Sample records for self-complementary hydrogen bonding

  1. Discrete and polymeric self-assembled dendrimers: Hydrogen bond-mediated assembly with high stability and high fidelity

    PubMed Central

    Corbin, Perry S.; Lawless, Laurence J.; Li, Zhanting; Ma, Yuguo; Witmer, Melissa J.; Zimmerman, Steven C.

    2002-01-01

    Hydrogen bond-mediated self-assembly is a powerful strategy for creating nanoscale structures. However, little is known about the fidelity of assembly processes that must occur when similar and potentially competing hydrogen-bonding motifs are present. Furthermore, there is a continuing need for new modules and strategies that can amplify the relatively weak strength of a hydrogen bond to give more stable assemblies. Herein we report quantitative complexation studies on a ureidodeazapterin-based module revealing an unprecedented stability for dimers of its self-complementary acceptoracceptor-donor-donor (AADD) array. Linking two such units together with a semirigid spacer that carries a first-, second-, or third-generation Fréchet-type dendron affords a ditopic structure programmed to self assemble. The specific structure that is formed depends both on the size of the dendron and the solvent, but all of the assemblies have exceptionally high stability. The largest discrete nanoscale assembly is a hexamer with a molecular mass of about 17.8 kDa. It is stabilized by 30 hydrogen bonds, including six AADD⋅DDAA contacts. The hexamer forms and is indefinitely stable in the presence of a hexamer containing six ADD⋅DAA hydrogen-bonding arrays. PMID:11917113

  2. Reinforced self-assembly of donor-acceptor π-conjugated molecules to DNA templates by dipole-dipole interactions together with complementary hydrogen bonding interactions for biomimetics.

    PubMed

    Yang, Wanggui; Chen, Yali; Wong, Man Shing; Lo, Pik Kwan

    2012-10-08

    One of the most important criteria for the successful DNA-templated polymerization to generate fully synthetic biomimetic polymers is to design the complementary structural monomers, which assemble to the templates strongly and precisely before carrying polymerization. In this study, water-soluble, laterally thymine-substituted donor-acceptor π-conjugated molecules were designed and synthesized to self-assemble with complementary oligoadenines templates, dA(20) and dA(40), into stable and tubular assemblies through noncovalent interactions including π-π stacking, dipole-dipole interactions, and the complementary adenine-thymine (A-T) hydrogen-bonding. UV-vis, fluorescence, circular dichroism (CD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques were used to investigate the formation of highly robust nanofibrous structures. Our results have demonstrated for the first time that the dipole-dipole interactions are stronger and useful to reinforce the assembly of donor-acceptor π-conjugated molecules to DNA templates and the formation of the stable and robust supramolecular nanofibrous complexes together with the complementary hydrogen bonding interactions. This provides an initial step toward DNA-templated polymerization to create fully synthetic DNA-mimetic polymers for biotechnological applications. This study also presents an opportunity to precisely position donor-acceptor type molecules in a controlled manner and tailor-make advanced materials for various biotechnological applications.

  3. Hierarchical self-assembly of a bow-shaped molecule bearing self-complementary hydrogen bonding sites into extended supramolecular assemblies.

    PubMed

    Ikeda, Masato; Nobori, Tadahito; Schmutz, Marc; Lehn, Jean-Marie

    2005-01-07

    The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.

  4. Selective C70 encapsulation by a robust octameric nanospheroid held together by 48 cooperative hydrogen bonds

    PubMed Central

    Markiewicz, Grzegorz; Jenczak, Anna; Kołodziejski, Michał; Holstein, Julian J.; Stefankiewicz, Artur R

    2017-01-01

    Self-assembly of multiple building blocks via hydrogen bonds into well-defined nanoconstructs with selective binding function remains one of the foremost challenges in supramolecular chemistry. Here, we report the discovery of a enantiopure nanocapsule that is formed through the self-assembly of eight amino acid functionalised molecules in nonpolar solvents through 48 hydrogen bonds. The nanocapsule is remarkably robust, being stable at low and high temperatures, and in the presence of base, presumably due to the co-operative geometry of the hydrogen bonding motif. Thanks to small pore sizes, large internal cavity and sufficient dynamicity, the nanocapsule is able to recognize and encapsulate large aromatic guests such as fullerenes C60 and C70. The structural and electronic complementary between the host and C70 leads to its preferential and selective binding from a mixture of C60 and C70. PMID:28488697

  5. Supramolecular Polymer Network-Mediated Self-Assembly of Semicrystalline Polymers with Excellent Crystalline Performance.

    PubMed

    Cheng, Chih-Chia; Chuang, Wei-Tsung; Lee, Duu-Jong; Xin, Zhong; Chiu, Chih-Wei

    2017-03-01

    A novel application of supramolecular interactions within semicrystalline polymers, capable of self-assembling into supramolecular polymer networks via self-complementary multiple hydrogen-bonded complexes, is demonstrated for efficient construction of highly controlled self-organizing hierarchical structures to offer a direct, efficient nucleation pathway resulting in superior crystallization performance. Herein, a novel functionalized poly(ε-caprolactone) containing self-complementary sextuple hydrogen-bonded uracil-diamidopyridine (U-DPy) moieties is successfully developed and demonstrated excellent thermal and viscoelastic properties as well as high dynamic structural stability in the bulk state due to physical cross-linking created by reversible sextuple hydrogen bonding between U-DPy units. Due to the ability to vary the extent of the reversible network by tuning the U-DPy content, this newly developed material can be readily adjusted to obtain the desired crystalline products with specific characteristics. Importantly, incorporating only 0.1% U-DPy resulted in a polymer with a high crystallization rate constant, short crystallization half-time, and much more rapid crystallization kinetics than pristine PCL, indicating a low content of U-DPy moieties provides highly efficient nucleation sites that manipulate the nucleation and growth processes of polymer crystals to promote crystallization and chain alignment in bulk. This new system is suggested as a potential new route to substantially improve the performance of polymer crystallization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Photoinduced triplet-triplet energy transfer via the 2-ureido-4[1H]-pyrimidinone self-complementary quadruple hydrogen-bonded module.

    PubMed

    Wang, Su-Min; Yu, Mao-Lin; Ding, Jie; Tung, Chen-Ho; Wu, Li-Zhu

    2008-05-01

    Phosphorescence quenching and flash photolysis experiments demonstrate that photoinduced intra-assembly triplet-triplet energy transfer can take place via a 2-ureido-4[1H]-pyrimidinone-bridged benzophenone-naphthalene assembly I with a rate constant of 3.0 x 106 s-1 and an efficiency of 95% in CH2Cl2. This new finding suggests that with high binding strength and directionality, the 2-ureido-4[1H]-pyrimidinone hydrogen-bonded module may serve as a new model to illustrate the fundamental principles governing the triplet-triplet energy-transfer process through hydrogen bonds.

  7. Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding

    PubMed Central

    Ware, Taylor; Hearon, Keith; Lonnecker, Alexander; Wooley, Karen L.; Maitland, Duncan J.; Voit, Walter

    2012-01-01

    Triple shape memory polymers (TSMPs) are a growing subset of a class of smart materials known as shape memory polymers, which are capable of changing shape and stiffness in response to a stimulus. A TSMP can change shapes twice and can fix two metastable shapes in addition to its permanent shape. In this work, a novel TSMP system comprised of both permanent covalent cross-links and supramolecular hydrogen bonding cross-links has been synthesized via a one-pot method. Triple shape properties arise from the combination of the glass transition of (meth)acrylate copolymers and the dissociation of self-complementary hydrogen bonding moieties, enabling broad and independent control of both glass transition temperature (Tg) and cross-link density. Specifically, ureidopyrimidone methacrylate and a novel monomer, ureidopyrimidone acrylate, were copolymerized with various alkyl acrylates and bisphenol A ethoxylate diacrylate. Control of Tg from 0 to 60 °C is demonstrated: concentration of hydrogen bonding moieties is varied from 0 to 40 wt %; concentration of the diacrylate is varied from 0 to 30 wt %. Toughness ranges from 0.06 to 0.14 MPa and is found to peak near 20 wt % of the supramolecular cross-linker. A widely tunable class of amorphous triple-shape memory polymers has been developed and characterized through dynamic and quasi-static thermomechanical testing to gain insights into the dynamics of supramolecular networks. PMID:22287811

  8. Engineering solid-state materials. Strategies for modeling and packing control of molecular assemblies into 3-D networks

    NASA Astrophysics Data System (ADS)

    Videnova-Adrabinska, V.; Etter, M. C.; Ward, M. D.

    1993-04-01

    The crystal structure and properties of a number of urea cocrystals are studied with regard to symmetry of the hydrogen-bonded molecular assemblies. The logical consequences of hydrogen bonding interactions are followed step-by-step. The problems of aggregate formation, nucleation, and crystal growth are also elucidated. Endeavor is made to envisage the 2-D and 3-D hydrogen bond network in a manageable way by exploiting graph set short hand. Strategies of how to control the symmetry of molecular packing are still to be elaborated. In our strategy, the programmed self-assembly has been based on the principle of molecular recognition of self- and hetero-complementary functional groups. However, the main focus for pre-organizational control has been put on the two-fold axis estimator of the urea molecule.

  9. Second-generation supramolecular dendrimer with a defined structure due to orthogonal binding.

    PubMed

    Eckelmann, Jens; Dethlefs, Christiane; Brammer, Stefan; Doğan, Ahmet; Uphoff, Andreas; Lüning, Ulrich

    2012-07-02

    A second-generation supramolecular dendrimer has been prepared by orthogonal multiple hydrogen bonding. In the first (inner) recognition domain, the interaction of one bis-isocyanuric acid (25) with two branching units (21) that carry complementary Hamilton receptors has been exploited. In the second (outer) generation, the two ADDA (A=hydrogen-bond acceptor, D=donor) receptors of each branching unit (21) have bound complementary DAAD units (4). The problem of limited solubility of the building blocks has been overcome by the introduction of branched ethylhexyl residues and by the use of flexible alkylene or oligo(ethylene glycol) linking chains. The orthogonal binding of the two hydrogen-bonding pairs was elucidated by chemical induced shift NMR titrations, which proved that the two pairs, isocyanuric acid with the Hamilton receptor and ADDA with DAAD, bind preferentially. The formation of the supramolecular self-assembled 1:2:4 dendrimer with a molecular weight of 5065 g mol(-1) was investigated by diffusion NMR spectroscopy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fabrication of sophisticated two-dimensional organic nanoarchitectures thought hydrogen bond mediated molecular self assembly

    NASA Astrophysics Data System (ADS)

    Silly, Fabien

    2012-02-01

    Complex supramolecular two-dimensional (2D) networks are attracting considerable interest as highly ordered functional materials for applications in nanotechnology. The challenge consists in tailoring the ordering of one or more molecular species into specific architectures over an extended length scale with molecular precision. Highly organized supramolecular arrays can be obtained through self-assembly of complementary molecules which can interlock via intermolecular interactions. Molecules forming hydrogen bonds (H-bonds) are especially interesting building blocks for creating sophisticated organic architectures due to high selectivity and directionality of these bindings. We used scanning tunnelling microscopy to investigate at the atomic scale the formation of H-bonded 2D organic nanoarchitectures on surfaces. We mixed perylene derivatives having rectangular shape with melamine and DNA base having triangular and non symmetric shape respectively. We observe that molecule substituents play a key role in formation of the multicomponent H-bonded architectures. We show that the 2D self-assembly of these molecules can be tailored by adjusting the temperature and molecular ratio. We used these stimuli to successfully create numerous close-packed and porous 2D multicomponent structures.

  11. Recognition-Mediated Assembly of Quantum Dot Polymer Conjugates with Controlled Morphology

    PubMed Central

    Nandwana, Vikas; Subramani, Chandramouleeswaran; Eymur, Serkan; Yeh, Yi-Cheun; Tonga, Gulen Yesilbag; Tonga, Murat; Jeong, Youngdo; Yang, Boqian; Barnes, Michael D.; Cooke, Graeme; Rotello, Vincent M.

    2011-01-01

    We have demonstrated a polymer mediated “bricks and mortar” method for the self-assembly of quantum dots (QDs). This strategy allows QDs to self-assemble into structured aggregates using complementary three-point hydrogen bonding. The resulting nanocomposites have distinct morphologies and inter-particle distances based on the ratio between QDs and polymer. Time resolved photoluminescence measurements showed that the optical properties of the QDs were retained after self-assembly. PMID:22016664

  12. Poly(sebacoyl diglyceride) Cross-Linked by Dynamic Hydrogen Bonds: A Self-Healing and Functionalizable Thermoplastic Bioelastomer.

    PubMed

    Chen, Shuo; Bi, Xiaoping; Sun, Lijie; Gao, Jin; Huang, Peng; Fan, Xianqun; You, Zhengwei; Wang, Yadong

    2016-08-17

    Biodegradable and biocompatible elastomers (bioelastomers) could resemble the mechanical properties of extracellular matrix and soft tissues and, thus, are very useful for many biomedical applications. Despite significant advances, tunable bioelastomers with easy processing, facile biofunctionalization, and the ability to withstand a mechanically dynamic environment have remained elusive. Here, we reported new dynamic hydrogen-bond cross-linked PSeD-U bioelastomers possessing the aforementioned features by grafting 2-ureido-4[1H]-pyrimidinones (UPy) units with strong self-complementary quadruple hydrogen bonds to poly(sebacoyl diglyceride) (PSeD), a refined version of a widely used bioelastomer poly(glycerol sebacate) (PGS). PSeD-U polymers exhibited stronger mechanical strength than their counterparts of chemically cross-linked PSeD and tunable elasticity by simply varying the content of UPy units. In addition to the good biocompatibility and biodegradability as seen in PSeD, PSeD-U showed fast self-healing (within 30 min) at mild conditions (60 °C) and could be readily processed at moderate temperature (90-100 °C) or with use of solvent casting at room temperature. Furthermore, the free hydroxyl groups of PSeD-U enabled facile functionalization, which was demonstrated by the modification of PSeD-U film with FITC as a model functional molecule.

