Science.gov

Sample records for self-compartmentalizing protease family

  1. Structure of the Archaeal Pab87 Peptidase Reveals a Novel Self-Compartmentalizing Protease Family

    PubMed Central

    Delfosse, Vanessa; Girard, Eric; Birck, Catherine; Delmarcelle, Michaël; Delarue, Marc; Poch, Olivier; Schultz, Patrick; Mayer, Claudine

    2009-01-01

    Self-compartmentalizing proteases orchestrate protein turnover through an original architecture characterized by a central catalytic chamber. Here we report the first structure of an archaeal member of a new self-compartmentalizing protease family forming a cubic-shaped octamer with D4 symmetry and referred to as CubicO. We solved the structure of the Pyrococcus abyssi Pab87 protein at 2.2 Å resolution using the anomalous signal of the high-phasing-power lanthanide derivative Lu-HPDO3A. A 20 Å wide channel runs through this supramolecular assembly of 0.4 MDa, giving access to a 60 Å wide central chamber holding the eight active sites. Surprisingly, activity assays revealed that Pab87 degrades specifically d-amino acid containing peptides, which have never been observed in archaea. Genomic context of the Pab87 gene showed that it is surrounded by genes involved in the amino acid/peptide transport or metabolism. We propose that CubicO proteases are involved in the processing of d-peptides from environmental origins. PMID:19266066

  2. Evolution of the protease-activated receptor family in vertebrates

    PubMed Central

    JIN, MIN; YANG, HAI-WEI; TAO, AI-LIN; WEI, JI-FU

    2016-01-01

    Belonging to the G protein-coupled receptor (GPcr) family, the protease-activated receptors (Pars) consist of 4 members, PAR1-4. PARs mediate the activation of cells via thrombin, serine and other proteases. Such protease-triggered signaling events are thought to be critical for hemostasis, thrombosis and other normal pathological processes. In the present study, we examined the evolution of PARs by analyzing phylogenetic trees, chromosome location, selective pressure and functional divergence based on the 169 functional gene alignment sequences from 57 vertebrate gene sequences. We found that the 4 PARs originated from 4 invertebrate ancestors by phylogenetic trees analysis. The selective pressure results revealed that only PAR1 appeared by positive selection during its evolution, while the other PAR members did not. In addition, we noticed that although these PARs evolved separately, the results of functional divergence indicated that their evolutional rates were similar and their functions did not significantly diverge. The findings of our study provide valuable insight into the evolutionary history of the vertebrate PAR family. PMID:26820116

  3. The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis.

    PubMed

    Beers, Eric P; Jones, Alan M; Dickerman, Allan W

    2004-01-01

    The Arabidopsis thaliana genome has over 550 protease sequences representing all five catalytic types: serine, cysteine, aspartic acid, metallo and threonine (MEROPS peptidase database, http://merops.sanger.ac.uk/), which probably reflect a wide variety of as yet unidentified functions performed by plant proteases. Recent indications that the 26S proteasome, a T1 family-threonine protease, is a regulator of light and hormone responsive signal transduction highlight the potential of proteases to participate in many aspects of plant growth and development. Recent discoveries that proteases are required for stomatal distribution, embryo development and disease resistance point to wider roles for four additional multigene families that include some of the most frequently studied (yet poorly understood) plant proteases: the subtilisin-like, serine proteases (family S8), the papain-like, cysteine proteases (family C1A), the pepsin-like, aspartic proteases (family A1) and the plant matrixin, metalloproteases (family M10A). In this report, 54 subtilisin-like, 30 papain-like and 59 pepsin-like proteases from Arabidopsis, are compared with S8, C1A and A1 proteases known from other plant species at the functional, phylogenetic and gene structure levels. Examples of structural conservation between S8, C1A and A1 genes from rice, barley, tomato and soybean and those from Arabidopsis are noted, indicating that some common, essential plant protease roles were established before the divergence of monocots and eudicots. Numerous examples of tandem duplications of protease genes and evidence for a variety of restricted expression patterns suggest that a high degree of specialization exists among proteases within each family. We propose that comprehensive analysis of the functions of these genes in Arabidopsis will firmly establish serine, cysteine and aspartic proteases as regulators and effectors of a wide range of plant processes.

  4. Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications.

    PubMed Central

    Bazan, J F; Fletterick, R J

    1988-01-01

    Proteases that are encoded by animal picornaviruses and plant como- and potyviruses form a related group of cysteine-active-center enzymes that are essential for virus maturation. We show that these proteins are homologous to the family of trypsin-like serine proteases. In our model, the active-site nucleophile of the trypsin catalytic triad, Ser-195, is changed to a Cys residue in these viral proteases. The other two residues of the triad, His-57 and Asp-102, are otherwise absolutely conserved in all the viral protease sequences. Secondary structure analysis of aligned sequences suggests the location of the component strands of the twin beta-barrel trypsin fold in the viral proteases. Unexpectedly, the 2a and 3c subclasses of viral cysteine proteases are, respectively, homologous to the small and large structural subclasses of trypsin-like serine proteases. This classification allows the molecular mapping of residues from viral sequences onto related tertiary structures; we precisely identify amino acids that are strong determinants of specificity for both small and large viral cysteine proteases. Images PMID:3186696

  5. Identification of papain-like cysteine proteases from the bovine piroplasm Babesia bigemina and evolutionary relationship of piroplasms C1 family of cysteine proteases.

    PubMed

    Martins, Tiago M; do Rosário, Virgílio E; Domingos, Ana

    2011-01-01

    Papain-like cysteine proteases have been shown to have essential roles in parasitic protozoa and are under study as promising drug targets. Five genes were identified by sequence similarity search to be homologous to the cysteine protease family in the ongoing Babesia bigemina genome sequencing project database and were compared with the annotated genes from the complete bovine piroplasm genomes of Babesia bovis, Theileria annulata, and Theileria parva. Multiple genome alignments and sequence analysis were used to evaluate the molecular evolution events that occurred in the C1 family of cysteine proteases in these piroplasms of veterinary importance. BbiCPL1, one of the newly identified cysteine protease genes in the B. bigemina genome was expressed in Escherichia coli and shows activity against peptide substrates. Considerable differences were observed in the cysteine protease family between Babesia and Theileria genera, and this may partially explain the diverse infection mechanisms of these tick-borne diseases. PMID:20655912

  6. Genome-wide survey of prokaryotic serine proteases: Analysis of distribution and domain architectures of five serine protease families in prokaryotes

    PubMed Central

    Tripathi, Lokesh P; Sowdhamini, R

    2008-01-01

    Background Serine proteases are one of the most abundant groups of proteolytic enzymes found in all the kingdoms of life. While studies have established significant roles for many prokaryotic serine proteases in several physiological processes, such as those associated with metabolism, cell signalling, defense response and development, functional associations for a large number of prokaryotic serine proteases are relatively unknown. Current analysis is aimed at understanding the distribution and probable biological functions of the select serine proteases encoded in representative prokaryotic organisms. Results A total of 966 putative serine proteases, belonging to five families, were identified in the 91 prokaryotic genomes using various sensitive sequence search techniques. Phylogenetic analysis reveals several species-specific clusters of serine proteases suggesting their possible involvement in organism-specific functions. Atypical phylogenetic associations suggest an important role for lateral gene transfer events in facilitating the widespread distribution of the serine proteases in the prokaryotes. Domain organisations of the gene products were analysed, employing sensitive sequence search methods, to infer their probable biological functions. Trypsin, subtilisin and Lon protease families account for a significant proportion of the multi-domain representatives, while the D-Ala-D-Ala carboxypeptidase and the Clp protease families are mostly single-domain polypeptides in prokaryotes. Regulatory domains for protein interaction, signalling, pathogenesis, cell adhesion etc. were found tethered to the serine protease domains. Some domain combinations (such as S1-PDZ; LON-AAA-S16 etc.) were found to be widespread in the prokaryotic lineages suggesting a critical role in prokaryotes. Conclusion Domain architectures of many serine proteases and their homologues identified in prokaryotes are very different from those observed in eukaryotes, suggesting distinct roles

  7. Modeling and structural analysis of evolutionarily diverse S8 family serine proteases.

    PubMed

    Laskar, Aparna; Rodger, Euan James; Chatterjee, Aniruddha; Mandal, Chhabinath

    2011-01-01

    Serine proteases are an abundant class of enzymes that are involved in a wide range of physiological processes and are classified into clans sharing structural homology. The active site of the subtilisin-like clan contains a catalytic triad in the order Asp, His, Ser (S8 family) or a catalytic tetrad in the order Glu, Asp and Ser (S53 family). The core structure and active site geometry of these proteases is of interest for many applications. The aim of this study was to investigate the structural properties of different S8 family serine proteases from a diverse range of taxa using molecular modeling techniques. In conjunction with 12 experimentally determined three-dimensional structures of S8 family members, our predicted structures from an archaeon, protozoan and a plant were used for analysis of the catalytic core. Amino acid sequences were obtained from the MEROPS database and submitted to the LOOPP server for threading based structure prediction. The predicted structures were refined and validated using PROCHECK, SCRWL and MODELYN. Investigation of secondary structures and electrostatic surface potential was performed using MOLMOL. Encompassing a wide range of taxa, our structural analysis provides an evolutionary perspective on S8 family serine proteases. Focusing on the common core containing the catalytic site of the enzyme, the analysis presented here is beneficial for future molecular modeling strategies and structure-based rational drug design.

  8. The rhomboid protease family: a decade of progress on function and mechanism

    PubMed Central

    2011-01-01

    Summary Rhomboid proteases are the largest family of enzymes that hydrolyze peptide bonds within the cell membrane. Although discovered to be serine proteases only a decade ago, rhomboid proteases are already considered to be the best understood intramembrane proteases. The presence of rhomboid proteins in all domains of life emphasizes their importance but makes their evolutionary history difficult to chart with confidence. Phylogenetics nevertheless offers three guiding principles for interpreting rhomboid function. The near ubiquity of rhomboid proteases across evolution suggests broad, organizational roles that are not directly essential for cell survival. Functions have been deciphered in only about a dozen organisms and fall into four general categories: initiating cell signaling in animals, facilitating bacterial quorum sensing, regulating mitochondrial homeostasis, and dismantling adhesion complexes of parasitic protozoa. Although in no organism has the full complement of rhomboid function yet been elucidated, links to devastating human disease are emerging rapidly, including to Parkinson's disease, type II diabetes, cancer, and bacterial and malaria infection. Rhomboid proteases are unlike most proteolytic enzymes, because they are membrane-immersed; understanding how the membrane immersion affects their function remains a key challenge. PMID:22035660

  9. A conserved activation cluster is required for allosteric communication in HtrA-family proteases

    PubMed Central

    de Regt, Anna; Kim, Seokhee; Sohn, Jungsan; Grant, Robert A.; Baker, Tania A.; Sauer, Robert T.

    2015-01-01

    Summary In E. coli, outer-membrane stress causes a transcriptional response through a signaling cascade initiated by DegS cleavage of a transmembrane anti-sigma factor. Each subunit of DegS, an HtrA-family protease, contains a protease domain and a PDZ domain. The trimeric protease domain is autoinhibited by the unliganded PDZ domains. Allosteric activation requires binding of unassembled outer-membrane proteins (OMPs) to the PDZ domains and protein-substrate binding. Here, we identify a set of DegS residues that cluster together at subunit-subunit interfaces in the trimer, link the active sites and substrate-binding sites, and are crucial for stabilizing the active enzyme conformation in response to OMP signaling. These residues are conserved across the HtrA-protease family, including orthologs linked to human disease, supporting a common mechanism of allosteric activation. Indeed, mutation of residues at homologous positions in the DegP quality-control protease also eliminates allosteric activation. PMID:25703375

  10. HreP, an In Vivo-Expressed Protease of Yersinia enterocolitica, Is a New Member of the Family of Subtilisin/Kexin-Like Proteases

    PubMed Central

    Heusipp, Gerhard; Young, Glenn M.; Miller, Virginia L.

    2001-01-01

    The role of proteases in pathogenesis is well established for several microorganisms but has not been described for Yersinia enterocolitica. Previously, we identified a gene, hreP, which showed significant similarity to proteases in a screen for chromosomal genes of Y. enterocolitica that were exclusively expressed during an infection of mice. We cloned this gene by chromosome capture and subsequently determined its nucleotide sequence. Like inv, the gene encoding the invasin protein of Y. enterocolitica, hreP is located in a cluster of flagellum biosynthesis and chemotaxis genes. The genomic organization of this chromosomal region is different in Escherichia coli, Salmonella, and Yersinia pestis than in Y. enterocolitica. Analysis of the distribution of hreP between different Yersinia isolates and the relatively low G+C content of the gene suggests acquisition by horizontal gene transfer. Sequence analysis also revealed that HreP belongs to a family of eukaryotic subtilisin/kexin-like proteases. Together with the calcium-dependent protease PrcA of Anabaena variabilis, HreP forms a new subfamily of bacterial subtilisin/kexin-like proteases which might have originated from a common eukaryotic ancestor. Like other proteases of this family, HreP is expressed with an N-terminal prosequence. Expression of an HreP-His6 tag fusion protein in E. coli revealed that HreP undergoes autocatalytic processing at a consensus cleavage site of subtilisin/kexin-like proteases, thereby releasing the proprotein. PMID:11371518

  11. Broad Spectrum Activity of a Lectin-Like Bacterial Serine Protease Family on Human Leukocytes

    PubMed Central

    Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E.; Ruiz-Perez, Fernando

    2014-01-01

    The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system. PMID:25251283

  12. Natural cysteine protease inhibitors in protozoa: Fifteen years of the chagasin family.

    PubMed

    Costa, Tatiana F R; Lima, Ana Paula C A

    2016-03-01

    Chagasin-type inhibitors comprise natural inhibitors of papain-like cysteine proteases that are distributed among Protist, Bacteria and Archaea. Chagasin was identified in the pathogenic protozoa Trypanosoma cruzi as an approximately 11 kDa protein that is a tight-binding and highly thermostable inhibitor of papain, cysteine cathepsins and endogenous parasite cysteine proteases. It displays an Imunoglobulin-like fold with three exposed loops to one side of the molecule, where amino acid residues present in conserved motifs at the tips of each loop contact target proteases. Differently from cystatins, the loop 2 of chagasin enters the active-site cleft, making direct contact with the catalytic residues, while loops 4 and 6 embrace the enzyme from the sides. Orthologues of chagasin are named Inhibitors of Cysteine Peptidases (ICP), and share conserved overall tri-dimensional structure and mode of binding to proteases. ICPs are tentatively distributed in three families: in family I42 are grouped chagasin-type inhibitors that share conserved residues at the exposed loops; family I71 contains Plasmodium ICPs, which are large proteins having a chagasin-like domain at the C-terminus, with lower similarity to chagasin in the conserved motif at loop 2; family I81 contains Toxoplasma ICP. Recombinant ICPs tested so far can inactivate protozoa cathepsin-like proteases and their mammalian counterparts. Studies on their biological roles were carried out in a few species, mainly using transgenic protozoa, and the conclusions vary. However, in all cases, alterations in the levels of expression of chagasin/ICPs led to substantial changes in one or more steps of parasite biology, with higher incidence in influencing their interaction with the hosts. We will cover most of the findings on chagasin/ICP structural and functional properties and overview the current knowledge on their roles in protozoa.

  13. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    PubMed

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop.

  14. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    PubMed

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. PMID:27329566

  15. Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines.

    PubMed

    Henry, Conor M; Sullivan, Graeme P; Clancy, Danielle M; Afonina, Inna S; Kulms, Dagmar; Martin, Seamus J

    2016-02-01

    Recent evidence has strongly implicated the IL-1 family cytokines IL-36α, IL-36β, and IL-36γ as key initiators of skin inflammation. Similar to the other members of the IL-1 family, IL-36 cytokines are expressed as inactive precursors and require proteolytic processing for activation; however, the responsible proteases are unknown. Here, we show that IL-36α, IL-36β, and IL-36γ are activated differentially by the neutrophil granule-derived proteases cathepsin G, elastase, and proteinase-3, increasing their biological activity ~500-fold. Active IL-36 promoted a strong pro-inflammatory signature in primary keratinocytes and was sufficient to perturb skin differentiation in a reconstituted 3D human skin model, producing features resembling psoriasis. Furthermore, skin eluates from psoriasis patients displayed significantly elevated cathepsin G-like activity that was sufficient to activate IL-36β. These data identify neutrophil granule proteases as potent IL-36-activating enzymes, adding to our understanding of how neutrophils escalate inflammatory reactions. Inhibition of neutrophil-derived proteases may therefore have therapeutic benefits in psoriasis. PMID:26776523

  16. A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold.

    PubMed

    Rendón-Ramírez, Adela; Shukla, Manish; Oda, Masataka; Chakraborty, Sandeep; Minda, Renu; Dandekar, Abhaya M; Ásgeirsson, Bjarni; Goñi, Félix M; Rao, Basuthkar J

    2013-01-01

    Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.

  17. Specificity of botulinum protease for human VAMP family proteins.

    PubMed

    Yamamoto, Hideyuki; Ida, Tomoaki; Tsutsuki, Hiroyasu; Mori, Masatoshi; Matsumoto, Tomoko; Kohda, Tomoko; Mukamoto, Masafumi; Goshima, Naoki; Kozaki, Shunji; Ihara, Hideshi

    2012-04-01

    The botulinum neurotoxin light chain (BoNT-LC) is a zinc-dependent metalloprotease that cleaves neuronal SNARE proteins such as SNAP-25, VAMP2, and Syntaxin1. This cleavage interferes with the neurotransmitter release of peripheral neurons and results in flaccid paralysis. SNAP, VAMP, and Syntaxin are representative of large families of proteins that mediate most membrane fusion reactions, as well as both neuronal and non-neuronal exocytotic events in eukaryotic cells. Neuron-specific SNARE proteins, which are target substrates of BoNT, have been well studied; however, it is unclear whether other SNARE proteins are also proteolyzed by BoNT. Herein, we define the substrate specificity of BoNT-LC/B, /D, and /F towards recombinant human VAMP family proteins. We demonstrate that LC/B, /D, and /F are able to cleave VAMP1, 2, and 3, but no other VAMP family proteins. Kinetic analysis revealed that all LC have higher affinity and catalytic activity for the non-neuronal SNARE isoform VAMP3 than for the neuronal VAMP1 and 2 isoforms. LC/D in particular exhibited extremely low catalytic activity towards VAMP1 relative to other interactions, which we determined through point mutation analysis to be a result of the Ile present at residue 48 of VAMP1. We also identified the VAMP3 cleavage sites to be at the Gln 59-Phe 60 (LC/B), Lys 42-Leu 43 (LC/D), and Gln 41-Lys 42 (LC/F) peptide bonds, which correspond to those of VAMP1 or 2. Understanding the substrate specificity and kinetic characteristics of BoNT towards human SNARE proteins may aid in the development of novel therapeutic uses for BoNT.

  18. CPDadh: A new peptidase family homologous to the cysteine protease domain in bacterial MARTX toxins

    PubMed Central

    Pei, Jimin; Lupardus, Patrick J; Garcia, K Christopher; Grishin, Nick V

    2009-01-01

    A cysteine protease domain (CPD) has been recently discovered in a group of multifunctional, autoprocessing RTX toxins (MARTX) and Clostridium difficile toxins A and B. These CPDs (referred to as CPDmartx) autocleave the toxins to release domains with toxic effects inside host cells. We report identification and computational analysis of CPDadh, a new cysteine peptidase family homologous to CPDmartx. CPDadh and CPDmartx share a Rossmann-like structural core and conserved catalytic residues. In bacteria, domains of the CPDadh family are present at the N-termini of a diverse group of putative cell-cell interaction proteins and at the C-termini of some RHS (recombination hot spot) proteins. In eukaryotes, catalytically inactive members of the CPDadh family are found in cell surface protein NELF (nasal embryonic LHRH factor) and some putative signaling proteins. PMID:19309740

  19. Serotype-Specific Structural Differences in the Protease-Cofactor Complexes of the Dengue Virus Family

    SciTech Connect

    Chandramouli, Sumana; Joseph, Jeremiah S.; Daudenarde, Sophie; Gatchalian, Jovylyn; Cornillez-Ty, Cromwell; Kuhn, Peter

    2010-03-04

    With an estimated 40% of the world population at risk, dengue poses a significant threat to human health, especially in tropical and subtropical regions. Preventative and curative efforts, such as vaccine development and drug discovery, face additional challenges due to the occurrence of four antigenically distinct serotypes of the causative dengue virus (DEN1 to -4). Complex immune responses resulting from repeat assaults by the different serotypes necessitate simultaneous targeting of all forms of the virus. One of the promising targets for drug development is the highly conserved two-component viral protease NS2B-NS3, which plays an essential role in viral replication by processing the viral precursor polyprotein into functional proteins. In this paper, we report the 2.1-{angstrom} crystal structure of the DEN1 NS2B hydrophilic core (residues 49 to 95) in complex with the NS3 protease domain (residues 1 to 186) carrying an internal deletion in the N terminus (residues 11 to 20). While the overall folds within the protease core are similar to those of DEN2 and DEN4 proteases, the conformation of the cofactor NS2B is dramatically different from those of other flaviviral apoprotease structures. The differences are especially apparent within its C-terminal region, implicated in substrate binding. The structure reveals for the first time serotype-specific structural elements in the dengue virus family, with the reported alternate conformation resulting from a unique metal-binding site within the DEN1 sequence. We also report the identification of a 10-residue stretch within NS3pro that separates the substrate-binding function from the catalytic turnover rate of the enzyme. Implications for broad-spectrum drug discovery are discussed.

  20. The Spn4 gene from Drosophila melanogaster is a multipurpose defence tool directed against proteases from three different peptidase families

    PubMed Central

    Brüning, Mareke; Lummer, Martina; Bentele, Caterina; Smolenaars, Marcel M. W.; Rodenburg, Kees W.; Ragg, Hermann

    2006-01-01

    By alternative use of four RSL (reactive site loop) coding exon cassettes, the serpin (serine protease inhibitor) gene Spn4 from Drosophila melanogaster was proposed to enable the synthesis of multiple protease inhibitor isoforms, one of which has been shown to be a potent inhibitor of human furin. Here, we have investigated the inhibitory spectrum of all Spn4 RSL variants. The analyses indicate that the Spn4 gene encodes inhibitors that may inhibit serine proteases of the subtilase family (S8), the chymotrypsin family (S1), and the papain-like cysteine protease family (C1), most of them at high rates. Thus a cohort of different protease inhibitors is generated simply by grafting enzyme-adapted RSL sequences on to a single serpin scaffold, even though the target proteases contain different types and/or a varying order of catalytic residues and are descendents of different phylogenetic lineages. Since all of the Spn4 RSL isoforms are produced as intracellular residents and additionally as variants destined for export or associated with the secretory pathway, the Spn4 gene represents a versatile defence tool kit that may provide multiple antiproteolytic functions. PMID:16989645

  1. Human mast cell tryptase: Multiple cDNAs and genes reveal a multigene serine protease family

    SciTech Connect

    Vanderslice, P.; Ballinger, S.M., Tam, E.K.; Goldstein, S.M.; Craik, C.S.; Caughey, G.H. )

    1990-05-01

    Three different cDNAs and a gene encoding human skin mast cell tryptase have been cloned and sequenced in their entirety. The deduced amino acid sequences reveal a 30-amino acid prepropeptide followed by a 245-amino acid catalytic domain. The C-terminal undecapeptide of the human preprosequence is identical in dog tryptase and appears to be part of a prosequence unique among serine proteases. The differences among the three human tryptase catalytic domains include the loss of a consensus N-glycosylation site in one cDNA, which may explain some of the heterogeneity in size and susceptibility to deglycosylation seen in tryptase preparations. All three tryptase cDNAs are distinct from a recently reported cDNA obtained from a human lung mast cell library. A skin tryptase cDNA was used to isolate a human tryptase gene, the exons of which match one of the skin-derived cDNAs. The organization of the {approx}1.8-kilobase-pair tryptase gene is unique and is not closely related to that of any other mast cell or leukocyte serine protease. The 5{prime} regulatory regions of the gene share features with those of other serine proteases, including mast cell chymase, but are unusual in being separated from the protein-coding sequence by an intron. High-stringency hybridization of a human genomic DNA blot with a fragment of the tryptase gene confirms the presence of multiple tryptase genes. These findings provide genetic evidence that human mast cell tryptases are the products of a multigene family.

  2. Role of Ced-3/ICE-family proteases in staurosporine-induced programmed cell death

    PubMed Central

    1996-01-01

    In the accompanying paper by Weil et al. (1996) we show that staurosporine (STS), in the presence of cycloheximide (CHX) to inhibit protein synthesis, induces apoptotic cell death in a large variety of nucleated mammalian cell types, suggesting that all nucleated mammalian cells constitutively express all of the proteins required to undergo programmed cell death (PCD). The reliability of that conclusion depends on the evidence that STS-induced, and (STS + CHS)-induced, cell deaths are bona fide examples of PCD. There is rapidly accumulating evidence that some members of the Ced-3/Interleukin-1 beta converting enzyme (ICE) family of cysteine proteases are part of the basic machinery of PCD. Here we show that Z-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), a cell-permeable, irreversible, tripeptide inhibitor of some of these proteases, suppresses STS-induced and (STS + CHX)-induced cell death in a wide variety of mammalian cell types, including anucleate cytoplasts, providing strong evidence that these are all bona fide examples of PCD. We show that the Ced-3/ICE family member CPP32 becomes activated in STS- induced PCD, and that Bcl-2 inhibits this activation. Most important, we show that, in some cells at least, one or more CPP32-family members, but not ICE itself, is required for STS-induced PCD. Finally, we show that zVAD-fmk suppresses PCD in the interdigital webs in developing mouse paws and blocks the removal of web tissue during digit development, suggesting that this inhibition will be a useful tool for investigating the roles of PCD in various developmental processes. PMID:8655577

  3. Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis.

    PubMed Central

    Nath, R; Raser, K J; Stafford, D; Hajimohammadreza, I; Posner, A; Allen, H; Talanian, R V; Yuen, P; Gilbertsen, R B; Wang, K K

    1996-01-01

    The cytoskeletal protein non-erythroid alpha-spectrin is well documented as an endogenous calpain substrate, especially under pathophysiological conditions. In cell necrosis (e.g. maitotoxin-treated neuroblastoma SH-SY5Y cells), alpha-spectrin breakdown products (SBDPs) of 150 kDa and 145 kDa were produced by cellular calpains. In contrast, in neuronal cells undergoing apoptosis (cerebellar granule neurons subjected to low potassium and SH-SY5Y cells treated with staurosporine), an additional SBDP of 120 kDa was also observed. The formation of the 120 kDa SBDP was insensitive to calpain inhibitors but was completely blocked by an interleukin 1 beta-converting-enzyme (ICE)-like protease inhibitor, Z-Asp-CH2OC(O)-2,6-dichlorobenzene. Autolytic activation of both calpain and the ICE homologue CPP32 was also observed in apoptotic cells. alpha-Spectrin can also be cleaved in vitro by purified calpains to produce the SBDP doublet of 150/145 kDa and by ICE and ICE homologues [ICH-1, ICH-2 and CPP32(beta)] to produce a 150 kDa SBDP. In addition, CPP32 and ICE also produced a 120 kDa SBDP. Furthermore inhibition of either ICE-like protease(s) or calpain protects both granule neurons and SH-SY5Y cells against apoptosis. Our results suggest that both protease families participate in the expression of neuronal apoptosis. PMID:8920967

  4. Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis.

    PubMed

    Nath, R; Raser, K J; Stafford, D; Hajimohammadreza, I; Posner, A; Allen, H; Talanian, R V; Yuen, P; Gilbertsen, R B; Wang, K K

    1996-11-01

    The cytoskeletal protein non-erythroid alpha-spectrin is well documented as an endogenous calpain substrate, especially under pathophysiological conditions. In cell necrosis (e.g. maitotoxin-treated neuroblastoma SH-SY5Y cells), alpha-spectrin breakdown products (SBDPs) of 150 kDa and 145 kDa were produced by cellular calpains. In contrast, in neuronal cells undergoing apoptosis (cerebellar granule neurons subjected to low potassium and SH-SY5Y cells treated with staurosporine), an additional SBDP of 120 kDa was also observed. The formation of the 120 kDa SBDP was insensitive to calpain inhibitors but was completely blocked by an interleukin 1 beta-converting-enzyme (ICE)-like protease inhibitor, Z-Asp-CH2OC(O)-2,6-dichlorobenzene. Autolytic activation of both calpain and the ICE homologue CPP32 was also observed in apoptotic cells. alpha-Spectrin can also be cleaved in vitro by purified calpains to produce the SBDP doublet of 150/145 kDa and by ICE and ICE homologues [ICH-1, ICH-2 and CPP32(beta)] to produce a 150 kDa SBDP. In addition, CPP32 and ICE also produced a 120 kDa SBDP. Furthermore inhibition of either ICE-like protease(s) or calpain protects both granule neurons and SH-SY5Y cells against apoptosis. Our results suggest that both protease families participate in the expression of neuronal apoptosis. PMID:8920967

  5. Chymotrypsin protease inhibitor gene family in rice: Genomic organization and evidence for the presence of a bidirectional promoter shared between two chymotrypsin protease inhibitor genes.

    PubMed

    Singh, Amanjot; Sahi, Chandan; Grover, Anil

    2009-01-01

    Protease inhibitors play important roles in stress and developmental responses of plants. Rice genome contains 17 putative members in chymotrypsin protease inhibitor (ranging in size from 7.21 to 11.9 kDa) gene family with different predicted localization sites. Full-length cDNA encoding for a putative subtilisin-chymotrypsin protease inhibitor (OCPI2) was obtained from Pusa basmati 1 (indica) rice seedlings. 620 bp-long OCPI2 cDNA contained 219 bp-long ORF, coding for 72 amino acid-long 7.7 kDa subtilisin-chymotrypsin protease inhibitor (CPI) cytoplasmic protein. Expression analysis by semi-quantitative RT-PCR analysis showed that OCPI2 transcript is induced by varied stresses including salt, ABA, low temperature and mechanical injury in both root and shoot tissues of the seedlings. Transgenic rice plants produced with OCPI2 promoter-gus reporter gene showed that this promoter directs high salt- and ABA-regulated expression of the GUS gene. Another CPI gene (OCPI1) upstream to OCPI2 (with 1126 bp distance between the transcription initiation sites of the two genes; transcription in the reverse orientation) was noted in genome sequence of rice genome. A vector that had GFP and GUS reporter genes in opposite orientations driven by 1881 bp intergenic sequence between the OCPI2 and OCPI1 (encompassing the region between the translation initiation sites of the two genes) was constructed and shot in onion epidermal cells by particle bombardment. Expression of both GFP and GUS from the same epidermal cell showed that this sequence represents a bidirectional promoter. Examples illustrating gene pairs showing co-expression of two divergent neighboring genes sharing a bidirectional promoter have recently been extensively worked out in yeast and human systems. We provide an example of a gene pair constituted of two homologous genes showing co-expression governed by a bidirectional promoter in rice. PMID:18952157

  6. Phylogenetic distribution of protease inhibitors of the Kazal-family within the Arthropoda.

    PubMed

    van Hoef, Vincent; Breugelmans, Bert; Spit, Jornt; Simonet, Gert; Zels, Sven; Vanden Broeck, Jozef

    2013-03-01

    In mammalian pancreatic cells, the pancreatic secretory trypsin inhibitor (PSTI) belonging to the Kazal-family prevents the premature activation of digestive enzymes and thus plays an important role in a protective mechanism against tissue destruction by autophagy. Although a similar protective mechanism exists in Arthropoda, the distribution of these inhibitors in this phylum remains obscure. A comprehensive in silico search of nucleotide databases, revealed the presence of members of the Kazal-family in the four major subphyla of the Arthropoda. Especially in the Hexapoda and the Crustacea these inhibitors are widespread, while in the Chelicerata and Myriapoda only a few Kazal-like protease inhibitors were found. A sequence alignment of inhibitors retrieved in the digestive system of insects revealed a conservation of the PSTI characteristics and strong resemblance to vertebrate PSTI. A phylogenetic analysis of these inhibitors showed that they generally cluster according to their order. The results of this data mining study provide new evidence for the existence of an ancient protective mechanism in metazoan digestive systems. Kazal-like inhibitors, which play an important protective role in the pancreas of vertebrates, also seem to be present in Arthropoda.

  7. Structure of a Complex between Nedd8 and the Ulp/Senp Protease Family Member Den1

    SciTech Connect

    Reverter, David; Wu, Kenneth; Erdene, Tudeviin Gan; Pan, Zhen-Qiang; Wilkinson, Keith D.; Lima, Christopher D.

    2010-07-20

    The Nedd8 conjugation pathway is conserved from yeast to humans and is essential in many organisms. Nedd8 is conjugated to cullin proteins in a process that alters SCF E3 ubiquitin ligase activity, and it is presumed that Nedd8 deconjugation would reverse these effects. We now report the X-ray structures of the human Nedd8-specific protease, Den1, in a complex with the inhibitor Nedd8 aldehyde, thus revealing a model for the tetrahedral transition state intermediate generated during proteolysis. Although Den1 is closely related to the SUMO-specific protease family (Ulp/Senp family), structural analysis of the interface suggests determinants involved in Nedd8 selectivity by Den1 over other ubiquitin-like family members and suggests how the Ulp/Senp architecture has been modified to interact with different ubiquitin-like modifiers.

  8. Novel IgG-Degrading Enzymes of the IgdE Protease Family Link Substrate Specificity to Host Tropism of Streptococcus Species

    PubMed Central

    Spoerry, Christian; Hessle, Pontus; Lewis, Melanie J.; Paton, Lois; Woof, Jenny M.

    2016-01-01

    Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use. PMID:27749921

  9. Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination.

    PubMed

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-11-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds.

  10. Cysteine protease-binding protein family 6 mediates the trafficking of amylases to phagosomes in the enteric protozoan Entamoeba histolytica.

    PubMed

    Furukawa, Atsushi; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2013-05-01

    Phagocytosis plays a pivotal role in nutrient acquisition and evasion from the host defense systems in Entamoeba histolytica, the intestinal protozoan parasite that causes amoebiasis. We previously reported that E. histolytica possesses a unique class of a hydrolase receptor family, designated the cysteine protease-binding protein family (CPBF), that is involved in trafficking of hydrolases to lysosomes and phagosomes, and we have also reported that CPBF1 and CPBF8 bind to cysteine proteases or β-hexosaminidase α-subunit and lysozymes, respectively. In this study, we showed by immunoprecipitation that CPBF6, one of the most highly expressed CPBF proteins, specifically binds to α-amylase and γ-amylase. We also found that CPBF6 is localized in lysosomes, based on immunofluorescence imaging. Immunoblot and proteome analyses of the isolated phagosomes showed that CPBF6 mediates transport of amylases to phagosomes. We also demonstrated that the carboxyl-terminal cytosolic region of CPBF6 is engaged in the regulation of the trafficking of CPBF6 to phagosomes. Our proteome analysis of phagosomes also revealed new potential phagosomal proteins.

  11. Determinants of Affinity and Proteolytic Stability in Interactions of Kunitz Family Protease Inhibitors with Mesotrypsin

    SciTech Connect

    Salameh, M.A.; Soares, A.; Navaneetham, D.; Sinha, D.; Walsh, P. N.; Radisky, E. S.

    2010-11-19

    An important functional property of protein protease inhibitors is their stability to proteolysis. Mesotrypsin is a human trypsin that has been implicated in the proteolytic inactivation of several protein protease inhibitors. We have found that bovine pancreatic trypsin inhibitor (BPTI), a Kunitz protease inhibitor, inhibits mesotrypsin very weakly and is slowly proteolyzed, whereas, despite close sequence and structural homology, the Kunitz protease inhibitor domain of the amyloid precursor protein (APPI) binds to mesotrypsin 100 times more tightly and is cleaved 300 times more rapidly. To define features responsible for these differences, we have assessed the binding and cleavage by mesotrypsin of APPI and BPTI reciprocally mutated at two nonidentical residues that make direct contact with the enzyme. We find that Arg at P{sub 1} (versus Lys) favors both tighter binding and more rapid cleavage, whereas Met (versus Arg) at P'{sub 2} favors tighter binding but has minimal effect on cleavage. Surprisingly, we find that the APPI scaffold greatly enhances proteolytic cleavage rates, independently of the binding loop. We draw thermodynamic additivity cycles analyzing the interdependence of P1 and P'{sub 2} substitutions and scaffold differences, finding multiple instances in which the contributions of these features are nonadditive. We also report the crystal structure of the mesotrypsin {center_dot} APPI complex, in which we find that the binding loop of APPI displays evidence of increased mobility compared with BPTI. Our data suggest that the enhanced vulnerability of APPI to mesotrypsin cleavage may derive from sequence differences in the scaffold that propagate increased flexibility and mobility to the binding loop.

  12. Determinants of Affinity and Proteolytic Stability in Interactions of Kunitz Family Protease Inhibitors with Mesotrypsin

    SciTech Connect

    M Salameh; A Soares; D Navaneetham; D Sinha; P Walsh; E Radisky

    2011-12-31

    An important functional property of protein protease inhibitors is their stability to proteolysis. Mesotrypsin is a human trypsin that has been implicated in the proteolytic inactivation of several protein protease inhibitors. We have found that bovine pancreatic trypsin inhibitor (BPTI), a Kunitz protease inhibitor, inhibits mesotrypsin very weakly and is slowly proteolyzed, whereas, despite close sequence and structural homology, the Kunitz protease inhibitor domain of the amyloid precursor protein (APPI) binds to mesotrypsin 100 times more tightly and is cleaved 300 times more rapidly. To define features responsible for these differences, we have assessed the binding and cleavage by mesotrypsin of APPI and BPTI reciprocally mutated at two nonidentical residues that make direct contact with the enzyme. We find that Arg at P{sub 1} (versus Lys) favors both tighter binding and more rapid cleavage, whereas Met (versus Arg) at P'{sub 2} favors tighter binding but has minimal effect on cleavage. Surprisingly, we find that the APPI scaffold greatly enhances proteolytic cleavage rates, independently of the binding loop. We draw thermodynamic additivity cycles analyzing the interdependence of P{sub 1} and P'{sub 2} substitutions and scaffold differences, finding multiple instances in which the contributions of these features are nonadditive. We also report the crystal structure of the mesotrypsin-APPI complex, in which we find that the binding loop of APPI displays evidence of increased mobility compared with BPTI. Our data suggest that the enhanced vulnerability of APPI to mesotrypsin cleavage may derive from sequence differences in the scaffold that propagate increased flexibility and mobility to the binding loop.

  13. The tra-3 sex determination gene of Caenorhabditis elegans encodes a member of the calpain regulatory protease family.

    PubMed Central

    Barnes, T M; Hodgkin, J

    1996-01-01

    The Caenorhabditis elegans sex determination gene tra-3 is required for the correct sexual development of the soma and germ line in hermaphrodites, while being fully dispensable in males. Genetic analysis of tra-3 has suggested that its product may act as a potentiator of another sex determination gene, tra-2. Molecular analysis reported here reveals that the predicted tra-3 gene product is a member of the calpain family of calcium-regulated cytosolic proteases, though it lacks the calcium binding regulatory domain. Calpains are regulatory processing proteases, exhibiting marked substrate specificity, and mutations in the p94 isoform underlie the human hereditary condition limb-girdle muscular dystrophy type 2A. The molecular identity of TRA-3 is consistent with previous genetic analysis which suggested that tra-3 plays a very selective modulatory role and is required in very small amounts. Based on these observations and new genetic data, we suggest a refinement of the position of tra-3 within the sex determination cascade and discuss possible mechanisms of action for the TRA-3 protein. PMID:8887539

  14. Diversity-enhancing selection acts on a female reproductive protease family in four subspecies of Drosophila mojavensis.

    PubMed

    Kelleher, Erin S; Clark, Nathaniel L; Markow, Therese A

    2011-03-01

    Protein components of the Drosophila male ejaculate are critical modulators of reproductive success, several of which are known to evolve rapidly. Recent evidence of adaptive evolution in female reproductive tract proteins suggests this pattern may reflect sexual selection at the molecular level. Here we explore the evolutionary dynamics of a five-paralog gene family of female reproductive proteases within geographically isolated subspecies of Drosophila mojavensis. Remarkably, four of five paralogs show exceptionally low differentiation between subspecies and unusually structured haplotypes that suggest the retention of old polymorphisms. These gene genealogies are accompanied by deviations from neutrality consistent with diversifying selection. While diversifying selection has been observed among the reproductive molecules of mammals and marine invertebrates, our study provides the first evidence of this selective regime in any Drosophila reproductive protein, male or female.

  15. Granule proteases of hematopoietic cells, a family of versatile inflammatory mediators - an update on their cleavage specificity, in vivo substrates, and evolution.

    PubMed

    Hellman, Lars; Thorpe, Michael

    2014-01-01

    Cells from several of the hematopoietic cell lineages including mast cells, basophils, neutrophils, cytotoxic T cells, and natural killer (NK) cells store proteases at very high levels within their cytoplasmic granules. In mast cells, these proteases can account for up to 35% of the total cellular protein, and the absolute majority of these belong to the chymotrypsin-related serine protease family. A number of very diverse functions have been identified for these proteases, including apoptosis induction, blood pressure regulation, inactivation of insect and snake toxins, intestinal parasite expulsion, killing of bacteria and fungi, induction, mobilization, or degradation of cytokines, and the degradation of connective tissue components. A very broad spectrum of primary cleavage specificities has also been observed, including chymase, tryptase, asp-ase, elastase, and met-ase specificities, which highlights the large flexibility in the active site of these proteases. Mast cells primarily express chymases and tryptases with chymotryptic or tryptic primary cleavage specificities, respectively. Neutrophils have several enzymes with chymase, elastase, and tryptase specificities. T cells and NK cells express between 5 and 14 different granzymes, depending on the species, and these enzymes have tryptase, asp-ase, chymase, and met-ase specificities. This review focuses on the appearance of these proteases during vertebrate evolution, their primary and extended cleavage specificities, and their potential in vivo substrates. The in vivo substrates and functions are a particular challenging issue because several of these enzymes have a relatively broad specificity and may therefore cleave a wide range of different substrates. PMID:23969467

  16. The ADAMs family of proteases as targets for the treatment of cancer.

    PubMed

    Mullooly, Maeve; McGowan, Patricia M; Crown, John; Duffy, Michael J

    2016-08-01

    The ADAMs (a disintegrin and metalloproteases) are transmembrane multidomain proteins implicated in multiple biological processes including proteolysis, cell adhesion, cell fusion, cell proliferation and cell migration. Of these varied activities, the best studied is their role in proteolysis. However, of the 22 ADAMs believed to be functional in humans, only approximately a half possess matrix metalloproteinase (MMP)-like protease activity. In contrast to MMPs which are mostly implicated in the degradation of extracellular matrix proteins, the main ADAM substrates are the ectodomains of type I and type II transmembrane proteins. These include growth factor/cytokine precursors, growth factor/cytokine receptors and adhesion proteins. Recently, several different ADAMs, especially ADAM17, have been shown to play a role in the development and progression of multiple cancer types. Consistent with this role in cancer, targeting ADAM17 with either low molecular weight inhibitors or monoclonal antibodies was shown to have anti-cancer activity in multiple preclinical systems. Although early phase clinical trials have shown no serious side effects with a dual ADAM10/17 low molecular weight inhibitor, the consequences of long-term treatment with these agents is unknown. Furthermore, efficacy in clinical trials remains to be shown.

  17. A family of serine protease inhibitors (serpins) in the cattle tick Rhipicephalus (Boophilus) microplus.

    PubMed

    Tirloni, Lucas; Seixas, Adriana; Mulenga, Albert; Vaz, Itabajara da Silva; Termignoni, Carlos

    2014-02-01

    Proteins belonging to the serine protease inhibitor (serpin) superfamily play essential roles in many organisms. In arthropods these proteins are involved in innate immune system, morphogenesis and development. In mammals serpins regulate pathways that are essential to life such as blood coagulation, fibrinolysis, inflammation and complement activation, some of which are considered the host's first line of defense to hematophagous and/or blood dueling parasites. Thus, it is hypothesized that ticks use serpins to evade host defense, facilitating parasitism. This study describes eighteen full-length cDNA sequences encoding serpins identified in Rhipicephalus (Boophilus) microplus, here named RmS 1-18 (R. microplus serpin). Spatial and temporal transcriptional profiling demonstrated that R. microplus serpins are transcribed during feeding, suggesting their participation in tick physiology regulation. We speculate that the majority of R. microplus serpins are conserved in other ticks, as indicated by phylogeny analysis. Over half of the 18 RmSs are putatively functional in the extracellular environment, as indicated by putative signal peptides on 11 of 18 serpins. Comparative modeling and structural-based alignment revealed that R. microplus serpins in this study retain the consensus secondary of typical serpins. This descriptive study enlarges the knowledge on the molecular biology of R. microplus, an important tick species.

  18. Antimicrobial peptide inhibition of fungalysin proteases that target plant type 19 Family IV defense chitinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal crops and other plants produce secreted seed chitinases that reduce pathogenic infection, most likely by targeting the fungal chitinous cell wall. We have shown that corn (Zea mays) produces three GH family 19, plant class IV chitinases, that help in protecting the plant against Fusarium and ...

  19. GlyGly-CTERM and Rhombosortase: A C-Terminal Protein Processing Signal in a Many-to-One Pairing with a Rhomboid Family Intramembrane Serine Protease

    PubMed Central

    Haft, Daniel H.; Varghese, Neha

    2011-01-01

    The rhomboid family of serine proteases occurs in all domains of life. Its members contain at least six hydrophobic membrane-spanning helices, with an active site serine located deep within the hydrophobic interior of the plasma membrane. The model member GlpG from Escherichia coli is heavily studied through engineered mutant forms, varied model substrates, and multiple X-ray crystal studies, yet its relationship to endogenous substrates is not well understood. Here we describe an apparent membrane anchoring C-terminal homology domain that appears in numerous genera including Shewanella, Vibrio, Acinetobacter, and Ralstonia, but excluding Escherichia and Haemophilus. Individual genomes encode up to thirteen members, usually homologous to each other only in this C-terminal region. The domain's tripartite architecture consists of motif, transmembrane helix, and cluster of basic residues at the protein C-terminus, as also seen with the LPXTG recognition sequence for sortase A and the PEP-CTERM recognition sequence for exosortase. Partial Phylogenetic Profiling identifies a distinctive rhomboid-like protease subfamily almost perfectly co-distributed with this recognition sequence. This protease subfamily and its putative target domain are hereby renamed rhombosortase and GlyGly-CTERM, respectively. The protease and target are encoded by consecutive genes in most genomes with just a single target, but far apart otherwise. The signature motif of the Rhombo-CTERM domain, often SGGS, only partially resembles known cleavage sites of rhomboid protease family model substrates. Some protein families that have several members with C-terminal GlyGly-CTERM domains also have additional members with LPXTG or PEP-CTERM domains instead, suggesting there may be common themes to the post-translational processing of these proteins by three different membrane protein superfamilies. PMID:22194940

  20. Crystallization and preliminary crystallographic studies of human kallikrein 7, a serine protease of the multigene kallikrein family

    SciTech Connect

    Fernández, Israel S.; Ständker, Ludger; Forssmann, Wolf-Georg; Giménez-Gallego, Guillermo; Romero, Antonio

    2007-08-01

    The cloning, expression, purification and crystallization of recombinant human kallikrein 7, directly synthesized in the active form in E. coli, is described. Diffraction data were collected to 2.8 Å resolution from native crystals. Human kallikreins are a group of serine proteases of high sequence homology whose genes are grouped as a single cluster at chromosome 19. Although the physiological roles of kallikreins are generally still unknown, members of the kallikrein family have been clearly implicated in pathological situations such as cancer and psoriasis. Human kallikrein 7 (hK7) has been shown to be involved in pathological keratinization, psoriasis and ovarian cancer. In order to gain insight into the molecular structure of this protein, hK7 was crystallized after recombinant production in its folded and active form using a periplasmic secretion vector in Escherichia coli. The crystals belonged to the rhombohedral space group H32 and diffracted to 2.8 Å. The phase problem was solved by molecular replacement using the mouse kallikrein-related protein neuropsin. Completion of the model and structure refinement are under way.

  1. New member of the trefoil factor family of proteins is an alpha-macroglobulin protease inhibitor.

    PubMed

    Thøgersen, Ida B; Hammes, Stephen R; Rubenstein, David S; Pizzo, Salvatore V; Valnickova, Zuzana; Enghild, Jan J

    2002-07-29

    The amino acid sequence of the monomeric alpha-macroglobulin (alphaM) from the American bullfrog, Rana catesbiana, was determined. The mature protein consisted of 1469 amino acid residues and shared sequence identity with other members of the alphaM family of protein. The central portion of the frog monomeric alphaM contained Cys residues positioned analogously to the Cys residues in human alpha(2)-macroglobulin (alpha(2)M), known to be involved in disulfide bridges. Additionally, the frog monomeric alphaM contained six Cys residues in a approximately 60 residue COOH-terminal extension not present in previously characterized alphaMs. The spacing of the Cys residues and the overall sequence identity of this COOH-terminal extension were consistent with a trefoil motif. This is the first time a member of the trefoil factor family has been identified in the circulatory system. The "bait region" was located between Arg(675)-Lys(685) and contained mainly basic amino acid residues. The COOH-terminal receptor-binding domain was not exposed prior to proteolysis of this highly susceptible region. The proximity of the receptor-binding and trefoil domains implied that the trefoil domain is similarly concealed before bait region cleavage. PMID:12147353

  2. [The protease inhibitor system of macaques. The identification of alleles using isoelectric focusing and family analysis].

    PubMed

    Samil'chuk, E I

    1989-01-01

    Five alpha-1-antitrypsin (alpha-1-AT) phenotypes have been revealed by isoelectrofocusing (IEF) in sera of 215 crab-eating macaques. Alpha-1-AT was monomorphic in sera of 250 Rhesus monkeys. A new allele of macaque Pi-system, designated as B' was postulated in addition to existing two (B and C) on the basis of IEF data. The above conclusion was supported by family analysis, based on 35 monkey birth cases. Alpha-1-AT phenotype frequencies were in agreement with Hardy-Weinberg equation both in wild and capture born crab-eating macaques. Alpha-1-AT was found to be microheterogeneous: several zones of the protein were revealed by IEF and Western blotting with anti human alpha-1-AT serum. The pregnancy caused a sharp increase of one band. This may lead to false identification of alpha-1-AT phenotypes, particularly when acid starch gel electrophoresis is used for alpha-1-AT identification. Such misinterpretation during alpha-1-AT phenotyping may explain the disagreement with Hardy-Weinberg equation described earlier for crab-eating macaques. PMID:2788967

  3. The porcine gene TBP10 encodes a protein homologous to the human tat-binding protein/26S protease subunit family.

    PubMed

    Leeb, T; Rettenberger, G; Breech, J; Hameister, H; Brenig, B

    1996-03-01

    We have cloned a porcine gene, designated TBP1O, that belongs to the Tat-binding protein/26S protease subunit family. The genomic structure of the porcine TBP1O gene was analyzed after isolation of three overlapping genomic phage lambda clones. The TBP10 gene harbors 12 exons spanning 4.5 kb of chromosomal DNA. The TBP1O gene was assigned to Chromosome (Chr) 12 by fluorescence in situ hybridization (FISH) on metaphase chromosomes. The chromosomal location was confirmed by PCR analysis of a porcine-rodent hybrid cell panel. The TBP1O protein is encoded by a 1221 nucleotide cDNA and has a molecular mass of 45.6 kDa. The predicted amino acid sequence has highest similarity to the human and bovine p45 subunit of the 26S protease and the human transcription factor TRIP1. Further similarities were detected to the slime mold protein DdTBP1O and the Schizosaccharomyces pombe and Saccharomyces cerevisiae protein SUG1. Like DdTBP1O and other members of the protein family, the porcine TBP1O harbors a leucine zipper motif in the N-terminal region and a domain characteristics of ATP-dependent proteases in the C-terminal region. PMID:8833236

  4. Human tryptase epsilon (PRSS22), a new member of the chromosome 16p13.3 family of human serine proteases expressed in airway epithelial cells.

    PubMed

    Wong, G W; Yasuda, S; Madhusudhan, M S; Li, L; Yang, Y; Krilis, S A; Sali, A; Stevens, R L

    2001-12-28

    Probing of the GenBank expressed sequence tag (EST) data base with varied human tryptase cDNAs identified two truncated ESTs that subsequently were found to encode overlapping portions of a novel human serine protease (designated tryptase epsilon or protease, serine S1 family member 22 (PRSS22)). The tryptase epsilon gene resides on chromosome 16p13.3 within a 2.5-Mb complex of serine protease genes. Although at least 7 of the 14 genes in this complex encode enzymatically active proteases, only one tryptase epsilon-like gene was identified. The trachea and esophagus were found to contain the highest steady-state levels of the tryptase epsilon transcript in adult humans. Although the tryptase epsilon transcript was scarce in adult human lung, it was present in abundance in fetal lung. Thus, the tryptase epsilon gene is expressed in the airways in a developmentally regulated manner that is different from that of other human tryptase genes. At the cellular level, tryptase epsilon is a major product of normal pulmonary epithelial cells, as well as varied transformed epithelial cell lines. Enzymatically active tryptase epsilon is also constitutively secreted from these cells. The amino acid sequence of human tryptase epsilon is 38-44% identical to those of human tryptase alpha, tryptase beta I, tryptase beta II, tryptase beta III, transmembrane tryptase/tryptase gamma, marapsin, and Esp-1/testisin. Nevertheless, comparative protein structure modeling and functional studies using recombinant material revealed that tryptase epsilon has a substrate preference distinct from that of its other family members. These data indicate that the products of the chromosome 16p13.3 complex of tryptase genes evolved to carry out varied functions in humans.

  5. Proteomics and phylogenetic analysis of the cathepsin L protease family of the helminth pathogen Fasciola hepatica: expansion of a repertoire of virulence-associated factors.

    PubMed

    Robinson, Mark W; Tort, Jose F; Lowther, Jonathan; Donnelly, Sheila M; Wong, Emily; Xu, Weibo; Stack, Colin M; Padula, Matthew; Herbert, Ben; Dalton, John P

    2008-06-01

    Cathepsin L proteases secreted by the helminth pathogen Fasciola hepatica have functions in parasite virulence including tissue invasion and suppression of host immune responses. Using proteomics methods alongside phylogenetic studies we characterized the profile of cathepsin L proteases secreted by adult F. hepatica and hence identified those involved in host-pathogen interaction. Phylogenetic analyses showed that the Fasciola cathepsin L gene family expanded by a series of gene duplications followed by divergence that gave rise to three clades associated with mature adult worms (Clades 1, 2, and 5) and two clades specific to infective juvenile stages (Clades 3 and 4). Consistent with these observations our proteomics studies identified representatives from Clades 1, 2, and 5 but not from Clades 3 and 4 in adult F. hepatica secretory products. Clades 1 and 2 account for 67.39 and 27.63% of total secreted cathepsin Ls, respectively, suggesting that their expansion was positively driven and that these proteases are most critical for parasite survival and adaptation. Sequence comparison studies revealed that the expansion of cathepsin Ls by gene duplication was followed by residue changes in the S2 pocket of the active site. Our biochemical studies showed that these changes result in alterations in substrate binding and suggested that the divergence of the cathepsin L family produced a repertoire of enzymes with overlapping and complementary substrate specificities that could cleave host macromolecules more efficiently. Although the cathepsin Ls are produced as zymogens containing a prosegment and mature domain, all secreted enzymes identified by MS were processed to mature active enzymes. The prosegment region was highly conserved between the clades except at the boundary of prosegment and mature enzyme. Despite the lack of conservation at this section, sites for exogenous cleavage by asparaginyl endopeptidases and a Leu-Ser[downward arrow]His motif for

  6. Proteomics and phylogenetic analysis of the cathepsin L protease family of the helminth pathogen Fasciola hepatica: expansion of a repertoire of virulence-associated factors.

    PubMed

    Robinson, Mark W; Tort, Jose F; Lowther, Jonathan; Donnelly, Sheila M; Wong, Emily; Xu, Weibo; Stack, Colin M; Padula, Matthew; Herbert, Ben; Dalton, John P

    2008-06-01

    Cathepsin L proteases secreted by the helminth pathogen Fasciola hepatica have functions in parasite virulence including tissue invasion and suppression of host immune responses. Using proteomics methods alongside phylogenetic studies we characterized the profile of cathepsin L proteases secreted by adult F. hepatica and hence identified those involved in host-pathogen interaction. Phylogenetic analyses showed that the Fasciola cathepsin L gene family expanded by a series of gene duplications followed by divergence that gave rise to three clades associated with mature adult worms (Clades 1, 2, and 5) and two clades specific to infective juvenile stages (Clades 3 and 4). Consistent with these observations our proteomics studies identified representatives from Clades 1, 2, and 5 but not from Clades 3 and 4 in adult F. hepatica secretory products. Clades 1 and 2 account for 67.39 and 27.63% of total secreted cathepsin Ls, respectively, suggesting that their expansion was positively driven and that these proteases are most critical for parasite survival and adaptation. Sequence comparison studies revealed that the expansion of cathepsin Ls by gene duplication was followed by residue changes in the S2 pocket of the active site. Our biochemical studies showed that these changes result in alterations in substrate binding and suggested that the divergence of the cathepsin L family produced a repertoire of enzymes with overlapping and complementary substrate specificities that could cleave host macromolecules more efficiently. Although the cathepsin Ls are produced as zymogens containing a prosegment and mature domain, all secreted enzymes identified by MS were processed to mature active enzymes. The prosegment region was highly conserved between the clades except at the boundary of prosegment and mature enzyme. Despite the lack of conservation at this section, sites for exogenous cleavage by asparaginyl endopeptidases and a Leu-Ser[downward arrow]His motif for

  7. Design, synthesis, and evaluation of in vivo potency and selectivity of epoxysuccinyl-based inhibitors of papain-family cysteine proteases.

    PubMed

    Sadaghiani, Amir Masoud; Verhelst, Steven H L; Gocheva, Vasilena; Hill, Kimberly; Majerova, Eva; Stinson, Sherman; Joyce, Johanna A; Bogyo, Matthew

    2007-05-01

    The papain-family cathepsins are cysteine proteases that are emerging as promising therapeutic targets for a number of human disease conditions ranging from osteoporosis to cancer. Relatively few selective inhibitors for this family exist, and the in vivo selectivity of most existing compounds is unclear. We present here the synthesis of focused libraries of epoxysuccinyl-based inhibitors and their screening in crude tissue extracts. We identified a number of potent inhibitors that display selectivity for endogenous cathepsin targets both in vitro and in vivo. Importantly, the selectivity patterns observed in crude extracts were generally retained in vivo, as assessed by active-site labeling of tissues from treated animals. Overall, this study identifies several important compound classes and highlights the use of activity-based probes to assess pharmacodynamic properties of small-molecule inhibitors in vivo.

  8. Proteases in Fas-mediated apoptosis.

    PubMed

    Zhivotovsky, B; Burgess, D H; Schlegel, J; Pörn, M I; Vanags, D; Orrenius, S

    1997-01-01

    Involvement of a unique family of cysteine proteases in the multistep apoptotic process has been documented. Cloning of several mammalian genes identifies some components of this cellular response. However, it is currently unclear which protease plays a role as a signal and/or effector of apoptosis. We summarize contributions to the data concerning proteases in Fas-mediated apoptosis.

  9. Supermarket Proteases.

    ERIC Educational Resources Information Center

    Hagar, William G.; Bullerwell, Lornie D.

    2003-01-01

    Presents a laboratory activity on enzymes. Uses common items found in the supermarket that contain protease enzymes, such as contact lens cleaner and meat tenderizer. Demonstrates the digestion of gelatin proteins as part of enzymatic reactions. (Author/SOE)

  10. Synthesis and biological evaluation of papain-family cathepsin L-like cysteine protease inhibitors containing a 1,4-benzodiazepine scaffold as antiprotozoal agents.

    PubMed

    Ettari, Roberta; Pinto, Andrea; Tamborini, Lucia; Angelo, Ilenia C; Grasso, Silvana; Zappalà, Maria; Capodicasa, Natale; Yzeiraj, Laura; Gruber, Esther; Aminake, Makoah N; Pradel, Gabriele; Schirmeister, Tanja; De Micheli, Carlo; Conti, Paola

    2014-08-01

    Novel papain-family cathepsin L-like cysteine protease inhibitors endowed with antitrypanosomal and antimalarial activity were developed, through an optimization study of previously developed inhibitors. In the present work, we studied the structure-activity relationships of these derivatives, with the aim to develop new analogues with a simplified and more synthetically accessible structure and with improved antiparasitic activity. The structure of the model compounds was significantly simplified by modifying or even eliminating the side chain appended at the C3 atom of the benzodiazepine scaffold. In addition, a simple methylene spacer of appropriate length was inserted between the benzodiazepine ring and the 3-bromoisoxazoline moiety. Several rhodesain and falcipain-2 inhibitors displaying single-digit micromolar or sub-micromolar antiparasitic activity against one or both parasites were identified, with activities that were one order of magnitude more potent than the model compounds. PMID:24919925

  11. A Zinc-Dependent Protease AMZ-tk from a Thermophilic Archaeon is a New Member of the Archaemetzincin Protein Family

    PubMed Central

    Jia, Baolei; Li, Zhengqun; Liu, Jinliang; Sun, Ying; Jia, Xiaomeng; Xuan, Yuan Hu; Zhang, Jiayan; Jeon, Che Ok

    2015-01-01

    A putative zinc-dependent protease (TK0512) in Thermococcus kodakarensis KOD1 shares a conserved motif with archaemetzincins, which are metalloproteases found in archaea, bacteria, and eukarya. Phylogenetic and sequence analyses showed that TK0512 and its homologues in Thermococcaceae represent new members in the archaemetzincins family, which we named AMZ-tk. We further confirmed its proteolytic activity biochemically by overexpression of the recombinant AMZ-tk in Escherichia coli and characterization of the purified enzyme. In the presence of zinc, the purified enzyme degraded casein, while adding EDTA strongly inhibited the enzyme activity. AMZ-tk also exhibited self-cleavage activity that required Zn2+. These results demonstrated that AMZ-tk is a zinc-dependent protease within the archaemetzincin family. The enzyme displayed activity at alkaline pHs ranging from 7.0 to 10.0, with the optimal pH being 8.0. The optimum temperature for the catalytic activity of AMZ-tk was 55°C. Quantitative reverse transcription-PCR revealed that transcription of AMZ-tk was also up-regulated after exposing the cells to 55 and 65°C. Mutant analysis suggested that Zn2+ binding histidine and catalytic glutamate play key roles in proteolysis. AMZ-tk was thermostable on incubation for 4 h at 70°C in the presence of EDTA. AMZ-tk also retained >50% of its original activity in the presence of both laboratory surfactants and commercial laundry detergents. AMZ-tk further showed antibacterial activity against several bacteria. Therefore, AMZ-tk is of considerable interest for many purposes in view of its activity at alkaline pH, detergents, and thermostability. PMID:26733945

  12. A Zinc-Dependent Protease AMZ-tk from a Thermophilic Archaeon is a New Member of the Archaemetzincin Protein Family.

    PubMed

    Jia, Baolei; Li, Zhengqun; Liu, Jinliang; Sun, Ying; Jia, Xiaomeng; Xuan, Yuan Hu; Zhang, Jiayan; Jeon, Che Ok

    2015-01-01

    A putative zinc-dependent protease (TK0512) in Thermococcus kodakarensis KOD1 shares a conserved motif with archaemetzincins, which are metalloproteases found in archaea, bacteria, and eukarya. Phylogenetic and sequence analyses showed that TK0512 and its homologues in Thermococcaceae represent new members in the archaemetzincins family, which we named AMZ-tk. We further confirmed its proteolytic activity biochemically by overexpression of the recombinant AMZ-tk in Escherichia coli and characterization of the purified enzyme. In the presence of zinc, the purified enzyme degraded casein, while adding EDTA strongly inhibited the enzyme activity. AMZ-tk also exhibited self-cleavage activity that required Zn(2+). These results demonstrated that AMZ-tk is a zinc-dependent protease within the archaemetzincin family. The enzyme displayed activity at alkaline pHs ranging from 7.0 to 10.0, with the optimal pH being 8.0. The optimum temperature for the catalytic activity of AMZ-tk was 55°C. Quantitative reverse transcription-PCR revealed that transcription of AMZ-tk was also up-regulated after exposing the cells to 55 and 65°C. Mutant analysis suggested that Zn(2+) binding histidine and catalytic glutamate play key roles in proteolysis. AMZ-tk was thermostable on incubation for 4 h at 70°C in the presence of EDTA. AMZ-tk also retained >50% of its original activity in the presence of both laboratory surfactants and commercial laundry detergents. AMZ-tk further showed antibacterial activity against several bacteria. Therefore, AMZ-tk is of considerable interest for many purposes in view of its activity at alkaline pH, detergents, and thermostability. PMID:26733945

  13. A family of cathepsin F cysteine proteases of Clonorchis sinensis is the major secreted proteins that are expressed in the intestine of the parasite.

    PubMed

    Kang, Jung-Mi; Bahk, Young-Yil; Cho, Pyo-Yun; Hong, Sung-Jong; Kim, Tong-Soo; Sohn, Woon-Mok; Na, Byoung-Kuk

    2010-03-01

    Cysteine proteases of helminth parasites play essential roles in parasite physiology as well as in a variety of important pathobiological processes. In this study, we identified a multigene family of cathepsin F cysteine proteases in Clonorchis sinensis (CsCFs). We identified a total of 12 CsCF genes through cDNA cloning using degenerate PCR primers followed by RACE. Sequence and phylogenetic analysis of the genes suggested they belonged to the cathepsin F-like enzyme family and further clustered into three different subfamilies. Enzymatic and proteomic analysis of C. sinensis excretory and secretory products (ESP) revealed that multiple isoforms of CsCF were the major proteins present in the ESP and the proteolytic activity of the ESP is mainly attributable to the enzymes. Comparative analysis of representative enzymes for each subfamily, CsCF-4, CsCF-6, and CsCF-11, showed that they share similar biochemical properties typical for cathepsin F-like enzymes, but significant differences were also identified. The enzymes were expressed throughout various developmental stages of the parasite and the transcripts increased gradually in accordance with the maturation of the parasite. Immunolocalization analysis of CsCFs showed that they were mainly localized in the intestine and intestinal contents of the parasite. These results collectively suggested that CsCFs, which are apparently synthesized in the epithelial cells lining the parasite intestine and secreted into the intestinal lumen of the parasite, might have a cooperative role for nutrient uptake in the parasite. Furthermore, they were eventually secreted into outside of the parasite and may perform additional functions for host-parasite interactions.

  14. Mutagenesis and crystallographic studies of the catalytic residues of the papain family protease bleomycin hydrolase: new insights into active-site structure

    PubMed Central

    O'Farrell, Paul A.; Joshua-Tor, Leemor

    2006-01-01

    Bleomycin hydrolase (BH) is a hexameric papain family cysteine protease which is involved in preparing peptides for antigen presentation and has been implicated in tumour cell resistance to bleomycin chemotherapy. Structures of active-site mutants of yeast BH yielded unexpected results. Replacement of the active-site asparagine with alanine, valine or leucine results in the destabilization of the histidine side chain, demonstrating unambiguously the role of the asparagine residue in correctly positioning the histidine for catalysis. Replacement of the histidine with alanine or leucine destabilizes the asparagine position, indicating a delicate arrangement of the active-site residues. In all of the mutants, the C-terminus of the protein, which lies in the active site, protrudes further into the active site. All mutants were compromised in their catalytic activity. The structures also revealed the importance of a tightly bound water molecule which stabilizes a loop near the active site and which is conserved throughout the papain family. It is displaced in a number of the mutants, causing destabilization of this loop and a nearby loop, resulting in a large movement of the active-site cysteine. The results imply that this water molecule plays a key structural role in this family of enzymes. PMID:17007609

  15. Control of Entamoeba histolytica adherence involves metallosurface protease 1, an M8 family surface metalloprotease with homology to leishmanolysin.

    PubMed

    Teixeira, Jose E; Sateriale, Adam; Bessoff, Kovi E; Huston, Christopher D

    2012-06-01

    Invasive amebiasis due to Entamoeba histolytica infection is an important cause of morbidity in developing countries. The E. histolytica genome contains two homologues to the metalloprotease leishmanolysin gene, Entamoeba histolytica MSP-1 (EhMSP-1) and EhMSP-2, while the commensal ameba Entamoeba dispar has lost EhMSP-1. In this study, we sought to characterize E. histolytica metallosurface protease 1 (EhMSP-1). Using immunoprecipitation and a model substrate, we found that EhMSP-1 was a functional metalloprotease. Confocal microscopy and flow cytometry revealed that EhMSP-1 localized to the cell surface and revealed the existence of distinct, nonclonal trophozoite populations with high and low EhMSP-1 surface abundance that became synchronized following serum starvation. Phenotypic assays were performed after silencing EhMSP-1. Adherence of EhMSP-1-deficient trophozoites to tissue culture cell monolayers was more than five times greater than that of control amebas, but surface staining of several antigens, including the galactose adherence lectin, was unchanged. EhMSP-1 silencing similarly increased adherence to both viable and apoptotic Jurkat lymphocytes. Tissue culture cell monolayer destruction was reduced by EhMSP-1 silencing, although it was blocked almost completely by inhibiting cysteine proteases. Consistent with a primary defect in regulation of amebic adherence, EhMSP-1 silencing also resulted in reduced mobility on tissue culture cell monolayers and in increased phagocytosis. In conclusion, EhMSP-1 was shown to be a surface metalloprotease involved in regulation of amebic adherence, with additional effects on cell motility, cell monolayer destruction, and phagocytosis.

