J.
2010-01-12
Eight lanthanide(III) oleates have been prepared and characterized. The chelation and self-assembly structures of these rare-earth oleates have been studied by elemental analysis, Fourier transfer infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD) analysis. Elemental analysis and FTIR results indicate that three oleate anions are complexed with one lanthanide cation and, with the exception of anhydrous cerium(III) oleate, form either a mono- or a hemihydrate. The X-ray analysis showed that the neat lanthanide soaps have a lamellar bilayer structure at room temperature. The thermal behavior has been investigated by cross-polarized optical microscopy (POM), differential scanning calorimetry (DSC), and thermogravimetric analysismore » (TGA). POM scans showed that all the lanthanide oleates form a lamellar phase in the presence of excess water. Small-angle X-ray scattering (SAXS) and XRD were used to investigate the internal structure of the bulk lanthanide oleates in excess water, and these X-ray results confirmed that the lanthanide oleates do not swell in water. Select lanthanide oleates were dispersed in water to form nonswelling lamellar submicrometer particles, confirmed by dynamic light scattering (DLS) and synchrotron SAXS measurements. NMR results indicated that colloidal dispersions of lanthanide oleates containing paramagnetic ions, such as gadolinium(III), terbium(III), and dysprosium(III), have a significant effect on the longitudinal (T{sub 1}) and transverse (T{sub 2}) relaxation times of protons in water. Time-resolved fluorescence measurements have demonstrated that colloidal dispersions of europium(III) oleate exhibit strong luminescence. The rare earth metal soaps exemplify the potential of self-assembled chelating amphiphiles as contrast agents in medical imaging modalities such as magnetic resonance imaging (MRI) and fluorescence imaging.« less
Self-assembled hierarchically structured organic-inorganic composite systems.
Tritschler, Ulrich; Cölfen, Helmut
2016-05-13
Designing bio-inspired, multifunctional organic-inorganic composite materials is one of the most popular current research objectives. Due to the high complexity of biocomposite structures found in nacre and bone, for example, a one-pot scalable and versatile synthesis approach addressing structural key features of biominerals and affording bio-inspired, multifunctional organic-inorganic composites with advanced physical properties is highly challenging. This article reviews recent progress in synthesizing organic-inorganic composite materials via various self-assembly techniques and in this context highlights a recently developed bio-inspired synthesis concept for the fabrication of hierarchically structured, organic-inorganic composite materials. This one-step self-organization concept based on simultaneous liquid crystal formation of anisotropic inorganic nanoparticles and a functional liquid crystalline polymer turned out to be simple, fast, scalable and versatile, leading to various (multi-)functional composite materials, which exhibit hierarchical structuring over several length scales. Consequently, this synthesis approach is relevant for further progress and scientific breakthrough in the research field of bio-inspired and biomimetic materials.
Cao, Hui; Cui, Zhigang; Gao, Pan; Ding, Yi; Zhu, Xuechao; Lu, Xinhua; Cai, Yuanli
2017-09-01
Easy access to discrete nanoclusters in metal-folded single-chain nanoparticles (metal-SCNPs) and independent ultrafine sudomains in the assemblies via coordination-driven self-assembly of hydrophilic copolymer containing 9% imidazole groups is reported herein. 1 H NMR, dynamic light scattering, and NMR diffusion-ordered spectroscopy results demonstrate self-assembly into metal-SCNPs (>70% imidazole-units folded) by neutralization in the presence of Cu(II) in water to pH 4.6. Further neutralization induces self-assembly of metal-SCNPs (pH 4.6-5.0) and shrinkage (pH 5.0-5.6), with concurrent restraining residual imidazole motifs and hydrophilic segment, which organized into constant nanoparticles over pH 5.6-7.5. Atomic force microscopy results evidence discrete 1.2 nm nanoclusters and sub-5-nm subdomains in metal-SCNP and assembled nanoparticle. Reduction of metal center using sodium ascorbate induces structural rearrangement to one order lower than the precursor. Enzyme mimic catalysis required media-tunable discrete ultrafine interiors in metal-SCNPs and assemblies have hence been achieved. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unknown Aspects of Self-Assembly of PbS Microscale Superstructures
Querejeta-Fernández, Ana; Hernández-Garrido, Juan C.; Yang, Hengxi; Zhou, Yunlong; Varela, Aurea; Parras, Marina; Calvino-Gámez, José J.; González-Calbet, Jose M.; Green, Peter F.; Kotov, Nicholas A.
2012-01-01
A lot of interesting and sophisticated examples of nanoparticle (NP) self-assembly (SA) are known. From both fundamental and technological standpoints this field requires advancements in three principle directions: a) understanding the mechanism and driving forces of three-dimensional (3D) SA with both nano- and micro-levels of organization; b) understanding of disassembly/deconstruction processes; and c) finding synthetic methods of assembly into continuous superstructures without insulating barriers. From this perspective, we investigated the formation of well-known star-like PbS superstructures and found a number of previously unknown or overlooked aspects that can advance the knowledge of NP self-assembly in these three directions. The primary one is that the formation of large seemingly monocrystalline PbS superstructures with multiple levels of octahedral symmetry can be explained only by SA of small octahedral NPs. We found five distinct periods in the formation PbS hyperbranched stars: 1) nucleation of early PbS NPs with an average diameter of 31 nm; 2) assembly into 100–500 nm octahedral mesocrystals; 3) assembly into 1000–2500 nm hyperbranched stars; 4) assembly and ionic recrystallization into six-arm rods accompanied by disappearance of fine nanoscale structure; 5) deconstruction into rods and cubooctahedral NPs. The switches in assembly patterns between the periods occur due to variable dominance of pattern–determining forces that include vander Waals and electrostatic (charge-charge, dipole-dipole, and polarization) interactions. The superstructure deconstruction is triggered by chemical changes in the deep eutectic solvent (DES) used as the media. PbS superstructures can be excellent models for fundamental studies of nanoscale organization and SA manufacturing of (opto)electronics and energy harvesting devices which require organization of PbS components at multiple scales. PMID:22515512
Unknown aspects of self-assembly of PbS microscale superstructures.
Querejeta-Fernández, Ana; Hernández-Garrido, Juan C; Yang, Hengxi; Zhou, Yunlong; Varela, Aurea; Parras, Marina; Calvino-Gámez, José J; González-Calbet, Jose M; Green, Peter F; Kotov, Nicholas A
2012-05-22
A lot of interesting and sophisticated examples of nanoparticle (NP) self-assembly (SA) are known. From both fundamental and technological standpoints, this field requires advancements in three principle directions: (a) understanding the mechanism and driving forces of three-dimensional (3D) SA with both nano- and microlevels of organization; (b) understanding disassembly/deconstruction processes; and (c) finding synthetic methods of assembly into continuous superstructures without insulating barriers. From this perspective, we investigated the formation of well-known star-like PbS superstructures and found a number of previously unknown or overlooked aspects that can advance the knowledge of NP self-assembly in these three directions. The primary one is that the formation of large seemingly monocrystalline PbS superstructures with multiple levels of octahedral symmetry can be explained only by SA of small octahedral NPs. We found five distinct periods in the formation PbS hyperbranched stars: (1) nucleation of early PbS NPs with an average diameter of 31 nm; (2) assembly into 100-500 nm octahedral mesocrystals; (3) assembly into 1000-2500 nm hyperbranched stars; (4) assembly and ionic recrystallization into six-arm rods accompanied by disappearance of fine nanoscale structure; (5) deconstruction into rods and cuboctahedral NPs. The switches in assembly patterns between the periods occur due to variable dominance of pattern-determining forces that include van der Waals and electrostatic (charge-charge, dipole-dipole, and polarization) interactions. The superstructure deconstruction is triggered by chemical changes in the deep eutectic solvent (DES) used as the media. PbS superstructures can be excellent models for fundamental studies of nanoscale organization and SA manufacturing of (opto)electronics and energy-harvesting devices which require organization of PbS components at multiple scales.
Mukhopadhyay, Rahul Dev; Praveen, Vakayil K; Hazra, Arpan; Maji, Tapas Kumar; Ajayaghosh, Ayyappanpillai
2015-11-13
Control over the self-assembly process of porous organic-inorganic hybrids often leads to unprecedented polymorphism and properties. Herein we demonstrate how light can be a powerful tool to intervene in the kinetically controlled mesoscale self-assembly of a coordination polymeric gelator. Ultraviolet light induced coordination modulation via photoisomerisation of an azobenzene based dicarboxylate linker followed by aggregation mediated crystal growth resulted in two distinct morphological forms (flowers and stars), which show subtle differences in their physical properties.