  13. Molecular self-assembly in substituted alanine derivatives: XRD, Hirshfeld surfaces and DFT studies

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, Periasamy; Srinivasan, Navaneethakrishnan; Sivaraman, Gandhi; Razak, Ibrahim Abdul; Rosli, Mohd Mustaqim; Krishnakumar, Rajaputi Venkatraman

    2014-06-01

    The molecular assemblage in the crystal structures of three modified chiral amino acids, two of which are isomeric D- and L-pairs boc-L-benzothienylalanine (BLA), boc-D-benzothienylalanine (BDA) and the other boc-D-naphthylalanine (NDA) differing from this pair very slightly in the chemical modification introduced, is accurately described. The aggregation of amino acid molecules is similar in all the crystals and may be described as a twisted double helical ladder in which two complementary long helical chains formed through O-H⋯O hydrogen bonds are interconnected through the characteristic head-to-tail N-H⋯O hydrogen bonds. Thus the molecular aggregation enabled through classical hydrogen bonds may be regarded as a mimic of the characteristic double helical structure of DNA. Also, precise structural information involving these amino acid molecules with lower symmetry exhibiting higher trigonal symmetry in their self-assembly is expected to throw light on the nature and strength of intermolecular interactions and their role in self-assembly of molecular aggregates, which are crucial in developing new or at least supplement existing crystal engineering strategies. Single crystal X-ray analysis and their electronic structures were calculated at the DFT level with a detailed analysis of Hirshfeld surfaces and fingerprint plots facilitating a comparison of intermolecular interactions in building different supramolecular architectures.

  14. Electron transfer across multiple hydrogen bonds: the case of ureapyrimidinedione-substituted vinyl ruthenium and osmium complexes.

    PubMed

    Pichlmaier, Markus; Winter, Rainer F; Zabel, Manfred; Zális, Stanislav

    2009-04-08

    Ruthenium and osmium complexes 2a,b and 3a,b featuring the N-4,6-dioxo-5,5-dibutyl- or the N-4,6-dioxo-5,5-di-(2-propenyl)-1,4,5,6-tetrahydropyrimidin-2-yl-N'(4-ethenylphenyl)-urea ligand dimerize by a self-complementary quadruply hydrogen-bonding donor/donor/acceptor/acceptor (DDAA) motif. We provide evidence that the dimeric structures are maintained in nonpolar solvents and in 0.1 M NBu(4)PF(6)/CH(2)Cl(2) supporting electrolyte solution. All complexes are reversibly oxidized in two consecutive two-electron oxidations (DeltaE(1/2) approximately = 500 mV) without any discernible potential splitting for the oxidation of the individual hydrogen-bridged redox active moieties. IR and UV/vis/NIR spectroelectrochemistry show a one-step conversion of the neutral to the dication without any discernible features of an intermediate monooxidized radical cation. Oxidation-induced IR changes of the NH and CO groups that are involved in hydrogen bonding are restricted to the styryl-bonded urea NH function. IR band assignments are aided by quantum chemical calculations. Our experimental findings clearly show that, at least in the present systems, the ureapyrimidinedione (Upy) DDAA hydrogen-bonding motif does not support electron transfer. The apparent reason is that neither of the hydrogen-bonding functionalities contributes to the occupied frontier levels. This results in nearly degenerate pairs of MOs representing the in-phase and out-of-phase combinations of the individual monomeric building blocks.

  15. X-ray-structure of a cytidylyl-3',5'-adenosine-proflavine complex: a self-paired parallel-chain double helical dimer with an intercalated acridine dye.

    PubMed Central

    Westhof, E; Sundaralingam, M

    1980-01-01

    The non-self-complementary dinucleoside monophosphate cytidylyl-3',5'-adenosine (CpA) forms a base-paired parallel-chain dimer with an intercalated proflavine. The dimer complex possesses a right-handed helical twist. The dimer helix has an irregular girth with a neutral adenine-adenine (A-A) pair, hydrogen-bonded through the N6 and N7 sites (C1'...C1' separation of 10.97 A), and a triply hydrogen-bonded protonated cytosine-cytosine (C-C) pair with a proton shared between the base N3 sites (Cl'...Cl' separation of 9.59 A). The torsion angles of the sugar-phosphate backbone are within their most preferred ranges and the sugar puckering sequence (5' leads to 3') is C3'-endo, C2'-endo. There is also a second proflavine molecule sandwiched between CpA dimers on the 21-axis. Both proflavines are necessarily disordered, being on dyad axis, and this suggests possible insights into the dynamics of intercalation of planar drugs. This structure shows that intercalation of planar drugs in nucleic acids may not be restricted to antiparallel complementary Watson-Crick pairing regions and provides additional mechanisms for acridine mutagenesis. PMID:6929524

  16. Photoinduced triplet-triplet energy transfer in a 2-ureido-4(1H)-pyrimidinone-bridged, quadruply hydrogen-bonded ferrocene-fullerene assembly.

    PubMed

    Feng, Ke; Yu, Mao-Lin; Wang, Su-Min; Wang, Ge-Xia; Tung, Chen-Ho; Wu, Li-Zhu

    2013-01-14

    2-Ureido-4(1H)-pyrimidinone-bridged ferrocene-fullerene assembly I is designed and synthesized for elaborating the photoinduced electron-transfer processes in self-complementary quadruply hydrogen-bonded modules. Unexpectedly, steady-state and time-resolved spectroscopy reveal an inefficient electron-transfer process from the ferrocene to the singlet or triplet excited state of the fullerene, although the electron-transfer reactions are thermodynamically feasible. Instead, an effective intra-assembly triplet-triplet energy-transfer process is found to be operative in assembly I with a rate constant of 9.2×10(5) s(-1) and an efficiency of 73% in CH(2)Cl(2) at room temperature. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. An AAA-DDD triply hydrogen-bonded complex easily accessible for supramolecular polymers.

    PubMed

    Han, Yi-Fei; Chen, Wen-Qiang; Wang, Hong-Bo; Yuan, Ying-Xue; Wu, Na-Na; Song, Xiang-Zhi; Yang, Lan

    2014-12-15

    For a complementary hydrogen-bonded complex, when every hydrogen-bond acceptor is on one side and every hydrogen-bond donor is on the other, all secondary interactions are attractive and the complex is highly stable. AAA-DDD (A=acceptor, D=donor) is considered to be the most stable among triply hydrogen-bonded sequences. The easily synthesized and further derivatized AAA-DDD system is very desirable for hydrogen-bonded functional materials. In this case, AAA and DDD, starting from 4-methoxybenzaldehyde, were synthesized with the Hantzsch pyridine synthesis and Friedländer annulation reaction. The association constant determined by fluorescence titration in chloroform at room temperature is 2.09×10(7)  M(-1) . The AAA and DDD components are not coplanar, but form a V shape in the solid state. Supramolecular polymers based on AAA-DDD triply hydrogen bonded have also been developed. This work may make AAA-DDD triply hydrogen-bonded sequences easily accessible for stimuli-responsive materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Selectivity assessment of DB-200 and DB-VRX open-tubular capillary columns.

    PubMed

    Kiridena, W; Koziola, W W; Poole, C F

    2001-10-12

    The solvation parameter model is used to study the influence of composition and temperature on the selectivity of two poly(siloxane) stationary phases used for open-tubular capillary column gas chromatography. The poly(methyltrifluoropropyldimethylsiloxane) stationary phase, DB-200, has low cohesion, intermediate dipolarity/polarizability, low hydrogen-bond basicity, no hydrogen-bond acidity, and repulsive electron lone pair interactions. The DB-VRX stationary phase has low cohesion, low dipolarity/polarizability, low hydrogen-bond basicity and no hydrogen-bond acidity and no capacity for electron lone pair interactions. The selectivity of the two stationary phases is complementary to those in a database of 11 stationary phase chemistries determined under the same experimental conditions.

  19. Artificial Nacre from Supramolecular Assembly of Graphene Oxide.

    PubMed

    Wang, Yang; Li, Ting; Ma, Piming; Zhang, Shengwen; Zhang, Hongji; Du, Mingliang; Xie, Yi; Chen, Mingqing; Dong, Weifu; Ming, Weihua

    2018-06-14

    Inspired by the "brick-and-mortar" structure and remarkable mechanical performance of nacre, many efforts have been devoted to fabricating nacre-mimicking materials. Herein, a class of graphene oxide (GO) based artificial nacre material with quadruple hydrogen-bonding interactions was fabricated by functionalization of polydopamine-capped graphene oxide (PDG) with 2-ureido-4[1 H]-pyrimidinone (UPy) self-complementary quadruple hydrogen-bonding units followed by supramolecular assembly process. The artificial nacre displays a strict "brick-and-mortar" structure, with PDG nanosheets as the brick and UPy units as the mortar. The resultant nanocomposite shows an excellent balance of strength and toughness. Because of the strong strengthening via quadruple hydrogen bonding, the tensile strength and toughness can reach 325.6 ± 17.8 MPa and 11.1 ± 1.3 MJ m -3 , respectively, thus exceeding natural nacre, and reaching 3.6 and 10 times that of a pure GO artificial nacre. Furthermore, after further H 2 O treatment, the resulting H 2 O-treated PDG-UPy actuator displays significant bending actuations when driven by heat. This work provides a pathway for the development of artificial nacre for their potential applications in energy conversion, temperature sensor, and thermo-driven actuator.

  20. Chiral self-discrimination of the enantiomers of alpha-phenylethylamine derivatives in proton NMR.

    PubMed

    Huang, Shao-Hua; Bai, Zheng-Wu; Feng, Ji-Wen

    2009-05-01

    Two types of chiral analytes, the urea and amide derivatives of alpha-phenylethylamine, were prepared. The effect of inter-molecular hydrogen-bonding interaction on self-discrimination of the enantiomers of analytes has been investigated using high-resolution (1)H NMR. It was found that the urea derivatives with double-hydrogen-bonding interaction exhibit not only the stronger hydrogen-bonding interaction but also better self-recognition abilities than the amide derivatives (except for one bearing two NO(2) groups). The present results suggest that double-hydrogen-bonding interaction promotes the self-discrimination ability of the chiral compounds. Copyright (c) 2009 John Wiley & Sons, Ltd.

  1. Tuning Solvatochromism of Azo Dyes with Intramolecular Hydrogen Bonding in Solution and on Titanium Dioxide Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Cole, Jacqueline M.; Liu, Xiaogang

    2013-11-25

    “Smart tuning” of optical properties in three azo dyes containing intramolecular hydrogen bonding is realized by the judicious control of solvents, when the dyes are in solution or adsorbed onto titanium dioxide nanoparticles. In solution, certain solvents destabilizing intramolecular hydrogen bonding induce a distinctive ≈70 nm “blue-shifted” absorption peak, compared with other solvents. In parallel, the optical properties of azo dye/TiO2 nanocomposites can be tuned using solvents with different hydrogen-bond accepting/donating abilities, giving insights into smart materials and dye-sensitized solar cell device design. It is proposed that intramolecular hydrogen bonding alone plays the leading role in such phenomena, which ismore » fundamentally different to other mechanisms, such as tautomerism and cis–trans isomerization, that explain the optical control of azo dyes. Hybrid density functional theory (DFT) is employed in order to trace the origin of this optical control, and these calculations support the mechanism involving intramolecular hydrogen bonding. Two complementary studies are also reported: 1H NMR spectroscopy is conducted in order to further understand the solvent effects on intramolecular hydrogen bonding; crystal structure analysis from associated research indicates the importance of intramolecular hydrogen bonding on intramolecular charge transfer.« less

  2. Enhancement in Organic Photovoltaic Efficiency through the Synergistic Interplay of Molecular Donor Hydrogen Bonding and -Stacking

    DOE PAGES

    Shewmon, Nathan; Watkins, Davita; Galindo, Johan; ...

    2015-07-20

    For organic photovoltaic (OPV) cells based on the bulk heterojunction (BHJ) structure, it remains challenging to rationally control the degree of phase separation and percolation within blends of donors and acceptors to secure optimal charge separation and transport. Reported is a bottom-up, supramolecular approach to BHJ OPVs wherein tailored hydrogen bonding (H-bonding) interactions between π-conjugated electron donor molecules encourage formation of vertically aligned donor π-stacks while simultaneously suppressing lateral aggregation; the programmed arrangement facilitates fine mixing with fullerene acceptors and efficient charge transport. The approach is illustrated using conventional linear or branched quaterthiophene donor chromophores outfitted with terminal functional groupsmore » that are either capable or incapable of self-complementary H-bonding. When applied to OPVs, the H-bond capable donors yield a twofold enhancement in power conversion efficiency relative to the comparator systems, with a maximum external quantum efficiency of 64%. H-bond promoted assembly results in redshifted absorption (in neat films and donor:C 60 blends) and enhanced charge collection efficiency despite disparate donor chromophore structure. Both features positively impact photocurrent and fill factor in OPV devices. Film structural characterization by atomic force microscopy, transmission electron microscopy, and grazing incidence wide angle X-ray scattering reveals a synergistic interplay of lateral H-bonding interactions and vertical π-stacking for directing the favorable morphology of the BHJ.« less

  3. Two-Dimensional Nanoporous Networks Formed by Liquid-to-Solid Transfer of Hydrogen-Bonded Macrocycles Built from DNA Bases.

    PubMed

    Bilbao, Nerea; Destoop, Iris; De Feyter, Steven; González-Rodríguez, David

    2016-01-11

    We present an approach that makes use of DNA base pairing to produce hydrogen-bonded macrocycles whose supramolecular structure can be transferred from solution to a solid substrate. A hierarchical assembly process ultimately leads to two-dimensional nanostructured porous networks that are able to host size-complementary guests. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydrogen bonding directed self-assembly of small-molecule amphiphiles in water.

    PubMed

    Xu, Jiang-Fei; Niu, Li-Ya; Chen, Yu-Zhe; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng

    2014-08-01

    Compounds comprising one or two quadruply hydrogen bonding units, 2-ureido-4[1H]-pyrimidinone (UPy) and tris(tetraethylene glycol monomethyl ether) moieties, were reported to form highly stable hydrogen-bonded assemblies in water. Compound 1, containing one UPy, assembles into vesicles, and compound 2, containing two UPy units, forms micelles. The aggregates disassemble reversibly when the solution pH is raised to 9.0 or above. The results demonstrate the utility of hydrogen bonding to direct the self-assembly of small-molecule building blocks in aqueous media.

  5. Cocrystals of 6-propyl-2-thiouracil: N-H···O versus N-H···S hydrogen bonds.

    PubMed

    Tutughamiarso, Maya; Egert, Ernst

    2011-11-01

    In order to investigate the relative stability of N-H···O and N-H···S hydrogen bonds, we cocrystallized the antithyroid drug 6-propyl-2-thiouracil with two complementary heterocycles. In the cocrystal pyrimidin-2-amine-6-propyl-2-thiouracil (1/2), C(4)H(5)N(3)·2C(7)H(10)N(2)OS, (I), the `base pair' is connected by one N-H···S and one N-H···N hydrogen bond. Homodimers of 6-propyl-2-thiouracil linked by two N-H···S hydrogen bonds are observed in the cocrystal N-(6-acetamidopyridin-2-yl)acetamide-6-propyl-2-thiouracil (1/2), C(9)H(11)N(3)O(2)·2C(7)H(10)N(2)OS, (II). The crystal structure of 6-propyl-2-thiouracil itself, C(7)H(10)N(2)OS, (III), is stabilized by pairwise N-H···O and N-H···S hydrogen bonds. In all three structures, N-H···S hydrogen bonds occur only within R(2)(2)(8) patterns, whereas N-H···O hydrogen bonds tend to connect the homo- and heterodimers into extended networks. In agreement with related structures, the hydrogen-bonding capability of C=O and C=S groups seems to be comparable.