  16. SLC6 family transporter SNF-10 is required for protease-mediated activation of sperm motility in C. elegans.

    PubMed

    Fenker, Kristin E; Hansen, Angela A; Chong, Conrad A; Jud, Molly C; Duffy, Brittany A; Norton, J Paul; Hansen, Jody M; Stanfield, Gillian M

    2014-09-01

    Motility of sperm is crucial for their directed migration to the egg. The acquisition and modulation of motility are regulated to ensure that sperm move when and where needed, thereby promoting reproductive success. One specific example of this phenomenon occurs during differentiation of the ameboid sperm of Caenorhabditis elegans as they activate from a round spermatid to a mature, crawling spermatozoon. Sperm activation is regulated by redundant pathways to occur at a specific time and place for each sex. Here, we report the identification of the solute carrier 6 (SLC6) transporter protein SNF-10 as a key regulator of C. elegans sperm activation in response to male protease activation signals. We find that SNF-10 is present in sperm and is required for activation by the male but not by the hermaphrodite. Loss of both snf-10 and a hermaphrodite activation factor render sperm completely insensitive to activation. Using in vitro assays, we find that snf-10 mutant sperm show a specific deficit in response to protease treatment but not to other activators. Prior to activation, SNF-10 is present in the plasma membrane, where it represents a strong candidate to receive signals that lead to subcellular morphogenesis. After activation, it shows polarized localization to the cell body region that is dependent on membrane fusions mediated by the dysferlin FER-1. Our discovery of snf-10 offers insight into the mechanisms differentially employed by the two sexes to accomplish the common goal of producing functional sperm, as well as how the physiology of nematode sperm may be regulated to control motility as it is in mammals.

  17. Comparative genomics of mycobacterial proteases.

    PubMed

    Ribeiro-Guimarães, Michelle Lopes; Pessolani, Maria Cristina Vidal

    2007-01-01

    Although proteases are recognized as important virulent factors in pathogenic microorganisms, little information is available so far regarding the potential role of these enzymes in diseases caused by mycobacteria. Here we use bioinformatic tools to compare the protease-coding genes present in the genome of Mycobacterium leprae, Mycobacterium tuberculosis, Mycobacterium bovis and Mycobacterium avium paratuberculosis. This analysis allowed a review of the nomenclature of the protease family present in mycobacteria. A special attention was devoted to the 'decaying genome' of M. leprae where a relatively high level of conservation of protease-coding genes was observed when compared to other genes families. A total of 39 genes out of the 49 found in M. bovis were identified in M. leprae. Of relevance, a core of well-conserved 38 protease genes shared by the four species was defined. This set of proteases is probably essential for survival in the host and disease outcome and may constitute novel targets for drug development leading to a more effective control of mycobacterial diseases.

  18. NMR characterization and conformational analysis of a potent papain-family cathepsin L-like cysteine protease inhibitor with different behaviour in polar and apolar media

    NASA Astrophysics Data System (ADS)

    Rotondo, Archimede; Ettari, Roberta; Zappalà, Maria; De Micheli, Carlo; Rotondo, Enrico

    2014-11-01

    We recently reported the synthesis, of a potent papain-family cathepsin L-like cysteine protease inhibitor, as new lead compound for the development of new drugs that can be used as antiprotozoal agents. The investigation of its conformational profile is crucial for the in-depth understanding of its biological behaviour. Our careful NMR analysis has been based on the complete and total assignment of 1H, 13C, 15N and 19F signals of the molecule in both CDCl3 and CD3OH, which could reproduce in some way a scenario of polar and not polar phases into the biological environment. In this way it has been unveiled a different behaviour of the molecule in polar and apolar media. In CDCl3 it is possible to define stable conformational arrangements on the basis of the detected through space contacts, whereas, in CD3OH a greater conformational freedom is envisaged: (a) by the overlap of any of the CH2 diastereotopic resonances (unable to distinguish asymmetric molecular sides because of the free rotation about the single bonded chains), (b) by the less definite measured vicinities not consistent with just one conformation and (c) by the evident loss or switching of key intramolecular hydrogen interactions.

  19. Serine proteases of parasitic helminths.

    PubMed

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-02-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  20. Serine Proteases of Parasitic Helminths

    PubMed Central

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-01-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  1. Inhibition of hemorrhagic and edematogenic activities of snake venoms by a broad-spectrum protease inhibitor, murinoglobulin; the effect on venoms from five different genera in Viperidae family.

    PubMed

    Ribeiro Filho, Wilker; Sugiki, Masahiko; Yoshida, Etsuo; Maruyama, Masugi

    2003-08-01

    In order to obtain basic data on the effect of broad-spectrum protease inhibitor against local symptoms of Viperidae snake envenomation, inhibitory capacity of rat murinoglobulin on local hemorrhagic and edematogenic activities of venoms from Crotalus atrox, Bothrops jararaca, Lachesis muta muta, Trimeresurus flavoviridis and Echis carinatus sochureki were examined. Murinoglobulin, pre-incubated with the crude venoms at 37 degrees C for 15 min, inhibited hemorrhagic activity of all five venoms to various extents. The activity of C. atrox was almost completely inhibited at the murinoglobulin/venom ratio (w/w) of 20. The activity of B. jararaca, Lachesis muta muta and T. flavoviridis venoms was considerably inhibited at the ratio of 20 (77.2, 80.0 and 86.2% inhibition, respectively), however some of the activity still remained even at the ratio of 40 (84.2, 79.8 and 86.2% inhibition, respectively). Among the five venoms, E. c. sochureki venom is quite resistant to murinoglobulin treatment and statistically significant inhibition was only found at the ratio of 40 (64.1% inhibition). Fibrinolytic and gelatinase activities were more susceptible to murinoglobulin inhibition. The treatment at the ratios of 10 and 20 almost completely inhibited respectively the fibrinolytic and the gelatinase activities of all the venoms. Murinoglobulin treatment also significantly inhibited the edematogenic activity of L. muta muta, T. flavoviridis and Echis carinatus sochureki. The treatment of murinoglobulin at the ratio of 40 considerably suppressed the swelling up to 60 min after subcutaneous injection of L. muta muta and E. c. sochureki venoms, and up to 30 min after T. flavoviridis venom injection. Murinoglobulin is a potent inhibitor against local effects of multiple snake venoms in Viperidae family. PMID:12906888

  2. Proteases as Insecticidal Agents

    PubMed Central

    Harrison, Robert L.; Bonning, Bryony C.

    2010-01-01

    Proteases from a variety of sources (viruses, bacteria, fungi, plants, and insects) have toxicity towards insects. Some of these insecticidal proteases evolved as venom components, herbivore resistance factors, or microbial pathogenicity factors, while other proteases play roles in insect development or digestion, but exert an insecticidal effect when over-expressed from genetically engineered plants or microbial pathogens. Many of these proteases are cysteine proteases, although insect-toxic metalloproteases and serine proteases have also been examined. The sites of protease toxic activity range from the insect midgut to the hemocoel (body cavity) to the cuticle. This review discusses these insecticidal proteases along with their evaluation and use as potential pesticides. PMID:22069618

  3. Biased Signaling of Protease-Activated Receptors

    PubMed Central

    Zhao, Peishen; Metcalf, Matthew; Bunnett, Nigel W.

    2014-01-01

    In addition to their role in protein degradation and digestion, proteases can also function as hormone-like signaling molecules that regulate vital patho-physiological processes, including inflammation, hemostasis, pain, and repair mechanisms. Certain proteases can signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. PARs are expressed by almost all cell types, control important physiological and disease-relevant processes, and are an emerging therapeutic target for major diseases. Most information about PAR activation and function derives from studies of a few proteases, for example thrombin in the case of PAR1, PAR3, and PAR4, and trypsin in the case of PAR2 and PAR4. These proteases cleave PARs at established sites with the extracellular N-terminal domains, and expose tethered ligands that stabilize conformations of the cleaved receptors that activate the canonical pathways of G protein- and/or β-arrestin-dependent signaling. However, a growing number of proteases have been identified that cleave PARs at divergent sites to activate distinct patterns of receptor signaling and trafficking. The capacity of these proteases to trigger distinct signaling pathways is referred to as biased signaling, and can lead to unique patho-physiological outcomes. Given that a different repertoire of proteases are activated in various patho-physiological conditions that may activate PARs by different mechanisms, signaling bias may account for the divergent actions of proteases and PARs. Moreover, therapies that target disease-relevant biased signaling pathways may be more effective and selective approaches for the treatment of protease- and PAR-driven diseases. Thus, rather than mediating the actions of a few proteases, PARs may integrate the biological actions of a wide spectrum of proteases in different patho-physiological conditions. PMID:24860547

  4. Serine Protease Autotransporters of Enterobacteriaceae (SPATEs): Biogenesis and Function

    PubMed Central

    Dautin, Nathalie

    2010-01-01

    Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) constitute a large family of proteases secreted by Escherichia coli and Shigella. SPATEs exhibit two distinct proteolytic activities. First, a C-terminal catalytic site triggers an intra-molecular cleavage that releases the N-terminal portion of these proteins in the extracellular medium. Second, the secreted N-terminal domains of SPATEs are themselves proteases; each contains a canonical serine-protease catalytic site. Some of these secreted proteases are toxins, eliciting various effects on mammalian cells. Here, we discuss the biogenesis of SPATEs and their function as toxins. PMID:22069633

  5. CtpB assembles a gated protease tunnel regulating cell-cell signaling during spore formation in Bacillus subtilis.

    PubMed

    Mastny, Markus; Heuck, Alexander; Kurzbauer, Robert; Heiduk, Anja; Boisguerin, Prisca; Volkmer, Rudolf; Ehrmann, Michael; Rodrigues, Christopher D A; Rudner, David Z; Clausen, Tim

    2013-10-24

    Spore formation in Bacillus subtilis relies on a regulated intramembrane proteolysis (RIP) pathway that synchronizes mother-cell and forespore development. To address the molecular basis of this SpoIV transmembrane signaling, we carried out a structure-function analysis of the activating protease CtpB. Crystal structures reflecting distinct functional states show that CtpB constitutes a ring-like protein scaffold penetrated by two narrow tunnels. Access to the proteolytic sites sequestered within these tunnels is controlled by PDZ domains that rearrange upon substrate binding. Accordingly, CtpB resembles a minimal version of a self-compartmentalizing protease regulated by a unique allosteric mechanism. Moreover, biochemical analysis of the PDZ-gated channel combined with sporulation assays reveal that activation of the SpoIV RIP pathway is induced by the concerted activity of CtpB and a second signaling protease, SpoIVB. This proteolytic mechanism is of broad relevance for cell-cell communication, illustrating how distinct signaling pathways can be integrated into a single RIP module.

  6. CtpB assembles a gated protease tunnel regulating cell-cell signaling during spore formation in Bacillus subtilis.

    PubMed

    Mastny, Markus; Heuck, Alexander; Kurzbauer, Robert; Heiduk, Anja; Boisguerin, Prisca; Volkmer, Rudolf; Ehrmann, Michael; Rodrigues, Christopher D A; Rudner, David Z; Clausen, Tim

    2013-10-24

    Spore formation in Bacillus subtilis relies on a regulated intramembrane proteolysis (RIP) pathway that synchronizes mother-cell and forespore development. To address the molecular basis of this SpoIV transmembrane signaling, we carried out a structure-function analysis of the activating protease CtpB. Crystal structures reflecting distinct functional states show that CtpB constitutes a ring-like protein scaffold penetrated by two narrow tunnels. Access to the proteolytic sites sequestered within these tunnels is controlled by PDZ domains that rearrange upon substrate binding. Accordingly, CtpB resembles a minimal version of a self-compartmentalizing protease regulated by a unique allosteric mechanism. Moreover, biochemical analysis of the PDZ-gated channel combined with sporulation assays reveal that activation of the SpoIV RIP pathway is induced by the concerted activity of CtpB and a second signaling protease, SpoIVB. This proteolytic mechanism is of broad relevance for cell-cell communication, illustrating how distinct signaling pathways can be integrated into a single RIP module. PMID:24243021

  7. Investigations with Protease.

    ERIC Educational Resources Information Center

    Yip, Din Yan

    1997-01-01

    Presents two simple and reliable ways for measuring protease activity that can be used for a variety of investigations in a range of biology class levels. The investigations use protease from a variety of sources. (DDR)

  8. Secreted fungal aspartic proteases: A review.

    PubMed

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application. PMID:27137097

  9. Secreted fungal aspartic proteases: A review.

    PubMed

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application.

  10. Bioinformatics of proteases in the MEROPS database.

    PubMed

    Barrett, Alan J

    2004-05-01

    Proteolytic enzymes represent approximately approximately 2% of the total number of proteins present in all types of organisms. Many of these enzymes are of medical importance, and those that are of potential interest as drug targets can be divided into the endogenous enzymes encoded in the human genome, and the exogenous proteases encoded in the genomes of disease-causing organisms. There are also naturally occurring inhibitors of proteases, some of which have pharmaceutical relevance. The MEROPS database provides a rich source of information on proteases and their inhibitors. Storage and retrieval of this information is facilitated by the use of a hierarchical classification system (which was pioneered by the compilers of the database) in which homologous proteases and their inhibitors are divided into clans and families. PMID:15216937

  11. Proteases as therapeutics

    PubMed Central

    Craik, Charles S.; Page, Michael J.; Madison, Edwin L.

    2015-01-01

    Proteases are an expanding class of drugs that hold great promise. The U.S. FDA (Food and Drug Administration) has approved 12 protease therapies, and a number of next generation or completely new proteases are in clinical development. Although they are a well-recognized class of targets for inhibitors, proteases themselves have not typically been considered as a drug class despite their application in the clinic over the last several decades; initially as plasma fractions and later as purified products. Although the predominant use of proteases has been in treating cardiovascular disease, they are also emerging as useful agents in the treatment of sepsis, digestive disorders, inflammation, cystic fibrosis, retinal disorders, psoriasis and other diseases. In the present review, we outline the history of proteases as therapeutics, provide an overview of their current clinical application, and describe several approaches to improve and expand their clinical application. Undoubtedly, our ability to harness proteolysis for disease treatment will increase with our understanding of protease biology and the molecular mechanisms responsible. New technologies for rationally engineering proteases, as well as improved delivery options, will expand greatly the potential applications of these enzymes. The recognition that proteases are, in fact, an established class of safe and efficacious drugs will stimulate investigation of additional therapeutic applications for these enzymes. Proteases therefore have a bright future as a distinct therapeutic class with diverse clinical applications. PMID:21406063

  12. Type II Transmembrane Serine Proteases*

    PubMed Central

    Bugge, Thomas H.; Antalis, Toni M.; Wu, Qingyu

    2009-01-01

    Analysis of genome and expressed sequence tag data bases at the turn of the millennium unveiled a new protease family named the type II transmembrane serine proteases (TTSPs) in a Journal of Biological Chemistry minireview (Hooper, J. D., Clements, J. A., Quigley, J. P., and Antalis, T. M. (2001) J. Biol. Chem. 276, 857–860). Since then, the number of known TTSPs has more than doubled, and more importantly, our understanding of the physiological functions of individual TTSPs and their contribution to human disease has greatly increased. Progress has also been made in identifying molecular substrates and endogenous inhibitors. This minireview summarizes the current knowledge of the rapidly advancing TTSP field. PMID:19487698

  13. Characterization of EspC, a 110-kilodalton protein secreted by enteropathogenic Escherichia coli which is homologous to members of the immunoglobulin A protease-like family of secreted proteins.

    PubMed Central

    Stein, M; Kenny, B; Stein, M A; Finlay, B B

    1996-01-01

    Enteropathogenic Escherichia coli (EPEC) secretes at least five proteins. Two of these proteins, EspA and EspB (previously called EaeB), activate signal transduction pathways in host epithelial cells. While the role of the other three proteins (39, 40, and 110 kDa) remains undetermined, secretion of all five proteins is under the control of perA, a known positive regulator of several EPEC virulence factors. On the basis of amino-terminal protein sequence data, we cloned and sequenced the gene which encodes the 110-kDa secreted protein and examined its possible role in EPEC signaling and interaction with epithelial cells. In accordance with the terminology used for espA and espB, we called this gene espC, for EPEC-secreted protein C. We found significant homology between the predicted EspC protein sequence and a family of immunoglobulin A (IgA) protease-like proteins which are widespread among pathogenic bacteria. Members of this protein family are found in avian pathogenic Escherichia coli (Tsh), Haemophilus influenzae (Hap), and Shigella flexneri (SepA). Although these proteins and EspC do not encode IgA protease activity, they have considerable homology with IgA protease from Neisseria gonorrhoeae and H. influenzae and appear to use a export system for secretion. We found that genes homologous to espC also exist in other pathogenic bacteria which cause attaching and effacing lesions, including Hafnia alvei biotype 19982, Citrobacter freundii biotype 4280, and rabbit diarrheagenic E. coli (RDEC-1). Although these strains secrete various proteins similar in molecular size to the proteins secreted by EPEC, we did not detect secretion of a 110-kDa protein by these strains. To examine the possible role of EspC in EPEC interactions with epithelial cells, we constructed a deletion mutant in espC by allelic exchange and characterized the mutant by standard tissue culture assays. We found that EspC is not necessary for mediating EPEC-induced signal transduction in He

  14. Protease inhibitor from Moringa oleifera with potential for use as therapeutic drug and as seafood preservative.

    PubMed

    Bijina, B; Chellappan, Sreeja; Krishna, Jissa G; Basheer, Soorej M; Elyas, K K; Bahkali, Ali H; Chandrasekaran, M

    2011-07-01

    Protease inhibitors are well known to have several applications in medicine and biotechnology. Several plant sources are known to return potential protease inhibitors. In this study plants belonging to different families of Leguminosae, Malvaceae, Rutaceae, Graminae and Moringaceae were screened for the protease inhibitor. Among them Moringa oleifera, belonging to the family Moringaceae, recorded high level of protease inhibitor activity after ammonium sulfate fractionation. M. oleifera, which grows throughout most of the tropics and having several industrial and medicinal uses, was selected as a source of protease inhibitor since so far no reports were made on isolation of the protease inhibitor. Among the different parts of M. oleifera tested, the crude extract isolated from the mature leaves and seeds showed the highest level of inhibition against trypsin. Among the various extraction media evaluated, the crude extract prepared in phosphate buffer showed maximum recovery of the protease inhibitor. The protease inhibitor recorded high inhibitory activity toward the serine proteases thrombin, elastase, chymotrypsin and the cysteine proteases cathepsin B and papain which have more importance in pharmaceutical industry. The protease inhibitor also showed complete inhibition of activities of the commercially available proteases of Bacillus licheniformis and Aspergillus oryzae. However, inhibitory activities toward subtilisin, esperase, pronase E and proteinase K were negligible. Further, it was found that the protease inhibitor could prevent proteolysis in a commercially valuable shrimp Penaeus monodon during storage indicating the scope for its application as a seafood preservative. This is the first report on isolation of a protease inhibitor from M. oleifera. PMID:23961135

  15. Protease inhibitor from Moringa oleifera with potential for use as therapeutic drug and as seafood preservative

    PubMed Central

    Bijina, B.; Chellappan, Sreeja; Krishna, Jissa G.; Basheer, Soorej M.; Elyas, K.K.; Bahkali, Ali H.; Chandrasekaran, M.

    2011-01-01

    Protease inhibitors are well known to have several applications in medicine and biotechnology. Several plant sources are known to return potential protease inhibitors. In this study plants belonging to different families of Leguminosae, Malvaceae, Rutaceae, Graminae and Moringaceae were screened for the protease inhibitor. Among them Moringa oleifera, belonging to the family Moringaceae, recorded high level of protease inhibitor activity after ammonium sulfate fractionation. M. oleifera, which grows throughout most of the tropics and having several industrial and medicinal uses, was selected as a source of protease inhibitor since so far no reports were made on isolation of the protease inhibitor. Among the different parts of M. oleifera tested, the crude extract isolated from the mature leaves and seeds showed the highest level of inhibition against trypsin. Among the various extraction media evaluated, the crude extract prepared in phosphate buffer showed maximum recovery of the protease inhibitor. The protease inhibitor recorded high inhibitory activity toward the serine proteases thrombin, elastase, chymotrypsin and the cysteine proteases cathepsin B and papain which have more importance in pharmaceutical industry. The protease inhibitor also showed complete inhibition of activities of the commercially available proteases of Bacillus licheniformis and Aspergillus oryzae. However, inhibitory activities toward subtilisin, esperase, pronase E and proteinase K were negligible. Further, it was found that the protease inhibitor could prevent proteolysis in a commercially valuable shrimp Penaeus monodon during storage indicating the scope for its application as a seafood preservative. This is the first report on isolation of a protease inhibitor from M. oleifera. PMID:23961135

  16. Subtilisin-like proteases in nematodes.

    PubMed

    Poole, Catherine B; Jin, Jingmin; McReynolds, Larry A

    2007-09-01

    Cleavage by subtilisin-like proteases (subtilases) is an essential step in post-translational processing of proteins found in organisms ranging from yeast to mammals. Our knowledge of the diversity of this protease family in nematodes is aided by the rapid increase in sequence information, especially from the Brugia malayi genome project. Genetic studies of the subtilases in Caenorhabitis elegans give valuable insight into the biological function of these proteases in other nematode species. In this review, we focus on the subtilases in filarial nematodes as well as other parasitic and free-living nematodes in comparison to what is known in C. elegans. Topics to be addressed include expansion and diversity of the subtilase gene family during evolution, enhanced complexity created by alternative RNA splicing, molecular and biochemical characterization of the different subtilases and the challenges of designing subtilase-specific inhibitors for parasitic nematodes. PMID:17570539

  17. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures.

    PubMed

    Saeki, Katsuhisa; Ozaki, Katsuya; Kobayashi, Tohru; Ito, Susumu

    2007-06-01

    Subtilisin-like serine proteases from bacilli have been used in various industrial fields worldwide, particularly in the production of laundry and automatic dishwashing detergents. They belong to family A of the subtilase superfamily, which is composed of three clans, namely, true subtilisins, high-alkaline proteases, and intracellular proteases. We succeeded in the large-scale production of a high-alkaline protease (M-protease) from alkaliphilic Bacillus clausii KSM-K16, and the enzyme has been introduced into compact heavy-duty laundry detergents. We have also succeeded in the industrial-scale production of a new alkaline protease, KP-43, which was originally resistant to chemical oxidants and to surfactants, produced by alkaliphilic Bacillus sp. strain KSM-KP43 and have incorporated it into laundry detergents. KP-43 and related proteases form a new clan, oxidatively stable proteases, in subtilase family A. In this review, we describe the enzymatic properties, gene sequences, and crystal structures of M-protease, KP-43, and related enzymes. PMID:17630120

  18. Characterization of a protease-resistant α-galactosidase from the thermophilic fungus Rhizomucor miehei and its application in removal of raffinose family oligosaccharides.

    PubMed

    Katrolia, Priti; Jia, Huiyong; Yan, Qiaojuan; Song, Shuang; Jiang, Zhengqiang; Xu, Haibo

    2012-04-01

    The α-galactosidase gene, RmGal36, from Rhizomucor miehei was cloned and expressed in Escherichia coli. The gene has an open reading frame of 2256bp encoding 751 amino acid residues. RmGal36 was optimally active at pH 4.5 and 60°C, but is stable between pH 4.5 and 10.0 and at a temperature of up to 55°C for 30min retaining more than 80% of its relative activity. It displayed remarkable resistance to proteases and its activity was not inhibited by galactose concentrations of 100mM. The relative specificity of RmGal36 towards various substrates is in the order of p-nitrophenyl α-galactopyranoside>melibiose>stachyose>raffinose, with a K(m) of 0.36, 16.9, 27.6, and 47.9mM, respectively. The enzyme completely hydrolyzed raffinose and stachyose present in soybeans and kidney beans at 50°C within 60min. These features make RmGal36 useful in the food and feed industries and in processing of beet-sugar. PMID:22349190

  19. Characterization of a protease-resistant α-galactosidase from the thermophilic fungus Rhizomucor miehei and its application in removal of raffinose family oligosaccharides.

    PubMed

    Katrolia, Priti; Jia, Huiyong; Yan, Qiaojuan; Song, Shuang; Jiang, Zhengqiang; Xu, Haibo

    2012-04-01

    The α-galactosidase gene, RmGal36, from Rhizomucor miehei was cloned and expressed in Escherichia coli. The gene has an open reading frame of 2256bp encoding 751 amino acid residues. RmGal36 was optimally active at pH 4.5 and 60°C, but is stable between pH 4.5 and 10.0 and at a temperature of up to 55°C for 30min retaining more than 80% of its relative activity. It displayed remarkable resistance to proteases and its activity was not inhibited by galactose concentrations of 100mM. The relative specificity of RmGal36 towards various substrates is in the order of p-nitrophenyl α-galactopyranoside>melibiose>stachyose>raffinose, with a K(m) of 0.36, 16.9, 27.6, and 47.9mM, respectively. The enzyme completely hydrolyzed raffinose and stachyose present in soybeans and kidney beans at 50°C within 60min. These features make RmGal36 useful in the food and feed industries and in processing of beet-sugar.

  20. Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities

    PubMed Central

    Mielech, Anna M.; Chen, Yafang; Mesecar, Andrew D.; Baker, Susan C.

    2014-01-01

    Coronaviruses and arteriviruses, members of the order Nidovirales, are positive strand RNA viruses that encode large replicase polyproteins that are processed by viral proteases to generate the nonstructural proteins which mediate viral RNA synthesis. The viral papain-like proteases (PLPs) are critical for processing the amino-terminal end of the replicase and are attractive targets for antiviral therapies. With the analysis of the papain-like protease of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), came the realization of the multifunctional nature of these enzymes. Structural and enzymatic studies revealed that SARS-CoV PLpro can act as both a protease to cleave peptide bonds and also as a deubiquitinating (DUB) enzyme to cleave the isopeptide bonds found in polyubiquitin chains. Furthermore, viral DUBs can also remove the protective effect of conjugated ubiquitin-like molecules such as interferon stimulated gene 15 (ISG15). Extension of these studies to other coronaviruses and arteriviruses led to the realization that viral protease/DUB activity is conserved in many family members. Overexpression studies revealed that viral protease/DUB activity can modulate or block activation of the innate immune response pathway. Importantly, mutations that alter DUB activity but not viral protease activity have been identified and arteriviruses expressing DUB mutants stimulated higher levels of acute inflammatory cytokines after infection. Further understanding of the multifunctional nature of the Nidovirus PLP/DUBs may facilitate vaccine development. Here, we review studies describing the PLPs’ enzymatic activity and their role in virus pathogenesis. PMID:24512893

  1. Structural determinants of tobacco vein mottling virus protease substrate specificity

    SciTech Connect

    Sun, Ping; Austin, Brian P.; Tozer, Jozsef; Waugh, David

    2010-10-28

    Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-{angstrom} resolution. As observed in several crystal structures of TEV protease, the C-terminus ({approx}20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by {approx}10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1{prime} position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters k{sub cat} and K{sub m} for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.

  2. Using specificity to strategically target proteases

    PubMed Central

    Lim, Mark D.; Craik, Charles S.

    2009-01-01

    Proteases are a family of naturally occurring enzymes in the body whose dysregulation has been implicated in numerous diseases and cancers. Their ability to selectively and catalytically turnover substrate adds both signal amplification and functionality as parameters for the detection of disease. This review will focus on the development of activity-based methodologies to characterize proteases, and in particular, the use of positional scanning, synthetic combinatorial libraries (PS-SCL’s), and substrate activity screening (SAS) assays. The use of these approaches to better understand a protease’s natural substrate will be discussed as well as the technologies that emerged. PMID:18434168

  3. Improved immunohistochemical detection of postsynaptically located PSD-95/SAP90 protein family by protease section pretreatment: a study in the adult mouse brain.

    PubMed

    Fukaya, M; Watanabe, M

    2000-10-30

    Postsynaptic density (PSD)-95, SAP102, and Chapsyn-110 are members of the PSD-95/SAP90 protein family, which interact with the C-terminus of N-methyl-D-aspartate (NMDA) receptor and shaker-type potassium channel subunits. Here we report that appropriate section pretreatment with pepsin has led to qualitative and quantitative changes in light microscopic immunohistochemical detection of the protein family. First, pepsin pretreatment lowered the concentration of affinity-purified primary antibodies, while it greatly increased the intensity of immunoreactions. Second, the resulting overall distributions of PSD-95, SAP102, and Chapsyn-110 in the adult mouse brain were consistent with their mRNA distributions. Third, instead of the reported patterns of somatodendritic labeling, tiny punctate staining in the neuropil became overwhelming. Fourth, many PSD-95-immunopositive puncta were apposed closely to synaptophysin-positive nerve terminals and overlapped with NMDA receptor subunits. By postembedding immunogold, the PSD-95 antibody was shown to label exclusively the postsynaptic density at asymmetrical synapses. Based on these results, we conclude that antibody access and binding to the postsynaptically located PSD-95/SAP90 protein family are hindered when conventional immunohistochemistry is adopted, and that pepsin pretreatment effectively unmasks the postsynaptic epitopes. On the other hand, PSD-95 in axon terminals of cerebellar basket cells, where high levels of potassium channels are present, was detectable irrespective of pepsin pretreatment, suggesting that PSD-95 antibody is readily accessible to the presynaptic epitopes. Consequently, the present immunohistochemical results have provided light microscopic evidence supporting the prevailing notion that the PSD-95/SAP90 protein family interacts with NMDA receptor subunits and potassium channel subunits. PMID:11027400

  4. Positive selection of digestive Cys proteases in herbivorous Coleoptera.

    PubMed

    Vorster, Juan; Rasoolizadeh, Asieh; Goulet, Marie-Claire; Cloutier, Conrad; Sainsbury, Frank; Michaud, Dominique

    2015-10-01

    Positive selection is thought to contribute to the functional diversification of insect-inducible protease inhibitors in plants in response to selective pressures exerted by the digestive proteases of their herbivorous enemies. Here we assessed whether a reciprocal evolutionary process takes place on the insect side, and whether ingestion of a positively selected plant inhibitor may translate into a measurable rebalancing of midgut proteases in vivo. Midgut Cys proteases of herbivorous Coleoptera, including the major pest Colorado potato beetle (Leptinotarsa decemlineata), were first compared using a codon-based evolutionary model to look for the occurrence of hypervariable, positively selected amino acid sites among the tested sequences. Hypervariable sites were found, distributed within -or close to- amino acid regions interacting with Cys-type inhibitors of the plant cystatin protein family. A close examination of L. decemlineata sequences indicated a link between their assignment to protease functional families and amino acid identity at positively selected sites. A function-diversifying role for positive selection was further suggested empirically by in vitro protease assays and a shotgun proteomic analysis of L. decemlineata Cys proteases showing a differential rebalancing of protease functional family complements in larvae fed single variants of a model cystatin mutated at positively selected amino acid sites. These data confirm overall the occurrence of hypervariable, positively selected amino acid sites in herbivorous Coleoptera digestive Cys proteases. They also support the idea of an adaptive role for positive selection, useful to generate functionally diverse proteases in insect herbivores ingesting functionally diverse, rapidly evolving dietary cystatins. PMID:26264818

  5. Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs

    PubMed Central

    Reddy, Vemuri B.; Sun, Shuohao; Azimi, Ehsan; Elmariah, Sarina B.; Dong, Xinzhong; Lerner, Ethan A.

    2015-01-01

    Sensory neurons expressing Mas-related G protein coupled receptors (Mrgprs) mediate histamine-independent itch. We show that the cysteine protease cathepsin S activates MrgprC11 and evokes receptor-dependent scratching in mice. In contrast to its activation of conventional protease-activated receptors, cathepsin S mediated activation of MrgprC11 did not involve the generation of a tethered ligand. We demonstrate further that different cysteine proteases selectively activate specific mouse and human Mrgpr family members. This expansion of our understanding by which proteases interact with GPCRs redefines the concept of what constitutes a protease-activated receptor. The findings also implicate proteases as ligands to members of this orphan receptor family while providing new insights into how cysteine proteases contribute to itch. PMID:26216096

  6. Crystal structure of an intracellular protease from Pyrococcus horikoshii at 2-Å resolution

    PubMed Central

    Du, Xinlin; Choi, In-Geol; Kim, Rosalind; Wang, Weiru; Jancarik, Jaru; Yokota, Hisao; Kim, Sung-Hou

    2000-01-01

    The intracellular protease from Pyrococcus horikoshii (PH1704) and PfpI from Pyrococcus furiosus are members of a class of intracellular proteases that have no sequence homology to any other known protease family. We report the crystal structure of PH1704 at 2.0-Å resolution. The protease is tentatively identified as a cysteine protease based on the presence of cysteine (residue 100) in a nucleophile elbow motif. In the crystal, PH1704 forms a hexameric ring structure, and the active sites are formed at the interfaces between three pairs of monomers. PMID:11114201

  7. Characterization of a Glycoside Hydrolase Family 27 α-Galactosidase from Pontibacter Reveals Its Novel Salt-Protease Tolerance and Transglycosylation Activity.

    PubMed

    Zhou, Junpei; Liu, Yu; Lu, Qian; Zhang, Rui; Wu, Qian; Li, Chunyan; Li, Junjun; Tang, Xianghua; Xu, Bo; Ding, Junmei; Han, Nanyu; Huang, Zunxi

    2016-03-23

    α-Galactosidases are of great interest in various applications. A glycoside hydrolase family 27 α-galactosidase was cloned from Pontibacter sp. harbored in a saline soil and expressed in Escherichia coli. The purified recombinant enzyme (rAgaAHJ8) was little or not affected by 3.5-30.0% (w/v) NaCl, 10.0-100.0 mM Pb(CH3COO)2, 10.0-60.0 mM ZnSO4, or 8.3-100.0 mg mL(-1) trypsin and by most metal ions and chemical reagents at 1.0 and 10.0 mM concentrations. The degree of synergy on enzymatic degradation of locust bean gum and guar gum by an endomannanase and rAgaAHJ8 was 1.22-1.54. In the presence of trypsin, the amount of reducing sugars released from soybean milk treated by rAgaAHJ8 was approximately 3.8-fold compared with that treated by a commercial α-galactosidase. rAgaAHJ8 showed transglycosylation activity when using sucrose, raffinose, and 3-methyl-1-butanol as the acceptors. Furthermore, potential factors for salt adaptation of the enzyme were presumed.

  8. Characterization of a Glycoside Hydrolase Family 27 α-Galactosidase from Pontibacter Reveals Its Novel Salt-Protease Tolerance and Transglycosylation Activity.

    PubMed

    Zhou, Junpei; Liu, Yu; Lu, Qian; Zhang, Rui; Wu, Qian; Li, Chunyan; Li, Junjun; Tang, Xianghua; Xu, Bo; Ding, Junmei; Han, Nanyu; Huang, Zunxi

    2016-03-23

    α-Galactosidases are of great interest in various applications. A glycoside hydrolase family 27 α-galactosidase was cloned from Pontibacter sp. harbored in a saline soil and expressed in Escherichia coli. The purified recombinant enzyme (rAgaAHJ8) was little or not affected by 3.5-30.0% (w/v) NaCl, 10.0-100.0 mM Pb(CH3COO)2, 10.0-60.0 mM ZnSO4, or 8.3-100.0 mg mL(-1) trypsin and by most metal ions and chemical reagents at 1.0 and 10.0 mM concentrations. The degree of synergy on enzymatic degradation of locust bean gum and guar gum by an endomannanase and rAgaAHJ8 was 1.22-1.54. In the presence of trypsin, the amount of reducing sugars released from soybean milk treated by rAgaAHJ8 was approximately 3.8-fold compared with that treated by a commercial α-galactosidase. rAgaAHJ8 showed transglycosylation activity when using sucrose, raffinose, and 3-methyl-1-butanol as the acceptors. Furthermore, potential factors for salt adaptation of the enzyme were presumed. PMID:26948050

  9. A highly immunogenic recombinant and truncated protein of the secreted aspartic proteases family (rSap2t) of Candida albicans as a mucosal anticandidal vaccine.

    PubMed

    Sandini, Silvia; La Valle, Roberto; Deaglio, Silvia; Malavasi, Fabio; Cassone, Antonio; De Bernardis, Flavia

    2011-07-01

    Sap2 (secreted aspartyl proteinase2) is a member of the Sap family of Candida albicans, a human opportunistic pathogen, which acts as a virulence factor in experimental animal models of mucosal candidiasis. The C. albicans SAP2 was subcloned into vector pDS56-RBSII-6xhis, under the control of an inducible promoter to produce a truncated 6xhis-tagged, enzymatically inactive Sap2, lacking the N-terminus 76 amino acids (rSap2t). This recombinant protein was purified to homogeneity by one-step nickel-chelate affinity chromatography and used to immunize intravaginally oophorectomized estradiol-treated rats. These animals raised local anti-rSap2t immunoglobulin G (IgG) and IgA antibodies and were protected from the challenge of a highly vaginopathic strain of the fungus. Protection was possibly due to the specific antibodies as suggested by the passive transfer of immune vaginal fluid and the protective effects of passive vaccination with anti-rSap2t IgM and IgG monoclonal antibodies. Hence, this new recombinant proteinase constitutes a novel tool to investigate mechanisms of anti-Candida protection at the vaginal level and as vaccination against vaginal candidiasis, a common, frequently recurrent and sometimes antimycotic-refractory infection in women.

  10. Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target

    NASA Astrophysics Data System (ADS)

    Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.

    1999-09-01

    Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.

  11. Family.

    ERIC Educational Resources Information Center

    Hurst, Hunter, Ed.; And Others

    1985-01-01

    This document contains the fourth volume of "Today's Delinquent," an annual publication of the National Center for Juvenile Justice. This volume deals with the issue of the family and delinquency. "The Family and Delinquency" (LaMar T. Empey) systematically reviews and weighs the evidence to support prominent theories on the origins of…

  12. The crystal structure of GXGD membrane protease FlaK

    SciTech Connect

    Hu, Jian; Xue, Yi; Lee, Sangwon; Ha, Ya

    2011-09-20

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.

  13. The Crystal Structure of GXGD Membrane Protease FlaK

    SciTech Connect

    J Hu; Y Xue; S Lee; Y Ha

    2011-12-31

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.

  14. A New Subtilase-Like Protease Deriving from Fusarium equiseti with High Potential for Industrial Applications.

    PubMed

    Juntunen, Kari; Mäkinen, Susanna; Isoniemi, Sari; Valtakari, Leena; Pelzer, Alexander; Jänis, Janne; Paloheimo, Marja

    2015-09-01

    A gene encoding a novel extracellular subtilisin-like protease was cloned from the ascomycete Fusarium equiseti and expressed in Trichoderma reesei. The F. equiseti protease (Fe protease) showed excellent performance in stain removal and good compatibility with several commercial laundry detergent formulations, suggesting that it has high potential for use in various industrial applications. The recombinant enzyme was purified and characterized. The temperature optimum of the Fe protease was 60 °C and it showed high activity in the pH range of 6-10, with a sharp decline in activity at pH above 10. The amino acid specificity of the Fe protease was studied using casein, cytochrome c, and ubiquitin as substrates. The Fe protease had broad substrate specificity: almost all amino acid residues were accepted at position P1, even though it showed some preference for cleavage at the C-terminal side of asparagine and histidine residues. The S4 subsite of Fe protease favors aspartic acid and threonine. The other well-characterized proteases from filamentous fungi, Proteinase K from Engyodontium album, Thermomycolin from Malbranchea sulfurea, and alkaline subtilisins from Bacillus species prefer hydrophobic amino acids in both the S1 and S4 subsites. Due to its different specificity compared to the members of the S8 family of clan SB of proteases, we consider that the Fe protease is a new protease. It does not belong to any previously defined IUBMB groups of proteases.

  15. Three monoclonal antibodies against the serpin protease nexin-1 prevent protease translocation.

    PubMed

    Kousted, Tina M; Skjoedt, Karsten; Petersen, Steen V; Koch, Claus; Vitved, Lars; Sochalska, Maja; Lacroix, Céline; Andersen, Lisbeth M; Wind, Troels; Andreasen, Peter A; Jensen, Jan K

    2014-01-01

    Protease nexin-1 (PN-1) belongs to the serpin family and is an inhibitor of thrombin, plasmin, urokinase-type plasminogen activator, and matriptase. Recent studies have suggested PN-1 to play important roles in vascular-, neuro-, and tumour-biology. The serpin inhibitory mechanism consists of the serpin presenting its so-called reactive centre loop as a substrate to its target protease, resulting in a covalent complex with the inactivated enzyme. Previously, three mechanisms have been proposed for the inactivation of serpins by monoclonal antibodies: steric blockage of protease recognition, conversion to an inactive conformation or induction of serpin substrate behaviour. Until now, no inhibitory antibodies against PN-1 have been thoroughly characterised. Here we report the development of three monoclonal antibodies binding specifically and with high affinity to human PN-1. The antibodies all abolish the protease inhibitory activity of PN-1. In the presence of the antibodies, PN-1 does not form a complex with its target proteases, but is recovered in a reactive centre cleaved form. Using site-directed mutagenesis, we mapped the three overlapping epitopes to an area spanning the gap between the loop connecting α-helix F with β-strand 3A and the loop connecting α-helix A with β-strand 1B. We conclude that antibody binding causes a direct blockage of the final critical step of protease translocation, resulting in abortive inhibition and premature release of reactive centre cleaved PN-1. These new antibodies will provide a powerful tool to study the in vivo role of PN-1's protease inhibitory activity.

  16. ADAM Proteases and Gastrointestinal Function.

    PubMed

    Jones, Jennifer C; Rustagi, Shelly; Dempsey, Peter J

    2016-01-01

    A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis.

  17. ADAM Proteases and Gastrointestinal Function

    PubMed Central

    Jones, Jennifer C.; Rustagi, Shelly; Dempsey, Peter J.

    2016-01-01

    A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis. PMID:26667078

  18. Purification and characterization of a serine protease from Cucumis trigonus Roxburghi.

    PubMed

    Asif-Ullah, Mufti; Kim, Key-Sun; Yu, Yeon Gyu

    2006-05-01

    Kachri fruit, Cucumis trigonus Roxburghi, contains high protease activity and has been used as meat tenderizer in the Indian subcontinent. A 67 kDa serine protease from Kachri fruit was purified by DEAE-Sepharose and CM-Sepharose chromatography, whose optimum activity was at pH 11 and 70 degrees C. Its activity was strongly inhibited by PMSF, but not by EDTA, pepstatin, or cysteine protease inhibitors. The substrate specificity of the purified protease towards synthetic peptides was comparable to cucumisin, the first characterized subtilisin class plant protease from the sarcocarp of melon fruit (Cucumis melo). These characteristics, along with the N-terminal amino acid sequence, indicated that the isolated protease from Cucumis trigonus Roxburghi is a cucumisin homologue, which belongs to the serine protease family. PMID:16603211

  19. The Lon AAA+ protease.

    PubMed

    Gur, Eyal

    2013-01-01

    As the first ATP-dependent protease to be identified, Lon holds a special place in the history of cellular biology. In fact, the concept of ATP-dependent protein degradation was established through the findings that led to the discovery of Lon. Therefore, this chapter begins with a historical perspective, describing the milestones that led to the discovery of Lon and ATP-dependent proteolysis, starting from the early findings in the 1960s until the demonstration of Lon's ATP-dependent proteolytic activity in vitro, in 1981. Most of our knowledge on Lon derives from studies of the Escherichia coli Lon ortholog, and, therefore, most of this chapter relates to this particular enzyme. Nonetheless, Lon is not only found in most bacterial species, it is also found in Archaea and in the mitochondrion and chloroplast of eukaryotic cells. Therefore many of the conclusions gained from studies on the E. coli enzyme are relevant to Lon proteases in other organisms. Lon, more than any other bacterial or organellar protease, is associated with the degradation of misfolded proteins and protein quality control. In addition, Lon also degrades many regulatory proteins that are natively folded, thus it also plays a prominent role in regulation of physiological processes. Throughout the years, many Lon substrates have been identified, confirming its role in the regulation of diverse cellular processes, including cell division, DNA replication, differentiation, and adaptation to stress conditions. Some examples of these functions are described and discussed here, as is the role of Lon in the degradation of misfolded proteins and in protein quality control. Finally, this chapter deals with the exquisite sensitivity of protein degradation inside a cell. How can a protease distinguish so many substrates from cellular proteins that should not be degraded? Can the specificity of a protease be regulated according to the physiological needs of a cell? This chapter thus broadly discusses the

  20. Laundry performance of subtilisin proteases.

    PubMed

    Wolff, A M; Showell, M S; Venegas, M G; Barnett, B L; Wertz, W C

    1996-01-01

    Effective laundry protease performance against susceptible stains depends upon both the enzyme itself and the environment in which it must work. In order to technically design superior laundry proteases, a model for protease's mechanism of action in detergents was developed which has been substantiated through-the-wash. While evaluation of this model and/or a given protease's effectiveness could be judged by a variety of methods, the utility of using visual wash performance comparisons, analytical, and stain characterization studies is described. Finally, data comparing the performance of wild type Subtilisin proteases with mutants designed via the projected model are given, demonstrating possible utility of the system.

  1. The Plasticity of the β-Trefoil Fold Constitutes an Evolutionary Platform for Protease Inhibition*

    PubMed Central

    Azarkan, Mohamed; Martinez-Rodriguez, Sergio; Buts, Lieven; Baeyens-Volant, Danielle; Garcia-Pino, Abel

    2011-01-01

    Proteases carry out a number of crucial functions inside and outside the cell. To protect the cells against the potentially lethal activities of these enzymes, specific inhibitors are produced to tightly regulate the protease activity. Independent reports suggest that the Kunitz-soybean trypsin inhibitor (STI) family has the potential to inhibit proteases with different specificities. In this study, we use a combination of biophysical methods to define the structural basis of the interaction of papaya protease inhibitor (PPI) with serine proteases. We show that PPI is a multiple-headed inhibitor; a single PPI molecule can bind two trypsin units at the same time. Based on sequence and structural analysis, we hypothesize that the inherent plasticity of the β-trefoil fold is paramount in the functional evolution of this family toward multiple protease inhibition. PMID:22027836

  2. Cloning, expression and activity analysis of a novel fibrinolytic serine protease from Arenicola cristata

    NASA Astrophysics Data System (ADS)

    Zhao, Chunling; Ju, Jiyu

    2015-06-01

    The full-length cDNA of a protease gene from a marine annelid Arenicola cristata was amplified through rapid amplification of cDNA ends technique and sequenced. The size of the cDNA was 936 bp in length, including an open reading frame encoding a polypeptide of 270 amino acid residues. The deduced amino acid sequnce consisted of pro- and mature sequences. The protease belonged to the serine protease family because it contained the highly conserved sequence GDSGGP. This protease was novel as it showed a low amino acid sequence similarity (< 40%) to other serine proteases. The gene encoding the active form of A. cristata serine protease was cloned and expressed in E. coli. Purified recombinant protease in a supernatant could dissolve an artificial fibrin plate with plasminogen-rich fibrin, whereas the plasminogen-free fibrin showed no clear zone caused by hydrolysis. This result suggested that the recombinant protease showed an indirect fibrinolytic activity of dissolving fibrin, and was probably a plasminogen activator. A rat model with venous thrombosis was established to demonstrate that the recombinant protease could also hydrolyze blood clot in vivo. Therefore, this recombinant protease may be used as a thrombolytic agent for thrombosis treatment. To our knowledge, this study is the first of reporting the fibrinolytic serine protease gene in A. cristata.

  3. From proteases to proteomics.

    PubMed

    Neurath, H

    2001-04-01

    This personal and professional autobiography covers the 50-yr period of 1950-2000 and includes the following topics: History of the University of Washington School of Medicine and its Department of Biochemistry (Mount Rainier and the University of Washington, recruiting faculty, biology, research programs); scientific editing (publication, Biochemistry, Protein Science, electronic publication); Europe revisited (Heidelberg, approaching retirement, the German Research Center, reunion in Vienna); and 50 yr of research on proteolytic enzymes (trypsin, carboxypeptidases, mast cell proteases, future developments).

  4. From proteases to proteomics

    PubMed Central

    Neurath, Hans

    2001-01-01

    This personal and professional autobiography covers the 50-yr period of 1950–2000 and includes the following topics: History of the University of Washington School of Medicine and its Department of Biochemistry (Mount Rainier and the University of Washington, recruiting faculty, biology, research programs); scientific editing (publication, Biochemistry, Protein Science, electronic publication); Europe revisited (Heidelberg, approaching retirement, the German Research Center, reunion in Vienna); and 50 yr of research on proteolytic enzymes (trypsin, carboxypeptidases, mast cell proteases, future developments). PMID:11274481

  5. Protease signalling: the cutting edge

    PubMed Central

    Turk, Boris; Turk, Dus̆an; Turk, Vito

    2012-01-01

    Protease research has undergone a major expansion in the last decade, largely due to the extremely rapid development of new technologies, such as quantitative proteomics and in-vivo imaging, as well as an extensive use of in-vivo models. These have led to identification of physiological substrates and resulted in a paradigm shift from the concept of proteases as protein-degrading enzymes to proteases as key signalling molecules. However, we are still at the beginning of an understanding of protease signalling pathways. We have only identified a minor subset of true physiological substrates for a limited number of proteases, and their physiological regulation is still not well understood. Similarly, links with other signalling systems are not well established. Herein, we will highlight current challenges in protease research. PMID:22367392

  6. Involvement of serine proteases in the excystation and metacystic development of Entamoeba invadens.

    PubMed

    Makioka, Asao; Kumagai, Masahiro; Kobayashi, Seiki; Takeuchi, Tsutomu

    2009-10-01

    Although the functions of cysteine proteases involved in the pathogenicity and differentiation of Entamoeba histolytica have been demonstrated, little is known about the functions of serine proteases. We examined the involvement of serine proteases in amoebic excystation and metacystic development using inhibitors specific for serine proteases. Entamoeba invadens IP-1 strain was used as the model of excystation and metacystic development of E. histolytica. Four serine protease inhibitors, phenylmethanesulfonyl fluoride (PMSF), 4-(2-aminoethyl) bezensulfonylfluoride hydrochloride, 3, 4-dichloroisocoumarin, and N-tosyl-phe-chloromethylketone, decreased the number of metacystic amoebae in a dose-dependent manner, without showing cytotoxicity to cysts. PMSF inhibited not only the increase but also the development of metacystic amoebae as determined by the change of nucleus number from four- to one-nucleate amoebae. The protease activity in cyst lysates was also inhibited by PMSF and the band of protease on gelatin sodium dodecyl sulfate polyacrylamide gel electrophoresis was weaker than controls when treated with PMSF. Three serine protease families, S28 (three types), S9 (two), and S26 (one) were retrieved from the database of E. invadens. Phylogenetic analysis revealed that amebic enzymes from the serine protease families formed different clades from those from other organisms. The expression levels of these serine proteases in cysts 5 h after the induction of excystation as assessed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) were higher than those observed prior to induction assayed by real-time RT-PCR; the increase in one type of S9 (named S9-3) expression was the highest. The expression of S9 enzymes also increased from cysts to trophozoites higher than the other family serine proteases. Thus, the results show that Entamoeba uses their serine proteases in the excystation and metacystic development, which leads to successful infection.

  7. Protease-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Dickson, Eva F.; Goyan, Rebecca L.; Kennedy, James C.; Mackay, M.; Mendes, M. A. K.; Pottier, Roy H.

    2003-12-01

    Drugs used in disease treatment can cause damage to both malignant and normal tissue. This toxicity limits the maximum therapeutic dose. Drug targeting is of high interest to increase the therapeutic efficacy of the drug without increasing systemic toxicity. Certain tissue abnormalities, disease processes, cancers, and infections are characterized by high levels of activity of specific extracellular and/or intracellular proteases. Abnormally high activity levels of specific proteases are present at sites of physical or chemical trauma, blood clots, malignant tumors, rheumatoid arthritis, inflammatory bowel disease, gingival disease, glomerulonerphritis, and acute pancreatitis. Abnormal protease activity is suspected in development of liver thrombosis, pulmonary emphysema, atherosclerosis, and muscular dystrophy. Inactiviating disease-associated proteases by the administration of appropriate protease inhibitors has had limited success. Instead, one could use such proteases to target drugs to treat the condition. Protease mediated drug delivery offers such a possibility. Solubilizing groups are attached to insoluble drugs via a polypeptide chain which is specifically cleavable by certian proteases. When the solubilized drug enounters the protease, the solubilizing moieties are cleaved, and the drug precipitates at the disease location. Thus, a smaller systemic dosage could result in a therapeutic drug concentration at the treatment site with less systemic toxicity.

  8. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets

    PubMed Central

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C.

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein–protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  9. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets.

    PubMed

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  10. Serine proteases of the human immune system in health and disease.

    PubMed

    Heutinck, Kirstin M; ten Berge, Ineke J M; Hack, C Erik; Hamann, Jörg; Rowshani, Ajda T

    2010-07-01

    Serine proteases form a large family of protein-cleaving enzymes that play an essential role in processes like blood coagulation, apoptosis and inflammation. Immune cells express a wide variety of serine proteases such as granzymes in cytotoxic lymphocytes, neutrophil elastase, cathepsin G and proteinase 3 in neutrophils and chymase and tryptase in mast cells. Regulation of proteolysis induced by these serine proteases is essential to prevent self-induced damage. Hence, there are specialized serine protease inhibitors, serpins, which are broadly distributed. Here, we discuss the function of human serine proteases in inflammation, apoptosis and tissue remodeling. Furthermore, we address their impact on development and progression of immune mediated-diseases. Understanding the mode of action of serine proteases will help to unravel molecular processes involved in immunological disorders and will facilitate the identification of new therapeutic targets.

  11. Insights into the Cyanobacterial Deg/HtrA Proteases

    PubMed Central

    Cheregi, Otilia; Wagner, Raik; Funk, Christiane

    2016-01-01

    Proteins are the main machinery for all living processes in a cell; they provide structural elements, regulate biochemical reactions as enzymes, and are the interface to the outside as receptors and transporters. Like any other machinery proteins have to be assembled correctly and need maintenance after damage, e.g., caused by changes in environmental conditions, genetic mutations, and limitations in the availability of cofactors. Proteases and chaperones help in repair, assembly, and folding of damaged and misfolded protein complexes cost-effective, with low energy investment compared with neo-synthesis. Despite their importance for viability, the specific biological role of most proteases in vivo is largely unknown. Deg/HtrA proteases, a family of serine-type ATP-independent proteases, have been shown in higher plants to be involved in the degradation of the Photosystem II reaction center protein D1. The objective of this review is to highlight the structure and function of their cyanobacterial orthologs. Homology modeling was used to find specific features of the SynDeg/HtrA proteases of Synechocystis sp. PCC 6803. Based on the available data concerning their location and their physiological substrates we conclude that these Deg proteases not only have important housekeeping and chaperone functions within the cell, but also are needed for remodeling the cell exterior. PMID:27252714

  12. Mitochondrial Proteases as Emerging Pharmacological Targets.

    PubMed

    Gibellini, Lara; De Biasi, Sara; Nasi, Milena; Iannone, Anna; Cossarizza, Andrea; Pinti, Marcello

    2016-01-01

    The preservation of mitochondrial function and integrity is critical for cell viability. Under stress conditions, unfolded, misfolded or damaged proteins accumulate in a certain compartment of the organelle, interfering with oxidative phosphorylation and normal mitochondrial functions. In stress conditions, several mechanisms, including mitochondrial unfolded protease response (UPRmt), fusion and fission, and mitophagy are engaged to restore normal proteostasis of the organelle. Mitochondrial proteases are a family of more than 20 enzymes that not only are involved in the UPRmt, but actively participate at multiple levels in the stress-response system. Alterations in their expression levels, or mutations that determine loss or gain of function of these proteases deeply impair mitochondrial functionality and can be associated with the onset of inherited diseases, with the development of neurodegenerative disorders and with the process of carcinogenesis. In this review, we focus our attention on six of them, namely CLPP, HTRA2 and LONP1, by analysing the current knowledge about their functions, their involvement in the pathogenesis of human diseases, and the compounds currently available for inhibiting their functions. PMID:26831646

  13. Oligomeric state study of prokaryotic rhomboid proteases.

    PubMed

    Sampathkumar, Padmapriya; Mak, Michelle W; Fischer-Witholt, Sarah J; Guigard, Emmanuel; Kay, Cyril M; Lemieux, M Joanne

    2012-12-01

    Rhomboid peptidases (proteases) play key roles in signaling events at the membrane bilayer. Understanding the regulation of rhomboid function is crucial for insight into its mechanism of action. Here we examine the oligomeric state of three different rhomboid proteases. We subjected Haemophilus influenzae, (hiGlpG), Escherichia coli GlpG (ecGlpG) and Bacillus subtilis (YqgP) to sedimentation equilibrium analysis in detergent-solubilized dodecylmaltoside (DDM) solution. For hiGlpG and ecGlpG, rhomboids consisting of the core 6 transmembrane domains without and with soluble domains respectively, and YqgP, predicted to have 7 transmembrane domains with larger soluble domains at the termini, the predominant species was dimeric with low amounts of monomer and tetramers observed. To examine the effect of the membrane domain alone on oligomeric state of rhomboid, hiGlpG, the simplest form from the rhomboid class of intramembrane proteases representing the canonical rhomboid core of six transmembrane domains, was studied further. Using gel filtration and crosslinking we demonstrate that hiGlpG is dimeric and functional in DDM detergent solution. More importantly co-immunoprecipitation studies demonstrate that the dimer is present in the lipid bilayer suggesting a physiological dimer. Overall these results indicate that rhomboids form oligomers which are facilitated by the membrane domain. For hiGlpG we have shown that these oligomers exist in the lipid bilayer. This is the first detailed oligomeric state characterization of the rhomboid family of peptidases. PMID:22921757

  14. Proteomic Substrate Identification for Membrane Proteases in the Brain

    PubMed Central

    Müller, Stephan A.; Scilabra, Simone D.; Lichtenthaler, Stefan F.

    2016-01-01

    Cell-cell communication in the brain is controlled by multiple mechanisms, including proteolysis. Membrane-bound proteases generate signaling molecules from membrane-bound precursor proteins and control the length and function of cell surface membrane proteins. These proteases belong to different families, including members of the “a disintegrin and metalloprotease” (ADAM), the beta-site amyloid precursor protein cleaving enzymes (BACE), membrane-type matrix metalloproteases (MT-MMP) and rhomboids. Some of these proteases, in particular ADAM10 and BACE1 have been shown to be essential not only for the correct development of the mammalian brain, but also for myelination and maintaining neuronal connections in the adult nervous system. Additionally, these proteases are considered as drug targets for brain diseases, including Alzheimer’s disease (AD), schizophrenia and cancer. Despite their biomedical relevance, the molecular functions of these proteases in the brain have not been explored in much detail, as little was known about their substrates. This has changed with the recent development of novel proteomic methods which allow to identify substrates of membrane-bound proteases from cultured cells, primary neurons and other primary brain cells and even in vivo from minute amounts of mouse cerebrospinal fluid (CSF). This review summarizes the recent advances and highlights the strengths of the individual proteomic methods. Finally, using the example of the Alzheimer-related proteases BACE1, ADAM10 and γ-secretase, as well as ADAM17 and signal peptide peptidase like 3 (SPPL3), we illustrate how substrate identification with novel methods is instrumental in elucidating broad physiological functions of these proteases in the brain and other organs. PMID:27790089

  15. Interdomain Contacts and the Stability of Serralysin Protease from Serratia marcescens

    PubMed Central

    Zhang, Liang; Morrison, Anneliese J.; Thibodeau, Patrick H.

    2015-01-01

    The serralysin family of bacterial metalloproteases is associated with virulence in multiple modes of infection. These extracellular proteases are members of the Repeats-in-ToXin (RTX) family of toxins and virulence factors, which mediated virulence in E. coli, B. pertussis, and P. aeruginosa, as well as other animal and plant pathogens. The serralysin proteases are structurally dynamic and their folding is regulated by calcium binding to a C-terminal domain that defines the RTX family of proteins. Previous studies have suggested that interactions between N-terminal sequences and this C-terminal domain are important for the high thermal and chemical stabilities of the RTX proteases. Extending from this, stabilization of these interactions in the native structure may lead to hyperstabilization of the folded protein. To test this hypothesis, cysteine pairs were introduced into the N-terminal helix and the RTX domain and protease folding and activity were assessed. Under stringent pH and temperature conditions, the disulfide-bonded mutant showed increased protease activity and stability. This activity was dependent on the redox environment of the refolding reaction and could be blocked by selective modification of the cysteine residues before protease refolding. These data demonstrate that the thermal and chemical stability of these proteases is, in part, mediated by binding between the RTX domain and the N-terminal helix and demonstrate that stabilization of this interaction can further stabilize the active protease, leading to additional pH and thermal tolerance. PMID:26378460

  16. Interdomain Contacts and the Stability of Serralysin Protease from Serratia marcescens.

    PubMed

    Zhang, Liang; Morrison, Anneliese J; Thibodeau, Patrick H

    2015-01-01

    The serralysin family of bacterial metalloproteases is associated with virulence in multiple modes of infection. These extracellular proteases are members of the Repeats-in-ToXin (RTX) family of toxins and virulence factors, which mediated virulence in E. coli, B. pertussis, and P. aeruginosa, as well as other animal and plant pathogens. The serralysin proteases are structurally dynamic and their folding is regulated by calcium binding to a C-terminal domain that defines the RTX family of proteins. Previous studies have suggested that interactions between N-terminal sequences and this C-terminal domain are important for the high thermal and chemical stabilities of the RTX proteases. Extending from this, stabilization of these interactions in the native structure may lead to hyperstabilization of the folded protein. To test this hypothesis, cysteine pairs were introduced into the N-terminal helix and the RTX domain and protease folding and activity were assessed. Under stringent pH and temperature conditions, the disulfide-bonded mutant showed increased protease activity and stability. This activity was dependent on the redox environment of the refolding reaction and could be blocked by selective modification of the cysteine residues before protease refolding. These data demonstrate that the thermal and chemical stability of these proteases is, in part, mediated by binding between the RTX domain and the N-terminal helix and demonstrate that stabilization of this interaction can further stabilize the active protease, leading to additional pH and thermal tolerance.

  17. Protease degradable electrospun fibrous hydrogels

    PubMed Central

    Wade, Ryan J.; Bassin, Ethan J.; Rodell, Christopher B.; Burdick, Jason A.

    2015-01-01

    Electrospun nanofibers are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases (MMPs). Here, we synthesize reactive macromers that contain protease-cleavable and fluorescent peptides and are able to form both isotropic hydrogels and electrospun fibrous hydrogels through a photoinitiated polymerization. These biomimetic scaffolds are susceptible to protease-mediated cleavage in vitro in a protease dose dependent manner and in vivo in a subcutaneous mouse model using transdermal fluorescent imaging to monitor degradation. Importantly, materials containing an alternate and non-protease-cleavable peptide sequence are stable in both in vitro and in vivo settings. To illustrate the specificity in degradation, scaffolds with mixed fiber populations support selective fiber degradation based on individual fiber degradability. Overall, this represents a novel biomimetic approach to generate protease-sensitive fibrous scaffolds for biomedical applications. PMID:25799370

  18. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors.

    PubMed

    Siklos, Marton; BenAissa, Manel; Thatcher, Gregory R J

    2015-11-01

    Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein modification and low selectivity are anathema to therapeutic safety and efficacy.

  19. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors

    PubMed Central

    Siklos, Marton; BenAissa, Manel; Thatcher, Gregory R.J.

    2015-01-01

    Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein modification and low selectivity are anathema to therapeutic safety and efficacy. PMID:26713267

  20. Structures of an ATP-independent Lon-like protease and its complexes with covalent inhibitors.

    PubMed

    Liao, Jiahn-Haur; Ihara, Kentaro; Kuo, Chiao-I; Huang, Kai-Fa; Wakatsuki, Soichi; Wu, Shih-Hsiung; Chang, Chung-I

    2013-08-01

    The Lon proteases are a unique family of chambered proteases with a built-in AAA+ (ATPases associated with diverse cellular activities) module. Here, crystal structures of a unique member of the Lon family with no intrinsic ATPase activity in the proteolytically active form are reported both alone and in complexes with three covalent inhibitors: two peptidomimetics and one derived from a natural product. This work reveals the unique architectural features of an ATP-independent Lon that selectively degrades unfolded protein substrates. Importantly, these results provide mechanistic insights into the recognition of inhibitors and polypeptide substrates within the conserved proteolytic chamber, which may aid the development of specific Lon-protease inhibitors.

  1. Rhomboid proteases in mitochondria and plastids: keeping organelles in shape.

    PubMed

    Jeyaraju, Danny V; Sood, Aditi; Laforce-Lavoie, Audrey; Pellegrini, Luca

    2013-02-01

    Rhomboids constitute the most widespread and conserved family of intramembrane cleaving proteases. They are key regulators of critical cellular processes in bacteria and animals, and are poised to play an equally important role also in plants. Among eukaryotes, a distinct subfamily of rhomboids, prototyped by the mammalian mitochondrial protein Parl, ensures the maintenance of the structural and functional integrity of mitochondria and plastids. Here, we discuss the studies that in the past decade have unveiled the role, regulation, and structure of this unique group of rhomboid proteases. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.

  2. Allostery in trypsin-like proteases suggests new therapeutic strategies.

    PubMed

    Gohara, David W; Di Cera, Enrico

    2011-11-01

    Trypsin-like proteases (TLPs) are a large family of enzymes responsible for digestion, blood coagulation, fibrinolysis, development, fertilization, apoptosis and immunity. A current paradigm posits that the irreversible transition from an inactive zymogen to the active protease form enables productive interaction with substrate and catalysis. Analysis of the entire structural database reveals two distinct conformations of the active site: one fully accessible to substrate (E) and the other occluded by the collapse of a specific segment (E*). The allosteric E*-E equilibrium provides a reversible mechanism for activity and regulation in addition to the irreversible zymogen to protease conversion and points to new therapeutic strategies aimed at inhibiting or activating the enzyme. In this review, we discuss relevant examples, with emphasis on the rational engineering of anticoagulant thrombin mutants.

  3. Substrate specificity of the ubiquitin and Ubl proteases

    PubMed Central

    Ronau, Judith A; Beckmann, John F; Hochstrasser, Mark

    2016-01-01

    Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regulated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these modifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss the unexpected specificities of non-eukaryotic proteases in these families. PMID:27012468

  4. Membrane-anchored serine proteases in health and disease

    PubMed Central

    Bugge, Thomas; Wu, Qingyu

    2013-01-01

    Serine proteases of the trypsin-like family have long been recognized to be critical effectors of biological processes as diverse as digestion, blood coagulation, fibrinolysis, and immunity. In recent years, a subgroup of these enzymes has been identified that are anchored directly to plasma membranes, either by a carboxy-terminal transmembrane domain (Type I), an amino-terminal transmembrane domain with a cytoplasmic extension (Type II or TTSP), or through a glycosyl-phosphatidylinositol (GPI) linkage. Recent biochemical, cellular, and in vivo analyses have now established that membrane-anchored serine proteases are key pericellular contributors to processes vital for development and the maintenance of homeostasis. This chapter will review our current knowledge of the biological and physiological functions of these proteases, their molecular substrates, and their contributions to disease. PMID:21238933

  5. The astacin family of metalloendopeptidases.

    PubMed Central

    Bond, J. S.; Beynon, R. J.

    1995-01-01

    The astacin family of metalloendopeptidases was recognized as a novel family of proteases in the 1990s. The crayfish enzyme astacin was the first characterized and is one of the smallest members of the family. More than 20 members of the family have now been identified. They have been detected in species ranging from hydra to humans, in mature and in developmental systems. Proposed functions of these proteases include activation of growth factors, degradation of polypeptides, and processing of extracellular proteins. Astacin family proteases are synthesized with NH2-terminal signal and proenzyme sequences, and many (such as meprins, BMP-1, tolloid) contain multiple domains COOH-terminal to the protease domain. They are either secreted from cells or are plasma membrane-associated enzymes. They have some distinguishing features in addition to the signature sequence in the protease domain: HEXXHXXGFXHEXXRXDR. They have a unique type of zinc binding, with pentacoordination, and a protease domain tertiary structure that contains common attributes with serralysins, matrix metalloendopeptidases, and snake venom proteases; they cleave peptide bonds in polypeptides such as insulin B chain and bradykinin and in proteins such as casein and gelatin; and they have arylamidase activity. Meprins are unique proteases in the astacin family, and indeed in the animal kingdom, in their oligomeric structure; they are dimers of disulfide-linked dimers and are highly glycosylated, type I integral membrane proteins that have many attributes of receptors or integrins with adhesion, epidermal growth factor-like, and transmembrane domains. The alpha and beta subunits are differentially expressed and processed to yield latent and active proteases as well as membrane-associated and secreted forms. Meprins represent excellent models of hetero- and homo-oligomeric enzymes that are regulated at the transcriptional and posttranslational levels. PMID:7670368

  6. Emerging roles for diverse intramembrane proteases in plant biology.

    PubMed

    Adam, Zach

    2013-12-01

    Progress in the field of regulated intramembrane proteolysis (RIP) in recent years has made its impact on plant biology as well. Although this field within plant research is still in its infancy, some interesting observations have started to emerge. Gene encoding orthologs of rhomboid proteases, site-2 proteases (S2P), presenilin/γ-secretases, and signal peptide peptidases are found in plant genomes and some of these gene products were identified in different plant cell membranes. The lack of chloroplast-located rhomboid proteases was associated with reduced fertility and aberrations in flower morphology. Mutations in homologues of S2P resulted in chlorophyll deficiency and impaired chloroplast development. An S2P was also implicated in the response to ER stress through cleavage of ER-membrane bZIP transcription factors, allowing their migration to the nucleus and activation of the transcription of BiP chaperones. Other membrane-bound transcription factors of the NAC and PHD families were also demonstrated to undergo RIP and relocalization to the nucleus. These and other new data are expected to shed more light on the roles of intramembrane proteases in plant biology in the future. This article is part of a Special Issue entitled: Intramembrane Proteases.

  7. Proteolytic Activation of the Protease-activated Receptor (PAR)-2 by the Glycosylphosphatidylinositol-anchored Serine Protease Testisin*

    PubMed Central

    Driesbaugh, Kathryn H.; Buzza, Marguerite S.; Martin, Erik W.; Conway, Gregory D.; Kao, Joseph P. Y.; Antalis, Toni M.