Han, Yang; Cai, Chunhua; Lin, Jiaping; Gong, Shuting; Xu, Wenheng; Hu, Rui
2018-04-14
In this work, it is reported that poly(γ-benzyl-l-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) rod-coil block copolymers (BCPs) can disperse carbon nanotubes (CNTs) in solution and form various surface nanostructures on the CNTs via solution self-assembly. In an organic solvent that dissolves the BCPs, the PBLG rod blocks adsorb on CNT surfaces, and the BCPs form conformal coatings. Then, by the introduction of water, a selective solvent for PEG blocks, the BCPs in the coatings further self-assemble into diverse surface nanostructures, such as helices (left-handed or right-handed), gyros, spheres, and rings. The morphology of the surface nanostructure can be tailored by initial organic solvent composition, preparation temperature, feeding ratio of BCPs to CNTs, degree of polymerization of PBLG blocks, and diameter of the CNTs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Xu; Meng, Zhaoxu; Ma, Jingyun; Shi, Yang; Xu, Hui; Lykkemark, Simon; Qin, Jianhua
2015-08-12
Creating artificial tissue-like structures that possess the functionality, specificity, and architecture of native tissues remains a big challenge. A new and straightforward strategy for generating shape-controlled collagen building blocks with a well-defined architecture is presented, which can be used for self-assembly of complex 3D microtissues. Collagen blocks with tunable geometries are controllably produced and released via a membrane-templated microdevice. The formation of functional microtissues by embedding tissue-specific cells into collagen blocks with expression of specific proteins is described. The spontaneous self-assembly of cell-laden collagen blocks into organized tissue constructs with predetermined configurations is demonstrated, which are largely driven by the synergistic effects of cell-cell and cell-matrix interactions. This new strategy would open up new avenues for the study of tissue/organ morphogenesis, and tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ca-Mediated Electroformation of Cell-Sized Lipid Vesicles
Tao, Fei; Yang, Peng
2015-01-01
Cell-sized lipid giant unilamellar vesicles (GUVs) are formed when lipid molecules self-assemble to construct a single bilayer compartment with similar morphology to living cells. The physics of self-assembly process is only generally understood and the size distribution of GUVs tends to be very polydisperse. Herein we report a strategy for the production of controlled size distributions of GUVs by a novel mechanism dissecting the mediation ability of calcium (Ca) on the conventional electroformation of GUVs. We finely construct both of the calcium ion (Ca2+) and calcium carbonate (CaCO3) mineral adsorption layers on a lipid film surface respectively during the electroformation of GUVs. It is found that Ca2+ Slip plane polarized by alternating electric field could induce a pattern of electroosmotic flow across the surface, and thus confine the fusion and growth of GUVs to facilitate the formation of uniform GUVs. The model is further improved by directly using CaCO3 that is in situ formed on a lipid film surface, providing a GUV population with narrow polydispersity. The two models deciphers the new biological function of calcium on the birth of cell-like lipid vesicles, and thus might be potentially relevant to the construction of new model to elucidate the cellular development process. PMID:25950604
Polarity Control of Heteroepitaxial GaN Nanowires on Diamond.
Hetzl, Martin; Kraut, Max; Hoffmann, Theresa; Stutzmann, Martin
2017-06-14
Group III-nitride materials such as GaN nanowires are characterized by a spontaneous polarization within the crystal. The sign of the resulting sheet charge at the top and bottom facet of a GaN nanowire is determined by the orientation of the wurtzite bilayer of the different atomic species, called N and Ga polarity. We investigate the polarity distribution of heteroepitaxial GaN nanowires on different substrates and demonstrate polarity control of GaN nanowires on diamond. Kelvin Probe Force Microscopy is used to determine the polarity of individual selective area-grown and self-assembled nanowires over a large scale. At standard growth conditions, mixed polarity occurs for selective GaN nanowires on various substrates, namely on silicon, on sapphire and on diamond. To obtain control over the growth orientation on diamond, the substrate surface is modified by nitrogen and oxygen plasma exposure prior to growth, and the growth parameters are adjusted simultaneously. We find that the surface chemistry and the substrate temperature are the decisive factors for obtaining control of up to 93% for both polarity types, whereas the growth mode, namely selective area or self-assembled growth, does not influence the polarity distribution significantly. The experimental results are discussed by a model based on the interfacial bonds between the GaN nanowires, the termination layer, and the substrate.
Ca-mediated electroformation of cell-sized lipid vesicles.
Tao, Fei; Yang, Peng
2015-05-07
Cell-sized lipid giant unilamellar vesicles (GUVs) are formed when lipid molecules self-assemble to construct a single bilayer compartment with similar morphology to living cells. The physics of self-assembly process is only generally understood and the size distribution of GUVs tends to be very polydisperse. Herein we report a strategy for the production of controlled size distributions of GUVs by a novel mechanism dissecting the mediation ability of calcium (Ca) on the conventional electroformation of GUVs. We finely construct both of the calcium ion (Ca(2+)) and calcium carbonate (CaCO3) mineral adsorption layers on a lipid film surface respectively during the electroformation of GUVs. It is found that Ca(2+) Slip plane polarized by alternating electric field could induce a pattern of electroosmotic flow across the surface, and thus confine the fusion and growth of GUVs to facilitate the formation of uniform GUVs. The model is further improved by directly using CaCO3 that is in situ formed on a lipid film surface, providing a GUV population with narrow polydispersity. The two models deciphers the new biological function of calcium on the birth of cell-like lipid vesicles, and thus might be potentially relevant to the construction of new model to elucidate the cellular development process.
Highly permeable artificial water channels that can self-assemble into two-dimensional arrays
Shen, Yue-xiao; Si, Wen; Erbakan, Mustafa; Decker, Karl; De Zorzi, Rita; Saboe, Patrick O.; Kang, You Jung; Majd, Sheereen; Butler, Peter J.; Walz, Thomas; Aksimentiev, Aleksei; Hou, Jun-li; Kumar, Manish
2015-01-01
Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(±0.3) × 10−14 cm3/s or 3.5(±1.0) × 108 water molecules per s, which is in the range of AQPs (3.4∼40.3 × 108 water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 108 water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼107 water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼2.6 × 105 pores per μm2) is two orders of magnitude higher than that of CNT membranes (0.1∼2.5 × 103 pores per μm2). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays. PMID:26216964
Tetrahedral Arrangements of Perylene Bisimide Columns via Supramolecular Orientational Memory.
Sahoo, Dipankar; Peterca, Mihai; Aqad, Emad; Partridge, Benjamin E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Percec, Virgil
2017-01-24
Chiral, shape, and liquid crystalline memory effects are well-known to produce commercial macroscopic materials with important applications as springs, sensors, displays, and memory devices. A supramolecular orientational memory effect that provides complex nanoscale arrangements was only recently reported. This supramolecular orientational memory was demonstrated to preserve the molecular orientation and packing within supramolecular units of a self-assembling cyclotriveratrylene crown at the nanoscale upon transition between its columnar hexagonal and Pm3̅n cubic periodic arrays. Here we report the discovery of supramolecular orientational memory in a dendronized perylene bisimide (G2-PBI) that self-assembles into tetrameric crowns and subsequently self-organizes into supramolecular columns and spheres. This supramolecular orientation memory upon transition between columnar hexagonal and body-centered cubic (BCC) mesophases preserves the 3-fold cubic [111] orientations rather than the 4-fold [100] axes, generating an unusual tetrahedral arrangement of supramolecular columns. These results indicate that the supramolecular orientational memory concept may be general for periodic arrays of self-assembling dendrons and dendrimers as well as for other periodic and quasiperiodic nanoscale organizations comprising supramolecular spheres, generated from other organized complex soft matter including block copolymers and surfactants.
Pum, Dietmar; Toca-Herrera, Jose Luis; Sleytr, Uwe B.
2013-01-01
Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports. PMID:23354479
Opal-like Multicolor Appearance of Self-Assembled Photonic Array.
Arnon, Zohar A; Pinotsi, Dorothea; Schmidt, Matthias; Gilead, Sharon; Guterman, Tom; Sadhanala, Aditya; Ahmad, Shahab; Levin, Aviad; Walther, Paul; Kaminski, Clemens F; Fändrich, Marcus; Kaminski Schierle, Gabriele S; Adler-Abramovich, Lihi; Shimon, Linda J W; Gazit, Ehud
2018-06-20
Molecular self-assembly of short peptide building blocks leads to the formation of various material architectures that may possess unique physical properties. Recent studies had confirmed the key role of biaromaticity in peptide self-assembly, with the diphenylalanine (FF) structural family as an archetypal model. Another significant direction in the molecular engineering of peptide building blocks is the use of fluorenylmethoxycarbonyl (Fmoc) modification, which promotes the assembly process and may result in nanostructures with distinctive features and macroscopic hydrogel with supramolecular features and nanoscale order. Here, we explored the self-assembly of the protected, noncoded fluorenylmethoxycarbonyl-β,β-diphenyl-Ala-OH (Fmoc-Dip) amino acid. This process results in the formation of elongated needle-like crystals with notable aromatic continuity. By altering the assembly conditions, arrays of spherical particles were formed that exhibit strong light scattering. These arrays display vivid coloration, strongly resembling the appearance of opal gemstones. However, unlike the Rayleigh scattering effect produced by the arrangement of opal, the described optical phenomenon is attributed to Mie scattering. Moreover, by controlling the solution evaporation rate, i.e., the assembly kinetics, we were able to manipulate the resulting coloration. This work demonstrates a bottom-up approach, utilizing self-assembly of a protected amino acid minimal building block, to create arrays of organic, light-scattering colorful surfaces.
Gu, X. Wendy; Ye, Xingchen; Koshy, David M.; ...
2017-02-27
Large, freestanding membranes with remarkably high elastic modulus ( > 10 GPa) have been fabricated through the self-Assembly of ligand-stabilized inorganic nanocrystals, even though these nanocrystals are connected only by soft organic ligands (e.g., dodecanethiol or DNA) that are not cross-linked or entangled. Recent developments in the synthesis of polymer-grafted nanocrystals have greatly expanded the library of accessible superlattice architectures,which allows superlattice mechanical behavior to be linked to specific structural features. Here, colloidal self-Assembly is used to organize polystyrene-grafted Au nanocrystals at a fluid interface to form ordered solids with sub-10-nm periodic features. We used thin-film buckling and nanoindentation tomore » evaluate the mechanical behavior of polymer-grafted nanocrystal superlattices while exploring the role of polymer structural conformation, nanocrystal packing, and superlattice dimensions. Superlattices containing 3-20 vol % Au are found to have an elastic modulus of ~6-19 GPa, and hardness of ~120-170 MPa. We also found that rapidly self-Assembled superlattices have the highest elastic modulus, despite containing significant structural defects. Polymer extension, interdigitation, and grafting density are determined to be critical parameters that govern superlattice elastic and plastic deformation.« less
NASA Astrophysics Data System (ADS)
Gu, X. Wendy; Ye, Xingchen; Koshy, David M.; Vachhani, Shraddha; Hosemann, Peter; Alivisatos, A. Paul
2017-03-01
Large, freestanding membranes with remarkably high elastic modulus (>10 GPa) have been fabricated through the self-assembly of ligand-stabilized inorganic nanocrystals, even though these nanocrystals are connected only by soft organic ligands (e.g., dodecanethiol or DNA) that are not cross-linked or entangled. Recent developments in the synthesis of polymer-grafted nanocrystals have greatly expanded the library of accessible superlattice architectures, which allows superlattice mechanical behavior to be linked to specific structural features. Here, colloidal self-assembly is used to organize polystyrene-grafted Au nanocrystals at a fluid interface to form ordered solids with sub-10-nm periodic features. Thin-film buckling and nanoindentation are used to evaluate the mechanical behavior of polymer-grafted nanocrystal superlattices while exploring the role of polymer structural conformation, nanocrystal packing, and superlattice dimensions. Superlattices containing 3-20 vol % Au are found to have an elastic modulus of ˜6-19 GPa, and hardness of ˜120-170 MPa. We find that rapidly self-assembled superlattices have the highest elastic modulus, despite containing significant structural defects. Polymer extension, interdigitation, and grafting density are determined to be critical parameters that govern superlattice elastic and plastic deformation.