  6. [Structural and Dipole Structure Peculiarities of Hoogsteen Base Pairs Formed in Complementary Nucleobases according to ab initio Quantum Mechanics Studies].

    PubMed

    Petrenko, Y M

    2015-01-01

    Ab initio quantum mechanics studies for the detection of structure and dipole structure peculiarities of Hoogsteen base pairs relative to Watson-Crick base pairs, were performed during our work. These base pairs are formed as a result of complementary interactions. It was revealed, that adenine-thymine Hoogsteen base pair and adenine-thymine Watson-Crick base pairs can be formed depending on initial configuration. Cytosine-guanine Hoogsteen pairs are formed only when cytosine was originally protonated. Both types of Hoogsteen pairs have noticeable difference in the bond distances and angles. These differences appeared in purine as well as in pyrimidine parts of the pairs. Hoogsteen pairs have mostly shorter hydrogen bond lengths and significantly larger angles of hydrogen bonds and larger angles between the hydrogen bonds than Watson-Crick base pairs. Notable differences are also observed with respect to charge distribution and dipole moment. Quantitative data on these differences are shown in our work. It is also reported that the values of local parameters (according to Cambridge classification of the parameters which determine DNA properties) in Hoogsteen base pairs, are greatly different from Watson-Crick ones.

  7. Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes

    NASA Technical Reports Server (NTRS)

    Egli, M.; Usman, N.; Rich, A.

    1993-01-01

    We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.

  8. How Strong Is the Hydrogen Bond in Hybrid Perovskites?

    PubMed Central

    2017-01-01

    Hybrid organic–inorganic perovskites represent a special class of metal–organic framework where a molecular cation is encased in an anionic cage. The molecule–cage interaction influences phase stability, phase transformations, and the molecular dynamics. We examine the hydrogen bonding in four AmBX3 formate perovskites: [Am]Zn(HCOO)3, with Am+ = hydrazinium (NH2NH3+), guanidinium (C(NH2)3+), dimethylammonium (CH3)2NH2+, and azetidinium (CH2)3NH2+. We develop a scheme to quantify the strength of hydrogen bonding in these systems from first-principles, which separates the electrostatic interactions between the amine (Am+) and the BX3– cage. The hydrogen-bonding strengths of formate perovskites range from 0.36 to 1.40 eV/cation (8–32 kcalmol–1). Complementary solid-state nuclear magnetic resonance spectroscopy confirms that strong hydrogen bonding hinders cation mobility. Application of the procedure to hybrid lead halide perovskites (X = Cl, Br, I, Am+ = CH3NH3+, CH(NH2)2+) shows that these compounds have significantly weaker hydrogen-bonding energies of 0.09 to 0.27 eV/cation (2–6 kcalmol–1), correlating with lower order–disorder transition temperatures. PMID:29216715

  9. Nonlinear Spectroscopy Study of Vibrational Self-Trapping in Hydrogen Bonded Crystals

    NASA Astrophysics Data System (ADS)

    Edler, Julian; Hamm, Peter

    Femtosecond pump probe spectroscopy proves that self-trapping occurs in the NH and amide I band of crystalline acetanilide (ACN). The phonon modes that mediate the self-trapping are identified. Comparison between ACN and N-methylacetamide, both model systems for proteins, shows that self-trapping is a common feature in hydrogen bonded systems.

  10. Self-assembled squares and triangles by simultaneous hydrogen bonding and metal coordination.

    PubMed

    Marshall, Laura J; de Mendoza, Javier

    2013-04-05

    Through the combination of hydrogen bonding and metal-templated self-assembly, molecular squares and molecular triangles are observed in chloroform solution upon the complexation of hydrogen-bonded dimers of para-pyridyl-substituted 2-ureido-4-[1H]-pyrimidinone (UPy) and an appropriate cis-substituted palladium complex. Molecular modeling studies and NMR analysis confirmed the presence of two distinct structures in solution: the tubular structure of the molecular square and propeller-bowl structure of the molecular triangle.

  11. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules.

    PubMed

    Oksanen, Esko; Chen, Julian C-H; Fisher, Suzanne Zoë

    2017-04-07

    Abstract : The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, the protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. This article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.

  12. Neutron crystallography for the study of hydrogen bonds in macromolecules

    DOE PAGES

    Oksanen, Esko; Chen, Julian C.; Fisher, Zoe

    2017-04-07

    The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, themore » protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. Finally, this article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.« less

  13. Neutron crystallography for the study of hydrogen bonds in macromolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oksanen, Esko; Chen, Julian C.; Fisher, Zoe

    The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, themore » protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. Finally, this article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.« less

  14. Self-Healing Gelatin Hydrogels Cross-Linked by Combining Multiple Hydrogen Bonding and Ionic Coordination.

    PubMed

    Zhang, Guangzhao; Lv, Lei; Deng, Yonghong; Wang, Chaoyang

    2017-06-01

    Self-healing hydrogels have been studied by many researchers via multiple cross-linking approaches including physical and chemical interactions. It is an interesting project in multifunctional hydrogel exploration that a water soluble polymer matrix is cross-linked by combining the ionic coordination and the multiple hydrogen bonds to fabricate self-healing hydrogels with injectable property. This study introduces a general procedure of preparing the hydrogels (termed gelatin-UPy-Fe) cross-linked by both ionic coordination of Fe 3+ and carboxyl group from the gelatin and the quadruple hydrogen bonding interaction from the ureido-pyrimidinone (UPy) dimers. The gelatin-UPy-Fe hydrogels possess an excellent self-healing property. The effects of the ionic coordination of Fe 3+ and quadruple hydrogen bonding of UPy on the formation and mechanical behavior of the prepared hydrogels are investigated. In vitro drug release of the gelatin-UPy-Fe hydrogels is also observed, giving an intriguing glimpse into possible biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing.

    PubMed

    Paramonov, Sergey E; Jun, Ho-Wook; Hartgerink, Jeffrey D

    2006-06-07

    The role of hydrogen bonding and amphiphilic packing in the self-assembly of peptide-amphiphiles (PAs) was investigated using a series of 26 PA derivatives, including 19 N-methylated variants and 7 alanine mutants. These were studied by circular dichroism spectroscopy, a variety of Fourier transform infrared spectroscopies, rheology, and vitreous ice cryo-transmission electron microscopy. From these studies, we have been able to determine which amino acids are critical for the self-assembly of PAs into nanofibers, why the nanofiber is favored over other possible nanostructures, the orientation of hydrogen bonding with respect to the nanofiber axis, and the constraints placed upon the portion of the peptide most intimately associated with the biological environment. Furthermore, by selectively eliminating key hydrogen bonds, we are able to completely change the nanostructure resulting from self-assembly in addition to modifying the macroscopic mechanical properties associated with the assembled gel. This study helps to clarify the mechanism of self-assembly for peptide amphiphiles and will thereby help in the design of future generations of PAs.

  16. The effect of intermolecular hydrogen bonding on the fluorescence of a bimetallic platinum complex.

    PubMed

    Zhao, Guang-Jiu; Northrop, Brian H; Han, Ke-Li; Stang, Peter J

    2010-09-02

    The bimetallic platinum complexes are known as unique building blocks and arewidely utilized in the coordination-driven self-assembly of functionalized supramolecular metallacycles. Hence, photophysical study of the bimetallic platinum complexes will be very helpful for the understanding on the optical properties and further applications of coordination-driven self-assembled supramolecular metallacycles. Herein, we report steady-state and time-resolved spectroscopic experiments as well as quantum chemistry calculations to investigate the significant intermolecular hydrogen bonding effects on the intramolecular charge transfer (ICT) fluorescence of a bimetallic platinum compound 4,4'-bis(trans-Pt(PEt(3))(2)OTf)benzophenone 3 in solution. We demonstrated that the fluorescent state of compound 3 can be assigned as a metal-to-ligand charge transfer (MLCT) state. Moreover, it was observed that the formation of intermolecular hydrogen bonds can effectively lengthen the fluorescence lifetime of 3 in alcoholic solvents compared with that in hexane solvent. At the same time, the electronically excited states of 3 in solution are definitely changed by intermolecular hydrogen bonding interactions. As a consequence, we propose a new fluorescence modulation mechanism by hydrogen bonding to explain different fluorescence emissions of 3 in hydrogen-bonding solvents and nonhydrogen-bonding solvents.

  17. Self-Association of N-Methylacetamide Examined by Infrared and NMR Spectroscopies

    ERIC Educational Resources Information Center

    Schenck, Heather L.; Hui, KaWai

    2011-01-01

    These spectroscopic experiments investigate polarity and concentration effects on self-association behavior in N-methylacetamide. Inquiry can be limited to the concentration dependence of hydrogen bonding and estimation of dimerization constant (NMR studies) or to the effect of solvent polarity on extent of hydrogen bonding (IR studies). The…

  18. ' Self-organization' processes in proton and deuteron mixtures in open-chain hydrogen bond systems: polarization IR spectra of 4-mercaptopyridine crystals

    NASA Astrophysics Data System (ADS)

    Flakus, Henryk T.; Tyl, Aleksandra; Jones, Peter G.

    2002-01-01

    This paper is devoted to IR spectroscopic studies in polarized light of 4-mercaptopyridine (4-MPD) hydrogen-bonded crystals. These studies were preceded by determination of the 4-mercaptopyridine X-ray structure. Polarization spectra of 4-mercaptopyridine crystals were measured in the frequency ranges of νN-H and νN-D bands at room temperature, and also at the temperature of liquid nitrogen, for the two different crystalline faces: ' bc' and ' ac'. When investigating ' residual' νN-H band shapes for crystals that were diluted by deuterium, strong dichroic effects in the spectra were still observed, providing evidence for the existence in the hydrogen bond chains of domains containing exclusively protons or deuterons. This phenomenon proves the existence of a new kind of H/D isotopic effects in open chain hydrogen bond systems, namely ' self-organization' effects. Such effects, however, were not observed for other open chain hydrogen bond systems, e.g. alcohol crystals. Solid-state spectra of 4-mercaptopyridine were quantitatively interpreted, along with the strong polarization and the isotopic effects, when based on the ' strong-coupling' theory for linearly arranged hydrogen bond dimers.

  19. Small nuclear RNA U2 is base-paired to heterogeneous nuclear RNA.

    PubMed

    Calvet, J P; Meyer, L M; Pederson, T

    1982-07-30

    Eukaryotic cells contain a set of low molecular weight nuclear RNA's. One of the more abundant of these is termed U2 RNA. The possibility that U2 RNA is hydrogen-bonded to complementary sequences in other nuclear RNA's was investigated. Cultured human (HeLa) cells were treated with a psoralen derivative that cross-links RNA chains that are base-paired with one another. High molecular weight heterogeneous nuclear RNA was isolated under denaturing conditions, and the psoralen cross-links were reversed. Electrophoresis of the released RNA and hybridization with a human cloned U2 DNA probe revealed that U2 is hydrogen-bonded to complementary sequences in heterogeneous nuclear RNA in vivo. In contrast, U2 RNA is not base-paired with nucleolar RNA, which contains the precursors of ribosomal RNA. The results suggest that U2 RNA participates in messenger RNA processing in the nucleus.

  20. Robust hydrogen-bonded self-assemblies from biimidazole complexes. Synthesis and structural characterization of [M(biimidazole)2(OH2)2]2+ (M = Co2+, Ni2+) complexes and carboxylate modules.

    PubMed

    Atencio, Reinaldo; Chacón, Mirbel; González, Teresa; Briceño, Alexander; Agrifoglio, Giuseppe; Sierraalta, Anibal

    2004-02-21

    A robust heteromeric hydrogen-bonded synthon [R2(2) (9)-Id] is exploited to drive the modular self-assembly of four coordination complexes [M(H2biim)2(OH2)2]2+ (M = Co2+, Ni2+) and carboxylate counterions. This strategy allowed us to build molecular architectures of 0-, 1-, and 2-dimensions. A hydrogen-bonded 2D-network with cavities has been designed, which maintains its striking integrity after reversible water desorption-resorption processes.

  1. Strong coupling effects in the polarized IR spectra of the chain hydrogen bond systems in imidazole crystals: H/D isotopic ?self-organization? effects in the IR spectra of isotopically diluted imidazole single crystals

    NASA Astrophysics Data System (ADS)

    Flakus, Henryk T.; Michta, Anna

    2004-11-01

    This paper presents the investigation results of the polarized IR spectra of H1245 imidazole crystals and of D1H245, D1245 and H1D245 imidazole deuterium derivative crystals. The spectra were measured using polarized light at the room temperature and at 77 K by a transmission method, for two different crystalline faces. Theoretical analysis of the results concerned linear dichroic effects, H/D isotopic and temperature effects, observed in the spectra of the hydrogen and of the deuterium bonds in imidazole crystals, at the frequency ranges of νN-H and νN-D bands. The basic crystal spectral properties can be satisfactorily interpreted in a quantitative way for a hydrogen bond linear dimer model. Such a model explains not only a two-branch structure of the νN-H and νN-D bands in crystalline spectra, but also some essential linear dichroic effects in the band frequency ranges, for isotopically diluted crystals. Model calculations, performed within the limits of the strong-coupling model, allowed for quantitative interpretation and for understanding of the basic properties of the hydrogen bond IR spectra of imidazole crystals, H/D isotopic, temperature and dichroic effects included. The results allowed verification of theoretical models proposed recently for the imidazole crystal spectra generation mechanisms. In the scope of our studies, the mechanism of H/D isotopic self-organization processes, taking place in the crystal hydrogen bond lattices, was also recognized. It was proved that for isotopically diluted crystalline samples of imidazole, a non-random distribution of protons and deuterons exclusively occurs in some restricted fragments (domains) of open chains of the hydrogen-bonded molecules. Nevertheless, these co-operative interactions between the hydrogen bonds do not concern adjacent fragments of neighboring hydrogen bond chains in the lattice. Analysis of the isotopic self-organization effects in the spectra of imidazole crystals delivered crucial arguments for understanding of the nature of the hydrogen bond spectra generation mechanisms.

  2. Homeotropic alignment of dendritic columnar liquid crystal induced by hydrogen-bonded triphenylene core bearing fluoroalkyl chains.