    2015-01-01

    Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca2+ mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. PMID:25519908

  8. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates.

    PubMed

    Lawrence, D A; Ginsburg, D; Day, D E; Berkenpas, M B; Verhamme, I M; Kvassman, J O; Shore, J D

    1995-10-27

    The serine protease inhibitors of the serpin family are an unusual group of proteins thought to have metastable native structures. Functionally, they are unique among polypeptide protease inhibitors, although their precise mechanism of action remains controversial. Conflicting results from previous studies have suggested that the stable serpin-protease complex is trapped in either a tight Michaelis-like structure, a tetrahedral intermediate, or an acyl-enzyme. In this report we show that, upon association with a target protease, the serpin reactive-center loop (RCL) is cleaved resulting in formation of an acyl-enzyme intermediate. This cleavage is coupled to rapid movement of the RCL into the body of the protein bringing the inhibitor closer to its lowest free energy state. From these data we suggest a model for serpin action in which the drive toward the lowest free energy state results in trapping of the protease-inhibitor complex as an acyl-enzyme intermediate. PMID:7592687

  9. Peptidomimetic inhibitors of HIV protease.

    PubMed

    Randolph, John T; DeGoey, David A

    2004-01-01

    There are currently (July, 2002) six protease inhibitors approved for the treatment of HIV infection, each of which can be classified as peptidomimetic in structure. These agents, when used in combination with other antiretroviral agents, produce a sustained decrease in viral load, often to levels below the limits of quantifiable detection, and a significant reconstitution of the immune system. Therapeutic regimens containing one or more HIV protease inhibitors thus provide a highly effective method for disease management. The important role of protease inhibitors in HIV therapy, combined with numerous challenges remaining in HIV treatment, have resulted in a continued effort both to optimize regimens using the existing agents and to identify new protease inhibitors that may provide unique properties. This review will provide an overview of the discovery and clinical trials of the currently approved HIV protease inhibitors, followed by an examination of important aspects of therapy, such as pharmacokinetic enhancement, resistance and side effects. A description of new peptidomimetic compounds currently being investigated in the clinic and in preclinical discovery will follow. PMID:15193140

  10. Microbial inhibitors of cysteine proteases.

    PubMed

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted. PMID:27048482

  11. Microbial inhibitors of cysteine proteases.

    PubMed

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted.

  12. Subfamily-Specific Fluorescent Probes for Cysteine Proteases Display Dynamic Protease Activities during Seed Germination1

    PubMed Central

    Lu, Haibin; Chandrasekar, Balakumaran; Oeljeklaus, Julian; Misas-Villamil, Johana C.; Wang, Zheming; Shindo, Takayuki; Bogyo, Matthew; Kaiser, Markus; van der Hoorn, Renier A.L.

    2015-01-01

    Cysteine proteases are an important class of enzymes implicated in both developmental and defense-related programmed cell death and other biological processes in plants. Because there are dozens of cysteine proteases that are posttranslationally regulated by processing, environmental conditions, and inhibitors, new methodologies are required to study these pivotal enzymes individually. Here, we introduce fluorescence activity-based probes that specifically target three distinct cysteine protease subfamilies: aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes. We applied protease activity profiling with these new probes on Arabidopsis (Arabidopsis thaliana) protease knockout lines and agroinfiltrated leaves to identify the probe targets and on other plant species to demonstrate their broad applicability. These probes revealed that most commercially available protease inhibitors target unexpected proteases in plants. When applied on germinating seeds, these probes reveal dynamic activities of aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes, coinciding with the remobilization of seed storage proteins. PMID:26048883

  13. Bacterial serine proteases secreted by the autotransporter pathway: classification, specificity and role in virulence

    PubMed Central

    Ruiz-Perez, Fernando; Nataro, James P.

    2013-01-01

    Serine proteases exist in eukaryotic and prokaryotic organisms and have emerged during evolution as the most abundant and functionally diverse group. In gram-negative bacteria, there is a growing family of high molecular weight serine proteases secreted to the external milieu by a fascinating and widely employed bacterial secretion mechanism, known as the autotransporter pathway. They were initially found in Neisseria, Shigella, and pathogenic Escherichia coli, but have now been also identified in Citrobacter rodentium, Salmonella, and Edwarsiella species. Here, we focus on proteins belonging to the Serine Protease Autotransporter of Enterobacteriaceae (SPATEs) family. Recent findings regarding the predilection of serine proteases to host intracellular or extracellular protein-substrates involved in numerous biological functions, such as those implicated in cytoskeleton stability, autophagy or innate and adaptive immunity, have helped provide a better understanding of SPATEs’ contributions in pathogenesis. Here, we discuss their classification, substrate specificity, and potential roles in pathogenesis. PMID:23689588

  14. Discrimination of differentially inhibited cysteine proteases by activity-based profiling using cystatin variants with tailored specificities.

    PubMed

    Sainsbury, Frank; Rhéaume, Ann-Julie; Goulet, Marie-Claire; Vorster, Juan; Michaud, Dominique

    2012-12-01

    Recent research has shown the possibility of tailoring the inhibitory specificity of plant cystatins toward cysteine (Cys) proteases by single mutations at positively selected amino acid sites. Here we devised a cystatin activity-based profiling approach to assess the impact of such mutations at the proteome scale using single variants of tomato cystatin SlCYS8 and digestive Cys proteases of the herbivorous insect, Colorado potato beetle, as a model. Biotinylated forms of SlCYS8 and SlCYS8 variants were used to capture susceptible Cys proteases in insect midgut protein extracts by biotin immobilization on avidin-embedded beads. A quantitative LC-MS/MS analysis of the captured proteins was performed to compare the inhibitory profile of different SlCYS8 variants. The approach confirmed the relevance of phylogenetic inferences categorizing the insect digestive Cys proteases into six functionally distinct families. It also revealed significant variation in protease family profiles captured with N-terminal variants of SlCYS8, in line with in silico structural models for Cys protease-SlCYS8 interactions suggesting a functional role for the N-terminal region. Our data confirm overall the usefulness of cystatin activity-based protease profiling for the monitoring of Cys protease-inhibitor interactions in complex biological systems. They also illustrate the potential of biotinylated cystatins to identify recombinant cystatin candidates for the inactivation of specific Cys protease targets. PMID:23082957

  15. Discrimination of differentially inhibited cysteine proteases by activity-based profiling using cystatin variants with tailored specificities.

    PubMed

    Sainsbury, Frank; Rhéaume, Ann-Julie; Goulet, Marie-Claire; Vorster, Juan; Michaud, Dominique

    2012-12-01

    Recent research has shown the possibility of tailoring the inhibitory specificity of plant cystatins toward cysteine (Cys) proteases by single mutations at positively selected amino acid sites. Here we devised a cystatin activity-based profiling approach to assess the impact of such mutations at the proteome scale using single variants of tomato cystatin SlCYS8 and digestive Cys proteases of the herbivorous insect, Colorado potato beetle, as a model. Biotinylated forms of SlCYS8 and SlCYS8 variants were used to capture susceptible Cys proteases in insect midgut protein extracts by biotin immobilization on avidin-embedded beads. A quantitative LC-MS/MS analysis of the captured proteins was performed to compare the inhibitory profile of different SlCYS8 variants. The approach confirmed the relevance of phylogenetic inferences categorizing the insect digestive Cys proteases into six functionally distinct families. It also revealed significant variation in protease family profiles captured with N-terminal variants of SlCYS8, in line with in silico structural models for Cys protease-SlCYS8 interactions suggesting a functional role for the N-terminal region. Our data confirm overall the usefulness of cystatin activity-based protease profiling for the monitoring of Cys protease-inhibitor interactions in complex biological systems. They also illustrate the potential of biotinylated cystatins to identify recombinant cystatin candidates for the inactivation of specific Cys protease targets.

  16. Cysteine protease of the nematode Nippostrongylus brasiliensis preferentially evokes an IgE/IgG1 antibody response in rats.

    PubMed Central

    Kamata, I; Yamada, M; Uchikawa, R; Matsuda, S; Arizono, N

    1995-01-01

    Some cysteine proteases such as papain and those of mites and schistosomes have potent allergenic properties. To clarify the allergenicity of nematode cysteine proteases, the enzyme was purified from the intestinal nematode Nippostrongylus brasiliensis using cation exchange chromatography and gel filtration chromatography. The purified protease, of 16 kD and pI 8.5, showed maximum enzyme activity at pH 5.5 and substrate preference for Z-Phe-Arg-MCA. The specific inhibitors of cysteine protease leupeptin, iodoacetic acid, and E-64, completely suppressed the activity, indicating that the purified enzyme belongs to the cysteine protease family. Cysteine protease activity was found not only in somatic extract, but also in the excretory-secretory (ES) product of the nematode. When anti-cysteine protease immunoglobulin isotypes were examined in sera from rats infected with N. brasiliensis, a high level of IgG1 and a lower level of IgE antibody were detected. Depletion of IgG antibodies from the sera using protein G affinity columns resulted in a marked increase in reactivity of anti-cysteine protease IgE with the antigen, possibly due to the removal of competing IgG antibodies. In contrast to IgE and IgG1, production of anti-cysteine protease IgG2a was negligible. These results indicate that the nematode cysteine protease preferentially evokes an IgE/IgG1 antibody response. Images Fig. 2 PMID:7554403

  17. Highly potent fibrinolytic serine protease from Streptomyces.

    PubMed

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-01

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis.

  18. Genetic Evidence Supporting the Association of Protease and Protease Inhibitor Genes with Inflammatory Bowel Disease: A Systematic Review

    PubMed Central

    Bekkering, Geertruida E.; Nüesch, Eveline; Mendes, Camila T.; Schmied, Stefanie; Wyder, Stefan; Kellen, Eliane; Villiger, Peter M.; Rutgeerts, Paul; Vermeire, Séverine; Lottaz, Daniel

    2011-01-01

    As part of the European research consortium IBDase, we addressed the role of proteases and protease inhibitors (P/PIs) in inflammatory bowel disease (IBD), characterized by chronic mucosal inflammation of the gastrointestinal tract, which affects 2.2 million people in Europe and 1.4 million people in North America. We systematically reviewed all published genetic studies on populations of European ancestry (67 studies on Crohn's disease [CD] and 37 studies on ulcerative colitis [UC]) to identify critical genomic regions associated with IBD. We developed a computer algorithm to map the 807 P/PI genes with exact genomic locations listed in the MEROPS database of peptidases onto these critical regions and to rank P/PI genes according to the accumulated evidence for their association with CD and UC. 82 P/PI genes (75 coding for proteases and 7 coding for protease inhibitors) were retained for CD based on the accumulated evidence. The cylindromatosis/turban tumor syndrome gene (CYLD) on chromosome 16 ranked highest, followed by acylaminoacyl-peptidase (APEH), dystroglycan (DAG1), macrophage-stimulating protein (MST1) and ubiquitin-specific peptidase 4 (USP4), all located on chromosome 3. For UC, 18 P/PI genes were retained (14 proteases and 4protease inhibitors), with a considerably lower amount of accumulated evidence. The ranking of P/PI genes as established in this systematic review is currently used to guide validation studies of candidate P/PI genes, and their functional characterization in interdisciplinary mechanistic studies in vitro and in vivo as part of IBDase. The approach used here overcomes some of the problems encountered when subjectively selecting genes for further evaluation and could be applied to any complex disease and gene family. PMID:21931648

  19. Design, Synthesis and Biological Evaluation of a Library of Thiocarbazates and their Activity as Cysteine Protease Inhibitors

    PubMed Central

    Liu, Zhuqing; Myers, Michael C.; Shah, Parag P.; Beavers, Mary Pat; Benedetti, Phillip A.; Diamond, Scott L.

    2010-01-01

    Recently, we identified a novel class of potent cathepsin L inhibitors, characterized by a thiocarbazate warhead. Given the potential of these compounds to inhibit other cysteine proteases, we designed and synthesized a library of thiocarbazates containing diversity elements at three positions. Biological characterization of this library for activity against a panel proteases indicated a significant preference for members of the papain family of cysteine proteases over serine, metallo-, and certain classes of cysteine proteases, such as caspases. Several very potent inhibitors of Cathepsin L and S were identified. The SAR data was employed in docking studies in an effort to understand the structural elements required for Cathepsin S inhibition. This study provides the basis for the design of highly potent and selective inhibitors of the papain family of cysteine proteases. PMID:20438448

  20. [Prospects for the design of new therapeutically significant protease inhibitors based on knottins and sunflower seed trypsin inhibitor (SFTI 1)].

    PubMed

    Kuznetsova, S S; Kolesanova, E F; Talanova, A V; Veselovsky, A V

    2016-05-01

    Plant seed knottins, mainly from the Cucurbitacea family, and sunflower seed trypsin inhibitor (SFTI 1) are the most low-molecular canonical peptide inhibitors of serine proteases. High efficiency of inhibition of various serine proteases, structure rigidity together with the possibility of limited variations of amino acid sequences, high chemical stability, lack of toxic properties, opportunity of production by either chemical synthesis or use of heterologous expression systems make these inhibitors attractive templates for design of new compounds for regulation of therapeutically significant serine protease activities. Hence the design of such compounds represents a prospective research field. The review considers structural characteristics of these inhibitors, their properties, methods of preparation and design of new analogs. Examples of successful employment of natural serine protease inhibitors belonging to knottin family and SFTI 1 as templates for the design of highly specific inhibitors of certain proteases are given. PMID:27562989

  1. Curcumin derivatives as HIV-1 protease inhibitors

    SciTech Connect

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R.

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  2. Exogenous proteases for meat tenderization.

    PubMed

    Bekhit, Alaa A; Hopkins, David L; Geesink, Geert; Bekhit, Adnan A; Franks, Philip

    2014-01-01

    The use of exogenous proteases to improve meat tenderness has attracted much interest recently, with a view to consistent production of tender meat and added value to lower grade meat cuts. This review discusses the sources, characteristics, and use of exogenous proteases in meat tenderization to highlight the specificity of the proteases toward meat proteins and their impact on meat quality. Plant enzymes (such as papain, bromelain, and ficin) have been extensively investigated as meat tenderizers. New plant proteases (actinidin and zingibain) and microbial enzyme preparations have been of recent interest due to controlled meat tenderization and other advantages. Successful use of these enzymes in fresh meat requires their enzymatic kinetics and characteristics to be determined, together with an understanding of the impact of the surrounding environmental conditions of the meat (pH, temperature) on enzyme function. This enables the optimal conditions for tenderizing fresh meat to be established, and the elimination or reduction of any negative impacts on other quality attributes. PMID:24499119

  3. Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web

    PubMed Central

    Fortelny, Nikolaus; Cox, Jennifer H.; Kappelhoff, Reinhild; Starr, Amanda E.; Lange, Philipp F.; Pavlidis, Paul; Overall, Christopher M.

    2014-01-01

    Proteolytic processing is an irreversible posttranslational modification affecting a large portion of the proteome. Protease-cleaved mediators frequently exhibit altered activity, and biological pathways are often regulated by proteolytic processing. Many of these mechanisms have not been appreciated as being protease-dependent, and the potential in unraveling a complex new dimension of biological control is increasingly recognized. Proteases are currently believed to act individually or in isolated cascades. However, conclusive but scattered biochemical evidence indicates broader regulation of proteases by protease and inhibitor interactions. Therefore, to systematically study such interactions, we assembled curated protease cleavage and inhibition data into a global, computational representation, termed the protease web. This revealed that proteases pervasively influence the activity of other proteases directly or by cleaving intermediate proteases or protease inhibitors. The protease web spans four classes of proteases and inhibitors and so links both recently and classically described protease groups and cascades, which can no longer be viewed as operating in isolation in vivo. We demonstrated that this observation, termed reachability, is robust to alterations in the data and will only increase in the future as additional data are added. We further show how subnetworks of the web are operational in 23 different tissues reflecting different phenotypes. We applied our network to develop novel insights into biologically relevant protease interactions using cell-specific proteases of the polymorphonuclear leukocyte as a system. Predictions from the protease web on the activity of matrix metalloproteinase 8 (MMP8) and neutrophil elastase being linked by an inactivating cleavage of serpinA1 by MMP8 were validated and explain perplexing Mmp8 −/− versus wild-type polymorphonuclear chemokine cleavages in vivo. Our findings supply systematically derived and

  4. Biotechnology of Cold-Active Proteases

    PubMed Central

    Joshi, Swati; Satyanarayana, Tulasi

    2013-01-01

    The bulk of Earth’s biosphere is cold (<5 °C) and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes) have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review. PMID:24832807

  5. The molecular evolution of HIV-1 protease simulated at atomic detail.

    PubMed

    Tiana, G; Broglia, R A

    2009-09-01

    Progress in understanding protein folding allows to simulate, with atomic detail, the evolution of amino-acid sequences folding to a given native conformation. A particularly attractive example is the HIV-1 protease, main target of therapies to fight AIDS, which under drug pressure is able to develop resistance within few months from the starting of therapy. By comparing the results of simulations of the evolution of the protease with the corresponding proteomic data, one can approximately determine the value of the associated evolution pressure under which the enzyme has become and, as a consequence, map out the energy landscape in sequence space of the HIV-1 protease. It is found that there are several families of sequences folding to the native conformations of the enzyme. Each of these families are characterized by different sets of highly conserved ("hot") amino acids which play a critical role in the folding and stability of the protease. There are two main possibilities for the virus to move from one family to a different one: (a) in a single generation, through the concerted mutations of the hot amino acids, a highly unlikely event, (b) through a folding path (if it exists), again a very improbable event. In fact, the number of generations needed by the virus to change stepwise its sequence from one family to another is astronomically large. These results point to the "hot" segments of the protease as promising targets for a nonconventional inhibition strategy, likely not to create resistance.

  6. Malarial proteases and host cell egress: an ‘emerging’ cascade

    PubMed Central

    Blackman, Michael J

    2008-01-01

    Malaria is a scourge of large swathes of the globe, stressing the need for a continuing effort to better understand the biology of its aetiological agent. Like all pathogens of the phylum Apicomplexa, the malaria parasite spends part of its life inside a host cell or cyst. It eventually needs to escape (egress) from this protective environment to progress through its life cycle. Egress of Plasmodium blood-stage merozoites, liver-stage merozoites and mosquito midgut sporozoites relies on protease activity, so the enzymes involved have potential as antimalarial drug targets. This review examines the role of parasite proteases in egress, in the light of current knowledge of the mechanics of the process. Proteases implicated in egress include the cytoskeleton-degrading malarial proteases falcipain-2 and plasmepsin II, plus a family of putative papain-like proteases called SERA. Recent revelations have shown that activation of the SERA proteases may be triggered by regulated secretion of a subtilisin-like serine protease called SUB1. These findings are discussed in the context of the potential for development of new chemotherapeutics targeting this stage in the parasite's life cycle. PMID:18503638

  7. Proteases of germinating winged-bean (Psophocarpus tetragonolobus) seeds: purification and characterization of an acidic protease.

    PubMed

    Usha, R; Singh, M

    1996-01-15

    Two major classes of protease are shown to occur in germinating winged-bean (Psophocarpus tetragonolobus) seeds, by assaying extracts at pH 8.0 and pH 5.1 with [14C]gelatin as substrate. At pH 8.0, the activity profile of the enzyme shows a steady rise throughout the period of germination, whereas the activity at the acidic pH is very low up to day 5 and then increases sharply reaching a peak on day 11, followed by an equally sharp decline. The winged-bean acidic protease (WbAP) has been purified to apparent homogeneity, as attested by a single protein band on both PAGE and SDS/PAGE. WbAP is a monomeric enzyme with a molecular mass of 35 kDa and a pH optimum of 6.0. It is a thiol protease that does not belong to the papain family and it has tightly bound Ca2+ as shown by 45Ca(2+)-exchange studies. Besides gelatin and casein, it hydrolyses a 29 kDa winged-bean protein, indicating a prospective physiological role for it in storage-protein mobilization. Immunoblot analysis shows that it occurs only in the seeds and sprouting tubers of this plant and also that it is synthesized in developing seeds just before desiccation. It appears that the newly synthesized enzyme is inactive, and activation takes place around day 6 of germination. However, neither the mechanism of activation nor the signal that triggers it is clearly understood.

  8. Recombinant expression and antigenic properties of a 32-kilodalton extracellular alkaline protease, representing a possible virulence factor from Aspergillus fumigatus.

    PubMed Central

    Moser, M; Menz, G; Blaser, K; Crameri, R

    1994-01-01

    A 32-kDa nonglycosylated alkaline protease (EC 3.4.1.14) with elastolytic activity, secreted by the opportunistic pathogen Aspergillus fumigatus ATCC 42202, is suggested to be a virulence factor of this fungus. The enzyme is a serine protease of the subtilisin family, and its cDNA nucleotide sequence has recently been reported. We have cloned the cDNA encoding the mature protease into a high-level Escherichia coli expression plasmid and produced the recombinant protease as a fusion protein with a six-adjacent-histidine affinity tag at the carboxy terminus. Subsequently, the recombinant protease was purified to homogeneity, with affinity chromatography yielding 30 to 40 mg of recombinant protease per liter of E. coli culture. Refolded recombinant protease, in comparison with native protease, demonstrated weak enzymatic activity but similar immunochemical characteristics as analyzed by antigen-specific enzyme-linked immunosorbent assay (ELISA), competition ELISA, and immunoblotting assays. To assess the allergenic potential of the protease, sera from patients with allergic bronchopulmonary aspergillosis and sera from healthy control individuals were analyzed by ELISA and immunoblotting techniques. Sera from patients with allergic bronchopulmonary aspergillosis did not have protease-specific immunoglobulin E (IgE) antibodies and, remarkably, did not show significantly elevated protease-specific IgG antibody levels compared with those in sera from healthy control individuals. This suggests that the alkaline protease from A. fumigatus does not elicit IgE antibodies and has weak immunogenicity, a property which may explain fungus persistence in allergic individuals. Images PMID:8112866

  9. Propeptides of eukaryotic proteases encode histidines to exploit organelle pH for regulation

    PubMed Central

    Elferich, Johannes; Williamson, Danielle M.; Krishnamoorthy, Bala; Shinde, Ujwal

    2013-01-01

    Eukaryotic cells maintain strict control over protein secretion, in part by using the pH gradient maintained within their secretory pathway. How eukaryotic proteins evolved from prokaryotic orthologs to exploit the pH gradient for biological functions remains a fundamental question in cell biology. Our laboratory previously demonstrated that protein domains located within precursor proteins, propeptides, encode histidine-driven pH sensors to regulate organelle-specific activation of the eukaryotic proteases furin and proprotein convertase-1/3. Similar findings have been reported in other unrelated protease families. By analyzing >10,000 unique proteases within evolutionarily unrelated families, we show that eukaryotic propeptides are enriched in histidines compared with prokaryotic orthologs. On this basis, we hypothesize that eukaryotic proteins evolved to enrich histidines within their propeptides to exploit the tightly controlled pH gradient of the secretory pathway, thereby regulating activation within specific organelles. Enrichment of histidines in propeptides may therefore be used to predict the presence of pH sensors in other proteases or even protease substrates.—Elferich, J., Williamson, D. M., Krishnamoorthy, B., Shinde, U. Propeptides of eukaryotic proteases encode histidines to exploit organelle pH for regulation. PMID:23585398

  10. Structural Mechanisms of Inactivation in Scabies Mite Serine Protease Paralogues

    SciTech Connect

    Fischer, Katja; Langendorf, Christopher G.; Irving, James A.; Reynolds, Simone; Willis, Charlene; Beckham, Simone; Law, Ruby H.P.; Yang, Sundy; Bashtannyk-Puhalovich, Tanya A.; McGowan, Sheena; Whisstock, James C.; Pike, Robert N.; Kemp, David J.; Buckle, Ashley M.

    2009-08-07

    The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed scabies mite inactivated protease paralogues (SMIPPs). The precise function of SMIPPs is unclear; however, it has been suggested that these proteins might function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 {angstrom} and 2.0 {angstrom} resolution, respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site-directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical 'canonical' fashion, and instead have evolved alternative functions in the lifecycle of the scabies mite.

  11. Unleashing the therapeutic potential of human kallikrein-related serine proteases.

    PubMed

    Prassas, Ioannis; Eissa, Azza; Poda, Gennadiy; Diamandis, Eleftherios P

    2015-03-01

    Tissue kallikreins are a family of fifteen secreted serine proteases encoded by the largest protease gene cluster in the human genome. In the past decade, substantial progress has been made in characterizing the natural substrates, endogenous inhibitors and in vivo functions of kallikreins, and studies have delineated important pathophysiological roles for these proteases in a variety of tissues. Thus, kallikreins are now considered attractive targets for the development of novel therapeutics for airway, cardiovascular, tooth, brain, skin and neoplastic diseases. In this Review, we discuss recent advances in our understanding of the physiological functions and pathological implications of kallikrein proteases, and highlight progress in the identification of kallikrein inhibitors, which together are bringing us closer to therapeutically targeting kallikreins in selected disease settings.

  12. C1A cysteine protease-cystatin interactions in leaf senescence.

    PubMed

    Díaz-Mendoza, Mercedes; Velasco-Arroyo, Blanca; González-Melendi, Pablo; Martínez, Manuel; Díaz, Isabel

    2014-07-01

    Senescence-associated proteolysis in plants is a crucial process to relocalize nutrients from leaves to growing or storage tissues. The massive net degradation of proteins involves broad metabolic networks, different subcellular compartments, and several types of proteases and regulators. C1A cysteine proteases, grouped as cathepsin L-, B-, H-, and F-like according to their gene structures and phylogenetic relationships, are the most abundant enzymes responsible for the proteolytic activity during leaf senescence. Besides, cystatins as specific modulators of C1A peptidase activities exert a complex regulatory role in this physiological process. This overview article covers the most recent information on C1A proteases in leaf senescence in different plant species. Particularly, it is focussed on barley, as the unique species where the whole gene family members of C1A cysteine proteases and cystatins have been analysed.

  13. SjAPI, the First Functionally Characterized Ascaris-Type Protease Inhibitor from Animal Venoms

    PubMed Central

    Yang, Weishan; Cao, Zhijian; Zhuo, Renxi; Li, Wenxin; Wu, Yingliang

    2013-01-01

    Background Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear. Principal Findings Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI), Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2), Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI), and Buthus martensii Ascaris-type protease inhibitor (BmAPI). The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues “AAV” and might be a useful template to produce new serine protease inhibitors. Conclusions/Significance To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the development of

  14. Protease induced plasticity: matrix metalloproteinase-1 promotes neurostructural changes through activation of protease activated receptor 1

    PubMed Central

    Allen, Megan; Ghosh, Suhasini; Ahern, Gerard P.; Villapol, Sonia; Maguire-Zeiss, Kathleen A.; Conant, Katherine

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of secreted endopeptidases expressed by neurons and glia. Regulated MMP activity contributes to physiological synaptic plasticity, while dysregulated activity can stimulate injury. Disentangling the role individual MMPs play in synaptic plasticity is difficult due to overlapping structure and function as well as cell-type specific expression. Here, we develop a novel system to investigate the selective overexpression of a single MMP driven by GFAP expressing cells in vivo. We show that MMP-1 induces cellular and behavioral phenotypes consistent with enhanced signaling through the G-protein coupled protease activated receptor 1 (PAR1). Application of exogenous MMP-1, in vitro, stimulates PAR1 dependent increases in intracellular Ca2+ concentration and dendritic arborization. Overexpression of MMP-1, in vivo, increases dendritic complexity and induces biochemical and behavioral endpoints consistent with increased GPCR signaling. These data are exciting because we demonstrate that an astrocyte-derived protease can influence neuronal plasticity through an extracellular matrix independent mechanism. PMID:27762280

  15. Molecular Imaging of Proteases in Cancer

    PubMed Central

    Yang, Yunan; Hong, Hao; Zhang, Yin; Cai, Weibo

    2010-01-01

    Proteases play important roles during tumor angiogenesis, invasion, and metastasis. Various molecular imaging techniques have been employed for protease imaging: optical (both fluorescence and bioluminescence), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). In this review, we will summarize the current status of imaging proteases in cancer with these techniques. Optical imaging of proteases, in particular with fluorescence, is the most intensively validated and many of the imaging probes are already commercially available. It is generally agreed that the use of activatable probes is the most accurate and appropriate means for measuring protease activity. Molecular imaging of proteases with other techniques (i.e. MRI, SPECT, and PET) has not been well-documented in the literature which certainly deserves much future effort. Optical imaging and molecular MRI of protease activity has very limited potential for clinical investigation. PET/SPECT imaging is suitable for clinical investigation; however the optimal probes for PET/SPECT imaging of proteases in cancer have yet to be developed. Successful development of protease imaging probes with optimal in vivo stability, tumor targeting efficacy, and desirable pharmacokinetics for clinical translation will eventually improve cancer patient management. Not limited to cancer, these protease-targeted imaging probes will also have broad applications in other diseases such as arthritis, atherosclerosis, and myocardial infarction. PMID:20234801

  16. Thrombin regulation of cell function through protease-activated receptors: implications for therapeutic intervention.

    PubMed

    Derian, C K; Damiano, B P; D'Andrea, M R; Andrade-Gordon, P

    2002-01-01

    The serine protease thrombin is well recognized as being pivotal to the maintenance of hemostasis under both normal and pathological conditions. Its cellular actions are mediated through a unique family of protease-activated receptors (PARs). These receptors represent a novel family of G protein-coupled receptors that undergo proteolytic cleavage of their amino terminus and subsequent autoactivation by a tethered peptide ligand. This paper reviews the consequences of PAR activation in thrombosis, vascular injury, inflammation, tissue injury, and within the tumor microenvironment.

  17. Evolution of soldier-specific venomous protease in social aphids.

    PubMed

    Kutsukake, Mayako; Nikoh, Naruo; Shibao, Harunobu; Rispe, Claude; Simon, Jean-Christophe; Fukatsu, Takema

    2008-12-01

    In social aphids of the genus Tuberaphis a cysteine protease gene of the family cathepsin B exhibits soldier-specific expression and intestinal protease production. The product is orally excreted and injected by soldier nymphs into natural enemies, thereby exerting an insecticidal activity. In an attempt to gain insights into when and how the novel venomous protease for the altruistic caste has evolved, we investigated the soldier-specific type (S-type) and nonspecific type (N-type) cathepsin B genes from social and nonsocial aphids. All the social aphids examined, representing the genera Tuberaphis, Astegopteryx, and Cerataphis, possessed both the S-type and N-type genes. Phylogenetically distant nonsocial aphids also possessed cathepsin B genes allied to the S-type and the N-type, indicating the evolutionary origin of these genes in the common ancestor of extant aphids. In Tuberaphis species the S-type genes exhibited significant soldier-specific expression and accelerated molecular evolution whereas the N-type genes did not. In Astegopteryx and Cerataphis species, meanwhile, both the S-type and N-type genes exhibited neither remarkable soldier-specific expression nor accelerated molecular evolution. These results suggest that the S-type gene acquired the soldier-specific expression and the venom function after divergence of the genus Tuberaphis. On the structural model of the S-type protease of Tuberaphis styraci the accelerated molecular evolution was associated with the molecular surface rather than the catalytic cleft, suggesting that the venom activity was probably acquired by relatively minor modifications on the molecular surface rather than by generation of a novel active site. In Cerataphis jamuritsu the S-type gene was, although containing a stop codon, structurally almost intact and still transcribed, suggesting recent pseudogenization of the gene copy and possible relevance to relaxed functional constraint in the highly multiplied protease gene family

  18. Protease activity in protein-free NS0 myeloma cell cultures.

    PubMed

    Spens, Erika; Häggström, Lena

    2005-01-01

    Zymography of concentrated conditioned medium (CM) from protein-free NS0 myeloma cell cultures showed that this cell line produced and released/secreted several proteases. Two caseinolytic activities at 45-50 and 90 kDa were identified as aspartic acid proteases, and at least two cathepsins of the papain-like cysteine protease family with molecular masses of 30-35 kDa were found by gelatin zymography. One of these cathepsins was identified as cathepsin L by using an enzyme assay exploiting the substrate Z-Phe-Arg-AMC and the inhibitor Z-Phe-Tyr-t(Bu)-DMK. The aspartic acid and cysteine proteases were active only at acidic pH and are therefore not a potential risk for degrading the product or affecting cell growth during culture. Secreted proforms of cathepsins may, however, possess mitogenic functions, but addition of anti-procathepsin L antibodies to NS0 cultures did not influence proliferation. The recombinant antibody product was not degraded in cell-free CM incubated at pH 7, but when the pH was decreased to 3.5-4, the aspartic acid proteases degraded the product. Gelatin zymography also revealed the presence of several serine proteases in NS0 CM, one at 85 kDa and two at 50 kDa, with pH optima close to culture pH. Addition of the serine protease inhibitor aprotinin significantly increased the specific proliferation rate as compared to the control. In addition to these data, N-terminal amino acid sequencing identified two proteins in NS0 CM as the protease inhibitors secretory leukocyte protease inhibitor and cystatin C.

  19. Advances in protease engineering for laundry detergents.

    PubMed

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents.

  20. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  1. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  2. Crystal structures of Bacillus subtilis Lon protease.

    PubMed

    Duman, Ramona E; Löwe, Jan

    2010-08-27

    Lon ATP-dependent proteases are key components of the protein quality control systems of bacterial cells and eukaryotic organelles. Eubacterial Lon proteases contain an N-terminal domain, an ATPase domain, and a protease domain, all in one polypeptide chain. The N-terminal domain is thought to be involved in substrate recognition, the ATPase domain in substrate unfolding and translocation into the protease chamber, and the protease domain in the hydrolysis of polypeptides into small peptide fragments. Like other AAA+ ATPases and self-compartmentalising proteases, Lon functions as an oligomeric complex, although the subunit stoichiometry is currently unclear. Here, we present crystal structures of truncated versions of Lon protease from Bacillus subtilis (BsLon), which reveal previously unknown architectural features of Lon complexes. Our analytical ultracentrifugation and electron microscopy show different oligomerisation of Lon proteases from two different bacterial species, Aquifex aeolicus and B. subtilis. The structure of BsLon-AP shows a hexameric complex consisting of a small part of the N-terminal domain, the ATPase, and protease domains. The structure shows the approximate arrangement of the three functional domains of Lon. It also reveals a resemblance between the architecture of Lon proteases and the bacterial proteasome-like protease HslUV. Our second structure, BsLon-N, represents the first 209 amino acids of the N-terminal domain of BsLon and consists of a globular domain, similar in structure to the E. coli Lon N-terminal domain, and an additional four-helix bundle, which is part of a predicted coiled-coil region. An unexpected dimeric interaction between BsLon-N monomers reveals the possibility that Lon complexes may be stabilised by coiled-coil interactions between neighbouring N-terminal domains. Together, BsLon-N and BsLon-AP are 36 amino acids short of offering a complete picture of a full-length Lon protease.

  3. Proteolytic crosstalk in multi-protease networks

    NASA Astrophysics Data System (ADS)

    Ogle, Curtis T.; Mather, William H.

    2016-04-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.

  4. The Degradome database: expanding roles of mammalian proteases in life and disease.

    PubMed

    Pérez-Silva, José G; Español, Yaiza; Velasco, Gloria; Quesada, Víctor

    2016-01-01

    Since the definition of the degradome as the complete repertoire of proteases in a given organism, the combined effort of numerous laboratories has greatly expanded our knowledge of its roles in biology and pathology. Once the genomic sequences of several important model organisms were made available, we presented the Degradome database containing the curated sets of known protease genes in human, chimpanzee, mouse and rat. Here, we describe the updated Degradome database, featuring 81 new protease genes and 7 new protease families. Notably, in this short time span, the number of known hereditary diseases caused by mutations in protease genes has increased from 77 to 119. This increase reflects the growing interest on the roles of the degradome in multiple diseases, including cancer and ageing. Finally, we have leveraged the widespread adoption of new webtools to provide interactive graphic views that show information about proteases in the global context of the degradome. The Degradome database can be accessed through its web interface at http://degradome.uniovi.es.

  5. Purification and characterization of a novel extracellular alkaline protease from Cellulomonas bogoriensis.

    PubMed

    Li, Fan; Yang, Liyuan; Lv, Xue; Liu, Dongbo; Xia, Hongmei; Chen, Shan

    2016-05-01

    An extracellular alkaline protease produced by the alkali-tolerant Cellulomonas bogoriensis was purified by a combination of ammonium sulfate precipitation and cation exchange chromatography. The purity of the protease was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was confirmed to be 18.3 kDa. The enzyme showed optimum activity at 60 °C and pH 11. The stability of the protease was maintained at a wide temperature range of 4-60 °C and pH range of 3-12. Irreversible inhibition of the enzyme activity by phenylmethylsulfonyl fluoride and tosyl-l-phenylalanine chloromethyl ketone demonstrated that the purified enzyme is a chymotrypsin of the serine protease family. The Km and Vmax of the protease activity on casein were 19.2 mg/mL and 25000 μg/min/mg, respectively. The broad substrate specificity and remarkable stability in the presence of organic solvents, salt, and commercial detergents, as well as its excellent stain removal and dehairing capability, make the purified alkaline protease a promising candidate for industrial applications.

  6. Protease Inhibitors from Marine Venomous Animals and Their Counterparts in Terrestrial Venomous Animals

    PubMed Central

    Mourão, Caroline B.F.; Schwartz, Elisabeth F.

    2013-01-01

    The Kunitz-type protease inhibitors are the best-characterized family of serine protease inhibitors, probably due to their abundance in several organisms. These inhibitors consist of a chain of ~60 amino acid residues stabilized by three disulfide bridges, and was first observed in the bovine pancreatic trypsin inhibitor (BPTI)-like protease inhibitors, which strongly inhibit trypsin and chymotrypsin. In this review we present the protease inhibitors (PIs) described to date from marine venomous animals, such as from sea anemone extracts and Conus venom, as well as their counterparts in terrestrial venomous animals, such as snakes, scorpions, spiders, Anurans, and Hymenopterans. More emphasis was given to the Kunitz-type inhibitors, once they are found in all these organisms. Their biological sources, specificity against different proteases, and other molecular blanks (being also K+ channel blockers) are presented, followed by their molecular diversity. Whereas sea anemone, snakes and other venomous animals present mainly Kunitz-type inhibitors, PIs from Anurans present the major variety in structure length and number of Cys residues, with at least six distinguishable classes. A representative alignment of PIs from these venomous animals shows that, despite eventual differences in Cys assignment, the key-residues for the protease inhibitory activity in all of them occupy similar positions in primary sequence. The key-residues for the K+ channel blocking activity was also compared. PMID:23771044

  7. Protease inhibitors from marine venomous animals and their counterparts in terrestrial venomous animals.

    PubMed

    Mourão, Caroline B F; Schwartz, Elisabeth F

    2013-06-14

    The Kunitz-type protease inhibitors are the best-characterized family of serine protease inhibitors, probably due to their abundance in several organisms. These inhibitors consist of a chain of ~60 amino acid residues stabilized by three disulfide bridges, and was first observed in the bovine pancreatic trypsin inhibitor (BPTI)-like protease inhibitors, which strongly inhibit trypsin and chymotrypsin. In this review we present the protease inhibitors (PIs) described to date from marine venomous animals, such as from sea anemone extracts and Conus venom, as well as their counterparts in terrestrial venomous animals, such as snakes, scorpions, spiders, Anurans, and Hymenopterans. More emphasis was given to the Kunitz-type inhibitors, once they are found in all these organisms. Their biological sources, specificity against different proteases, and other molecular blanks (being also K+ channel blockers) are presented, followed by their molecular diversity. Whereas sea anemone, snakes and other venomous animals present mainly Kunitz-type inhibitors, PIs from Anurans present the major variety in structure length and number of Cys residues, with at least six distinguishable classes. A representative alignment of PIs from these venomous animals shows that, despite eventual differences in Cys assignment, the key-residues for the protease inhibitory activity in all of them occupy similar positions in primary sequence. The key-residues for the K+ channel blocking activity was also compared.

  8. Development and binding characteristics of phosphonate inhibitors of SplA protease from Staphylococcus aureus

    PubMed Central

    Burchacka, Ewa; Zdzalik, Michal; Niemczyk, Justyna-Stec; Pustelny, Katarzyna; Popowicz, Grzegorz; Wladyka, Benedykt; Dubin, Adam; Potempa, Jan; Sienczyk, Marcin; Dubin, Grzegorz; Oleksyszyn, Jozef

    2014-01-01

    Staphylococcus aureus is responsible for a variety of human infections, including life-threatening, systemic conditions. Secreted proteome, including a range of proteases, constitutes the major virulence factor of the bacterium. However, the functions of individual enzymes, in particular SplA protease, remain poorly characterized. Here, we report development of specific inhibitors of SplA protease. The design, synthesis, and activity of a series of α-aminoalkylphosphonate diaryl esters and their peptidyl derivatives are described. Potent inhibitors of SplA are reported, which may facilitate future investigation of physiological function of the protease. The binding modes of the high-affinity compounds Cbz-PheP-(OC6H4−4-SO2CH3)2 and Suc-Val-Pro-PheP-(OC6H5)2 are revealed by high-resolution crystal structures of complexes with the protease. Surprisingly, the binding mode of both compounds deviates from previously characterized canonical interaction of α-aminoalkylphosphonate peptidyl derivatives and family S1 serine proteases. PMID:24375505

  9. The functional and pathologic relevance of autophagy proteases

    PubMed Central

    Fernández, Álvaro F.; López-Otín, Carlos

    2015-01-01

    Autophagy is a well-conserved catabolic process essential for cellular homeostasis. First described in yeast as an adaptive response to starvation, this pathway is also present in higher eukaryotes, where it is triggered by stress signals such as damaged organelles or pathogen infection. Autophagy is characterized at the cellular level by the engulfment of portions of the cytoplasm in double-membrane structures called autophagosomes. Autophagosomes fuse with lysosomes, resulting in degradation of the inner autophagosomal membrane and luminal content. This process is coordinated by complex molecular systems, including the ATG8 ubiquitin–like conjugation system and the ATG4 cysteine proteases, which are implicated in the formation, elongation, and fusion of these autophagic vesicles. In this Review, we focus on the diverse functional roles of the autophagins, a protease family formed by the four mammalian orthologs of yeast Atg4. We also address the dysfunctional expression of these proteases in several pathologic conditions such as cancer and inflammation and discuss potential therapies based on their modulation. PMID:25654548

  10. Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora.

    PubMed

    Tunlid, A; Rosén, S; Ek, B; Rask, L

    1994-07-01

    When grown in liquid cultures allowing the formation of nematode traps, the fungus Arthrobotrys oligospora produced two extracellular proteases hydrolysing the chromogenic substrate Azocoll. The protease activity was separated into two fractions (FI and FII) using anion-exchange chromatography. In bioassays, protease(s) present in FII immobilized the free-living nematode Panagrellus redivivus indicating that the enzyme(s) might be involved in the infection of nematodes. A protease designated PII was purified from FII to apparent homogeneity by hydrophobic interaction and size-exclusion chromatography, resulting in an approximately 15-fold increase in specific activity. The purified enzyme was glycosylated, had a molecular mass of approximately 35 kDa (gel filtration) and an isoelectric point of pH 4.6. PII immobilized P. redivivus in bioassays and hydrolysed proteins of the purified cuticle. The enzyme hydrolysed several protein substrates including casein, bovine serum albumin and gelatin, but not native collagen. Examination of substrate specificity with synthetic peptides showed that PII readily hydrolysed tripeptides with aromatic or basic amino acids including N-benzoyl-L-phenylalanyl-L-valyl-L-arginine-4-nitroanilide (Bz-Phe-Val-Arg-NA) and succinyl-glycyl-glycyl-L-phenylalanine-4-nitroanilide (Suc-Gly-Gly-Phe-NA). Mono-peptides were hydrolysed at considerably slower rates. PII had an optimum activity between pH 7 and 9 and was susceptible to autodegradation. PII was inhibited by several serine protease inhibitors including phenylmethylsulfonyl fluoride (PMSF), chymostatin and antipain. The protease was N-terminally blocked, but the sequence of one internal peptide showed a high homology with a region containing the active site histidine residue of the subtilisin family of serine proteases.

  11. A novel protease homolog differentially expressed in breast and ovarian cancer.

    PubMed Central

    Anisowicz, A.; Sotiropoulou, G.; Stenman, G.; Mok, S. C.; Sager, R.

    1996-01-01

    BACKGROUND: Using differential display (DD), we discovered a new member of the serine protease family of protein-cleaving enzymes, named protease M. The gene is most closely related by sequence to the kallikreins, to prostate-specific antigen (PSA), and to trypsin. The diagnostic use of PSA in prostate cancer suggested that a related molecule might be a predictor for breast or ovarian cancer. This, in turn, led to studies designed to characterize the protein and to screen for its expression in cancer. MATERIALS AND METHODS: The isolation of protease M by DD, the cloning and sequencing of the cDNA, and the comparison of the predicted protein structure with related proteins are described, as are methods to produce recombinant proteins and polyclonal antibody preparations. Protease M expression was examined in mammary, prostate, and ovarian cancer, as well as normal, cells and tissues. Stable transfectants expressing the protease M gene were produced in mammary carcinoma cells. RESULTS: Protease M was localized by fluorescent in situ hybridization analysis to chromosome 19q13.3, in a region to which other kallikreins and PSA also map. The gene is expressed in the primary mammary carcinoma lines tested but not in the corresponding cell lines of metastatic origin. It is strongly expressed in ovarian cancer tissues and cell lines. The enzyme activity could not be established, because of difficulties in producing sufficient recombinant protein, a common problem with proteases. Transfectants were selected that overexpress the mRNA, but the protein levels remained very low. CONCLUSIONS: Protease M expression (mRNA) may be a useful marker in the detection of primary mammary carcinomas, as well as primary ovarian cancers. Other medical applications are also likely, based on sequence relatedness to trypsin and PSA. Images FIG. 1 FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 PMID:8898378

  12. Pyrazinone protease inhibitor metabolites from Photorhabdus luminescens.

    PubMed

    Park, Hyun Bong; Crawford, Jason M

    2016-08-01

    Photorhabdus luminescens is a bioluminescent entomopathogenic bacterium that undergoes phenotypic variation and lives in mutualistic association with nematodes of the family Heterorhabditidae. The pair infects and kills insects, and during their coordinated lifecycle, the bacteria produce an assortment of specialized metabolites to regulate its mutualistic and pathogenic roles. As part of our search for new specialized metabolites from the Photorhabdus genus, we examined organic extracts from P. luminescens grown in an amino-acid-rich medium based on the free amino-acid levels found in the circulatory fluid of its common insect prey, the Galleria mellonella larva. Reversed-phase HPLC/UV/MS-guided fractionation of the culture extracts led to the identification of two new pyrazinone metabolites, lumizinones A (1) and B (2), together with two N-acetyl dipeptides (3 and 4). The lumizinones were produced only in the phenotypic variant associated with nematode development and insect pathogenesis. Their chemical structures were elucidated by analysis of 1D and 2D NMR and high-resolution ESI-QTOF-MS spectral data. The absolute configurations of the amino acids in 3 and 4 were determined by Marfey's analysis. Compounds 1-4 were evaluated for their calpain protease inhibitory activity, and lumizinone A (1) showed inhibition with an IC50 (half-maximal inhibitory concentration) value of 3.9 μm. PMID:27353165

  13. Proteases of Treponema denticola outer sheath and extracellular vesicles.

    PubMed Central

    Rosen, G; Naor, R; Rahamim, E; Yishai, R; Sela, M N

    1995-01-01

    Electron microscopical observations of the oral periodontopathogen Treponema denticola show the presence of extracellular vesicles bound to the bacterial surface or free in the surrounding medium. Extracellular vesicles from T. denticola ATCC 35404, 50 to 100 nm in diameter, were isolated and further characterized. Protein and proteolytic patterns of the vesicles were found to be very similar to those of isolated T. denticola outer sheaths. They were enriched with the major outer sheath polypeptides (molecular sizes, 113 to 234 kDa) and with outer sheath proteases of 91, 153, 173, and 228 kDa. These findings indicate that treponemal outer sheath vesicles contain the necessary adhesins and proteolytic arsenal for adherence to and damage of eucaryotic cells and mammalian matrix proteins. The major outer sheath- and vesicle-associated protease of T. denticola ATCC 35404 was purified and characterized. The purified enzyme had a molecular size of 91 kDa, and it dissociated into three polypeptides of 72, 38, and 35 kDa upon heating in the presence of sodium dodecyl sulfate with or without a reducing agent. The activity of the enzyme could be inhibited by diisopropylfluorophosphate, phenylmethylsulfonyl fluoride, and phenylboronic acid. The value of the second-order rate constant of the protease inactivation by phenylmethylsulfonyl fluoride was 0.48 x 10(4) M(-1) min-1. Inhibition of the enzyme by phenylboronic acid was rapid (< 1 min) and pH dependent. These data strongly suggest that this major surface proteolytic activity belongs to a family of serine proteases. PMID:7558307

  14. Propeptides of eukaryotic proteases encode histidines to exploit organelle pH for regulation.

    PubMed

    Elferich, Johannes; Williamson, Danielle M; Krishnamoorthy, Bala; Shinde, Ujwal

    2013-08-01

    Eukaryotic cells maintain strict control over protein secretion, in part by using the pH gradient maintained within their secretory pathway. How eukaryotic proteins evolved from prokaryotic orthologs to exploit the pH gradient for biological functions remains a fundamental question in cell biology. Our laboratory previously demonstrated that protein domains located within precursor proteins, propeptides, encode histidine-driven pH sensors to regulate organelle-specific activation of the eukaryotic proteases furin and proprotein convertase-1/3. Similar findings have been reported in other unrelated protease families. By analyzing >10,000 unique proteases within evolutionarily unrelated families, we show that eukaryotic propeptides are enriched in histidines compared with prokaryotic orthologs. On this basis, we hypothesize that eukaryotic proteins evolved to enrich histidines within their propeptides to exploit the tightly controlled pH gradient of the secretory pathway, thereby regulating activation within specific organelles. Enrichment of histidines in propeptides may therefore be used to predict the presence of pH sensors in other proteases or even protease substrates.

  15. Vibrio cholerae hemagglutinin(HA)/protease: An extracellular metalloprotease with multiple pathogenic activities.

    PubMed

    Benitez, Jorge A; Silva, Anisia J

    2016-06-01

    Vibrio cholerae of serogroup O1 and O139, the etiological agent of the diarrheal disease cholera, expresses the extracellular Zn-dependent metalloprotease hemagglutinin (HA)/protease also reported as vibriolysin. This enzyme is also produced by non-O1/O139 (non-cholera) strains that cause mild, sporadic illness (i.e. gastroenteritis, wound or ear infections). Orthologs of HA/protease are present in other members of the Vibrionaceae family pathogenic to humans and fish. HA/protease belongs to the M4 neutral peptidase family and displays significant amino acid sequence homology to Pseudomonas aeruginosa elastase (LasB) and Bacillus thermoproteolyticus thermolysin. It exhibits a broad range of potentially pathogenic activities in cell culture and animal models. These activities range from the covalent modification of other toxins, the degradation of the protective mucus barrier and disruption of intestinal tight junctions. Here we review (i) the structure and regulation of HA/protease expression, (ii) its interaction with other toxins and the intestinal mucosa and (iii) discuss the possible role(s) of HA/protease in the pathogenesis of cholera. PMID:26952544

  16. Protease-degradable electrospun fibrous hydrogels

    NASA Astrophysics Data System (ADS)

    Wade, Ryan J.; Bassin, Ethan J.; Rodell, Christopher B.; Burdick, Jason A.

    2015-03-01

    Electrospun nanofibres are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases. Here we synthesize reactive macromers that contain protease-cleavable and fluorescent peptides and are able to form both isotropic hydrogels and electrospun fibrous hydrogels through a photoinitiated polymerization. These biomimetic scaffolds are susceptible to protease-mediated cleavage in vitro in a protease dose-dependent manner and in vivo in a subcutaneous mouse model using transdermal fluorescent imaging to monitor degradation. Importantly, materials containing an alternate and non-protease-cleavable peptide sequence are stable in both in vitro and in vivo settings. To illustrate the specificity in degradation, scaffolds with mixed fibre populations support selective fibre degradation based on individual fibre degradability. Overall, this represents a novel biomimetic approach to generate protease-sensitive fibrous scaffolds for biomedical applications.

  17. Mast cell proteases as pharmacological targets.

    PubMed

    Caughey, George H

    2016-05-01

    Mast cells are rich in proteases, which are the major proteins of intracellular granules and are released with histamine and heparin by activated cells. Most of these proteases are active in the granule as well as outside of the mast cell when secreted, and can cleave targets near degranulating mast cells and in adjoining tissue compartments. Some proteases released from mast cells reach the bloodstream and may have far-reaching actions. In terms of relative amounts, the major mast cell proteases include the tryptases, chymases, cathepsin G, carboxypeptidase A3, dipeptidylpeptidase I/cathepsin C, and cathepsins L and S. Some mast cells also produce granzyme B, plasminogen activators, and matrix metalloproteinases. Tryptases and chymases are almost entirely mast cell-specific, whereas other proteases, such as cathepsins G, C, and L are expressed by a variety of inflammatory cells. Carboxypeptidase A3 expression is a property shared by basophils and mast cells. Other proteases, such as mastins, are largely basophil-specific, although human basophils are protease-deficient compared with their murine counterparts. The major classes of mast cell proteases have been targeted for development of therapeutic inhibitors. Also, a human β-tryptase has been proposed as a potential drug itself, to inactivate of snake venins. Diseases linked to mast cell proteases include allergic diseases, such as asthma, eczema, and anaphylaxis, but also include non-allergic diseases such as inflammatory bowel disease, autoimmune arthritis, atherosclerosis, aortic aneurysms, hypertension, myocardial infarction, heart failure, pulmonary hypertension and scarring diseases of lungs and other organs. In some cases, studies performed in mouse models suggest protective or homeostatic roles for specific proteases (or groups of proteases) in infections by bacteria, worms and other parasites, and even in allergic inflammation. At the same time, a clearer picture has emerged of differences in the

  18. Gene expression and activity of digestive proteases in Daphnia: effects of cyanobacterial protease inhibitors

    PubMed Central

    2010-01-01

    Background The frequency of cyanobacterial blooms has increased worldwide, and these blooms have been claimed to be a major factor leading to the decline of the most important freshwater herbivores, i.e. representatives of the genus Daphnia. This suppression of Daphnia is partly attributed to the presence of biologically active secondary metabolites in cyanobacteria. Among these metabolites, protease inhibitors are found in almost every natural cyanobacterial bloom and have been shown to specifically inhibit Daphnia's digestive proteases in vitro, but to date no physiological responses of these serine proteases to cyanobacterial protease inhibitors in Daphnia have been reported in situ at the protein and genetic levels. Results Nine digestive proteases were detected in D. magna using activity-stained SDS-PAGE. Subsequent analyses by LC-MS/MS and database search led to the identification of respective protease genes. D. magna responded to dietary protease inhibitors by up-regulation of the expression of these respective proteases at the RNA-level and by the induction of new and less sensitive protease isoforms at the protein level. The up-regulation in response to dietary trypsin- and chymotrypsin-inhibitors ranged from 1.4-fold to 25.6-fold. These physiological responses of Daphnia, i.e. up-regulation of protease expression and the induction of isoforms, took place even after feeding on 20% cyanobacterial food for only 24 h. These physiological responses proved to be independent from microcystin effects. Conclusion Here for the first time it was shown in situ that a D. magna clone responds physiologically to dietary cyanobacterial protease inhibitors by phenotypic plasticity of the targets of these specific inhibitors, i.e. Daphnia gut proteases. These regulatory responses are adaptive for D. magna, as they increase the capacity for protein digestion in the presence of dietary protease inhibitors. The type and extent of these responses in protease expression might

  19. Neutralizing monoclonal antibodies to an extracellular Pseudomonas cepacia protease.

    PubMed Central

    Kooi, C; Cox, A; Darling, P; Sokol, P A

    1994-01-01

    Pseudomonas cepacia produces at least two extracellular proteases with apparent molecular masses of 36,000 and 40,000 Da. The 36-kDa protease has high proteolytic activity and the 40-kDa protease has low proteolytic activity with hide powder azure as a substrate. Monoclonal antibodies (MAbs) were raised against the purified 36- and 40-kDa proteases. Several MAbs directed against the 36-kDa protease were found to recognize the 40-kDa protease by Western immunoblot analysis. Similarly, a MAb directed against the 40-kDa protease recognized the 36-kDa protease, suggesting that these two proteases may be immunologically related. A MAb directed against the 36-kDa protease, designated 36-6-8, and a MAb directed against the 40-kDa protease (MAb G-11) cross-reacted with other extracellular proteases, such as Pseudomonas aeruginosa elastase and alkaline protease, Pseudomonas pseudomallei protease, and the Vibrio cholerae hemagglutinin/protease. MAb 36-6-8 neutralized the P. cepacia 36-kDa protease, P. aeruginosa elastase, P. pseudomallei protease, and V. cholerae hemagglutinin/protease but did not affect P. aeruginosa alkaline protease activity. In contrast, MAb G-11 to the 40-kDa protease neutralized only the P. cepacia 36-kDa protease. This evidence suggests that the neutralizing MAb, 36-6-8, recognizes an epitope conserved among some metalloproteases. This epitope may lie at or near the active site of the P. cepacia 36-kDa protease and P. aeruginosa elastase. Images PMID:7516312

  20. Regulation of protease production in Clostridium sporogenes.

    PubMed Central

    Allison, C; Macfarlane, G T

    1990-01-01

    The physiological and nutritional factors that regulate protease synthesis in Clostridium sporogenes C25 were studied in batch and continuous cultures. Formation of extracellular proteases occurred at the end of active growth and during the stationary phase in batch cultures. Protease production was inversely related to growth rate in glucose-excess and glucose-limited chemostats over the range D = 0.05 to 0.70 h-1. In pulse experiments, glucose, ammonia, phosphate, and some amino acids (tryptophan, proline, tyrosine, and isoleucine) strongly repressed protease synthesis. This repression was not relieved by addition of 4 mM cyclic AMP, cyclic GMP, or dibutyryl cyclic AMP. Protease formation was markedly inhibited by 4 mM ATP and ADP, but GTP and GDP had little effect on the process. It is concluded that protease production by C. sporogenes is strongly influenced by the amount of energy available to the cells, with the highest levels of protease synthesis occurring under energy-limiting conditions. PMID:2268158

  1. A biotechnology perspective of fungal proteases

    PubMed Central

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira, Edivaldo Ximenes; Pessoa, Adalberto; Magalhães, Pérola Oliveira

    2015-01-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:26273247

  2. Extracellular proteases of Trichoderma species. A review.

    PubMed

    Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet

    2005-01-01

    Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed. PMID:16003937

  3. A biotechnology perspective of fungal proteases.

    PubMed

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira Filho, Edivaldo Ximenes; Pessoa Junior, Adalberto; Magalhães, Pérola Oliveira

    2015-06-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:26273247

  4. Cysteine Proteases from Bloodfeeding Arthropod Ectoparasites

    PubMed Central

    Sojka, Daniel; Francischetti, Ivo M. B.; Calvo, Eric; Kotsyfakis, Michalis

    2012-01-01

    Cysteine proteases have been discovered in various bloodfeeding ectoparasites. Here, we assemble the available information about the function of these peptidases and reveal their role in hematophagy and parasite development. While most of the data shed light on key proteolytic events that play a role in arthropod physiology, we also report on the association of cysteine proteases with arthropod vectorial capacity. With emphasis on ticks, specifically Ixodes ricinus, we finally propose a model about the contribution of cysteine peptidases to blood digestion, and how their concerted action with other tick midgut proteases leads to the absorbance of nutrients by the midgut epithelial cells. PMID:21660665

  5. HIV-1 Protease: Structure, Dynamics and Inhibition

    SciTech Connect

    Louis, John M.; Ishima, R.; Torchia, D.A.; Weber, Irene T.

    2008-06-03

    The HIV-1 protease is synthesized as part of a large Gag-Pol precursor protein. It is responsible for its own release from the precursor and the processing of the Gag and Gag-Pol polyproteins into the mature structural and functional proteins required for virus maturation. Because of its indispensable role, the mature HIV-1 protease dimer has proven to be a successful target for the development of antiviral agents. In the last 5 years, a major emphasis in protease research has been to improve inhibitor design and treatment regimens.

  6. Regulatory Elements within the Prodomain of Falcipain-2, a Cysteine Protease of the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Pandey, Kailash C.; Barkan, David T.; Sali, Andrej; Rosenthal, Philip J.

    2009-01-01

    Falcipain-2, a papain family cysteine protease of the malaria parasite Plasmodium falciparum, plays a key role in parasite hydrolysis of hemoglobin and is a potential chemotherapeutic target. As with many proteases, falcipain-2 is synthesized as a zymogen, and the prodomain inhibits activity of the mature enzyme. To investigate the mechanism of regulation of falcipain-2 by its prodomain, we expressed constructs encoding different portions of the prodomain and tested their ability to inhibit recombinant mature falcipain-2. We identified a C-terminal segment (Leu155–Asp243) of the prodomain, including two motifs (ERFNIN and GNFD) that are conserved in cathepsin L sub-family papain family proteases, as the mediator of prodomain inhibitory activity. Circular dichroism analysis showed that the prodomain including the C-terminal segment, but not constructs lacking this segment, was rich in secondary structure, suggesting that the segment plays a crucial role in protein folding. The falcipain-2 prodomain also efficiently inhibited other papain family proteases, including cathepsin K, cathepsin L, cathepsin B, and cruzain, but it did not inhibit cathepsin C or tested proteases of other classes. A structural model of pro-falcipain-2 was constructed by homology modeling based on crystallographic structures of mature falcipain-2, procathepsin K, procathepsin L, and procaricain, offering insights into the nature of the interaction between the prodomain and mature domain of falcipain-2 as well as into the broad specificity of inhibitory activity of the falcipain-2 prodomain. PMID:19479029

  7. An Alkaline Protease from Bacillus pumilus MP 27: Functional Analysis of Its Binding Model toward Its Applications As Detergent Additive

    PubMed Central

    Baweja, Mehak; Tiwari, Rameshwar; Singh, Puneet K.; Nain, Lata; Shukla, Pratyoosh

    2016-01-01

    A proteolytic strain of Bacillus pumilus MP 27 was isolated from water samples of Southern ocean produced alkaline protease. Since protease production need expensive ingredients, an economically viable process was developed by using low cost carbon source, wheat straw, supplemented with peptone. This protease was active within temperature ranges 10–70°C at pH 9. This process was optimized by response surface methodology using a Box Bekhman design by Design Expert 7.0 software that increased the protease activity to 776.5 U/ml. Moreover, the enzyme was extremely stable at a broad range of temperature and pH retaining 69% of its activity at 50°C and 70% at pH 11. The enzyme exhibited excellent compatibility with surfactants and commercial detergents, showing 87% stability with triton X-100 and 100% stability with Tide commercial detergent. The results of the wash performance analysis demonstrated considerably good de-staining at 50 and 4°C with low supplementation (109 U/ml). Molecular modeling of the protease revealed the presence of serine proteases, subtilase family and serine active site and further docking supported the association of catalytic site with the various substrates. Certainly, such protease can be considered as a good detergent additive in detergent industry with a possibility to remove the stains effectively even in a cold wash. PMID:27536284

  8. An Alkaline Protease from Bacillus pumilus MP 27: Functional Analysis of Its Binding Model toward Its Applications As Detergent Additive.

    PubMed

    Baweja, Mehak; Tiwari, Rameshwar; Singh, Puneet K; Nain, Lata; Shukla, Pratyoosh

    2016-01-01

    A proteolytic strain of Bacillus pumilus MP 27 was isolated from water samples of Southern ocean produced alkaline protease. Since protease production need expensive ingredients, an economically viable process was developed by using low cost carbon source, wheat straw, supplemented with peptone. This protease was active within temperature ranges 10-70°C at pH 9. This process was optimized by response surface methodology using a Box Bekhman design by Design Expert 7.0 software that increased the protease activity to 776.5 U/ml. Moreover, the enzyme was extremely stable at a broad range of temperature and pH retaining 69% of its activity at 50°C and 70% at pH 11. The enzyme exhibited excellent compatibility with surfactants and commercial detergents, showing 87% stability with triton X-100 and 100% stability with Tide commercial detergent. The results of the wash performance analysis demonstrated considerably good de-staining at 50 and 4°C with low supplementation (109 U/ml). Molecular modeling of the protease revealed the presence of serine proteases, subtilase family and serine active site and further docking supported the association of catalytic site with the various substrates. Certainly, such protease can be considered as a good detergent additive in detergent industry with a possibility to remove the stains effectively even in a cold wash. PMID:27536284

  9. Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts.

    PubMed

    Neveu, Julie; Regeard, Christophe; DuBow, Michael S

    2011-08-01

    The screening of environmental DNA metagenome libraries for functional activities can provide an important source of new molecules and enzymes. In this study, we identified 17 potential protease-producing clones from two metagenomic libraries derived from samples of surface sand from the Gobi and Death Valley deserts. Two of the proteases, DV1 and M30, were purified and biochemically examined. These two proteases displayed a molecular mass of 41.5 kDa and 45.7 kDa, respectively, on SDS polyacrylamide gels. Alignments with known protease sequences showed less than 55% amino acid sequence identity. These two serine proteases appear to belong to the subtilisin (S8A) family and displayed several unique biochemical properties. Protease DV1 had an optimum pH of 8 and an optimal activity at 55°C, while protease M30 had an optimum pH >11 and optimal activity at 40°C. The properties of these enzymes make them potentially useful for biotechnological applications and again demonstrate that metagenomic approaches can be useful, especially when coupled with the study of novel environments such as deserts.

  10. Isolation of the human PC6 gene encoding the putative host protease for HIV-1 gp160 processing in CD4+ T lymphocytes.

    PubMed Central

    Miranda, L; Wolf, J; Pichuantes, S; Duke, R; Franzusoff, A

    1996-01-01

    Production of infectious HIV-1 virions is dependent on the processing of envelope glycoprotein gp160 by a host cell protease. The protease in human CD4+ T lymphocytes has not been unequivocally identified, yet members of the family of mammalian subtilisin-like protein convertases (SPCs), which are soluble or membrane-bound proteases of the secretory pathway, best fulfill the criteria. These proteases are required for proprotein maturation and cleave at paired basic amino acid motifs in numerous cellular and viral glycoprotein precursors, both in vivo and in vitro. To identify the gp160 processing protease, we have used reverse transcription-PCR and Northern blot analyses to ascertain the spectrum of SPC proteases in human CD4+ T cells. We have cloned novel members of the SPC family, known as the human PC6 genes. Two isoforms of the hPC6 protease are expressed in human T cells, hPC6A and the larger hPC6B. The patterns of SPC gene expression in human T cells has been compared with the furin-defective LoVo cell line, both of which are competent in the production of infectious HIV virions. This comparison led to the conclusion that the hPC6 gene products are the most likely candidates for the host cell protease responsible for HIV-1 gp160 processing in human CD4+ T cells. Images Fig. 1 Fig. 3 PMID:8755538

  11. Protease and protease inhibitory activity in pregnant and postpartum involuting uterus

    SciTech Connect

    Milwidsky, A.; Beller, U.; Palti, Z.; Mayer, M.

    1982-08-15

    The presence of two distinct proteolytic activities in the rat uterus was confirmed with /sup 14/C-labeled globin used as a sensitive protein substrate and following release of label into the trichloroacetic acid-soluble supernatant fraction. Protease I is a cytoplasmic acid protease while protease II is associated with the pellet fraction, can be extracted by 0.6 M sodium chloride, and is active at pH 7.0. Protease I activity is low during pregnancy and markedly increases at term achieving maximal activity at day 3 post partum with a subsequent decline to preterm activity values. Lactation did not affect the uterine protease I activity. Protease II activity is not significantly different during pregnancy, at term, and post partum. The presence of an inhibitor of protease I was suggested by a decrease in enzyme activity with an increased cytosolic protein concentration. The inhibitor also lessened bovine trypsin activity but had no effect on protease II. Although its inhibitory potency on trypsin fluctuated during the various uterine physiologic stages, these changes appeared to be statistically insignificant. Human uterine samples were also found to contain the two protease activities with similar changes in protease I post partum. It is suggested that, both in the rat and in man, uterine involution post partum is associated with a marked increase in activity of acid cytosolic protease, while a particulate neutral protease and a soluble inhibitor of trypsin, which are also present in uterine cells, do not appear to play a significant role in the dissolution of uterine tissues after parturition.