Wang, Juan; Yuan, Chengqian; Han, Yuchun; Wang, Yilin; Liu, Xiaomin; Zhang, Suojiang; Yan, Xuehai
2017-11-01
The interaction between water and biomolecules including peptides is of critical importance for forming high-level architectures and triggering life's functions. However, the bulk aqueous environment has limitations in detecting the kinetics and mechanisms of peptide self-assembly, especially relating to interactions of trace water. With ionic liquids (ILs) as a nonconventional medium, herein, it is discovered that trace amounts of water play a decisive role in triggering self-assembly of a biologically derived dipeptide. ILs provide a suitable nonaqueous environment, enabling us to mediate water content and follow the dynamic evolution of peptide self-assembly. The trace water is found to be involved in the assembly process of dipeptide, especially leading to the formation of stable noncovalent dipeptide oligomers in the early stage of nucleation, as evident by both experimental studies and theoretical simulations. The thermodynamics of the growth process is mainly governed by a synergistic effect of hydrophobic interaction and hydrogen bonds. Each step of assembly presents a different trend in thermodynamic energy. The dynamic evolution of assembly process can be efficiently mediated by changing trace water content. The decisive role of trace water in triggering and mediating self-assembly of biomolecules provides a new perspective in understanding supramolecular chemistry and molecular self-organization in biology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tunuguntla, Ramya
Biological systems use different energy sources to interact with their environments by creating ion gradients, membrane electric potentials, or a proton motive force to accomplish strikingly complex tasks on the nanometer length scale, such as energy harvesting, and whole organism replication. Most of this activity involves a vast arsenal of active and passive ion channels, membrane receptors and ion pumps that mediate complex and precise transport across biological membranes. Despite the remarkable rate of progress exhibited by modern microelectronic devices, they still cannot compete with the efficiency and precision of biological systems on the component level. At the same time, the sophistication of these molecular machines provides an excellent opportunity to use them in hybrid bioelectronic devices where such a combination could deliver enhanced electronic functionality and enable seamless bi-directional interfaces between man-made and biological assemblies. Artificial membrane systems allow researchers to study the structure and function of membrane proteins in a matrix that approximates their natural environment and to integrate these proteins in ex-vivo devices such as electronic biosensors, thin-film protein arrays, or bio-fuel cells. Since most membrane proteins have vectorial functions, both functional studies and applications require effective control over protein orientation within a lipid bilayer. In our work, we have explored the role of the bilayer surface charge in determining transmembrane protein orientation and functionality during formation of proteoliposomes. We reconstituted a model vectorial ion pump, proteorhodopsin, in liposomes of opposite charges and varying charge densities and determined the resultant protein orientation. Antibody-binding assay and proteolysis of proteoliposomes showed physical evidence of preferential orientation, and functional assays verified vectorial nature of ion transport in this system. Our results indicate that the manipulation of lipid composition can indeed control orientation of an asymmetrically charged membrane protein, proteorhodopsin, in liposomes. One-dimensional inorganic nanostructures, which have critical dimensions comparable to the sizes of biological molecules, form an excellent materials platform for building such integrated structures. Researchers already use silicon nanowire-based field effect transistors functionalized with molecular recognition sites in a diverse array of biosensors. In our group, we have been developing a platform for integration of membrane protein functionality and electronic devices using a 1-D phospholipid bilayer device architecture. In these devices, the membrane proteins reside within the lipid bilayer that covers a nanowire channel of a field-effect transistor. This lipid bilayer performs several functions: it shields the nanowire from the solution species; it serves as a native-like environment for membrane proteins and preserves their functionality, integrity, and even vectorality. In this work, we show that a 1-D bilayer device incorporating a rhodopsin proton pump allows us to couple light-driven proton transport to a bioelectronic circuit. We also report that we were able to adapt another distinctive feature of biological signal processing---their widespread use of modifiers, co-factors, and mediator molecules---to regulate and fine-tune the operational characteristics of the bioelectronic device. In our example, we use co-assembly of protein channels and ionophores in the 1-D bilayer to modify the device output levels and response time.
Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating.
Chen, Yanjing; Bose, Arijit; Bothun, Geoffrey D
2010-06-22
Nanoscale assemblies that can be activated and controlled through external stimuli represent a next stage in multifunctional therapeutics. We report the formation, characterization, and release properties of bilayer-decorated magnetoliposomes (dMLs) that were prepared by embedding small hydrophobic SPIO nanoparticles at different lipid molecule to nanoparticle ratios within dipalmitoylphosphatidylcholine (DPPC) bilayers. The dML structure was examined by cryogenic transmission electron microscopy and differential scanning calorimetry, and release was examined by carboxyfluorescein leakage. Nanoparticle heating using alternating current electromagnetic fields (EMFs) operating at radio frequencies provided selective release of the encapsulated molecule at low nanoparticle concentrations and under physiologically acceptable EMF conditions. Without radio frequency heating, spontaneous leakage from the dMLs decreased with increasing nanoparticle loading, consistent with greater bilayer stability and a decrease in the effective dML surface area due to aggregation. With radio frequency heating, the initial rate and extent of leakage increased significantly as a function of nanoparticle loading and electromagnetic field strength. The mechanism of release is attributed to a combination of bilayer permeabilization and partial dML rupture.
Palo, Emilia; Salomäki, Mikko; Lastusaari, Mika
2017-12-15
Modificating and protecting the upconversion luminescence nanoparticles is important for their potential in various applications. In this work we demonstrate successful coating of the nanoparticles by a simple layer-by-layer method using negatively charged polyelectrolytes and neodymium ions. The layer fabrication conditions such as number of the bilayers, solution concentrations and selected polyelectrolytes were studied to find the most suitable conditions for the process. The bilayers were characterized and the presence of the desired components was studied and confirmed by various methods. In addition, the upconversion luminescence of the bilayered nanoparticles was studied to see the effect of the surface modification on the overall intensity. It was observed that with selected deposition concentrations the bilayer successfully shielded the particle resulting in stronger upconversion luminescence. The layer-by-layer method offers multiple possibilities to control the bilayer growth even further and thus gives promises that the use of upconverting nanoparticles in applications could become even easier with less modification steps in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Development of self-assembling nanowires containing electronically active oligothiophenes
NASA Astrophysics Data System (ADS)
Tsai, Wei-Wen
This dissertation discusses the development of conductive one-dimensional nanowires from self-assembling oligothiophene molecules. Self-assembly has been demonstrated to be a promising alternative approach towards high performance, solution processable, and low-cost organic electronics. One of the many challenges in this field is the control of supramolecular morphologies of ordered structures containing pi-conjugated moieties. This research demonstrated several successful strategies to achieve self assembly of conductive nanowires using synergistic interactions combining pi stacking and hydrogen bonding. The first approach used was to develop a hairpin-shaped sexithiophene molecule, which features two arms of the conjugated structure. The diamidocyclohexyl headgroup of this molecule successfully directs the self-assembly from hydrogen bonding among the amides, forming high-aspect-ratio one-dimensional nanowires with well-defined diameters of 3.0 +/- 0.3 nm. The molecular orientation in the nanostructures promotes formation of sexithiophene H and J aggregates that facilitate efficient charge transport. Organic field-effect transistors were fabricated to reveal improved intrinsic hole mobility from films of the nanostructures, 3.46 x 10-6 cm2V-1s-1, which is one order of magnitude higher than films cast from unassembled molecules. Bulk heterojunction solar cells were developed from this molecule and fullerenes utilizing solution-phase fabrication methods. Intimate mix of the molecule and phenyl-C61-butyric acid methyl ester creates structured interfaces for efficient exciton splitting. The charge carrier mobilities of each material are improved by self-assembly in solution and thermal-energy assisted phase separation.The photovoltaic devices achieved the highest open-circuit voltage of 0.62 V, short-circuit current of 1.79 mA/cm2, fill factor of 35%, and power conversion efficiency of 0.48%. Another strategy to one-dimensional nanowires studied here involved the modification of a class of peptide lipids. The tripeptide segments in the molecular structure promote beta-sheet formation in nonpolar organic solvents, which is the main driving force for their self-assembly into 1D nanowires. Left-handed helical nanowires were formed with diameters of 8.9 nm and pitches between 50--150 nm. Substitutions of oligothiophenes lead to unprecedented supercoiling phenomena manifested as the transformation from helical to coiled or curved nanowires. We proposed that the curving of the nanowires is the consequence of relaxation from torsionally strained nanohelices, a process similar to supercoiling of strained DNA double helix. This process is governed by the mismatch in intermolecular distances required for peptide beta-sheets vs. pi-pi interactions of the conjugated segments decorating the periphery of the nanowires. Circular dichroism revealed helical arrangements of the conjugated moieties in these peptide lipids manifesting supercoiling phenomena. Peptide lipids without helical arrangement of the conjugated segments only exhibit helical morphologies. The self-assembly process of peptide lipids also leads to hierarchical assemblies of energetically favored single, double, and triple-helical nanostructures with well-defined dimensions. Self-assembled nanowires from oligothiophene-substituted peptide lipids revealed increased conductivity of 1.39--1.41 x 10-5 S/cm, two orders of magnitude higher than unassembled films and one order of magnitude higher than unsubstituted peptide lipids. The role of the primary beta-helix in controlling supramolecular organization was investigated by varying the chirality of the tripeptide segments, GAA. Four diastereomers of a peptide lipid substituted with p-toluene carboxylates were compared using L or D-alanines. Molecules with all L residues self-assemble into left-handed helical nanofibers with a pitch of 160 +/- 30 nm. Substitution of one or two D-alanines leads to assemblies of cylindrical nanofibers without any twisting, left-handed helices with smaller pitches (40 +/- 6 nm), or aggregates without regular shapes. We believe these effects are steric in nature that changes the beta-sheet sub-structure within the nanofibers. These principles could be utilized as strategies to optimize the morphologies and properties of nanostructures based on these amphiphilic molecules.