    PubMed

    Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji

    2014-07-01

    A 1:3 molar complex of the fluoroalkyl side chain-substituted 2,6,10-tris-carboxymethoxy-3,7,11-tris(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)triphenylene (TPF4) with the second generation dendron 3,5-bis(3,4-bis-dodecyloxybenzyloxy)-N-pyridin-4-yl-benzamide (DN) assembled through complementary hydrogen bonding to form a supramolecular columnar liquid crystal, which exhibited homeotropic alignment when sandwiched between octadecyltrichlorosilane (OTS)-coated or indium tin oxide (ITO)-coated glass plates due to specific interactions between the fluoroalkyl side chains and the substrates.

  3. Supramolecular hydrogen-bonding patterns in 1:1 cocrystals of 5-fluorouracil with 4-methylbenzoic acid and 3-nitrobenzoic acid.

    PubMed

    Mohana, Marimuthu; Muthiah, Packianathan Thomas; McMillen, Colin D

    2017-03-01

    The design of a pharmaceutical cocrystal is based on the identification of specific hydrogen-bond donor and acceptor groups in active pharmaceutical ingredients (APIs) in order to choose a `complementary interacting' molecule that can act as an efficient coformer. 5-Fluorouracil (5FU) is a pyrimidine derivative with two N-H donors and C=O acceptors and shows a diversity of hydrogen-bonding motifs. Two 1:1 cocrystals of 5-fluorouracil (5FU), namely 5-fluorouracil-4-methylbenzoic acid (5FU-MBA), C 4 H 3 FN 2 O 2 ·C 8 H 8 O 2 , (I), and 5-fluorouracil-3-nitrobenzoic acid (5FU-NBA), C 4 H 3 FN 2 O 2 ·C 7 H 5 NO 4 , (II), have been prepared and characterized by single-crystal X-ray diffraction. In (I), the MBA molecules form carboxylic acid dimers [R 2 2 (8) homosynthon]. Similarly, the 5FU molecules form two types of base pair via a pair of N-H...O hydrogen bonds [R 2 2 (8) homosynthon]. In (II), 5FU interacts with the carboxylic acid group of NBA via N-H...O and O-H...O hydrogen bonds, generating an R 2 2 (8) ring motif (heterosynthon). Furthermore, the 5FU molecules form base pairs [R 2 2 (8) homosynthon] via N-H...O hydrogen bonds. Both of the crystal structures are stabilized by C-H...F interactions.

  4. A family of silver(I) complexes built with 2-sulfoterephthalic acid monosodium salt and different aminopyridine ligands: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tan, Gai-Xiu; Liu, Bao-Lin; Dai, Yu-Bei; Xu, Na; Wen, Wei-Fen; Cao, Chong; Xiao, Hong-Ping

    2017-05-01

    Five Ag(I) coordination complexes, namely, [Ag6(2-stp)2(3-methyl-2-apy)3·H2O]n (1), [Ag3(2-stp)(4-methyl-2-apy)3]n (2), [Na2Ag18(2-stp)4(2-Hstp)4(5-methyl-2-apy)16 (H2O)4·11H2O]n (3), Ag3(2-stp)(6-methy-2-apy)4·H2O (4), and [Ag6(2-stp)2(6-methyl-2-apy)8(H2O)2·H2O]n (5) (2-NaH2stp = 2-sulfoterephthalic acid monosodium salt, 3-methyl-2-apy = 3-methyl-2-aminopyridine, 4-methyl-2-apy = 4-methyl-2-aminopyridine, 5-methyl-2-apy = 5-methyl-2-aminopyridine, 6-methyl-2-apy = 6-methyl-2-aminopyridine), have been synthesized and structurally characterized. Complexes 1 and 2 show two-dimensional network. In complex 3, the adjacent Ag10 units are bridged by 5-methyl-2-apy ligands to form a 2D infinite undulated sheet. Adjacent 2D sheets are linked by coordinative bonds between carboxylic oxygen atoms and Na(I) ions to form a 3D coordination polymer. Complex 4 is a 0-D discrete trinuclear molecule, and the self-complementary the Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds incorporating hydrogen bond motifs extend these molecules into a 2D supramolecular framework. Compound 5 exhibits 1D-chain structure. However, complex 5 shows 3D supramolecular structure results from the linkage of neighboring layers through a rich hydrogen-bonding between uncoordinated sulfonates, amino groups and coordinated carboxylates. The thermogravimetric analyses and photoluminescence of the complexes were also investigated.

  5. The structure of drug-deoxydinucleoside phosphate complex; generalized conformational behavior of intercalation complexes with RNA and DNA fragments.

    PubMed Central

    Shieh, H S; Berman, H M; Dabrow, M; Neidle, S

    1980-01-01

    A 2:2 complex of proflavine and deoxycytidylyl-3', 5'-guanosine has been crystallized and its structure determined by x-ray crystallography. The two dinucleoside phosphate strands form self complementary duplexes with Watson Crick hydrogen bonds. One proflavin is asymmetrically intercalated between the base pairs and the other is stacked above them. The conformations of the nucleotides are unusual in that one strand has C3',C2'endomixed sugar puckering and the other has C3',C3' endo deoxyribose sugars. These results show that the conformation of the 3'sugar is of secondary importance to the intercalated geometry. PMID:7355129

  6. Two polymorphs of safinamide, a selective and reversible inhibitor of monoamine oxidase B.

    PubMed

    Ravikumar, Krishnan; Sridhar, Balasubramanian

    2010-06-01

    Two polymorphs of safinamide {systematic name: (2S)-2-[4-(3-fluorobenzyloxy)benzylamino]propionamide}, C(17)H(19)FN(2)O(2), a potent selective and reversible monoamine oxidase B (MAO-B) inhibitor, are described. Both forms are orthorhombic and regarded as conformational polymorphs due to the differences in the orientation of the 3-fluorobenzyloxy and propanamide groups. Both structures pack with layers in the ac plane. In polymorph (I), the layers have discrete wide and narrow regions which are complementary when located next to adjacent layers. In polymorph (II), the layer has long flanges protruding from each side, which interdigitate when packed with the adjacent layers. N-H...O hydrogen bonds are present in both structures, whereas N-H...F hydrogen bonding is seen in polymorph (I), while N-H...N hydrogen bonding is seen in polymorph (II).

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Shuangluo; Konigsberg, William H.; Wang, Jimin

    Results obtained using 2,4-difluorotoluene nucleobase (dF) as a nonpolar thymine isostere by Kool and colleagues challenged the Watson-Crick dogma that hydrogen bonds between complementary bases are an absolute requirement for accurate DNA replication. Here, we report crystal structure of an RB69 DNA polymerase L561A/S565G/Y567A triple mutant ternary complex with a templating dF opposite dTTP at 1.8 {angstrom}-resolution. In this structure, direct hydrogen bonds were observed between: (i) dF and the incoming dTTP, (ii) dF and residue G568 of the polymerase, and (iii) dF and ordered water molecules surrounding the nascent base pair. Therefore, this structure provides evidence that a templatingmore » dF can form novel hydrogen bonds with the incoming dTTP and with the enzyme that differ from those formed with a templating dT.« less

  8. Self-assembling of dihydroxypropyl 5,6-dihydrothymine derivatives

    NASA Astrophysics Data System (ADS)

    Cetina, Mario; Makarević, Janja; Nura-Lama, Afërdita

    2010-09-01

    ( R, S)-1-(2',3'-Dibenzoyloxypropyl)-5,6-dihydrothymine ( 2) was synthesized from ( R, S)-1-(2',3'-dihydroxypropyl)-5,6-dihydrothymine and its structure has been analyzed by X-ray diffraction, NMR and FTIR spectroscopic methods. The molecular structure and supramolecular assembling of 2 is compared with the structure of its dimesyloxypropyl analogue ( 1). Compound 1 crystallizes as cocrystal of two diastereoisomers, while 2 crystallizes as a racemic mixture. Main hydrogen-bonded motif in both compounds is dimer formed by pair of N sbnd H···O( dbnd C) hydrogen bonds, which are further linked by C sbnd H···O hydrogen bonds. Phenyl rings of dibenzoyl-dihydropyrimidine moieties of 2 participate also in supramolecular aggregation via three C sbnd H···π interactions. Hydrogen bonding as driving force of 2 self-assembly was proving by the NMR and FTIR spectroscopy.

  9. Bodipy-C60 triple hydrogen bonding assemblies as heavy atom-free triplet photosensitizers: preparation and study of the singlet/triplet energy transfer.

    PubMed

    Guo, Song; Xu, Liang; Xu, Kejing; Zhao, Jianzhang; Küçüköz, Betül; Karatay, Ahmet; Yaglioglu, Halime Gul; Hayvali, Mustafa; Elmali, Ayhan

    2015-07-01

    Supramolecular triplet photosensitizers based on hydrogen bonding-mediated molecular assemblies were prepared. Three thymine-containing visible light-harvesting Bodipy derivatives ( B-1 , B-2 and B-3 , which show absorption at 505 nm, 630 nm and 593 nm, respectively) were used as H-bonding modules, and 1,6-diaminopyridine-appended C 60 was used as the complementary hydrogen bonding module ( C-1 ), in which the C 60 part acts as a spin converter for triplet formation. Visible light-harvesting antennae with methylated thymine were prepared as references ( B-1-Me , B-2-Me and B-3-Me ), which are unable to form strong H-bonds with C-1 . Triple H-bonds are formed between each Bodipy antenna ( B-1 , B-2 and B-3 ) and the C 60 module ( C-1 ). The photophysical properties of the H-bonding assemblies and the reference non-hydrogen bond-forming mixtures were studied using steady state UV/vis absorption spectroscopy, fluorescence emission spectroscopy, electrochemical characterization, and nanosecond transient absorption spectroscopy. Singlet energy transfer from the Bodipy antenna to the C 60 module was confirmed by fluorescence quenching studies. The intersystem crossing of the latter produced the triplet excited state. The nanosecond transient absorption spectroscopy showed that the triplet state is either localized on the C 60 module (for assembly B-1·C-1 ), or on the styryl-Bodipy antenna (for assemblies B-2·C-1 and B-3·C-1 ). Intra-assembly forward-backward (ping-pong) singlet/triplet energy transfer was proposed. In contrast to the H-bonding assemblies, slow triplet energy transfer was observed for the non-hydrogen bonding mixtures. As a proof of concept, these supramolecular assemblies were used as triplet photosensitizers for triplet-triplet annihilation upconversion.

  10. Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor.

    PubMed

    Stefanovic, Ryan; Ludwig, Michael; Webber, Grant B; Atkin, Rob; Page, Alister J

    2017-01-25

    Deep eutectic solvents (DESs) are a mixture of a salt and a molecular hydrogen bond donor, which form a eutectic liquid with a depressed melting point. Quantum mechanical molecular dynamics (QM/MD) simulations have been used to probe the 1 : 2 choline chloride-urea (ChCl : U), choline chloride-ethylene glycol (ChCl : EG) and choline chloride-glycerol (ChCl : Gly) DESs. DES nanostructure and interactions between the ions is used to rationalise differences in DES eutectic point temperatures and viscosity. Simulations show that the structure of the bulk hydrogen bond donor is largely preserved for hydroxyl based hydrogen bond donors (ChCl:Gly and ChCl:EG), resulting in a smaller melting point depression. By contrast, ChCl:U exhibits a well-established hydrogen bond network between the salt and hydrogen bond donor, leading to a larger melting point depression. This extensive hydrogen bond network in ChCl:U also leads to substantially higher viscosity, compared to ChCl:EG and ChCl:Gly. Of the two hydroxyl based DESs, ChCl:Gly also exhibits a higher viscosity than ChCl:EG. This is attributed to the over-saturation of hydrogen bond donor groups in the ChCl:Gly bulk, which leads to more extensive hydrogen bond donor self-interaction and hence higher cohesive forces within the bulk liquid.

  11. Sorption of CO 2 in a hydrogen-bonded diamondoid network of sulfonylcalix[4]arene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnwell, Michael A.; Atwood, Jerry L.; Thallapally, Praveen K.

    An organic material, p-tert-butyltetrasulfonylcalix[4]arene, self-assembles via hydrogen bonding to form a diamondoid supramolecular network. Possessing discrete, zero-dimensional (0D) microcavities, the thiacalixarene derivative adsorbs CO2 at high pressures

  12. Evidences for Cooperative Resonance-Assisted Hydrogen Bonds in Protein Secondary Structure Analogs

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Deng, Geng; Zheng, Yan-Zhen; Xu, Jing; Ashraf, Hamad; Yu, Zhi-Wu

    2016-11-01

    Cooperative behaviors of the hydrogen bonding networks in proteins have been discovered for a long time. The structural origin of this cooperativity, however, is still under debate. Here we report a new investigation combining excess infrared spectroscopy and density functional theory calculation on peptide analogs, represented by N-methylformamide (NMF) and N-methylacetamide (NMA). Interestingly, addition of the strong hydrogen bond acceptor, dimethyl sulfoxide, to the pure analogs caused opposite effects, namely red- and blue-shift of the N-H stretching infrared absorption in NMF and NMA, respectively. The contradiction can be reconciled by the marked lowering of the energy levels of the self-associates between NMA molecules due to a cooperative effect of the hydrogen bonds. On the contrary, NMF molecules cannot form long-chain cooperative hydrogen bonds because they tend to form dimers. Even more interestingly, we found excellent linear relationships between changes on bond orders of N-H/N-C/C = O and the hydrogen bond energy gains upon the formation of hydrogen bonding multimers in NMA, suggesting strongly that the cooperativity originates from resonance-assisted hydrogen bonds. Our findings provide insights on the structures of proteins and may also shed lights on the rational design of novel molecular recognition systems.

  13. Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel.

    PubMed

    Pomès, Régis; Roux, Benoît

    2002-05-01

    The conduction of protons in the hydrogen-bonded chain of water molecules (or "proton wire") embedded in the lumen of gramicidin A is studied with molecular dynamics free energy simulations. The process may be described as a "hop-and-turn" or Grotthuss mechanism involving the chemical exchange (hop) of hydrogen nuclei between hydrogen-bonded water molecules arranged in single file in the lumen of the pore, and the subsequent reorganization (turn) of the hydrogen-bonded network. Accordingly, the conduction cycle is modeled by two complementary steps corresponding respectively to the translocation 1) of an ionic defect (H+) and 2) of a bonding defect along the hydrogen-bonded chain of water molecules in the pore interior. The molecular mechanism and the potential of mean force are analyzed for each of these two translocation steps. It is found that the mobility of protons in gramicidin A is essentially determined by the fine structure and the dynamic fluctuations of the hydrogen-bonded network. The translocation of H+ is mediated by spontaneous (thermal) fluctuations in the relative positions of oxygen atoms in the wire. In this diffusive mechanism, a shallow free-energy well slightly favors the presence of the excess proton near the middle of the channel. In the absence of H+, the water chain adopts either one of two polarized configurations, each of which corresponds to an oriented donor-acceptor hydrogen-bond pattern along the channel axis. Interconversion between these two conformations is an activated process that occurs through the sequential and directional reorientation of water molecules of the wire. The effect of hydrogen-bonding interactions between channel and water on proton translocation is analyzed from a comparison to the results obtained previously in a study of model nonpolar channels, in which such interactions were missing. Hydrogen-bond donation from water to the backbone carbonyl oxygen atoms lining the pore interior has a dual effect: it provides a coordination of water molecules well suited both to proton hydration and to high proton mobility, and it facilitates the slower reorientation or turn step of the Grotthuss mechanism by stabilizing intermediate configurations of the hydrogen-bonded network in which water molecules are in the process of flipping between their two preferred, polarized states. This mechanism offers a detailed molecular model for the rapid transport of protons in channels, in energy-transducing membrane proteins, and in enzymes.