  12. The vacuolar serine protease, a cross-reactive allergen from Cladosporium herbarum.

    PubMed

    Pöll, Verena; Denk, Ursula; Shen, Horng-Der; Panzani, Raphael C; Dissertori, Oliver; Lackner, Peter; Hemmer, Wolfgang; Mari, Adriano; Crameri, Reto; Lottspeich, Friedrich; Rid, Raphaela; Richter, Klaus; Breitenbach, Michael; Simon-Nobbe, Birgit

    2009-04-01

    Subtilisin-like serine proteases make up one of the most important allergen-families regarding the number of individual allergens. Previously, fungal subtilisin-like serine proteases have been identified from Aspergillus-, Penicillium-, and Trichophyton-species having a prevalence of IgE-reactivity between 33% and 80%. Since IgE-cross-reactivity is a common phenomenon within fungal species we wanted to know whether this protein also represents an allergen in Cladosporium herbarum. Hence, a screening of a C. herbarum cDNA library was performed using the coding sequence of the Penicillium oxalicum vacuolar serine protease (Pen o 18) as hybridization probe, ending up with a full-length clone. Biochemical and immunological characterization of this clone revealed that C. herbarum vacuolar serine protease most likely is synthesized as a precursor with an N-terminal pro-enzyme sequence and represents a minor allergen (Cla h 9) with a prevalence of IgE-reactivity of 15.5%. Furthermore Cla h 9 specifically reacted with the two monoclonal antibodies FUM20 and PCM39, as do the vacuolar serine proteases from Aspergillus fumigatus and Penicillium species. Investigation of IgE-cross-reactivity between Cla h 9 and other fungal serine proteases revealed that cross-reactivity is higher between vacuolar than alkaline serine proteases. IgE-epitope mapping of Cla h 9 was done in order to test whether four Cla h 9-peptides having a high sequence homology to previously determined Pen ch 18-IgE-epitopes also harbour IgE-epitopes. Three-dimensional models of the vacuolar serine proteases from C. herbarum and Penicillium chrysogenum were generated for the three-dimensional localization of the Cla h 9- and Pen ch 18- IgE-reactive and -non-reactive peptides. Taken together a new C. herbarum allergen has been identified, which may be useful in a molecule-based approach of C. herbarum allergy-diagnosis and -therapy. Moreover, Cla h 9 represents a further member of the subtilisin-like serine

  13. Cysteine protease antigens cleave CD123, the α subunit of murine IL-3 receptor, on basophils and suppress IL-3-mediated basophil expansion

    SciTech Connect

    Nishikado, Hideto; Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko; Ogawa, Hideoki; Okumura, Ko; Takai, Toshiro

    2015-05-01

    Th2 type immune responses are essential for protective immunity against parasites and play crucial roles in allergic disorders. Helminth parasites secrete a variety of proteases for their infectious cycles including for host entry, tissue migration, and suppression of host immune effector cell function. Furthermore, a number of pathogen-derived antigens, as well as allergens such as papain, belong to the family of cysteine proteases. Although the link between protease activity and Th2 type immunity is well documented, the mechanisms by which proteases regulate host immune responses are largely unknown. Here, we demonstrate that the cysteine proteases papain and bromelain selectively cleave the α subunit of the IL-3 receptor (IL-3Rα/CD123) on the surface of murine basophils. The decrease in CD123 expression on the cell surface, and the degradation of the extracellular domain of recombinant CD123 were dependent on the protease activity of papain and bromelain. Pre-treatment of murine basophils with papain resulted in inhibition of IL-3-IL-3R signaling and suppressed IL-3- but not thymic stromal lymphopoietin-induced expansion of basophils in vitro. Our unexpected findings illuminate a novel mechanism for the regulation of basophil functions by protease antigens. Because IL-3 plays pivotal roles in the activation and proliferation of basophils and in protective immunity against helminth parasites, pathogen-derived proteases might contribute to the pathogenesis of infections by regulating IL-3-mediated functions in basophils. - Highlights: • We identified the murine IL3R as a novel target of papain-family cysteine proteases. • Papain-family cysteine proteases cleaved IL3Rα/CD123 on murine basophils. • Papain suppressed IL3- but not TSLP-induced expansion of murine basophils. • The inactivation of IL3R might be a strategy for pathogens to suppress host immunity.

  14. Characterization of the ATP-Dependent Lon-Like Protease in Methanobrevibacter smithii

    PubMed Central

    Pei, Jihua; Yan, Jianfang

    2016-01-01

    The Lon protease is highly evolutionarily conserved. However, little is known about Lon in the context of gut microbial communities. A gene encoding a Lon-like protease (Lon-like-Ms) was identified and characterized from Methanobrevibacter smithii, the predominant archaeon in the human gut ecosystem. Phylogenetic and sequence analyses showed that Lon-like-Ms and its homologs are newly identified members of the Lon family. A recombinant form of the enzyme was purified by affinity chromatography, and its catalytic properties were examined. Recombinant Lon-like-Ms exhibited ATPase activity and cleavage activity toward fluorogenic peptides and casein. The peptidase activity of Lon-like-Ms relied strictly on Mg2+ (or other divalent cations) and ATP. These results highlight a new type of Lon-like protease that differs from its bacterial counterpart. PMID:27239160

  15. A cysteine protease isolated from the latex of Ficus microcarpa: purification and biochemical characterization.

    PubMed

    Mnif, Ibtissem Hamza; Siala, Rayda; Nasri, Rim; Mhamdi, Samiha; Nasri, Moncef; Kamoun, Alya Sellami

    2015-02-01

    A plant protease named microcarpain was purified from the latex of Ficus microcarpa by acetonic (20-40 % saturation) precipitation, Sephadex G-75 filtration, and Mono Q-Sefinose FF chromatography. The protease was purified with a yield of 9.25 % and a purification factor of 8. The molecular weight of the microcarpain was estimated to be 20 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The purified enzyme showed maximum activity at pH 8.0 and at a temperature of 70 °C. Proteolytic activity was strongly inhibited by dithio-bis-nitrobenzoic acid (DTNB), Hg(2+), and Cu(2+). The N-terminal amino acid sequence of the purified microcarpain "VPETVDWRSKGAV" showed high homology with a protease from Arabidopsis thaliana. Inhibition studies and N-terminal sequence classified the enzyme as a member of the cysteine peptidases family.

  16. Characterization of the ATP-Dependent Lon-Like Protease in Methanobrevibacter smithii.

    PubMed

    Pei, Jihua; Yan, Jianfang; Jiang, Yi

    2016-01-01

    The Lon protease is highly evolutionarily conserved. However, little is known about Lon in the context of gut microbial communities. A gene encoding a Lon-like protease (Lon-like-Ms) was identified and characterized from Methanobrevibacter smithii, the predominant archaeon in the human gut ecosystem. Phylogenetic and sequence analyses showed that Lon-like-Ms and its homologs are newly identified members of the Lon family. A recombinant form of the enzyme was purified by affinity chromatography, and its catalytic properties were examined. Recombinant Lon-like-Ms exhibited ATPase activity and cleavage activity toward fluorogenic peptides and casein. The peptidase activity of Lon-like-Ms relied strictly on Mg(2+) (or other divalent cations) and ATP. These results highlight a new type of Lon-like protease that differs from its bacterial counterpart.

  17. Temperature-induced changes of HtrA2(Omi) protease activity and structure.

    PubMed

    Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Polit, Agnieszka; Skorko-Glonek, Joanna; Lesner, Adam; Gitlin, Agata; Gieldon, Artur; Ciarkowski, Jerzy; Glaza, Przemyslaw; Lubomska, Agnieszka; Lipinska, Barbara

    2013-01-01

    HtrA2(Omi), belonging to the high-temperature requirement A (HtrA) family of stress proteins, is involved in the maintenance of mitochondrial homeostasis and in the stimulation of apoptosis, as well as in cancer and neurodegenerative disorders. The protein comprises a serine protease domain and a postsynaptic density of 95 kDa, disk large, and zonula occludens 1 (PDZ) regulatory domain and functions both as a protease and a chaperone. Based on the crystal structure of the HtrA2 inactive trimer, it has been proposed that PDZ domains restrict substrate access to the protease domain and that during protease activation there is a significant conformational change at the PDZ-protease interface, which removes the inhibitory effect of PDZ from the active site. The crystal structure of the HtrA2 active form is not available yet. HtrA2 activity markedly increases with temperature. To understand the molecular basis of this increase in activity, we monitored the temperature-induced structural changes using a set of single-Trp HtrA2 mutants with Trps located at the PDZ-protease interface. The accessibility of each Trp to aqueous medium was assessed by fluorescence quenching, and these results, in combination with mean fluorescence lifetimes and wavelength emission maxima, indicate that upon an increase in temperature the HtrA2 structure relaxes, the PDZ-protease interface becomes more exposed to the solvent, and significant conformational changes involving both domains occur at and above 30 °C. This conclusion correlates well with temperature-dependent changes of HtrA2 proteolytic activity and the effect of amino acid substitutions (V226K and R432L) located at the domain interface, on HtrA2 activity. Our results experimentally support the model of HtrA2 activation and provide an insight into the mechanism of temperature-induced changes in HtrA2 structure.

  18. Human immunodeficiency virus 1 protease expressed in Escherichia coli behaves as a dimeric aspartic protease.

    PubMed Central

    Meek, T D; Dayton, B D; Metcalf, B W; Dreyer, G B; Strickler, J E; Gorniak, J G; Rosenberg, M; Moore, M L; Magaard, V W; Debouck, C

    1989-01-01

    Recombinant human immunodeficiency virus 1 (HIV-1) protease, purified from a bacterial expression system, processed a recombinant form of its natural substrate, Pr55gag, into protein fragments that possess molecular weights commensurate with those of the virion gag proteins. Molecular weights of the protease obtained under denaturing and nondenaturing conditions (11,000 and 22,000, respectively) and chemical crosslinking studies were consistent with a dimeric structure for the active enzyme. The protease appropriately cleaved the nonapeptide Ac-Arg-Ala-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2 between the tyrosine and proline residues. HIV-1 protease was sensitive to inactivators of the aspartic proteases. The aspartic protease inactivator 1,2-epoxy-3-(4-nitrophenoxy)propane produced irreversible, time-dependent inactivation of the protease. The pH-dependent kinetics of this inactivator were consistent with the requirement of an unprotonated carboxyl group in the active site of the enzyme, suggesting that HIV-1 protease is also an aspartic protease. Images PMID:2648384

  19. Vanadium inhibition of serine and cysteine proteases.

    PubMed

    Guerrieri, N; Cerletti, P; De Vincentiis, M; Salvati, A; Scippa, S

    1999-03-01

    A study was made on the effect of vanadium, in both the tetravalent state in vanadyl sulphate and in the pentavalent state in sodium meta-vanadate, and ortho-vanadate, on the proteolysis of azocasein by two serine proteases, trypsin and subtilisin and two cysteine proteases bromelain and papain. Also the proteolysis of bovine azoalbumin by serine proteases was considered. An inhibitory effect was present in all cases, except meta-vanadate with subtilisin. The oxidation level of vanadium by itself did not determine the inhibition kinetics, which also depended on the type and composition of the vanadium containing molecule and on the enzyme assayed. The pattern of inhibition was similar for proteases belonging to the same class. The highest inhibition was obtained with meta-vanadate on papain and with vanadyl sulphate on bromelain.

  20. Comparative genomic analysis of aspartic proteases in eight parasitic platyhelminths: insights into functions and evolution.

    PubMed

    Wang, Shuai; Wei, Wei; Luo, Xuenong; Wang, Sen; Hu, Songnian; Cai, Xuepeng

    2015-03-15

    We performed genome-wide identifications and comparative genomic analyses of the predicted aspartic proteases (APs) from eight parasitic flatworms, focusing on their evolution, potentials as drug targets and expression patterns. The results revealed that: i) More members of family A01 were identified from the schistosomes than from the cestodes; some evidence implied gene loss events along the class Cestoda, which may be related to the different ways to ingest host nutrition; ii) members in family A22 were evolutionarily highly conserved among all the parasites; iii) one retroviral-like AP in family A28 shared a highly similar predicted 3D structure with the HIV protease, implying its potential to be inhibited by HIV inhibitor-like molecules; and iiii) retrotransposon-associated APs were extensively expanded among these parasites. These results implied that the evolutionary histories of some APs in these parasites might relate to adaptations to their parasitism and some APs might have potential serving as intervention targets.

  1. Electrically sensing protease activity with nanopores

    NASA Astrophysics Data System (ADS)

    Kukwikila, Mikiembo; Howorka, Stefan

    2010-11-01

    The enzymatic activity of a protease was electrically detected using nanopore recordings. A peptide substrate was tethered to microscale beads, and cleavage by the enzyme trypsin released a soluble fragment that was electrophoretically driven through the α-hemolysin protein pore, leading to detectable blockades in the ionic current. Owing to its simplicity, this approach to sense enzymatic activity may be applied to other proteases.

  2. Comprehensive Analysis of a Vibrio parahaemolyticus Strain Extracellular Serine Protease VpSP37

    PubMed Central

    Bennici, Carmelo; Quatrini, Paola; Catania, Valentina; Mazzola, Salvatore; Ghersi, Giulio; Cuttitta, Angela

    2015-01-01

    Proteases play an important role in the field of tissue dissociation combined with regenerative medicine. During the years new sources of proteolytic enzymes have been studied including proteases from different marine organisms both eukaryotic and prokaryotic. Herein we have purified a secreted component of an isolate of Vibrio parahaemolyticus, with electrophoretic mobilities corresponding to 36 kDa, belonging to the serine proteases family. Sequencing of the N-terminus enabled the in silico identification of the whole primary structure consisting of 345 amino acid residues with a calculated molecular mass of 37.4 KDa. The purified enzyme, named VpSP37, contains a Serine protease domain between residues 35 and 276 and a canonical Trypsin/Chimotrypsin 3D structure. Functional assays were performed to evaluate protease activity of purified enzyme. Additionally the performance of VpSP37 was evaluated in tissue dissociations experiments and the use of such enzyme as a component of enzyme blend for tissue dissociation procedures is strongly recommended. PMID:26162075

  3. Biochemical characterization of a detergent-stable serine alkaline protease from Caldicoprobacter guelmensis.

    PubMed

    Bouacem, Khelifa; Bouanane-Darenfed, Amel; Laribi-Habchi, Hassiba; Elhoul, Mouna Ben; Hmida-Sayari, Aïda; Hacene, Hocine; Ollivier, Bernard; Fardeau, Marie-Laure; Jaouadi, Bassem; Bejar, Samir

    2015-11-01

    Caldicoprobacter guelmensis isolated from the hydrothermal hot spring of Guelma (Algeria) produced high amounts of extracellular thermostable serine alkaline protease (called SAPCG) (23,000U/mL). The latter was purified by ammonium sulphate precipitation, UNO Q-6 FPLC and Zorbex PSM 300 HPLC, and submitted to biochemical characterization assays. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer, with a molecular mass of 55,824.19Da. The 19 N-terminal residue sequence of SAPCG showed high homology with those of microbial proteases. The enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), which suggested its belonging to the serine protease family. It showed optimum protease activity at pH 10 and 70°C with casein as a substrate. The thermoactivity and thermostability of SAPCG were enhanced in the presence of 2mM Ca(2+). Its half-life times at 80 and 90°C were 180 and 60min, respectively. Interestingly, the SAPCG protease exhibited significant compatibility with iSiS and Persil, and wash performance analysis revealed that it could remove blood-stains effectively. Overall, SAPCG displayed a number of attractive properties that make it a promising candidate for future applications as an additive in detergent formulations.

  4. Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases.

    PubMed

    Waldner, Birgit J; Fuchs, Julian E; Huber, Roland G; von Grafenstein, Susanne; Schauperl, Michael; Kramer, Christian; Liedl, Klaus R

    2016-01-21

    Members of the same protease family show different substrate specificity, even if they share identical folds, depending on the physiological processes they are part of. Here, we investigate the key factors for subpocket and global specificity of factor Xa, elastase, and granzyme B which despite all being serine proteases and sharing the chymotrypsin-fold show distinct substrate specificity profiles. We determined subpocket interaction potentials with GRID for static X-ray structures and an in silico generated ensemble of conformations. Subpocket interaction potentials determined for static X-ray structures turned out to be insufficient to explain serine protease specificity for all subpockets. Therefore, we generated conformational ensembles using molecular dynamics simulations. We identified representative binding site conformations using distance-based hierarchical agglomerative clustering and determined subpocket interaction potentials for each representative conformation of the binding site. Considering the differences in subpocket interaction potentials for these representative conformations as well as their abundance allowed us to quantitatively explain subpocket specificity for the nonprime side for all three example proteases on a molecular level. The methods to identify key regions determining subpocket specificity introduced in this study are directly applicable to other serine proteases, and the results provide starting points for new strategies in rational drug design.

  5. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice.

    PubMed

    Choi, Vivian M; Herrou, Julien; Hecht, Aaron L; Teoh, Wei Ping; Turner, Jerrold R; Crosson, Sean; Bubeck Wardenburg, Juliane

    2016-05-01

    Bacteroides fragilis is the leading cause of anaerobic bacteremia and sepsis. Enterotoxigenic strains that produce B. fragilis toxin (BFT, fragilysin) contribute to colitis and intestinal malignancy, yet are also isolated in bloodstream infection. It is not known whether these strains harbor unique genetic determinants that confer virulence in extra-intestinal disease. We demonstrate that BFT contributes to sepsis in mice, and we identify a B. fragilis protease called fragipain (Fpn) that is required for the endogenous activation of BFT through the removal of its auto-inhibitory prodomain. Structural analysis of Fpn reveals a His-Cys catalytic dyad that is characteristic of C11-family cysteine proteases that are conserved in multiple pathogenic Bacteroides spp. and Clostridium spp. Fpn-deficient, enterotoxigenic B. fragilis has an attenuated ability to induce sepsis in mice; however, Fpn is dispensable in B. fragilis colitis, wherein host proteases mediate BFT activation. Our findings define a role for B. fragilis enterotoxin and its activating protease in the pathogenesis of bloodstream infection, which indicates a greater complexity of cellular targeting and activity of BFT than previously recognized. The expression of fpn by both toxigenic and nontoxigenic strains suggests that this protease may contribute to anaerobic sepsis in ways that extend beyond its role in toxin activation. It could thus potentially serve as a target for disease modification.

  6. A Lon-like protease with no ATP-powered unfolding activity.

    PubMed

    Liao, Jiahn-Haur; Kuo, Chiao-I; Huang, Ya-Yi; Lin, Yu-Ching; Lin, Yen-Chen; Yang, Chen-Yui; Wu, Wan-Ling; Chang, Wei-Hau; Liaw, Yen-Chywan; Lin, Li-Hua; Chang, Chung-I; Wu, Shih-Hsiung

    2012-01-01

    Lon proteases are a family of ATP-dependent proteases involved in protein quality control, with a unique proteolytic domain and an AAA(+) (ATPases associated with various cellular activities) module accommodated within a single polypeptide chain. They were classified into two types as either the ubiquitous soluble LonA or membrane-inserted archaeal LonB. In addition to the energy-dependent forms, a number of medically and ecologically important groups of bacteria encode a third type of Lon-like proteins in which the conserved proteolytic domain is fused to a large N-terminal fragment lacking canonical AAA(+) motifs. Here we showed that these Lon-like proteases formed a clade distinct from LonA and LonB. Characterization of one such Lon-like protease from Meiothermus taiwanensis indicated that it formed a hexameric assembly with a hollow chamber similar to LonA/B. The enzyme was devoid of ATPase activity but retained an ability to bind symmetrically six nucleotides per hexamer; accordingly, structure-based alignment suggested possible existence of a non-functional AAA-like domain. The enzyme degraded unstructured or unfolded protein and peptide substrates, but not well-folded proteins, in ATP-independent manner. These results highlight a new type of Lon proteases that may be involved in breakdown of excessive damage or unfolded proteins during stress conditions without consumption of energy.

  7. Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases

    PubMed Central

    2015-01-01

    Members of the same protease family show different substrate specificity, even if they share identical folds, depending on the physiological processes they are part of. Here, we investigate the key factors for subpocket and global specificity of factor Xa, elastase, and granzyme B which despite all being serine proteases and sharing the chymotrypsin-fold show distinct substrate specificity profiles. We determined subpocket interaction potentials with GRID for static X-ray structures and an in silico generated ensemble of conformations. Subpocket interaction potentials determined for static X-ray structures turned out to be insufficient to explain serine protease specificity for all subpockets. Therefore, we generated conformational ensembles using molecular dynamics simulations. We identified representative binding site conformations using distance-based hierarchical agglomerative clustering and determined subpocket interaction potentials for each representative conformation of the binding site. Considering the differences in subpocket interaction potentials for these representative conformations as well as their abundance allowed us to quantitatively explain subpocket specificity for the nonprime side for all three example proteases on a molecular level. The methods to identify key regions determining subpocket specificity introduced in this study are directly applicable to other serine proteases, and the results provide starting points for new strategies in rational drug design. PMID:26709959

  8. A parasite cysteine protease is key to host protein degradation and iron acquisition.

    PubMed

    O'Brien, Theresa C; Mackey, Zachary B; Fetter, Richard D; Choe, Youngchool; O'Donoghue, Anthony J; Zhou, Min; Craik, Charles S; Caffrey, Conor R; McKerrow, James H

    2008-10-24

    Cysteine proteases of the Clan CA (papain) family are the predominant protease group in primitive invertebrates. Cysteine protease inhibitors arrest infection by the protozoan parasite, Trypanosoma brucei. RNA interference studies implicated a cathepsin B-like protease, tbcatB, as a key inhibitor target. Utilizing parasites in which one of the two alleles of tbcatb has been deleted, the key role of this protease in degradation of endocytosed host proteins is delineated. TbcatB deficiency results in a decreased growth rate and dysmorphism of the flagellar pocket and the subjacent endocytic compartment. Western blot and microscopic analysis indicate that deficiency in tbcatB results in accumulation of both host and parasite proteins, including the lysosomal marker p67. A critical function for parasitism is the degradation of host transferrin, which is necessary for iron acquisition. Substrate specificity analysis of recombinant tbcatB revealed the optimal peptide cleavage sequences for the enzyme and these were confirmed experimentally using FRET-based substrates. Degradation of transferrin was validated by SDS-PAGE and the specific cleavage sites identified by N-terminal sequencing. Because even a modest deficiency in tbcatB is lethal for the parasite, tbcatB is a logical target for the development of new anti-trypanosomal chemotherapy.

  9. Structural Evidence for Regulation and Specificity of Flaviviral Proteases and Evolution of the Flaviviridae Fold

    SciTech Connect

    Aleshin,A.; Shiryaev, S.; Strongin, A.; Liddington, R.

    2007-01-01

    Pathogenic members of the flavivirus family, including West Nile Virus (WNV) and Dengue Virus (DV), are growing global threats for which there are no specific treatments. The two-component flaviviral enzyme NS2B-NS3 cleaves the viral polyprotein precursor within the host cell, a process that is required for viral replication. Here, we report the crystal structure of WNV NS2B-NS3pro both in a substrate-free form and in complex with the trypsin inhibitor aprotinin/BPTI. We show that aprotinin binds in a substrate-mimetic fashion in which the productive conformation of the protease is fully formed, providing evidence for an 'induced fit' mechanism of catalysis and allowing us to rationalize the distinct substrate specificities of WNV and DV proteases. We also show that the NS2B cofactor of WNV can adopt two very distinct conformations and that this is likely to be a general feature of flaviviral proteases, providing further opportunities for regulation. Finally, by comparing the flaviviral proteases with the more distantly related Hepatitis C virus, we provide insights into the evolution of the Flaviviridae fold. Our work should expedite the design of protease inhibitors to treat a range of flaviviral infections.

  10. HIV Protease Inhibitors and Obesity

    PubMed Central

    Anuurad, Erdembileg; Bremer, Andrew; Berglund, Lars

    2011-01-01

    Purpose of review To review the current scientific literature and recent clinical trials on HIV protease inhibitors (PIs) and their potential role in the pathogenesis of lipodystrophy and metabolic disorders. Recent findings HIV PI treatment may affect the normal stimulatory effect of insulin on glucose and fat storage. Further, chronic inflammation from HIV infection and PI treatment trigger cellular homeostatic stress responses with adverse effects on intermediary metabolism. The physiologic outcome is such that total adipocyte storage capacity is decreased, and the remaining adipocytes resist further fat storage. This process leads to a pathologic cycle of lipodystrophy and lipotoxicity, a pro-atherogenic lipid profile, and a clinical phenotype of increased central body fat distribution similar to the metabolic syndrome. Summary PIs are a key component of antiretroviral therapy and have dramatically improved the life expectancy of HIV-infected individuals. However, they are also associated with abnormalities in glucose/lipid metabolism and body fat distribution. Further studies are needed to better define the pathogenesis of PI-associated metabolic and body fat changes and their potential treatment. PMID:20717021

  11. Neutral serine proteases of neutrophils.

    PubMed

    Kettritz, Ralph

    2016-09-01

    Neutrophil serine proteases (NSPs) exercise tissue-degrading and microbial-killing effects. The spectrum of NSP-mediated functions grows continuously, not least because of methodological progress. Sensitive and specific FRET substrates were developed to study the proteolytic activity of each NSP member. Advanced biochemical methods are beginning to characterize common and specific NSP substrates. The resulting novel information indicates that NSPs contribute not only to genuine inflammatory neutrophil functions but also to autoimmunity, metabolic conditions, and cancer. Tight regulatory mechanisms control the proteolytic potential of NSPs. However, not all NSP functions depend on their enzymatic activity. Proteinase-3 (PR3) is somewhat unique among the NSPs for PR3 functions as an autoantigen. Patients with small-vessel vasculitis develop autoantibodies to PR3 that bind their target antigens on the neutrophil surface and trigger neutrophil activation. These activated cells subsequently contribute to vascular necrosis with life-threatening multiorgan failure. This article discusses various aspects of NSP biology and highlights translational aspects with strong clinical implications. PMID:27558338

  12. Production, partial purification and characterization of protease from a phytopathogenic fungi Alternaria solani (Ell. and Mart.) Sorauer.

    PubMed

    Chandrasekaran, Murugesan; Sathiyabama, Muthukrishnan

    2014-08-01

    An alkaline serine protease producing strain Alternaria solani was optimized for its enzyme production under submerged conditions. The maximum production of protease by A. solani was achieved by using sodium nitrate at the optimum concentration of 0.2% w/v. A. solani produced higher quantities (3.75 [unit/mg of protein]) of an inducible extracellular proteases on day 9 after incubation in czapek's dox broth medium amended with 1% casein as an inducer at pH 8.5, temperature 27 °C and 3% sucrose as carbon source. Extracellular proteases were precipitated by ammonium sulphate saturation (80%) method and purified on Sephadex G-100 column chromatography. The molecular mass of SDS-PAGE and Sephadex G-100 Column Gel permeation chromatography purified protease was estimated to 42 kDa. In addition, trypsin digestion of 42 kDa protein band was carried out and analyzed by MALDI-TOF for the identification of protease. The sequence IKELATNGVVTNVK (378-391) segment of the alkaline serine protease was found by using MS/MS spectrum at 1485 m/z from the purified fraction. It showed optimal activity at 50 °C and pH 9-10 and broad pH stability between pH 6-12. The protease activity was inhibited by phenyl methyl sulfonyl fluoride (PMSF), all the results indicated that the presence of a serine residue in the active site and is thus most likely a member of the serine protease family. This may function as a virulence protein during pathogenesis by A. solani. The results suggested that the presence of appreciable extracellular proteolytic activity in filamentous fungi may serve as a marker of their phytopathogenicity.

  13. Primary structure of human pancreatic protease E determined by sequence analysis of the cloned mRNA

    SciTech Connect

    Shen, W.; Fletcher, T.S.; Largman, C.

    1987-06-16

    Although protease E was isolated from human pancreas over 10 years ago, its amino acid sequence and relationship to the elastases have not been established. The authors report the isolation of a cDNA clone for human pancreatic protease E and determination of the nucleic acid sequence coding for the protein. The deduced amino acid sequence contains all of the features common to serine proteases. The substrate binding region is highly homologous to those of porcine and rat elastases 1, explaining the similar specificity for alanine reported for protease E and these elastases. However, the amino acid sequence outside the substrate binding region is less than 50% conserved, and there is a striking difference in the overall net charge for protease E (6-) and elastases 1 (8+). These findings confirm that protease E is a new member of the serine protease family. They have attempted to identify amino acid residues important for the interaction between elastases and elastin by examining the amino acid sequence differences between elastases and protease E. In addition to the large number of surface charge changes which are outside the substrate binding region, there are several changes which might be crucial for elastolysis: Leu-73/Arg-73; Arg-217A/Ala-217A; Arg-65A/Gln-65A; and the presence of two new cysteine residues (Cys-98 and Cys-99B) which computer modeling studies predict could form a new disulfide bond, not previously observed for serine proteases. They also present evidence which suggests that human pancreas does not synthesize a basic, alanine-specific elastase similar to porcine elastase 1.

  14. Carbohydrate protease conjugates: Stabilized proteases for peptide synthesis

    SciTech Connect

    Wartchow, C.A.; Wang, Peng; Bednarski, M.D.; Callstrom, M.R. |

    1995-12-31

    The synthesis of oligopeptides using stable carbohydrate protease conjugates (CPCs) was examined in acetonitrile solvent systems. CPC[{alpha}-chymotrypsin] was used for the preparation of peptides containing histidine, phenylalanine, tryptophan in the P{sub 1} position in 60-93% yield. The CPC[{alpha}-chymotrypsin]-catalyzed synthesis of octamer Z-Gly-Gly-Phe-Gly-Gly-Phe-Gly-Gly-OEt from Z-Gly-Gly-Phe-Gly-Gly-Phe-OMe was achieved in 71% yield demonstrating that synthesis peptides containing both hydrophylic and hydrophobic amino acids. The P{sub 2} specificity of papain for aromatic residues was utilized for the 2 + 3 coupling of Z-Tyr-Gly-OMe to H{sub 2}N-Gly-Phe-Leu-OH to generate the leucine enkephalin derivative in 79% yield. Although papain is nonspecific for the hydrolysis of N-benzyloxycarbonyl amino acid methyl esters in aqueous solution, the rates of synthesis for these derivitives with nucleophile leucine tert-butyl ester differed by nearly 2 orders of magnitude. CPC[thermolysin] was used to prepare the aspartame precursor Z-Asp-Phe-OMe in 90% yield. The increased stability of CPCs prepared from periodate-modified poly(2-methacryl- amido-2-deoxy-D-glucose), poly(2-methacrylamido-2-deoxy-D-galactose), and poly(5-methacryl-amido-5-deoxy-D-ribose), carbohydrate materials designed to increase the aldehyde concentration in aqueous solution, suggests that the stability of CPCs is directly related to the aldehyde concentration of the carbohydrate material. Periodate oxidation of poly(2-methacrylamido-2-deoxy-D-glucose) followed by covalent attachment to {alpha}-chymotrypsin gave a CPC with catalytic activity in potassium phosphate buffer at 90{degrees}C for 2 h. 1 fig., 1 tab., 40 refs.

  15. Protease Inhibitors Targeting Coronavirus and Filovirus Entry

    PubMed Central

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W.; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H.; Renslo, Adam R.; Simmons, Graham

    2016-01-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess, whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  16. Conserved structure and adjacent location of the thrombin receptor and protease-activated receptor 2 genes define a protease-activated receptor gene cluster.

    PubMed Central

    Kahn, M.; Ishii, K.; Kuo, W. L.; Piper, M.; Connolly, A.; Shi, Y. P.; Wu, R.; Lin, C. C.; Coughlin, S. R.

    1996-01-01

    BACKGROUND: Thrombin is a serine protease that elicits a variety of cellular responses. Molecular cloning of a thrombin receptor revealed a G protein-coupled receptor that is activated by a novel proteolytic mechanism. Recently, a second protease-activated receptor was discovered and dubbed PAR2. PAR2 is highly related to the thrombin receptor by sequence and, like the thrombin receptor, is activated by cleavage of its amino terminal exodomain. Also like the thrombin receptor, PAR2 can be activated by the hexapeptide corresponding to its tethered ligand sequence independent of receptor cleavage. Thus, functionally, the thrombin receptor and PAR2 constitute a fledgling receptor family that shares a novel proteolytic activation mechanism. To further explore the relatedness of the two known protease-activated receptors and to examine the possibility that a protease-activated gene cluster might exist, we have compared the structure and chromosomal locations of the thrombin receptor and PAR2 genes. MATERIALS AND METHODS: The genomic structures of the two protease-activated receptor genes were determined by analysis of lambda phage, P1 bacteriophage, and bacterial artificial chromosome (BAC) genomic clones. Chromosomal location was determined with fluorescent in situ hybridization (FISH) on metaphase chromosomes, and the relative distance separating the two genes was evaluated both by means of two-color FISH and analysis of YACs and BACs containing both genes. RESULTS: Analysis of genomic clones revealed that the two protease-activated receptor genes share a two-exon genomic structure in which the first exon encodes 5'-untranslated sequence and signal peptide, and the second exon encodes the mature receptor protein and 3'-untranslated sequence. The two receptor genes also share a common locus with the two human genes located at 5q13 and the two mouse genes at 13D2, a syntenic region of the mouse genome. These techniques also suggest that the physical distance separating

  17. New soluble ATP-dependent protease, Ti, in Escherichia coli that is distinct from protease La

    SciTech Connect

    Chung, C.H.; Hwang, B.J.; Park, W.J.; Goldberg, A.L.

    1987-05-01

    E. coli must contain other ATP-requiring proteolytic systems in addition to protease La (the lon gene product). A new ATP-dependent protease was purified from lon cells which lack protease La, as shown by immuno-blotting. This enzyme hydrolyzes (TH)casein to acid-soluble products in the presence of ATP (or dATP) and MgS . Nonhydrolyzable ATP analogs, other nucleoside triphosphates and AMP can not replace ATP. Therefore, ATP hydrolysis appears necessary for proteolysis. The enzyme appears to be a serine protease, but also contains essential thiol residues. Unlike protease La, it is not inhibited by vanadate, heparin, or the defective R9 subunit of protease La. On gel filtration, this enzyme has an apparent Mr of 340,000 and is comprised of two components of 190,000D and 130,000D, which can be separated by phosphocellulose chromatography. By themselves, these components do not show ATP-dependent proteolysis, but when mixed, full activity is restored. These finding and similar ones of Maurizi and Gottesman indicate that E. coli contain two soluble ATP-dependent proteases, which function by different mechanisms. This new enzyme may contribute to the rapid breakdown of abnormal polypeptides or of normal proteins during starvation. The authors propose to name it protease Ti.

  18. Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La

    SciTech Connect

    Hwang, B.J.; Park, W.J.; Chung, C.H.; Goldberg, A.L.

    1987-08-01

    The energy requirement for protein breakdown in Escherichia coli has generally been attributed to the ATP-dependence of protease La, the lon gene product. The authors have partially purified another ATP-dependent protease from lon/sup -/ cells that lack protease La (as shown by immunoblotting). This enzyme hydrolyzes (/sup 3/H)methyl-casein to acid-soluble products in the presence of ATP and Mg/sup 2 +/. ATP hydrolysis appears necessary for proteolytic activity. Since this enzyme is inhibited by diisopropyl fluorophosphate, it appears to be a serine protease, but it also contains essential thiol residues. They propose to name this enzyme protease Ti. It differs from protease La in nucleotide specificity, inhibitor sensitivity, and subunit composition. On gel filtration, protease Ti has an apparent molecular weight of 370,000. It can be fractionated by phosphocellulose chromatography or by DEAE chromatography into two components with apparent molecular weights of 260,000 and 140,000. When separated, they do not show preteolytic activity. One of these components, by itself, has ATPase activity and is labile in the absence of ATP. The other contains the diisopropyl fluorophosphate-sensitive proteolytic site. These results and the similar findings of Katayama-Fujimura et al. indicate that E. coli contains two ATP-hydrolyzing proteases, which differ in many biochemical features and probably in their physiological roles.

  19. Activity based chemical proteomics: profiling proteases as drug targets.

    PubMed

    Heal, William Percy; Wickramasinghe, Sasala Roshinie; Tate, Edward William

    2008-09-01

    The pivotal role of proteases in many diseases has generated considerable interest in their basic biology, and in the potential to target them for chemotherapy. Although fundamental to the initiation and progression of diseases such as cancer, diabetes, arthritis and malaria, in many cases their precise role remains unknown. Activity-based chemical proteomics-an emerging field involving a combination of organic synthesis, biochemistry, cell biology, biophysics and bioinformatics-allows the detection, visualisation and activity quantification of whole families or selected sub-sets of proteases based upon their substrate specificity. This approach can be applied for drug target/lead identification and validation, the fundamentals of drug discovery. The activity-based probes discussed in this review contain three key features; a 'warhead' (binds irreversibly but selectively to the active site), a 'tag' (allowing enzyme 'handling', with a combination of fluorescent, affinity and/or radio labels), and a linker region between warhead and tag. From the design and synthesis of the linker arise some of the latest developments discussed here; not only can the physical properties (e.g., solubility, localisation) of the probe be tuned, but the inclusion of a cleavable moiety allows selective removal of tagged enzyme from affinity beads etc. The design and synthesis of recently reported probes is discussed, including modular assembly of highly versatile probes via solid phase synthesis. Recent applications of activity-based protein profiling to specific proteases (serine, threonine, cysteine and metalloproteases) are reviewed as are demonstrations of their use in the study of disease function in cancer and malaria.

  20. Site-Directed Mutagenesis and Structural Studies Suggest that the Germination Protease, GPR, in Spores of Bacillus Species Is an Atypical Aspartic Acid Protease

    PubMed Central

    Carroll, Thomas M.; Setlow, Peter

    2005-01-01

    Germination protease (GPR) initiates the degradation of small, acid-soluble spore proteins (SASP) during germination of spores of Bacillus and Clostridium species. The GPR amino acid sequence is not homologous to members of the major protease families, and previous work has not identified residues involved in GPR catalysis. The current work has focused on identifying catalytically essential amino acids by mutagenesis of Bacillus megaterium gpr. A residue was selected for alteration if it (i) was conserved among spore-forming bacteria, (ii) was a potential nucleophile, and (iii) had not been ruled out as inessential for catalysis. GPR variants were overexpressed in Escherichia coli, and the active form (P41) was assayed for activity against SASP and the zymogen form (P46) was assayed for the ability to autoprocess to P41. Variants inactive against SASP and unable to autoprocess were analyzed by circular dichroism spectroscopy and multiangle laser light scattering to determine whether the variant's inactivity was due to loss of secondary or quaternary structure, respectively. Variation of D127 and D193, but no other residues, resulted in inactive P46 and P41, while variants of each form were well structured and tetrameric, suggesting that D127 and D193 are essential for activity and autoprocessing. Mapping these two aspartate residues and a highly conserved lysine onto the B. megaterium P46 crystal structure revealed a striking similarity to the catalytic residues and propeptide lysine of aspartic acid proteases. These data indicate that GPR is an atypical aspartic acid protease. PMID:16199582

  1. Intramolecular Interactions between the Protease and Structural Domains Are Important for the Functions of Serine Protease Autotransporters▿ †

    PubMed Central

    Tsang, Casey; Malik, Huma; Nassman, Deana; Huang, Antony; Tariq, Fayha; Oelschlaeger, Peter; Stathopoulos, Christos

    2010-01-01

    Autotransporter (AT) is a protein secretion pathway found in Gram-negative bacteria featuring a multidomain polypeptide with a signal sequence, a passenger domain, and a translocator domain. An AT subfamily named serine protease ATs of the family Enterobacteriaceae (SPATEs) is characterized by the presence of a conserved serine protease motif in the passenger domain which contributes to bacterial pathogenesis. The goal of the current study is to determine the importance of the passenger domain conserved residues in the SPATE proteolytic and adhesive functions using the temperature-sensitive hemagglutinin (Tsh) protein as our model. To begin, mutations of 21 fully conserved residues in the four passenger domain conserved motifs were constructed by PCR-based site-directed mutagenesis. Seventeen mutants exhibited a wild-type secretion level; among these mutants, eight displayed reduced proteolytic activities in Tsh-specific oligopeptide and mucin cleavage assays. These eight mutants also demonstrated lower affinities to extracellular matrix proteins, collagen IV, and fibronectin. These eight conserved residues were analyzed by molecular graphics modeling to demonstrate their intramolecular interactions with the catalytic triad and other key residues. Additional mutations were made to confirm the above interactions in order to demonstrate their significance to the SPATE functions. Altogether our data suggest that certain conserved residues in the SPATE passenger domain are important for both the proteolytic and adhesive activities of SPATE by maintaining the proper protein structure via intramolecular interactions between the protease and β-helical domains. Here, we provide new insight into the structure-function relationship of the SPATEs and the functional roles of their conserved residues. PMID:20479079

  2. 3C-like protease of rabbit hemorrhagic disease virus: identification of cleavage sites in the ORF1 polyprotein and analysis of cleavage specificity.

    PubMed Central

    Wirblich, C; Sibilia, M; Boniotti, M B; Rossi, C; Thiel, H J; Meyers, G

    1995-01-01

    Rabbit hemorrhagic disease virus, a positive-stranded RNA virus of the family Caliciviridae, encodes a trypsin-like cysteine protease as part of a large polyprotein. Upon expression in Escherichia coli, the protease releases itself from larger precursors by proteolytic cleavages at its N and C termini. Both cleavage sites were determined by N-terminal sequence analysis of the cleavage products. Cleavage at the N terminus of the protease occurred with high efficiency at an EG dipeptide at positions 1108 and 1109. Cleavage at the C terminus of the protease occurred with low efficiency at an ET dipeptide at positions 1251 and 1252. To study the cleavage specificity of the protease, amino acid substitutions were introduced at the P2, P1, and P1' positions at the cleavage site at the N-terminal boundary of the protease. This analysis showed that the amino acid at the P1 position is the most important determinant for substrate recognition. Only glutamic acid, glutamine, and aspartic acid were tolerated at this position. At the P1' position, glycine, serine, and alanine were the preferred substrates of the protease, but a number of amino acids with larger side chains were also tolerated. Substitutions at the P2 position had only little effect on the cleavage efficiency. Cell-free expression of the C-terminal half of the ORF1 polyprotein showed that the protease catalyzes cleavage at the junction of the RNA polymerase and the capsid protein. An EG dipeptide at positions 1767 and 1768 was identified as the putative cleavage site. Our data show that rabbit hemorrhagic disease virus encodes a trypsin-like cysteine protease that is similar to 3C proteases with regard to function and specificity but is more similar to 2A proteases with regard to size. PMID:7474137

  3. Function of site-2 proteases in bacteria and bacterial pathogens

    PubMed Central

    Schneider, Jessica S.; Glickman, Michael S.

    2014-01-01

    Site-2 Proteases (S2Ps) are a class of intramembrane metalloproteases named after the founding member of this protein family, human S2P, which cleaves Sterol Regulatory Element Binding Proteins which control cholesterol and fatty acid biosynthesis. S2Ps are widely distributed in bacteria and participate in diverse pathways that control such diverse functions as membrane integrity, sporulation, lipid biosynthesis, pheromone production, virulence, and others. The most common signaling mechanism mediated by S2Ps is the coupled degradation of transmembrane anti-Sigma factors to activate ECF Sigma factor regulons. However, additional signaling mechanisms continue to emerge as more prokaryotic S2Ps are characterized, including direct proteolysis of membrane embedded transcription factors and proteolysis of non-transcriptional membrane proteins or membrane protein remnants. In this review we seek to comprehensively review the functions of S2Ps in bacteria and bacterial pathogens and attempt to organize these proteases into conceptual groups that will spur further study. PMID:24099002

  4. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  5. Protease Inhibitors from Plants with Antimicrobial Activity

    PubMed Central

    Kim, Jin-Young; Park, Seong-Cheol; Hwang, Indeok; Cheong, Hyeonsook; Nah, Jae-Woon; Hahm, Kyung-Soo; Park, Yoonkyung

    2009-01-01

    Antimicrobial proteins (peptides) are known to play important roles in the innate host defense mechanisms of most living organisms, including plants, insects, amphibians and mammals. They are also known to possess potent antibiotic activity against bacteria, fungi, and even certain viruses. Recently, the rapid emergence of microbial pathogens that are resistant to currently available antibiotics has triggered considerable interest in the isolation and investigation of the mode of action of antimicrobial proteins (peptides). Plants produce a variety of proteins (peptides) that are involved in the defense against pathogens and invading organisms, including ribosome-inactivating proteins, lectins, protease inhibitors and antifungal peptides (proteins). Specially, the protease inhibitors can inhibit aspartic, serine and cysteine proteinases. Increased levels of trypsin and chymotrypsin inhibitors correlated with the plants resistance to the pathogen. Usually, the purification of antimicrobial proteins (peptides) with protease inhibitor activity was accomplished by salt-extraction, ultrafiltration and C18 reverse phase chromatography, successfully. We discuss the relation between antimicrobial and anti-protease activity in this review. Protease inhibitors from plants potently inhibited the growth of a variety of pathogenic bacterial and fungal strains and are therefore excellent candidates for use as the lead compounds for the development of novel antimicrobial agents. PMID:19582234

  6. A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650.

    PubMed

    Ben Elhoul, Mouna; Zaraî Jaouadi, Nadia; Rekik, Hatem; Bejar, Wacim; Boulkour Touioui, Souraya; Hmidi, Maher; Badis, Abdelmalek; Bejar, Samir; Jaouadi, Bassem

    2015-08-01

    An alkaline proteinase (STAP) was produced from strain TN650 isolated from a Tunisian off-shore oil field and assigned as Streptomyces koyangensis strain TN650 based on physiological and biochemical properties and 16S rRNA gene sequencing. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer with a molecular mass of 45125.17-Da. The enzyme had an NH2-terminal sequence of TQSNPPSWGLDRIDQTTAFTKACSIKY, thus sharing high homology with those of Streptomyces proteases. The results showed that this protease was completely inhibited by phenylmethanesulfonyl fluoride (PMSF), diiodopropyl fluorophosphates (DFP), and partially inhibited by 5,5-dithio-bis-(2-nitro benzoic acid) (DTNB), which strongly suggested its belonging to the serine thiol protease family. Using casein as a substrate, the optimum pH and temperature values for protease activity were pH 10 and 70 °C, respectively. The protease was stable at pH 7-10 and 30-60 °C for 24 h. STAP exhibited high catalytic efficiency, significant detergent stability, and elevated organic solvent resistance compared to the SG-XIV proteases from S. griseus and KERAB from Streptomyces sp. AB1. The stap gene encoding STAP was isolated, and its DNA sequence was determined. These properties make STAP a potential candidate for future application in detergent formulations and non-aqueous peptide biocatalysis.

  7. Plasma levels of the von Willebrand factor-cleaving protease in physiological and pathological conditions in children.

    PubMed

    Kavakli, Kaan; Canciani, Maria Teresa; Mannucci, Pier Mannuccio

    2002-01-01

    The hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP) are rare disorders characterized by thrombocytopenia, hemolytic anemia, and ischemic organ failure due to thrombotic occlusions in arterioles. The recent observation that a von Willebrand factor-cleaving protease (VWF-CP) is low in the plasma of patients with TTP but normal in those with HUS has potentially offered a new specific tool for differential diagnosis. In this study, the authors evaluated the plasma levels of the VWF-CP during the neonatal state and healthy childhood and in some pathological pediatric conditions. The protease was measured in 16 healthy newborns, 20 healthy children aged 5-18 years, patients with diabetes mellitus type 1 (n = 7), acute viral hepatitis (n = 10), chronic viral hepatitis (n = 10), transfusion-dependent beta-thalassemia major (n = 10), acute varicella infection (n = 11), the nephrotic syndrome (n = 11), and familial Mediterranean fever (n = 10). Mean protease levels were significantly lower in newborns than in healthy children (50.5 +/- 16.1% vs. 83.3 +/- 16.3%)(p = .0001). In patients with acute viral hepatitis, protease levels were also significantly reduced (40.2 +/- 27% v s. 83.3 +/- 16.3% in healthy children)(p = .0001). Other patient groups had normal protease levels. In conclusion, low protease levels are far from being a specific beacon for TTP. The current paradigm that a single laboratory test may enable physicians to distinguish TTP from HUS seems to be challenged by these and other findings.

  8. Purification, characterization, and gene cloning of a cold-adapted thermolysin-like protease from Halobacillus sp. SCSIO 20089.

    PubMed

    Yang, Jian; Li, Jie; Mai, Zhimao; Tian, Xinpeng; Zhang, Si

    2013-06-01

    Marine sediment is a distinctive habitat of cold enzyme producing bacteria. A protease producing strain Halobacillus sp. SCSIO 20089 was isolated from a marine sediment of South China Sea. Using chromatographic techniques, the extracellular protease was purified to homogeneity from the culture supernatant. The purified protease exhibited maximal activity at 30°C, pH 8.0, and remained more than 20% of its activity at 0°C. Its activation energy was calculated to be 34.4 kJ/mol, suggesting it is a cold-adapted protease. Based on the N-terminal amino acid sequence of the purified enzyme, full gene encoding the enzyme was obtained by combination of degenerate primer PCR and hiTAIL-PCR. The deduced amino acid sequence showed 57% and 52% identity with mesothermal and thermophilic protease in thermolysin family respectively. All these indicate the enzyme is a unique cold-active thermolysin-like protease with potential in both basic research and industrial application areas.

  9. Activation of human pro-urokinase by unrelated proteases secreted by Pseudomonas aeruginosa.

    PubMed

    Beaufort, Nathalie; Seweryn, Paulina; de Bentzmann, Sophie; Tang, Aihua; Kellermann, Josef; Grebenchtchikov, Nicolai; Schmitt, Manfred; Sommerhoff, Christian P; Pidard, Dominique; Magdolen, Viktor

    2010-06-15

    Pathogenic bacteria, including Pseudomonas aeruginosa, interact with and engage the host plasminogen (Plg) activation system, which encompasses the urokinase (uPA)-type Plg activator, and is involved in extracellular proteolysis, including matrilysis and fibrinolysis. We hypothesized that secreted bacterial proteases might contribute to the activation of this major extracellular proteolytic system, thereby participating in bacterial dissemination. We report that LasB, a thermolysin-like metalloprotease secreted by Ps. aeruginosa, converts the human uPA zymogen into its active form (kcat=4.9 s-1, Km=8.9 microM). Accordingly, whereas the extracellular secretome from the LasB-expressing pseudomonal strain PAO1 efficiently activates pro-uPA, the secretome from the isogenic LasB-deficient strain PDO240 is markedly less potent in pro-uPA activation. Still, both secretomes induce some metalloprotease-independent activation of the human zymogen. The latter involves a serine protease, which we identified via both recombinant protein expression in Escherichia coli and purification from pseudomonal cultures as protease IV (PIV; kcat=0.73 s-1, Km=6.2 microM). In contrast, neither secretomes nor the pure proteases activate Plg. Along with this, LasB converts Plg into mini-Plg and angiostatin, whereas, as reported previously, it processes the uPA receptor, inactivates the plasminogen activator inhibitor 1, and activates pro-matrix metalloproteinase 2. PIV does not target these factors at all. To conclude, LasB and PIV, although belonging to different protease families and displaying quite different substrate specificities, both activate the urokinase-type precursor of the Plg activation cascade. Direct pro-uPA activation, as also reported for other bacterial proteases, might be a frequent phenomenon that contributes to bacterial virulence.

  10. Serine protease inhibitors of parasitic helminths.

    PubMed

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships. PMID:22310379

  11. Coagulation, Protease Activated Receptors and Viral Myocarditis

    PubMed Central

    Antoniak, Silvio; Mackman, Nigel

    2013-01-01

    The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling and heart failure. Recent studies using a mouse model have shown that tissue factor, thrombin and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new target to reduce viral myocarditis.. PMID:24203054

  12. Conformational selection in trypsin-like proteases

    PubMed Central

    Pozzi, Nicola; Vogt, Austin D.; Gohara, David W.; Di Cera, Enrico

    2012-01-01

    For over four decades, two competing mechanisms of ligand recognition – conformational selection and induced-fit - have dominated our interpretation of protein allostery. Defining the mechanism broadens our understanding of the system and impacts our ability to design effective drugs and new therapeutics. Recent kinetics studies demonstrate that trypsin-like proteases exist in equilibrium between two forms: one fully accessible to substrate (E) and the other with the active site occluded (E*). Analysis of the structural database confirms existence of the E* and E forms and vouches for the allosteric nature of the trypsin fold. Allostery in terms of conformational selection establishes an important paradigm in the protease field and enables protein engineers to expand the repertoire of proteases as therapeutics. PMID:22664096

  13. Dataset of cocoa aspartic protease cleavage sites.

    PubMed

    Janek, Katharina; Niewienda, Agathe; Wöstemeyer, Johannes; Voigt, Jürgen

    2016-09-01

    The data provide information in support of the research article, "The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors" (Janek et al., 2016) [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS) and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. PMID:27508221

  14. Peptidyl cyclopropenones: Reversible inhibitors, irreversible inhibitors, or substrates of cysteine proteases?

    PubMed Central

    Cohen, Meital; Bretler, Uriel; Albeck, Amnon

    2013-01-01

    Peptidyl cyclopropenones were previously introduced as selective cysteine protease reversible inhibitors. In the present study we synthesized one such peptidyl cyclopropenone and investigated its interaction with papain, a prototype cysteine protease. A set of kinetics, biochemical, HPLC, MS, and 13C-NMR experiments revealed that the peptidyl cyclopropenone was an irreversible inhibitor of the enzyme, alkylating the catalytic cysteine. In parallel, this cyclopropenone also behaved as an alternative substrate of the enzyme, providing a product that was tentatively suggested to be either a spiroepoxy cyclopropanone or a gamma-lactone. Thus, a single family of compounds exhibits an unusual variety of activities, being reversible inhibitors, irreversible inhibitors and alternative substrates towards enzymes of the same family. PMID:23553793

  15. The occurrence of type S1A serine proteases in sponge and jellyfish.

    PubMed

    Rojas, Ana; Doolittle, Russell F

    2006-12-01

    Although serine proteases are found in all kinds of cellular organisms and many viruses, the classic "chymotrypsin family" (Group S1A by the 1998 Barrett nomenclature) has an unusual phylogenetic distribution, being especially common in animals, entirely absent from plants and protists, and rare among fungi. The distribution in Bacteria is largely restricted to the genus Streptomyces, although a few isolated occurrences in other bacteria have been reported. The family may be entirely absent from Archaea. Although more than a thousand sequences have been reported for enzymes of this type from animals, none of them have been from early diverging phyla like Porifera or Cnidaria. We now report the existence of Group S1A serine proteases in a sponge (phylum Porifera) and a jellyfish (phylum Cnidaria), making it safe to conclude that all animal groups possess these enzymes.

  16. The Occurrence of Type S1A Serine Proteases in Sponge and Jellyfish

    NASA Technical Reports Server (NTRS)

    Rojas, Ana; Doolittle, Russell F.

    2003-01-01

    Although serine proteases are found in all kinds of cellular organisms and many viruses, the classic "chymotrypsin family" (Group S1A by th e 1998 Barrett nomenclature) has an unusual phylogenetic distribution , being especially common in animals, entirely absent from plants and protists, and rare among fungi. The distribution in Bacteria is larg ely restricted to the genus Streptomyces, although a few isolated occ urrences in other bacteria have been reported. The family may be enti rely absent from Archaea. Although more than a thousand sequences have been reported for enzymes of this type from animals, none of them ha ve been from early diverging phyla like Porifera or Cnidaria, We now report the existence of Group SlA serine proteases in a sponge (phylu m Porifera) and a jellyfish (phylum Cnidaria), making it safe to conc lude that all animal groups possess these enzymes.

  17. Serine Protease(s) Secreted by the Nematode Trichuris muris Degrade the Mucus Barrier

    PubMed Central

    Hasnain, Sumaira Z.; McGuckin, Michael A.; Grencis, Richard K.; Thornton, David J.

    2012-01-01

    The polymeric mucin component of the intestinal mucus barrier changes during nematode infection to provide not only physical protection but also to directly affect pathogenic nematodes and aid expulsion. Despite this, the direct interaction of the nematodes with the mucins and the mucus barrier has not previously been addressed. We used the well-established Trichuris muris nematode model to investigate the effect on mucins of the complex mixture of immunogenic proteins secreted by the nematode called excretory/secretory products (ESPs). Different regimes of T. muris infection were used to simulate chronic (low dose) or acute (high dose) infection. Mucus/mucins isolated from mice and from the human intestinal cell line, LS174T, were treated with ESPs. We demonstrate that serine protease(s) secreted by the nematode have the ability to change the properties of the mucus barrier, making it more porous by degrading the mucin component of the mucus gel. Specifically, the serine protease(s) acted on the N-terminal polymerising domain of the major intestinal mucin Muc2, resulting in depolymerisation of Muc2 polymers. Importantly, the respiratory/gastric mucin Muc5ac, which is induced in the intestine and is critical for worm expulsion, was protected from the depolymerising effect exerted by ESPs. Furthermore, serine protease inhibitors (Serpins) which may protect the mucins, in particular Muc2, from depolymerisation, were highly expressed in mice resistant to chronic infection. Thus, we demonstrate that nematodes secrete serine protease(s) to degrade mucins within the mucus barrier, which may modify the niche of the parasite to prevent clearance from the host or facilitate efficient mating and egg laying from the posterior end of the parasite that is in intimate contact with the mucus barrier. However, during a TH2-mediated worm expulsion response, serpins, Muc5ac and increased levels of Muc2 protect the barrier from degradation by the nematode secreted protease(s). PMID

  18. Characterization of an Alphamesonivirus 3C-Like Protease Defines a Special Group of Nidovirus Main Proteases

    PubMed Central

    Blanck, Sandra; Stinn, Anne; Tsiklauri, Lali; Zirkel, Florian; Junglen, Sandra

    2014-01-01

    ABSTRACT Cavally virus (CavV) and related viruses in the family Mesoniviridae diverged profoundly from other nidovirus lineages but largely retained the characteristic set of replicative enzymes conserved in the Coronaviridae and Roniviridae. The expression of these enzymes in virus-infected cells requires the extensive proteolytic processing of two large replicase polyproteins, pp1a and pp1ab, by the viral 3C-like protease (3CLpro). Here, we show that CavV 3CLpro autoproteolytic cleavage occurs at two N-terminal (N1 and N2) and one C-terminal (C1) processing site(s). The mature form of 3CLpro was revealed to be a 314-residue protein produced by cleavage at FKNK1386|SAAS (N2) and YYNQ1700|SATI (C1). Site-directed mutagenesis data suggest that the mesonivirus 3CLpro employs a catalytic Cys-His dyad comprised of CavV pp1a/pp1ab residues Cys-1539 and His-1434. The study further suggests that mesonivirus 3CLpro substrate specificities differ from those of related nidovirus proteases. The presence of Gln (or Glu) at the P1 position was not required for cleavage, although residues that control Gln/Glu specificity in related viral proteases are retained in the CavV 3CLpro sequence. Asn at the P2 position was identified as a key determinant for mesonivirus 3CLpro substrate specificity. Other positions, including P4 and P1′, each are occupied by structurally related amino acids, indicating a supportive role in substrate binding. Together, the data identify a new subgroup of nidovirus main proteases and support previous conclusions on phylogenetic relationships between the main nidovirus lineages. IMPORTANCE Mesoniviruses have been suggested to provide an evolutionary link between nidovirus lineages with small (13 to 16 kb) and large (26 to 32 kb) RNA genome sizes, and it has been proposed that a specific set of enzymes, including a proofreading exoribonuclease and other replicase gene-encoded proteins, play a key role in the major genome expansion leading to the currently

  19. Current and Novel Inhibitors of HIV Protease

    PubMed Central

    Pokorná, Jana; Machala, Ladislav; Řezáčová, Pavlína; Konvalinka, Jan

    2009-01-01

    The design, development and clinical success of HIV protease inhibitors represent one of the most remarkable achievements of molecular medicine. This review describes all nine currently available FDA-approved protease inhibitors, discusses their pharmacokinetic properties, off-target activities, side-effects, and resistance profiles. The compounds in the various stages of clinical development are also introduced, as well as alternative approaches, aiming at other functional domains of HIV PR. The potential of these novel compounds to open new way to the rational drug design of human viruses is critically assessed. PMID:21994591

  20. Subtilases: the superfamily of subtilisin-like serine proteases.

    PubMed Central

    Siezen, R. J.; Leunissen, J. A.

    1997-01-01

    Subtilases are members of the clan (or superfamily) of subtilisin-like serine proteases. Over 200 subtilases are presently known, more than 170 of which with their complete amino acid sequence. In this update of our previous overview (Siezen RJ, de Vos WM, Leunissen JAM, Dijkstra BW, 1991, Protein Eng 4:719-731), details of more than 100 new subtilases discovered in the past five years are summarized, and amino acid sequences of their catalytic domains are compared in a multiple sequence alignment. Based on sequence homology, a subdivision into six families is proposed. Highly conserved residues of the catalytic domain are identified, as are large or unusual deletions and insertions. Predictions have been updated for Ca(2+)-binding sites, disulfide bonds, and substrate specificity, based on both sequence alignment and three-dimensional homology modeling. PMID:9070434

  1. Detection of protease and protease activity using a single nanoscrescent SERS probe

    DOEpatents

    Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank

    2013-01-29

    This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.

  2. Chromosomal mapping of cell death proteases CPP32, MCH2, and MCH3

    SciTech Connect

    Bullrich, F.; Fernandes-Alnemri, T.; Litwack, G.

    1996-09-01

    Apoptosis may involve a specialized proteolytic cascade catalyzed by interleukin-1{beta}-converting enzyme-like proteases. We have recently identified three new members of this family (CPP32, MCH2, MCH3) and shown that they play an important role in promoting cell death. Here we report the chromosomal mapping of CPP32 to 4q34, MCH2 to 4q25, and MCH3 to 10q25. 16 refs., 2 figs., 1 tab.

  3. A tandem Kunitz protease inhibitor (KPI106)-serine carboxypeptidase (SCP1) controls mycorrhiza establishment and arbuscule development in Medicago truncatula.

    PubMed

    Rech, Stefanie S; Heidt, Sven; Requena, Natalia

    2013-09-01

    Plant proteases and protease inhibitors are involved in plant developmental processes including those involving interactions with microbes. Here we show that a tandem between a Kunitz protease inhibitor (KPI106) and a serine carboxypeptidase (SCP1) controls arbuscular mycorrhiza development in the root cortex of Medicago truncatula. Both proteins are only induced during mycorrhiza formation and belong to large families whose members are also mycorrhiza-specific. Furthermore, the interaction between KPI106 and SCP1 analysed using the yeast two-hybrid system is specific, indicating that each family member might have a defined counterpart. In silico docking analysis predicted a putative P1 residue in KPI106 (Lys173) that fits into the catalytic pocket of SCP1, suggesting that KPI106 might inhibit the enzyme activity by mimicking the protease substrate. In vitro mutagenesis of the Lys173 showed that this residue is important in determining the strength and specificity of the interaction. The RNA interference (RNAi) inactivation of the serine carboxypeptidase SCP1 produces aberrant mycorrhizal development with an increased number of septated hyphae and degenerate arbuscules, a phenotype also observed when overexpressing KPI106. Protease and inhibitor are both secreted as observed when expressed in Nicotiana benthamiana epidermal cells. Taken together we envisage a model in which the protease SCP1 is secreted in the apoplast where it produces a peptide signal critical for proper fungal development within the root. KPI106 also at the apoplast would modulate the spatial and/or temporal activity of SCP1 by competing with the protease substrate.

  4. RC1339/APRc from Rickettsia conorii Is a Novel Aspartic Protease with Properties of Retropepsin-Like Enzymes

    PubMed Central

    Cruz, Rui; Huesgen, Pitter; Riley, Sean P.; Wlodawer, Alexander; Faro, Carlos; Overall, Christopher M.; Martinez, Juan J.; Simões, Isaura

    2014-01-01

    Members of the species Rickettsia are obligate intracellular, gram-negative, arthropod-borne pathogens of humans and other mammals. The life-threatening character of diseases caused by many Rickettsia species and the lack of reliable protective vaccine against rickettsioses strengthens the importance of identifying new protein factors for the potential development of innovative therapeutic tools. Herein, we report the identification and characterization of a novel membrane-embedded retropepsin-like homologue, highly conserved in 55 Rickettsia genomes. Using R. conorii gene homologue RC1339 as our working model, we demonstrate that, despite the low overall sequence similarity to retropepsins, the gene product of rc1339 APRc (for Aspartic Protease from Rickettsia conorii) is an active enzyme with features highly reminiscent of this family of aspartic proteases, such as autolytic activity impaired by mutation of the catalytic aspartate, accumulation in the dimeric form, optimal activity at pH 6, and inhibition by specific HIV-1 protease inhibitors. Moreover, specificity preferences determined by a high-throughput profiling approach confirmed common preferences between this novel rickettsial enzyme and other aspartic proteases, both retropepsins and pepsin-like. This is the first report on a retropepsin-like protease in gram-negative intracellular bacteria such as Rickettsia, contributing to the analysis of the evolutionary relationships between the two types of aspartic proteases. Additionally, we have also shown that APRc is transcribed and translated in R. conorii and R. rickettsii and is integrated into the outer membrane of both species. Finally, we demonstrated that APRc is sufficient to catalyze the in vitro processing of two conserved high molecular weight autotransporter adhesin/invasion proteins, Sca5/OmpB and Sca0/OmpA, thereby suggesting the participation of this enzyme in a relevant proteolytic pathway in rickettsial life-cycle. As a novel bona fide member

  5. Proteolytic Activation of the Essential Parasitophorous Vacuole Cysteine Protease SERA6 Accompanies Malaria Parasite Egress from Its Host Erythrocyte*

    PubMed Central

    Ruecker, Andrea; Shea, Michael; Hackett, Fiona; Suarez, Catherine; Hirst, Elizabeth M. A.; Milutinovic, Katarina; Withers-Martinez, Chrislaine; Blackman, Michael J.

    2012-01-01

    The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). The PV and host cell membranes eventually rupture, releasing merozoites in a process called egress. Certain inhibitors of serine and cysteine proteases block egress, indicating a crucial role for proteases. The Plasmodium falciparum genome encodes nine serine-repeat antigens (SERAs), each of which contains a central domain homologous to the papain-like (clan CA, family C1) protease family. SERA5 and SERA6 are indispensable in blood-stage parasites, but the function of neither is known. Here we show that SERA6 localizes to the PV where it is precisely cleaved just prior to egress by an essential serine protease called PfSUB1. Mutations that replace the predicted catalytic Cys of SERA6, or that block SERA6 processing by PfSUB1, could not be stably introduced into the parasite genomic sera6 locus, indicating that SERA6 is an essential enzyme and that processing is important for its function. We demonstrate that cleavage of SERA6 by PfSUB1 converts it to an active cysteine protease. Our observations reveal a proteolytic activation step in the malarial PV that may be required for release of the parasite from its host erythrocyte. PMID:22984267

  6. Transient ECM protease activity promotes synaptic plasticity

    PubMed Central

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  7. Proteases and Peptidases of Castor Bean Endosperm

    PubMed Central

    Tully, Raymond E.; Beevers, Harry

    1978-01-01

    The endosperm of castor bean seeds (Ricinus communis L.) contains two —SH-dependent aminopeptidases, one hydrolyzing l-leucine-β-naphthylamide optimally at pH 7.0, and the other hydrolyzing l-proline-β-naphthylamide optimally at pH 7.5. After germination the endosperm contains in addition an —SH-dependent hemoglobin protease, a serine-dependent carboxypeptidase, and at least two —SH-dependent enzymes hydrolyzing the model substrate α-N-benzoyl-dl-arginine-β-naphthylamide (BANA). The carboxypeptidase is active on a variety of N-carbobenzoxy dipeptides, especially N-carbobenzoxy-L-phenylalanine-l-alanine and N-carbobenzoxy-l-tyrosine-l-leucine. The pH optima for the protease, carboxypeptidase, and BANAase acivities are 3.5 to 4.0, 5.0 to 5.5, and 6 to 8, respectively. The two aminopeptidases increased about 4-fold in activity during the first 4 days of growth, concurrent with the period of rapid depletion of storage protein. Activities then declined as the endosperm senesced, but were still evident after 6 days. Senescence was complete by day 7 to 8. Hemoglobin protease, carboxypeptidase, and BANAase activities appeared in the endosperm at day 2 to 3, and reached peak activity at day 5 to 6. The data indicate that the aminopeptidases are involved in the early mobilization of endosperm storage protein, whereas protease, carboxypeptidase, and BANAase may take part in later turnover and/or senescence. PMID:16660598

  8. Cleavage Specificity Analysis of Six Type II Transmembrane Serine Proteases (TTSPs) Using PICS with Proteome-Derived Peptide Libraries

    PubMed Central

    Béliveau, François; Leduc, Richard; Overall, Christopher M.

    2014-01-01

    Background Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. Methodology/Principal Finding To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1′ position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. Conclusions Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1′ positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity. PMID:25211023

  9. Active site conformational changes of prostasin provide a new mechanism of protease regulation by divalent cations

    SciTech Connect

    Spraggon, Glen; Hornsby, Michael; Shipway, Aaron; Tully, David C.; Bursulaya, Badry; Danahay, Henry; Harris, Jennifer L.; Lesley, Scott A.

    2010-01-12

    Prostasin or human channel-activating protease 1 has been reported to play a critical role in the regulation of extracellular sodium ion transport via its activation of the epithelial cell sodium channel. Here, the structure of the extracellular portion of the membrane associated serine protease has been solved to high resolution in complex with a nonselective d-FFR chloromethyl ketone inhibitor, in an apo form, in a form where the apo crystal has been soaked with the covalent inhibitor camostat and in complex with the protein inhibitor aprotinin. It was also crystallized in the presence of the divalent cation Ca{sup +2}. Comparison of the structures with each other and with other members of the trypsin-like serine protease family reveals unique structural features of prostasin and a large degree of conformational variation within specificity determining loops. Of particular interest is the S1 subsite loop which opens and closes in response to basic residues or divalent ions, directly binding Ca{sup +2} cations. This induced fit active site provides a new possible mode of regulation of trypsin-like proteases adapted in particular to extracellular regions with variable ionic concentrations such as the outer membrane layer of the epithelial cell.

  10. Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor

    SciTech Connect

    Hansen, Daiane; Macedo-Ribeiro, Sandra; Verissimo, Paula; Yoo Im, Sonia; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela . E-mail: olivaml.bioq@epm.br

    2007-09-07

    Bauhinia bauhinioides Cruzipain Inhibitor (BbCI) is a cysteine protease inhibitor highly homologous to plant Kunitz-type inhibitors. However, in contrast to classical Kunitz family inhibitors it lacks cysteine residues and therefore disulfide bridges. BbCI is also distinct in the ability to inactivate enzymes belonging to two different classes, cysteine and serine proteases. Besides inhibiting the cysteine protease cruzipain, BbCI also inhibits cathepsin L and the serine proteases HNE (human neutrophil elastase) and PPE (porcine pancreatic elastase). Monoclinic crystals of the recombinant inhibitor that diffract to 1.7 A resolution were obtained using hanging drop method by vapor diffusion at 18 {sup o}C. The refined structure shows the conservative {beta}-trefoil fold features of the Kunitz inhibitors. In BbCI, one of the two characteristic S-S bonds is replaced by the water-mediated interaction between Tyr125 and Gly132. In this work we explore the structural differences between Kunitz-type inhibitors and analyze the essential interactions that maintain the protein structural stability preserving its biological function.