Molecular Engineering of Self-assembled Nanoreactors
2014-08-15
substrate diffusion. We demonstrated spatial control of the GOx/HRP cascade organized by DNA origami structures. As shown in Figure 13, the...quantify the level of protein assembly on the DNA origami tiles - assembled enzymes exhibited higher surface landscapes than the underlying origami ... origami tiles with assembled Gox/HRP pairs with inter-enzyme distances ranging from 10 nm to 65 nm. GOx/HRP co-assembly yields were determined from AFM
Fast Self-Healing of Polyelectrolyte Multilayer Nanocoating and Restoration of Super Oxygen Barrier.
Song, Yixuan; Meyers, Kevin P; Gerringer, Joseph; Ramakrishnan, Ramesh K; Humood, Mohammad; Qin, Shuang; Polycarpou, Andreas A; Nazarenko, Sergei; Grunlan, Jaime C
2017-05-01
A self-healable gas barrier nanocoating, which is fabricated by alternate deposition of polyethyleneimine (PEI) and polyacrylic acid (PAA) polyelectrolytes, is demonstrated in this study. This multilayer film, with high elastic modulus, high glass transition temperature, and small free volume, has been shown to be a super oxygen gas barrier. An 8-bilayer PEI/PAA multilayer assembly (≈700 nm thick) exhibits an oxygen transmission rate (OTR) undetectable to commercial instrumentation (<0.005 cc (m -2 d -1 atm -1 )). The barrier property of PEI/PAA nanocoating is lost after a moderate amount of stretching due to its rigidity, which is then completely restored after high humidity exposure, therefore achieving a healing efficiency of 100%. The OTR of the multilayer nanocoating remains below the detection limit after ten stretching-healing cycles, which proves this healing process to be highly robust. The high oxygen barrier and self-healing behavior of this polymer multilayer nanocoating makes it ideal for packaging (food, electronics, and pharmaceutical) and gas separation applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The formation of helical mesoporous silica nanotubes
NASA Astrophysics Data System (ADS)
Wan, Xiaobing; Pei, Xianfeng; Zhao, Huanyu; Chen, Yuanli; Guo, Yongmin; Li, Baozong; Hanabusa, Kenji; Yang, Yonggang
2008-08-01
Three chiral cationic gelators were synthesized. They can form translucent hydrogels in pure water. These hydrogels become highly viscous liquids under strong stirring. Mesoporous silica nanotubes with coiled pore channels in the walls were prepared using the self-assemblies of these gelators as templates. The mechanism of the formation of this hierarchical nanostructure was studied using transmission electron microscopy at different reaction times. The results indicated that there are some interactions between the silica source and the gelator. The morphologies of the self-assemblies of gelators changed gradually during the sol-gel transcription process. It seems that the silica source directed the organic self-assemblies into helical nanostructures.
Self-assembly of tetravalent Goldberg polyhedra from 144 small components
NASA Astrophysics Data System (ADS)
Fujita, Daishi; Ueda, Yoshihiro; Sato, Sota; Mizuno, Nobuhiro; Kumasaka, Takashi; Fujita, Makoto
2016-12-01
Rational control of the self-assembly of large structures is one of the key challenges in chemistry, and is believed to become increasingly difficult and ultimately impossible as the number of components involved increases. So far, it has not been possible to design a self-assembled discrete molecule made up of more than 100 components. Such molecules—for example, spherical virus capsids—are prevalent in nature, which suggests that the difficulty in designing these very large self-assembled molecules is due to a lack of understanding of the underlying design principles. For example, the targeted assembly of a series of large spherical structures containing up to 30 palladium ions coordinated by up to 60 bent organic ligands was achieved by considering their topologies. Here we report the self-assembly of a spherical structure that also contains 30 palladium ions and 60 bent ligands, but belongs to a shape family that has not previously been observed experimentally. The new structure consists of a combination of 8 triangles and 24 squares, and has the symmetry of a tetravalent Goldberg polyhedron. Platonic and Archimedean solids have previously been prepared through self-assembly, as have trivalent Goldberg polyhedra, which occur naturally in the form of virus capsids and fullerenes. But tetravalent Goldberg polyhedra have not previously been reported at the molecular level, although their topologies have been predicted using graph theory. We use graph theory to predict the self-assembly of even larger tetravalent Goldberg polyhedra, which should be more stable, enabling another member of this polyhedron family to be assembled from 144 components: 48 palladium ions and 96 bent ligands.
NASA Astrophysics Data System (ADS)
Zhong, Ting; Yao, Xin; Zhang, Shuang; Guo, Yang; Duan, Xiao-Chuan; Ren, Wei; Dan Huang; Yin, Yi-Fan; Zhang, Xuan
2016-11-01
The main objective of this study was to demonstrate the proof-of-principle for the hypothesis that conjugated linoleic acid-paclitaxel conjugate (CLA-PTX), a novel fatty acid modified anti-cancer drug conjugate, could self-assemble forming nanoparticles. The results indicated that a novel self-assembling nanomedicine, CLA-PTX@PEG NPs (about 105 nm), with Cremophor EL (CrEL)-free and organic solvent-free characteristics, was prepared by a simple precipitation method. Being the ratio of CLA-PTX:DSPE-PEG was only 1:0.1 (w/w), the higher drug loading CLA-PTX@PEG NPs (about 90%) possessed carrier-free characteristic. The stability results indicated that CLA-PTX@PEG NPs could be stored for at least 9 months. The safety of CLA-PTX@PEG NPs was demonstrated by the MTD results. The anti-tumor activity and cellular uptake were also confirmed in the in vitro experiments. The lower crystallinity, polarity and solubility of CLA-PTX compared with that of paclitaxel (PTX) might be the possible reason for CLA-PTX self-assembling forming nanoparticles, indicating a relationship between PTX modification and nanoparticles self-assembly. Overall, the data presented here confirm that this drug self-delivery strategy based on self-assembly of a CLA-PTX conjugate may offer a new way to prepare nanomedicine products for cancer therapy involving the relationship between anticancer drug modification and self-assembly into nanoparticles.
Huang, Hongliang; Li, Jian-Rong; Wang, Keke; Han, Tongtong; Tong, Minman; Li, Liangsha; Xie, Yabo; Yang, Qingyuan; Liu, Dahuan; Zhong, Chongli
2015-01-01
Metal-organic frameworks (MOFs) have recently emerged as a new type of nanoporous materials with tailorable structures and functions. Usually, MOFs have uniform pores smaller than 2 nm in size, limiting their practical applications in some cases. Although a few approaches have been adopted to prepare MOFs with larger pores, it is still challenging to synthesize hierarchical-pore MOFs (H-MOFs) with high structural controllability and good stability. Here we demonstrate a facile and versatile method, an in situ self-assembly template strategy for fabricating stable H-MOFs, in which multi-scale soluble and/or acid-sensitive metal-organic assembly (MOA) fragments form during the reactions between metal ions and organic ligands (to construct MOFs), and act as removable dynamic chemical templates. This general strategy was successfully used to prepare various H-MOFs that show rich porous properties and potential applications, such as in large molecule adsorption. Notably, the mesopore sizes of the H-MOFs can be tuned by varying the amount of templates. PMID:26548441
Shiu, Ruei-Feng; Lee, Chon-Lin; Chin, Wei-Chun
2017-12-15
Rivers drive large amounts of terrestrial and riverine organic matter into oceans. These organic materials may alter the self-assembly of marine dissolved organic matter (DOM) polymers into microgels and can even affect the behavior of existing natural microgels. We used Suwannee River humic acid, fulvic acid, and natural organic matter as a model of riverine organic matter (ROM) to investigate the impacts of ROM input on DOM polymer and microgel conversion. Our results indicated that the release of extra ROM, even at low concentrations (0.1-10 mg L -1 ), into the marine organic matter pool decreased the size of self-assembled DOM polymers (from 4-5 μm to < 1 μm) and dispersed the existing natural microgels into smaller particles (from 4-5 μm to 2-3 μm). The particle size of the microgel phase was also less sensitive than that of the DOM polymers to external changes (addition of ROM). This size reduction in DOM aggregation and existing microgels may be closely tied to the surface chemistry of the organic matter, such as negative surface charge stabilization and Ca 2+ cross-linking bridges. These findings reveal that ROM inputs may therefore impede the self-assembly of DOM polymers into particulate organic matter and reduce the sedimentation flux of organic carbon and other elements from surface water to the deep ocean, thereby disturbing the biological pump, the downward transportation of nutrients, and the marine organic carbon cycle. Copyright © 2017 Elsevier Ltd. All rights reserved.
Snezhko, Alexey
2011-04-20
Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology.