  14. Synthesis of new porphyrinoids for biomedical and materials applications

    NASA Astrophysics Data System (ADS)

    Stewart, Fraser

    The facile synthesis of three non-hydrolysable thioglycosylated porphyrinoids is reported. Starting from meso perfluorophenylporphyrin (TPPF20), the non-hydrolysable thioglycosylated porphyrin (PGlc4), chlorin (CGlc4), isobacteriochlorin (IGlc4), and bacteriochlorin (BGlc4) can be made in 2-3 steps. The ability to append a wide range of targeting agents onto the perfluorophenyl moieties, the chemical stability, and the ability to fine-tune the photophysical properties of the chromophores make this a suitable platform for development of biochemical tags, diagnostics, or as photodynamic therapeutic agents. With reduction of one or two pyrrole double bonds, there is a red shift in the lowest energy absorption band and a significant increase in intensity. The fluorescence of these porphyrinoids is in the order PGlc4 = BGlc4 < CGlc4 < IGlc4 and there is a corresponding decrease in the amount of triplet formed. Fluorescence micrographs of cells after treatment with these four porphyrinoids indicate they are taken up. The CGlc4 and IGlc4 may be dual function agents that can detect cancer by luminescence, and treat cancer by photodynamic therapy (PDT). Porphyrins appended with four rigid hydrogen bonding motifs on the meso positions were synthesized and self-assembled into a cofacial cage with four complementary bis- (decyl)melamine units in dry solvents, these hydrogen-bonded cages were analysed by diffusion-ordered spectroscopy (DOSY) in solution. The hydrocarbon chains on the melamine mediate the formation of nanofilms on surfaces as the solvent slowly evaporates. A water soluble zinc (II) phthalocyanine symmetrically appended with eight thioglucose units was synthesized from commercially available hexadecafluoro-phthalocyaninato zinc(II) by controlled nucleophilic substitution of the peripheral fluoro groups by thio-sugars. The photophysical properties and cancer cell uptake studies of this nonhydrolyzable thioglycosylated phthalocyanine are reported. The new compound has amphiphilic character, is chemically and photochemically stable, and can potentially be used as a photosensitizer in photodynamic therapy. A porphyrin bearing pyridyl groups at the meso positions was synthesized using 2,6-diacetamido-4-formylpyridine. A new method has been developed for the synthesis of the precursor aldehyde that avoid much of the problems associated with the earlier synthesis. With this porphyrin it is possible to build hetero-complementary rigid, multi-porphyrin supramolecular arrays via hydrogen bonds. For example, when using naphthalenediimide (NDI) units a checkerboard pattern is expected to be formed using this porphyrin as a donor and NDI as an acceptor where triple hydrogen bond is formed between the diimide and pyridyl units. Energy transfer can be studied through this hydrogen bonded supramolecular assembly. The synthesis of a triply bridged diporphyrin appended with six thioglucose units is reported. The electronic spectrum of this triply bridged porphyrin has enhanced intensity at low-energy wavelengths that reaches the near infrared region. The goal of this project is to create tumor targeting dyes that can be activated with red wavelengths of light that penetrate deeper into tissues. This new compound is amphiphilic in nature, chemically and photochemically stable, expected to have unusual photophysical and electrochemical properties, and can potentially be used as a photosensitizer in photodynamic therapy.

  15. Hydrogen bond-Driven Self-Assembly between Amidinium Cations and Carboxylate Anions: A Combined Molecular Dynamics, NMR Spectroscopy, and Single Crystal X-ray Diffraction Study.

    PubMed

    Thomas, Michael; Anglim Lagones, Thomas; Judd, Martyna; Morshedi, Mahbod; O'Mara, Megan L; White, Nicholas G

    2017-07-04

    A combination of molecular dynamics (MD), NMR spectroscopy, and single crystal X-ray diffraction (SCXRD) techniques was used to probe the self-assembly of para- and meta-bis(amidinium) compounds with para-, meta-, and ortho-dicarboxylates. Good concordance was observed between the MD and experimental results. In DMSO solution, the systems form several rapidly exchanging assemblies, in part because a range of hydrogen bonding interactions is possible between the amidinium and carboxylate moieties. Upon crystallization, the majority of the systems form 1D supramolecular polymers, which are held together by short N-H⋅⋅⋅O hydrogen bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A highly directional fourfold hydrogen-bonding motif for supramolecular structures through self-assembly of fullerodendrimers.

    PubMed

    Hahn, Uwe; González, Juan J; Huerta, Elisa; Segura, Margarita; Eckert, Jean-François; Cardinali, François; de Mendoza, Javier; Nierengarten, Jean-François

    2005-11-04

    Supramolecular dendrimers resulting from the dimerization of fullerene-functionalized dendrons through a quadruple hydrogen-bonding motif were prepared. The synthetic strategy is based on the esterification of a tert-butoxycarbonyl (Boc)-protected 2-ureido-4-[1H]pyrimidinone precursor possessing an alcohol function with fullerodendrons bearing a carboxylic acid unit at the focal point. Subsequent acidic treatment to cleave the protecting group and reaction of the resulting amine with octylisocyanate affords the targeted compounds. As demonstrated by the results of MALDI-TOF mass spectrometry and 1H NMR spectroscopy, both of the 2-ureido-4-[1H]pyrimidinone derivatives form self-assembled dimers spontaneously through hydrogen-bonding interactions, thus leading to supramolecular structures containing two or ten fullerene moieties.

  17. Tunneling spectroscopy measurements on hydrogen-bonded supramolecular polymers.

    PubMed

    Vonau, François; Shokri, Roozbeh; Aubel, Dominique; Bouteiller, Laurent; Guskova, Olga; Sommer, Jens-Uwe; Reiter, Günter; Simon, Laurent

    2014-07-21

    We studied the formation of hydrogen-bonded supramolecular polymers of Ethyl Hexyl Urea Toluene (EHUT) on a gold (111) surface by low temperature scanning tunneling microscopy. Tunneling spectroscopy performed along an individual molecule embedded in a self-assembled layer revealed strong changes in the value of the HOMO-LUMO gap. A variation of the LUMO state is attributed to the effect of space charge accumulation resulting from anisotropic adhesion of the molecule. In addition, for specific tunneling conditions, changes induced through the formation of hydrogen bonds became visible in the differential conductance (dI/dV) maps; isolated molecules, hydrogen bonded dimers and supramolecular polymers of EHUT were distinguishable through their electronic properties.

  18. Tunneling spectroscopy measurements on hydrogen-bonded supramolecular polymers

    NASA Astrophysics Data System (ADS)

    Vonau, François; Shokri, Roozbeh; Aubel, Dominique; Bouteiller, Laurent; Guskova, Olga; Sommer, Jens-Uwe; Reiter, Günter; Simon, Laurent

    2014-06-01

    We studied the formation of hydrogen-bonded supramolecular polymers of Ethyl Hexyl Urea Toluene (EHUT) on a gold (111) surface by low temperature scanning tunneling microscopy. Tunneling spectroscopy performed along an individual molecule embedded in a self-assembled layer revealed strong changes in the value of the HOMO-LUMO gap. A variation of the LUMO state is attributed to the effect of space charge accumulation resulting from anisotropic adhesion of the molecule. In addition, for specific tunneling conditions, changes induced through the formation of hydrogen bonds became visible in the differential conductance (dI/dV) maps; isolated molecules, hydrogen bonded dimers and supramolecular polymers of EHUT were distinguishable through their electronic properties.

  19. Recognition tunneling measurement of the conductance of DNA bases embedded in self-assembled monolayers.

    PubMed

    Huang, Shuo; Chang, Shuai; He, Jin; Zhang, Peiming; Liang, Feng; Tuchband, Michael; Li, Shengqing; Lindsay, Stuart

    2010-12-09

    The DNA bases interact strongly with gold electrodes, complicating efforts to measure the tunneling conductance through hydrogen-bonded Watson Crick base pairs. When bases are embedded in a self-assembled alkane-thiol monolayer to minimize these interactions, new features appear in the tunneling data. These new features track the predictions of density-functional calculations quite well, suggesting that they reflect tunnel conductance through hydrogen-bonded base pairs.

  20. Recognition tunneling measurement of the conductance of DNA bases embedded in self-assembled monolayers

    PubMed Central

    Huang, Shuo; Chang, Shuai; He, Jin; Zhang, Peiming; Liang, Feng; Tuchband, Michael; Li, Shengqing; Lindsay, Stuart

    2010-01-01

    The DNA bases interact strongly with gold electrodes, complicating efforts to measure the tunneling conductance through hydrogen-bonded Watson Crick base pairs. When bases are embedded in a self-assembled alkane-thiol monolayer to minimize these interactions, new features appear in the tunneling data. These new features track the predictions of density-functional calculations quite well, suggesting that they reflect tunnel conductance through hydrogen-bonded base pairs. PMID:21197382

  1. Hydrogen Bond Induces Hierarchical Self-Assembly in Liquid-Crystalline Block Copolymers.

    PubMed

    Huang, Shuai; Pang, Linlin; Chen, Yuxuan; Zhou, Liming; Fang, Shaoming; Yu, Haifeng

    2018-03-01

    Microphase-separated structures of block copolymers (BCs) with a size of sub-10 nm are usually obtained by hydrogen-bond-induced self-assembly of BCs through doping with small molecules as functional additives. Here, fabrication of hierarchically self-assembled sub-10 nm structures upon microphase separation of amphiphilic liquid-crystalline BCs (LCBCs) at the existence of hydrogen bonds but without any dopants is reported. The newly introduced urethane groups in the side chain of the hydrophobic block of LCBCs interact with the ether groups of the hydrophilic poly(ethylene oxide) (PEO) block, leading to imperfect crystallization of the PEO blocks. Both crystalline and amorphous domains coexist in the separated PEO phase, enabling a lamellar structure to appear inside the PEO nanocylinders. This provides an elegant method to fabricate controllable sub-10 nm microstructures in well-defined polymer systems without the introduction of any dopants. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Self-association and base pairing of guanosine, cytidine, adenosine, and uridine in dimethyl sulfoxide solution measured by 15N nuclear magnetic resonance spectroscopy.

    PubMed Central

    Dyllick-Brenzinger, C; Sullivan, G R; Pang, P P; Roberts, J D

    1980-01-01

    The self-association of guanosine, cytidine, and adenosine and base pairing between guanosine, cytidine, adenosine, and uridine in dimethyl sulfoxide have been investigated by the variation of their 15N NMR chemical shifts with concentration and temperature. Guanosine, cytidine, and adenosine all showed evidence of self-association by hydrogen bonding. In guanosine/cytidine mixtures, a hydrogen-bonded dimer is formed; however, no base pairing could be detected with adenosine/cytidine or adenosine/uridine mixtures. PMID:6932658

  3. Cocrystals of 5-fluorocytosine. I. Coformers with fixed hydrogen-bonding sites.

    PubMed

    Tutughamiarso, Maya; Wagner, Guido; Egert, Ernst

    2012-08-01

    The antifungal drug 5-fluorocytosine (4-amino-5-fluoro-1,2-dihydropyrimidin-2-one) was cocrystallized with five complementary compounds in order to better understand its drug-receptor interaction. The first two compounds, 2-aminopyrimidine (2-amino-1,3-diazine) and N-acetylcreatinine (N-acetyl-2-amino-1-methyl-5H-imidazol-4-one), exhibit donor-acceptor sites for R(2)(2)(8) heterodimer formation with 5-fluorocytosine. Such a heterodimer is observed in the cocrystal with 2-aminopyrimidine (I); in contrast, 5-fluorocytosine and N-acetylcreatinine [which forms homodimers in its crystal structure (II)] are connected only by a single hydrogen bond in (III). The other three compounds 6-aminouracil (6-amino-2,4-pyrimidinediol), 6-aminoisocytosine (2,6-diamino-3H-pyrimidin-4-one) and acyclovir [acycloguanosine or 2-amino-9-[(2-hydroxyethoxy)methyl]-1,9-dihydro-6H-purin-6-one] possess donor-donor-acceptor sites; therefore, they can interact with 5-fluorocytosine to form a heterodimer linked by three hydrogen bonds. In the cocrystals with 6-aminoisocytosine (Va)-(Vd), as well as in the cocrystal with the antiviral drug acyclovir (VII), the desired heterodimers are observed. However, they are not formed in the cocrystal with 6-aminouracil (IV), where the components are connected by two hydrogen bonds. In addition, a solvent-free structure of acyclovir (VI) was obtained. A comparison of the calculated energies released during dimer formation helped to rationalize the preference for hydrogen-bonding interactions in the various cocrystal structures.

  4. Development of simulation approach for two-dimensional chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface

    NASA Astrophysics Data System (ADS)

    Qin, Yuan; Yao, Man; Hao, Ce; Wan, Lijun; Wang, Yunhe; Chen, Ting; Wang, Dong; Wang, Xudong; Chen, Yonggang

    2017-09-01

    Two-dimensional (2D) chiral self-assembly system of 5-(benzyloxy)-isophthalic acid derivative/(S)-(+)-2-octanol/highly oriented pyrolytic graphite was studied. A combined density functional theory/molecular mechanics/molecular dynamics (DFT/MM/MD) approach for system of 2D chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface was thus proposed. Structural models of the chiral assembly were built on the basis of scanning tunneling microscopy (STM) images and simplified for DFT geometry optimization. Merck Molecular Force Field (MMFF) was singled out as the suitable force field by comparing the optimized configurations of MM and DFT. MM and MD simulations for hexagonal unit model which better represented the 2D assemble network were then preformed with MMFF. The adhesion energy, evolution of self-assembly process and characteristic parameters of hydrogen bond were obtained and analyzed. According to the above simulation, the stabilities of the clockwise and counterclockwise enantiomorphous networks were evaluated. The calculational results were supported by STM observations and the feasibility of the simulation method was confirmed by two other systems in the presence of chiral co-absorbers (R)-(-)-2-octanol and achiral co-absorbers 1-octanol. This theoretical simulation method assesses the stability trend of 2D enantiomorphous assemblies with atomic scale and can be applied to the similar hydrogen bond driven 2D chirality of molecular self-assembly system.