  11. Proteolytic Processing of Von Willebrand Factor by Adamts13 and Leukocyte Proteases

    PubMed Central

    Lancellotti, Stefano; Basso, Maria; De Cristofaro, Raimondo

    2013-01-01

    ADAMTS13 is a 190 kDa zinc protease encoded by a gene located on chromosome 9q34. This protease specifically hydrolyzes von Willebrand factor (VWF) multimers, thus causing VWF size reduction. ADAMTS13 belongs to the A Disintegrin And Metalloprotease with ThromboSpondin type 1 repeats (ADAMTS) family, involved in proteolytic processing of many matrix proteins. ADAMTS13 consists of numerous domains including a metalloprotease domain, a disintegrin domain, several thrombospondin type 1 (TSP1) repeats, a cysteine-rich domain, a spacer domain and 2 CUB (Complement c1r/c1s, sea Urchin epidermal growth factor, and Bone morphogenetic protein) domains. ADAMTS13 cleaves a single peptide bond (Tyr1605-Met1606) in the central A2 domain of the VWF molecule. This proteolytic cleavage is essential to reduce the size of ultra-large VWF polymers, which, when exposed to high shear stress in the microcirculation, are prone to form with platelets clumps, which cause severe syndromes called thrombotic microangiopathies (TMAs). In this review, we a) discuss the current knowledge of structure-function aspects of ADAMTS13 and its involvement in the pathogenesis of TMAs, b) address the recent findings concerning proteolytic processing of VWF multimers by different proteases, such as the leukocyte-derived serine and metallo-proteases and c) indicate the direction of future investigations. PMID:24106608

  12. The multiple, complex roles of versican and its proteolytic turnover by ADAMTS proteases during embryogenesis.

    PubMed

    Nandadasa, Sumeda; Foulcer, Simon; Apte, Suneel S

    2014-04-01

    Embryonic development is an exceptionally dynamic process, requiring a provisional extracellular matrix that is amenable to rapid remodeling, and proteolytic or non-proteolytic mechanisms that can remodel the major components of this matrix. Versican is a chondroitin-sulfate proteoglycan that forms highly hydrated complexes with hyaluronan and is widely distributed in the provisional matrix of mammalian embryos. It has been extensively studied in the context of cardiovascular morphogenesis, neural crest cell migration and skeletal development. Analysis of Vcan transgenic mice has established the requirement for versican in cardiac development and its role in skeletogenesis. The ADAMTS family includes several versican-degrading proteases that are active during remodeling of the embryonic provisional matrix, especially during sculpting of versican-rich tissues. Versican is cleaved at specific peptide bonds by ADAMTS proteases, and the cleavage products are detectable by neo-epitope antibodies. Myocardial compaction, closure of the secondary palate (in which neural crest derived cells participate), endocardial cushion remodeling, myogenesis and interdigital web regression are developmental contexts in which ADAMTS-mediated versican proteolysis has been identified as a crucial requirement. ADAMTS proteases are expressed coordinately and function cooperatively in many of these contexts. In addition to versican clearance, ADAMTS proteases generate a bioactive versican fragment containing the N-terminal G1 domain, which we have named versikine. This review promotes the view that the embryonic extracellular matrix has evolved not only to provide a permissive environment for embryo growth and morphogenesis, but through its dissolution to influence and regulate cellular processes.

  13. Proteases and Protease Inhibitors of Urinary Extracellular Vesicles in Diabetic Nephropathy

    PubMed Central

    Tataruch, Dorota; Gu, Dongfeng; Liu, Xinyu; Forsblom, Carol; Groop, Per-Henrik; Holthofer, Harry

    2015-01-01

    Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM), leads to chronic kidney disease (CKD), and, ultimately, is the main cause for end-stage kidney disease (ESKD). Beyond urinary albumin, no reliable biomarkers are available for accurate early diagnostics. Urinary extracellular vesicles (UEVs) have recently emerged as an interesting source of diagnostic and prognostic disease biomarkers. Here we used a protease and respective protease inhibitor array to profile urines of type 1 diabetes patients at different stages of kidney involvement. Urine samples were divided into groups based on the level of albuminuria and UEVs isolated by hydrostatic dialysis and screened for relative changes of 34 different proteases and 32 protease inhibitors, respectively. Interestingly, myeloblastin and its natural inhibitor elafin showed an increase in the normo- and microalbuminuric groups. Similarly, a characteristic pattern was observed in the array of protease inhibitors, with a marked increase of cystatin B, natural inhibitor of cathepsins L, H, and B as well as of neutrophil gelatinase-associated Lipocalin (NGAL) in the normoalbuminuric group. This study shows for the first time the distinctive alterations in comprehensive protease profiles of UEVs in diabetic nephropathy and uncovers intriguing mechanistic, prognostic, and diagnostic features of kidney damage in diabetes. PMID:25874235

  14. Protease IV, a quorum sensing-dependent protease of Pseudomonas aeruginosa modulates insect innate immunity.

    PubMed

    Park, Su-Jin; Kim, Soo-Kyoung; So, Yong-In; Park, Ha-Young; Li, Xi-Hui; Yeom, Doo Hwan; Lee, Mi-Nan; Lee, Bok-Luel; Lee, Joon-Hee

    2014-12-01

    In Pseudomonas aeruginosa, quorum sensing (QS) plays an essential role in pathogenesis and the QS response controls many virulence factors. Using a mealworm, Tenebrio molitor as a host model, we found that Protease IV, a QS-regulated exoprotease of P. aeruginosa functions as a key virulence effector causing the melanization and death of T. molitor larvae. Protease IV was able to degrade zymogens of spätzle processing enzyme (SPE) and SPE-activating enzyme (SAE) without the activation of the antimicrobial peptide (AMP) production. Since SPE and SAE function to activate spätzle, a ligand of Toll receptor in the innate immune system of T. molitor, we suggest that Protease IV may interfere with the activation of the Toll signaling. Independently of the Toll pathway, the melanization response, another innate immunity was still generated, since Protease IV directly converted Tenebrio prophenoloxidase into active phenoloxidase. Protease IV also worked as an important factor in the virulence to brine shrimp and nematode. These results suggest that Protease IV provides P. aeruginosa with a sophisticated way to escape the immune attack of host by interfering with the production of AMPs. PMID:25315216

  15. A novel protease activity assay using a protease-responsive chaperone protein

    SciTech Connect

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  16. Coagulation factor XII protease domain crystal structure

    PubMed Central

    Pathak, M; Wilmann, P; Awford, J; Li, C; Hamad, BK; Fischer, PM; Dreveny, I; Dekker, LV; Emsley, J

    2015-01-01

    Background Coagulation factor XII is a serine protease that is important for kinin generation and blood coagulation, cleaving the substrates plasma kallikrein and FXI. Objective To investigate FXII zymogen activation and substrate recognition by determining the crystal structure of the FXII protease domain. Methods and results A series of recombinant FXII protease constructs were characterized by measurement of cleavage of chromogenic peptide and plasma kallikrein protein substrates. This revealed that the FXII protease construct spanning the light chain has unexpectedly weak proteolytic activity compared to β-FXIIa, which has an additional nine amino acid remnant of the heavy chain present. Consistent with these data, the crystal structure of the light chain protease reveals a zymogen conformation for active site residues Gly193 and Ser195, where the oxyanion hole is absent. The Asp194 side chain salt bridge to Arg73 constitutes an atypical conformation of the 70-loop. In one crystal form, the S1 pocket loops are partially flexible, which is typical of a zymogen. In a second crystal form of the deglycosylated light chain, the S1 pocket loops are ordered, and a short α-helix in the 180-loop of the structure results in an enlarged and distorted S1 pocket with a buried conformation of Asp189, which is critical for P1 Arg substrate recognition. The FXII structures define patches of negative charge surrounding the active site cleft that may be critical for interactions with inhibitors and substrates. Conclusions These data provide the first structural basis for understanding FXII substrate recognition and zymogen activation. PMID:25604127

  17. A human protein containing multiple types of protease-inhibitory modules

    PubMed Central

    Trexler, Mária; Bányai, László; Patthy, László

    2001-01-01

    By using sensitive homology-search and gene-finding programs, we have found that a genomic region from the tip of the short arm of human chromosome 16 (16p13.3) encodes a putative secreted protein consisting of a domain related to the whey acidic protein (WAP) domain, a domain homologous with follistatin modules of the Kazal-domain family (FS module), an immunoglobulin-related domain (Ig domain), two tandem domains related to Kunitz-type protease inhibitor modules (KU domains), and a domain belonging to the recently defined NTR-module family (NTR domain). The gene encoding these WAP, FS, Ig, KU, and NTR modules (hereafter referred to as the WFIKKN gene) is intron-depleted—its single 1,157-bp intron splits the WAP module. The validity of our gene prediction was confirmed by sequencing a WFIKKN cDNA cloned from a lung cDNA library. Studies on the tissue-expression pattern of the WFIKKN gene have shown that the gene is expressed primarily in pancreas, kidney, liver, placenta, and lung. As to the function of the WFIKKN protein, it is noteworthy that it contains FS, WAP, and KU modules, i.e., three different module types homologous with domains frequently involved in inhibition of serine proteases. The protein also contains an NTR module, a domain type implicated in inhibition of zinc metalloproteinases of the metzincin family. On the basis of its intriguing homologies, we suggest that the WFIKKN protein is a multivalent protease inhibitor that may control the action of multiple types of serine proteases as well as metalloproteinase(s). PMID:11274388

  18. Proteases from the Regenerating Gut of the Holothurian Eupentacta fraudatrix

    PubMed Central

    Lamash, Nina E.; Dolmatov, Igor Yu

    2013-01-01

    Four proteases with molecular masses of 132, 58, 53, and 47 kDa were detected in the digestive system of the holothurian Eupentacta fraudatrix. These proteases displayed the gelatinase activity and characteristics of zinc metalloproteinases. The 58 kDa protease had similar protease inhibitor sensitivity to that of mammalian matrix metalloproteinases. Zymographic assay revealed different lytic activities of all four proteases during intestine regeneration in the holothurian. The 132 kDa protease showed the highest activity at the first stage. During morphogenesis (stages 2–4 of regeneration), the highest activity was measured for the 53 and 58 kDa proteases. Inhibition of protease activity exerts a marked effect on regeneration, which was dependent on the time when 1,10-phenanthroline injections commenced. When metalloproteinases were inhibited at the second stage of regeneration, the restoration rates were decreased. However, such an effect proved to be reversible, and when inhibition ceased, the previous rate of regeneration was recovered. When protease activity is inhibited at the first stage, regeneration is completely abolished, and the animals die, suggesting that early activation of the proteases is crucial for triggering the regenerative process in holothurians. The role of the detected proteases in the regeneration processes of holothurians is discussed. PMID:23505505

  19. New directions for protease inhibitors directed drug discovery.

    PubMed

    Hamada, Yoshio; Kiso, Yoshiaki

    2016-11-01

    Proteases play crucial roles in various biological processes, and their activities are essential for all living organisms-from viruses to humans. Since their functions are closely associated with many pathogenic mechanisms, their inhibitors or activators are important molecular targets for developing treatments for various diseases. Here, we describe drugs/drug candidates that target proteases, such as malarial plasmepsins, β-secretase, virus proteases, and dipeptidyl peptidase-4. Previously, we reported inhibitors of aspartic proteases, such as renin, human immunodeficiency virus type 1 protease, human T-lymphotropic virus type I protease, plasmepsins, and β-secretase, as drug candidates for hypertension, adult T-cell leukaemia, human T-lymphotropic virus type I-associated myelopathy, malaria, and Alzheimer's disease. Our inhibitors are also described in this review article as examples of drugs that target proteases. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 563-579, 2016. PMID:26584340

  20. Hepatitis C virus NS3 protease is activated by low concentrations of protease inhibitors.

    PubMed

    Dahl, Göran; Arenas, Omar Gutiérrez; Danielson, U Helena

    2009-12-01

    The nonstructural protein 3 (NS3) of hepatitis C virus (HCV) is a bifunctional enzyme with a protease and a helicase functionality located in each of the two domains of the single peptide chain. There is little experimental evidence for a functional role of this unexpected arrangement since artificial single domain forms of both enzymes are catalytically competent. We have observed that low concentrations of certain protease inhibitors activate the protease of full-length NS3 from HCV genotype 1a with up to 100%, depending on the preincubation time and the inhibitor used. The activation was reduced, but not eliminated, by increased ionic strength, lowered glycerol concentration, or lowered pH. In all cases, it was at the expense of a significant loss of activity. Activation was not seen with the artificial protease domain of genotype 1b NS3 fused with a fragment of the NS4A cofactor. This truncated and covalently modified enzyme form was much less active and exhibited fundamentally different catalytic properties to the full-length NS3 protease without the fused cofactor. The most plausible explanation for the activation was found to involve a slow transition between two enzyme conformations, which differed in their catalytic ability and affinity for inhibitors. Equations derived based on this assumption resulted in better fits to the experimental data than the equation for simple competitive inhibition. The mechanism may involve an inhibitor-induced stabilization of the helicase domain in a conformation that enhances the protease activity, or an improved alignment of the catalytic triad in the protease. The proposed mnemonic mechanism and derived equations are viable for both these explanations and can serve as a basic framework for future studies of enzymes activated by inhibitors or other ligands.

  1. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment.

    PubMed

    Fyfe, Cameron D; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W; Cogdell, Richard J; Wall, Daniel M; Burchmore, Richard J S; Byron, Olwyn; Walker, Daniel

    2015-07-01

    Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  2. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    PubMed Central

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macro­globulin, this protease-activation mechanism is likely to operate across the diverse members of this group. PMID:26143919

  3. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence.

    PubMed

    Petersen, Lauren M; Tisa, Louis S

    2014-11-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex.

  4. Isolation and Identification of an Extracellular Subtilisin-Like Serine Protease Secreted by the Bat Pathogen Pseudogymnoascus destructans

    PubMed Central

    Pannkuk, Evan L.; Risch, Thomas S.; Savary, Brett J.

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction. PMID:25785714

  5. Molecular Characterization of Protease Activity in Serratia sp. Strain SCBI and Its Importance in Cytotoxicity and Virulence

    PubMed Central

    Petersen, Lauren M.

    2014-01-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493

  6. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans.

    PubMed

    Pannkuk, Evan L; Risch, Thomas S; Savary, Brett J

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction. PMID:25785714

  7. Luteoloside Acts as 3C Protease Inhibitor of Enterovirus 71 In Vitro.

    PubMed

    Cao, Zeyu; Ding, Yue; Ke, Zhipeng; Cao, Liang; Li, Na; Ding, Gang; Wang, Zhenzhong; Xiao, Wei

    2016-01-01

    Luteoloside is a member of the flavonoids family that exhibits several bioactivities including anti-microbial and anti-cancer activities. However, the antiviral activity of luteoloside against enterovirus 71 (EV71) and the potential mechanism(s) responsible for this effect remain unknown. In this study, the antiviral potency of luteoloside against EV71 and its inhibitory effects on 3C protease activity were evaluated. First, we investigated the cytotoxicity of luteoloside against rhabdomyosarcoma (RD) cells, which was the cell line selected for an in vitro infection model. In a subsequent antiviral assay, the cytopathic effect of EV71 was significantly and dose-dependently relieved by the administration of luteoloside (EC50 = 0.43 mM, selection index = 5.3). Using a plaque reduction assay, we administered luteoloside at various time points and found that the compound reduced EV71 viability in RD cells rather than increasing defensive mobilization or viral absorption. Moreover, biochemical studies focused on VP1 (a key structural protein of EV71) mRNA transcript and protein levels also revealed the inhibitory effects of luteoloside on the EV71 viral yield. Finally, we performed inhibition assays using luteoloside to evaluate its effect on recombinant 3C protease activity. Our results demonstrated that luteoloside blocked 3C protease enzymatic activity in a dose-dependent manner (IC50 = 0.36 mM) that was similar to the effect of rutin, which is a well-known C3 protease inhibitor. Collectively, the results from this study indicate that luteoloside can block 3C protease activity and subsequently inhibit EV71 production in vitro.

  8. Luteoloside Acts as 3C Protease Inhibitor of Enterovirus 71 In Vitro

    PubMed Central

    Cao, Zeyu; Ding, Yue; Ke, Zhipeng; Cao, Liang; Li, Na; Ding, Gang; Wang, Zhenzhong; Xiao, Wei

    2016-01-01

    Luteoloside is a member of the flavonoids family that exhibits several bioactivities including anti-microbial and anti-cancer activities. However, the antiviral activity of luteoloside against enterovirus 71 (EV71) and the potential mechanism(s) responsible for this effect remain unknown. In this study, the antiviral potency of luteoloside against EV71 and its inhibitory effects on 3C protease activity were evaluated. First, we investigated the cytotoxicity of luteoloside against rhabdomyosarcoma (RD) cells, which was the cell line selected for an in vitro infection model. In a subsequent antiviral assay, the cytopathic effect of EV71 was significantly and dose-dependently relieved by the administration of luteoloside (EC50 = 0.43 mM, selection index = 5.3). Using a plaque reduction assay, we administered luteoloside at various time points and found that the compound reduced EV71 viability in RD cells rather than increasing defensive mobilization or viral absorption. Moreover, biochemical studies focused on VP1 (a key structural protein of EV71) mRNA transcript and protein levels also revealed the inhibitory effects of luteoloside on the EV71 viral yield. Finally, we performed inhibition assays using luteoloside to evaluate its effect on recombinant 3C protease activity. Our results demonstrated that luteoloside blocked 3C protease enzymatic activity in a dose-dependent manner (IC50 = 0.36 mM) that was similar to the effect of rutin, which is a well-known C3 protease inhibitor. Collectively, the results from this study indicate that luteoloside can block 3C protease activity and subsequently inhibit EV71 production in vitro. PMID:26870944

  9. Luteoloside Acts as 3C Protease Inhibitor of Enterovirus 71 In Vitro.

    PubMed

    Cao, Zeyu; Ding, Yue; Ke, Zhipeng; Cao, Liang; Li, Na; Ding, Gang; Wang, Zhenzhong; Xiao, Wei

    2016-01-01

    Luteoloside is a member of the flavonoids family that exhibits several bioactivities including anti-microbial and anti-cancer activities. However, the antiviral activity of luteoloside against enterovirus 71 (EV71) and the potential mechanism(s) responsible for this effect remain unknown. In this study, the antiviral potency of luteoloside against EV71 and its inhibitory effects on 3C protease activity were evaluated. First, we investigated the cytotoxicity of luteoloside against rhabdomyosarcoma (RD) cells, which was the cell line selected for an in vitro infection model. In a subsequent antiviral assay, the cytopathic effect of EV71 was significantly and dose-dependently relieved by the administration of luteoloside (EC50 = 0.43 mM, selection index = 5.3). Using a plaque reduction assay, we administered luteoloside at various time points and found that the compound reduced EV71 viability in RD cells rather than increasing defensive mobilization or viral absorption. Moreover, biochemical studies focused on VP1 (a key structural protein of EV71) mRNA transcript and protein levels also revealed the inhibitory effects of luteoloside on the EV71 viral yield. Finally, we performed inhibition assays using luteoloside to evaluate its effect on recombinant 3C protease activity. Our results demonstrated that luteoloside blocked 3C protease enzymatic activity in a dose-dependent manner (IC50 = 0.36 mM) that was similar to the effect of rutin, which is a well-known C3 protease inhibitor. Collectively, the results from this study indicate that luteoloside can block 3C protease activity and subsequently inhibit EV71 production in vitro. PMID:26870944

  10. Site-2 protease regulated intramembrane proteolysis: sequence homologs suggest an ancient signaling cascade.

    PubMed

    Kinch, Lisa N; Ginalski, Krzysztof; Grishin, Nick V

    2006-01-01

    Site-2 proteases (S2Ps) form a large family of membrane-embedded metalloproteases that participate in cellular signaling pathways through sequential cleavage of membrane-tethered substrates. Using sequence similarity searches, we extend the S2P family to include remote homologs that help define a conserved structural core consisting of three predicted transmembrane helices with traditional metalloprotease functional motifs and a previously unrecognized motif (GxxxN/S/G). S2P relatives were identified in genomes from Bacteria, Archaea, and Eukaryota including protists, plants, fungi, and animals. The diverse S2P homologs divide into several groups that differ in various inserted domains and transmembrane helices. Mammalian S2P proteases belong to the major ubiquitous group and contain a PDZ domain. Sequence and structural analysis of the PDZ domain support its mediating the sequential cleavage of membrane-tethered substrates. Finally, conserved genomic neighborhoods of S2P homologs allow functional predictions for PDZ-containing transmembrane proteases in extra-cytoplasmic stress response and lipid metabolism.

  11. Primary structural analysis of sulfhydryl protease inhibitors from pineapple stem.

    PubMed

    Reddy, M N; Keim, P S; Heinrikson, R L; Kezdy, F J

    1975-03-10

    Pineapple stem acetone powder provides a rich source of the sulfhydryl protease bromelain and of a family of compositionally similar but chromatographically distinct polypeptide inihibtors of this enzyme. The isoinhibitors have molecular weights of 5600, and they contain five disulfide bonds and about 50 amino acids each (Perlstein, S. H., AND Kezdy, F.J. (1973) J. Supramol. Struct. 1, 249-254). Primary structural analysis of one of the seven inhibitor fractions (VII) revealed extensive microheterogeneity. Each of the inhibitor molecules in Fraction VII was shown to be composed of two peptide chains joined by disulfide bonds. These chains, designated A and B on the basis of size, comprise 41 and 10-11 residues, respectively, and the amino acid sequence of one of each are given below: (see article for formular). On the basis of ionization properties and yields of the A and B chains, it would appear that one of the major inhibitor species in Fraction VII is the covalently linked complex of the two chains shown, namely [A-1, B-2]. The second major inhibitor component of Fraction VII is identical in structure with [A-1, B-2i1 except that residues 1 and 8 in the A chain are pyroglutamate and threonine, respectively, and in the B chain glutamine 11 is replaced by arginine. The third inhibitor in Fraction VII is a minor constituent identical with the second, except that residue 1 in the A chain is glutamate rather than pyroglutamate. This microheterogeneity in the inhibitors of Fraction VII is further increased by the fact that B chains may lack threonine 1, in which case they are decapeptides beginning with alanine. On the basis of the striking homology of the cysteine residues with those of other protease inhibitors, it is proposed that the bromelain inhibitors are generated enzymatically from single chain precursors by excision of a "bridge" paptide which links the NH-2 termal A chain to the COOH-terminal B chain.

  12. HIV-protease inhibitors block the replication of both vesicular stomatitis and influenza viruses at an early post-entry replication step

    SciTech Connect

    Federico, Maurizio

    2011-08-15

    The inhibitors of HIV-1 protease (PIs) have been designed to block the activity of the viral aspartyl-protease. However, it is now accepted that this family of inhibitors can also affect the activity of cell proteases. Since the replication of many virus species requires the activity of host cell proteases, investigating the effects of PIs on the life cycle of viruses other than HIV would be of interest. Here, the potent inhibition induced by saquinavir and nelfinavir on the replication of both vesicular stomatitis and influenza viruses is described. These are unrelated enveloped RNA viruses infecting target cells upon endocytosis and intracellular fusion. The PI-induced inhibition was apparently a consequence of a block at the level of the fusion between viral envelope and endosomal membranes. These findings would open the way towards the therapeutic use of PIs against enveloped RNA viruses other than HIV.

  13. Development of a Gaussia Luciferase-Based Human Norovirus Protease Reporter System: Cell Type-Specific Profile of Norwalk Virus Protease Precursors and Evaluation of Inhibitors

    PubMed Central

    Qu, Lin; Vongpunsawad, Sompong; Atmar, Robert L.; Prasad, B. V. Venkataram

    2014-01-01

    ABSTRACT Norwalk virus (NV) is the prototype strain of human noroviruses (HuNoVs), a group of positive-strand RNA viruses in the Caliciviridae family and the leading cause of epidemic gastroenteritis worldwide. Investigation of HuNoV replication and development of antiviral therapeutics in cell culture remain challenging tasks. Here, we present NoroGLuc, a HuNoV protease reporter system based on a fusion of NV p41 protein with a naturally secreted Gaussia luciferase (GLuc), linked by the p41/p22 cleavage site for NV protease (Pro). trans cleavage of NoroGLuc by NV Pro or Pro precursors results in release and secretion of an active GLuc. Using this system, we observed a cell type-specific activity profile of NV Pro and Pro precursors, suggesting that the activity of NV Pro is modulated by other viral proteins in the precursor forms and strongly influenced by cellular factors. NoroGLuc was also cleaved by Pro and Pro precursors generated from replication of NV stool RNA in transfected cells, resulting in a measurable increase of secreted GLuc. Truncation analysis revealed that the N-terminal membrane association domain of NV p41 is critical for NoroGLuc activity. Although designed for NV, a genogroup GI.1 norovirus, NoroGLuc also efficiently detects Pro activities from GII.3 and GII.4 noroviruses. At noncytotoxic concentrations, protease inhibitors ZnCl2 and Nα-p-tosyl-l-lysine chloromethyl ketone (TLCK) exhibited dose-dependent inhibitory effects on a GII.4 Pro by NoroGLuc assay. These results establish NoroGLuc as a pan-genogroup HuNoV protease reporter system that can be used for the study of HuNoV proteases and precursors, monitoring of viral RNA replication, and evaluation of antiviral agents. IMPORTANCE Human noroviruses are the leading cause of epidemic gastroenteritis worldwide. Currently, there are no vaccines or antiviral drugs available to counter these highly contagious viruses. These viruses are currently noncultivatable in cell culture. Here, we report

  14. Using in silico techniques: Isolation and characterization of an insect cuticle-degrading-protease gene from Beauveria bassiana.

    PubMed

    Khan, Sehroon; Nadir, Sadia; Wang, Xuewen; Khan, Afsar; Xu, Jianchu; Li, Meng; Tao, Lihong; Khan, Siraj; Karunarathna, Samantha C

    2016-08-01

    Cuticle-degrading-proteases (CDPs) secreted by Beauveria spp. are pivotal biocontrol substances, possessing commercial potential for developing bio-pesticides. Therefore, a thoughtful and contemplative understanding and assessment of the structural and functional features of these proteases would markedly assist the development of biogenic pesticides. Computational molecular biology is a new facile alternative approach to the tedious experimental molecular biology; therefore, by using bioinformatics tools, we isolated and characterized an insect CDP gene from Beauveria bassiana 70 s.l. genomic DNA. The CDP gene (1240 bp with GeneBank accession no. KT804651.1) consisted of three introns and four CDS exons, and shared 74-100% sequence identity to the reference CDP genes. Its phylogenetic tree results showed a unique evolution pattern, and the predicted amino acid peptide (PAAP) consisted of 344 amino acid residues with pI, molecular weight, instability index, grand average hydropathicity value and aliphatic index of 7.2, 35.4 kDa, 24.45, -0.149, and 76.63, respectively. The gene possessed 74-89% amino acid sequence similarity to the 12 reference strains. Three motifs (Peptidase_S8 subtilase family) were detected in the PAAP, and the computed 3D structure possessed 79.09% structural identity to alkaline serine proteases. The PAAP had four (three serine proteases and one Pyridoxal-dependent decarboxylase) conserved domains, a disulfide bridge, two calcium binding sites, MY domain, and three predicted active sites in the serine family domains. These results will set the groundwork for further exploitation of proteases and understanding the mechanism of disease caused by cuticle-degrading-serine-proteases from entomopathogenic fungi. PMID:27287496

  15. Dysregulation of protease and protease inhibitors in a mouse model of human pelvic organ prolapse.

    PubMed

    Budatha, Madhusudhan; Silva, Simone; Montoya, Teodoro Ignacio; Suzuki, Ayako; Shah-Simpson, Sheena; Wieslander, Cecilia Karin; Yanagisawa, Masashi; Word, Ruth Ann; Yanagisawa, Hiromi

    2013-01-01

    Mice deficient for the fibulin-5 gene (Fbln5(-/-)) develop pelvic organ prolapse (POP) due to compromised elastic fibers and upregulation of matrix metalloprotease (MMP)-9. Here, we used casein zymography, inhibitor profiling, affinity pull-down, and mass spectrometry to discover additional protease upregulated in the vaginal wall of Fbln5(-/-) mice, herein named V1 (25 kDa). V1 was a serine protease with trypsin-like activity similar to protease, serine (PRSS) 3, a major extrapancreatic trypsinogen, was optimum at pH 8.0, and predominantly detected in estrogenized vaginal epithelium of Fbln5(-/-) mice. PRSS3 was (a) localized in epithelial secretions, (b) detected in media of vaginal organ culture from both Fbln5(-/-) and wild type mice, and (c) cleaved fibulin-5 in vitro. Expression of two serine protease inhibitors [Serpina1a (α1-antitrypsin) and Elafin] was dysregulated in Fbln5(-/-) epithelium. Finally, we confirmed that PRSS3 was expressed in human vaginal epithelium and that SERPINA1 and Elafin were downregulated in vaginal tissues from women with POP. These data collectively suggest that the balance between proteases and their inhibitors contributes to support of the pelvic organs in humans and mice. PMID:23437119

  16. Structural Insight into Serine Protease Rv3671c that Protects M. tuberculosis from Oxidative and Acidic Stress

    SciTech Connect

    Biswas, Tapan; Small, Jennifer; Vandal, Omar; Odaira, Toshiko; Deng, Haiteng; Ehrt, Sabine; Tsodikov, Oleg V.

    2010-11-15

    Rv3671c, a putative serine protease, is crucial for persistence of Mycobacterium tuberculosis in the hostile environment of the phagosome. We show that Rv3671c is required for M. tuberculosis resistance to oxidative stress in addition to its role in protection from acidification. Structural and biochemical analyses demonstrate that the periplasmic domain of Rv3671c is a functional serine protease of the chymotrypsin family and, remarkably, that its activity increases on oxidation. High-resolution crystal structures of this protease in an active strained state and in an inactive relaxed state reveal that a solvent-exposed disulfide bond controls the protease activity by constraining two distant regions of Rv3671c and stabilizing it in the catalytically active conformation. In vitro biochemical studies confirm that activation of the protease in an oxidative environment is dependent on this reversible disulfide bond. These results suggest that the disulfide bond modulates activity of Rv3671c depending on the oxidative environment in vivo.

  17. Enzymatic characterization of germination-specific cysteine protease-1 expressed transiently in cotyledons during the early phase of germination.

    PubMed

    Tsuji, Akihiko; Tsukamoto, Kana; Iwamoto, Keiko; Ito, Yuka; Yuasa, Keizo

    2013-01-01

    Papain-like cysteine protease activity that shows a unique transient expression profile in cotyledons of daikon radish during germination was detected. The enzyme showed a distinct elution pattern on DEAE-cellulose compared with cathepsin B-like and Responsive to dessication-21 cysteine protease. Although this activity was not detected in seed prior to imbibition, the activity increased markedly and reached a maximum at 2 days after imbibition and then decreased rapidly and completely disappeared after 5 days. Using cystatin-Sepharose, the 26 kDa cysteine protease (DRCP26) was isolated from cotyledons at 2 days after imbibition. The deduced amino acid sequence from the cDNA nucleotide sequence indicated that DRCP26 is an orthologue of Arabidopsis unidentified protein, germination-specific cysteine protease-1, belonging to the C1 family of cysteine protease predicted from genetic information. In an effort to characterize the enzymatic properties of DRCP26, the enzyme was purified to homogeneity from cotyledons at 48 h after imbibition. The best synthetic substrate for the enzyme was carbobenzoxy-Phe-Arg-4-methylcoumaryl-7-amide. All model peptides were digested to small peptides by the enzyme, suggesting that DRCP26 possesses broad cleavage specificity. These results indicated that DRCP26 plays a role in the mobilization of storage proteins in the early phase of seed germination.

  18. HvPap-1 C1A protease actively participates in barley proteolysis mediated by abiotic stresses.

    PubMed

    Velasco-Arroyo, Blanca; Diaz-Mendoza, Mercedes; Gandullo, Jacinto; Gonzalez-Melendi, Pablo; Santamaria, M Estrella; Dominguez-Figueroa, Jose D; Hensel, Goetz; Martinez, Manuel; Kumlehn, Jochen; Diaz, Isabel

    2016-07-01

    Protein breakdown and mobilization from old or stressed tissues to growing and sink organs are some of the metabolic features associated with abiotic/biotic stresses, essential for nutrient recycling. The massive degradation of proteins implies numerous proteolytic events in which cysteine-proteases are the most abundant key players. Analysing the role of barley C1A proteases in response to abiotic stresses is crucial due to their impact on plant growth and grain yield and quality. In this study, dark and nitrogen starvation treatments were selected to induce stress in barley. Results show that C1A proteases participate in the proteolytic processes triggered in leaves by both abiotic treatments, which strongly induce the expression of the HvPap-1 gene encoding a cathepsin F-like protease. Differences in biochemical parameters and C1A gene expression were found when comparing transgenic barley plants overexpressing or silencing the HvPap-1 gene and wild-type dark-treated leaves. These findings associated with morphological changes evidence a lifespan-delayed phenotype of HvPap-1 silenced lines. All these data elucidate on the role of this protease family in response to abiotic stresses and the potential of their biotechnological manipulation to control the timing of plant growth. PMID:27217548

  19. Proteases of human rhinovirus: role in infection.

    PubMed

    Jensen, Lora M; Walker, Erin J; Jans, David A; Ghildyal, Reena

    2015-01-01

    Human rhinoviruses (HRV) are the major etiological agents of the common cold and asthma exacerbations, with significant worldwide health and economic impact. Although large-scale population vaccination has proved successful in limiting or even eradicating many viruses, the more than 100 distinct serotypes mean that conventional vaccination is not a feasible strategy to combat HRV. An alternative strategy is to target conserved viral proteins such as the HRV proteases, 2A(pro) and 3C(pro), the focus of this review. Necessary for host cell shutoff, virus replication, and pathogenesis, 2A(pro) and 3C(pro) are clearly viable drug targets, and indeed, 3C(pro) has been successfully targeted for treating the common cold in experimental infection. 2A(pro) and 3C(pro) are crucial for virus replication due to their role in polyprotein processing as well as cleavage of key cellular proteins to inhibit cellular transcription and translation. Intriguingly, the action of the HRV proteases also disrupts nucleocytoplasmic trafficking, contributing to HRV cytopathic effects. Improved understanding of the protease-cell interactions should enable new therapeutic approaches to be identified for drug development. PMID:25261311

  20. Proteases of human rhinovirus: role in infection.

    PubMed

    Jensen, Lora M; Walker, Erin J; Jans, David A; Ghildyal, Reena

    2015-01-01

    Human rhinoviruses (HRV) are the major etiological agents of the common cold and asthma exacerbations, with significant worldwide health and economic impact. Although large-scale population vaccination has proved successful in limiting or even eradicating many viruses, the more than 100 distinct serotypes mean that conventional vaccination is not a feasible strategy to combat HRV. An alternative strategy is to target conserved viral proteins such as the HRV proteases, 2A(pro) and 3C(pro), the focus of this review. Necessary for host cell shutoff, virus replication, and pathogenesis, 2A(pro) and 3C(pro) are clearly viable drug targets, and indeed, 3C(pro) has been successfully targeted for treating the common cold in experimental infection. 2A(pro) and 3C(pro) are crucial for virus replication due to their role in polyprotein processing as well as cleavage of key cellular proteins to inhibit cellular transcription and translation. Intriguingly, the action of the HRV proteases also disrupts nucleocytoplasmic trafficking, contributing to HRV cytopathic effects. Improved understanding of the protease-cell interactions should enable new therapeutic approaches to be identified for drug development.

  1. Corruption of innate immunity by bacterial proteases.

    PubMed

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  2. Reaching the Melting Point: Degradative Enzymes and Protease Inhibitors Involved in Baculovirus Infection and Dissemination

    PubMed Central

    Ishimwe, Egide; Hodgson, Jeffrey J.; Clem, Rollie J.; Passarelli, A. Lorena

    2015-01-01

    Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in “melting” or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process. PMID:25724418

  3. A redox switch shapes the Lon protease exit pore to facultatively regulate proteolysis.

    PubMed

    Nishii, Wataru; Kukimoto-Niino, Mutsuko; Terada, Takaho; Shirouzu, Mikako; Muramatsu, Tomonari; Kojima, Masaki; Kihara, Hiroshi; Yokoyama, Shigeyuki

    2015-01-01

    The Lon AAA+ protease degrades damaged or misfolded proteins in its intramolecular chamber. Its activity must be precisely controlled, but the mechanism by which Lon is regulated in response to different environments is not known. Facultative anaerobes in the Enterobacteriaceae family, mostly symbionts and pathogens, encounter both anaerobic and aerobic environments inside and outside the host's body, respectively. The bacteria characteristically have two cysteine residues on the Lon protease (P) domain surface that unusually form a disulfide bond. Here we show that the cysteine residues act as a redox switch of Lon. Upon disulfide bond reduction, the exit pore of the P-domain ring narrows by ∼30%, thus interrupting product passage and decreasing activity by 80%; disulfide bonding by oxidation restores the pore size and activity. The redox switch (E°' = -227 mV) is appropriately tuned to respond to variation between anaerobic and aerobic conditions, thus optimizing the cellular proteolysis level for each environment.

  4. Granulosain I, a cysteine protease isolated from ripe fruits of Solanum granuloso-leprosum (Solanaceae).

    PubMed

    Vallés, Diego; Bruno, Mariela; López, Laura M I; Caffini, Néstor O; Cantera, Ana María B

    2008-08-01

    A new cysteine peptidase (Granulosain I) was isolated from ripe fruits of Solanum granuloso-leprosum Dunal (Solanaceae) by means of precipitation with organic solvent and cation exchange chromatography. The enzyme showed a single band by SDS-PAGE, its molecular mass was 24,746 Da (MALDI-TOF/MS) and its isoelectric point was higher than 9.3. It showed maximum activity (more than 90%) in the pH range 7-8.6. Granulosain I was completely inhibited by E-64 and activated by the addition of cysteine or 2-mercaptoethanol, confirming its cysteinic nature. The kinetic studies carried out with PFLNA as substrate, showed an affinity (Km 0.6 mM) slightly lower than those of other known plant cysteine proteases (papain and bromelain). The N-terminal sequence of granulosain I (DRLPASVDWRGKGVLVLVKNQGQC) exhibited a close homology with other cysteine proteases belonging to the C1A family.

  5. Type II transmembrane serine proteases as potential targets for cancer therapy

    PubMed Central

    Murray, Andrew S.; Varela, Fausto A.

    2016-01-01

    Carcinogenesis is accompanied by increased protein and activity levels of extracellular cell-surface proteases that are capable of modifying the tumor micro-environment by directly cleaving the extracellular matrix, as well as activating growth factors and proinflammatory mediators involved in proliferation and invasion of cancer cells, and recruitment of inflammatory cells. These complex processes ultimately potentiate neoplastic progression leading to local tumor cell invasion, entry into the vasculature, and metastasis to distal sites. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression. In this review the knowledge collected over the past two decades about the molecular mechanisms underlying the pro-cancerous properties of selected TTSPs will be summarized. Furthermore, we will discuss how these insights may facilitate the translation into clinical settings in the future by specifically targeting TTSPs as part of novel cancer treatment regimens. PMID:27078673

  6. Reaching the melting point: Degradative enzymes and protease inhibitors involved in baculovirus infection and dissemination.

    PubMed

    Ishimwe, Egide; Hodgson, Jeffrey J; Clem, Rollie J; Passarelli, A Lorena

    2015-05-01

    Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in "melting" or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process.

  7. Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies.

    PubMed

    Sabotič, Jerica; Ohm, Robin A; Künzler, Markus

    2016-01-01

    Fruiting bodies or sporocarps of dikaryotic (ascomycetous and basidiomycetous) fungi, commonly referred to as mushrooms, are often rich in entomotoxic and nematotoxic proteins that include lectins and protease inhibitors. These protein toxins are thought to act as effectors of an innate defense system of mushrooms against animal predators including fungivorous insects and nematodes. In this review, we summarize current knowledge about the structures, target molecules, and regulation of the biosynthesis of the best characterized representatives of these fungal defense proteins, including galectins, beta-trefoil-type lectins, actinoporin-type lectins, beta-propeller-type lectins and beta-trefoil-type chimerolectins, as well as mycospin and mycocypin families of protease inhibitors. We also present an overview of the phylogenetic distribution of these proteins among a selection of fungal genomes and draw some conclusions about their evolution and physiological function. Finally, we present an outlook for future research directions in this field and their potential applications in medicine and crop protection.

  8. Arabidopsis AtSerpin1, Crystal Structure and in Vivo Interaction with Its Target Protease RESPONSIVE TO DESICCATION-21 (RD21)

    SciTech Connect

    Lampl, Nardy; Budai-Hadrian, Ofra; Davydov, Olga; Joss, Tom V.; Harrop, Stephen J.; Curmi, Paul M.G.; Roberts, Thomas H.; Fluhr, Robert

    2010-05-25

    In animals, protease inhibitors of the serpin family are associated with many physiological processes, including blood coagulation and innate immunity. Serpins feature a reactive center loop (RCL), which displays a protease target sequence as a bait. RCL cleavage results in an irreversible, covalent serpin-protease complex. AtSerpin1 is an Arabidopsis protease inhibitor that is expressed ubiquitously throughout the plant. The x-ray crystal structure of recombinant AtSerpin1 in its native stressed conformation was determined at 2.2 {angstrom}. The electrostatic surface potential below the RCL was found to be highly positive, whereas the breach region critical for RCL insertion is an unusually open structure. AtSerpin1 accumulates in plants as a full-length and a cleaved form. Fractionation of seedling extracts by nonreducing SDS-PAGE revealed the presence of an additional slower migrating complex that was absent when leaves were treated with the specific cysteine protease inhibitor l-trans-epoxysuccinyl-l-leucylamido (4-guanidino)butane. Significantly, RESPONSIVE TO DESICCATION-21 (RD21) was the major protease labeled with the l-trans-epoxysuccinyl-l-leucylamido (4-guanidino)butane derivative DCG-04 in wild type extracts but not in extracts of mutant plants constitutively overexpressing AtSerpin1, indicating competition. Fractionation by nonreducing SDS-PAGE followed by immunoblotting with RD21-specific antibody revealed that the protease accumulated both as a free enzyme and in a complex with AtSerpin1. Importantly, both RD21 and AtSerpin1 knock-out mutants lacked the serpin-protease complex. The results establish that the major Arabidopsis plant serpin interacts with RD21. This is the first report of the structure and in vivo interaction of a plant serpin with its target protease.

  9. Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta.

    PubMed

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Zhang, Xiufeng; Wang, Yang; Zou, Zhen; Chen, Yunru; Blissard, Gary W; Kanost, Michael R; Jiang, Haobo

    2015-07-01

    Serine protease (SP) and serine protease homolog (SPH) genes in insects encode a large family of proteins involved in digestion, development, immunity, and other processes. While 68 digestive SPs and their close homologs are reported in a companion paper (Kuwar et al., in preparation), we have identified 125 other SPs/SPHs in Manduca sexta and studied their structure, evolution, and expression. Fifty-two of them contain cystine-stabilized structures for molecular recognition, including clip, LDLa, Sushi, Wonton, TSP, CUB, Frizzle, and SR domains. There are nineteen groups of genes evolved from relatively recent gene duplication and sequence divergence. Thirty-five SPs and seven SPHs contain 1, 2 or 5 clip domains. Multiple sequence alignment and molecular modeling of the 54 clip domains have revealed structural diversity of these regulatory modules. Sequence comparison with their homologs in Drosophila melanogaster, Anopheles gambiae and Tribolium castaneum allows us to classify them into five subfamilies: A are SPHs with 1 or 5 group-3 clip domains, B are SPs with 1 or 2 group-2 clip domains, C, D1 and D2 are SPs with a single clip domain in group-1a, 1b and 1c, respectively. We have classified into six categories the 125 expression profiles of SP-related proteins in fat body, brain, midgut, Malpighian tubule, testis, and ovary at different stages, suggesting that they participate in various physiological processes. Through RNA-Seq-based gene annotation and expression profiling, as well as intragenomic sequence comparisons, we have established a framework of information for future biochemical research of nondigestive SPs and SPHs in this model species. PMID:25530503

  10. Four Amino Acid Changes in HIV-2 Protease Confer Class-Wide Sensitivity to Protease Inhibitors

    PubMed Central

    Smith, Robert A.; Gottlieb, Geoffrey S.

    2015-01-01

    ABSTRACT Protease is essential for retroviral replication, and protease inhibitors (PI) are important for treating HIV infection. HIV-2 exhibits intrinsic resistance to most FDA-approved HIV-1 PI, retaining clinically useful susceptibility only to lopinavir, darunavir, and saquinavir. The mechanisms for this resistance are unclear; although HIV-1 and HIV-2 proteases share just 38 to 49% sequence identity, all critical structural features of proteases are conserved. Structural studies have implicated four amino acids in the ligand-binding pocket (positions 32, 47, 76, and 82). We constructed HIV-2ROD9 molecular clones encoding the corresponding wild-type HIV-1 amino acids (I32V, V47I, M76L, and I82V) either individually or together (clone PRΔ4) and compared the phenotypic sensitivities (50% effective concentration [EC50]) of mutant and wild-type viruses to nine FDA-approved PI. Single amino acid replacements I32V, V47I, and M76L increased the susceptibility of HIV-2 to multiple PI, but no single change conferred class-wide sensitivity. In contrast, clone PRΔ4 showed PI susceptibility equivalent to or greater than that of HIV-1 for all PI. We also compared crystallographic structures of wild-type HIV-1 and HIV-2 proteases complexed with amprenavir and darunavir to models of the PRΔ4 enzyme. These models suggest that the amprenavir sensitivity of PRΔ4 is attributable to stabilizing enzyme-inhibitor interactions in the P2 and P2′ pockets of the protease dimer. Together, our results show that the combination of four amino acid changes in HIV-2 protease confer a pattern of PI susceptibility comparable to that of HIV-1, providing a structural rationale for intrinsic HIV-2 PI resistance and resolving long-standing questions regarding the determinants of differential PI susceptibility in HIV-1 and HIV-2. IMPORTANCE Proteases are essential for retroviral replication, and HIV-1 and HIV-2 proteases share a great deal of structural similarity. However, only three of nine

  11. Diversity of Both the Cultivable Protease-Producing Bacteria and Bacterial Extracellular Proteases in the Coastal Sediments of King George Island, Antarctica

    PubMed Central

    Zhou, Ming-Yang; Wang, Guang-Long; Li, Dan; Zhao, Dian-Li; Qin, Qi-Long; Chen, Xiu-Lan; Chen, Bo; Zhou, Bai-Cheng; Zhang, Xi-Ying; Zhang, Yu-Zhong

    2013-01-01

    Protease-producing bacteria play a vital role in degrading sedimentary organic nitrogen. However, the diversity of these bacteria and their extracellular proteases in most regions remain unknown. In this paper, the diversity of the cultivable protease-producing bacteria and of bacterial extracellular proteases in the sediments of Maxwell Bay, King George Island, Antarctica was investigated. The cultivable protease-producing bacteria reached 105 cells/g in all 8 sediment samples. The cultivated protease-producing bacteria were mainly affiliated with the phyla Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria, and the predominant genera were Bacillus (22.9%), Flavobacterium (21.0%) and Lacinutrix (16.2%). Among these strains, Pseudoalteromonas and Flavobacteria showed relatively high protease production. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria were serine proteases or metalloproteases. These results begin to address the diversity of protease-producing bacteria and bacterial extracellular proteases in the sediments of the Antarctic Sea. PMID:24223990

  12. Crystal structure of the cysteine protease inhibitor 2 from Entamoeba histolytica: Functional convergence of a common protein fold

    SciTech Connect

    Casados-Vázquez, Luz E.; Lara-González, Samuel; Brieb, Luis G.

    2012-04-18

    Cysteine proteases (CP) are key pathogenesis and virulence determinants of protozoan parasites. Entamoeba histolytica contains at least 50 cysteine proteases; however, only three (EhCP1, EhCP2 and EhCP5) are responsible for approximately 90% of the cysteine protease activity in this parasite. CPs are expressed as inactive zymogens. Because the processed proteases are potentially cytotoxic, protozoan parasites have developed mechanisms to regulate their activity. Inhibitors of cysteine proteases (ICP) of the chagasin-like inhibitor family (MEROPS family I42) were recently identified in bacteria and protozoan parasites. E. histolytica contains two ICP-encoding genes of the chagasin-like inhibitor family. EhICP1 localizes to the cytosol, whereas EhICP2 is targeted to phagosomes. Herein, we report two crystal structures of EhICP2. The overall structure of EhICP2 consists of eight {beta}-strands and closely resembles the immunoglobulin fold. A comparison between the two crystal forms of EhICP2 indicates that the conserved BC, DE and FG loops form a flexible wedge that may block the active site of CPs. The positively charged surface of the wedge-forming loops in EhICP2 contrasts with the neutral surface of the wedge-forming loops in chagasin. We postulate that the flexibility and positive charge observed in the DE and FG loops of EhICP2 may be important to facilitate the initial binding of this inhibitor to the battery of CPs present in E. histolytica.

  13. Economic Methods of Ginger Protease'sextraction and Purification

    NASA Astrophysics Data System (ADS)

    Qiao, Yuanyuan; Tong, Junfeng; Wei, Siqing; Du, Xinyong; Tang, Xiaozhen

    This article reports the ginger protease extraction and purification methods from fresh ginger rhizome. As to ginger protease extraction, we adapt the steps of organic solvent dissolving, ammonium sulfate depositing and freeze-drying, and this method can attain crude enzyme powder 0.6% weight of fresh ginger rhizome. The purification part in this study includes two steps: cellulose ion exchange (DEAE-52) and SP-Sephadex 50 chromatography, which can purify crude ginger protease through ion and molecular weight differences respectively.

  14. A preliminary neutron diffraction analysis of Achromobacter protease I

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yuki; Masaki, Takeharu; Yamada, Taro; Kurihara, Kazuo; Tanaka, Ichiro; Niimura, Nobuo

    2010-11-01

    Achromobacter protease I (API, E.C. 3.4.21.50) is one of the serine proteases produced by Achromobacter lyticus M497-1. API is distinct from the other tripsin type protease in its lysine specificity. The neutron structure analysis of catalytic triad with Trp169 and His210 was presented. His57 was double protonated and formed hydrogen bonds to Ser194Oγ and Asp113Oδ1, Oδ2.

  15. Role of Protease-Inhibitors in Ocular Diseases.

    PubMed

    Pescosolido, Nicola; Barbato, Andrea; Pascarella, Antonia; Giannotti, Rossella; Genzano, Martina; Nebbioso, Marcella

    2014-01-01

    It has been demonstrated that the balance between proteases and protease-inhibitors system plays a key role in maintaining cellular and tissue homeostasis. Indeed, its alteration has been involved in many ocular and systemic diseases. In particular, research has focused on keratoconus, corneal wounds and ulcers, keratitis, endophthalmitis, age-related macular degeneration, Sorsby fundus dystrophy, loss of nerve cells and photoreceptors during optic neuritis both in vivo and in vitro models. Protease-inhibitors have been extensively studied, rather than proteases, because they may represent a therapeutic approach for some ocular diseases. The protease-inhibitors mainly involved in the onset of the above-mentioned ocular pathologies are: α2-macroglobulin, α1-proteinase inhibitor (α1-PI), metalloproteinase inhibitor (TIMP), maspin, SERPINA3K, SERPINB13, secretory leukocyte protease inhibitor (SLPI), and calpeptin. This review is focused on the several characteristics of dysregulation of this system and, particularly, on a possible role of proteases and protease-inhibitors in molecular remodeling that may lead to some ocular diseases. Recently, researchers have even hypothesized a possible therapeutic effect of the protease-inhibitors in the treatment of injured eye in animal models. PMID:25493637

  16. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    SciTech Connect

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-09-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: > Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. > Bt-VSP activates prothrombin. > Bt-VSP directly degrades fibrinogen into fibrin degradation products. > Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  17. Extracellular Bacterial Proteases in Chronic Wounds: A Potential Therapeutic Target?

    PubMed Central

    Suleman, Louise

    2016-01-01

    Significance: Bacterial biofilms are considered to be responsible for over 80% of persistent infections, including chronic lung infections, osteomyelitis, periodontitis, endocarditis, and chronic wounds. Over 60% of chronic wounds are colonized with bacteria that reside within a biofilm. The exaggerated proteolytic environment of chronic wounds, more specifically elevated matrix metalloproteinases, is thought to be one of the possible reasons as to why chronic wounds fail to heal. However, the role of bacterial proteases within chronic wounds is not fully understood. Recent Advances: Recent research has shown that bacterial proteases can enable colonization and facilitate bacterial immune evasion. The inhibition of bacterial proteases such as Pseudomonas aeruginosa elastase B (LasB) has resulted in the disruption of the bacterial biofilm in vitro. P. aeruginosa is thought to be a key pathogen in chronic wound infection, and therefore, the disruption of these biofilms, potentially through the targeting of P. aeruginosa bacterial proteases, is an attractive therapeutic endeavor. Critical Issues: Disrupting biofilm formation through the inhibition of bacterial proteases may lead to the dissemination of bacteria from the biofilm, allowing planktonic cells to colonize new sites within the wound. Future Directions: Despite a plethora of evidence supporting the role of bacterial proteases as virulence factors in infection, there remains a distinct lack of research into the effect of bacterial proteases in chronic wounds. To assess the viability of targeting bacterial proteases, future research should aim to understand the role of these proteases in a variety of chronic wound subtypes. PMID:27785379

  18. Role of Protease-Inhibitors in Ocular Diseases.

    PubMed

    Pescosolido, Nicola; Barbato, Andrea; Pascarella, Antonia; Giannotti, Rossella; Genzano, Martina; Nebbioso, Marcella

    2014-01-01

    It has been demonstrated that the balance between proteases and protease-inhibitors system plays a key role in maintaining cellular and tissue homeostasis. Indeed, its alteration has been involved in many ocular and systemic diseases. In particular, research has focused on keratoconus, corneal wounds and ulcers, keratitis, endophthalmitis, age-related macular degeneration, Sorsby fundus dystrophy, loss of nerve cells and photoreceptors during optic neuritis both in vivo and in vitro models. Protease-inhibitors have been extensively studied, rather than proteases, because they may represent a therapeutic approach for some ocular diseases. The protease-inhibitors mainly involved in the onset of the above-mentioned ocular pathologies are: α2-macroglobulin, α1-proteinase inhibitor (α1-PI), metalloproteinase inhibitor (TIMP), maspin, SERPINA3K, SERPINB13, secretory leukocyte protease inhibitor (SLPI), and calpeptin. This review is focused on the several characteristics of dysregulation of this system and, particularly, on a possible role of proteases and protease-inhibitors in molecular remodeling that may lead to some ocular diseases. Recently, researchers have even hypothesized a possible therapeutic effect of the protease-inhibitors in the treatment of injured eye in animal models.

  19. Intracellular alkaline proteases produced by thermoacidophiles: detection of protease heterogeneity by gelatin zymography and polymerase chain reaction (PCR).

    PubMed

    Kocabiyik, Semra; Erdem, Bilge

    2002-08-01

    In this study 24 thermoacidophilic archeal and bacterial strains isolated from hot-springs and hot-soils were screened for their ability to produce intracellular alkaline proteases. The protease activities of the strains, based on azocasein hydrolysis, showed a variation from 0.6 to 5.1 U. The cell extracts of three most potent producers were further examined and it was found that their proteases exhibited maximum activity at 60-70 degrees C and showed a pH optimum over a range of pH 7.0-8.5. Gelatin zymography revealed that two of the selected archeal strains produced multiple active SDS-resistant proteases. On the other hand, PCR amplification of alkaline serine protease gene sequences of total DNA from all isolates yielded four distinct amplification fragments of 650, 450, 400 and 300 bp, which might have been derived from different serine protease genes.

  20. Origin and Diversification of Meprin Proteases.

    PubMed

    Marín, Ignacio

    2015-01-01

    Meprins are astacin metalloproteases with a characteristic, easily recognizable structure, given that they are the only proteases with both MAM and MATH domains plus a transmembrane region. So far assumed to be vertebrate-specific, it is shown here, using a combination of evolutionary and genomic analyses, that meprins originated before the urochordates/vertebrates split. In particular, three genes encoding structurally typical meprin proteins are arranged in tandem in the genome of the urochordate Ciona intestinalis. Phylogenetic analyses showed that the protease and MATH domains present in the meprin-like proteins encoded by the Ciona genes are very similar in sequence to the domains found in vertebrate meprins, which supports them having a common origin. While many vertebrates have the two canonical meprin-encoding genes orthologous to human MEP1A and MEP1B (which respectively encode for the proteins known as meprin α and meprin β), a single gene has been found so far in the genome of the chondrichthyan fish Callorhinchus milii, and additional meprin-encoding genes are present in some species. Particularly, a group of bony fish species have genes encoding highly divergent meprins, here named meprin-F. Genes encoding meprin-F proteins, derived from MEP1B genes, are abundant in some species, as the Amazon molly, Poecilia formosa, which has 7 of them. Finally, it is confirmed that the MATH domains of meprins are very similar to the ones in TRAF ubiquitin ligases, which suggests that meprins originated when protease and TRAF E3-encoding sequences were combined. PMID:26288188

  1. Purification of Pseudomonas aeruginosa proteases and microscopic characterization of pseudomonal protease-induced rabbit corneal damage.

    PubMed Central

    Kreger, A S; Gray, L D

    1978-01-01

    Extracellular proteases of three cornea-virulent strains of Pseudomonas aeruginosa were isolated by sequential ammonium sulfate precipitation, Ultrogel AcA 54 gel filtration, and flat-bed isoelectric focusing. The purity of the preparations was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis , thin-layer isoelectric focusing in polyacrylamide gel, immunodiffusion and immunoelectrophoretic procedures, and tests for the presence of other known pseudomonal products. Light and electron microscopic examination of rabbit corneal lesions observed 4 to 6 h after the intracorneal injection of submicrogram amounts of the proteases revealed: (i) degeneration and necrosis of epithelium, endothelium, and keratocytes, (ii) infiltration, degeneration, and necrosis of polymorphonuclear leukocytes, (iii) loss of the characteristic weblike pattern, colloidal iron staining, and ruthenium red staining of the stromal proteoglycan ground substance, (iv) dispersal of strucutrally normal appearing collagen fibrils, ground substance, (iv) dispersal of structurally normal appearing collagen fibrils, and (v) accumulation of plasma proteins and fibrin in the necrotic corneas. These structural alterations are very similar to those observed previously during experimental P. aeruginosa keratitis, and this similarity supports the idea that pseudomonal proteases are responsible, at least in part, for the rapid and extensive liquefaction necrosis characteristic of pseudomonal-induced keratitis. In addition, the results support the idea that pseudomonal proteases elicit severe corneal damage by causing the loss of the corneal proteoglycan ground substance, thus resulting in dispersal of undamaged collagen fibrils, weakening of the corneal stroma, and subsequent descemetocele formation and corneal perforation by the anterior chamber pressure. Images PMID:415981

  2. A bumblebee (Bombus ignitus) venom serine protease inhibitor that acts as a microbial serine protease inhibitor.

    PubMed

    Wan, Hu; Kim, Bo Yeon; Lee, Kwang Sik; Yoon, Hyung Joo; Lee, Kyung Yong; Jin, Byung Rae

    2014-01-01

    Serine protease inhibitors from bumblebee venom have been shown to block plasmin activity. In this study, we identified the protein BiVSPI from the venom of Bombus ignitus to be a serine protease inhibitor and an antimicrobial factor. BiVSPI is a 55-amino acid mature peptide with ten conserved cysteine residues and a P1 methionine residue. BiVSPI is expressed in the venom gland and also found in the venom as an 8-kDa peptide. Recombinant BiVSPI that was expressed in baculovirus-infected insect cells exhibited inhibitory activity against chymotrypsin but not trypsin. BiVSPI also inhibited microbial serine proteases, such as subtilisin A (Ki=6.57nM) and proteinase K (Ki=7.11nM). In addition, BiVSPI was shown to bind directly to Bacillus subtilis, Bacillus thuringiensis, and Beauveria bassiana but not to Escherichia coli. Consistent with these results, BiVSPI exhibited antimicrobial activity against Gram-positive bacteria and fungi. These findings provide evidence for a novel serine protease inhibitor in bumblebee venom that has antimicrobial functions.

  3. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    SciTech Connect

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  4. Rigidity analysis of HIV-1 protease

    NASA Astrophysics Data System (ADS)

    Heal, J. W.; Wells, S. A.; Jimenez-Roldan, E.; Freedman, R. F.; Römer, R. A.

    2011-03-01

    We present a rigidity analysis on a large number of X-ray crystal structures of the enzyme HIV-1 protease using the 'pebble game' algorithm of the software FIRST. We find that although the rigidity profile remains similar across a comprehensive set of high resolution structures, the profile changes significantly in the presence of an inhibitor. Our study shows that the action of the inhibitors is to restrict the flexibility of the β-hairpin flaps which allow access to the active site. The results are discussed in the context of full molecular dynamics simulations as well as data from NMR experiments.

  5. Endogenous Protease Activation of ENaC

    PubMed Central

    Adebamiro, Adedotun; Cheng, Yi; Johnson, John P.; Bridges, Robert J.

    2005-01-01

    Endogenous serine proteases have been reported to control the reabsorption of Na+ by kidney- and lung-derived epithelial cells via stimulation of electrogenic Na+ transport mediated by the epithelial Na+ channel (ENaC). In this study we investigated the effects of aprotinin on ENaC single channel properties using transepithelial fluctuation analysis in the amphibian kidney epithelium, A6. Aprotinin caused a time- and concentration-dependent inhibition (84 ± 10.5%) in the amiloride-sensitive sodium transport (INa) with a time constant of 18 min and half maximal inhibition constant of 1 μM. Analysis of amiloride analogue blocker–induced fluctuations in INa showed linear rate–concentration plots with identical blocker on and off rates in control and aprotinin-inhibited conditions. Verification of open-block kinetics allowed for the use of a pulse protocol method (Helman, S.I., X. Liu, K. Baldwin, B.L. Blazer-Yost, and W.J. Els. 1998. Am. J. Physiol. 274:C947–C957) to study the same cells under different conditions as well as the reversibility of the aprotinin effect on single channel properties. Aprotinin caused reversible changes in all three single channel properties but only the change in the number of open channels was consistent with the inhibition of INa. A 50% decrease in INa was accompanied by 50% increases in the single channel current and open probability but an 80% decrease in the number of open channels. Washout of aprotinin led to a time-dependent restoration of INa as well as the single channel properties to the control, pre-aprotinin, values. We conclude that protease regulation of INa is mediated by changes in the number of open channels in the apical membrane. The increase in the single channel current caused by protease inhibition can be explained by a hyperpolarization of the apical membrane potential as active Na+ channels are retrieved. The paradoxical increase in channel open probability caused by protease inhibition will require further

  6. Construction of dengue virus protease expression plasmid and in vitro protease assay for screening antiviral inhibitors.

    PubMed

    Lai, Huiguo; Teramoto, Tadahisa; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus serotypes 1-4 (DENV1-4) are mosquito-borne human pathogens of global significance causing ~390 million cases annually worldwide. The virus infections cause in general a self-limiting disease, known as dengue fever, but occasionally also more severe forms, especially during secondary infections, dengue hemorrhagic fever and dengue shock syndrome causing ~25,000 deaths annually. The DENV genome contains a single-strand positive sense RNA, approximately 11 kb in length. The 5'-end has a type I cap structure. The 3'-end has no poly(A) tail. The viral RNA has a single long open reading frame that is translated by the host translational machinery to yield a polyprotein precursor. Processing of the polyprotein precursor occurs co-translationally by cellular proteases and posttranslationally by the viral serine protease in the endoplasmic reticulum (ER) to yield three structural proteins (capsid (C), precursor membrane (prM), and envelope (E) and seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The active viral protease consists of both NS2B, an integral membrane protein in the ER, and the N-terminal part of NS3 (180 amino acid residues) that contains the trypsin-like serine protease domain having a catalytic triad of H51, D75, and S135. The C-terminal part of NS3, ~170-618 amino acid residues, encodes an NTPase/RNA helicase and 5'-RNA triphosphatase activities; the latter enzyme is required for the first step in 5'-capping. The cleavage sites of the polyprotein by the viral protease consist of two basic amino acid residues such as KR, RR, or QR, followed by short chain amino acid residues, G, S, or T. Since the cleavage of the polyprotein by the viral protease is absolutely required for assembly of the viral replicase, blockage of NS2B/NS3pro activity provides an effective means for designing dengue virus (DENV) small-molecule therapeutics. Here we describe the screening of small-molecule inhibitors against DENV2 protease. PMID

  7. Hemostatic, milk clotting and blood stain removal potential of cysteine proteases from Calotropis gigantea (L.) R. Br. Latex

    PubMed Central

    Bindhu, Omana Sukumaran; Singh, Maheshwari Kumari

    2014-01-01

    Introduction: Plant latex is a natural source of biologically active compounds and several hydrolytic enzymes responsible for their diverse health benefits. Recent past has witnessed substantial progress in understanding their supplementary industrial and pharmaceutical utility. Calotropis gigantea is one of the important latex producing plants belonging to asclepediaceae family with wide ethnopharmacological applications and is rich in proteolytic enzymes. Present study investigates hemostatic, milk clotting and blood stain removal potential of C. gigantea latex proteases. Materials and Methods: The protease activity of crude enzyme (CE), obtained by centrifugation followed by ammonium sulphate precipitation and dialysis, was assayed using casein as the substrate. Effect of pH, temperature and specific inhibitors on protease activity was determined. Native PAGE and in gel protease activity of CE was performed. Hemostatic (Fibrinogen polymerization, fibrinogen agarose plate and blood clot lysis assays), milk clotting and blood stain removal efficacies of CE were determined. Results: CE exhibited high caseinolytic activity. Enzyme activity was optimum at 37-50ºC and pH 8.0. Fibrinogen polymerization assay showed concentration dependent increase in turbidity indicating thrombin like activity which was further confirmed by fibrinogen agarose plate assays. Clot lysis assay indicated 92.41% thrombolysis by CE in 90 min. CE also revealed significantly high ratio of milk clotting to protease activity (Milk Clotting Index, MCI = 827.59 ± 1.52). Complete destaining of blood stained fabric was observed when incubated with 1% detergent incorporated with 0.1mg/ml CE. The study highlights and validates the compound application potential of latex cysteine proteases from C. gigantea. PMID:24991114

  8. Isolation and characterization of a cysteine protease from the latex of Araujia hortorum fruits.

    PubMed

    Priolo, N; Morcelle del Valle, S; Arribére, M C; López, L; Caffini, N

    2000-01-01

    A new protease (araujiain h I) was purified to mass spectroscopy homogeneity from the latex of Araujia hortorum Fourn. (Asclepiadaceae) fruits by ultracentrifugation and ion exchange chromatography. The enzyme has a molecular mass of 24,031 (mass spectrometry) and an iso-electric point higher than 9.3. The optimum pH range for casein hydrolysis was 8.0-9.5. The enzyme showed remarkable caseinolytic activity at high temperatures, although its thermal stability decayed rapidly. The proteinase was activated by thiol compounds and inhibited by common thiol-blocking reagents, particularly E-64 and HgCl2, suggesting the enzyme belongs to the cysteine protease family. The concentration of active sites as determined by titration with E-64 was 3.3 microM. When assayed on N-alpha-CBZ-amino acid-p-nitrophenyl esters, the enzyme showed higher preference for the glutamine derivative, followed by those of alanine, asparagine, glycine, and leucine, in decreasing order. Partial homology (36-48%) with other plant cysteine proteinases was observed in an internal fragment obtained by Protease V8 treatment. PMID:10882171

  9. Comparison of phytolacain G, a cysteine protease from fruit of Phytolacca americana, with phytolacain R.

    PubMed

    Uchikoba, T; Yonezawa, H; Shimada, M; Kaneda, M

    1998-10-01

    The enzymatic properties of phytolacain G, a protease isolated from green fruit of pokeweed, were compared with those of phytolacain R, a protease obtained from ripe fruit. The optimum pH of phytolacain G was 7.5-8.0 at 37 degrees C using casein as the substrate. The enzyme was strongly inhibited by iodoacetic acid and p-chloromercuribenzoic acid, but not by diisopropyl fluorophosphate or EDTA. These results indicated that phytolacain G was a cysteine protease, like phytolacain R. Nine sites of oxidized insulin B-chain were cleaved by phytolacain G during 20 h of hydrolysis. The six sites cleaved by phytolacain G were also cleaved by phytolacain R. The substrate specificity of phytolacain G was broad, but the preference for hydrophobic residues at the P2 position was similar to the substrate specificity of papain. The amino-terminal sequence of phytolacain G was not identical with that of phytolacain R; however, the amino acid residues conserved in the papain family were also conserved in this enzyme.

  10. Cysteine proteases from the Asclepiadaceae plants latex exhibited thrombin and plasmin like activities.

    PubMed

    Shivaprasad, H V; Riyaz, M; Venkatesh Kumar, R; Dharmappa, K K; Tarannum, Shaista; Siddesha, J M; Rajesh, R; Vishwanath, B S

    2009-10-01

    In the present study we evaluated the presence of cysteine protease from the latex of four plants Asclepias curassavica L., Calotropis gigantea R.Br., Pergularia extensa R.Br. and Cynanchum puciflorum R.Br. belongs to the family Asclepiadaceae. Cysteine proteases from these plants latex exhibited both thrombin and plasmin like activities. Latex enzyme fraction in a concentration dependent manner induced the formation of clot in citrated blood plasma. Direct incubation of fibrinogen with latex enzyme fraction resulted in the formation of fibrin clot similar to thrombin enzyme. However prolonged incubation resulted in degradation of the formed fibrin clot suggesting plasmin like activity. Latex enzyme fraction preferentially hydrolyzed Aalpha and Bbeta chains of fibrinogen to form fibrin clot. Latex enzyme fraction also hydrolyzed the subunits of fully cross linked fibrin efficiently, the order of hydrolysis was alpha-polymer > alpha-chains > beta-chain and gamma-gamma dimer. Cysteine proteases from all the four Asclepiadaceae plants latex exhibited similar action on fibrinogen and fibrin. This study scientifically validate the use of plant latex in stop bleeding and wound healing by traditional healers all over the world.