Dabić, Dario; Brkljačić, Lidija; Tandarić, Tana; Žinić, Mladen; Vianello, Robert; Frkanec, Leo; Kobetić, Renata
2018-01-01
Gels formed by self-assembly of small organic molecules are of wide interest as dynamic soft materials with numerous possible applications, especially in terms of nanotechnology for functional and responsive biomaterials, biosensors, and nanowires. Four bis-oxalamides were chosen to show if electrospray ionization mass spectrometry (ESI-MS) could be used as a prediction of a good gelator and also to shed light on the gelation processes. By inspecting the gelation of several solvent, we showed that bis(amino acid)oxalamide 1 proved to be the most efficient, also being able of forming the largest observable assemblies in the gas phase. The formation of singly charged assemblies holding from one up to six monomer units is the outcome of the strong intermolecular H-bonds, particularly among terminal carboxyl groups. The variation of solvents from polar aprotic towards polar protic did not have any significant effects on the size of the assemblies. The addition of a salt such as NaOAc or Mg(OAc) 2 , depending on the concentration, altered the assembling. Computational analysis at the DFT level aided in the interpretation of the observed trends and revealed that individual gelator molecules spontaneously assemble to higher aggregates, but the presence of the Na + cation disrupts any gelator organization since it becomes significantly more favorable for gelator molecules to bind Na + cations up to the 3:1 ratio than to self-assemble, being fully in line with experimental observations reported here. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Dabić, Dario; Brkljačić, Lidija; Tandarić, Tana; Žinić, Mladen; Vianello, Robert; Frkanec, Leo; Kobetić, Renata
2018-01-01
Gels formed by self-assembly of small organic molecules are of wide interest as dynamic soft materials with numerous possible applications, especially in terms of nanotechnology for functional and responsive biomaterials, biosensors, and nanowires. Four bis-oxalamides were chosen to show if electrospray ionization mass spectrometry (ESI-MS) could be used as a prediction of a good gelator and also to shed light on the gelation processes. By inspecting the gelation of several solvent, we showed that bis(amino acid)oxalamide 1 proved to be the most efficient, also being able of forming the largest observable assemblies in the gas phase. The formation of singly charged assemblies holding from one up to six monomer units is the outcome of the strong intermolecular H-bonds, particularly among terminal carboxyl groups. The variation of solvents from polar aprotic towards polar protic did not have any significant effects on the size of the assemblies. The addition of a salt such as NaOAc or Mg(OAc)2, depending on the concentration, altered the assembling. Computational analysis at the DFT level aided in the interpretation of the observed trends and revealed that individual gelator molecules spontaneously assemble to higher aggregates, but the presence of the Na+ cation disrupts any gelator organization since it becomes significantly more favorable for gelator molecules to bind Na+ cations up to the 3:1 ratio than to self-assemble, being fully in line with experimental observations reported here. [Figure not available: see fulltext.
DNA-Assembled Advanced Plasmonic Architectures.
Liu, Na; Liedl, Tim
2018-03-28
The interaction between light and matter can be controlled efficiently by structuring materials at a length scale shorter than the wavelength of interest. With the goal to build optical devices that operate at the nanoscale, plasmonics has established itself as a discipline, where near-field effects of electromagnetic waves created in the vicinity of metallic surfaces can give rise to a variety of novel phenomena and fascinating applications. As research on plasmonics has emerged from the optics and solid-state communities, most laboratories employ top-down lithography to implement their nanophotonic designs. In this review, we discuss the recent, successful efforts of employing self-assembled DNA nanostructures as scaffolds for creating advanced plasmonic architectures. DNA self-assembly exploits the base-pairing specificity of nucleic acid sequences and allows for the nanometer-precise organization of organic molecules but also for the arrangement of inorganic particles in space. Bottom-up self-assembly thus bypasses many of the limitations of conventional fabrication methods. As a consequence, powerful tools such as DNA origami have pushed the boundaries of nanophotonics and new ways of thinking about plasmonic designs are on the rise.
Fontana, Jake; Spillmann, Christopher; Naciri, Jawad; Ratna, Banahalli R
2014-05-09
This protocol describes a self-assembly technique to create macroscopic monolayer films composed of ligand-coated nanoparticles. The simple, robust and scalable technique efficiently functionalizes metallic nanoparticles with thiol-ligands in a miscible water/organic solvent mixture allowing for rapid grafting of thiol groups onto the gold nanoparticle surface. The hydrophobic ligands on the nanoparticles then quickly phase separate the nanoparticles from the aqueous based suspension and confine them to the air-fluid interface. This drives the ligand-capped nanoparticles to form monolayer domains at the air-fluid interface. The use of water-miscible organic solvents is important as it enables the transport of the nanoparticles from the interface onto template-free substrates. The flow is mediated by a surface tension gradient and creates macroscopic, high-density, monolayer nanoparticle-ligand films. This self-assembly technique may be generalized to include the use of particles of different compositions, size, and shape and may lead to an efficient assembly method to produce low-cost, macroscopic, high-density, monolayer nanoparticle films for wide-spread applications.
Valbuena, Alejandro; Mateu, Mauricio G
2017-02-28
Self-assembling protein layers provide a "bottom-up" approach for precisely organizing functional elements at the nanoscale over a large solid surface area. The design of protein sheets with architecture and physical properties suitable for nanotechnological applications may be greatly facilitated by a thorough understanding of the principles that underlie their self-assembly and disassembly. In a previous study, the hexagonal lattice formed by the capsid protein (CA) of human immunodeficiency virus (HIV) was self-assembled as a monomolecular layer directly onto a solid substrate, and its mechanical properties and dynamics at equilibrium were analyzed by atomic force microscopy. Here, we use atomic force microscopy to analyze the kinetics of self-assembly of the planar CA lattice on a substrate and of its disassembly, either spontaneous or induced by materials fatigue. Both self-assembly and disassembly of the CA layer are cooperative reactions that proceed until a phase equilibrium is reached. Self-assembly requires a critical protein concentration and is initiated by formation of nucleation points on the substrate, followed by lattice growth and eventual merging of CA patches into a continuous monolayer. Disassembly of the CA layer showed hysteresis and appears to proceed only after large enough defects (nucleation points) are formed in the lattice, whose number is largely increased by inducing materials fatigue that depends on mechanical load and its frequency. Implications of the kinetic results obtained for a better understanding of self-assembly and disassembly of the HIV capsid and protein-based two-dimensional nanomaterials and the design of anti-HIV drugs targeting (dis)assembly and biocompatible nanocoatings are discussed. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Molecular Dynamics Studies of Self-Assembling Biomolecules and DNA-functionalized Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Cho, Vince Y.
This thesis is organized as following. In Chapter 2, we use fully atomistic MD simulations to study the conformation of DNA molecules that link gold nanoparticles to form nanoparticle superlattice crystals. In Chapter 3, we study the self-assembly of peptide amphiphiles (PAs) into a cylindrical micelle fiber by using CGMD simulations. Compared to fully atomistic MD simulations, CGMD simulations prove to be computationally cost-efficient and reasonably accurate for exploring self-assembly, and are used in all subsequent chapters. In Chapter 4, we apply CGMD methods to study the self-assembly of small molecule-DNA hybrid (SMDH) building blocks into well-defined cage-like dimers, and reveal the role of kinetics and thermodynamics in this process. In Chapter 5, we extend the CGMD model for this system and find that the assembly of SMDHs can be fine-tuned by changing parameters. In Chapter 6, we explore superlattice crystal structures of DNA-functionalized gold nanoparticles (DNA-AuNP) with the CGMD model and compare the hybridization.
Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom
Pandey, Shivendra; Johnson, Daniel; Kaplan, Ryan; Klobusicky, Joseph; Menon, Govind; Gracias, David H.
2014-01-01
The spontaneous self-organization of conformational isomers from identical precursors is of fundamental importance in chemistry. Since the precursors are identical, it is the multi-unit interactions, characteristics of the intermediates, and assembly pathways that determine the final conformation. Here, we use geometric path sampling and a mesoscale experimental model to investigate the self-assembly of a model polyhedral system, an octahedron, that forms two isomers. We compute the set of all possible assembly pathways and analyze the degrees of freedom or rigidity of intermediates. Consequently, by manipulating the degrees of freedom of a precursor, we were able to experimentally enrich the formation of one isomer over the other. Our results suggest a new approach to direct pathways in both natural and synthetic self-assembly using simple geometric criteria. We also compare the process of folding and unfolding in this model with a geometric model for cyclohexane, a well-known molecule with chair and boat conformations. PMID:25299051
Numerical approach on dynamic self-assembly of colloidal particles
NASA Astrophysics Data System (ADS)
Ibrahimi, Muhamet; Ilday, Serim; Makey, Ghaith; Pavlov, Ihor; Yavuz, Özgàn; Gulseren, Oguz; Ilday, Fatih Omer
Far from equilibrium systems of artificial ensembles are crucial for understanding many intelligent features in self-organized natural systems. However, the lack of established theory underlies a need for numerical implementations. Inspired by a novel work, we simulate a solution-suspended colloidal system that dynamically self assembles due to convective forces generated in the solvent when heated by a laser. In order to incorporate with random fluctuations of particles and continuously changing flow, we exploit a random-walk based Brownian motion model and a fluid dynamics solver prepared for games, respectively. Simulation results manage to fit to experiments and show many quantitative features of a non equilibrium dynamic self assembly, including phase space compression and an ensemble-energy input feedback loop.
Improving Self-Assembly by Varying the Temperature Periodically with Time
NASA Astrophysics Data System (ADS)
Raz, Oren; Jarzynski, Christopher
Self-assembly (SA) is the process by which basic components organize into a larger structure without external guidance. These processes are common in Nature, and also have technological applications, e.g. growing a crystal with a specific structure. So far, artificial SA processes have been designed mostly using diffusive building blocks with high specificity and directionality. The formation of the self-assembled structures is then driven by free-energy minimization into a thermodynamically stable state. In an alternative approach to SA, macroscopic parameters such as temperature, pressure, pH, magnetic field etc., are varied periodically with time. In this case, the SA structures are the stable periodic states of the driven system. Currently there are no design principles for periodically driven SA, other than in the limits of fast or weak driving. We present guiding ideas for self-assembly under periodic driving. As an example, we show a particular case in which self-assembly errors can be dramatically reduced by varying a system's temperature periodically with time. James S. McDonnell Foundation, and the US National Science Foundation: DMR-1506969.
Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy.