  5. Bodipy–C60 triple hydrogen bonding assemblies as heavy atom-free triplet photosensitizers: preparation and study of the singlet/triplet energy transfer† †Electronic supplementary information (ESI) available: Syntheses, structure characterization data, and UV/vis absorption and emission spectra. See DOI: 10.1039/c4sc03865g

    PubMed Central

    Guo, Song; Xu, Liang; Xu, Kejing; Küçüköz, Betül; Karatay, Ahmet; Yaglioglu, Halime Gul; Hayvali, Mustafa; Elmali, Ayhan

    2015-01-01

    Supramolecular triplet photosensitizers based on hydrogen bonding-mediated molecular assemblies were prepared. Three thymine-containing visible light-harvesting Bodipy derivatives (B-1, B-2 and B-3, which show absorption at 505 nm, 630 nm and 593 nm, respectively) were used as H-bonding modules, and 1,6-diaminopyridine-appended C60 was used as the complementary hydrogen bonding module (C-1), in which the C60 part acts as a spin converter for triplet formation. Visible light-harvesting antennae with methylated thymine were prepared as references (B-1-Me, B-2-Me and B-3-Me), which are unable to form strong H-bonds with C-1. Triple H-bonds are formed between each Bodipy antenna (B-1, B-2 and B-3) and the C60 module (C-1). The photophysical properties of the H-bonding assemblies and the reference non-hydrogen bond-forming mixtures were studied using steady state UV/vis absorption spectroscopy, fluorescence emission spectroscopy, electrochemical characterization, and nanosecond transient absorption spectroscopy. Singlet energy transfer from the Bodipy antenna to the C60 module was confirmed by fluorescence quenching studies. The intersystem crossing of the latter produced the triplet excited state. The nanosecond transient absorption spectroscopy showed that the triplet state is either localized on the C60 module (for assembly B-1·C-1), or on the styryl-Bodipy antenna (for assemblies B-2·C-1 and B-3·C-1). Intra-assembly forward–backward (ping-pong) singlet/triplet energy transfer was proposed. In contrast to the H-bonding assemblies, slow triplet energy transfer was observed for the non-hydrogen bonding mixtures. As a proof of concept, these supramolecular assemblies were used as triplet photosensitizers for triplet–triplet annihilation upconversion. PMID:29218142

  6. Formation of Annular Protofibrillar Assembly by Cysteine Tripeptide: Unraveling the Interactions with NMR, FTIR, and Molecular Dynamics.

    PubMed

    Banerji, Biswadip; Chatterjee, Moumita; Pal, Uttam; Maiti, Nakul C

    2017-07-06

    Both hydrogen-bonding and hydrophobic interactions play a significant role in molecular assembly, including self-assembly of proteins and peptides. In this study, we report the formation of annular protofibrillar structure (diameter ∼500 nm) made of a newly synthesized s-benzyl-protected cysteine tripeptide, which was primarily stabilized by hydrogen-bonding and hydrophobic interactions. Atomic force microscopy and field emission scanning electron microscopy analyses found small oligomers (diameter ∼60 nm) to bigger annular (outer diameter ∼300 nm; inner diameter, 100 nm) and protofibrillar structures after 1-2 days of incubation. Rotating-frame Overhauser spectroscopic (ROESY) analysis revealed the presence of several nonbonded proton-proton interactions among the residues, such as amide protons with methylene group, aromatic protons with tertiary butyl group, and methylene protons with tertiary butyl group. These added significant stability to bring the peptides closer to form a well-ordered assembled structure. Hydrogen-deuterium exchange NMR measurement further suggested that two individual amide protons among the three amide groups were strongly engaged with the adjacent tripeptide via H-bond interaction. However, the remaining amide proton was found to be exposed to solvent and remained noninteracting with other tripeptide molecules. In addition to chemical shift values, a significant change in amide bond vibrations of the tripeptide was found due to the formation of the self-assembled structure. The amide I mode of vibrations involving two amide linkages appeared at 1641 and 1695 cm -1 in the solid state. However, in the assembled state, the stretching band at 1695 cm -1 became broad and slightly shifted to ∼1689 cm -1 . On the contrary, the band at 1641 cm -1 shifted to 1659 cm -1 and indicated that the -C═O bond associated with this vibration became stronger in the assembled state. These changes in Fourier transform infrared spectroscopy frequency clearly indicated changes in the amide backbone conformation and the associated hydrogen-bonding pattern due to the formation of the assembled structure. In addition to hydrogen bonding, molecular dynamics simulation indicated that the number of π-π interactions also increased with increasing number of tripeptides participated in the self-assembly process. Combined results envisaged a cross β-sheet assembly unit consisting of four intermolecular hydrogen bonds. Such noncovalent peptide assemblies glued by hydrogen-bonding and other weak forces may be useful in developing nanocapsule and related materials.

  7. Models for liquid-liquid partition in the system dimethyl sulfoxide-organic solvent and their use for estimating descriptors for organic compounds.

    PubMed

    Karunasekara, Thushara; Poole, Colin F

    2011-07-15

    Partition coefficients for varied compounds were determined for the organic solvent-dimethyl sulfoxide biphasic partition system where the organic solvent is n-heptane or isopentyl ether. These partition coefficient databases are analyzed using the solvation parameter model facilitating a quantitative comparison of the dimethyl sulfoxide-based partition systems with other totally organic partition systems. Dimethyl sulfoxide is a moderately cohesive solvent, reasonably dipolar/polarizable and strongly hydrogen-bond basic. Although generally considered to be non-hydrogen-bond acidic, analysis of the partition coefficient database strongly supports reclassification as a weak hydrogen-bond acid in agreement with recent literature. The system constants for the n-heptane-dimethyl sulfoxide biphasic system provide an explanation of the mechanism for the selective isolation of polycyclic aromatic compounds from mixtures containing low-polarity hydrocarbons based on the capability of the polar interactions (dipolarity/polarizability and hydrogen-bonding) to overcome the opposing cohesive forces in dimethyl sulfoxide that are absent for the interactions with hydrocarbons of low polarity. In addition, dimethyl sulfoxide-organic solvent systems afford a complementary approach to other totally organic biphasic partition systems for descriptor measurements of compounds virtually insoluble in water. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. From molecular to macroscopic engineering: shaping hydrogen-bonded organic nanomaterials.

    PubMed

    Yoosaf, K; Llanes-Pallas, Anna; Marangoni, Tomas; Belbakra, Abdelhalim; Marega, Riccardo; Botek, Edith; Champagne, Benoît; Bonifazi, Davide; Armaroli, Nicola

    2011-03-07

    The self-assembly and self-organization behavior of chromophoric acetylenic scaffolds bearing 2,6-bis(acetylamino)pyridine (1, 2) or uracyl-type (3-9) terminal groups has been investigated by photophysical and microscopic methods. Systematic absorption and luminescence studies show that 1 and 2, thanks to a combination of solvophilic/solvophobic forces and π-π stacking interactions, undergo self-organization in apolar solvents (i.e., cyclohexane) and form spherical nanoparticles, as evidenced by wide-field optical microscopy, TEM, and AFM analysis. For the longer molecular module, 2, a more uniform size distribution is found (80-200 nm) compared to 1 (20-1000 nm). Temperature scans in the range 283-353 K show that the self-organized nanoparticles are reversibly formed and destroyed, being stable at lower temperatures. Molecular modules 1 and 2 were then thoroughly mixed with the complementary triply hydrogen-bonding units 3-9. Depending on the specific geometrical structure of 3-9, different nanostructures are evidenced by microscopic investigations. Combination of modules 1 or 2 with 3, which bears only one terminal uracyl unit, leads to the formation of vesicular structures; instead, when 1 is combined with bis-uracyl derivative 4 or 5, a structural evolution from nanoparticles to nanowires is observed. The length of the wires obtained by mixing 1 and 4 or 1 and 5 can be controlled by addition of 3, which prompts transformation of the wires into shorter rods. The replacement of linear system 5 with the related angular modules 6 and 7 enables formation of helical nanostructures, unambiguously evidenced by AFM. Finally, thermally induced self-assembly was studied in parallel with modules 8 and 9, in which the uracyl recognition sites are protected with tert-butyloxycarbonyl (BOC) groups. This strategy allows further control of the self-assembly/self-organization process by temperature, since the BOC group is completely removed on heating. Microscopy studies show that the BOC-protected ditopic modules 8 self-assemble and self-organize with 1 into ordered linear nanostructures, whereas BOC-protected tritopic system 9 gives rise to extended domains of circular nano-objects in combination with 1. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Supra­molecular inter­actions in 2,6-di­amino-4-chloro­pyrimidin-1-ium 5-chloro­salicylate and bis­(2,6-di­amino-4-chloro­pyrimidin-1-ium) naphthalene-1,5-di­sulfonate

    PubMed Central

    Swinton Darious, Robert; Thomas Muthiah, Packianathan

    2018-01-01

    The crystals of two new salts, 2,6-di­amino-4-chloro­pyrimidin-1-ium 5-chloro­salicylate, C4H6ClN4 +·C7H4ClO3 −, (I), and bis­(2,6-di­amino-4-chloro­pyrimidin-1-ium) naphthalene-1,5-di-sulfonate, 2C4H6ClN4 +·C10H6O6S2 2−, (II), have been synthesized and characterized by single-crystal X-ray diffraction. In both compounds, the N atom of the pyrimidine group in between the amino substituents is protonated and the pyrimidinium cation forms a pair of N—H⋯O hydrogen bonds with the carboxyl­ate/sulfonate ion, leading to a robust R 2 2(8) motif (supra­molecular heterosynthon). In compound (I), a self-complementary base pairing involving the other pyrimidinium ring nitro­gen atom and one of the amino groups via a pair of N—H⋯N hydrogen bonds [R 2 2(8) homosynthon] is also present. In compound (II), the crystallographic inversion centre coincides with the inversion centre of the naphthalene-1,5-di­sulfonate ion and all the sulfonate O atoms are hydrogen-bond acceptors, generating fused-ring motifs and a quadruple DDAA array. A halogen-bond (Cl⋯Cl) inter­action is present in (I) with a distance and angle of 3.3505 (12) Å and 151.37 (10)°, respectively. In addition, a C—Cl⋯π inter­action and a π–π inter­action in (I) and a π–π inter­action in (II) further stabilize these crystal structures. PMID:29850062

  10. Biomimetic Self-Healing

    DTIC Science & Technology

    2015-07-21

    typically degrade quickly and are not capable of forming new bonds. In the 1930s it was already found that vulcanized rubber could self - heal in the...To overcome this limitation, Diesendruck et al. demonstrated Scheme 1. Mechanochemical scission and self - healing in vulcanized rubber . Long-lived...effective autonomic self - healing for soft materials. Cordier et al. prepared supramolecular rubbers based on hydrogen bonding between urea-functionalized

  11. Pyrrolic tripodal receptors for carbohydrates. Role of functional groups and binding geometry on carbohydrate recognition.

    PubMed

    Cacciarini, Martina; Nativi, Cristina; Norcini, Martina; Staderini, Samuele; Francesconi, Oscar; Roelens, Stefano

    2011-02-21

    The contribution from several H-bonding groups and the impact of geometric requirements on the binding ability of benzene-based tripodal receptors toward carbohydrates have been investigated by measuring the affinity of a set of structures toward octyl β-D-glucopyranoside, selected as a representative monosaccharide. The results reported in the present study demonstrate that a judicious choice of correct geometry and appropriate functional groups is critical to achieve the complementary hydrogen bonding interactions required for an effective carbohydrate recognition.

  12. Controlled self-assembling structures of ferrocene-dipeptide conjugates composed of Ala-Pro-NHCH2CH2SH chain.

    PubMed

    Moriuchi, Toshiyuki; Nishiyama, Taiki; Tayano, Yoshiki; Hirao, Toshikazu

    2017-12-01

    Bioorganometallic ferrocene-dipeptide conjugates with the Ala-Pro-cysteamine chain, Fc-L-Ala-L-Pro-NHCH 2 CH 2 SH (2) and Fc-L-Ala-D-Pro-NHCH 2 CH 2 SH (4) (Fc=ferrocenoyl), were prepared by the reduction of the ferrocene-dipeptide conjugates, Fc-L-Ala-L-Pro-cystamine-L-Pro-L-Ala-Fc (1) or Fc-L-Ala-D-Pro-cystamine-D-Pro-L-Ala-Fc (3), respectively. Control of the self-assembling structures of the ferrocene-dipeptide conjugates was demonstrated by changing the chirality of the amino acid. The molecular structure of 2 composed of the L-Ala-L-Pro-NHCH 2 CH 2 SH chain confirmed the formation of intramolecular hydrogen bond of N-H⋯N pattern between the NH of cysteamine moiety and the nitrogen of Pro moiety. Furthermore, intermolecular hydrogen bonds between NH (Ala) and CO (Pro of another molecule) and between NH (cysteamine) and CO (the ferrocenoyl moiety of another molecule) were formed, wherein each molecule is connected to four neighboring molecules by continuous intermolecular hydrogen bonds to form the hydrogen-bonded molecular assembling structure. On the contrary, the left-handed helical assembly through an intermolecular hydrogen-bonding network of 15-membered intermolecularly hydrogen-bonded ring between NH (Ala) and CO (the ferrocenoyl moiety of another molecule) and between NH (the cysteamine moiety of another molecule) and CO (Ala) was observed in the crystal packing of 4 composed of the L-Ala-D-Pro-NHCH 2 CH 2 SH chain. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Complementary Strategies for Directed C(sp3 )-H Functionalization: A Comparison of Transition-Metal-Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer.

    PubMed

    Chu, John C K; Rovis, Tomislav

    2018-01-02

    The functionalization of C(sp 3 )-H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C-H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition-metal-catalyzed C-H activation, 1,n-hydrogen atom transfer, and transition-metal-catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp 3 )-H bonds. For each strategy, the scope, the reactivity of different C-H bonds, the position of the reacting C-H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C-H functionalization reactions and inspire future research in this area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks.