  11. Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease.

    PubMed

    Takaya, Akiko; Tabuchi, Fumiaki; Tsuchiya, Hiroko; Isogai, Emiko; Yamamoto, Tomoko

    2008-06-01

    Lon protease, a member of the ATP-dependent protease family, regulates numerous cellular systems by degrading specific substrates. Here, we demonstrate that Lon is involved in the regulation of quorum-sensing (QS) signaling systems in Pseudomonas aeruginosa, an opportunistic human pathogen. The organism has two acyl-homoserine lactone (HSL)-mediated QS systems, LasR/LasI and RhlR/RhlI. Many reports have demonstrated that these two systems are regulated and interconnected by global regulators. We found that lon-disrupted cells overproduce pyocyanin, the biosynthesis of which depends on the RhlR/RhlI system, and show increased levels of a transcriptional regulator, RhlR. The QS systems are organized hierarchically: the RhlR/RhlI system is subordinate to LasR/LasI. To elucidate the mechanism by which Lon negatively regulates RhlR/RhlI, we examined the effect of lon disruption on the LasR/LasI system. We found that Lon represses the expression of LasR/LasI by degrading LasI, an HSL synthase, leading to negative regulation of the RhlR/RhlI system. RhlR/RhlI was also shown to be regulated by Lon independently of LasR/LasI via regulation of RhlI, an HSL synthase. In view of these findings, it is suggested that Lon protease is a powerful negative regulator of both HSL-mediated QS systems in P. aeruginosa.

  12. Midgut serine proteases and alternative host plant utilization in Pieris brassicae L.

    PubMed Central

    Kumar, Rakesh; Bhardwaj, Usha; Kumar, Pawan; Mazumdar-Leighton, Sudeshna

    2015-01-01

    Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of the world. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolum majus L., of the family Tropaeolaceae). Proteolytic digestion was studied in larvae feeding on multiple hosts. Fourth instars were collected from cauliflower fields before transfer onto detached, aerial tissues of selected host plants in the lab. Variable levels of midgut proteases were detected in larvae fed on different hosts using protein substrates (casein and recombinant RBCL cloned from cauliflower) and diagnostic, synthetic substrates. Qualitative changes in midgut trypsin activities and quantitative changes in midgut chymotrypsin activities were implicated in physiological adaptation of larvae transferred to T. majus. Midgut proteolytic activities were inhibited to different extents by serine protease inhibitors, including putative trypsin inhibitors isolated from herbivore-attacked and herbivore-free leaves of cauliflower (CfTI) and T. majus (TpTI). Transfer of larvae to T. majus significantly influenced feeding parameters but not necessarily when transferred to different tissues of the same host. Results obtained are relevant for devising sustainable pest management strategies, including transgenic approaches using genes encoding plant protease inhibitors. PMID:25873901

  13. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis.

    PubMed

    Duhaime, Michael J; Page, Khaliph O; Varela, Fausto A; Murray, Andrew S; Silverman, Michael E; Zoratti, Gina L; List, Karin

    2016-07-01

    Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro-cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin-like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non-proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas.

  14. Cloning, expression, and characterization of protease-resistant xylanase from Streptomyces fradiae var. k11.

    PubMed

    Li, Ning; Yang, Peilong; Wang, Yaru; Luo, Huiying; Meng, Kun; Wu, Ningfeng; Fan, Yunliu; Yao, Bin

    2008-03-01

    The gene SfXyn10, which encodes a protease-resistant xylanase, was isolated using colony PCR screening from a genomic library of a feather-degrading bacterial strain Streptomyces fradiae var. k11. The full-length gene consists of 1,437 bp and encodes 479 amino acids, which includes 41 residues of a putative signal peptide at its N terminus. The amino acid sequence shares the highest similarity (80%) to the endo-1,4-beta-xylanase from Streptomyces coelicolor A3, which belongs to the glycoside hydrolase family 10. The gene fragment encoding the mature xylanase was expressed in Escherichia coli BL21 (DE3). The recombinant protein was purified to homogeneity by acetone precipitation and anion-exchange chromatography, and subsequently characterized. The optimal pH and temperature for the purified recombinant enzyme were 7.8 and 60 degrees , respectively. The enzyme showed stability over a pH range of 4-10. The kinetic values on oat spelt xylan and birchwood xylan substrates were also determined. The enzyme activity was enhanced by Fe2+ and strongly inhibited by Hg2+ and SDS. The enzyme also showed resistance to neutral and alkaline proteases. Therefore, these characteristics suggest that SfXyn10 could be an important candidate for protease-resistant mechanistic research and has potential applications in the food industry, cotton scouring, and improving animal nutrition.

  15. Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors

    PubMed Central

    Stapels, Daphne A. C.; Ramyar, Kasra X.; Bischoff, Markus; von Köckritz-Blickwede, Maren; Milder, Fin J.; Ruyken, Maartje; Eisenbeis, Janina; McWhorter, William J.; Herrmann, Mathias; van Kessel, Kok P. M.; Geisbrecht, Brian V.; Rooijakkers, Suzan H. M.

    2014-01-01

    Neutrophils are indispensable for clearing infections with the prominent human pathogen Staphylococcus aureus. Here, we report that S. aureus secretes a family of proteins that potently inhibits the activity of neutrophil serine proteases (NSPs): neutrophil elastase (NE), proteinase 3, and cathepsin G. The NSPs, but not related serine proteases, are specifically blocked by the extracellular adherence protein (Eap) and the functionally orphan Eap homologs EapH1 and EapH2, with inhibitory-constant values in the low-nanomolar range. Eap proteins are together essential for NSP inhibition by S. aureus in vitro and promote staphylococcal infection in vivo. The crystal structure of the EapH1/NE complex showed that Eap molecules constitute a unique class of noncovalent protease inhibitors that occlude the catalytic cleft of NSPs. These findings increase our insights into the complex pathogenesis of S. aureus infections and create opportunities to design novel treatment strategies for inflammatory conditions related to excessive NSP activity. PMID:25161283

  16. Counter Selection Substrate Library Strategy for Developing Specific Protease Substrates and Probes.

    PubMed

    Poreba, Marcin; Solberg, Rigmor; Rut, Wioletta; Lunde, Ngoc Nguyen; Kasperkiewicz, Paulina; Snipas, Scott J; Mihelic, Marko; Turk, Dusan; Turk, Boris; Salvesen, Guy S; Drag, Marcin

    2016-08-18

    Legumain (AEP) is a lysosomal cysteine protease that was first characterized in leguminous seeds and later discovered in higher eukaryotes. AEP upregulation is linked to a number of diseases including inflammation, arteriosclerosis, and tumorigenesis. Thus this protease is an excellent molecular target for the development of new chemical markers. We deployed a hybrid combinatorial substrate library (HyCoSuL) approach to obtain P1-Asp fluorogenic substrates and biotin-labeled inhibitors that targeted legumain. Since this approach led to probes that were also recognized by caspases, we introduced a Counter Selection Substrate Library (CoSeSuL) approach that biases the peptidic scaffold against caspases, thus delivering highly selective legumain probes. The selectivity of these tools was validated using M38L and HEK293 cells. We also propose that the CoSeSuL methodology can be considered as a general principle in the design of selective probes for other protease families where selectivity is difficult to achieve by conventional sequence-based profiling.

  17. Trypsin causes platelet activation independently of known protease-activated receptors

    PubMed Central

    Mao, Yingying; Kunapuli, Satya P.

    2014-01-01

    To identify a physiological agonist of PAR3, we used PAR4 null murine platelets, which were known to express only PAR3. In this study, we tested several proteases and found that trypsin, but not heat-inactivated trypsin, activated PAR4 null murine platelets. Even at high concentrations, trypsin caused shape change without increasing intracellular calcium levels in PAR4 null murine platelets. Consistent with this result, the Gq inhibitor YM-254890 had no effect on trypsin-induced shape change. However, trypsin-induced platelet shape change was abolished by either p160ROCK inhibitor, Y27632 or H1152. Furthermore, trypsin caused phosphorylation of myosin light chain (Thr18), but not Akt or Erk. Surprisingly, trypsin caused a similar shape change in PAR4-desensitized PAR3 null murine platelets as in PAR4 null murine platelets, indicating that trypsin did not activate PAR3 to cause shape change. More interestingly, the Src family kinase (SFK) inhibitor PP2 abolished trypsin-induced, but not AYPGKF-induced, shape change. Hence, trypsin activated a novel signaling pathway through RhoA/p160ROCK and was regulated by SFKs. In conclusion, our study demonstrates a novel protease signaling pathway in platelets that is independent of PARs. This protease-induced novel signaling pathway regulates platelet shape change through SFKs and p160ROCK. PMID:24030758

  18. Counter Selection Substrate Library Strategy for Developing Specific Protease Substrates and Probes.

    PubMed

    Poreba, Marcin; Solberg, Rigmor; Rut, Wioletta; Lunde, Ngoc Nguyen; Kasperkiewicz, Paulina; Snipas, Scott J; Mihelic, Marko; Turk, Dusan; Turk, Boris; Salvesen, Guy S; Drag, Marcin

    2016-08-18

    Legumain (AEP) is a lysosomal cysteine protease that was first characterized in leguminous seeds and later discovered in higher eukaryotes. AEP upregulation is linked to a number of diseases including inflammation, arteriosclerosis, and tumorigenesis. Thus this protease is an excellent molecular target for the development of new chemical markers. We deployed a hybrid combinatorial substrate library (HyCoSuL) approach to obtain P1-Asp fluorogenic substrates and biotin-labeled inhibitors that targeted legumain. Since this approach led to probes that were also recognized by caspases, we introduced a Counter Selection Substrate Library (CoSeSuL) approach that biases the peptidic scaffold against caspases, thus delivering highly selective legumain probes. The selectivity of these tools was validated using M38L and HEK293 cells. We also propose that the CoSeSuL methodology can be considered as a general principle in the design of selective probes for other protease families where selectivity is difficult to achieve by conventional sequence-based profiling. PMID:27478158

  19. Viral proteases as targets for drug design.

    PubMed

    Skoreński, Marcin; Sieńczyk, Marcin

    2013-01-01

    In order to productively infect a host, viruses must enter the cell and force host cell replication mechanisms to produce new infectious virus particles. The success of this process unfortunately results in disease progression and, in the case of infection with many viral species, may cause mortality. The discoveries of Louis Pasteur and Edward Jenner led to one of the greatest advances in modern medicine - the development of vaccines that generate long-lasting memory immune responses to combat viral infection. Widespread use of vaccines has reduced mortality and morbidity associated with viral infection and, in some cases, has completely eradicated virus from the human population. Unfortunately, several viral species maintain a significant ability to mutate and "escape" vaccine-induced immune responses. Thus, novel anti-viral agents are required for treatment and prevention of viral disease. Targeting proteases that are crucial in the viral life cycle has proven to be an effective method to control viral infection, and this avenue of investigation continues to generate anti-viral treatments. Herein, we provide the reader with a brief history as well as a comprehensive review of the most recent advances in the design and synthesis of viral protease inhibitors. PMID:23016690

  20. Broad-Spectrum Allosteric Inhibition of Herpesvirus Proteases

    PubMed Central

    2015-01-01

    Herpesviruses rely on a homodimeric protease for viral capsid maturation. A small molecule, DD2, previously shown to disrupt dimerization of Kaposi’s sarcoma-associated herpesvirus protease (KSHV Pr) by trapping an inactive monomeric conformation and two analogues generated through carboxylate bioisosteric replacement (compounds 2 and 3) were shown to inhibit the associated proteases of all three human herpesvirus (HHV) subfamilies (α, β, and γ). Inhibition data reveal that compound 2 has potency comparable to or better than that of DD2 against the tested proteases. Nuclear magnetic resonance spectroscopy and a new application of the kinetic analysis developed by Zhang and Poorman [Zhang, Z. Y., Poorman, R. A., et al. (1991) J. Biol. Chem. 266, 15591–15594] show DD2, compound 2, and compound 3 inhibit HHV proteases by dimer disruption. All three compounds bind the dimer interface of other HHV proteases in a manner analogous to binding of DD2 to KSHV protease. The determination and analysis of cocrystal structures of both analogues with the KSHV Pr monomer verify and elaborate on the mode of binding for this chemical scaffold, explaining a newly observed critical structure–activity relationship. These results reveal a prototypical chemical scaffold for broad-spectrum allosteric inhibition of human herpesvirus proteases and an approach for the identification of small molecules that allosterically regulate protein activity by targeting protein–protein interactions. PMID:24977643

  1. Effect of proteases on the. beta. -thromboglobulin radioimmunoassay

    SciTech Connect

    Donlon, J.A.; Helgeson, E.A.; Donlon, M.A.

    1985-02-11

    Rat peritoneal mast cells and mast cell granules were evaluated by radioimmunoassay for the presence of ..beta..-thromboglobulin and platelet factor 4. The initial assays indicated that a ..beta..-thromboglobulin cross reacting material was released from mast cells by compound 48/80 in a similar dose-dependent manner as histamine release. The material was also found to be associated with purified granules. However, the use of protease inhibitors in the buffers completely abolished the positive assays. Further evaluation of the effects of various proteases on the ..beta..-thromboglobulin assay indicated that elastase would also generate a false positive assay which could then be neutralized by the use of ..cap alpha../sub 1/-antitrypsin as a protease inhibitor. There was no protease effect on the platelet factor 4 radioimmunoassay which always showed no detectable amounts with mast cells, granules or proteases. These results clearly indicate the artifactual positive assays which can arise when using certain radioimmunoassay tests in the presence of cell proteases. The use of protease inhibitors is a necessary control when applying a radioimmunoassay to a system with potentially active proteases. 24 references, 2 figures, 4 tables.

  2. Expression and characterization of Coprothermobacter proteolyticus alkaline serine protease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TECHNICAL ABSTRACT A putative protease gene (aprE) from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated the enzyme had...

  3. The crystal structure of the cysteine protease Xylellain from Xylella fastidiosa reveals an intriguing activation mechanism.

    PubMed

    Leite, Ney Ribeiro; Faro, Aline Regis; Dotta, Maria Amélia Oliva; Faim, Livia Maria; Gianotti, Andreia; Silva, Flavio Henrique; Oliva, Glaucius; Thiemann, Otavio Henrique

    2013-02-14

    Xylella fastidiosa is responsible for a wide range of economically important plant diseases. We report here the crystal structure and kinetic data of Xylellain, the first cysteine protease characterized from the genome of the pathogenic X. fastidiosa strain 9a5c. Xylellain has a papain-family fold, and part of the N-terminal sequence blocks the enzyme active site, thereby mediating protein activity. One novel feature identified in the structure is the presence of a ribonucleotide bound outside the active site. We show that this ribonucleotide plays an important regulatory role in Xylellain enzyme kinetics, possibly functioning as a physiological mediator.

  4. Identification of a new soybean Kunitz trypsin inhibitor mutation and its effect on Bowman-Birk protease inhibitor content in soybean seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean seeds possess anti-nutritional compounds which inactivate digestive proteases, principally corresponding to two families: Kunitz Trypsin Inhibitors (KTi) and Bowman-Birk Inhibitors (BBI). High levels of raw soybeans/soybean meal in feed mixtures can cause poor weight gain and pancreatic abno...

  5. The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase.

    PubMed Central

    Eggers, Christopher T; Murray, Iain A; Delmar, Valerie A; Day, Anthony G; Craik, Charles S

    2004-01-01

    Ecotin is a dimeric periplasmic protein from Escherichia coli that has been shown to inhibit potently many trypsin-fold serine proteases of widely varying substrate specificity. To help elucidate the physiological function of ecotin, we examined the family of ecotin orthologues, which are present in a subset of Gram-negative bacteria. Phylogenetic analysis suggested that ecotin has an exogenous target, possibly neutrophil elastase. Recombinant protein was expressed and purified from E. coli, Yersinia pestis and Pseudomonas aeruginosa, all species that encounter the mammalian immune system, and also from the plant pathogen Pantoea citrea. Notably, the Pa. citrea variant inhibits neutrophil elastase 1000-fold less potently than the other orthologues. All four orthologues are dimeric proteins that potently inhibit (<10 pM) the pancreatic digestive proteases trypsin and chymotrypsin, while showing more variable inhibition (5 pM to 24 microM) of the blood proteases Factor Xa, thrombin and urokinase-type plasminogen activator. To test whether ecotin does, in fact, protect bacteria from neutrophil elastase, an ecotin-deficient strain was generated in E. coli. This strain is significantly more sensitive in cell-killing assays to human neutrophil elastase, which causes increased permeability of the outer membrane that persists even during renewed bacterial growth. Ecotin affects primarily the ability of E. coli to recover and grow following treatment with neutrophil elastase, rather than the actual rate of killing. This suggests that an important part of the antimicrobial mechanism of neutrophil elastase may be a periplasmic bacteriostatic effect of protease that has translocated across the damaged outer membrane. PMID:14705961

  6. Alkaline protease production by a strain of marine yeasts

    NASA Astrophysics Data System (ADS)

    Ping, Wang; Zhenming, Chi; Chunling, Ma

    2006-07-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China. The protease had the highest activity at pH 9.0 and 45°C. The optimal medium for the maximum alkaline protease production of strain 10 was 2.5g soluble starch and 2.0g NaNO3 in 100mL seawater with initial pH 6.0. The optimal cultivation conditions for the maximum protease production were temperature 24.5°C, aeration rate 8.0L min-1 and agitation speed 150r min-1 Under the optimal conditions, 623.1 U mg-1 protein of alkaline protease was reached in the culture within 30h of fermentation.

  7. Purification and characterization of an alkaline protease from Acetes chinensis

    NASA Astrophysics Data System (ADS)

    Xu, Jiachao; Liu, Xin; Li, Zhaojie; Xu, Jie; Xue, Changhu; Gao, Xin

    2005-07-01

    An alkaline protease from Acetes chinensis was purified and characterized in this study. The steps of purification include ammonium sulfate precipitation, ion-exchange chromatography with Q-sepharose Fast Flow, gel filtration chromatography with S300 and the second ion-exchange chromatography with Q-sepharose Fast Flow. The protease was isolated and purified, which was present and active on protein substrates (azocasein and casein). The specific protease activity was 17.15 folds and the recovery was 4.67. The molecular weight of the protease was estimated at 23.2 kD by SDS-PAGE. With azocasein as the susbstrate, the optimal temperature was 55°C and the optimal pH value was 5.5. Ion Ca2+ could enhance the proteolytic activity of the protease, while Cu2+, EDTA and PMSF could inhibit its activity.

  8. The maize cystatin CC9 interacts with apoplastic cysteine proteases.

    PubMed

    van der Linde, Karina; Mueller, André N; Hemetsberger, Christoph; Kashani, Farnusch; van der Hoorn, Renier A L; Doehlemann, Gunther

    2012-11-01

    In a recent study we identified corn cystain9 (CC9) as a novel compatibility factor for the interaction of the biotrophic smut fungus Ustilago maydis with its host plant maize. CC9 is transcriptionally induced during the compatible interaction with U. maydis and localizes in the maize apoplast where it inhibits apoplastic papain-like cysteine proteases. The proteases are activated during incompatible interaction and salicylic acid (SA) treatment and, in turn, are sufficient to induce SA signaling including PR-gene expression. Therefore the inhibition of apoplastic papain-like cysteine proteases by CC9 is essential to suppress host immunity during U. maydis infection. Here were present new experimental data on the cysteine protease-cystatin interaction and provide an in silco analysis of plant cystatins and the identified apoplastic cysteine proteases.

  9. Poliovirus protease 3C(pro) kills cells by apoptosis.

    PubMed

    Barco, A; Feduchi, E; Carrasco, L

    2000-01-20

    The tetracycline-based Tet-Off expression system has been used to analyze the effects of poliovirus protease 3C(pro) on human cells. Stable HeLa cell clones that express this poliovirus protease under the control of an inducible, tightly regulated promoter were obtained. Tetracycline removal induces synthesis of 3C protease, followed by drastic morphological alterations and cellular death. Degradation of cellular DNA in nucleosomes and generation of apoptotic bodies are observed from the second day after 3C(pro) induction. The cleavage of poly(ADP-ribose) polymerase, an enzyme involved in DNA repair, occurs after induction of 3C(pro), indicating caspase activation by this poliovirus protease. The 3C(pro)-induced apoptosis is blocked by the caspase inhibitor z-VAD-fmk. Our findings suggest that the protease 3C is responsible for triggering apoptosis in poliovirus-infected cells by a mechanism that involves caspase activation.

  10. Active Site Characterization of Proteases Sequences from Different Species of Aspergillus.

    PubMed

    Morya, V K; Yadav, Virendra K; Yadav, Sangeeta; Yadav, Dinesh

    2016-09-01

    A total of 129 proteases sequences comprising 43 serine proteases, 36 aspartic proteases, 24 cysteine protease, 21 metalloproteases, and 05 neutral proteases from different Aspergillus species were analyzed for the catalytically active site residues using MEROPS database and various bioinformatics tools. Different proteases have predominance of variable active site residues. In case of 24 cysteine proteases of Aspergilli, the predominant active site residues observed were Gln193, Cys199, His364, Asn384 while for 43 serine proteases, the active site residues namely Asp164, His193, Asn284, Ser349 and Asp325, His357, Asn454, Ser519 were frequently observed. The analysis of 21 metalloproteases of Aspergilli revealed Glu298 and Glu388, Tyr476 as predominant active site residues. In general, Aspergilli species-specific active site residues were observed for different types of protease sequences analyzed. The phylogenetic analysis of these 129 proteases sequences revealed 14 different clans representing different types of proteases with diverse active site residues.

  11. Identification of two new keratinolytic proteases from a Bacillus pumilus strain using protein analysis and gene sequencing.

    PubMed

    Fellahi, Soltana; Chibani, Abdelwaheb; Feuk-Lagerstedt, Elisabeth; Taherzadeh, Mohammad J

    2016-12-01

    The Bacillus strain (CCUG 66887) has a high capacity to excrete keratinase with the ability to degrade both alpha- and beta keratin. In this study we aimed to show the characteristics of the keratinolytic protease and to identify its gene by using liquid chromatography-electrospray ionization tandem mass spectrometry methods (nanoHPLC-ESI-MS/MS) followed by Mascot data base search. The results showed that the enzyme in fact consists of two different keratinases, both with a molecular mass of 38 kDa. Further, DNA sequencing generated the open reading frame (ORF) of one of the genes (Ker1), and de novo genome sequencing identified the ORF of the second gene (Ker2). The two keratinase genes contain 1153 base pairs each and have a gene similarity of 67 %. In addition, the Bacillus strain was classified as Bacillus pumilus and its genes were annotated in the GeneBank at NCBI (accession: CP011109.1). Amino acid sequences alignment with known B. pumilus proteases indicated that the two keratinases of B. pumilus strain C4 are subtilisin-like serine proteases belonging to the Protease S8 family. Taken together, these result suggest the two keratinases as promising candidates for enzymatic processing of keratinous wastes in waste refinery. PMID:27363997

  12. Cloning, expression, and characterization of a milk-clotting aspartic protease gene (Po-Asp) from Pleurotus ostreatus.

    PubMed

    Yin, Chaomin; Zheng, Liesheng; Chen, Liguo; Tan, Qi; Shang, Xiaodong; Ma, Aimin

    2014-02-01

    An aspartic protease gene from Pleurotus ostreatus (Po-Asp) had been cloned based on the 3' portion of cDNA in our previous work. The Po-Asp cDNA contained 1,324 nucleotides with an open reading frame (ORF) of 1,212 bp encoding 403 amino acid residues. The putative amino acid sequence included a signal peptide, an activation peptide, two most possible N-glycosylation sites and two conserved catalytic active site. The mature polypeptide with 327 amino acid residues had a calculated molecular mass of 35.3 kDa and a theoretical isoelectric point of 4.57. Basic Local Alignment Search Tool analysis showed 68-80 % amino acid sequence identical to other basidiomycetous aspartic proteases. Sequence comparison and evolutionary analysis revealed that Po-Asp is a member of fungal aspartic protease family. The DNA sequence of Po-Asp is 1,525 bp in length without untranslated region, consisting of seven exons and six introns. The Po-Asp cDNA without signal sequence was expressed in Pichia pastoris and sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated the molecular mass of recombinant Po-Asp was about 43 kDa. The crude recombinant aspartic protease had milk-clotting activity.

  13. Secretory expression, functional characterization, and molecular genetic analysis of novel halo-solvent-tolerant protease from Bacillus gibsonii.

    PubMed

    Deng, Aihua; Zhang, Guoqiang; Shi, Nana; Wu, Jie; Lu, Fuping; Wen, Tingyi

    2014-02-28

    A novel protease gene from Bacillus gibsonii, aprBG, was cloned, expressed in B. subtilis, and characterized. High-level expression of aprBG was achieved in the recombinant strain when a junction was present between the promoter and the target gene. The purified recombinant enzyme exhibited similar N-terminal sequences and catalytic properties to the native enzyme, including high affinity and hydrolytic efficiency toward various substrates and a superior performance when exposed to various metal ions, surfactants, oxidants, and commercial detergents. AprBG was remarkably stable in 50% organic solvents and retained 100% activity and stability in 0-4 M NaCl, which is better than the characteristics of previously reported proteases. AprBG was most closely related to the high-alkaline proteases of the subtilisin family with a 57-68% identity. The secretion and maturation mechanism of AprBG was dependent on the enzyme activity, as analyzed by site-directed mutagenesis. Thus, when taken together, the results revealed that the halo-solvent-tolerant protease AprBG displays significant activity and stability under various extreme conditions, indicating its potential for use in many biotechnology applications. PMID:24150493

  14. Utilization of positional isotope exchange experiments to evaluate reversibility of ATP hydrolysis catalyzed by Escherichia coli Lon protease.

    PubMed

    Thomas, Jennifer; Fishovitz, Jennifer; Lee, Irene

    2010-02-01

    Lon protease, also known as protease La, is an ATP-dependent serine protease. Despite the presence of a proteolytic Ser-Lys dyad, the enzyme only catalyzes protein degradation in the presence of ATP. Lon possesses an intrinsic ATPase activity that is stimulated by protein and certain peptide substrates. Through sequence alignment and analysis, it is concluded that Lon belongs to the AAA+ protein family. Previous kinetic characterization of the ATPase domain of Escherichia coli Lon protease implicates a half-site reactivity model in which only 50% of the ATP bound to Lon are hydrolyzed to yield ADP; the remaining ATPase sites remain bound with ATP and are considered non-catalytic. In this model, it is implied that ATP hydrolysis is irreversible. To further evaluate the proposed half-site reactivity model, the reversibility of the ATPase activity of E. coli Lon was evaluated by positional isotope exchange experiments. The ATPase reactions were conducted in the 18O-enriched buffer such that the extent of 18O incorporation into inorganic phosphate generated from ATP hydrolysis could be used to evaluate the extent of reversibility in ATP hydrolysis. Collectively, our experimental data reveal that the ATPase reaction catalyzed by E. coli Lon in the presence and absence of peptide substrate that stimulated the enzyme's ATPase activity is irreversible. Therefore, the half-site ATPase reactivity of E. coli Lon is validated, and can be used to account for the kinetic mechanism of the ATP-dependent peptidase activity of the enzyme.

  15. Unexpected Activity of a Novel Kunitz-type Inhibitor: INHIBITION OF CYSTEINE PROTEASES BUT NOT SERINE PROTEASES.

    PubMed

    Smith, David; Tikhonova, Irina G; Jewhurst, Heather L; Drysdale, Orla C; Dvořák, Jan; Robinson, Mark W; Cwiklinski, Krystyna; Dalton, John P

    2016-09-01

    Kunitz-type (KT) protease inhibitors are low molecular weight proteins classically defined as serine protease inhibitors. We identified a novel secreted KT inhibitor associated with the gut and parenchymal tissues of the infective juvenile stage of Fasciola hepatica, a helminth parasite of medical and veterinary importance. Unexpectedly, recombinant KT inhibitor (rFhKT1) exhibited no inhibitory activity toward serine proteases but was a potent inhibitor of the major secreted cathepsin L cysteine proteases of F. hepatica, FhCL1 and FhCL2, and of human cathepsins L and K (Ki = 0.4-27 nm). FhKT1 prevented the auto-catalytic activation of FhCL1 and FhCL2 and formed stable complexes with the mature enzymes. Pulldown experiments from adult parasite culture medium showed that rFhKT1 interacts specifically with native secreted FhCL1, FhCL2, and FhCL5. Substitution of the unusual P1 Leu(15) within the exposed reactive loop of FhKT1 for the more commonly found Arg (FhKT1Leu(15)/Arg(15)) had modest adverse effects on the cysteine protease inhibition but conferred potent activity against the serine protease trypsin (Ki = 1.5 nm). Computational docking and sequence analysis provided hypotheses for the exclusive binding of FhKT1 to cysteine proteases, the importance of the Leu(15) in anchoring the inhibitor into the S2 active site pocket, and the inhibitor's selectivity toward FhCL1, FhCL2, and human cathepsins L and K. FhKT1 represents a novel evolutionary adaptation of KT protease inhibitors by F. hepatica, with its prime purpose likely in the regulation of the major parasite-secreted proteases and/or cathepsin L-like proteases of its host.

  16. PEGylated substrates of NSP4 protease: A tool to study protease specificity

    NASA Astrophysics Data System (ADS)

    Wysocka, Magdalena; Gruba, Natalia; Grzywa, Renata; Giełdoń, Artur; Bąchor, Remigiusz; Brzozowski, Krzysztof; Sieńczyk, Marcin; Dieter, Jenne; Szewczuk, Zbigniew; Rolka, Krzysztof; Lesner, Adam

    2016-03-01

    Herein we present the synthesis of a novel type of peptidomimetics composed of repeating diaminopropionic acid residues modified with structurally diverse heterobifunctional polyethylene glycol chains (abbreviated as DAPEG). Based on the developed compounds, a library of fluorogenic substrates was synthesized. Further library deconvolution towards human neutrophil serine protease 4 (NSP4) yielded highly sensitive and selective internally quenched peptidomimetic substrates. In silico analysis of the obtained peptidomimetics revealed the presence of an interaction network with distant subsites located on the enzyme surface.

  17. Design of translactam HCMV protease inhibitors as potent antivirals.

    PubMed

    Borthwick, Alan D

    2005-07-01

    Human cytomegalovirus (HCMV) is an important pathogen for which there is a significant unmet medical need. New HCMV antivirals, active against novel molecular targets, are undoubtedly needed as the currently available drugs ganciclovir, cidofovir, and foscarnet, which are all viral DNA inhibitors, suffer from limited effectiveness, mainly due to the development of drug resistance, poor bioavailability, and toxicity. One of the newer molecular targets that has been exploited in the search for better drug candidates is HCMV protease. Our deltaAla HCMV protease (wild type variant with the internal cleavage site deleted) was cloned and expressed in E. coli. This viral enzyme was used to develop HCMV protease assays to evaluate potential inhibitors. The chirally pure (SRS)-alpha-methyl pyrrolidine-5,5-trans-lactam template was synthesized, which together with the natural substrate requirements of HCMV protease and detailed SAR, was used to design potent and selective mechanism based inhibitors of HCMV protease. The mechanism of action of these inhibitors of HCMV protease was investigated by ESI/MS, and the X-ray crystal structure of the HCMV protease was used to refine our selective viral enzyme inhibitors to obtain plasma stable antivirals. A novel ELISA antiviral assay was developed which, together with a cytotoxicity assay, enabled us to discover anti-HCMV drug candidates equivalent in potency to ganciclovir that had good pharmacokinetics in the dog and good brain and ocular penetration in the guinea pig.

  18. Cold-adapted proteases as an emerging class of therapeutics.

    PubMed

    Fornbacke, Marcus; Clarsund, Mats

    2013-06-01

    Proteases have been used in medicine for several decades and are an established and well tolerated class of therapeutic agent. These proteases were sourced from mammals or bacteria that exist or have adapted to moderate temperatures (mesophilic organisms); however, proteases derived from organisms from cold environments-cold-adapted or psychrophilic proteases-generally have high specific activity, low substrate affinity, and high catalytic rates at low and moderate temperatures. Made possible by greater flexibility, psychrophilic enzymes interact with and transform the substrate at lower energy costs. Cold-adapted proteases have been used in a wide range of applications, including industrial functions, textiles, cleaning/hygiene products, molecular biology, environmental bioremediations, consumer food products, cosmetics, and pharmaceutical production. In addition to these applications, they have also shown promise as therapeutic modalities for cosmeceutical applications (by reducing glabellar [frown] lines) and a number of disease conditions, including bacterial infections (by disrupting biofilms to prevent bacterial infection), topical wound management (when used as a debridement agent to remove necrotic tissue and fibrin clots), oral/dental health management (by removing plaque and preventing periodontal disease), and in viral infections (by reducing the infectivity of viruses, such as human rhinovirus 16 and herpes simplex virus). Psychrophilic proteases with greater activity and stability (than the original organism-derived variant) have been developed; this coupled with available manufacturing recombinant production techniques suggests that cold-adapted proteases have a promising future as a distinct therapeutic class with diverse clinical applications.

  19. Laundry detergent compatibility of the alkaline protease from Bacillus cereus.

    PubMed

    Banik, Rathindra Mohan; Prakash, Monika

    2004-01-01

    The endogenous protease activity in various commercially available laundry detergents of international companies was studied. The maximum protease activity was found at 50 degrees C in pH range 10.5-11.0 in all the tested laundry detergents. The endogenous protease activity in the tested detergents retained up to 70% on incubation at 40 degrees C for 1 h, whereas less than 30% activity was only found on incubation at 50 degrees C for 1 h. The alkaline protease from an alkalophilic strain of Bacillus cereus was studied for its compatibility in commercial detergents. The cell free fermented broth from shake flask culture of the organism showed maximum activity at pH 10.5 and 50 degrees C. The protease from B. cereus showed much higher residual activity (more than 80%) on incubation with laundry detergents at 50 degrees C for 1 h or longer. The protease enzyme from B. cereus was found to be superior over the endogenous proteases present in the tested commercial laundry detergents in comparison to the enzyme stability during the washing at higher temperature, e.g., 40-50 degrees C.

  20. Pioneer oral streptococci produce immunoglobulin A1 protease.

    PubMed Central

    Cole, M F; Evans, M; Fitzsimmons, S; Johnson, J; Pearce, C; Sheridan, M J; Wientzen, R; Bowden, G

    1994-01-01

    As part of a longitudinal study of the relationship between bacterial colonization and the secretory immune response, 367 isolates of pioneer viridans streptococci collected from 40 breast- and bottle-fed neonates within the first month postpartum were tested for the production of immunoglobulin A1 (IgA1) protease and glycosidases. Fifty percent of the streptococci isolated produced IgA1 protease, including all isolates of Streptococcus oralis and S. sanguis, 60.7% of S. mitis biovar 1 isolates, and some isolates that could not be identified. Three cleavage patterns of alpha 1 heavy chains were observed. Six isolates of S. mitis biovar 1 that did not produce IgA1 protease attacked the alpha 1 chain. Incubation of IgA1 protease-negative S. mitis biovar 1 isolates with IgA1, either prior to or together with S. sanguis, rendered the IgA1 paraprotein resistant to cleavage by the IgA1 protease of S. sanguis. The ability of some pioneer streptococci in the human oral cavity to produce IgA1 protease and of others to modify the susceptibility of IgA1 to cleavage by IgA1 protease perhaps enhances their ability to survive in this habitat. Images PMID:8188337

  1. Salt stress represses production of extracellular proteases in Bacillus pumilus.

    PubMed

    Liu, R F; Huang, C L; Feng, H

    2015-05-11

    Bacillus pumilus is able to secrete subtilisin-like prote-ases, one of which has been purified and characterized biochemically, demonstrating great potential for use in industrial applications. In the current study, the biosynthesis and transcription of extracellular pro-teases in B. pumilus (BA06) under salt stress were investigated using various methods, including a proteolytic assay, zymogram analysis, and real-time PCR. Our results showed that total extracellular proteolytic activity, both in fermentation broth and on milk-containing agar plates, was considerably repressed by salt in a dosage-dependent manner. As Bacillus species usually secret multiple extracellular proteases, a vari-ety of individual extracellular protease encoding genes were selected for real-time PCR analysis. It was shown that proteases encoded by the aprE and aprX genes were the major proteases in the fermentation broth in terms of their transcripts in B. pumilus. Further, transcription of aprE, aprX, and epr genes was indeed repressed by salt stress. In con-trast, transcription of other genes (e.g., vpr and wprA) was not repressed or significantly affected by the salt. Conclusively, salt stress represses total extracellular proteolytic activity in B. pumilus, which can largely be ascribed to suppression of the major protease-encoding genes (aprE, aprX) at the transcriptional level. In contrast, transcription of other pro-tease-encoding genes (e.g., vpr, wprA) was not repressed by salt stress.

  2. Cold-adapted proteases as an emerging class of therapeutics.

    PubMed

    Fornbacke, Marcus; Clarsund, Mats

    2013-06-01

    Proteases have been used in medicine for several decades and are an established and well tolerated class of therapeutic agent. These proteases were sourced from mammals or bacteria that exist or have adapted to moderate temperatures (mesophilic organisms); however, proteases derived from organisms from cold environments-cold-adapted or psychrophilic proteases-generally have high specific activity, low substrate affinity, and high catalytic rates at low and moderate temperatures. Made possible by greater flexibility, psychrophilic enzymes interact with and transform the substrate at lower energy costs. Cold-adapted proteases have been used in a wide range of applications, including industrial functions, textiles, cleaning/hygiene products, molecular biology, environmental bioremediations, consumer food products, cosmetics, and pharmaceutical production. In addition to these applications, they have also shown promise as therapeutic modalities for cosmeceutical applications (by reducing glabellar [frown] lines) and a number of disease conditions, including bacterial infections (by disrupting biofilms to prevent bacterial infection), topical wound management (when used as a debridement agent to remove necrotic tissue and fibrin clots), oral/dental health management (by removing plaque and preventing periodontal disease), and in viral infections (by reducing the infectivity of viruses, such as human rhinovirus 16 and herpes simplex virus). Psychrophilic proteases with greater activity and stability (than the original organism-derived variant) have been developed; this coupled with available manufacturing recombinant production techniques suggests that cold-adapted proteases have a promising future as a distinct therapeutic class with diverse clinical applications. PMID:25135820

  3. Exploring a new serine protease from Cucumis sativus L.

    PubMed

    Nafeesa, Zohara; Shivalingu, B R; Vivek, H K; Priya, B S; Swamy, S Nanjunda

    2015-03-01

    Coagulation is an important physiological process in hemostasis which is activated by sequential action of proteases. This study aims to understand the involvement of aqueous fruit extract of Cucumis sativus L. (AqFEC) European burp less variety in blood coagulation cascade. AqFEC hydrolyzed casein in a dose-dependent manner. The presence of protease activity was further confirmed by casein zymography which revealed the possible presence of two high molecular weight protease(s). The proteolytic activity was inhibited only by phenyl methyl sulphonyl fluoride suggesting the presence of serine protease(s). In a dose-dependent manner, AqFEC also hydrolysed Aα and Bβ subunits of fibrinogen, whereas it failed to degrade the γ subunit of fibrinogen even at a concentration as high as 100 μg and incubation time up to 4 h. AqFEC reduced the clotting time of citrated plasma by 87.65%. The protease and fibrinogenolytic activity of AqFEC suggests its possible role in stopping the bleeding and ensuing wound healing process.

  4. Staphylococcal proteases aid in evasion of the human complement system.

    PubMed

    Jusko, Monika; Potempa, Jan; Kantyka, Tomasz; Bielecka, Ewa; Miller, Halie K; Kalinska, Magdalena; Dubin, Grzegorz; Garred, Peter; Shaw, Lindsey N; Blom, Anna M

    2014-01-01

    Staphylococcus aureus is an opportunistic pathogen that presents severe health care concerns due to the prevalence of multiple antibiotic-resistant strains. New treatment strategies are urgently needed, which requires an understanding of disease causation mechanisms. Complement is one of the first lines of defense against bacterial pathogens, and S. aureus expresses several specific complement inhibitors. The effect of extracellular proteases from this bacterium on complement, however, has been the subject of limited investigation, except for a recent report regarding cleavage of the C3 component by aureolysin (Aur). We demonstrate here that four major extracellular proteases of S. aureus are potent complement inhibitors. Incubation of human serum with the cysteine proteases staphopain A and staphopain B, the serine protease V8 and the metalloproteinase Aur resulted in a drastic decrease in the hemolytic activity of serum, whereas two staphylococcal serine proteases D and E, had no effect. These four proteases were found to inhibit all pathways of complement due to the efficient degradation of several crucial components. Furthermore, S. aureus mutants lacking proteolytic enzymes were found to be more efficiently killed in human blood. Taken together, the major proteases of S. aureus appear to be important for pathogen-mediated evasion of the human complement system.

  5. Extracellular proteases modify cell wall turnover in Bacillus subtilis.

    PubMed Central

    Jolliffe, L K; Doyle, R J; Streips, U N

    1980-01-01

    The rate of turnover of peptidoglycan in exponentially growing cultures of Bacillus subtilis was observed to be sensitive to extracellular protease. In protease-deficient mutants the rates of cell wall turnover were greater than that of wild-type strain 168, whereas hyperprotease-producing strains exhibited decreased rates of peptidoglycan turnover. The rate of peptidogylcan turnover in a protease-deficient strain was decreased when the mutant was grown in the presence of a hyperprotease-producing strain. The addition of phenylmethylsulfonyl fluoride, a serine protease inhibitor, to cultures of hyperprotease-producing strains increased their rates of cell wall turnover. Isolated cell walls of all protease mutants contained autolysin levels equal to or greater than that of wild-type strain 168. The presence of filaments, or cells with incomplete septa, was observed in hyperprotease-producing strains or when a protease-deficient strain was grown in the presence of subtilisin. The results suggest that the turnover of cell walls in B. subtilis may be regulated by extracellular proteases. Images PMID:6102558

  6. Membrane Proteases and Aminoglycoside Antibiotic Resistance ▿ †

    PubMed Central

    Hinz, Aaron; Lee, Samuel; Jacoby, Kyle; Manoil, Colin

    2011-01-01

    We present genetic studies that help define the functional network underlying intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Our analysis shows that proteolysis, particularly that controlled by the membrane protease FtsH, is a major determinant of resistance. First, we examined the consequences of inactivating genes controlled by AmgRS, a two-component regulator required for intrinsic tobramycin resistance. Three of the gene products account for resistance: a modulator of FtsH protease (YccA), a membrane protease (HtpX), and a membrane protein of unknown function (PA5528). Second, we screened mutations inactivating 66 predicted proteases and related functions. Insertions inactivating two FtsH protease accessory factors (HflK and HflC) and a cytoplasmic protease (HslUV) increased tobramycin sensitivity. Finally, we generated an ftsH deletion mutation. The mutation dramatically increased aminoglycoside sensitivity. Many of the functions whose inactivation increased sensitivity appeared to act independently, since multiple mutations led to additive or synergistic effects. Up to 500-fold increases in tobramycin sensitivity were observed. Most of the mutations also were highly pleiotropic, increasing sensitivity to a membrane protein hybrid, several classes of antibiotics, alkaline pH, NaCl, and other compounds. We propose that the network of proteases provides robust protection from aminoglycosides and other substances through the elimination of membrane-disruptive mistranslation products. PMID:21764915

  7. Fluorometric CCHFV OTU protease assay with potent inhibitors.

    PubMed

    Kocabas, Fatih; Aslan, Galip S

    2015-10-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a deadly virus that has been listed in the Category C as a potential bioterror agent. There are no specific therapies against CCHFV, which urges identification of potential therapeutic targets and development of CCHFV therapies. CCHFV OTU protease takes an important role in viral invasion through antagonizing NF-κB signaling. Inhibition of CCHFV OTU protease by small molecules warrants an exciting potential as antiviral therapeutics. Here we report the expression and purification of a C-His-tagged recombinant CCHFV OTU protease in E. coli BL21 (DE3) host strain. Activity of the refolded purified recombinant viral OTU protease has been validated with a UB-AMC fluorescent assay. In addition, we show a dose-dependent inhibition of the viral OTU protease by two small molecules. This study provides a reliable approach for recombinant expression and purification of CCHFV OTU protease, and demonstrates validation of OTU protease activity and its inhibition based on a UB-AMC florescent assay.

  8. Fatal familial insomnia: a new Austrian family.

    PubMed

    Almer, G; Hainfellner, J A; Brücke, T; Jellinger, K; Kleinert, R; Bayer, G; Windl, O; Kretzschmar, H A; Hill, A; Sidle, K; Collinge, J; Budka, H

    1999-01-01

    We present clinical, pathological and molecular features of the first Austrian family with fatal familial insomnia. Detailed clinical data are available in five patients and autopsy in four patients. Age at onset of disease ranged between 20 and 60 years, and disease duration between 8 and 20 months. Severe loss of weight was an early symptom in all five patients. Four patients developed insomnia and/or autonomic dysfunction, and all five patients developed motor abnormalities. Analysis of the prion protein (PrP) gene revealed the codon 178 point mutation and methionine homozygosity at position 129. In all brains, neuropathology showed widespread cortical astrogliosis, widespread brainstem nuclei and tract degeneration, and olivary 'pseudohypertrophy' with vacuolated neurons, in addition to neuropathological features described previously, such as thalamic and olivary degeneration. Western blotting of one brain and immunocytochemistry in four brains revealed quantitative and regional dissociation between PrP(res)(the protease resistant form of PrP) deposition and histopathology. In the cerebellar cortex of one patient, PrP(res) deposits were prominent in the molecular layer and displayed a peculiar patchy and strip-like pattern with perpendicular orientation to the surface. In another patient, a single vacuolated neuron in the inferior olivary nuclei contained prominent intravacuolar granular PrP(res) deposits, resembling changes of brainstem neurons in bovine spongiform encephalopathy.

  9. Protease inhibition as new therapeutic strategy for GI diseases

    PubMed Central

    Vergnolle, Nathalie

    2016-01-01

    The GI tract is the most exposed organ to proteases, both in physiological and pathophysiological conditions. For digestive purposes, the lumen of the upper GI tract contains large amounts of pancreatic proteases, but studies have also demonstrated increased proteolytic activity into mucosal tissues (both in the upper and lower GI tract), associated with pathological conditions. This review aims at outlining the evidences for dysregulated proteolytic homeostasis in GI diseases and the pathogenic mechanisms of increased proteolytic activity. The therapeutic potential of protease inhibition in GI diseases is discussed, with a particular focus on IBDs, functional GI disorders and colorectal cancer. PMID:27196587

  10. In vitro digestion with proteases producing MHC class II ligands.

    PubMed

    Tohmé, Mira; Maschalidi, Sophia; Manoury, Bénédicte

    2013-01-01

    Proteases generate peptides that bind to MHC class II molecules to interact with a wide diversity of CD4(+) T cells. They are expressed in dedicated organelles: endosomes and lysosomes of professional antigen presenting cells (pAPCs) such as B cells, macrophages, and dendritic cells. The identification of endosomal proteases which produce antigenic peptides is important, for example, for better vaccination and to prevent autoimmune diseases. Here, we describe a panel of technics (in vitro digestion assays of protein with recombinant proteases or purified endosomes/lysosomes, T cell stimulation) to monitor the production of MHC class II ligands. PMID:23329510

  11. 21 CFR 184.1027 - Mixed carbohydrase and protease enzyme product.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Mixed carbohydrase and protease enzyme product... Substances Affirmed as GRAS § 184.1027 Mixed carbohydrase and protease enzyme product. (a) Mixed carbohydrase and protease enzyme product is an enzyme preparation that includes carbohydrase and protease...

  12. Detection of Legume Protease Inhibitors by the Gel-X-ray Film Contact Print Technique

    ERIC Educational Resources Information Center

    Mulimani, Veerappa H.; Sudheendra, Kulkarni; Giri, Ashok P.

    2002-01-01

    Redgram (Cajanus cajan L.) extracts have been analyzed for the protease inhibitors using a new, sensitive, simple, and rapid method for detection of electrophoretically separated protease inhibitors. The detection involves equilibrating the gel successively in the protease assay buffer and protease solution, rinsing the gel in assay buffer, and…

  13. Characterization of the protease activity of detergents: laboratory practicals for studying the protease profile and activity of various commercial detergents.

    PubMed

    Valls, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2011-07-01

    Detergent enzymes account for about 30% of the total worldwide production of enzymes and are one of the largest and most successful applications of modern industrial biotechnology. Proteases can improve the wash performance of household, industrial, and institutional laundry detergents used to remove protein-based stains such as blood, grass, body fluids, and food soils. This article describes two easy and cheap laboratory exercises to study the presence, profile, and basic enzymology of detergent proteases. These laboratory practicals are based on the determination of the detergent protease activity of various commercial detergents using the N-succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanine p-nitroanilide method and the bovine serum albumin degradation capacity. Students are also required to elucidate the enzymatic subtype of detergent proteases by studying the inhibitory potential of several types of protease inhibitors revealed by the same experimental methodology. Additionally, the results of the exercises can be used to provide additional insights on elementary enzymology by studying the influence of several important parameters on protease activity such as temperature (in this article) and the influence of pH and effects of surfactants and oxidizers (proposed). Students also develop laboratory skills, problem-solving capacities, and the ability to write a laboratory report. The exercises are mainly designed for an advanced undergraduate project in the biochemistry and biotechnology sciences. Globally, these laboratory practicals show students the biotechnological applications of proteases in the detergent industry and also reinforce important enzymology concepts.

  14. Crystal Structure of Human Taspase1, a Crucial Protease Regulating the Function of MLL

    SciTech Connect

    Khan,J.; Dunn, B.; Tong, L.

    2005-01-01

    Taspase1 catalyzes the proteolytic processing of the mixed lineage leukemia (MLL) nuclear protein, which is required for maintaining Hox gene expression patterns. Chromosomal translocations of the MLL gene are associated with leukemia in infants. Taspase1, a threonine aspartase, is a member of the type 2 asparaginase family, but is the only protease in this family. We report here the crystal structures of human activated Taspase1 and its proenzyme, as well as the characterization of the effects of mutations in the active site region using a newly developed fluorogenic assay. The structure of Taspase1 has significant differences from other asparaginases, especially near the active site. Mutation of the catalytic nucleophile, Thr234, abolishes autocatalytic processing in cis but does not completely block proteolysis in trans. The structure unexpectedly showed the binding of a chloride ion in the active site, and our kinetic studies confirm that chlorides ions are inhibitors of this enzyme at physiologically relevant concentrations.

  15. Heat resistant proteases produced in milk by psychrotrophic bacteria of dairy origin.

    PubMed

    Adams, D M; Barach, J T; Speck, M L

    1975-06-01

    Production of heat resistant proteases by psychrotrophs growing in milk, resistance of such proteases to ultrahigh temperature treatments and action of these enzymes on milk were studied. All of the psychrotrophs obtained from raw milk produced proteases that survived 149 C for 10s. Seventy to ninety percent of the raw milk samples contained psychrotrophs capable of producing heat resistant proteases. The protease chosen as a model was resistant to heat treatments at 110 to 150 C, and the inactivation parameters suggested that thermal destruction of heat resistant proteases would damage the milk severely. The casein content and pH of normal milk were suitable for protease action, and the protease was quite active at normal and elevated room temperatures. The protease rapidly spoiled sterile milk with the development of bitter flavor, clearing, or coagulation; and the susceptibility of sterile milk to protease increased during storage of the milk.

  16. A novel organic solvent- and detergent-stable serine alkaline protease from Trametes cingulata strain CTM10101.

    PubMed

    Omrane Benmrad, Maroua; Moujehed, Emna; Ben Elhoul, Mouna; Zaraî Jaouadi, Nadia; Mechri, Sondes; Rekik, Hatem; Kourdali, Sidali; El Hattab, Mohamed; Badis, Abdelmalek; Sayadi, Sami; Bejar, Samir; Jaouadi, Bassem

    2016-10-01

    A protease-producing fungus was isolated from an alkaline wastewater of chemical industries and identified as Trametes cingulata strain CTM10101 on the basis of the ITS rDNA gene-sequencing. It was observed that the fungus strongly produce extracellular protease grown at 30°C in potato-dextrose-broth (PDB) optimized media (13500U/ml). The pure serine protease isolated by Trametes cingulata (designated SPTC) was purified by ammonium sulfate precipitation-dialysis followed by heat-treatment and UNO S-1 FPLC cation-exchange chromatography. The chemical characterization carried on include phisico-chemical determination and spectroscopie analysis. The MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 31405.16-Da. The enzyme had an NH2-terminal sequence of ALTTQTEAPWALGTVSHKGQAST, thus sharing high homology with those of fungal-proteases. The optimum pH and temperature values of its proteolytic activity were pH 9 and 60°C, respectively, and its half-life times at 60 and 70°C were 9 and 5-h, respectively. It was completely inhibited by PMSF and DFP, which strongly suggested its belonging to the serine protease family. Compared to Flavourzyme(®)500L from Aspergillus oryzae and Thermolysin typeX from Geobacillus stearothermophilus, SPTC displayed higher levels of hydrolysis, substrate specificity, and catalytic efficiency as well as elevated organic solvent tolerance and considerable detergent stability. Finally, SPTC could potentially be used in peptide synthesis and detergent formulations. PMID:27296442

  17. The structures of Arabidopsis Deg5 and Deg8 reveal new insights into HtrA proteases

    SciTech Connect

    Sun, Wei; Gao, Feng; Fan, Haitian; Shan, Xiaoyue; Sun, Renhua; Liu, Lin; Gong, Weimin

    2013-05-01

    The crystal structures of Arabidopsis Deg5 and Deg8 have been determined to resolutions of 2.6 and 2.0 Å, respectively, revealing novel structural features of HtrA proteases. Plant Deg5 and Deg8 are two members of the HtrA proteases, a family of oligomeric serine endopeptidases that are involved in a variety of protein quality-control processes. These two HtrA proteases are located in the thylakoid lumen and participate in high-light stress responses by collaborating with other chloroplast proteins. Deg5 and Deg8 degrade photodamaged D1 protein of the photosystem II reaction centre, allowing its in situ replacement. Here, the crystal structures of Arabidopsis thaliana Deg5 (S266A) and Deg8 (S292A) are reported at 2.6 and 2.0 Å resolution, respectively. The Deg5 trimer contains two calcium ions in a central channel, suggesting a link between photodamage control and calcium ions in chloroplasts. Previous structures of HtrA proteases have indicated that their regulation usually requires C-terminal PDZ domain(s). Deg5 is unique in that it contains no PDZ domain and the trimeric structure of Deg5 (S266A) reveals a novel catalytic triad conformation. A similar triad conformation is observed in the hexameric structure of the single PDZ-domain-containing Deg8 (S292A). These findings suggest a novel activation mechanism for plant HtrA proteases and provide structural clues to their function in light-stress response.

  18. Structural Insights into the Protease-like Antigen Plasmodium falciparum SERA5 and Its Noncanonical Active-Site Serine

    SciTech Connect

    Hodder, Anthony N.; Malby, Robyn L.; Clarke, Oliver B.; Fairlie, W. Douglas; Colman, Peter M.; Crabb, Brendan S.; Smith, Brian J.

    2009-08-28

    The sera genes of the malaria-causing parasite Plasmodium encode a family of unique proteins that are maximally expressed at the time of egress of parasites from infected red blood cells. These multi-domain proteins are unique, containing a central papain-like cysteine-protease fragment enclosed between the disulfide-linked N- and C-terminal domains. However, the central fragment of several members of this family, including serine repeat antigen 5 (SERA5), contains a serine (S596) in place of the active-site cysteine. Here we report the crystal structure of the central protease-like domain of Plasmodium falciparum SERA5, revealing a number of anomalies in addition to the putative nucleophilic serine: (1) the structure of the putative active site is not conducive to binding substrate in the canonical cysteine-protease manner; (2) the side chain of D594 restricts access of substrate to the putative active site; and (3) the S{sub 2} specificity pocket is occupied by the side chain of Y735, reducing this site to a small depression on the protein surface. Attempts to determine the structure in complex with known inhibitors were not successful. Thus, despite having revealed its structure, the function of the catalytic domain of SERA5 remains an enigma.

  19. Expression and secretion of heterologous proteases by Corynebacterium glutamicum.

    PubMed Central

    Billman-Jacobe, H; Wang, L; Kortt, A; Stewart, D; Radford, A

    1995-01-01

    Genes encoding the basic protease of Dichelobacter nodosus (bprV) and the subtilisin of Bacillus subtilis (aprE) were cloned and expressed in Corynebacterium glutamicum. In each case, enzymatically active protein was detected in the supernatants of liquid cultures. While the secretion of subtilisin was directed by its own signal peptide, the natural signal peptide of the bprV basic protease did not facilitate secretion. A hybrid aprE-bprV gene in which the promoter and signal peptide coding sequences of subtilisin replaced those of bprV could be expressed, and basic protease was secreted by C. glutamicum. Expression of these proteases in C. glutamicum provides an opportunity to compare protein secretion from this gram-positive host with that from other gram-positive and gram-negative bacteria. PMID:7747974

  20. Genotype dependent QSAR for HIV-1 protease inhibition.

    PubMed

    Boutton, Carlo W; De Bondt, Hendrik L; De Jonge, Marc R

    2005-03-24

    The development of drug-resistant viruses limits the therapeutic success of anti-HIV therapies. Some of these genetic HIV-variants display complex mutational patterns in their pol gene that codes for protease and reverse transcriptase, the most investigated molecular targets for antiretroviral therapy. In this paper, we present a computational structure-based approach to predict the resistance of a HIV-1 protease strain to amprenavir by calculating the interaction energy of the drug with HIV-1 protease. By considering the interaction energy per residue, we can identify what residue mutations contribute to drug-resistance. This approach is presented here as a structure-based tool for the prediction of resistance of HIV-1 protease toward amprenavir, with a view to use the drug-protein interaction-energy pattern in a lead-optimization procedure for the discovery of new anti-HIV drugs. PMID:15771454

  1. Improving Viral Protease Inhibitors to Counter Drug Resistance.

    PubMed

    Kurt Yilmaz, Nese; Swanstrom, Ronald; Schiffer, Celia A

    2016-07-01

    Drug resistance is a major problem in health care, undermining therapy outcomes and necessitating novel approaches to drug design. Extensive studies on resistance to viral protease inhibitors, particularly those of HIV-1 and hepatitis C virus (HCV) protease, revealed a plethora of information on the structural and molecular mechanisms underlying resistance. These insights led to several strategies to improve viral protease inhibitors to counter resistance, such as exploiting the essential biological function and leveraging evolutionary constraints. Incorporation of these strategies into structure-based drug design can minimize vulnerability to resistance, not only for viral proteases but for other quickly evolving drug targets as well, toward designing inhibitors one step ahead of evolution to counter resistance with more intelligent and rational design. PMID:27090931

  2. Toxoplasma gondii aspartic protease 1 is not essential in tachyzoites.

    PubMed

    Polonais, Valerie; Shea, Michael; Soldati-Favre, Dominique

    2011-08-01

    Aspartic proteases are important virulence factors for pathogens and are recognized as attractive drug targets. Seven aspartic proteases (ASPs) have been identified in Toxoplasma gondii genome. Bioinformatics and phylogenetic analyses regroup them into five monophyletic groups. Among them, TgASP1, a coccidian specific aspartic protease related to the food vacuole plasmepsins, is associated with the secretory pathway in non-dividing cells and relocalizes in close proximity to the nascent inner membrane complex (IMC) of daughter cells during replication. Despite a potential role for TgASP1 in IMC formation, the generation of a conventional knockout of the TgASP1 gene revealed that this protease is not required for T. gondii tachyzoite survival or for proper IMC biogenesis.

  3. Characterization of the immunoglobulin A protease of Ureaplasma urealyticum.

    PubMed Central

    Spooner, R K; Russell, W C; Thirkell, D

    1992-01-01

    Ureaplasma urealyticum strains of all serotypes express a specific human immunoglobulin A1 protease that cleaves immunoglobulin A1 to produce intact Fab and Fc fragments. The use of a variety of inhibitors suggests that the enzyme is a serine protease. N-terminal sequencing of the Fc digestion product showed that the enzyme cleaves between the proline and threonine residues 235 and 236 in the hinge region of the heavy chain of immunoglobulin A1. Images PMID:1587621

  4. Amplified detection of protease activity using porous silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Orosco, Manuel

    This dissertation will focus on harnessing the optical properties of porous silicon to sense protease activity. Electrochemical etching of polished silicon wafers produces porous silicon with unique optical properties such as Fabry-Perot fringes or a dielectric mirror reflecting specific wavelengths. Porous silicon optical transducers are coupled to a biochemical reaction (protease activity) and optically measured in a label-free manner. The first chapter is an introductory chapter discussing the current methods of detecting protease activity. Also discussed is the use of porous silicon for label-free sensing. The second chapter discusses the use of thin protein layers that are spin coated on the surface of a porous silicon film and excluded from the porous matrix based on size. When active proteases are introduced to the protein layer, small peptide fragments are generated, causing a change in refractive index from low to high. This can be used as a tool to monitor protease activity and amplify the signal to the naked eye. To extend on the second chapter, a double layered porous silicon film with the first layer have large pores and the second layer etched below having small pores was used for sensing protease activity. Proteases are adsorbed into the first layer and introduction of whole protein substrate produces small peptide fragments that can enter the second layer (changing the effective optical thickness). The fourth chapter describes a method of using luminescent transducers coupled to protein films. An "on-off" sensor using protein coated luminescent porous silicon was used to detect a decrease in the intensity of luminescence due to degradation of the protein film. An "off-on" sensor involved a fluorescent dye housed in the porous film and capped with a protein coating. The release of the dye is caused by the action of a protease causing an increase in fluorescent intensity from the dye.

  5. Purification and characterization of thermostable serine proteases encoded by the genes ttha0099 and ttha01320 from Thermus thermophilus HB8.

    PubMed

    Li, Hui; Sun, Yajie; Jiao, Xue; Wang, Honglin; Zhu, Hu

    2016-07-01

    As an important class of proteases, serine proteases are required to show high activity under diverse conditions, especially at high temperatures. In the current study, two serine proteases SP348 and SP404 were analyzed by different bioinformatics tools. Both proteins are comprised of a trypsin domain and a PDZ domain, and belong to the trypsin family of proteases. The proteins were successfully expressed with Trx-tags as soluble proteins in the specialized Escherichia coli Rosetta-gami B(DE3)pLysS strain. A simple three-step purification protocol involving heat treatment, Ni-NTA purification and gel filtration was adopted to purify SP404. The molecular weight of recombinant SP404 was about 64 kDa. According to the circular dichroism spectroscopy analysis, SP404 is thermostable at 70 °C with alpha-helix, beta-sheet and random coil contents of about 8, 22 and 70 %, respectively. Our findings may broaden the range of microorganism-derived proteases and have a wide potential for industrial and fundamental studies. PMID:27215206

  6. Investigations on a hyper-proteolytic mutant of Beauveria bassiana: broad substrate specificity and high biotechnological potential of a serine protease.

    PubMed

    Borgi, Ines; Gargouri, Ali

    2014-02-01

    A new strain of Beauveria bassiana was identified on the basis of the 18S rRNA gene sequence homology. This strain, called P2, is a spontaneously arisen mutant that was isolated after successive sub-culturing the wild-type B. bassiana P1 strain. P2 showed hyper-production of extracellular protease(s) as much as ninefold more than P1. An extracellular protease (SBP) having a molecular weight of 32 kDa was purified from the P2 strain. SBP was completely inhibited by the phenyl methyl sulphonyl fluoride, which suggests that it belongs to the serine protease family. Based on the homology analysis of its N-terminal and the gene sequences, the enzyme was identified as subtilisin. The enzyme displays maximum activity at 60 °C and pH 8, and was stable at pH 6-12. The enzyme hydrolyses natural proteins such as keratin and is activated in presence of β-mercaptoethanol and Tween detergents. SBP was compatible with some laundry detergent formulations and showed high efficacy in the removal of blood stains from cotton fabric. Moreover, it was observed to degrade the melanised feathers and to hydrolyse the gelatine from X-ray films. All these results highlight the suitability of SBP protease as a very efficient microbial bio-resource.

  7. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    PubMed

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process.

  8. Dual origin of gut proteases in Formosan subterranean termites (Coptotermes formosanus Shiraki) (Isoptera: Rhinotermitidae).

    PubMed

    Sethi, Amit; Xue, Qing-Gang; La Peyre, Jerome F; Delatte, Jennifer; Husseneder, Claudia

    2011-07-01

    Cellulose digestion in lower termites, mediated by carbohydrases originating from both termite and endosymbionts, is well characterized. In contrast, limited information exists on gut proteases of lower termites, their origins and roles in termite nutrition. The objective of this study was to characterize gut proteases of the Formosan subterranean termite (Coptotermes formosanus Shiraki) (Isoptera: Rhinotermitidae). The protease activity of extracts from gut tissues (fore-, mid- and hindgut) and protozoa isolated from hindguts of termite workers was quantified using hide powder azure as a substrate and further characterized by zymography with gelatin SDS-PAGE. Midgut extracts showed the highest protease activity followed by the protozoa extracts. High level of protease activity was also detected in protozoa culture supernatants after 24 h incubation. Incubation of gut and protozoa extracts with class-specific protease inhibitors revealed that most of the proteases were serine proteases. All proteolytic bands identified after gelatin SDS-PAGE were also inhibited by serine protease inhibitors. Finally, incubation with chromogenic substrates indicated that extracts from fore- and hindgut tissues possessed proteases with almost exclusively trypsin-like activity while both midgut and protozoa extracts possessed proteases with trypsin-like and subtilisin/chymotrypsin-like activities. However, protozoa proteases were distinct from midgut proteases (with different molecular mass). Our results suggest that the Formosan subterranean termite not only produces endogenous proteases in its gut tissues, but also possesses proteases originating from its protozoan symbionts.

  9. The roles of intramembrane proteases in protozoan parasites.

    PubMed

    Sibley, L David

    2013-12-01

    Intramembrane proteolysis is widely conserved throughout different forms of life, with three major types of proteases being known for their ability to cleave peptide bonds directly within the transmembrane domains of their substrates. Although intramembrane proteases have been extensively studied in humans and model organisms, they have only more recently been investigated in protozoan parasites, where they turn out to play important and sometimes unexpected roles. Signal peptide peptidases are involved in endoplasmic reticulum (ER) quality control and signal peptide degradation from exported proteins. Recent studies suggest that repurposing inhibitors developed for blocking presenilins may be useful for inhibiting the growth of Plasmodium, and possibly other protozoan parasites, by blocking signal peptide peptidases. Rhomboid proteases, originally described in the fly, are also widespread in parasites, and are especially expanded in apicomplexans. Their study in parasites has revealed novel roles that expand our understanding of how these proteases function. Within this diverse group of parasites, rhomboid proteases contribute to processing of adhesins involved in attachment, invasion, intracellular replication, phagocytosis, and immune evasion, placing them at the vertex of host-parasite interactions. This article is part of a Special Issue entitled: Intramembrane Proteases.

  10. Characterizing Protease Specificity: How Many Substrates Do We Need?

    PubMed

    Schauperl, Michael; Fuchs, Julian E; Waldner, Birgit J; Huber, Roland G; Kramer, Christian; Liedl, Klaus R

    2015-01-01

    Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points). Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4') with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design. PMID:26559682

  11. Signaling pathways activated by a protease allergen in basophils

    PubMed Central

    Rosenstein, Rachel K.; Bezbradica, Jelena S.; Yu, Shuang; Medzhitov, Ruslan

    2014-01-01

    Allergic diseases represent a significant burden in industrialized countries, but why and how the immune system responds to allergens remain largely unknown. Because many clinically significant allergens have proteolytic activity, and many helminths express proteases that are necessary for their life cycles, host mechanisms likely have evolved to detect the proteolytic activity of helminth proteases, which may be incidentally activated by protease allergens. A cysteine protease, papain, is a prototypic protease allergen that can directly activate basophils and mast cells, leading to the production of cytokines, including IL-4, characteristic of the type 2 immune response. The mechanism of papain’s immunogenic activity remains unknown. Here we have characterized the cellular response activated by papain in basophils. We find that papain-induced IL-4 production requires calcium flux and activation of PI3K and nuclear factor of activated T cells. Interestingly, papain-induced IL-4 production was dependent on the immunoreceptor tyrosine-based activation motif (ITAM) adaptor protein Fc receptor γ-chain, even though the canonical ITAM signaling was not activated by papain. Collectively, these data characterize the downstream signaling pathway activated by a protease allergen in basophils. PMID:25369937

  12. A Kazal-Type Serine Protease Inhibitor from the Defense Gland Secretion of the Subterranean Termite Coptotermes formosanus Shiraki

    PubMed Central

    Negulescu, Horia; Guo, Youzhong; Garner, Thomas P.; Goodwin, Octavia Y.; Henderson, Gregg; Laine, Roger A.; Macnaughtan, Megan A.