Ruiz-Osés, M; Gonzalez-Lakunza, N; Silanes, I; Gourdon, A; Arnau, A; Ortega, J E
2006-12-28
Uniaxial anisotropy in two-dimensional self-assembled supramolecular structures is achieved by the coadsorption of two different linear molecules with complementary amine and imide functionalization. The two-dimensional monolayer is defined by a one-dimensional stack of binary chains, which can be forced to line up along steps in vicinal surfaces. The competing driving forces in the self-organization process are discussed in light of the structures observed during single molecule adsorption and coadsorption on flat and vicinal surfaces and the corresponding theoretical calculations.
Langer, Dominik; Wicher, Barbara; Szczołko, Wojciech; Gdaniec, Maria; Tykarska, Ewa
2016-08-01
The crystal structures of three ester derivatives of glycyrrhetinic acid (GE) are reported. X-ray crystallography revealed that despite differences in the size of the ester substituents (ethyl, isopropyl and 2-morpholinoethyl) the scheme of molecular self-assembly is similar in all three cases but differs significantly from that observed in other known GE esters. According to our analysis, the two basic patterns of self-assembly of GE esters observed in their unsolvated crystals correspond to two distinct orientations of the ester groups relative to the triterpene backbone. Moreover, comparison of the self-assembly modes of GE esters in their unsolvated forms with the supramolecular organization of GE and carbenoxolone in their solvated crystals revealed that ester substituents replace solvent molecules hydrogen bonded to the COOH group at the triterpene skeleton, resulting in similar packing arrangements of these compounds.
Coassembly of Lysozyme and Amphiphilic Biomolecules Driven by Unimer-Aggregate Equilibrium.
Tao, Yuanyuan; Ma, Xiaoteng; Cai, Yaqian; Liu, Li; Zhao, Hanying
2018-04-12
Synthesis and self-assembly of bioconjugates composed of proteins and synthetic molecules have been widely studied because of the potential applications in medicine, biotechnology, and nanotechnology. One of the challenging research studies in this area is to develop organic solvent-free approaches to the synthesis and self-assembly of amphiphilic bioconjugates. In this research, dialysis-assisted approach, a method based on unimer-aggregate equilibrium, was applied in the coassembly of lysozyme and conjugate of cholesterol and glutathione (Ch-GSH). In phosphate buffer solution, amphiphilic Ch-GSH conjugate self-assembles into vesicles, and the vesicle solution is dialyzed against lysozyme solution. Negatively charged Ch-GSH unimers produced in the unimer-vesicle exchange equilibrium, diffuse across the dialysis membrane and have electrostatic interaction with positively charged lysozyme, resulting in the formation of Ch-GSH-lysozyme bioconjugate. Above a critical concentration, the three-component bioconjugate molecules self-assemble into bioactive vesicles.
Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe; ...
2016-07-19
Self-assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self-assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self-assemblies made from a water-soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer-embedded self-assembled architectures are investigated by combining small-angle neutron and X-ray scattering, coarse-grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporatingmore » them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellarto- lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. In conclusion, this study shows promise for enabling more flexibility in processing and utilizing water-soluble conjugated polymers in aqueous solutions for self-assembly based fabrication of stimuli-responsive nanostructures and sensory materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe
Self-assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self-assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self-assemblies made from a water-soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer-embedded self-assembled architectures are investigated by combining small-angle neutron and X-ray scattering, coarse-grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporatingmore » them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellarto- lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. In conclusion, this study shows promise for enabling more flexibility in processing and utilizing water-soluble conjugated polymers in aqueous solutions for self-assembly based fabrication of stimuli-responsive nanostructures and sensory materials.« less
Sevim, S; Sorrenti, A; Franco, C; Furukawa, S; Pané, S; deMello, A J; Puigmartí-Luis, J
2018-05-01
Self-assembly is a crucial component in the bottom-up fabrication of hierarchical supramolecular structures and advanced functional materials. Control has traditionally relied on the use of encoded building blocks bearing suitable moieties for recognition and interaction, with targeting of the thermodynamic equilibrium state. On the other hand, nature leverages the control of reaction-diffusion processes to create hierarchically organized materials with surprisingly complex biological functions. Indeed, under non-equilibrium conditions (kinetic control), the spatio-temporal command of chemical gradients and reactant mixing during self-assembly (the creation of non-uniform chemical environments for example) can strongly affect the outcome of the self-assembly process. This directly enables a precise control over material properties and functions. In this tutorial review, we show how the unique physical conditions offered by microfluidic technologies can be advantageously used to control the self-assembly of materials and of supramolecular aggregates in solution, making possible the isolation of intermediate states and unprecedented non-equilibrium structures, as well as the emergence of novel functions. Selected examples from the literature will be used to confirm that microfluidic devices are an invaluable toolbox technology for unveiling, understanding and steering self-assembly pathways to desired structures, properties and functions, as well as advanced processing tools for device fabrication and integration.
Novel Self-Assembling Amino Acid-Derived Block Copolymer with Changeable Polymer Backbone Structure.
Koga, Tomoyuki; Aso, Eri; Higashi, Nobuyuki
2016-11-29
Block copolymers have attracted much attention as potentially interesting building blocks for the development of novel nanostructured materials in recent years. Herein, we report a new type of self-assembling block copolymer with changeable polymer backbone structure, poly(Fmoc-Ser) ester -b-PSt, which was synthesized by combining the polycondensation of 9-fluorenylmethoxycarbonyl-serine (Fmoc-Ser) with the reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene (St). This block copolymer showed the direct conversion of the backbone structure from polyester to polypeptide through a multi O,N-acyl migration triggered by base-induced deprotection of Fmoc groups in organic solvent. Such polymer-to-polymer conversion was found to occur quantitatively without decrease in degree of polymerization and to cause a drastic change in self-assembling property of the block copolymer. On the basis of several morphological analyses using FTIR spectroscopy, atomic force, and transmission and scanning electron microscopies, the resulting peptide block copolymer was found to self-assemble into a vesicle-like hollow nanosphere with relatively uniform diameter of ca. 300 nm in toluene. In this case, the peptide block generated from polyester formed β-sheet structure, indicating the self-assembly via peptide-guided route. We believe the findings presented in this study offer a new concept for the development of self-assembling block copolymer system.
Self-assembly processes in the prebiotic environment
Deamer, David; Singaram, Sara; Rajamani, Sudha; Kompanichenko, Vladimir; Guggenheim, Stephen
2006-01-01
An important question guiding research on the origin of life concerns the environmental conditions where molecular systems with the properties of life first appeared on the early Earth. An appropriate site would require liquid water, a source of organic compounds, a source of energy to drive polymerization reactions and a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. One such site is a geothermal setting, in which organic compounds interact with mineral surfaces to promote self-assembly and polymerization reactions. Here, we report an initial study of two geothermal sites where mixtures of representative organic solutes (amino acids, nucleobases, a fatty acid and glycerol) and phosphate were mixed with high-temperature water in clay-lined pools. Most of the added organics and phosphate were removed from solution with half-times measured in minutes to a few hours. Analysis of the clay, primarily smectite and kaolin, showed that the organics were adsorbed to the mineral surfaces at the acidic pH of the pools, but could subsequently be released in basic solutions. These results help to constrain the range of possible environments for the origin of life. A site conducive to self-assembly of organic solutes would be an aqueous environment relatively low in ionic solutes, at an intermediate temperature range and neutral pH ranges, in which cyclic concentration of the solutes can occur by transient dry intervals. PMID:17008220
Nguyen, Hiep Thi; Luong, Hien Thu; Nguyen, Hai Dai; Tran, Hien Anh; Huynh, Khon Chan; Vo, Toi Van
2017-01-01
Biological self-assembly is a process in which building blocks autonomously organize to form stable supermolecules of higher order and complexity through domination of weak, noncovalent interactions. For silk protein, the effect of high incubating temperature on the induction of secondary structure and self-assembly was well investigated. However, the effect of freezing and thawing on silk solution has not been studied. The present work aimed to investigate a new all-aqueous process to form 3D porous silk fibroin matrices using a freezing-assisted self-assembly method. This study proposes an experimental investigation and optimization of environmental parameters for the self-assembly process such as freezing temperature, thawing process, and concentration of silk solution. The optical images demonstrated the possibility and potential of -80ST48 treatment to initialize the self-assembly of silk fibroin as well as controllably fabricate a porous scaffold. Moreover, the micrograph images illustrate the assembly of silk protein chain in 7 days under the treatment of -80ST48 process. The surface morphology characterization proved that this method could control the pore size of porous scaffolds by control of the concentration of silk solution. The animal test showed the support of silk scaffold for cell adhesion and proliferation, as well as the cell migration process in the 3D implantable scaffold.
Tran, Hien Anh; Huynh, Khon Chan; Vo, Toi Van
2017-01-01
Biological self-assembly is a process in which building blocks autonomously organize to form stable supermolecules of higher order and complexity through domination of weak, noncovalent interactions. For silk protein, the effect of high incubating temperature on the induction of secondary structure and self-assembly was well investigated. However, the effect of freezing and thawing on silk solution has not been studied. The present work aimed to investigate a new all-aqueous process to form 3D porous silk fibroin matrices using a freezing-assisted self-assembly method. This study proposes an experimental investigation and optimization of environmental parameters for the self-assembly process such as freezing temperature, thawing process, and concentration of silk solution. The optical images demonstrated the possibility and potential of −80ST48 treatment to initialize the self-assembly of silk fibroin as well as controllably fabricate a porous scaffold. Moreover, the micrograph images illustrate the assembly of silk protein chain in 7 days under the treatment of −80ST48 process. The surface morphology characterization proved that this method could control the pore size of porous scaffolds by control of the concentration of silk solution. The animal test showed the support of silk scaffold for cell adhesion and proliferation, as well as the cell migration process in the 3D implantable scaffold. PMID:28367442
Quantum dot rolled-up microtube optoelectronic integrated circuit.
Bhowmick, Sishir; Frost, Thomas; Bhattacharya, Pallab
2013-05-15
A rolled-up microtube optoelectronic integrated circuit operating as a phototransceiver is demonstrated. The microtube is made of a InGaAs/GaAs strained bilayer with InAs self-organized quantum dots inserted in the GaAs layer. The phototransceiver consists of an optically pumped microtube laser and a microtube photoconductive detector connected by an a-Si/SiO2 waveguide. The loss in the waveguide and responsivity of the entire phototransceiver circuit are 7.96 dB/cm and 34 mA/W, respectively.