    PubMed

    Wu, Jinrong; Cai, Li-Heng; Weitz, David A

    2017-10-01

    Self-healing polymers crosslinked by solely reversible bonds are intrinsically weaker than common covalently crosslinked networks. Introducing covalent crosslinks into a reversible network would improve mechanical strength. It is challenging, however, to apply this concept to "dry" elastomers, largely because reversible crosslinks such as hydrogen bonds are often polar motifs, whereas covalent crosslinks are nonpolar motifs. These two types of bonds are intrinsically immiscible without cosolvents. Here, we design and fabricate a hybrid polymer network by crosslinking randomly branched polymers carrying motifs that can form both reversible hydrogen bonds and permanent covalent crosslinks. The randomly branched polymer links such two types of bonds and forces them to mix on the molecular level without cosolvents. This enables a hybrid "dry" elastomer that is very tough with fracture energy 13500 Jm -2 comparable to that of natural rubber. Moreover, the elastomer can self-heal at room temperature with a recovered tensile strength 4 MPa, which is 30% of its original value, yet comparable to the pristine strength of existing self-healing polymers. The concept of forcing covalent and reversible bonds to mix at molecular scale to create a homogenous network is quite general and should enable development of tough, self-healing polymers of practical usage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions

    PubMed Central

    Li, Xiaoyu; Gao, Yang; Boott, Charlotte E.; Winnik, Mitchell A.; Manners, Ian

    2015-01-01

    Nature uses orthogonal interactions over different length scales to construct structures with hierarchical levels of order and provides an important source of inspiration for the creation of synthetic functional materials. Here, we report the programmed assembly of monodisperse cylindrical block comicelle building blocks with crystalline cores to create supermicelles using spatially confined hydrogen-bonding interactions. We also demonstrate that it is possible to further program the self-assembly of these synthetic building blocks into structures of increased complexity by combining hydrogen-bonding interactions with segment solvophobicity. The overall approach offers an efficient, non-covalent synthesis method for the solution-phase fabrication of a range of complex and potentially functional supermicelle architectures in which the crystallization, hydrogen-bonding and solvophobic interactions are combined in an orthogonal manner. PMID:26337527

  16. Testing Electrostatic Complementarity in Enzyme Catalysis: Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole

    PubMed Central

    Kraut, Daniel A; Sigala, Paul A; Pybus, Brandon; Liu, Corey W; Ringe, Dagmar; Petsko, Gregory A

    2006-01-01

    A longstanding proposal in enzymology is that enzymes are electrostatically and geometrically complementary to the transition states of the reactions they catalyze and that this complementarity contributes to catalysis. Experimental evaluation of this contribution, however, has been difficult. We have systematically dissected the potential contribution to catalysis from electrostatic complementarity in ketosteroid isomerase. Phenolates, analogs of the transition state and reaction intermediate, bind and accept two hydrogen bonds in an active site oxyanion hole. The binding of substituted phenolates of constant molecular shape but increasing p K a models the charge accumulation in the oxyanion hole during the enzymatic reaction. As charge localization increases, the NMR chemical shifts of protons involved in oxyanion hole hydrogen bonds increase by 0.50–0.76 ppm/p K a unit, suggesting a bond shortening of ˜0.02 Å/p K a unit. Nevertheless, there is little change in binding affinity across a series of substituted phenolates (ΔΔG = −0.2 kcal/mol/p K a unit). The small effect of increased charge localization on affinity occurs despite the shortening of the hydrogen bonds and a large favorable change in binding enthalpy (ΔΔH = −2.0 kcal/mol/p K a unit). This shallow dependence of binding affinity suggests that electrostatic complementarity in the oxyanion hole makes at most a modest contribution to catalysis of ˜300-fold. We propose that geometrical complementarity between the oxyanion hole hydrogen-bond donors and the transition state oxyanion provides a significant catalytic contribution, and suggest that KSI, like other enzymes, achieves its catalytic prowess through a combination of modest contributions from several mechanisms rather than from a single dominant contribution. PMID:16602823

  17. Carbon–hydrogen (C–H) bond activation at PdIV: a Frontier in C–H functionalization catalysis

    PubMed Central

    Topczewski, Joseph J.

    2015-01-01

    The direct functionalization of carbon–hydrogen (C–H) bonds has emerged as a versatile strategy for the synthesis and derivatization of organic molecules. Among the methods for C–H bond activation, catalytic processes that utilize a PdII/PdIV redox cycle are increasingly common. The C–H activation step in most of these catalytic cycles is thought to occur at a PdII centre. However, a number of recent reports have suggested the feasibility of C–H cleavage occurring at PdIV complexes. Importantly, these latter processes often result in complementary reactivity and selectivity relative to analogous transformations at PdII. This mini review highlights proposed examples of C–H activation at PdIV centres. Applications of this transformation in catalysis as well as mechanistic details obtained from stoichiometric model studies are discussed. Furthermore, challenges and future perspectives for the field are reviewed. PMID:25544882

  18. Carbon-Hydrogen (C-H) Bond Activation at PdIV: A Frontier in C-H Functionalization Catalysis.

    PubMed

    Topczewski, Joseph J; Sanford, Melanie S

    2015-01-01

    The direct functionalization of carbon-hydrogen (C-H) bonds has emerged as a versatile strategy for the synthesis and derivatization of organic molecules. Among the methods for C-H bond activation, catalytic processes that utilize a Pd II /Pd IV redox cycle are increasingly common. The C-H activation step in most of these catalytic cycles is thought to occur at a Pd II centre. However, a number of recent reports have suggested the feasibility of C-H cleavage occurring at Pd IV complexes. Importantly, these latter processes often result in complementary reactivity and selectivity relative to analogous transformations at Pd II . This Mini Review highlights proposed examples of C-H activation at Pd IV centres. Applications of this transformation in catalysis as well as mechanistic details obtained from stoichiometric model studies are discussed. Furthermore, challenges and future perspectives for the field are reviewed.

  19. Tuning of peptide assembly through force balance adjustment.

    PubMed

    Cao, Meiwen; Cao, Changhai; Zhang, Lijuan; Xia, Daohong; Xu, Hai

    2013-10-01

    Controlled self-assembly of amphiphilic tripeptides into distinct nanostructures is achieved via a controlled design of the molecular architecture. The tripeptide Ac-Phe-Phe-Lys-CONH2 (FFK), hardly soluble in water, forms long amyloid-like tubular structures with the aid of β-sheet hydrogen bonding and aromatic π-π stacking. Substitution of phenylalanine (F) with tyrosine (Y), that is, only a subtle structural variation in adding a hydroxyl group to the phenyl ring, results in great change in molecular self-assembly behavior. When one F is substituted with Y, the resulting molecules of FYK and YFK self-assemble into long thinner fibrils with high propensity for lateral association. When both Fs are substituted with Y, the resulting YYK molecule forms spherical aggregates. Introduction of hydroxyl groups into the molecule modifies aromatic interactions and introduces hydrogen bonding. Moreover, since the driving forces for peptide self-assembly including hydrogen bonding, electrostatic repulsion, and π-π stacking have high interdependence with each other, changes in aromatic interaction induce a Domino effect and cause a shift of force balance to a new state. This leads to significant variations in self-assembly behavior. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Navigating in foldonia: Using accelerated molecular dynamics to explore stability, unfolding and self-healing of the β-solenoid structure formed by a silk-like polypeptide

    PubMed Central

    Zhao, Binwu

    2017-01-01

    The β roll molecules with sequence (GAGAGAGQ)10 stack via hydrogen bonding to form fibrils which have been themselves been used to make viral capsids of DNA strands, supramolecular nanotapes and pH-responsive gels. Accelerated molecular dynamics (aMD) simulations are used to investigate the unfolding of a stack of two β roll molecules, (GAGAGAGQ)10, to shed light on the folding mechanism by which silk-inspired polypeptides form fibrils and to identify the dominant forces that keep the silk-inspired polypeptide in a β roll configuration. Our study shows that a molecule in a stack of two β roll molecules unfolds in a step-wise fashion mainly from the C terminal. The bottom template is found to play an important role in stabilizing the β roll structure of the molecule on top by strengthening the hydrogen bonds in the layer that it contacts. Vertical hydrogen bonds within the β roll structure are considerably weaker than lateral hydrogen bonds, signifying the importance of lateral hydrogen bonds in stabilizing the β roll structure. Finally, an intermediate structure was found containing a β hairpin and an anti-parallel β sheet consisting of strands from the top and bottom molecules, revealing the self-healing ability of the β roll stack. PMID:28329017

  1. Hydrogen bonding strength of diblock copolymers affects the self-assembled structures with octa-functionalized phenol POSS nanoparticles.

    PubMed

    Lu, Yi-Syuan; Yu, Chia-Yu; Lin, Yung-Chih; Kuo, Shiao-Wei

    2016-02-28

    In this study, the influence of the functional groups by the diblock copolymers of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP), poly(styrene-b-2-vinylpyridine) (PS-b-P2VP), and poly(styrene-b-methyl methacrylate) (PS-b-PMMA) on their blends with octa-functionalized phenol polyhedral oligomeric silsesquioxane (OP-POSS) nanoparticles (NPs) was investigated. The relative hydrogen bonding strengths in these blends follow the order PS-b-P4VP/OP-POSS > PS-b-P2VP/OP-POSS > PS-b-PMMA/OP-POSS based on the Kwei equation from differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopic analyses. Small-angle X-ray scattering and transmission electron microscopic analyses show that the morphologies of the self-assembly structures are strongly dependent on the hydrogen bonding strength at relatively higher OP-POSS content. The PS-b-P4VP/OP-POSS hybrid complex system with the strongest hydrogen bonds shows the order-order transition from lamellae to cylinders and finally to body-centered cubic spheres upon increasing OP-POSS content. However, PS-b-P2VP/OP-POSS and PS-b-PMMA/OP-POSS hybrid complex systems, having relatively weaker hydrogen bonds, transformed from lamellae to cylinder structures at lower OP-POSS content (<50 wt%), but formed disordered structures at relatively high OP-POSS contents (>50 wt%).

  2. Thermodynamics of hydrogen bond patterns in supramolecular assemblies of water molecules.

    PubMed

    Henry, Marc

    2002-07-02

    The PACHA (Partial Atomic Charges and Hardnesses Analysis) formalism is applied to various supramolecular assemblies of water molecules. After a detailed study of all available crystal structures for ice polymorphs, we shown that the hydrogen bond strength is roughly constant below 1 GPa and considerably weakened above that value. New hydrogen bond patterns are proposed for ice IV, V, and VI after (EB) (electrostatic balance) minimization. For other polymorphs, there is an almost perfect coincidence between experimental and predicted hydrogen bond patterns. The evolution of hydrogen bond energy as a function of molecular geometry in water clusters with up to 280 water molecules and in large supramolecular compounds is quantitatively described. Intermolecular hydrogen bonds are found to lie between -9 and -32 kJ mol-1, the stronger interaction occurs within the spherical fully disordered water droplet buried at the heart of Müller's superfullerene keplerate. The weakest one occurs in a chiral molecular snub cube built from six calix[4]resorcinarene and eight water molecules. Intramolecular hydrogen bonds are found in the range -10-100 kJ mol-1 and can thus be considerably stronger than intermolecular bonds. Finally, through the investigation of a clathrate type I compound, it was possible to obtain a deep insight of the host-guest interactions and self-assembly rules of water cages in these materials.

  3. Microstructure and hydrogen bonding in water-acetonitrile mixtures.

    PubMed

    Mountain, Raymond D

    2010-12-16

    The connection of hydrogen bonding between water and acetonitrile in determining the microheterogeneity of the liquid mixture is examined using NPT molecular dynamics simulations. Mixtures for six, rigid, three-site models for acetonitrile and one water model (SPC/E) were simulated to determine the amount of water-acetonitrile hydrogen bonding. Only one of the six acetonitrile models (TraPPE-UA) was able to reproduce both the liquid density and the experimental estimates of hydrogen bonding derived from Raman scattering of the CN stretch band or from NMR quadrupole relaxation measurements. A simple modification of the acetonitrile model parameters for the models that provided poor estimates produced hydrogen-bonding results consistent with experiments for two of the models. Of these, only one of the modified models also accurately determined the density of the mixtures. The self-diffusion coefficient of liquid acetonitrile provided a final winnowing of the modified model and the successful, unmodified model. The unmodified model is provisionally recommended for simulations of water-acetonitrile mixtures.

  4. Polarization IR spectra of hydrogen bonded pyrazole crystals: self-organization effects in proton and deuteron mixture systems. Long-range H/D isotopic effects

    NASA Astrophysics Data System (ADS)

    Flakus, Henryk T.; Machelska, Aleksandra

    2002-02-01

    This paper deals with experimental studies of the polarization IR spectra of solid-state pyrazole H1345, as well as of its H1D345, D1H345 and D1345 deuterium derivatives. Spectra were measured for the νNH and νND band frequency ranges at temperatures of 298 and 77 K. The spectra were found to strongly change their intensity distribution and their polarization properties with the decrease of temperature. These effects were ascribed to some temperature-induced conformational changes in the hydrogen bond lattices. The studies reported allowed the finding of new kind of isotopic effects H/D in the open-chain hydrogen bond systems, i.e. the self-organization effects. It was found that the spectrally active aggregates of hydrogen bonds remain unchanged despite the growing isotope H/D exchange rate. This statement was supported by analysis of the residual polarized νNH and νND band properties, measured for the isotopically diluted crystalline samples. Analysis of the band shapes of the four hydrogen isotope derivative crystals proved the existence of another kind of H/D isotopic effect, i.e. the long-range isotopic effect. It depends on an influence of the pyrazole ring hydrogen atoms onto the νNH and νND band widths and onto the band fine structures.

  5. Intermolecular hydrogen bonded and self-assembled β-pleated sheet structures of β-sulfidocarbonyls

    NASA Astrophysics Data System (ADS)

    Hussain, Sahid; Das, Gopal; Chaudhuri, Mihir K.

    2007-06-01

    The three crystal structures of β-sulfidocarbonyls 1, 2 and 3 synthesized from the reaction of acryl amide with cystiene, 1,2-dithiol and 1,3-dithiols, respectively, in water catalyzed by borax, have been determined at 273 K. The characteristic features of the structures are self-assembly through intermolecular hydrogen bonding leading to infinite chains of molecules in one direction, in addition to the stacking of layers of such molecular chains in the perpendicular direction ultimately giving rise to β-pleated sheets of 3D molecular network involving N-H⋯O, C-H⋯O and C-H⋯S bonding in the crystal lattice.