    2015-01-01

    Coptotermes formosanus is an imported, subterranean termite species with the largest economic impact in the United States. The frontal glands of the soldier caste termites comprising one third of the body mass, contain a secretion expelled through a foramen in defense. The small molecule composition of the frontal gland secretion is well-characterized, but the proteins remain to be identified. Herein is reported the structure and function of one of several proteins found in the termite defense gland secretion. TFP4 is a 6.9 kDa, non-classical group 1 Kazal-type serine protease inhibitor with activity towards chymotrypsin and elastase, but not trypsin. The 3-dimensional solution structure of TFP4 was solved with nuclear magnetic resonance spectroscopy, and represents the first structure from the taxonomic family, Rhinotermitidae. Based on the structure of TFP4, the protease inhibitor active loop (Cys8 to Cys16) was identified. PMID:25978745

  13. PEGylated substrates of NSP4 protease: A tool to study protease specificity

    PubMed Central

    Wysocka, Magdalena; Gruba, Natalia; Grzywa, Renata; Giełdoń, Artur; Bąchor, Remigiusz; Brzozowski, Krzysztof; Sieńczyk, Marcin; Dieter, Jenne; Szewczuk, Zbigniew; Rolka, Krzysztof; Lesner, Adam

    2016-01-01

    Herein we present the synthesis of a novel type of peptidomimetics composed of repeating diaminopropionic acid residues modified with structurally diverse heterobifunctional polyethylene glycol chains (abbreviated as DAPEG). Based on the developed compounds, a library of fluorogenic substrates was synthesized. Further library deconvolution towards human neutrophil serine protease 4 (NSP4) yielded highly sensitive and selective internally quenched peptidomimetic substrates. In silico analysis of the obtained peptidomimetics revealed the presence of an interaction network with distant subsites located on the enzyme surface. PMID:26955973

  14. Family Meals

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Family Meals KidsHealth > For Parents > Family Meals Print A ... even more important as kids get older. Making Family Meals Happen It can be a big challenge ...

  15. Family Arguments

    MedlinePlus

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Life Listen Español Text Size Email Print Share Family Arguments Page Content Article Body We seem to ...

  16. Family History

    MedlinePlus

    Your family history includes health information about you and your close relatives. Families have many factors in common, including their genes, ... as heart disease, stroke, and cancer. Having a family member with a disease raises your risk, but ...

  17. Protease Production by Different Thermophilic Fungi

    NASA Astrophysics Data System (ADS)

    Macchione, Mariana M.; Merheb, Carolina W.; Gomes, Eleni; da Silva, Roberto

    A comparative study was carried out to evaluate protease production in solid-state fermentation (SSF) and submerged fermentation (SmF) by nine different thermophilic fungi — Thermoascus aurantiacus Miehe, Thermomyces lanuginosus, T. lanuginosus TO.03, Aspergillus flavus 1.2, Aspergillus sp. 13.33, Aspergillus sp. 13.34, Aspergillus sp. 13.35, Rhizomucor pusillus 13.36 and Rhizomucor sp. 13.37 — using substrates containing proteins to induce enzyme secretion. Soybean extract (soybean milk), soybean flour, milk powder, rice, and wheat bran were tested. The most satisfactory results were obtained when using wheat bran in SSF. The fungi that stood out in SSF were T. lanuginosus, T. lanuginosus TO.03, Aspergillus sp. 13.34, Aspergillus sp. 13.35, and Rhizomucor sp. 13.37, and those in SmF were T. aurantiacus, T. lanuginosus TO.03, and 13.37. In both fermentation systems, A. flavus 1.2 and R. pusillus 13.36 presented the lowest levels of proteolytic activity.

  18. Cystatin protease inhibitors and immune functions.

    PubMed

    Zavasnik-Bergant, Tina

    2008-05-01

    Cystatins are natural tight-binding reversible inhibitors of cysteine proteases. They are wide spread in all living organisms (mammals, nematodes, arthropods etc.) and are involved in various biological processes where they regulate normal proteolysis and also take part in disease pathology. Many cystatins show changes in expression and/or localization, as well as changes in secretion, following certain stimuli acting on immune cells. In immune cells, cystatins interfere with antigen processing and presentation, phagocytosis, expression of cytokines and nitric oxide and these ways modify the immune response. Further, it has been suggested that cystatin-type molecules secreted from parasites down-modulate the host immune response. Precise understanding of the regulatory roles on proteolytic enzymes of endogenous and exogenous cystatins, such as those from parasites, will provide us with valuable insight into how immune response could be modulated to treat a specific disease. This review covers some specific functions of individual cystatins, with a particular focus on the relevance of cystatins to the immune response.

  19. Fragment-Based Screen against HIV Protease

    PubMed Central

    Perryman, A. L.; Zhang, Q.; Soutter, H. H.; Rosenfeld, R.; McRee, D. E.; Olson, A. J.; Elder, J. E.; Stout, C. D.

    2009-01-01

    We have employed a fragment-based screen against wild-type (NL4-3) HIV protease (PR) using the Active Sight fragment library and X-ray crystallography. The experiments reveal two new binding sites for small molecules. PR was co-crystallized with fragments, or crystals were soaked in fragment solutions, using five crystal forms, and 378 data sets were collected to 2.3-1.3 Å resolution. Fragment binding induces a distinct conformation and specific crystal form of TL-3 inhibited PR during co-crystallization. One fragment, 2-methylcyclohexanol, binds in the ‘exo site’ adjacent to the Gly16Gly17Gln18 loop where the amide of Gly17 is a specific hydrogen bond donor, and hydrophobic contacts occur with the side chains of Lys14 and Leu63. Another fragment, indole-6-carboxylic acid, binds on the ‘outside/top of the flap’ via hydrophobic contacts with Trp42, Pro44, Met46, and Lys55, a hydrogen bond with Val56, and a salt-bridge with Arg57. 2-acetyl-benzothiophene also binds at this site. This study is the first fragment-based crystallographic screen against HIV PR, and the first time that fragments were screened against an inhibitor-bound drug target to search for compounds that both bind to novel sites and stabilize the inhibited conformation of the target. PMID:20659109

  20. Fragment-based screen against HIV protease.

    PubMed

    Perryman, Alexander L; Zhang, Qing; Soutter, Holly H; Rosenfeld, Robin; McRee, Duncan E; Olson, Arthur J; Elder, John E; Stout, C David

    2010-03-01

    We have employed a fragment-based screen against wild-type (NL4-3) HIV protease (PR) using the Active Sight fragment library and X-ray crystallography. The experiments reveal two new binding sites for small molecules. PR was co-crystallized with fragments, or crystals were soaked in fragment solutions, using five crystal forms, and 378 data sets were collected to 2.3-1.3 A resolution. Fragment binding induces a distinct conformation and specific crystal form of TL-3 inhibited PR during co-crystallization. One fragment, 2-methylcyclohexanol, binds in the 'exo site' adjacent to the Gly(16)Gly(17)Gln(18)loop where the amide of Gly(17)is a specific hydrogen bond donor, and hydrophobic contacts occur with the side chains of Lys(14)and Leu(63). Another fragment, indole-6-carboxylic acid, binds on the 'outside/top of the flap' via hydrophobic contacts with Trp(42), Pro(44), Met(46), and Lys(55), a hydrogen bond with Val(56), and a salt-bridge with Arg(57). 2-acetyl-benzothiophene also binds at this site. This study is the first fragment-based crystallographic screen against HIV PR, and the first time that fragments were screened against an inhibitor-bound drug target to search for compounds that both bind to novel sites and stabilize the inhibited conformation of the target.

  1. A New Pepstatin-Insensitive Thermopsin-Like Protease Overproduced in Peptide-Rich Cultures of Sulfolobus solfataricus

    PubMed Central

    Gogliettino, Marta; Riccio, Alessia; Cocca, Ennio; Rossi, Mosè; Palmieri, Gianna; Balestrieri, Marco

    2014-01-01

    In this study, we gain insight into the extracellular proteolytic system of Sulfolobus solfataricus grown on proteinaceous substrates, providing further evidence that acidic proteases were specifically produced in response to peptide-rich media. The main proteolytic component was the previously isolated SsMTP (Sulfolobus solfataricus multi-domain thermopsin-like protease), while the less abundant (named SsMTP-1) one was purified, characterized and identified as the sso1175 gene-product. The protein revealed a multi-domain organization shared with the cognate SsMTP with a catalytic domain followed by several tandemly-repeated motifs. Moreover, both enzymes were found spread across the Crenarchaeota phylum and belonging to the thermopsin family, although segregated into diverse phylogenetic clusters. SsMTP-1 showed a 75-kDa molecular mass and was stable in the temperature range 50–90 °C, with optimal activity at 70 °C and pH 2.0. Serine, metallo and aspartic protease inhibitors did not affect the enzyme activity, designating SsMTP-1 as a new member of the pepstatin-insensitive aspartic protease family. The peptide-bond-specificity of SsMTP-1 in the cleavage of the oxidized insulin B chain was uncommon amongst thermopsins, suggesting that it could play a distinct, but cooperative role in the protein degradation machinery. Interestingly, predictions of the transmembrane protein topology of SsMTP and SsMTP-1 strongly suggest a possible contribution in signal-transduction pathways. PMID:24566144

  2. A Trichomonas vaginalis Rhomboid Protease and Its Substrate Modulate Parasite Attachment and Cytolysis of Host Cells.

    PubMed

    Riestra, Angelica M; Gandhi, Shiv; Sweredoski, Michael J; Moradian, Annie; Hess, Sonja; Urban, Sinisa; Johnson, Patricia J

    2015-12-01

    Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis.

  3. New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation.

    PubMed

    de Almeida, Hugo; Bastos, Izabela M D; Ribeiro, Bergmann M; Maigret, Bernard; Santana, Jaime M

    2013-01-01

    Dengue fever is caused by four distinct serotypes of the dengue virus (DENV1-4), and is estimated to affect over 500 million people every year. Presently, there are no vaccines or antiviral treatments for this disease. Among the possible targets to fight dengue fever is the viral NS3 protease (NS3PRO), which is in part responsible for viral processing and replication. It is now widely recognized that virtual screening campaigns should consider the flexibility of target protein by using multiple active conformational states. The flexibility of the DENV NS3PRO could explain the relatively low success of previous virtual screening studies. In this first work, we explore the DENV NS3PRO conformational states obtained from molecular dynamics (MD) simulations to take into account protease flexibility during the virtual screening/docking process. To do so, we built a full NS3PRO model by multiple template homology modeling. The model comprised the NS2B cofactor (essential to the NS3PRO activation), a glycine flexible link and the proteolytic domain. MD simulations had the purpose to sample, as closely as possible, the ligand binding site conformational landscape prior to inhibitor binding. The obtained conformational MD sample was clustered into four families that, together with principal component analysis of the trajectory, demonstrated protein flexibility. These results allowed the description of multiple binding modes for the Bz-Nle-Lys-Arg-Arg-H inhibitor, as verified by binding plots and pair interaction analysis. This study allowed us to tackle protein flexibility in our virtual screening campaign against the dengue virus NS3 protease.

  4. SepM, a Streptococcal Protease Involved in Quorum Sensing, Displays Strict Substrate Specificity

    PubMed Central

    Biswas, Saswati; Cao, Luyang; Kim, Albert

    2015-01-01

    ABSTRACT Streptococcus mutans, a causative agent of dental caries, relies on multiple quorum-sensing (QS) pathways that coordinate the expression of factors needed for colonization in the oral cavity. S. mutans uses small peptides as QS signaling molecules that typically are secreted into the outside milieu. Competence-stimulating peptide (CSP) is one such QS signaling molecule that functions through the ComDE two-component signal transduction pathway. CSP is secreted through NlmTE, a dedicated ABC transporter that cleaves off the N-terminal leader peptide to generate a mature peptide that is 21 residues long (CSP-21). We recently identified a surface-localized protease, SepM, which further cleaves the CSP-21 peptide at the C-terminal end and removes the last 3 residues to generate CSP-18. CSP-18 is the active QS molecule that interacts with the ComD sensor kinase to activate the QS pathway. In this study, we show that SepM specifically cleaves CSP-21 between the Ala18 and Leu19 residues. We also show that SepM recognizes only Ala at position 18 and Leu at position 19, although some CSP-18 variants with a substitution at position 18 can function equally as well as the QS peptide. Furthermore, we demonstrate that SepM homologs from other streptococci are capable of processing CSP-21 to generate functional CSP-18. IMPORTANCE SepM is a membrane-associated streptococcal protease that processes competence-stimulating peptide (CSP) to generate an active quorum-sensing molecule in S. mutans. SepM belongs to the S16 family of serine proteases, and in this study, we found that SepM behaves as an endopeptidase. SepM displays strict substrate specificity and cleaves the peptide bond between the Ala and Leu residues. This is the first report of an endopeptidase that specifically cleaves these two residues. PMID:26553848

  5. Protease increases fermentation rate and ethanol yield in dry-grind ethanol production.

    PubMed

    Johnston, David B; McAloon, Andrew J

    2014-02-01

    The effects of acid protease and urea addition during the fermentation step were evaluated. The fermentations were also tested with and without the addition of urea to determine if protease altered the nitrogen requirements of the yeast. Results show that the addition of the protease had a statistically significant effect on the fermentation rate and yield. Fermentation rates and yields were improved with the addition of the protease over the corresponding controls without protease. Protease addition either with or with added urea resulted in a higher final ethanol yield than without the protease addition. Urea addition levels >1200 ppm of supplemental nitrogen inhibited ethanol production. The economic effects of the protease addition were evaluated by using process engineering and economic models developed at the Eastern Regional Research Center. The decrease in overall processing costs from protease addition was as high as $0.01/L (4 ¢/gal) of denatured ethanol produced.

  6. Expression, purification and molecular modeling of the NIa protease of Cardamom mosaic virus.

    PubMed

    Jebasingh, T; Pandaranayaka, Eswari P J; Mahalakshmi, A; Kasin Yadunandam, A; Krishnaswamy, S; Usha, R

    2013-01-01

    The NIa protease of Potyviridae is the major viral protease that processes potyviral polyproteins. The NIa protease coding region of Cardamom mosaic virus (CdMV) is amplified from the viral cDNA, cloned and expressed in Escherichia coli. NIa protease forms inclusion bodies in E.coli. The inclusion bodies are solubilized with 8 M urea, refolded and purified by Nickel-Nitrilotriacetic acid affinity chromatography. Three-dimensional modeling of the CdMV NIa protease is achieved by threading approach using the homologous X-ray crystallographic structure of Tobacco etch mosaic virus NIa protease. The model gave an insight in to the substrate specificities of the NIa proteases and predicted the complementation of nearby residues in the catalytic triad (H42, D74 and C141) mutants in the cis protease activity of CdMV NIa protease. PMID:22888800

  7. The structure of a universally employed enzyme: V8 protease from Staphylococcus aureus

    SciTech Connect

    Prasad, Lata; Leduc, Yvonne; Hayakawa, Koto; Delbaere, Louis T.J.

    2008-06-27

    V8 protease, an extracellular protease of Staphylococcus aureus, is related to the pancreatic serine proteases. The enzyme cleaves peptide bonds exclusively on the carbonyl side of aspartate and glutamate residues. Unlike the pancreatic serine proteases, V8 protease possesses no disulfide bridges. This is a major evolutionary difference, as all pancreatic proteases have at least two disulfide bridges. The structure of V8 protease shows structural similarity with several other serine proteases, specifically the epidermolytic toxins A and B from S. aureus and trypsin, in which the conformation of the active site is almost identical. V8 protease is also unique in that the positively charged N-terminus is involved in determining the substrate-specificity of the enzyme.

  8. Expression, purification and molecular modeling of the NIa protease of Cardamom mosaic virus.

    PubMed

    Jebasingh, T; Pandaranayaka, Eswari P J; Mahalakshmi, A; Kasin Yadunandam, A; Krishnaswamy, S; Usha, R

    2013-01-01

    The NIa protease of Potyviridae is the major viral protease that processes potyviral polyproteins. The NIa protease coding region of Cardamom mosaic virus (CdMV) is amplified from the viral cDNA, cloned and expressed in Escherichia coli. NIa protease forms inclusion bodies in E.coli. The inclusion bodies are solubilized with 8 M urea, refolded and purified by Nickel-Nitrilotriacetic acid affinity chromatography. Three-dimensional modeling of the CdMV NIa protease is achieved by threading approach using the homologous X-ray crystallographic structure of Tobacco etch mosaic virus NIa protease. The model gave an insight in to the substrate specificities of the NIa proteases and predicted the complementation of nearby residues in the catalytic triad (H42, D74 and C141) mutants in the cis protease activity of CdMV NIa protease.

  9. Kinetics of alkaline protease production by Streptomyces griseoflavus PTCC1130

    PubMed Central

    Hosseini, Seyed Vesal; Saffari, Zahra; Farhanghi, Ali; Atyabi, Seyed Mohammad; Norouzian, Dariush

    2016-01-01

    Background and Objectives: Proteases are a group of enzymes that catalyze the degradation of proteins resulting in the production of their amino acid constituents. They are the most important group of industrial enzymes which account for about 60% of total enzymes in the market and produced mainly by microorganisms. The attempts were made to study the kinetic parameters of protease produced by Streptomyces griseoflavus PTCC1130. Materials and Methods: Streptomyces griseoflavus PTCC1130 was grown on casein agar. Different media such as BM1, BM2, BM3 and BM4 were prepared. Data obtained from growth and protease production were subjected to kinetics evaluation. Casein was used as substrate for protease activity and the released soluble peptide bearing aromatic amino acid were quantified by Folin Cioclateaue reagent. Protein content of the enzyme and the sugar utilized by the organism were estimated by Bradford and Miller’s methods respectively. Results: Basal Medium named as BM1, BM2, BM3 and BM4(50 mL in 250 mL Erlen Meyer flasks) were screened out to evaluate protease production by Streptomyces griseoflavus PTCC1130. They were inoculated with known amount of seed culture and kept on rotary shaker. To obtain the specific growth rate, wet weight of biomass was plotted against the time. The clarified supernatant was used for the analysis of protease by measuring the soluble peptide containing aromatic amino acid residues employing Folin Cioclateaue reagent. Our results showed that maximum level of enzyme production (14035 U/L) was occurred at late exponential phase using Basal Medium supplemented with zinc sulfate (0.5g/L), casein (10g/L) at pH 6.5. Conclusions: A kinetic study of protease production by Streptomyces griseoflavus PTCC1130 provided highly quantitative information regarding the behavior of a system, which is essential to study the fermentation process. Exploitation of such kinetics analysis would be useful in commercialization of microbial enzyme

  10. Characterization of a chemostable serine alkaline protease from Periplaneta americana

    PubMed Central

    2013-01-01

    Background Proteases are important enzymes involved in numerous essential physiological processes and hold a strong potential for industrial applications. The proteolytic activity of insects’ gut is endowed by many isoforms with diverse properties and specificities. Thus, insect proteases can act as a tool in industrial processes. Results In the present study, purification and properties of a serine alkaline protease from Periplaneta americana and its potential application as an additive in various bio-formulations are reported. The enzyme was purified near to homogeneity by using acetone precipitation and Sephadex G-100 gel filtration chromatography. Enzyme activity was increased up to 4.2 fold after gel filtration chromatography. The purified enzyme appeared as single protein-band with a molecular mass of ~ 27.8 kDa in SDS-PAGE. The optimum pH and temperature for the proteolytic activity for purified protein were found around pH 8.0 and 60°C respectively. Complete inhibition of the purified enzyme by phenylmethylsulfonyl fluoride confirmed that the protease was of serine-type. The purified enzyme revealed high stability and compatibility towards detergents, oxidizing, reducing, and bleaching agents. In addition, enzyme also showed stability towards organic solvents and commercial detergents. Conclusion Several important properties of a serine protease from P. Americana were revealed. Moreover, insects can serve as excellent and alternative source of industrially important proteases with unique properties, which can be utilized as additives in detergents, stain removers and other bio-formulations. Properties of the P. americana protease accounted in the present investigation can be exploited further in various industrial processes. As an industrial prospective, identification of enzymes with varying essential properties from different insect species might be good approach and bioresource. PMID:24229392

  11. Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex.

    PubMed

    Levy, C; Brooks, J M; Chen, J; Su, J; Fox, M A

    2015-03-01

    Mounting evidence has demonstrated that a specialized extracellular matrix exists in the mammalian brain and that this glycoprotein-rich matrix contributes to many aspects of brain development and function. The most prominent supramolecular assemblies of these extracellular matrix glycoproteins are perineuronal nets, specialized lattice-like structures that surround the cell bodies and proximal neurites of select classes of interneurons. Perineuronal nets are composed of lecticans, a family of chondroitin sulfate proteoglycans that includes aggrecan, brevican, neurocan, and versican. These lattice-like structures emerge late in postnatal brain development, coinciding with the ending of critical periods of brain development. Despite our knowledge of the presence of lecticans in perineuronal nets and their importance in regulating synaptic plasticity, we know little about the development or distribution of the extracellular proteases that are responsible for their cleavage and turnover. A subset of a large family of extracellular proteases (called a disintegrin and metalloproteinase with thrombospondin motifs [ADAMTS]) is responsible for endogenously cleaving lecticans. We therefore explored the expression pattern of two aggrecan-degrading ADAMTS family members, ADAMTS15 and ADAMTS4, in the hippocampus and neocortex. Here, we show that both lectican-degrading metalloproteases are present in these brain regions and that each exhibits a distinct temporal and spatial expression pattern. Adamts15 mRNA is expressed exclusively by parvalbumin-expressing interneurons during synaptogenesis, whereas Adamts4 mRNA is exclusively generated by telencephalic oligodendrocytes during myelination. Thus, ADAMTS15 and ADAMTS4 not only exhibit unique cellular expression patterns but their developmental upregulation by these cell types coincides with critical aspects of neural development.

  12. Proteases in egg, miracidium and adult of Fasciola gigantica. Characterization of serine and cysteine proteases from adult.

    PubMed

    Mohamed, Saleh A; Fahmy, Afaf S; Mohamed, Tarek M; Hamdy, Soha M

    2005-10-01

    Proteolytic activity of 0-12 day old eggs, miracidium and adult worm of Fasciola gigantica was assessed and proteases were partially purified by DEAE-Sepharose and CM-cellulose columns. Four forms of protease were separated, PIa, PIb, PIc and PII. Purifications were completed for PIc and PII using Sephacryl S-200 chromatography. A number of natural and synthetic proteins were tested as substrates for F. gigantica PIc and PII. The two proteases had moderate activity levels toward azoalbumin and casein compared to azocasein, while gelatin, hemoglobin, albumin and fibrin had very low affinity toward the two enzymes. Amidolytic substrates are more specific to protease activity. PIc had higher affinity toward BAPNA-HCl (N-benzoyl-arginine-p-nitroanilide-HCl) and BTPNA-HCl (N-benzoyl-tyrosine-p-nitroanilide-HCl) at pH 8.0 indicating that the enzyme was a serine protease. However, PII had higher affinity toward BAPNA at pH 6.5 in the presence of sulfhydryl groups (beta-mercaptoethanol) indicating that the enzyme was a cysteine protease. The effect of specific protease inhibitors on these enzymes was studied. The results confirmed that proteases PIc and PII could be serine and cysteine proteases, respectively. The molecular weights of F. gigantica PIc and PII were 60,000 and 25,000, respectively. F. gigantica PIc and PII had pH optima at 7.5 and 5.5 and K(M) of 2 and 5 mg azocasein/mL, respectively. For amidolytic substrates, PIc had K(M) of 0.3 mM BAPNA/mL and 0.5 mM BTPNA/mL at pH 8.0 and PII had K(M) of 0.6 mM BAPNA/mL at pH 6.5 with reducing agent. F. gigantica PIc and PII had the same optimum temperature at 50 degrees C and were stable up to 40 degrees C. All examined metal cations tested had inhibitory effects toward the two enzymes. From substrate specificity and protease inhibitor studies, PIc and PII could be designated as serine PIc and cysteine PII, respectively. PMID:16102991

  13. Protease nexin-1 regulates retinal vascular development.

    PubMed

    Selbonne, Sonia; Francois, Deborah; Raoul, William; Boulaftali, Yacine; Sennlaub, Florian; Jandrot-Perrus, Martine; Bouton, Marie-Christine; Arocas, Véronique

    2015-10-01

    We recently identified protease nexin-1 (PN-1) or serpinE2, as a possibly underestimated player in maintaining angiogenic balance. Here, we used the well-characterized postnatal vascular development of newborn mouse retina to further investigate the role and the mechanism of action of PN-1 in physiological angiogenesis. The development of retinal vasculature was analysed by endothelial cell staining with isolectin B4. PN-1-deficient (PN-1(-/-)) retina displayed increased vascularization in the postnatal period, with elevated capillary thickness and density, compared to their wild-type littermate (WT). Moreover, PN-1(-/-) retina presented more veins/arteries than WT retina. The kinetics of retinal vasculature development, retinal VEGF expression and overall retinal structure were similar in WT and PN-1(-/-) mice, but we observed a hyperproliferation of vascular cells in PN-1(-/-) retina. Expression of PN-1 was analysed by immunoblotting and X-Gal staining of retinas from mice expressing beta-galactosidase under a PN-1 promoter. PN-1 was highly expressed in the first week following birth and then progressively decreased to a low level in adult retina where it localized on the retinal arteries. PCR arrays performed on mouse retinal RNA identified two angiogenesis-related factors, midkine and Smad5, that were overexpressed in PN-1(-/-) newborn mice and this was confirmed by RT-PCR. Both the higher vascularization and the overexpression of midkine and Smad5 mRNA were also observed in gastrocnemius muscle of PN-1(-/-) mice, suggesting that PN-1 interferes with these pathways. Together, our results demonstrate that PN-1 strongly limits physiological angiogenesis and suggest that modulation of PN-1 expression could represent a new way to regulate angiogenesis.

  14. Family Privilege

    ERIC Educational Resources Information Center

    Seita, John R.

    2014-01-01

    Family privilege is defined as "strengths and supports gained through primary caring relationships." A generation ago, the typical family included two parents and a bevy of kids living under one roof. Now, every variation of blended caregiving qualifies as family. But over the long arc of human history, a real family was a…

  15. Family Literacy.

    ERIC Educational Resources Information Center

    Washington, Charles W., Ed.

    1996-01-01

    This newsletter theme issue focuses on the impact of learning disabilities within families, specifically families with low literacy skills. It explores the effectiveness of family literacy programs, examines the connection between the field of family literacy and learning disabilities (LD), and offers suggestions on how to work with students with…

  16. Asteroid families

    NASA Technical Reports Server (NTRS)

    Williams, James G.

    1991-01-01

    More than 100 asteroid families are presented in Williams. Several examples of cratering events are known including family numbers 150, 162, 169, and 189. These are recognizable as many small fragments adjacent to and to one side (in three dimensions) of a much larger cratered body. Family numbers 138 and 140 are adjacent in proper element space. In population they are an intermediate step between the long recognizable families and the more frequent less populated families. Family number 164 is the fifth most populous family in the belt. All members are faint and nothing is known of the physical properties.

  17. Contribution of Gag and Protease to HIV-1 Phenotypic Drug Resistance in Pediatric Patients Failing Protease Inhibitor-Based Therapy

    PubMed Central

    Giandhari, Jennifer; Basson, Adriaan E.; Sutherland, Katherine; Parry, Chris M.; Cane, Patricia A.; Coovadia, Ashraf; Kuhn, Louise; Hunt, Gillian

    2016-01-01

    Protease inhibitors (PIs) are used as a first-line regimen in HIV-1-infected children. Here we investigated the phenotypic consequences of amino acid changes in Gag and protease on lopinavir (LPV) and ritonavir (RTV) susceptibility among pediatric patients failing PI therapy. The Gag-protease from isolates from 20 HIV-1 subtype C-infected pediatric patients failing an LPV and/or RTV-based regimen was phenotyped using a nonreplicative in vitro assay. Changes in sensitivity to LPV and RTV relative to that of the matched baseline (pretherapy) sample were calculated. Gag and protease amino acid substitutions associated with PI failure were created in a reference clone by site-directed mutagenesis and assessed. Predicted phenotypes were determined using the Stanford drug resistance algorithm. Phenotypic resistance or reduced susceptibility to RTV and/or LPV was observed in isolates from 10 (50%) patients, all of whom had been treated with RTV. In most cases, this was associated with protease resistance mutations, but substitutions at Gag cleavage and noncleavage sites were also detected. Gag amino acid substitutions were also found in isolates from three patients with reduced drug susceptibilities who had wild-type protease. Site-directed mutagenesis confirmed that some amino acid changes in Gag contributed to PI resistance but only in the presence of major protease resistance-associated substitutions. The isolates from all patients who received LPV exclusively were phenotypically susceptible. Baseline isolates from the 20 patients showed a large (47-fold) range in the 50% effective concentration of LPV, which accounted for most of the discordance seen between the experimentally determined and the predicted phenotypes. Overall, the inclusion of the gag gene and the use of matched baseline samples provided a more comprehensive assessment of the effect of PI-induced amino acid changes on PI resistance. The lack of phenotypic resistance to LPV supports the continued use of

  18. Regulation of Extracellular Protease Production in Bacillus cereus T: Characterization of Mutants Producing Altered Amounts of Protease

    PubMed Central

    Aronson, A. I.; Angelo, N.; Holt, S. C.

    1971-01-01

    Twenty-nine mutants of Bacillus cereus T were selected on casein agar for their inability to produce large amounts of extracellular protease. They all formed spores, and 27 were also auxotrophs for purines or pyrimidines. Upon reversion to prototrophy, a large fraction regained the capacity to produce protease. Conversely, reversion to normal protease production resulted in loss of the purine or pyrimidine requirement in a large fraction of the revertants. One spontaneous low-protease-producing pyrimidine auxotroph studied in detail grew as well as the wild type and produced spores which were identical to those produced by the wild type on the basis of heat resistance, dipicolinic acid content, density, and appearance in the electron microscope. The rate of protein turnover in the mutant was the same as the wild type. The mutant did grow poorly, however, when casein was the principal carbon source. A mutant excreting 5 to 10 times as much protease as the wild type was isolated as a secondary mutation from the hypoproducer discussed above. Loss of the pyrimidine requirement in this case did not alter the regulation of protease production. Although the secondary mutant grew somewhat faster in most media than the wild type, the final cell yield was lower. The spores of this mutant appeared to have excess coat on the basis of both electron microscopic and chemical studies. There appear to be closely related but distinct catabolic controls for both extracellular protease and spore formation. These controls can be dissociated as for the hypoproducers but can also appear integrated as for the hyperprotease producer. Images PMID:4104235

  19. Diversity of both the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China sea.

    PubMed

    Zhou, Ming-Yang; Chen, Xiu-Lan; Zhao, Hui-Lin; Dang, Hong-Yue; Luan, Xi-Wu; Zhang, Xi-Ying; He, Hai-Lun; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2009-10-01

    Protease-producing bacteria are known to play an important role in degrading sedimentary particular organic nitrogen, and yet, their diversity and extracellular proteases remain largely unknown. In this paper, the diversity of the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea was investigated. The richness of the cultivable protease-producing bacteria reached 10(6) cells/g in all sediment samples. Analysis of the 16S rRNA gene sequences revealed that the predominant cultivated protease-producing bacteria are Gammaproteobacteria affiliated with the genera Pseudoalteromonas, Alteromonas, Marinobacter, Idiomarina, Halomonas, Vibrio, Shewanella, Pseudomonas, and Rheinheimera, with Alteromonas (34.6%) and Pseudoalteromonas (28.2%) as the predominant groups. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria are serine proteases or metalloproteases. Moreover, these proteases have different hydrolytic ability to different proteins, reflecting they may belong to different kinds of serine proteases or metalloproteases. To our knowledge, this study represents the first report of the diversity of bacterial proteases in deep-sea sediments.

  20. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin

    PubMed Central

    Brunati, Martina; Perucca, Simone; Han, Ling; Cattaneo, Angela; Consolato, Francesco; Andolfo, Annapaola; Schaeffer, Céline; Olinger, Eric; Peng, Jianhao; Santambrogio, Sara; Perrier, Romain; Li, Shuo; Bokhove, Marcel; Bachi, Angela; Hummler, Edith; Devuyst, Olivier; Wu, Qingyu; Jovine, Luca; Rampoldi, Luca

    2015-01-01

    Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family, including several extracellular proteins, as egg coat proteins and inner ear tectorins. DOI: http://dx.doi.org/10.7554/eLife.08887.001 PMID:26673890

  1. Cloning and expression analysis of cysteine protease gene (MwCP) in Agropyron mongolicum Keng.

    PubMed

    Ao, T G B Y; Lang, M L; Li, Y Q; Zhao, Y; Wang, L C; Yang, X J

    2016-01-01

    In this study, a cysteine protease gene (MwCP) from Agropyron mongolicum Keng was isolated using RACE. Sequence analysis indicated that MwCP was 1473 bp, and it contained a 1134-bp open reading frame, which encoded 377 amino acids with a 24-amino acid N-terminal signal peptide. The results indicated that the MwCP protein was a new member of the papain C1A family, and it was predicted to be an extracellular, secretory stable hydrophilic protein. The secondary structure of MwCP was mainly composed of α-helices and random coils, and the space structure primarily contained α-helices, β-sheets, and β-turns. Homology analyses showed the 98% homology between MwCP amino acids and a cysteine protease found in Triticum aestivum (GenBank accession No. AAW21813.1). Analysis of mRNA using semi-quantitative RT-PCR indicated that during a 48-h drought stress period, MwCP was expressed during the 4th hour, and the expression level peaked during the 6th hour before declining to the original level. The results revealed that MwCP was involved in drought-resistant physiological processes of A. mongolicum. Moreover, the MwCP expression levels were highest in leaves, intermediate in roots, and lowest in stems. PMID:26909915

  2. The anglerfish somatostatin-28-generating propeptide converting enzyme is an aspartyl protease.

    PubMed

    Mackin, R B; Noe, B D; Spiess, J

    1991-10-01

    An enzyme that performs the conversion of anglerfish prosomatostatin-II (pro-SS-II) to anglerfish SS-28 has been identified using an improved two-dimensional electrophoresis procedure. The enzyme is a single chain 39 kDa polypeptide with its isoelectric point at pH 5.9. The converting enzyme has an acidic pH optimum, consistent with the lowered pH of the intracellular site of propeptide conversion. Secretory granule extracts were examined to determine the inhibitor sensitivity and pH optimum of the conversion of anglerfish pro-SS-II to anglerfish SS-28 in this organelle. Production of anglerfish SS-28 by secretory granules was maximal at pH 4.2 and was completely inhibited by the addition of pepstatin. Since pepstatin is a specific inhibitor of aspartyl proteases, these results indicate that the purified enzyme is a member of this enzyme family. This conclusion was supported by the data from partial amino acid sequence analysis. Because these results are consistent with the role of the purified enzyme in the in vivo production of anglerfish SS-28, the identified aspartyl protease has been termed the anglerfish SS-28-generating propeptide-converting enzyme. PMID:1680672

  3. Staphylococcal SplB Serine Protease Utilizes a Novel Molecular Mechanism of Activation*

    PubMed Central

    Pustelny, Katarzyna; Zdzalik, Michal; Stach, Natalia; Stec-Niemczyk, Justyna; Cichon, Przemyslaw; Czarna, Anna; Popowicz, Grzegorz; Mak, Pawel; Drag, Marcin; Salvesen, Guy S.; Wladyka, Benedykt; Potempa, Jan; Dubin, Adam; Dubin, Grzegorz

    2014-01-01

    Staphylococcal SplB protease belongs to the chymotrypsin family. Chymotrypsin zymogen is activated by proteolytic processing at the N terminus, resulting in significant structural rearrangement at the active site. Here, we demonstrate that the molecular mechanism of SplB protease activation differs significantly and we characterize the novel mechanism in detail. Using peptide and protein substrates we show that the native signal peptide, or any N-terminal extension, has an inhibitory effect on SplB. Only precise N-terminal processing releases the full proteolytic activity of the wild type analogously to chymotrypsin. However, comparison of the crystal structures of mature SplB and a zymogen mimic show no rearrangement at the active site whatsoever. Instead, only the formation of a unique hydrogen bond network, distant form the active site, by the new N-terminal glutamic acid of mature SplB is observed. The importance of this network and influence of particular hydrogen bond interactions at the N terminus on the catalytic process is demonstrated by evaluating the kinetics of a series of mutants. The results allow us to propose a consistent model where changes in the overall protein dynamics rather than structural rearrangement of the active site are involved in the activation process. PMID:24713703

  4. Proteolytic cleavage of human acid-sensing ion channel 1 by the serine protease matriptase.

    PubMed

    Clark, Edlira B; Jovov, Biljana; Rooj, Arun K; Fuller, Catherine M; Benos, Dale J

    2010-08-27

    Acid-sensing ion channel 1 (ASIC1) is a H(+)-gated channel of the amiloride-sensitive epithelial Na(+) channel (ENaC)/degenerin family. ASIC1 is expressed mostly in the central and peripheral nervous system neurons. ENaC and ASIC function is regulated by several serine proteases. The type II transmembrane serine protease matriptase activates the prototypical alphabetagammaENaC channel, but we found that matriptase is expressed in glioma cells and its expression is higher in glioma compared with normal astrocytes. Therefore, the goal of this study was to test the hypothesis that matriptase regulates ASIC1 function. Matriptase decreased the acid-activated ASIC1 current as measured by two-electrode voltage clamp in Xenopus oocytes and cleaved ASIC1 expressed in oocytes or CHO K1 cells. Inactive S805A matriptase had no effect on either the current or the cleavage of ASIC1. The effect of matriptase on ASIC1 was specific, because it did not affect the function of ASIC2 and no matriptase-specific ASIC2 fragments were detected in oocytes or in CHO cells. Three matriptase recognition sites were identified in ASIC1 (Arg-145, Lys-185, and Lys-384). Site-directed mutagenesis of these sites prevented matriptase cleavage of ASIC1. Our results show that matriptase is expressed in glioma cells and that matriptase specifically cleaves ASIC1 in heterologous expression systems. PMID:20601429

  5. The Molecular Basis for Ubiquitin and Ubiquitin-like Specificities in Bacterial Effector Proteases.

    PubMed

    Pruneda, Jonathan N; Durkin, Charlotte H; Geurink, Paul P; Ovaa, Huib; Santhanam, Balaji; Holden, David W; Komander, David

    2016-07-21

    Pathogenic bacteria rely on secreted effector proteins to manipulate host signaling pathways, often in creative ways. CE clan proteases, specific hydrolases for ubiquitin-like modifications (SUMO and NEDD8) in eukaryotes, reportedly serve as bacterial effector proteins with deSUMOylase, deubiquitinase, or, even, acetyltransferase activities. Here, we characterize bacterial CE protease activities, revealing K63-linkage-specific deubiquitinases in human pathogens, such as Salmonella, Escherichia, and Shigella, as well as ubiquitin/ubiquitin-like cross-reactive enzymes in Chlamydia, Rickettsia, and Xanthomonas. Five crystal structures, including ubiquitin/ubiquitin-like complexes, explain substrate specificities and redefine relationships across the CE clan. Importantly, this work identifies novel family members and provides key discoveries among previously reported effectors, such as the unexpected deubiquitinase activity in Xanthomonas XopD, contributed by an unstructured ubiquitin binding region. Furthermore, accessory domains regulate properties such as subcellular localization, as exemplified by a ubiquitin-binding domain in Salmonella Typhimurium SseL. Our work both highlights and explains the functional adaptations observed among diverse CE clan proteins. PMID:27425412

  6. The malaria parasite egress protease SUB1 is a calcium-dependent redox switch subtilisin

    PubMed Central

    Withers-Martinez, Chrislaine; Strath, Malcolm; Hackett, Fiona; Haire, Lesley F.; Howell, Steven A.; Walker, Philip A.; Evangelos, Christodoulou; Dodson, Guy G.; Blackman, Michael J.

    2014-01-01

    Malaria is caused by a protozoan parasite that replicates within an intraerythrocytic parasitophorous vacuole. Release (egress) of malaria merozoites from the host erythrocyte is a highly regulated and calcium-dependent event that is critical for disease progression. Minutes before egress, an essential parasite serine protease called SUB1 is discharged into the parasitophorous vacuole, where it proteolytically processes a subset of parasite proteins that play indispensable roles in egress and invasion. Here we report the first crystallographic structure of Plasmodium falciparum SUB1 at 2.25 Å, in complex with its cognate prodomain. The structure highlights the basis of the calcium dependence of SUB1, as well as its unusual requirement for interactions with substrate residues on both prime and non-prime sides of the scissile bond. Importantly, the structure also reveals the presence of a solvent-exposed redox-sensitive disulphide bridge, unique among the subtilisin family, that likely acts as a regulator of protease activity in the parasite. PMID:24785947

  7. A Cysteine Protease Is Critical for Babesia spp. Transmission in Haemaphysalis Ticks

    PubMed Central

    Tsuji, Naotoshi; Miyoshi, Takeharu; Battsetseg, Badger; Matsuo, Tomohide; Xuan, Xuenan; Fujisaki, Kozo

    2008-01-01

    Vector ticks possess a unique system that enables them to digest large amounts of host blood and to transmit various animal and human pathogens, suggesting the existence of evolutionally acquired proteolytic mechanisms. We report here the molecular and reverse genetic characterization of a multifunctional cysteine protease, longipain, from the babesial parasite vector tick Haemaphysalis longicornis. Longipain shares structural similarity with papain-family cysteine proteases obtained from invertebrates and vertebrates. Endogenous longipain was mainly expressed in the midgut epithelium and was specifically localized at lysosomal vacuoles and possibly released into the lumen. Its expression was up-regulated by host blood feeding. Enzymatic functional assays using in vitro and in vivo substrates revealed that longipain hydrolysis occurs over a broad range of pH and temperature. Haemoparasiticidal assays showed that longipain dose-dependently killed tick-borne Babesia parasites, and its babesiacidal effect occurred via specific adherence to the parasite membranes. Disruption of endogenous longipain by RNA interference revealed that longipain is involved in the digestion of the host blood meal. In addition, the knockdown ticks contained an increased number of parasites, suggesting that longipain exerts a killing effect against the midgut-stage Babesia parasites in ticks. Our results suggest that longipain is essential for tick survival, and may have a role in controlling the transmission of tick-transmittable Babesia parasites. PMID:18483546

  8. Protease Inhibitors in View of Peptide Substrate Databases

    PubMed Central

    2016-01-01

    Protease substrate profiling has nowadays almost become a routine task for experimentalists, and the knowledge on protease peptide substrates is easily accessible via the MEROPS database. We present a shape-based virtual screening workflow using vROCS that applies the information about the specificity of the proteases to find new small-molecule inhibitors. Peptide substrate sequences for three to four substrate positions of each substrate from the MEROPS database were used to build the training set. Two-dimensional substrate sequences were converted to three-dimensional conformations through mutation of a template peptide substrate. The vROCS query was built from single amino acid queries for each substrate position considering the relative frequencies of the amino acids. The peptide-substrate-based shape-based virtual screening approach gives good performance for the four proteases thrombin, factor Xa, factor VIIa, and caspase-3 with the DUD-E data set. The results show that the method works for protease targets with different specificity profiles as well as for targets with different active-site mechanisms. As no structure of the target and no information on small-molecule inhibitors are required to use our approach, the method has significant advantages in comparison with conventional structure- and ligand-based methods. PMID:27247997

  9. Characterization, biomedical and agricultural applications of protease inhibitors: A review.

    PubMed

    Shamsi, Tooba Naz; Parveen, Romana; Fatima, Sadaf

    2016-10-01

    This review describes Protease Inhibitors (PIs) which target or inhibit proteases, protein digesting enzymes. These proteases play a crucial task in many biological events including digestion, blood coagulation, apoptosis etc. Regardless of their crucial roles, they need to be checked regularly by PIs as their excess may possibly damage host organism. On basis of amino acid composition of PIs where Protease-PI enzymatic reactions occur i.e. serine, cysteine, and aspartic acid, they are classified. Nowadays, various PIs are being worked upon to fight various parasitic or viral diseases including malaria, schistosomiasis, colds, flu', dengue etc. They prevent an ongoing process begun by carcinogen exposure by keeping a check on metastasis. They also possess potential to reduce carcinogen-induced, increased levels of gene amplification to almost normal levels. Some PIs can principally be used for treatment of hypertension and congestive heart failure by blocking conversion of angiotensin I to angiotensin II for example Angiotensin-converting enzyme inhibitors (ACEIs). Also PIs target amyloid β-peptide (Aβ) level in brain which is prime responsible for development of Alzheimer's Disease (AD). Also, PIs inhibit enzymatic activity of HIV-1 Protease Receptor (PR) by preventing cleavage events in Gag and Gag-Pol that result in production of non-virulent virus particles.

  10. Mitochondrial cereblon functions as a Lon-type protease.

    PubMed

    Kataoka, Kosuke; Nakamura, China; Asahi, Toru; Sawamura, Naoya

    2016-07-15

    Lon protease plays a major role in the protein quality control system in mammalian cell mitochondria. It is present in the mitochondrial matrix, and degrades oxidized and misfolded proteins, thereby protecting the cell from various extracellular stresses, including oxidative stress. The intellectual disability-associated and thalidomide-binding protein cereblon (CRBN) contains a large, highly conserved Lon domain. However, whether CRBN has Lon protease-like function remains unknown. Here, we determined if CRBN has a protective function against oxidative stress, similar to Lon protease. We report that CRBN partially distributes in mitochondria, suggesting it has a mitochondrial function. To specify the mitochondrial role of CRBN, we mitochondrially expressed CRBN in human neuroblastoma SH-SY5Y cells. The resulting stable SH-SY5Y cell line showed no apparent effect on the mitochondrial functions of fusion, fission, and membrane potential. However, mitochondrially expressed CRBN exhibited protease activity, and was induced by oxidative stress. In addition, stably expressed cells exhibited suppressed neuronal cell death induced by hydrogen peroxide. These results suggest that CRBN functions specifically as a Lon-type protease in mitochondria.

  11. Alkaline protease from Thermoactinomyces sp. RS1 mitigates industrial pollution.

    PubMed

    Verma, Amit; Ansari, Mohammad W; Anwar, Mohmmad S; Agrawal, Ruchi; Agrawal, Sanjeev

    2014-05-01

    Proteases have found a wide application in the several industrial processes, such as laundry detergents, protein recovery or solubilization, prion degradation, meat tenderizations, and in bating of hides and skins in leather industries. But the main hurdle in industrial application of proteases is their economical production on a large scale. The present investigation aimed to exploit the locally available inexpensive agricultural and household wastes for alkaline protease production using Thermoactinomyces sp. RS1 via solid-state fermentation (SSF) technique. The alkaline enzyme is potentially useful as an additive in commercial detergents to mitigate pollution load due to extensive use of caustic soda-based detergents. Thermoactinomyces sp. RS1 showed good protease production under SSF conditions of 55 °C, pH 9, and 50 % moisture content with potato peels as solid substrate. The presented findings revealed that crude alkaline protease produced by Thermoactinomyces sp. RS1 via SSF is of potential application in silver recovery from used X-ray films.

  12. Extracellular proteases are released by ciliates in defined seawater microcosms.

    PubMed

    Thao, Ngo Vy; Nozawa, Akino; Obayashi, Yumiko; Kitamura, Shin-Ichi; Yokokawa, Taichi; Suzuki, Satoru

    2015-08-01

    The biodegradation of proteins in seawater requires various proteases which are commonly thought to be mainly derived from heterotrophic bacteria. We, however, found that protists showed a high protease activity and continuously produced trypsin-type enzymes. The free-living marine heterotrophic ciliate Paranophrys marina together with an associated bacterium was isolated and used for microcosm incubation with different concentrations of killed bacteria as food for 10 days. The results showed that the co-existence of the ciliate with its associated bacterium produced a significant protease activity in both cell-associated and cell-free fractions while that in the associated bacterium only microcosm was negligible. The protease profiles are different between cell-associated and cell-free fractions, and a trypsin-type enzyme hydrolyzing Boc-Val-Leu-Lys-MCA was detected throughout the period in the presence of ciliates. This suggests that ciliates release proteases into the surrounding environment which could play a role in protein digestion outside cells. It has been previously suggested that bacteria are the major transformers in seawater. We here present additional data which indicates that protists, or at least ciliates with their specific enzymes, are a potential player in organic matter degradation in water columns.

  13. Plant collagenase: unique collagenolytic activity of cysteine proteases from ginger.

    PubMed

    Kim, Misook; Hamilton, Susan E; Guddat, Luke W; Overall, Christopher M

    2007-12-01

    Two cysteine proteases, GP2 and GP3, have been isolated from ginger rhizomes (Zingiber officinale). GP2 is virtually identical to a previously identified ginger protease GPII [K.H. Choi, and R.A. Laursen, Amino-acid sequence and glycan structures of cysteine proteases with proline specificity from ginger rhizome Zingiber officinale, Eur. J. Biochem. 267 (2000) 1516-1526.], and cleaves native type I collagen at multiple discrete sites, which are in the interior of the triple helical region of this molecule. In reaction with proline-containing peptides GP2 shows preference for Pro in the P2 position, and at least 10-fold higher efficiency of hydrolysis than papain. Comparison of models of GP2 and GP3 with the crystal structure of papain shows that the three enzymes have different S2 pocket structures. The S2 pocket in GP2 and GP3 is half the size of that of papain. GP2 is the only reported plant cysteine protease with a demonstrated ability to hydrolyse native collagen. The results support a role for ginger proteases as an alternative to papain, in commercial applications such as meat tenderization, where collagen is the target substrate. PMID:17920199

  14. Characterization, biomedical and agricultural applications of protease inhibitors: A review.

    PubMed

    Shamsi, Tooba Naz; Parveen, Romana; Fatima, Sadaf

    2016-10-01

    This review describes Protease Inhibitors (PIs) which target or inhibit proteases, protein digesting enzymes. These proteases play a crucial task in many biological events including digestion, blood coagulation, apoptosis etc. Regardless of their crucial roles, they need to be checked regularly by PIs as their excess may possibly damage host organism. On basis of amino acid composition of PIs where Protease-PI enzymatic reactions occur i.e. serine, cysteine, and aspartic acid, they are classified. Nowadays, various PIs are being worked upon to fight various parasitic or viral diseases including malaria, schistosomiasis, colds, flu', dengue etc. They prevent an ongoing process begun by carcinogen exposure by keeping a check on metastasis. They also possess potential to reduce carcinogen-induced, increased levels of gene amplification to almost normal levels. Some PIs can principally be used for treatment of hypertension and congestive heart failure by blocking conversion of angiotensin I to angiotensin II for example Angiotensin-converting enzyme inhibitors (ACEIs). Also PIs target amyloid β-peptide (Aβ) level in brain which is prime responsible for development of Alzheimer's Disease (AD). Also, PIs inhibit enzymatic activity of HIV-1 Protease Receptor (PR) by preventing cleavage events in Gag and Gag-Pol that result in production of non-virulent virus particles. PMID:26955746

  15. Predictors of virologic response to ritonavir-boosted protease inhibitors.

    PubMed

    Marcelin, Anne-Genevieve; Flandre, Philippe; Peytavin, Gilles; Calvez, Vincent

    2005-01-01

    The primary mechanism of resistance to protease inhibitors involves the stepwise accumulation of mutations that alter and block the substrate binding site of HIV protease. The large degree of cross-resistance among the different protease inhibitors is a source of considerable concern for the management of patients after treatment failure. Although the output of HIV-resistance tests has been based on therapeutically arbitrary criteria, there is now an ongoing move towards correlating test interpretation with virologic outcomes on treatment. This approach is undeniably superior, in principle, for tests intended to guide drug choices. However, the predictive accuracy of a given stratagem that links genotype or phenotype to drug response is strongly influenced by the study design, data capture and the analytical methodology used to derive it. There is no definitively superior methodology for generating a genotype-response association for use in interpreting a resistance test, and the various approaches used to date all have their strengths and weaknesses. Combining the information of therapeutic drug monitoring and resistance tests is likely to be of greatest clinical utility in antiretroviral-experienced patients harboring HIV strains with reduced susceptibility. The combination of pharmacologic and virologic parameters as a predictor of the virologic response has been merged into the parameter known as "inhibitory quotient". This article discusses the potential interest of the use of inhibitory quotients as an approach for enhancing the potency and durability of boosted protease inhibitors against protease inhibitor-resistant viruses. PMID:16425962

  16. Extracellular proteases are released by ciliates in defined seawater microcosms.

    PubMed

    Thao, Ngo Vy; Nozawa, Akino; Obayashi, Yumiko; Kitamura, Shin-Ichi; Yokokawa, Taichi; Suzuki, Satoru

    2015-08-01

    The biodegradation of proteins in seawater requires various proteases which are commonly thought to be mainly derived from heterotrophic bacteria. We, however, found that protists showed a high protease activity and continuously produced trypsin-type enzymes. The free-living marine heterotrophic ciliate Paranophrys marina together with an associated bacterium was isolated and used for microcosm incubation with different concentrations of killed bacteria as food for 10 days. The results showed that the co-existence of the ciliate with its associated bacterium produced a significant protease activity in both cell-associated and cell-free fractions while that in the associated bacterium only microcosm was negligible. The protease profiles are different between cell-associated and cell-free fractions, and a trypsin-type enzyme hydrolyzing Boc-Val-Leu-Lys-MCA was detected throughout the period in the presence of ciliates. This suggests that ciliates release proteases into the surrounding environment which could play a role in protein digestion outside cells. It has been previously suggested that bacteria are the major transformers in seawater. We here present additional data which indicates that protists, or at least ciliates with their specific enzymes, are a potential player in organic matter degradation in water columns. PMID:26115436

  17. Three Pseudomonas aeruginosa strains with different protease profiles.

    PubMed

    Andrejko, Mariola; Zdybicka-Barabas, Agnieszka; Janczarek, Monika; Cytryńska, Małgorzata

    2013-01-01

    The proteolytic activity of three Pseudomonas aeruginosa strains, ATCC 27853 - a reference strain, and two clinical isolates was tested. The activity was examined after culturing the bacteria in two different growth media: the minimal M9 medium and rich Luria-Bertani broth (LB). Based on zymograms and protease activity specific assays, it was concluded that the reference strain produced three proteolytic enzymes in the LB medium: protease IV, elastase B and elastase A, while alkaline protease was only produced in the M9 medium. The clinical isolates of P. aeruginosa produced elastase B and alkaline protease when grown in the LB medium and the minimal M9 medium, respectively. PCR analysis confirmed the presence of both the lasB gene encoding elastase B and aprA coding for alkaline protease in the genomes of the three P. aeruginosa strains analyzed. The expression of these genes coding for two important P. aeruginosa virulence factors was dependent on the growth conditions in all the strains studied. The contribution of the extracellular proteinases to the virulence of P. aeruginosa strains used in this study was investigated using an insect model, the greater wax moth Galleria mellonella.

  18. A tunable, modular approach to fluorescent protease-activated reporters.

    PubMed

    Wu, Peng; Nicholls, Samantha B; Hardy, Jeanne A

    2013-04-01

    Proteases are one of the most important and historically utilized classes of drug targets. To effectively interrogate this class of proteins, which encodes nearly 2% of the human proteome, it is necessary to develop effective and cost-efficient methods that report on their activity both in vitro and in vivo. We have developed a robust reporter of caspase proteolytic activity, called caspase-activatable green fluorescent protein (CA-GFP). The caspases play central roles in homeostatic regulation, as they execute programmed cell death, and in drug design, as caspases are involved in diseases ranging from cancer to neurodegeneration. CA-GFP is a genetically encoded dark-to-bright fluorescent reporter of caspase activity in in vitro, cell-based, and animal systems. Based on the CA-GFP platform, we developed reporters that can discriminate the activities of caspase-6 and -7, two highly related proteases. A second series of reporters, activated by human rhinovirus 3C protease, demonstrated that we could alter the specificity of the reporter by reengineering the protease recognition sequence. Finally, we took advantage of the spectrum of known fluorescent proteins to generate green, yellow, cyan, and red reporters, paving the way for multiplex protease monitoring. PMID:23561537

  19. Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease

    SciTech Connect

    Mittal, Seema; Cai, Yufeng; Nalam, Madhavi N.L.; Bolon, Daniel N.A.; Schiffer, Celia A.

    2012-09-11

    Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the overall structure of the protease is retained. However, cross-linking the cysteines led to drastic loss in enzyme activity, which was regained upon reducing the disulfide cross-links. Molecular dynamics simulations showed that altered dynamics propagated throughout the enzyme from the engineered disulfide. Thus, altered flexibility within the hydrophobic core can modulate HIV-1 protease activity, supporting the hypothesis that drug resistant mutations distal from the active site can alter the balance between substrate turnover and inhibitor binding by modulating enzyme activity.

  20. Mitochondrial cereblon functions as a Lon-type protease

    PubMed Central

    Kataoka, Kosuke; Nakamura, China; Asahi, Toru; Sawamura, Naoya

    2016-01-01

    Lon protease plays a major role in the protein quality control system in mammalian cell mitochondria. It is present in the mitochondrial matrix, and degrades oxidized and misfolded proteins, thereby protecting the cell from various extracellular stresses, including oxidative stress. The intellectual disability-associated and thalidomide-binding protein cereblon (CRBN) contains a large, highly conserved Lon domain. However, whether CRBN has Lon protease-like function remains unknown. Here, we determined if CRBN has a protective function against oxidative stress, similar to Lon protease. We report that CRBN partially distributes in mitochondria, suggesting it has a mitochondrial function. To specify the mitochondrial role of CRBN, we mitochondrially expressed CRBN in human neuroblastoma SH-SY5Y cells. The resulting stable SH-SY5Y cell line showed no apparent effect on the mitochondrial functions of fusion, fission, and membrane potential. However, mitochondrially expressed CRBN exhibited protease activity, and was induced by oxidative stress. In addition, stably expressed cells exhibited suppressed neuronal cell death induced by hydrogen peroxide. These results suggest that CRBN functions specifically as a Lon-type protease in mitochondria. PMID:27417535

  1. Selection of multiple human immunodeficiency virus type 1 variants that encode viral proteases with decreased sensitivity to an inhibitor of the viral protease.

    PubMed Central

    Kaplan, A H; Michael, S F; Wehbie, R S; Knigge, M F; Paul, D A; Everitt, L; Kempf, D J; Norbeck, D W; Erickson, J W; Swanstrom, R

    1994-01-01

    Inhibitors of the human immunodeficiency virus type 1 (HIV-1) protease represent a promising addition to the available agents used to inhibit virus replication in a therapeutic setting. HIV-1 is capable of generating phenotypic variants in the face of a variety of selective pressures. The potential to generate variants with reduced sensitivity to a protease inhibitor was examined by selecting for virus growth in cell culture in the presence of the protease inhibitor A-77003. Virus variants grew out in the presence of the inhibitor, and these variants encoded proteases with reduced sensitivity to the inhibitor. Variants were identified that encoded changes in each of the three subsites of the protease that interact with the inhibitor. HIV-1 displays significant potential for altering its interaction with this protease inhibitor, suggesting the need for multiple protease inhibitors with varying specificities. Images PMID:8202533

  2. Muslim Families and Family Therapy.

    ERIC Educational Resources Information Center

    Daneshpour, Manijeh

    1998-01-01

    Examines the applicability of the Anglo-American models of family therapy to Muslim immigrant families. The differences in value systems are the Muslim families' preferences for greater connectedness, a less flexible and more hierarchical family structure, and an implicit communication style. Suggests that directions for change for Muslims need to…

  3. Cancer, Families, and Family Counselors.

    ERIC Educational Resources Information Center

    Duffy, Maureen; Gillig, Scott

    2003-01-01

    Examines the role of the family counselor in working with cancer patients and their families. Suggests ways in which the family counselor can work proactively with families in the area of cancer prevention and helping them cope more effectively with its impact on their lives. Uses a clinical case example to illustrate intervention with cancer…

  4. Diversity of cultivable protease-producing bacteria in sediments of Jiaozhou Bay, China

    PubMed Central

    Zhang, Xi-Ying; Han, Xiao-Xu; Chen, Xiu-Lan; Dang, Hong-Yue; Xie, Bin-Bin; Qin, Qi-Long; Shi, Mei; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2015-01-01

    Although protease-producing bacteria are key players in the degradation of organic nitrogen and essential for the nitrogen recycling in marine sediments, diversity of both these bacteria and their extracellular proteases is still largely unknown. This study investigated the diversity of the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the eutrophied Jiaozhou Bay, China through phylogenetic analysis and protease inhibitor tests. The abundance of the cultivable protease-producing bacteria was up to 104 cells/g in all six sediment samples. The cultivated protease-producing bacteria mostly belonged to the phyla Proteobacteria and Firmicutes with the predominant genera being Photobacterium (39.4%), Bacillus (25.8%), and Vibrio (19.7%). Protease inhibitor tests revealed that extracellular proteases secreted by the bacteria were mainly serine proteases and/or metalloproteases with relatively low proportions of cysteine proteases. This study represents the first comprehensive analysis on the diversity of protease-producing bacteria and their extracellular proteases in sediments of a eutrophic bay. PMID:26441943

  5. Evidence for Reduced Drug Susceptibility without Emergence of Major Protease Mutations following Protease Inhibitor Monotherapy Failure in the SARA Trial

    PubMed Central

    Sutherland, Katherine A.; Parry, Chris M.; McCormick, Adele; Kapaata, Anne; Lyagoba, Fred; Kaleebu, Pontiano; Gilks, Charles F.; Goodall, Ruth; Spyer, Moira; Kityo, Cissy; Pillay, Deenan; Gupta, Ravindra K.

    2015-01-01

    Background Major protease mutations are rarely observed following failure with protease inhibitors (PI), and other viral determinants of failure to PI are poorly understood. We therefore characterized Gag-Protease phenotypic susceptibility in subtype A and D viruses circulating in East Africa following viral rebound on PIs. Methods Samples from baseline and treatment failure in patients enrolled in the second line LPV/r trial SARA underwent phenotypic susceptibility testing. Data were expressed as fold-change in susceptibility relative to a LPV-susceptible reference strain. Results We cloned 48 Gag-Protease containing sequences from seven individuals and performed drug resistance phenotyping from pre-PI and treatment failure timepoints in seven patients. For the six patients where major protease inhibitor resistance mutations did not emerge, mean fold-change EC50 to LPV was 4.07 fold (95% CI, 2.08–6.07) at the pre-PI timepoint. Following viral failure the mean fold-change in EC50 to LPV was 4.25 fold (95% CI, 1.39–7.11, p = 0.91). All viruses remained susceptible to DRV. In our assay system, the major PI resistance mutation I84V, which emerged in one individual, conferred a 10.5-fold reduction in LPV susceptibility. One of the six patients exhibited a significant reduction in susceptibility between pre-PI and failure timepoints (from 4.7 fold to 9.6 fold) in the absence of known major mutations in protease, but associated with changes in Gag: V7I, G49D, R69Q, A120D, Q127K, N375S and I462S. Phylogenetic analysis provided evidence of the emergence of genetically distinct viruses at the time of treatment failure, indicating ongoing viral evolution in Gag-protease under PI pressure. Conclusions Here we observe in one patient the development of significantly reduced susceptibility conferred by changes in Gag which may have contributed to treatment failure on a protease inhibitor containing regimen. Further phenotype-genotype studies are required to elucidate genetic

  6. Family Violence and Family Physicians

    PubMed Central

    Herbert, Carol P.

    1991-01-01

    The acronym IDEALS summarizes family physicians' obligations when violence is suspected: to identify family violence; document injuries; educate families and ensure safety for victims; access resources and coordinate care; co-operate in the legal process; and provide support for families. Failure to respond reflects personal and professional experience and attitudes, fear of legal involvement, and lack of knowledge. Risks of intervention include physician burnout, physician overfunctioning, escalation of violence, and family disruption. PMID:21228987

  7. The Lon protease homologue LonA, not LonC, contributes to the stress tolerance and biofilm formation of Actinobacillus pleuropneumoniae.

    PubMed

    Xie, Fang; Li, Gang; Zhang, Yanhe; Zhou, Long; Liu, Shuanghong; Liu, Siguo; Wang, Chunlai

    2016-04-01

    Lon proteases are a family of ATP-dependent proteases that are involved in the degradation of abnormal proteins in bacteria exposed to adverse environmental stress. An analysis of the genome sequence of Actinobacillus pleuropneumoniae revealed the unusual presence of two putative ATP-dependent Lon homologues, LonA and LonC. Sequence comparisons indicated that LonA has the classical domain organization of the LonA subfamily, which includes the N-terminal domain, central ATPase (AAA) domain, and C-terminal proteolytic (P) domain. LonC belongs to the recently classified LonC subfamily, which includes Lon proteases that contain neither the N-terminal domain of LonA nor the transmembrane region that is present only in LonB subfamily members. To investigate the roles of LonA and LonC in A. pleuropneumoniae, mutants with deletions in the lonA and lonC genes were constructed. The impaired growth of the △lonA mutant exposed to low and high temperatures and osmotic and oxidative stress conditions indicates that the LonA protease is required for the stress tolerance of A. pleuropneumoniae. Furthermore, the △lonA mutant exhibited significantly reduced biofilm formation compared to the wild-type strain. However, no significant differences in stress responses or biofilm formation were observed between the △lonC mutant and the wild-type strain. The △lonA mutant exhibited reduced colonization ability and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model compared to the wild-type strain. Disruption of lonC gene did not significantly influence the colonization and virulence of A. pleuropneumoniae. The data presented in this study illustrate that the LonA protease, but not the LonC protease, is required for the stress tolerance, biofilm formation and pathogenicity of A. pleuropneumoniae.

  8. Tobacco Etch Virus protease: A shortcut across biotechnologies.

    PubMed

    Cesaratto, Francesca; Burrone, Oscar R; Petris, Gianluca

    2016-08-10

    About thirty years ago, studies on the RNA genome of Tobacco Etch Virus revealed the presence of an efficient and specific protease, called Tobacco Etch Virus protease (TEVp), that was part of the Nuclear Inclusion a (NIa) enzyme. TEVp is an efficient and specific protease of 27kDa that has become a valuable biotechnological tool. Nowadays TEVp is a unique endopeptidase largely exploited in biotechnology from industrial applications to in vitro and in vivo cellular studies. A number of TEVp mutants with different rate of cleavage, stability and specificity have been reported. Similarly, a panel of different target cleavage sites, derived from the canonical ENLYFQ-G/S site, has been established. In this review we describe these aspects of TEVp and some of its multiple applications. A particular focus is on the use and molecular biology of TEVp in living cells and organisms. PMID:27312702

  9. Tobacco Etch Virus protease: A shortcut across biotechnologies.

    PubMed

    Cesaratto, Francesca; Burrone, Oscar R; Petris, Gianluca

    2016-08-10

    About thirty years ago, studies on the RNA genome of Tobacco Etch Virus revealed the presence of an efficient and specific protease, called Tobacco Etch Virus protease (TEVp), that was part of the Nuclear Inclusion a (NIa) enzyme. TEVp is an efficient and specific protease of 27kDa that has become a valuable biotechnological tool. Nowadays TEVp is a unique endopeptidase largely exploited in biotechnology from industrial applications to in vitro and in vivo cellular studies. A number of TEVp mutants with different rate of cleavage, stability and specificity have been reported. Similarly, a panel of different target cleavage sites, derived from the canonical ENLYFQ-G/S site, has been established. In this review we describe these aspects of TEVp and some of its multiple applications. A particular focus is on the use and molecular biology of TEVp in living cells and organisms.

  10. Alkaline protease from Neurospora crassa. Purification and partial characterization

    SciTech Connect

    Lindberg, R.A.; Eirich, L.D.; Price, J.S.; Wolfinbarger, L. Jr.; Drucker, H.

    1981-01-25

    A simple purification procedure was developed for the extracellular alkaline protease from Neurospora crassa. Key steps in the purification were: (1) the choice of gelatin as the protein inducer, which induces optimally at a much lower concentration than other commonly employed protein inducers; (2) heat treatment, during which the inducer is digested by the protease; and (3) a concentration step that eliminates the usual precipitation procedures and removes much of the digested protein inducer. The preparation was homogeneous and had a molecular weight of approx. 30,500. The protease has 100% activity from pH 6.0 to 10.0, is heat labile above 45/sup 0/C, and susceptible to autodigestion. Hydrolysis of the ..beta.. chain from insulin indicates a preferential cleavage on the carboxyl group side of neutral and aromatic amino acids.

  11. An Augmented Multiple-Protease-Based Human Phosphopeptide Atlas.

    PubMed

    Giansanti, Piero; Aye, Thin Thin; van den Toorn, Henk; Peng, Mao; van Breukelen, Bas; Heck, Albert J R

    2015-06-23

    Although mass-spectrometry-based screens enable thousands of protein phosphorylation sites to be monitored simultaneously, they often do not cover important regulatory sites. Here, we hypothesized that this is due to the fact that nearly all large-scale phosphoproteome studies are initiated by trypsin digestion. We tested this hypothesis using multiple proteases for protein digestion prior to Ti(4+)-IMAC-based enrichment. This approach increases the size of the detectable phosphoproteome substantially and confirms the considerable tryptic bias in public repositories. We define and make available a less biased human phosphopeptide atlas of 37,771 unique phosphopeptides, correlating to 18,430 unique phosphosites, of which fewer than 1/3 were identified in more than one protease data set. We demonstrate that each protein phosphorylation site can be linked to a preferred protease, enhancing its detection by mass spectrometry (MS). For specific sites, this approach increases their detectability by more than 1,000-fold. PMID:26074081

  12. Peptide synthesis in neat organic solvents with novel thermostable proteases.

    PubMed

    Toplak, Ana; Nuijens, Timo; Quaedflieg, Peter J L M; Wu, Bian; Janssen, Dick B

    2015-06-01

    Biocatalytic peptide synthesis will benefit from enzymes that are active at low water levels in organic solvent compositions that allow good substrate and product solubility. To explore the use of proteases from thermophiles for peptide synthesis under such conditions, putative protease genes of the subtilase class were cloned from Thermus aquaticus and Deinococcus geothermalis and expressed in Escherichia coli. The purified enzymes were highly thermostable and catalyzed efficient peptide bond synthesis at 80°C and 60°C in neat acetonitrile with excellent conversion (>90%). The enzymes tolerated high levels of N,N-dimethylformamide (DMF) as a cosolvent (40-50% v/v), which improved substrate solubility and gave good conversion in 5+3 peptide condensation reactions. The results suggest that proteases from thermophiles can be used for peptide synthesis under harsh reaction conditions.