Shank, Lalida P.; Broughman, James R.; Takeguchi, Wade; Cook, Gabriel; Robbins, Ashley S.; Hahn, Lindsey; Radke, Gary; Iwamoto, Takeo; Schultz, Bruce D.; Tomich, John M.
2006-01-01
Three series of 22-residue peptides derived from the transmembrane M2 segment of the glycine receptor α1-subunit (M2GlyR) have been designed, synthesized, and tested to determine the plasticity of a channel-forming sequence and to define whether channel pores with enhanced conductive properties could be created. Sixteen sequences were examined for aqueous solubility, solution-association tendency, secondary structure, and half-maximal concentration for supramolecular assembly, channel activity, and ion transport properties across epithelial monolayers. All peptides interact strongly with membranes: associating with, inserting across, and assembling to form homooligomeric bundles when in micromolar concentrations. Single and double amino acid replacements involving arginine and/or aromatic amino acids within the final five C-terminal residues of the peptide cause dramatic effects on the concentration dependence, yielding a range of K1/2 values from 36 ± 5 to 390 ± 220 μM for transport activity. New water/lipid interfacial boundaries were established for the transmembrane segment using charged or aromatic amino acids, thus limiting the peptides' ability to move perpendicularly to the plane of the bilayer. Formation of discrete water/lipid interfacial boundaries appears to be necessary for efficient supramolecular assembly and high anion transport activity. A peptide sequence is identified that may show efficacy in channel replacement therapy for channelopathies such as cystic fibrosis. PMID:16387776
Structural Degradation and Swelling of Lipid Bilayer under the Action of Benzene.
Odinokov, Alexey; Ostroumov, Denis
2015-12-03
Benzene and other nonpolar organic solvents can accumulate in the lipid bilayer of cellular membranes. Their effect on the membrane structure and fluidity determines their toxic properties and antibiotic action of the organic solvents on the bacteria. We performed molecular dynamics simulations of the interaction of benzene with the dimyristoylphosphatidylcholine (DMPC) bilayer. An increase in the membrane surface area and fluidity was clearly detected. Changes in the acyl chain ordering, tilt angle, and overall bilayer thickness were, however, much less marked. The dependence of all computed quantities on the benzene content showed two regimes separated by the solubility limit of benzene in water. When the amount of benzene exceeded this point, a layer of almost pure benzene started to grow between the membrane leaflets. This process corresponds to the nucleation of a new phase and provides a molecular mechanism for the mechanical rupture of the bilayer under the action of nonpolar compounds.
Jin, Cheng S.; Lovell, Jonathan F.; Zheng, Gang
2013-01-01
We recently developed porphysomes as intrinsically multifunctional nanovesicles. A photosensitizer, pyropheophorbide α, was conjugated to a phospholipid and then self-assembled to liposome-like spherical vesicles. Due to the extremely high density of porphyrin in the porphyrin-lipid bilayer, porphysomes generated large extinction coefficients, structure-dependent fluorescence self-quenching, and excellent photothermal efficacy. In our formulation, porphysomes were synthesized using high pressure extrusion, and displayed a mean particle size around 120 nm. Twenty-four hr post-intravenous injection of porphysomes, the local temperature of the tumor increased from 30 °C to 62 °C rapidly upon one minute exposure of 750 mW (1.18 W/cm2), 671 nm laser irradiation. Following the complete thermal ablation of the tumor, eschars formed and healed within 2 weeks, while in the control groups the tumors continued to grow and all reached the defined end point within 3 weeks. These data show how porphysomes can be used as potent photothermal therapy (PTT) agents. PMID:24084712
Yoon, Hyo Jae; Shapiro, Nathan D.; Park, Kyeng Min; Thuo, Martin M.; Soh, Siowling
2012-01-01
This paper characterizes the rates of charge transport by tunneling across a series of molecules—arrayed in self-assembled monolayers—containing a common head group and body (HS(CH2)4CONH(CH2)2-) and structurally varied tail groups (-R). These molecules are assembled in junctions of the structure AgTS/SAM//Ga2O3/EGaIn. Over a range of common aliphatic, aromatic, and heteroaromatic organic tail groups, changing the structure of R does not significantly influence the rate of tunneling. PMID:22504880
Self-assemblies of luminescent rare earth compounds in capsules and multilayers.
Zhang, Renjie; Shang, Juanjuan; Xin, Jing; Xie, Beibei; Li, Ya; Möhwald, Helmuth
2014-05-01
This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out. Copyright © 2014 Elsevier B.V. All rights reserved.
Architectonics: Design of Molecular Architecture for Functional Applications.
Avinash, M B; Govindaraju, Thimmaiah
2018-02-20
The term architectonics has its roots in the architectural and philosophical (as early as 1600s) literature that refers to "the theory of structure" and "the structure of theory", respectively. The concept of architectonics has been adapted to advance the field of molecular self-assembly and termed as molecular architectonics. In essence, the methodology of organizing molecular units in the required and controlled configurations to develop advanced functional systems for materials and biological applications comprises the field of molecular architectonics. This concept of designing noncovalent systems enables to focus on different functional aspects of designer molecules for biological and nonbiological applications and also strengthens our efforts toward the mastery over the art of controlled molecular self-assemblies. Programming complex molecular interactions and assemblies for specific functions has been one of the most challenging tasks in the modern era. Meticulously ordered molecular assemblies can impart remarkable developments in several areas spanning energy, health, and environment. For example, the well-defined nano-, micro-, and macroarchitectures of functional molecules with specific molecular ordering possess potential applications in flexible electronics, photovoltaics, photonic crystals, microreactors, sensors, drug delivery, biomedicine, and superhydrophobic coatings, among others. The functional molecular architectures having unparalleled properties are widely evident in various designs of Nature. By drawing inspirations from Nature, intended molecular architectures can be designed and developed to harvest various functions, as there is an inexhaustible resource and scope. In this Account, we present exquisite designer molecules developed by our group and others with an objective to master the art of molecular recognition and self-assembly for functional applications. We demonstrate the tailor-ability of molecular self-assemblies by employing biomolecules like amino acids and nucleobases as auxiliaries. Naphthalenediimide (NDI), perylenediimide (PDI), and few other molecular systems serve as functional modules. The effects of stereochemistry and minute structural modifications in the molecular designs on the supramolecular interactions, and construction of self-assembled zero-dimensional (OD), one-dimensional (1D), and two-dimensional (2D) nano- and microarchitectures like particles, spheres, cups, bowls, fibers, belts, helical belts, supercoiled helices, sheets, fractals, and honeycomb-like arrays are discussed in extensive detail. Additionally, we present molecular systems that showcase the elegant designs of coassembly, templated assembly, hierarchical assembly, transient self-assembly, chiral denaturation, retentive helical memory, self-replication, supramolecular regulation, supramolecular speciation, supernon linearity, dynamic pathway complexity, supramolecular heterojunction, living supramolecular polymerization, and molecular machines. Finally, we describe the molecular engineering principles learnt over the years that have led to several applications, namely, organic electronics, self-cleaning, high-mechanical strength, and tissue engineering.
Self-Propelled Micromotors for Cleaning Polluted Water
2013-01-01
We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction–diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water. PMID:24180623
Topological defects in liquid crystals and molecular self-assembly (Conference Presentation)
NASA Astrophysics Data System (ADS)
Abbott, Nicholas L.
2017-02-01
Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerizations, leading to a range of elastomers and gels with complex mechanical and optical properties. However, little is understood about molecular-level assembly processes within defects. This presentation will describe an experimental study that reveals that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, key signatures of molecular self-assembly of amphiphilic molecules in topological defects are observed - including cooperativity, reversibility, and controlled growth of the molecular assemblies. By using polymerizable amphiphiles, we also demonstrate preservation of molecular assemblies templated by defects, including nanoscopic "o-rings" synthesized from "Saturn-ring" disclinations. Our results reveal that topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly in a manner that is strongly analogous to other classes of macromolecular templates (e.g., polymer—surfactant complexes). Opportunities for the design of exquisitely responsive soft materials will be discussed using bacterial endotoxin as an example.
Manipulating the ABCs of self-assembly via low-χ block polymer design
Chang, Alice B.; Lee, Byeongdu; Garland, Carol M.; Jones, Simon C.; Matsen, Mark W.
2017-01-01
Block polymer self-assembly typically translates molecular chain connectivity into mesoscale structure by exploiting incompatible blocks with large interaction parameters (χij). In this article, we demonstrate that the converse approach, encoding low-χ interactions in ABC bottlebrush triblock terpolymers (χAC ≲ 0), promotes organization into a unique mixed-domain lamellar morphology, which we designate LAMP. Transmission electron microscopy indicates that LAMP exhibits ACBC domain connectivity, in contrast to conventional three-domain lamellae (LAM3) with ABCB periods. Complementary small-angle X-ray scattering experiments reveal a strongly decreasing domain spacing with increasing total molar mass. Self-consistent field theory reinforces these observations and predicts that LAMP is thermodynamically stable below a critical χAC, above which LAM3 emerges. Both experiments and theory expose close analogies to ABA′ triblock copolymer phase behavior, collectively suggesting that low-χ interactions between chemically similar or distinct blocks intimately influence self-assembly. These conclusions provide fresh opportunities for block polymer design with potential consequences spanning all self-assembling soft materials. PMID:28588139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukundan, Harshini; Xei, Hongshi; Anderson, Aaron S
We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyesmore » are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.« less
Balatti, Galo E; Ambroggio, Ernesto E; Fidelio, Gerardo D; Martini, M Florencia; Pickholz, Mónica
2017-10-20
In this work; we investigated the differential interaction of amphiphilic antimicrobial peptides with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid structures by means of extensive molecular dynamics simulations. By using a coarse-grained (CG) model within the MARTINI force field; we simulated the peptide-lipid system from three different initial configurations: (a) peptides in water in the presence of a pre-equilibrated lipid bilayer; (b) peptides inside the hydrophobic core of the membrane; and (c) random configurations that allow self-assembled molecular structures. This last approach allowed us to sample the structural space of the systems and consider cooperative effects. The peptides used in our simulations are aurein 1.2 and maculatin 1.1; two well-known antimicrobial peptides from the Australian tree frogs; and molecules that present different membrane-perturbing behaviors. Our results showed differential behaviors for each type of peptide seen in a different organization that could guide a molecular interpretation of the experimental data. While both peptides are capable of forming membrane aggregates; the aurein 1.2 ones have a pore-like structure and exhibit a higher level of organization than those conformed by maculatin 1.1. Furthermore; maculatin 1.1 has a strong tendency to form clusters and induce curvature at low peptide-lipid ratios. The exploration of the possible lipid-peptide structures; as the one carried out here; could be a good tool for recognizing specific configurations that should be further studied with more sophisticated methodologies.
Toward photostable multiplex analyte detection on a single mode planar optical waveguide
NASA Astrophysics Data System (ADS)
Mukundan, Harshini; Xie, Hongzhi; Anderson, Aaron; Grace, W. Kevin; Martinez, Jennifer S.; Swanson, Basil
2009-02-01
We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.
Molecular Origin of the Self-Assembly of Lanreotide into Nanotubes: A Mutational Approach☆
Valéry, Céline; Pouget, Emilie; Pandit, Anjali; Verbavatz, Jean-Marc; Bordes, Luc; Boisdé, Isabelle; Cherif-Cheikh, Roland; Artzner, Franck; Paternostre, Maité
2008-01-01
Lanreotide, a synthetic, therapeutic octapeptide analog of somatostatin, self-assembles in water into perfectly hollow and monodisperse (24-nm wide) nanotubes. Lanreotide is a cyclic octapeptide that contains three aromatic residues. The molecular packing of the peptide in the walls of a nanotube has recently been characterized, indicating four hierarchical levels of organization. This is a fascinating example of spontaneous self-organization, very similar to the formation of the gas vesicle walls of Halobacterium halobium. However, this unique peptide self-assembly raises important questions about its molecular origin. We adopted a directed mutation approach to determine the molecular parameters driving the formation of such a remarkable peptide architecture. We have modified the conformation by opening the cycle and by changing the conformation of a Lys residue, and we have also mutated the aromatic side chains of the peptide. We show that three parameters are essential for the formation of lanreotide nanotubes: i), the specificity of two of the three aromatic side chains, ii), the spatial arrangement of the hydrophilic and hydrophobic residues, and iii), the aromatic side chain in the β-turn of the molecule. When these molecular characteristics are modified, either the peptides lose their self-assembling capability or they form less-ordered architectures, such as amyloid fibers and curved lamellae. Thus we have determined key elements of the molecular origins of lanreotide nanotube formation. PMID:17993497
NASA Astrophysics Data System (ADS)
Hof, Fraser; Palmer, Liam C.; Rebek, Julius, Jr.
2001-11-01
While important to the biological and materials sciences, noncovalent interactions, self-folding, and self-assembly often receive little discussion in the undergraduate chemistry curriculum. The synthesis and NMR characterization of a molecular "tennis ball" in an advanced undergraduate organic chemistry laboratory is a simple and effective way to introduce the relevance of these concepts. In appropriate solvents, the monomer dimerizes through a seam of eight hydrogen bonds with encapsulation of a guest molecule and symmetry reminiscent of a tennis ball. The entire experiment can be completed in three lab periods, however large-scale synthetic preparation of the starting monomer by a teaching assistant would reduce the laboratory to a single lab period for NMR studies.
Length-Dependent Formation of Transmembrane Pores by 310-Helical α-Aminoisobutyric Acid Foldamers
2015-01-01
The synthetic biology toolbox lacks extendable and conformationally controllable yet easy-to-synthesize building blocks that are long enough to span membranes. To meet this need, an iterative synthesis of α-aminoisobutyric acid (Aib) oligomers was used to create a library of homologous rigid-rod 310-helical foldamers, which have incrementally increasing lengths and functionalizable N- and C-termini. This library was used to probe the inter-relationship of foldamer length, self-association strength, and ionophoric ability, which is poorly understood. Although foldamer self-association in nonpolar chloroform increased with length, with a ∼14-fold increase in dimerization constant from Aib6 to Aib11, ionophoric activity in bilayers showed a stronger length dependence, with the observed rate constant for Aib11 ∼70-fold greater than that of Aib6. The strongest ionophoric activity was observed for foldamers with >10 Aib residues, which have end-to-end distances greater than the hydrophobic width of the bilayers used (∼2.8 nm); X-ray crystallography showed that Aib11 is 2.93 nm long. These studies suggest that being long enough to span the membrane is more important for good ionophoric activity than strong self-association in the bilayer. Planar bilayer conductance measurements showed that Aib11 and Aib13, but not Aib7, could form pores. This pore-forming behavior is strong evidence that Aibm (m ≥ 10) building blocks can span bilayers. PMID:26699898
Surfactant-assisted growth and optical properties of ZnO hexagonal bilayer disk-like microstructures
NASA Astrophysics Data System (ADS)
Zhu, Q. P.; Shen, X. Y.; Wang, L. L.; Zhu, L. P.; Wang, L. J.; Liao, G. H.
2018-01-01
ZnO hexagonal bilayer disk-like microstructures are successfully fabricated using a simple solvothermal method assisted with surfactant. The structure and morphology were investigated by XRD, SEM, and EDS. XRD result indicated that the as-obtained samples were well-crystallized wurtzite hexagonal ZnO structure. SEM images showed that the ZnO hexagonal bilayer disk-like assembles consist of two uniform and smooth disks with an average edge length of 6 μm and thickness of ˜4 μm. UV-vis spectrum reveals that ZnO sampls show an appreciable red shift and the band gap energy of the obtained ZnO samples were about 3.15 eV. A very strong UV emission at the ultraviolet (UV) region was observed in the photoluminescence (PL) spectrum of the as-prepared ZnO samples tested at room-temperature. A possible growth process of the ZnO hexagonal bilayer disk-like microstructures was schematically illustrated.
Wang, Minghui; Janout, Vaclav; Regen, Steven L.
2010-07-12
A homologous series of calix[4]arene-, calix[5]arene- and calix[6]arene-based surfactants, containing pendant trimethylammonium and n-hexadecyl groups, have been compared with respect to their ability (i) to undergo ionic crosslinking at the air/water interface, (ii) to incorporate poly(4-styrenesulfonate) (PSS) in Langmuir-Blodgett (LB) bilayers, and (iii) to act as barriers towards He, N 2 and CO 2 when assembled into crosslinked LB bilayers. As these calix[n]arenes increase in size, their ability to undergo ionic crosslinking has been found to increase, the thickness of corresponding glued LB bilayers has been found to decrease, and their barrier properties and permeation selectivities have been found tomore » increase. In conclusion, the likely origin for these effects and the probable mechanism by which He, N 2 and CO 2 cross these ultrathin films are discussed.« less
Periodic Grating-like Patterns Induced by Self-Assembly of Gelator Fibres in Nematic Gels.
Topnani, Neha B; Prutha, N; Pratibha, R
2018-03-15
Periodic orientation patterns occurring in nematic gels, revealed by optical and scanning electron microscopy, are found to be formed by spontaneous self-assembly of fibrous aggregates of a low-molecular-weight organogelator in an aligned thermotropic liquid crystal (LC). Self-organization into periodic structures is also reflected in a calorimetric study, which shows the occurrence of three thermoreversible states, namely, isotropic liquid, nematic and nematic gel. The segregation and self-assembly of the fibrous aggregates leading to pattern formation are attributed to the highly polar LC and to hydrogen bonding between gelator molecules, as shown by X-ray diffraction and vibrational spectroscopy. This study aims to investigate in detail the effect of the chemical nature and alignment of an anisotropic solvent on the morphology of the gelator fibres and the resulting gelation process. The periodic organization of LC-rich and fibre-rich regions can also provide a way to obtain templates for positioning nanoparticle arrays in an LC matrix, which can lead to novel devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lock and Key Colloids through Polymerization-Induced Buckling of Monodispersed Silicon Oil Droplets
NASA Astrophysics Data System (ADS)
Sacanna, Stefano; Irvine, William T. M.; Chaikin, Paul M.; Pine, David J.
2010-03-01
Colloidal particles can spontaneously associate into larger structured aggregates when driven by selective and directional interactions. Colloidal organization can be programmed by engineering shapes and interactions of basic building blocks in a manner similar to molecular self-assembly. Examples of successful strategies that allow non-trivial assembly of particles include template-directed patterning, capillary forces and, most commonly, the functionalization of the particle surfaces with ``sticky patches'' of biological or synthetic molecules. The level of complexity of the realizable assemblies, increases when particles with well defined shape anisotropies are used. In particular depletion forces and specific surface treatments in combination with non spherical particles have proven to be powerful tools to self-assembly complex microstructures. We describe a simple, high yield, synthetic pathway to fabricate monodisperse hybrid silica spheres with well defined cavities. Because the particle morphologies are reproducible and tunable with precision, the resulting particles can be used as basic building blocks in the assembly of larger monodisperse clusters. This is demonstrated using depletion to drive the self-assembly.
NASA Astrophysics Data System (ADS)
Borthakur, Tribeni; Sarma, Ranjit
2018-01-01
A top-contact Pentacene-based organic thin film transistor (OTFT) with N, N'-Bis (3-methyl phenyl)- N, N'-diphenyl benzidine (TPD)/Au bilayer source-drain electrode is reported. The devices with TPD/Au bilayer source-drain (S-D) electrodes show better performance than the single layer S-D electrode OTFT devices. The field-effect mobility of 4.13 cm2 v-1 s-1, the on-off ratio of 1.86 × 107, the threshold voltage of -4 v and the subthreshold slope of .27 v/decade, respectively, are obtained from the device with a TPD/Au bilayer source-drain electrode.