  13. Protease-triggered siRNA delivery vehicles.

    PubMed

    Rozema, David B; Blokhin, Andrei V; Wakefield, Darren H; Benson, Jonathan D; Carlson, Jeffrey C; Klein, Jason J; Almeida, Lauren J; Nicholas, Anthony L; Hamilton, Holly L; Chu, Qili; Hegge, Julia O; Wong, So C; Trubetskoy, Vladimir S; Hagen, Collin M; Kitas, Eric; Wolff, Jon A; Lewis, David L

    2015-07-10

    The safe and efficacious delivery of membrane impermeable therapeutics requires cytoplasmic access without the toxicity of nonspecific cytoplasmic membrane lysis. We have developed a mechanism for control of cytoplasmic release which utilizes endogenous proteases as a trigger and results in functional delivery of small interfering RNA (siRNA). The delivery approach is based on reversible inhibition of membrane disruptive polymers with protease-sensitive substrates. Proteolytic hydrolysis upon endocytosis restores the membrane destabilizing activity of the polymers thereby allowing cytoplasmic access of the co-delivered siRNA. Protease-sensitive polymer masking reagents derived from polyethylene glycol (PEG), which inhibit membrane interactions, and N-acetylgalactosamine, which targets asialoglycoprotein receptors on hepatocytes, were synthesized and used to formulate masked polymer-siRNA delivery vehicles. The size, charge and stability of the vehicles enable functional delivery of siRNA after subcutaneous administration and, with modification of the targeting ligand, have the potential for extrahepatic targeting.

  14. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  15. Alpha-1 Antitrypsin Deficiency: Beyond the Protease/Antiprotease Paradigm.

    PubMed

    Cosio, Manuel G; Bazzan, Erica; Rigobello, Chiara; Tinè, Mariaenrica; Turato, Graziella; Baraldo, Simonetta; Saetta, Marina

    2016-08-01

    From the discovery that alpha-1 antitrypsin (AAT) was an effective inhibitor of neutrophil elastase originated the classic paradigm of protease/antiprotease imbalance, linking lung destruction to the unopposed effect of proteases in patients with the deficiency. Notwithstanding its importance as an antiprotease, it has become evident that alpha-1 antitrypsin has important antiinflammatory and immune-regulatory activities, which may be critically involved in lung destruction. We review here recent evidence showing that, indeed, an important adaptive immune reaction is present in lungs with AAT deficiency, similar to the one seen in severe chronic obstructive pulmonary disease with normal AAT. On the basis of recent evidence from epidemiological, clinical, and pathogenetic studies, it is likely time to move on from the original protease/antiprotease hypothesis for the production of emphysema toward a more complex paradigm, involving the antiinflammatory and immune modulating functions of AAT. PMID:27564665

  16. (Processing and targeting of the thiol protease aleurain)

    SciTech Connect

    Rogers, J.C.

    1990-01-01

    Our goal for work during the past two years under this Grant was to characterize the barley thiol protease, aleurain, to determine if it is secreted or retained intracellularly in aleurone cells, and to begin to elucidate structural features that might control targeting of the protein to its final destination. We have shown that aleurain is synthesized as a proenzyme with two N-linked oligosaccharide chains, one high mannose-type and one complex-type. Aleurain undergoes processing to mature form by removal of an Nterminal prosegment, and is retained intracellularly; it cannot be detected among proteins secreted from aleurone cells. Treatment of aleurone cells with tunicamycin to prevent glycosylation of aleurain does not prevent processing of the unglycosylated form. The N-terminal portion of aleurain's prosegment is homologous to the comparable region in two yeast vacuolar proteases, where that region is known to contain the signal necessary for targeting the proteases to the vacuole. 18 refs., 7 figs.

  17. Genetic Changes in HIV-1 Gag-Protease Associated with Protease Inhibitor-Based Therapy Failure in Pediatric Patients

    PubMed Central

    Giandhari, Jennifer; Basson, Adriaan E.; Coovadia, Ashraf; Kuhn, Louise; Abrams, Elaine J.; Strehlau, Renate; Morris, Lynn

    2015-01-01

    Abstract Studies have shown a low frequency of HIV-1 protease drug resistance mutations in patients failing protease inhibitor (PI)-based therapy. Recent studies have identified mutations in Gag as an alternate pathway for PI drug resistance in subtype B viruses. We therefore genotyped the Gag and protease genes from 20 HIV-1 subtype C-infected pediatric patients failing a PI-based regimen. Major protease resistance mutations (M46I, I54V, and V82A) were identified in eight (40%) patients, as well as Gag cleavage site (CS) mutations (at codons 373, 374, 378, 428, 431, 449, 451, and 453) in nine (45%) patients. Four of these Gag CS mutations occurred in the absence of major protease mutations at PI failure. In addition, amino acid changes were noted at Gag non-CS with some predicted to be under HLA/KIR immune-mediated pressure and/or drug selection pressure. Changes in Gag during PI failure therefore warrant further investigation of the Gag gene and its role in PI failure in HIV-1 subtype C infection. PMID:25919760

  18. Gag-Protease Sequence Evolution Following Protease Inhibitor Monotherapy Treatment Failure in HIV-1 Viruses Circulating in East Africa.

    PubMed

    Sutherland, Katherine A; Goodall, Ruth L; McCormick, Adele; Kapaata, Anne; Lyagoba, Fred; Kaleebu, Pontiano; Thiltgen, Geant; Gilks, Charles F; Spyer, Moira; Kityo, Cissy; Pillay, Deenan; Dunn, David; Gupta, Ravindra K

    2015-10-01

    Around 2.5 million HIV-infected individuals failing first-line therapy qualify for boosted protease inhibitor (bPI)-based second-line therapy globally. Major resistance mutations are rarely present at treatment failure in patients receiving bPI and the determinants of failure in these patients remain unknown. There is evidence that Gag can impact PI susceptibility. Here, we have sequenced Gag-Protease before and following failure in 23 patients in the SARA trial infected with subtypes A, C, and D viruses. Before bPI, significant variation in Protease and Gag was observed at positions previously associated with PI exposure and resistance including Gag mutations L449P, S451N, and L453P and Protease K20I and L63P. Following PI failure, previously described mutations in Protease and Gag were observed, including those at the cleavage sites such as R361K and P453L. However, the emergence of clear genetic determinants of therapy failure across patients was not observed. Larger Gag sequence datasets will be required to comprehensively identify mutational correlates of bPI failure across subtypes. PMID:26258548

  19. The crystal structure of the secreted aspartic protease 1 from Candida parapsilosis in complex with pepstatin A

    SciTech Connect

    Dostál, Jiří; Brynda, Jiří; Hrušková-Heidingsfeldová, Olga; Sieglová, Irena; Pichová, Iva; Řezáčová, Pavlína

    2010-09-01

    Opportunistic pathogens of the genus Candida cause infections representing a major threat to long-term survival of immunocompromised patients. Virulence of the Candida pathogens is enhanced by production of extracellular proteolytic enzymes and secreted aspartic proteases (Saps) are therefore studied as potential virulence factors and possible targets for therapeutic drug design. Candida parapsilosis is less invasive than C. albicans, however, it is one of the leading causative agents of yeast infections. We report three-dimensional crystal structure of Sapp1p from C. parapsilosis in complex with pepstatin A, the classical inhibitor of aspartic proteases. The structure of Sapp1p was determined from protein isolated from its natural source and represents the first structure of Sap from C. parapsilosis. Overall fold and topology of Sapp1p is very similar to the archetypic fold of monomeric aspartic protease family and known structures of Sap isoenzymes from C. albicans and Sapt1p from C. tropicalis. Structural comparison revealed noticeable differences in the structure of loops surrounding the active site. This resulted in differential character, shape, and size of the substrate binding site explaining divergent substrate specificities and inhibitor affinities. Determination of structures of Sap isoenzymes from various species might contribute to the development of new Sap-specific inhibitors.

  20. The extracellular protease stl functions to inhibit migration of v'ch1 sensory neuron during Drosophila embryogenesis.

    PubMed

    Lhamo, Tashi; Ismat, Afshan

    2015-08-01

    Proper migration of cells through the dense and complex extracellular matrix (ECM) requires constant restructuring of the ECM to allow cells to move forward in a smooth manner. This restructuring can occur through the action of extracellular enzymes. Among these extracellular enzymes is the ADAMTS (A Disintegrin And Metalloprotease with ThromboSpondin repeats) family of secreted extracellular proteases. Drosophila stl encodes an ADAMTS protease expressed in and around the peripheral nervous system (PNS) during embryogenesis. The absence of stl displayed one specific neuron, the v'ch1 sensory neuron, migrating to its target sooner than in wild type. During normal development, the v'ch1 sensory neuron migrates dorsally at the same time it is extending an axon ventrally toward the CNS. Surprisingly, in the absence of stl, the v'ch1 neuron migrated further dorsally as compared to the wild type at stage 15, but did not migrate past its correct target at stage 16, suggesting a novel role for this extracellular protease in inhibiting migration of this neuron past a certain point.

  1. Multiple sequence signals direct recognition and degradation of protein substrates by the AAA+ protease HslUV.

    PubMed

    Sundar, Shankar; McGinness, Kathleen E; Baker, Tania A; Sauer, Robert T

    2010-10-29

    Proteolysis is important for protein quality control and for the proper regulation of many intracellular processes in prokaryotes and eukaryotes. Discerning substrates from other cellular proteins is a key aspect of proteolytic function. The Escherichia coli HslUV protease is a member of a major family of ATP-dependent AAA+ degradation machines. HslU hexamers recognize and unfold native protein substrates and then translocate the polypeptide into the degradation chamber of the HslV peptidase. Although a wealth of structural information is available for this system, relatively little is known about mechanisms of substrate recognition. Here, we demonstrate that mutations in the unstructured N-terminal and C-terminal sequences of two model substrates alter HslUV recognition and degradation kinetics, including changes in V(max). By introducing N- or C-terminal sequences that serve as recognition sites for specific peptide-binding proteins, we show that blocking either terminus of the substrate interferes with HslUV degradation, with synergistic effects when both termini are obstructed. These results support a model in which one terminus of the substrate is tethered to the protease and the other terminus is engaged by the translocation/unfolding machinery in the HslU pore. Thus, degradation appears to consist of discrete steps, which involve the interaction of different terminal sequence signals in the substrate with different receptor sites in the HslUV protease. PMID:20837023

  2. Bowman-Birk protease inhibitor from the seeds of Vigna unguiculata forms a highly stable dimeric structure.

    PubMed

    Rao, K N; Suresh, C G

    2007-10-01

    Different protease inhibitors including Bowman-Birk type (BBI) have been reported from the seeds of Vigna unguiculata. Protease isoinhibitors of double-headed Bowman-Birk type from the seeds of Vigna unguiculata have been purified and characterized. The BBI from Vigna unguiculata (Vu-BBI) has been found to undergo self-association to form very stable dimers and more complex oligomers, by size-exclusion chromatography and SDS-PAGE in the presence of urea. Many BBIs have been reported to undergo self-association to form homodimers or more complex oligomers in solution. Only one dimeric crystal structure of a BBI (pea-BBI) is reported to date. We report the three-dimensional structure of a Vu-BBI determined at 2.5 A resolution. Although, the inhibitor has a monomer fold similar to that found in other known structures of Bowman-Birk protease inhibitors, its quaternary structure is different from that commonly observed in this family. The structural elements responsible for the stability of monomer molecule and dimeric association are discussed. The Vu-BBI may use dimeric or higher quaternary association to maintain the physiological state and to execute its biological function.

  3. Inhibitors of HGFA, Matriptase, and Hepsin Serine Proteases: A Nonkinase Strategy to Block Cell Signaling in Cancer.

    PubMed

    Han, Zhenfu; Harris, Peter K W; Jones, Darin E; Chugani, Ryan; Kim, Tommy; Agarwal, Manjula; Shen, Wei; Wildman, Scott A; Janetka, James W

    2014-11-13

    Hepatocyte growth factor activators (HGFA), matriptase, and hepsin are S1 family trypsin-like serine proteases. These proteases proteolytically cleave the single-chain zymogen precursors, pro-HGF (hepatocyte growth factor), and pro-MSP (macrophage stimulating protein) into active heterodimeric forms. HGF and MSP are activating ligands for the oncogenic receptor tyrosine kinases (RTKs), c-MET and RON, respectively. We have discovered the first substrate-based ketothiazole inhibitors of HGFA, matriptase and hepsin. The compounds were synthesized using a combination of solution and solid-phase peptide synthesis (SPPS). Compounds were tested for protease inhibition using a kinetic enzyme assay employing fluorogenic peptide substrates. Highlighted HGFA inhibitors are Ac-KRLR-kt (5g), Ac-SKFR-kt (6c), and Ac-SWLR-kt (6g) with K is = 12, 57, and 63 nM, respectively. We demonstrated that inhibitors block the conversion of native pro-HGF and pro-MSP by HGFA with equivalent potency. Finally, we show that inhibition causes a dose-dependent decrease of c-MET signaling in MDA-MB-231 breast cancer cells. This preliminary investigation provides evidence that HGFA is a promising therapeutic target in breast cancer and other tumor types driven by c-MET and RON. PMID:25408834

  4. Inhibitors of HGFA, Matriptase, and Hepsin Serine Proteases: A Nonkinase Strategy to Block Cell Signaling in Cancer

    PubMed Central

    2014-01-01

    Hepatocyte growth factor activators (HGFA), matriptase, and hepsin are S1 family trypsin-like serine proteases. These proteases proteolytically cleave the single-chain zymogen precursors, pro-HGF (hepatocyte growth factor), and pro-MSP (macrophage stimulating protein) into active heterodimeric forms. HGF and MSP are activating ligands for the oncogenic receptor tyrosine kinases (RTKs), c-MET and RON, respectively. We have discovered the first substrate-based ketothiazole inhibitors of HGFA, matriptase and hepsin. The compounds were synthesized using a combination of solution and solid-phase peptide synthesis (SPPS). Compounds were tested for protease inhibition using a kinetic enzyme assay employing fluorogenic peptide substrates. Highlighted HGFA inhibitors are Ac-KRLR-kt (5g), Ac-SKFR-kt (6c), and Ac-SWLR-kt (6g) with Kis = 12, 57, and 63 nM, respectively. We demonstrated that inhibitors block the conversion of native pro-HGF and pro-MSP by HGFA with equivalent potency. Finally, we show that inhibition causes a dose-dependent decrease of c-MET signaling in MDA-MB-231 breast cancer cells. This preliminary investigation provides evidence that HGFA is a promising therapeutic target in breast cancer and other tumor types driven by c-MET and RON. PMID:25408834

  5. A cyclohexanecarboxamide derivative with inhibitory effects on Schistosoma mansoni cercarial serine protease and penetration of mice skin by the parasite.

    PubMed

    Bahgat, Mahmoud; Aboul-Enein, Mohamed N; El Azzouny, Aida A; Maghraby, Amany; Ruppel, Andreas; Soliman, Wael M

    2009-01-01

    A cyclohexanecarboxamide derivative, N-phenyl-N-[1-(piperidine-1-carbonyl)cyclohexyl] benzamide (MNRC-5), was evaluated for its inhibitory effects on Schistosoma mansoni cercarial serine protease activity and cercarial penetration. MNRC-5 exerted an inhibitory effect on S. mansoni cercarial serine protease at serial concentrations of the specific chromogenic substrate Boc-Val-Leu-Gly-Arg-PNA for such enzyme family and the inhibitory coefficient (Ki) value was deduced. Moreover, topical treatment of mice tails with the most potent inhibitory concentration of MNRC-5 formulated in jojoba oil successfully blocked cercarial penetration as demonstrated by a significant reduction (75%; p < 0.05) in the recovered S. mansoni worms from treated mice in comparison to control ones whose tails were painted with jojoba oil base containing no MNRC-5. In addition, the IgM and IgG reactivities to crude S. mansoni cercarial, worm and egg antigens were generally lower in sera from treated infected mice than untreated infected mice. In conclusion, we report on a new serine protease inhibitor capable for blocking penetration of host skin by S. mansoni cercariae as measured by lowering worm burden and decrease in the levels of both IgM and IgG towards different bilharzial antigens upon topical treatment.

  6. Differential in vitro and in vivo effect of barley cysteine and serine protease inhibitors on phytopathogenic microorganisms.

    PubMed

    Carrillo, Laura; Herrero, Ignacio; Cambra, Inés; Sánchez-Monge, Rosa; Diaz, Isabel; Martinez, Manuel

    2011-10-01

    Protease inhibitors from plants have been involved in defence mechanisms against pests and pathogens. Phytocystatins and trypsin/α-amylase inhibitors are two of the best characterized protease inhibitor families in plants. In barley, thirteen cystatins (HvCPI-1 to 13) and the BTI-CMe trypsin inhibitor have been previously studied. Their capacity to inhibit pest digestive proteases, and the negative in vivo effect caused by plants expressing these inhibitors on pests support the defence function of these proteins. Barley cystatins are also able to inhibit in vitro fungal growth. However, the antifungal effect of these inhibitors in vivo had not been previously tested. Moreover, their in vitro and in vivo effect on plant pathogenous bacteria is still unknown. In order to obtain new insights on this feature, in vitro assays were made against different bacterial and fungal pathogens of plants using the trypsin inhibitor BTI-CMe and the thirteen barley cystatins. Most barley cystatins and the BTI-CMe inhibitor were able to inhibit mycelial growth but no bacterial growth. Transgenic Arabidopsis plants independently expressing the BTI-CMe inhibitor and the cystatin HvCPI-6 were tested against the same bacterial and fungal pathogens. Neither the HvCPI-6 expressing transgenic plants nor the BTI-CMe ones were more resistant to plant pathogen fungi and bacteria than control Arabidopsis plants. The differences observed between the in vitro and in planta assays against phytopathogenic fungi are discussed. PMID:21482127

  7. Design, Synthesis, Evaluation and Thermodynamics of 1-Substituted Pyridylimidazo[1,5-a]Pyridine Derivatives as Cysteine Protease Inhibitors

    PubMed Central

    Khan, Mohd Sajid; Baig, Mohd Hassan; Ahmad, Saheem; Siddiqui, Shapi Ahmad; Srivastava, Ashwini Kumar; Srinivasan, Kumar Venkatraman; Ansari, Irfan A.

    2013-01-01

    Targeting papain family cysteine proteases is one of the novel strategies in the development of chemotherapy for a number of diseases. Novel cysteine protease inhibitors derived from 1-pyridylimidazo[1,5-a]pyridine representing pharmacologically important class of compounds are being reported here for the first time. The derivatives were initially designed and screened in silico by molecular docking studies against papain to explore the possible mode of action. The molecular interaction between the compounds and cysteine protease (papain) was found to be very similar to the interactions observed with the respective epoxide inhibitor (E-64c) of papain. Subsequently, compounds were synthesized to validate their efficacy in wet lab experiments. When characterized kinetically, these compounds show their Ki and IC50 values in the range of 13.75 to 99.30 µM and 13.40 to 96.50 µM, respectively. The thermodynamics studies suggest their binding with papain hydrophobically and entropically driven. These inhibitors also inhibit the growth of clinically important different types of Gram positive and Gram negative bacteria having MIC50 values in the range of 0.6–1.4 µg/ml. Based on Lipinski’s rule of Five, we also propose these compounds as potent antibacterial prodrugs. The most active antibacterial compound was found to be 1-(2-pyridyl)-3-(2-hydroxyphenyl)imidazo[1,5-a]pyridine (3a). PMID:23940536

  8. Rice OVERLY TOLERANT TO SALT 1 (OTS1) SUMO protease is a positive regulator of seed germination and root development.

    PubMed

    Srivastava, Anjil Kumar; Zhang, Cunjin; Sadanandom, Ari

    2016-05-01

    Salinity is one of the major environmental stresses affecting rice production worldwide. Improving rice salt tolerance is a critical step for sustainable food production. Posttranslational modifications of proteins greatly expand proteome diversity, increase functionality and allow quick responses to environmental stresses, all at low cost to the cell. SUMO mediated modification of substrate proteins is a highly dynamic process governed by the balance of activities of SUMO E3 ligases and deconjugating SUMO proteases. In recent years, SUMO (Small Ubiquitin like Modifier) conjugation of proteins has emerged as an influential regulator of stress signaling in the model plant Arabidopsis. However SUMOylation remain largely under studied in crop plants. We recently identified the SUMO protease gene family in rice and demonstrated a role for OsOTS1 SUMO proteases in salt stress. Interestingly, rice plants silencing OsOTS1 also show significantly reduced germination rate. Knockdown of OsOTS1 gene expression affects root growth by primarily reducing cell size rather than cell division. PMID:27119209

  9. Rice OVERLY TOLERANT TO SALT 1 (OTS1) SUMO protease is a positive regulator of seed germination and root development.

    PubMed

    Srivastava, Anjil Kumar; Zhang, Cunjin; Sadanandom, Ari

    2016-05-01

    Salinity is one of the major environmental stresses affecting rice production worldwide. Improving rice salt tolerance is a critical step for sustainable food production. Posttranslational modifications of proteins greatly expand proteome diversity, increase functionality and allow quick responses to environmental stresses, all at low cost to the cell. SUMO mediated modification of substrate proteins is a highly dynamic process governed by the balance of activities of SUMO E3 ligases and deconjugating SUMO proteases. In recent years, SUMO (Small Ubiquitin like Modifier) conjugation of proteins has emerged as an influential regulator of stress signaling in the model plant Arabidopsis. However SUMOylation remain largely under studied in crop plants. We recently identified the SUMO protease gene family in rice and demonstrated a role for OsOTS1 SUMO proteases in salt stress. Interestingly, rice plants silencing OsOTS1 also show significantly reduced germination rate. Knockdown of OsOTS1 gene expression affects root growth by primarily reducing cell size rather than cell division.

  10. Characterization of 8-hydroxyquinoline derivatives containing aminobenzothiazole as inhibitors of dengue virus type 2 protease in vitro

    PubMed Central

    Lai, Huiguo; Prasad, G. Sridhar; Padmanabhan, Radhakrishnan

    2013-01-01

    Four serotypes of Dengue virus (DENV1–4), mosquito-borne members of Flaviviridae family cause frequent epidemics causing considerable morbidity and mortality in humans throughout tropical regions of the world. There is no vaccine or antiviral therapeutics available for human use. In a previous study, we reported that compounds containing the 8-hydroxyquinoline (8-HQ) scaffold as inhibitors of West Nile virus serine protease. In this study, we analyzed potencies of some compounds with (8-HQ)-aminobenzothiazole derivatives for inhibition of DENV2 protease in vitro. We identified analogs 1–4 with 2-aminothiazole or 2-aminobenzothiazole scaffold with submicromolar potencies (IC50) in the in vitro protease assays. The kinetic constant (Ki) for the most potent 8-HQ-aminobenzothiazoleinhibitor (compound 1) with an IC50 value of 0.91 ± 0.05 µM was determined to be 2.36 ± 0.13 µM. This compound inhibits the DENV2 NS2B/NS3pro by a competitive mode of inhibition. PMID:23127365

  11. Molecular characterization and expression analysis of Cathepsin B and L cysteine proteases from rock bream (Oplegnathus fasciatus).

    PubMed

    Whang, Ilson; De Zoysa, Mahanama; Nikapitiya, Chamilani; Lee, Youngdeuk; Kim, Yucheol; Lee, Sukkyoung; Oh, Chulhong; Jung, Sung-Ju; Oh, Myung-Joo; Choi, Cheol Young; Yeo, Sang-Yeob; Kim, Bong-Seok; Kim, Se-Jae; Lee, Jehee

    2011-03-01

    Cathepsins are lysosomal cysteine proteases of the papain family that play an important role in intracellular protein degradation and turn over within the lysosomal system. In the present study, full-length sequences of cathepsin B (RbCathepsin B) and L (RbCathepsin L) were identified after transcriptome sequencing of rock bream Oplegnathus fasciatus mixed tissue cDNA. Cathepsin B was composed of 330 amino acid residues with 36 kDa predicted molecular mass. RbCathepsin L contained 336 amino acid residues encoding for a 38 kDa predicted molecular mass protein. The sequencing analysis results showed that both cathepsin B and L contain the characteristic papain family cysteine protease signature and active sites for the eukaryotic thiol proteases of cysteine, asparagine and histidine. In addition, RbCathepsin L contained EF hand Ca(2+) binding and cathepsin propeptide inhibitor domains. The rock bream cathepsin B and L showed the highest amino acid identity of 90 and 95% to Lutjanus argentimaculatus cathepsin B and Lates calcarifer cathepsin L, respectively. By phylogenetic analysis, cathepsin B and L exhibited a high degree of evolutionary relationship to respective cathepsin family members of the papain superfamily. Quantitative real-time RT-PCR analysis results confirmed that the expression of cathepsin B and L genes was constitutive in all examined tissues isolated from un-induced rock bream. Moreover, activation of RbCathepsin B and L mRNA was observed in both lipopolysaccharide (LPS) and Edwardsiella tarda challenged liver and blood cells, indicating a role of immune response in rock bream. PMID:21195770

  12. Alkyl hydroxybenzoic acid derivatives that inhibit HIV-1 protease dimerization.

    PubMed

    Flausino, O A; Dufau, L; Regasini, L O; Petrônio, M S; Silva, D H S; Rose, T; Bolzani, V S; Reboud-Ravaux, M

    2012-01-01

    The therapeutic potential of gallic acid and its derivatives as anti-cancer, antimicrobial and antiviral agents is well known. We have examined the mechanism by which natural gallic acid and newly synthesized gallic acid alkyl esters and related protocatechuic acid alkyl esters inhibit HIV-1 protease to compare the influence of the aromatic ring substitutions on inhibition. We used Zhang-Poorman's kinetic analysis and fluorescent probe binding to demonstrate that several gallic and protecatechuic acid alkyl esters inhibited HIV-1 protease by preventing the dimerization of this obligate homodimeric aspartic protease rather than targeting the active site. The tri-hydroxy substituted benzoic moiety in gallates was more favorable than the di-substituted one in protocatechuates. In both series, the type of inhibition, its mechanism and the inhibitory efficiency dramatically depended on the length of the alkyl chain: no inhibition with alkyl chains less than 8 carbon atoms long. Molecular dynamics simulations corroborated the kinetic data and propose that gallic esters are intercalated between the two N- and C-monomer ends. They complete the β-sheet and disrupt the dimeric enzyme. The best gallic ester (14 carbon atoms, K(id) of 320 nM) also inhibited the multi-mutated protease MDR-HM. These results will aid the rational design of future generations of non-peptide inhibitors of HIV-1 protease dimerization that inhibit multi-mutated proteases. Finally, our work suggests the wide use of gallic and protocatechuic alkyl esters to dissociate intermolecular β-sheets involved in protein-protein interactions.

  13. Analysis of the immunoglobulin A protease gene of Streptococcus sanguis.

    PubMed Central

    Gilbert, J V; Plaut, A G; Wright, A

    1991-01-01

    The amino acid sequence T-P-P-T-P-S-P-S is tandemly duplicated in the heavy chain of human immunoglobulin A1 (IgA1), the major antibody in secretions. The bacterial pathogen Streptococcus sanguis, a precursor to dental caries and a cause of bacterial endocarditis, yields IgA protease that cleaves only the Pro-Thr peptide bond in the left duplication, while the type 2 IgA proteases of the genital pathogen Neisseria gonorrhoeae and the respiratory pathogen Haemophilus influenzae cleave only the P-T bond in the right half. We have sequenced the entire S. sanguis iga gene cloned into Escherichia coli. A segment consisting of 20 amino acids tandemly repeated 10 times, of unknown function, occurs near the amino-terminal end of the enzyme encoded in E. coli. Identification of a predicted zinc-binding region in the S. sanguis enzyme and the demonstration that mutations in this region result in production of a catalytically inactive protein support the idea that the enzyme is a metalloprotease. The N. gonorrhoeae and H. influenzae enzymes were earlier shown to be serine-type proteases, while the Bacteroides melaninogenicus IgA protease was shown to be a cysteine-type enzyme. The streptococcal IgA protease amino acid sequence has no significant homology with either of the two previously determined IgA protease sequences, that of type 2 N. gonorrhoeae and type 1 H. influenzae. The differences in both structure and mechanism among these functionally analogous enzymes underscore their role in the infectious process and offer some prospect of therapeutic intervention. Images PMID:1987065

  14. [Isolation of Actinomycetes synthesizing proteases with thrombolytic activity].

    PubMed

    Lysenko, S V; Salivonik, S M

    1988-01-01

    Proteases with the thrombolytic activity were studied in 212 strains of actinomycetes isolated from different soils of the Soviet Union. The cultures belonged to the genera Micromonospora, Nocardia and Streptomyces. Proteases were synthesized by 41% of the studied actinomycetes and some of their strains completely dissolved in vitro artificially obtained blood thrombi within 120-240 min. In the Streptomyces genus, more active strains were found in the groups Flavus, Fradia and Globisporus. The groups Olivaceus, Violaceus and Viridis had less active strains. PMID:3062331

  15. The chlamydial protease CPAF: important or not, important for what?

    PubMed

    Häcker, Georg

    2014-05-01

    The protease CPAF is only found in Chlamydiales and in at least most bacteria that share with Chlamydia the biphasic life-style in a cytosolic inclusion. CPAF is intriguing: it appears to be secreted from the inclusion across the inclusion membrane into the cytosol. A bacterial protease ravaging in the cytosol of a human cell may cause a plethora of effects. Curiously, very few are known. The current discussion is bogged down by a focus on experimental artifact, while proposed functions of CPAF remain speculative. I here make the attempt to summarize what we know about CPAF.

  16. The Role of Calcium Activated Protease Calpain in Experimental Retinal Pathology

    PubMed Central

    Azuma, M.; Shearer, T.R.

    2008-01-01

    The purpose of this review is to present the recent evidence linking the family of ubiquitous proteases called calpains (EC 3.4.22.17) to neuropathologies of the retina. The hypothesis being tested in such studies is that over-activation of calpains by elevated intracellular calcium contributes to retinal cell death produced by conditions such as elevated intraocular pressure and hypoxia. Recent x-ray diffraction studies have provided insight into the molecular events causing calpain activation. Further, x-ray diffraction data has provided details on how side chains on calpain inhibitors affect docking into the active site of calpain 1. This opens the possibility of testing calpain-specific inhibitors, such as SJA6017 and SNJ1945, for human safety and as a site-directed form of treatment for retinal pathologies. PMID:18348880

  17. Isoforms of agrin are widely expressed in the developing rat and may function as protease inhibitors.

    PubMed

    Biroc, S L; Payan, D G; Fisher, J M

    1993-09-17

    The agrin family of extracellular matrix proteins may be important in the formation of the neuromuscular junction. Using in situ hybridization with a probe recognizing all agrin isoforms, we demonstrate that it is widely expressed during mammalian embryogenesis. In the developing rat, particularly high levels of expression are found in the dorsal root and cranial ganglia, gut, whisker rudiments, penis, snout, teeth, retina, hippocampus, cerebral cortex and the lining of brain ventricles. Functional analysis of the recombinant rat protein shows that it is a potent inhibitor of the proteases trypsin, chymotrypsin and plasmin but not thrombin or the plasminogen activators. We conclude that agrin and its isoforms may play multiple roles in mammalian development including the regulation of proteolysis in the extracellular matrix.

  18. Effect of synthesized inhibitors on babesipain-1, a new cysteine protease from the bovine piroplasm Babesia bigemina.

    PubMed

    Martins, T M; Gonçalves, L M D; Capela, R; Moreira, R; do Rosário, V E; Domingos, A

    2010-04-01

    Papain-like cysteine proteases (CP) have been shown to have essential roles in parasitic protozoa and are under study as promising drug targets. One gene was identified by sequence similarity search to be homologous to the CP family in the ongoing Babesia bigemina genome sequencing project database. The newly identified CP gene, called babesipain-1, was cloned and expressed as a fusion protein, and the effect of different inhibitors on proteolytic activity was tested. A series of new artemisinin-vinyl sulfone hybrid molecules were tested as inhibitors being effective on the range of 0.3-30 microm, depending on the core-containing molecule. PMID:20537109

  19. Familial gigantism.

    PubMed

    Herder, Wouter W de

    2012-01-01

    Familial GH-secreting tumors are seen in association with three separate hereditary clinical syndromes: multiple endocrine neoplasia type 1, Carney complex, and familial isolated pituitary adenomas. PMID:22584702

  20. The Kunitz-Type Protein ShPI-1 Inhibits Serine Proteases and Voltage-Gated Potassium Channels.

    PubMed

    García-Fernández, Rossana; Peigneur, Steve; Pons, Tirso; Alvarez, Carlos; González, Lidice; Chávez, María A; Tytgat, Jan

    2016-04-01

    The bovine pancreatic trypsin inhibitor (BPTI)-Kunitz-type protein ShPI-1 (UniProt: P31713) is the major protease inhibitor from the sea anemone Stichodactyla helianthus. This molecule is used in biotechnology and has biomedical potential related to its anti-parasitic effect. A pseudo wild-type variant, rShPI-1A, with additional residues at the N- and C-terminal, has a similar three-dimensional structure and comparable trypsin inhibition strength. Further insights into the structure-function relationship of rShPI-1A are required in order to obtain a better understanding of the mechanism of action of this sea anemone peptide. Using enzyme kinetics, we now investigated its activity against other serine proteases. Considering previous reports of bifunctional Kunitz-type proteins from anemones, we also studied the effect of rShPI-1A on voltage-gated potassium (Kv) channels. rShPI-1A binds Kv1.1, Kv1.2, and Kv1.6 channels with IC50 values in the nM range. Hence, ShPI-1 is the first member of the sea anemone type 2 potassium channel toxins family with tight-binding potency against several proteases and different Kv1 channels. In depth sequence analysis and structural comparison of ShPI-1 with similar protease inhibitors and Kv channel toxins showed apparent non-sequence conservation for known key residues. However, we detected two subtle patterns of coordinated amino acid substitutions flanking the conserved cysteine residues at the N- and C-terminal ends. PMID:27089366

  1. Purification and biochemical characterization of two detergent-stable serine alkaline proteases from Streptomyces sp. strain AH4.

    PubMed

    Touioui, Souraya Boulkour; Jaouadi, Nadia Zaraî; Boudjella, Hadjira; Ferradji, Fatma Zohra; Belhoul, Mouna; Rekik, Hatem; Badis, Abdelmalek; Bejar, Samir; Jaouadi, Bassem

    2015-07-01

    Streptomyces sp. strain AH4 exhibited a high ability to produce two extracellular proteases when cultured on a yeast malt-extract (ISP2)-casein-based medium. Pure proteins were obtained after heat treatment (30 min at 70 °C) and ammonium sulphate fractionation (30-60 %), followed by size exclusion HPLC column. Matrix assisted laser desorption ionization-time of flight mass spectrometry analysis revealed that the purified enzymes (named SAPS-P1 and SAPS-P2) were monomers with molecular masses of 36,417.13 and 21,099.10 Da, respectively. Their identified N-terminal amino acid displayed high homologies with those of Streptomyces proteases. While SAPS-P1 was optimally active at pH 12.0 and 70 °C, SAPS-P2 showed optimum activity at pH 10.0 and 60 °C. Both enzymes were completely stable within a wide range of temperature (45-75 °C) and pH (8.0-11.5). They were noted to be completely inhibited by phenylmethanesulfonyl fluoride and diisopropyl fluorophosphates, which confirmed their belonging to the serine proteases family. Compared to SAPS-P2, SAPS-P1 showed high thermostability and excellent stability towards bleaching, denaturing, and oxidizing agents. Both enzymes displayed marked stability and compatibility with a wide range of commercial laundry detergents and significant catalytic efficiencies compared to Subtilisin Carlsberg and Protease SG-XIV. Overall, the results indicated that SAPS-P1 and SAPS-P2 can be considered as potential promising candidates for future application as bioadditives in detergent formulations.

  2. The Kunitz-Type Protein ShPI-1 Inhibits Serine Proteases and Voltage-Gated Potassium Channels

    PubMed Central

    García-Fernández, Rossana; Peigneur, Steve; Pons, Tirso; Alvarez, Carlos; González, Lidice; Chávez, María A.; Tytgat, Jan

    2016-01-01

    The bovine pancreatic trypsin inhibitor (BPTI)-Kunitz-type protein ShPI-1 (UniProt: P31713) is the major protease inhibitor from the sea anemone Stichodactyla helianthus. This molecule is used in biotechnology and has biomedical potential related to its anti-parasitic effect. A pseudo wild-type variant, rShPI-1A, with additional residues at the N- and C-terminal, has a similar three-dimensional structure and comparable trypsin inhibition strength. Further insights into the structure-function relationship of rShPI-1A are required in order to obtain a better understanding of the mechanism of action of this sea anemone peptide. Using enzyme kinetics, we now investigated its activity against other serine proteases. Considering previous reports of bifunctional Kunitz-type proteins from anemones, we also studied the effect of rShPI-1A on voltage-gated potassium (Kv) channels. rShPI-1A binds Kv1.1, Kv1.2, and Kv1.6 channels with IC50 values in the nM range. Hence, ShPI-1 is the first member of the sea anemone type 2 potassium channel toxins family with tight-binding potency against several proteases and different Kv1 channels. In depth sequence analysis and structural comparison of ShPI-1 with similar protease inhibitors and Kv channel toxins showed apparent non-sequence conservation for known key residues. However, we detected two subtle patterns of coordinated amino acid substitutions flanking the conserved cysteine residues at the N- and C-terminal ends. PMID:27089366

  3. Entamoeba histolytica rhomboid protease 1 has a role in migration and motility as validated by two independent genetic approaches.

    PubMed

    Rastew, Elena; Morf, Laura; Singh, Upinder

    2015-07-01

    Rhomboid proteins represent a recently discovered family of intramembrane proteases present in a broad range of organisms and with increasing links to human diseases. The enteric parasite Entamoeba histolytica has evolved multiple mechanisms to adapt to the human host environment and establish infection. Our recent studies identified EhROM1 as a functional E. histolytica rhomboid protease with roles in adhesion to and phagocytosis of host cells. Since those studies were performed in a non-virulent strain, roles in parasite virulence could not be assessed. We focused this study on the comparison and validation of two genetic manipulation techniques: overexpression of a dominant-negative catalytic mutant of EhROM1 and knock down of EhROM1 using a RNAi-based silencing approach followed by functional studies of phenotypic analyses in virulent parasites. Both the EhROM1 catalytic mutant and parasites with EhROM1 downregulation were reduced in cytotoxicity, hemolytic activity, and directional and non-directional transwell migration. Importantly, the role for EhROM1 in cell migration mimics similar roles for rhomboid proteases from mammalian and apicomplexan systems. However, the EhROM1 catalytic mutant and EhROM1 downregulation parasites had different phenotypes for erythrophagocytosis, while complement resistance was not affected in either strain. In summary, in this study we genetically manipulated E. histolytica rhomboid protease EhROM1 by two different approaches and identified similarly attenuated phenotypes by both approaches, suggesting a novel role for EhROM1 in amebic motility.

  4. Peptidyl inverse esters of p-methoxybenzoic acid: a novel class of potent inactivator of the serine proteases.

    PubMed Central

    Lynas, J; Walker, B

    1997-01-01

    A series of novel synthetic peptides, containing a C-terminal beta-amino alcohol linked to p-methoxybenzoic acid via an ester linkage, have been prepared and tested as inhibitors against typical members of the serine protease family. For example, the sequences Ac-Val-Pro-NH-CH-(CH2-C6H5)-CH2O-CO-C6H4-OCH3 (I) and Ac-Val-Pro-NH-CH-[CH-(CH3)2]-CH2O-CO-C6H4-OCH3 (II), which fulfil the known primary and secondary specificity requirements of chymotrypsin and elastase respectively, have been found to behave as exceptionally potent irreversible inactivators of their respective target protease. Thus I was found to inactivate chymotrypsin with an overall second-order rate constant (k2/Ki) of approx. 6.6x10(6) M-1. s-1, whereas II is an even more potent inactivator of human neutrophil elastase, exhibiting a second-order rate constant of inactivation of approx. 1.3x10(7) M-1.s-1. These values represent the largest rate constants ever reported for the inactivation of these proteases with synthetic peptide-based inactivators. On prolonged incubation in substrate-containing buffers, samples of the inactivated proteases were found to regain activity slowly. The first-order rate constants for the regeneration of enzymic activity from chymotrypsin and human neutrophil elastase inactivated by I and II respectively were determined to be approx. 5.8x10(-5) s-1 and approx. 4.3x10(-4) s-1. We believe that the most likely mechanism for the inactivation and regeneration of enzymic activity involves the formation and subsequent slow hydrolysis of long-lived acyl enzyme intermediates. PMID:9271079

  5. Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway.

    PubMed

    Reynolds, Simone L; Pike, Robert N; Mika, Angela; Blom, Anna M; Hofmann, Andreas; Wijeyewickrema, Lakshmi C; Kemp, Dave; Fischer, Katja

    2014-05-01

    Scabies is an infectious skin disease caused by the mite Sarcoptes scabiei and has been classified as one of the six most prevalent epidermal parasitic skin diseases infecting populations living in poverty by the World Health Organisation. The role of the complement system, a pivotal component of human innate immunity, as an important defence against invading pathogens has been well documented and many parasites have an arsenal of anti-complement defences. We previously reported on a family of scabies mite proteolytically inactive serine protease paralogues (SMIPP-Ss) thought to be implicated in host defence evasion. We have since shown that two family members, SMIPP-S D1 and I1 have the ability to bind the human complement components C1q, mannose binding lectin (MBL) and properdin and are capable of inhibiting all three human complement pathways. This investigation focused on inhibition of the lectin pathway of complement activation as it is likely to be the primary pathway affecting scabies mites. Activation of the lectin pathway relies on the activation of MBL, and as SMIPP-S D1 and I1 have previously been shown to bind MBL, the nature of this interaction was examined using binding and mutagenesis studies. SMIPP-S D1 bound MBL in complex with MBL-associated serine proteases (MASPs) and released the MASP-2 enzyme from the complex. SMIPP-S I1 was also able to bind MBL in complex with MASPs, but MASP-1 and MASP-2 remained in the complex. Despite these differences in mechanism, both molecules inhibited activation of complement components downstream of MBL. Mutagenesis studies revealed that both SMIPP-Ss used an alternative site of the molecule from the residual active site region to inhibit the lectin pathway. We propose that SMIPP-Ss are potent lectin pathway inhibitors and that this mechanism represents an important tool in the immune evasion repertoire of the parasitic mite and a potential target for therapeutics. PMID:24854034

  6. Gastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases.

    PubMed

    Lorkowski, Gerhard

    2012-01-01

    Research has confirmed that peptides and larger protein molecules pass through the mucosal barrier of the gastrointestinal tract. Orally administered serine and cysteine proteases of plant and animal origin also reach blood and lymph as intact, high molecular weight and physiologically active protein molecules. Their absorption may be supported by a self-enhanced paracellular transport mechanism resulting in sub-nanomolar concentration of transiently free protease molecules or, in a complex with anti-proteases, at higher concentrations. Data from pharmacokinetic investigations reveals dose linearity for maximum plasma levels of free proteases not unusual for body proteases and a high inter-individual variability. There is no interference with each other after oral administration of protease combinations, and absorption follows an unusual invasion and elimination kinetic due to slow velocity of absorption and a fast 100% protein binding to anti-proteases. Oral application of proteases leads to increased proteolytic serum activity and increased plasma concentrations of the corresponding anti-proteases. Their biological activity is determined by their proteolytic activity as free proteases on soluble peptides/proteins or cell surface receptors (e.g. protease activated receptors) and their activity in the complex formed with their specific and/or unspecific anti-proteases. The anti-protease-complexes, during immune reaction and injuries often loaded with different cytokines, are cleared from body fluids and tissue by receptor mediated endocytosis on hepatocytes and/or blood cells. Oral administration of enteric coated tablets containing proteolytic enzymes of plant and animal origin may be a safe method to stabilize, positively influence or enhance physiological and immunological processes during disease processes and in healthy consumers.

  7. Gastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases

    PubMed Central

    Lorkowski, Gerhard

    2012-01-01

    Research has confirmed that peptides and larger protein molecules pass through the mucosal barrier of the gastrointestinal tract. Orally administered serine and cysteine proteases of plant and animal origin also reach blood and lymph as intact, high molecular weight and physiologically active protein molecules. Their absorption may be supported by a self-enhanced paracellular transport mechanism resulting in sub-nanomolar concentration of transiently free protease molecules or, in a complex with anti-proteases, at higher concentrations. Data from pharmacokinetic investigations reveals dose linearity for maximum plasma levels of free proteases not unusual for body proteases and a high inter-individual variability. There is no interference with each other after oral administration of protease combinations, and absorption follows an unusual invasion and elimination kinetic due to slow velocity of absorption and a fast 100% protein binding to anti-proteases. Oral application of proteases leads to increased proteolytic serum activity and increased plasma concentrations of the corresponding anti-proteases. Their biological activity is determined by their proteolytic activity as free proteases on soluble peptides/proteins or cell surface receptors (e.g. protease activated receptors) and their activity in the complex formed with their specific and/or unspecific anti-proteases. The anti-protease-complexes, during immune reaction and injuries often loaded with different cytokines, are cleared from body fluids and tissue by receptor mediated endocytosis on hepatocytes and/or blood cells. Oral administration of enteric coated tablets containing proteolytic enzymes of plant and animal origin may be a safe method to stabilize, positively influence or enhance physiological and immunological processes during disease processes and in healthy consumers. PMID:22461953

  8. Family Support.

    ERIC Educational Resources Information Center

    Wieck, Colleen, Ed.; McBride, Marijo, Ed.

    1990-01-01

    This "Feature Issue" of the quarterly journal "Impact" presents 19 brief articles on family support systems in the United States for persons with developmental disabilities and their families. Emphasis is on provisions of Public Law 99-457. Articles include: "Family Support in the United States: Setting a Course for the 1990s" (James Knoll);…

  9. Rural Families.

    ERIC Educational Resources Information Center

    Goetz, Kathy, Ed.

    1992-01-01

    This "special focus" journal issue consists of 13 individual articles on the theme of rural family programs relating to school, health services, church, and other institutions. It includes: (1) "Towards a Rural Family Policy" (Judith K. Chynoweth and Michael D. Campbell); (2) "Montana: Council for Families Collaborates for Prevention (Jean…

  10. Isolation of cDNA from Jacaratia mexicana encoding a mexicain-like cysteine protease gene.

    PubMed

    Ramos-Martínez, Erick M; Herrera-Ramírez, Alejandra C; Badillo-Corona, Jesús Agustín; Garibay-Orijel, Claudio; González-Rábade, Nuria; Oliver-Salvador, María Del Carmen

    2012-07-01

    Cysteine proteases (CPs) from the C1 family, which are similar to papain, can be found in animals and plants, as well as some viruses and prokaryotes. These enzymes have diverse physiological functions and are thus very attractive for science and industry. Jacaratia mexicana, a member of the Caricaceae plant family, contains several CPs, the principal being mexicain, found to favorably compete against papain for many industrial applications due to its high stability and specific activity. In this study, leaves of J. mexicana were used to isolate a CP-coding gene, similar to those that code for mexicain and chymomexicain. By using rapid amplification of cDNA ends (RACE) as well as oligonucleotide design from papain-like conserved amino acids (aa), a sequence of 1404 bp consisting of a 5' terminal untranslated region (UTR) of 153 bp, a 3' terminal UTR of 131 bp, with a polyadenylation (poly(A)) signal sequence and a poly(A) tail, and an open reading frame (ORF) of 1046 bp, was obtained by overlapping three partial sequences. Two full-length cDNA sequences that encode for mexicain-like proteases were cloned from mRNA (JmCP4 and JmCP5). JmCP4 is predicted to have an ORF of 1044 bp, which codifies for polypeptides that have a 26 aa signal peptide region, a 108 aa propeptide region and a mature enzyme of 214 aa. A 969 bp fragment (JmCP5) encodes for a partial sequence of a CP gene, without the signal peptide region but with a full-length propeptide region. The sequence analysis showed that this protease presented a high similarity to other plant CPs from J. mexicana, Vasconcellea cundinamarcensis, Vasconcellea stipulata, and Carica papaya, among others, mainly at the conserved catalytic site. Obtaining the sequence of this CP gene from J. mexicana provides an alternative for production in a standard system and could be an initial step towards the commercialization of this enzyme.

  11. Teaching Foundational Topics and Scientific Skills in Biochemistry within the Conceptual Framework of HIV Protease

    ERIC Educational Resources Information Center

    Johnson, R. Jeremy

    2014-01-01

    HIV protease has served as a model protein for understanding protein structure, enzyme kinetics, structure-based drug design, and protein evolution. Inhibitors of HIV protease are also an essential part of effective HIV/AIDS treatment and have provided great societal benefits. The broad applications for HIV protease and its inhibitors make it a…

  12. Protease production by immobilized mycelia of Streptomyces fradiae

    SciTech Connect

    Kokubu, T.; Karube, I.; Suzuki, S.

    1981-01-01

    Streptomyces fradiae was immobilized in polyacrylamide gel prepared from 5% total acrylamide (90% acrylamide and 10% N,N-methylenebisacrylamide). Production of protease by the immobilized mycelia was attempted in a batch system. A dilute medium containing 0.5% starch, 0.5% meat extract, and 0.5% yeast extract was employed. The reusability of the immobilized and washed mycelia was examined. The activity of protease production by washed mycelia was rapidly decreased with increasing use cycles. The activity of the immobilized mycelia increased gradually, and reached a maximum after ten use cycles. Then, the activity gradually decreased with increasing reaction cycles. This might be caused by destruction of the gels. On the other hand, the sterilization of the surface of the immobilized mycelia was effective for elongation of the lifetime. As a result, the half-life of protease production by the sterilized immobilized mycelia was about 30 days. The rate of protease production by immobilized mycelia was 12,000 U/ml/hr. This value was four times higher than that by submerged culture.

  13. Purification and characterization of a pineapple crown leaf thiol protease.

    PubMed

    Singh, L Rupachandra; Devi, Th Premila; Devi, S Kunjeshwori

    2004-02-01

    A thiol protease was isolated and purified from the crown leaf of pineapple, Ananas comosus (L.) Merr. cv. Queen, by an immunoaffinity procedure. After the purification to electrophoretic homogeneity, the enzyme was characterized with respect to some of its physico-chemical and kinetic properties. The molecular weight of the protease (22.4-22.9 kDa), Km (97 microM) and kcat (8.8 s(-1)) for its esterolytic cleavage of the synthetic protease substrate N(alpha)-CBZ-L-lysine p-nitrophenyl ester, the concentration of its thiol activator L-cysteine required for half maximal activation A0.5 (9.9 microM), optimum pH (6.5) for its proteolytic action on azocasein, T(1/2) (60 degrees C) for inactivation by heating the enzyme (35.5 microg protein/mL) in citrate buffer pH 6.0 for 15 min, and SH-group content (0.98 mol/mol enzyme) were determined. Most of these physicochemical and kinetic properties were found to be similar to those of the already well-characterized stem bromelain (EC 3.4.22.32). Thus, the immunoaffinity purified crown leaf protease appeared to be closely related to stem bromelain.

  14. Secretory immunity and the bacterial IgA proteases.

    PubMed

    Kornfeld, S J; Plaut, A G

    1981-01-01

    The characteristics and functions of microbial IgA proteases are reviewed. These enzymes represent a structurally heterogeneous group of proteins that are secreted into the extracellular environment by bacteria capable of causing human disease. The IgA proteases, which vary in their requirements for metal ions, are neutral endopeptidases whose role in the infectious process is not known but whose pronounced substrate specificity for human proteins of the IgA1 subclass has repeatedly been demonstrated. As reagents, the IgA proteases are useful in cleaving IgA molecules to yield intact Fc alpha and Fab alpha fragments that will allow the study of the structure and function of the two large regions of IgA immunoglobulin proteins. The role, if any, of these enzymes in promoting infection by pathogenic members of the genera Neisseria, Hemophilus, and Streptococcus is not known, although the secretory immune system is primarily mediated by antibodies of the IgA isotype, among which are IgA1 subclass proteins, and these proteins are susceptible to cleavage by IgA protease. The determination of the role of these enzymes in the pathogenesis of human infection must await clearer understanding of antigenicity and antibody function at secretory sites and of the relative roles of the two subclasses of human IgA in immune defense.

  15. Processing and targeting of the thiol protease aleurain: Progress report

    SciTech Connect

    Rogers, J.C.

    1988-01-01

    This study addresses the processing and targeting of the thiol protease aleurain in monocots. A probe derived from the aleurain cDNA specific for the 5'-most 400 bp (a region encoding the first 140 amino acids of the preprotein hybridized to at least 3 separate elements in the barley genome; only one represented the aleurain gene. In contrast, a probe specific for the remaining 2/23 of the cDNA (representing the protease domain) hybridized to only a single copy sequence. To know if this pattern pertained in other, closely related, monocots, we probed Southern blots of genomic DNA from maize, rye, oats, sorghum, and pearl millet with each probe. In each instance except for maize DNA, the 5' domain probe hybridizes to several fragments in addition to those identified by the protease domain probe. Presumable the darkest hybridization in each represents the fragment carrying the sequences homologous to barley aleurain. The fragments from a given restriction enzyme identified by the protease domain probe in sorghum, millet, and maize, were indistinguishable in size indicating that the gene sequences, as well as flanking DNA, are so well conserved among the group that the location of the hexanucleotide sequences have not diverged. (3 refs., 3 figs.)

  16. Post-translational control of genetic circuits using Potyvirus proteases.

    PubMed

    Fernandez-Rodriguez, Jesus; Voigt, Christopher A

    2016-07-27

    Genetic engineering projects often require control over when a protein is degraded. To this end, we use a fusion between a degron and an inactivating peptide that can be added to the N-terminus of a protein. When the corresponding protease is expressed, it cleaves the peptide and the protein is degraded. Three protease:cleavage site pairs from Potyvirus are shown to be orthogonal and active in exposing degrons, releasing inhibitory domains and cleaving polyproteins. This toolbox is applied to the design of genetic circuits as a means to control regulator activity and degradation. First, we demonstrate that a gate can be constructed by constitutively expressing an inactivated repressor and having an input promoter drive the expression of the protease. It is also shown that the proteolytic release of an inhibitory domain can improve the dynamic range of a transcriptional gate (200-fold repression). Next, we design polyproteins containing multiple repressors and show that their cleavage can be used to control multiple outputs. Finally, we demonstrate that the dynamic range of an output can be improved (8-fold to 190-fold) with the addition of a protease-cleaved degron. Thus, controllable proteolysis offers a powerful tool for modulating and expanding the function of synthetic gene circuits. PMID:27298256

  17. Generic protease detection technology for monitoring periodontal disease.

    PubMed

    Zheng, Xinwei; Cook, Joseph P; Watkinson, Michael; Yang, Shoufeng; Douglas, Ian; Rawlinson, Andrew; Krause, Steffi

    2011-01-01

    Periodontal diseases are inflammatory conditions that affect the supporting tissues of teeth and can lead to destruction of the bone support and ultimately tooth loss if untreated. Progression of periodontitis is usually site specific but not uniform, and currently there are no accurate clinical methods for distinguishing sites where there is active disease progression from sites that are quiescent. Consequently, unnecessary and costly treatment of periodontal sites that are not progressing may occur. Three proteases have been identified as suitable markers for distinguishing sites with active disease progression and quiescent sites: human neutrophil elastase, cathepsin G and MMP8. Generic sensor materials for the detection of these three proteases have been developed based on thin dextran hydrogel films cross-linked with peptides. Degradation of the hydrogel films was monitored using impedance measurements. The target proteases were detected in the clinically relevant range within a time frame of 3 min. Good specificity for different proteases was achieved by choosing appropriate peptide cross-linkers.

  18. THE ROLE OF CYSTEINE PROTEASE IN ALZHEIMER DISEASE

    PubMed Central

    Hasanbasic, Samra; Jahic, Alma; Karahmet, Emina; Sejranic, Asja; Prnjavorac, Besim

    2016-01-01

    Introduction: Cysteine protease are biological catalysts which play a pivotal role in numerous biological reactions in organism. Much of the literature is inscribed to their biochemical significance, distribution and mechanism of action. Many diseases, e.g. Alzheimer’s disease, develop due to enzyme balance disruption. Understanding of cysteine protease’s disbalance is therefor a key to unravel the new possibilities of treatment. Cysteine protease are one of the most important enzymes for protein disruption during programmed cell death. Whether protein disruption is part of cell deaths is not enough clear in any cases. Thereafter, any tissue disruption, including proteolysis, generate more or less inflammation appearance. Review: This review briefly summarizes the current knowledge about pathological mechanism’s that results in AD, with significant reference to the role of cysteine protease in it. Based on the summary, new pharmacological approach and development of novel potent drugs with selective toxicity targeting cysteine protease will be a major challenge in years to come. PMID:27482169

  19. Design, synthesis, and activity of nanocellulosic protease sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we contrast the molecular assembly, and biochemical utility of nanocellulosic materials prepared from cotton and wood as protease sensors. The cotton-based nanocellulosic substrates were prepared in a variety of ways to produce nanocrystals, films and aerogels, which were derivatized with eithe...

  20. graal: a Drosophila gene coding for several mosaic serine proteases.

    PubMed

    Munier, Anne Isabelle; Medzhitov, Ruslan; Janeway, Charles A; Doucet, Daniel; Capovilla, Maria; Lagueux, Marie

    2004-10-01

    Serine proteases play vital roles in several biological processes such as development and immunity. We have characterized Graal, a large multi-domain serine protease from Drosophila. Graal is spliced in at least three transcripts that are present throughout development. The domains found in Graal proteins are: chitin-binding domains (CBD), scavenger receptor cysteine-rich (SRCR) domains, low density lipoprotein receptor cysteine-rich (LDLR-CR) domains, histidine and proline-rich domains, a NGGYQPP-repeat domain and a serine protease domain. The last 2370 nucleotides of these RNAs are identical and encode a His-rich domain, two SRCR domains, two LDLR-CR domains and a protease domain. The transcription of graal is upregulated after fungal or bacterial infection. Analysis of the Iso1 (y;cn,sp,bw) strain shows that graal transcription is impaired in this fly line due to the insertion of a retrotransposon in the sixth exon. However, no phenotype could be observed consecutive to the absence of graal full length transcripts, particularly in the context of an immune challenge.

  1. Differential protease activity augments polyphagy in Helicoverpa armigera.

    PubMed

    Chikate, Y R; Tamhane, V A; Joshi, R S; Gupta, V S; Giri, A P

    2013-06-01

    Helicoverpa armigera (Lepidoptera: Noctuidae) and other polyphagous agricultural pests are extending their plant host range and emerging as serious agents in restraining crop productivity. Dynamic regulation, coupled with a diversity of digestive and detoxifying enzymes, play a crucial role in the adaptation of polyphagous insects. To investigate the functional intricacy of serine proteases in the development and polyphagy of H. armigera, we profiled the expression of eight trypsin-like and four chymotrypsin-like phylogenetically diverse mRNAs from different life stages of H. armigera reared on nutritionally distinct host plants. These analyses revealed diet- and stage-specific protease expression patterns. The trypsins expressed showed structural variations, which might result in differential substrate specificity and interaction with inhibitors. Protease profiles in the presence of inhibitors and their mass spectrometric analyses revealed insight into their differential activity. These findings emphasize the differential expression of serine proteases and their consequences for digestive physiology in promoting polyphagy in H. armigera. PMID:23432026

  2. Recent trends in protease-catalyzed peptide synthesis.

    PubMed

    Lombard, C; Saulnier, J; Wallach, J M

    2005-10-01

    Enzymatic peptide syntheses may be either thermodynamically- or kinetically-controlled. The former may be catalyzed by any proteases; the latter is limited to serine and cysteine proteases. This methodology is quite stereospecific and avoids side chain protection but is suffering of some drawbacks. Thus, only two industrial processes are by now developed: the production of aspartame and the conversion of porcine into human insulin. However, recent improvements have been carried out in different directions: 1-Search for proteases with high and/or new P'1 and P1 specificities. 2-Protease engineering to promote synthesis towards hydrolysis and to enlarge specificity. 3-Development of mimetic or "inverse" substrates to limit further hydrolysis of synthesized peptide. 4-Change of the physical state of reactants. Three axes have mainly be explored: solid-solid conversion, use of cross-linked enzyme crystals (CLEC) and enzyme immobilization. 5-Modification of experimental conditions. The principal and recent developments deal with: heterogeneous catalysis, synthesis in low water-containing organic solvents, in ionic liquids or at subzero temperatures. This review will illustrate these new orientations with examples described in the recent literature.

  3. Botulinum neurotoxin: a deadly protease with applications to human medicine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNTs) are some of the most potent biological toxins to humans. They are synthesized by the gram-positive, spore-forming bacterium Clostridium botulinum. BoNT is secreted from the bacterium as a ~150 kDa polypeptide which is cleaved by bacterial or host proteases into a ~50 kD...

  4. Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer.

    PubMed

    Jaber, Mohammad; Maoz, Miriam; Kancharla, Arun; Agranovich, Daniel; Peretz, Tamar; Grisaru-Granovsky, Sorina; Uziely, Beatrice; Bar-Shavit, Rachel

    2014-07-01

    Mammalian protease-activated-receptor-1 and -2 (PAR1 and PAR2) are activated by proteases found in the flexible microenvironment of a tumor and play a central role in breast cancer. We propose in the present study that PAR1 and PAR2 act together as a functional unit during malignant and physiological invasion processes. This notion is supported by assessing pro-tumor functions in the presence of short hairpin; shRNA knocked-down hPar2 or by the use of a truncated PAR2 devoid of the entire cytoplasmic tail. Silencing of hPar2 by shRNA-attenuated thrombin induced PAR1 signaling as recapitulated by inhibiting the assembly of Etk/Bmx or Akt onto PAR1-C-tail, by thrombin-instigated colony formation and invasion. Strikingly, shRNA-hPar2 also inhibited the TFLLRN selective PAR1 pro-tumor functions. In addition, while evaluating the physiological invasion process of placenta extravillous trophoblast (EVT) organ culture, we observed inhibition of both thrombin or the selective PAR1 ligand; TFLLRNPNDK induced EVT invasion by shRNA-hPar2 but not by scrambled shRNA-hPar2. In parallel, when a truncated PAR2 was utilized in a xenograft mouse model, it inhibited PAR1-PAR2-driven tumor growth in vivo. Similarly, it also attenuated the interaction of Etk/Bmx with the PAR1-C-tail in vitro and decreased markedly selective PAR1-induced Matrigel invasion. Confocal images demonstrated co-localization of PAR1 and PAR2 in HEK293T cells over-expressing YFP-hPar2 and HA-hPar1. Co-immuno-precipitation analyses revealed PAR1-PAR2 complex formation but no PAR1-CXCR4 complex was formed. Taken together, our observations show that PAR1 and PAR2 act as a functional unit in tumor development and placenta-uterus interactions. This conclusion may have significant consequences on future breast cancer therapeutic modalities and improved late pregnancy outcome. PMID:24177339

  5. Heterologous expression of Cenchritis muricatus protease inhibitor II (CmPI-II) in Pichia pastoris system: Purification, isotopic labeling and preliminary characterization.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Gil, Dayrom F; González-González, Yamile; Mansur, Manuel; Camejo, Ayamey; Pires, José R; Alonso-Del-Rivero Antigua, Maday

    2016-10-01

    Cenchritis muricatus protease inhibitor II (CmPI-II) is a tight-binding serine protease inhibitor of the Kazal family with an atypical broad specificity, being active against several proteases such as bovine pancreatic trypsin, human neutrophil elastase and subtilisin A. CmPI-II 3D structures are necessary for understanding the molecular basis of its activity. In the present work, we describe an efficient and straightforward recombinant expression strategy, as well as a cost-effective procedure for isotope labeling for NMR structure determination purposes. The vector pCM101 containing the CmPI-II gene, under the control of Pichia pastoris AOX1 promoter was constructed. Methylotrophic Pichia pastoris strain KM71H was then transformed with the plasmid and the recombinant protein (rCmPI-II) was expressed in benchtop fermenter in unlabeled or (15)N-labeled forms using ammonium chloride ((15)N, 99%) as the sole nitrogen source. Protein purification was accomplished by sequential cation exchange chromatography in STREAMLINE DirectHST, anion exchange chromatography on Hitrap Q-Sepharose FF and gel filtration on Superdex 75 10/30, yielding high quantities of pure rCmPI-II and (15)N rCmPI-II. Recombinant proteins displayed similar functional features as compared to the natural inhibitor and NMR spectra indicated folded and homogeneously labeled samples, suitable for further studies of structure and protease-inhibitor interactions. PMID:27353494

  6. Heterologous expression of Cenchritis muricatus protease inhibitor II (CmPI-II) in Pichia pastoris system: Purification, isotopic labeling and preliminary characterization.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Gil, Dayrom F; González-González, Yamile; Mansur, Manuel; Camejo, Ayamey; Pires, José R; Alonso-Del-Rivero Antigua, Maday

    2016-10-01

    Cenchritis muricatus protease inhibitor II (CmPI-II) is a tight-binding serine protease inhibitor of the Kazal family with an atypical broad specificity, being active against several proteases such as bovine pancreatic trypsin, human neutrophil elastase and subtilisin A. CmPI-II 3D structures are necessary for understanding the molecular basis of its activity. In the present work, we describe an efficient and straightforward recombinant expression strategy, as well as a cost-effective procedure for isotope labeling for NMR structure determination purposes. The vector pCM101 containing the CmPI-II gene, under the control of Pichia pastoris AOX1 promoter was constructed. Methylotrophic Pichia pastoris strain KM71H was then transformed with the plasmid and the recombinant protein (rCmPI-II) was expressed in benchtop fermenter in unlabeled or (15)N-labeled forms using ammonium chloride ((15)N, 99%) as the sole nitrogen source. Protein purification was accomplished by sequential cation exchange chromatography in STREAMLINE DirectHST, anion exchange chromatography on Hitrap Q-Sepharose FF and gel filtration on Superdex 75 10/30, yielding high quantities of pure rCmPI-II and (15)N rCmPI-II. Recombinant proteins displayed similar functional features as compared to the natural inhibitor and NMR spectra indicated folded and homogeneously labeled samples, suitable for further studies of structure and protease-inhibitor interactions.

  7. In-cell protease assay systems based on trans-localizing molecular beacon proteins using HCV protease as a model system.

    PubMed

    Kim, Jeong Hee; Lee, Min Jun; Hwang, Inhwan; Hwang, Hyun Jin

    2013-01-01

    This study describes a sensitive in-cell protease detection system that enables direct fluorescence detection of a target protease and its inhibition inside living cells. This live-cell imaging system provides a fluorescent molecular beacon protein comprised of an intracellular translocation signal sequence, a protease-specific cleavage sequence, and a fluorescent tag sequence(s). The molecular beacon protein is designed to change its intracellular localization upon cleavage by a target protease, i.e., from the cytosol to a subcellular organelle or from a subcellular organelle to the cytosol. Protease activity can be monitored at the single cell level, and accordingly the entire cell population expressing the protease can be accurately enumerated. The clear cellular change in fluorescence pattern makes this system an ideal tool for various life science and drug discovery research, including high throughput and high content screening applications.

  8. Nematicidal Bacteria Associated to Pinewood Nematode Produce Extracellular Proteases

    PubMed Central

    Francisco, Romeu; Verissimo, Paula; Santos, Susana S.; Fonseca, Luís; Abrantes, Isabel M. O.; Morais, Paula V.

    2013-01-01

    Bacteria associated with the nematode Bursaphelenchus xylophilus, a pathogen of trees and the causal agent of pine wilt disease (PWD) may play a role in the disease. In order to evaluate their role (positive or negative to the tree), strains isolated from the track of nematodes from infected Pinus pinaster trees were screened, in vitro, for their nematicidal potential. The bacterial products, from strains more active in killing nematodes, were screened in order to identify and characterize the nematicidal agent. Forty-seven strains were tested and, of these, 21 strains showed capacity to produce extracellular products with nematicidal activity. All Burkholderia strains were non-toxic. In contrast, all Serratia strains except one exhibited high toxicity. Nematodes incubated with Serratia strains showed, by SEM observation, deposits of bacteria on the nematode cuticle. The most nematicidal strain, Serratia sp. A88copa13, produced proteases in the supernatant. The use of selective inhibitors revealed that a serine protease with 70 kDa was majorly responsible for the toxicity of the supernatant. This extracellular serine protease is different phylogenetically, in size and biochemically from previously described proteases. Nematicidal assays revealed differences in nematicidal activity of the proteases to different species of Bursaphelenchus, suggesting its usefulness in a primary screen of the nematodes. This study offers the basis for further investigation of PWD and brings new insights on the role bacteria play in the defense of pine trees against B. xylophilus. Understanding all the factors involved is important in order to develop strategies to control B. xylophilus dispersion. PMID:24244546

  9. Serine protease activation of near-silent epithelial Na+ channels.

    PubMed

    Caldwell, Ray A; Boucher, Richard C; Stutts, M Jackson

    2004-01-01

    The regulation of epithelial Na+ channel (ENaC) function is critical for normal salt and water balance. This regulation is achieved through cell surface insertion/retrieval of channels, by changes in channel open probability (Po), or through a combination of these processes. Epithelium-derived serine proteases, including channel activating protease (CAP) and prostasin, regulate epithelial Na+ transport, but the molecular mechanism is unknown. We tested the hypothesis that extracellular serine proteases activate a near-silent ENaC population resident in the plasma membrane. Single-channel events were recorded in outside-out patches from fibroblasts (NIH/3T3) stably expressing rat alpha-, beta-, and gamma-subunits (rENaC), before and during exposure to trypsin, a serine protease homologous to CAP and prostasin. Under baseline conditions, near-silent patches were defined as having rENaC activity (NPo) < 0.03, where N is the number of channels. Within 1-5 min of 3 microg/ml bath trypsin superfusion, NPo increased approximately 66-fold (n = 7). In patches observed to contain a single functional channel, trypsin increased Po from 0.02 +/- 0.01 to 0.57 +/- 0.03 (n = 3, mean +/- SE), resulting from the combination of an increased channel open time and decreased channel closed time. Catalytic activity was required for activation of near-silent ENaC. Channel conductance and the Na+/Li+ current ratio with trypsin were similar to control values. Modulation of ENaC Po by endogenous epithelial serine