  6. High degree of polymerization in a fullerene-containing supramolecular polymer.

    PubMed

    Isla, Helena; Pérez, Emilio M; Martín, Nazario

    2014-05-26

    Supramolecular polymers based on dispersion forces typically show lower molecular weights (MW) than those based on hydrogen bonding or metal-ligand coordination. We present the synthesis and self-assembling properties of a monomer featuring two complementary units, a C60 derivative and an exTTF-based macrocycle, that interact mainly through π-π, charge-transfer, and van der Waals interactions. Thanks to the preorganization in the host part, a remarkable log K(a)=5.1±0.5 in CHCl3 at room temperature is determined for the host-guest couple. In accordance with the large binding constant, the monomer self-assembles in the gas phase, in solution, and in the solid state to form linear supramolecular polymers with a very high degree of polymerization. A MW above 150 kDa has been found experimentally in solution, while in the solid state the monomer forms extraordinarily long, straight, and uniform fibers with lengths reaching several microns. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structural basis of host recognition and biofilm formation by Salmonella Saf pili

    PubMed Central

    2017-01-01

    Pili are critical in host recognition, colonization and biofilm formation during bacterial infection. Here, we report the crystal structures of SafD-dsc and SafD-SafA-SafA (SafDAA-dsc) in Saf pili. Cell adherence assays show that SafD and SafA are both required for host recognition, suggesting a poly-adhesive mechanism for Saf pili. Moreover, the SafDAA-dsc structure, as well as SAXS characterization, reveals an unexpected inter-molecular oligomerization, prompting the investigation of Saf-driven self-association in biofilm formation. The bead/cell aggregation and biofilm formation assays are used to demonstrate the novel function of Saf pili. Structure-based mutants targeting the inter-molecular hydrogen bonds and complementary architecture/surfaces in SafDAA-dsc dimers significantly impaired the Saf self-association activity and biofilm formation. In summary, our results identify two novel functions of Saf pili: the poly-adhesive and self-associating activities. More importantly, Saf-Saf structures and functional characterizations help to define a pili-mediated inter-cellular oligomerizaiton mechanism for bacterial aggregation, colonization and ultimate biofilm formation. PMID:29125121

  8. Strong vibronic coupling effects in polarized IR spectra of the hydrogen bond in N-methylthioacetamide crystals

    NASA Astrophysics Data System (ADS)

    Flakus, Henryk T.; Śmiszek-Lindert, Wioleta; Stadnicka, Katarzyna

    2007-06-01

    This paper presents the investigation results of the polarized IR spectra of the hydrogen bond in crystals of N-methylthioacetamide. The spectral studies were preceded by the determination of the crystal X-ray structure. The spectra were measured at 283 K and at 77 K by a transmission method, using polarized light. Theoretical analysis of the results concerned the linear dichroic effects, the H/D isotopic and temperature effects, observed in the solid-state IR spectra of the hydrogen and of the deuterium bond at the frequency ranges of the νN-H and the νN-D bands, respectively. The main spectral properties of the crystals can be interpreted satisfactorily in terms of the simple quantitative theory of the IR spectra of the hydrogen bond, i.e., the " strong-coupling" theory on the basis of the hydrogen bond centrosymmetric dimer model. The spectra revealed that the strongest vibrational exciton coupling involved the closely spaced hydrogen bonds, each belonging to a different chain of associated N-methylthioacetamide molecules. The crystal spectral properties, along with an abnormal H/D isotopic effect in the spectra, were found to be strongly influenced by vibronic coupling mechanisms in these dimers. These mechanisms were considered as responsible for the activation in IR of the totally symmetric proton stretching vibrations in the dimers. On analyzing the spectra of isotopically diluted crystalline samples of N-methylthioacetamide, it was proved that a non-random distribution of the protons and deuterons took place in the hydrogen bond lattices. In an individual hydrogen-bonded chain in the crystals distribution of the hydrogen isotope atoms H and D was fully random. The H/D isotopic " self-organization" mechanism, of a vibronic nature, involved a pair of hydrogen bonds from a unit cell, where each hydrogen bond belonged to a different chain of the associated molecules.

  9. 1,2,4,5-Benzenetetracarboxylic acid: a versatile hydrogen bonding template for controlling the regioselective topochemical synthesis of head-to-tail photodimers from stilbazole derivatives.

    PubMed

    Ortega, Gabriela; Hernández, Jesús; González, Teresa; Dorta, Romano; Briceño, Alexander

    2018-05-16

    The crystal engineering of hydrogen bonded organic assemblies based on 1,2,4,5-benzenetetracarboxylic acid (H4bta) and stilbazole derivatives (1-10) is exploited to provide regio-controlled [2 + 2] photocycloadditions in the solid state. Single crystal X-ray diffraction analyses have revealed that all the arrays are built-up from the self-assembly of the (H2bta)2- dianion with two stilbazolium cations via O-HO- and N+-HO- charge-assisted H-bonding synthons: (4-Hstilbazolium+)2(H2bta2-). The dianion displays an interesting diversity of H-bonding motifs. Such structural flexibility allowed us to obtain four structure-types defined by the preferential formation of intramolecular or intermolecular hydrogen bonds between carboxylate-carboxylic groups. In these ionic assemblies two predominant structural H-bonding patterns were observed. The first pattern is characterised by the formation of intramolecular H-bonds in the dianion, leading to discrete assemblies based on ternary arrays. The second hydrogen pattern consists of 2-D hydrogen networks built-up from the self-assembly of anions via intermolecular H-bonds that are linked to the cations. Two additional examples, in which the dianion is self-assembled in two types of ribbons, were also observed. Another supramolecular feature predominant in all these arrays is the stacking of the cations in a head-to-tail fashion, which is controlled via cation-π interactions. These arrays are photoactive in the solid state upon UV-irradiation leading to the regioselective synthesis of rctt-cyclobutane head-to-tail-isomers in high to quantitative yield. In this work, the template tolerance either to steric or electronic effects by changing the number or positions of the supramolecular interactions exerted by distinctive functional groups was also explored. In addition, assemblies bearing 2-chloro (7 and 8) and 3-chloro-4-stilbazole (1 and 9) crystallize in two different crystalline forms, leading to novel examples of supramolecular isomers with similar solid state reactivity.

  10. Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.

    PubMed

    Maguire, Jack B; Boyken, Scott E; Baker, David; Kuhlman, Brian

    2018-05-08

    Hydrogen bond networks play a critical role in determining the stability and specificity of biomolecular complexes, and the ability to design such networks is important for engineering novel structures, interactions, and enzymes. One key feature of hydrogen bond networks that makes them difficult to rationally engineer is that they are highly cooperative and are not energetically favorable until the hydrogen bonding potential has been satisfied for all buried polar groups in the network. Existing computational methods for protein design are ill-equipped for creating these highly cooperative networks because they rely on energy functions and sampling strategies that are focused on pairwise interactions. To enable the design of complex hydrogen bond networks, we have developed a new sampling protocol in the molecular modeling program Rosetta that explicitly searches for sets of amino acid mutations that can form self-contained hydrogen bond networks. For a given set of designable residues, the protocol often identifies many alternative sets of mutations/networks, and we show that it can readily be applied to large sets of residues at protein-protein interfaces or in the interior of proteins. The protocol builds on a recently developed method in Rosetta for designing hydrogen bond networks that has been experimentally validated for small symmetric systems but was not extensible to many larger protein structures and complexes. The sampling protocol we describe here not only recapitulates previously validated designs with performance improvements but also yields viable hydrogen bond networks for cases where the previous method fails, such as the design of large, asymmetric interfaces relevant to engineering protein-based therapeutics.

  11. Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.

    PubMed

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-11-13

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  12. Thermally induced alkylation of diamond.

    PubMed

    Hoeb, Marco; Auernhammer, Marianne; Schoell, Sebastian J; Brandt, Martin S; Garrido, Jose A; Stutzmann, Martin; Sharp, Ian D

    2010-12-21

    We present an approach for the thermally activated formation of alkene-derived self-assembled monolayers on oxygen-terminated single and polycrystalline diamond surfaces. Chemical modification of the oxygen and hydrogen plasma-treated samples was achieved by heating in 1-octadecene. The resulting layers were characterized using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. This investigation reveals that alkenes selectively attach to the oxygen-terminated sites via covalent C-O-C bonds. The hydrophilic oxygen-terminated diamond is rendered strongly hydrophobic following this reaction. The nature of the process limits the organic layer growth to a single monolayer, and FTIR measurements reveal that such monolayers are dense and well ordered. In contrast, hydrogen-terminated diamond sites remain unaffected by this process. This method is thus complementary to the UV-initiated reaction of alkenes with diamond, which exhibits the opposite reactivity contrast. Thermal alkylation increases the range of available diamond functionalization strategies and provides a means of straightforwardly forming single organic layers in order to engineer the surface properties of diamond.

  13. Investigations of interhydrogen bond dynamical coupling effects in the polarized IR spectra of acetanilide crystals.

    PubMed

    Flakus, Henryk T; Michta, Anna

    2010-02-04

    This Article presents the investigation results of the polarized IR spectra of the hydrogen bond in acetanilide (ACN) crystals measured in the frequency range of the proton and deuteron stretching vibration bands, nu(N-H) and nu(N-D). The basic spectral properties of the crystals were interpreted quantitatively in terms of the "strong-coupling" theory. The model of the centrosymmetric dimer of hydrogen bonds postulated by us facilitated the explanation of the well-developed, two-branch structure of the nu(N-H) and nu(N-D) bands as well as the isotopic dilution effects in the spectra. On the basis of the linear dichroic and temperature effects in the polarized IR spectra of ACN crystals, the H/D isotopic "self-organization" effects were revealed. A nonrandom distribution of hydrogen isotope atoms (H or D) in the lattice was deduced from the spectra of isotopically diluted ACN crystals. It was also determined that identical hydrogen isotope atoms occupy both hydrogen bonds in the dimeric systems, where each hydrogen bond belongs to a different chain. A more complex fine structure pattern of nu(N-H) and nu(N-D) bands in ACN spectra in comparison with the spectra of other secondary amides (e.g., N-methylacetamide) can be explained in terms of the "relaxation" theory of the IR spectra of hydrogen-bonded systems.

  14. Comparison of hydrogen bonding in 1-octanol and 2-octanol as probed by spectroscopic techniques.

    PubMed

    Palombo, Francesca; Sassi, Paola; Paolantoni, Marco; Morresi, Assunta; Cataliotti, Rosario Sergio

    2006-09-14

    Liquid 1-octanol and 2-octanol have been investigated by infrared (IR), Raman, and Brillouin experiments in the 10-90 degrees C temperature range. Self-association properties of the neat liquids are described in terms of a three-state model in which OH oscillators differently implicated in the formation of H-bonds are considered. The results are in quantitative agreement with recent computational studies for 1-octanol. The H-bond probability is obtained by Raman data, and a stochastic model of H-bonded chains gives a consistent picture of the self-association characteristics. Average values of hydrogen bond enthalpy and entropy are evaluated. The H-bond formation enthalpy is ca. -22 kJ/mol and is slightly dependent on the structural isomerism. The different degree of self-association for the two octanols is attributed to entropic factors. The more shielded 2-isomer forms larger fractions of smaller, less cooperative, and more ordered clusters, likely corresponding to cyclic structures. Signatures of a different cluster organization are also evidenced by comparing the H-bond energy dispersion (HBED) of OH stretching IR bands. A limiting cooperative H-bond enthalpy value of 27 kJ/mol is found. It is also proposed that the different H-bonding capabilities may modulate the extent of interaggregate hydrocarbon interactions, which is important in explaining the differences in molar volume, compressibility, and vaporization enthalpy for the two isomers.

  15. Atomic Origins of the Self-Healing Function in Cement–Polymer Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Manh-Thuong; Wang, Zheming; Rod, Kenton A.

    Motivated by recent advances in self-healing cement and epoxy polymer composites, we present a combined ab initio molecular dynamics and sum frequency generation (SFG) spectroscopy study of a calcium-silicate-hydrate/polymer interface. On stable, low-defect surfaces, the polymer only weakly adheres through coordination and hydrogen bonding interactions and can be easily mobilized towards defected surfaces. Conversely, on fractured surfaces, the polymer strongly anchors through ionic Ca-O bonds resulting from the deprotonation of polymer hydroxyl groups. In addition, polymer S-S groups are turned away from the cement/polymer interface, allowing for the self-healing function within the polymer. The overall elasticity and healing properties ofmore » these composites stem from a flexible hydrogen bonding network that can readily adapt to surface morphology. The theoretical vibrational signals associated with the proposed cement-polymer interfacial chemistry were confirmed experimentally by SFG spectroscopy.« less

  16. Atomic Origins of the Self-Healing Function in Cement-Polymer Composites.

    PubMed

    Nguyen, Manh-Thuong; Wang, Zheming; Rod, Kenton A; Childers, M Ian; Fernandez, Carlos; Koech, Phillip K; Bennett, Wendy D; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2018-01-24

    Motivated by recent advances in self-healing cement and epoxy polymer composites, we present a combined ab initio molecular dynamics and sum frequency generation (SFG) vibrational spectroscopy study of a calcium-silicate-hydrate/polymer interface. On stable, low-defect surfaces, the polymer only weakly adheres through coordination and hydrogen bonding interactions and can be easily mobilized toward defected surfaces. Conversely, on fractured surfaces, the polymer strongly anchors through ionic Ca-O bonds resulting from the deprotonation of polymer hydroxyl groups. In addition, polymer S-S groups are turned away from the cement-polymer interface, allowing for the self-healing function within the polymer. The overall elasticity and healing properties of these composites stem from a flexible hydrogen bonding network that can readily adapt to surface morphology. The theoretical vibrational signals associated with the proposed cement-polymer interfacial chemistry were confirmed experimentally by SFG vibrational spectroscopy.

  17. Effects of strong hydrogen bonds and weak intermolecular interactions on supramolecular assemblies of 4-fluorobenzylamine

    NASA Astrophysics Data System (ADS)

    Wang, Shi; Ding, Xue-Hua; Li, Yong-Hua; Huang, Wei

    2015-07-01

    A series of supramolecular salts have been obtained by the self-assembly of 4-fluorobenzylamine and halide ions or metal chloride with 18-crown-6 as the host in the hydrochloric acid medium, i.e. (C7H9FN)+ṡX- (X = Cl-, 1; Br-, 2), [(C7H9FN)2ṡ(18-crown-6)2]2+ṡ(MCl4)2- (M = Mn, 3; Co, 5; Zn, 7; Cd, 8), [(C7H9FN)ṡ(18-crown-6)]+ṡ(FeCl4)- (4) and [(C7H9FN)ṡ(18-crown-6)]+ṡ1/2(CuCl4)2- (6). Structural analyses indicate that 1-2 crystallize in the triclinic space group P-1, 4 in orthorhombic space group Pnma and 3, 5, 6-8 in the monoclinic space group P21/c or C2/c. In these compounds, extensive intermolecular interactions have been utilized for the self-assembly of diverse supramolecular architectures, ranging from strong N-H⋯X (X = O, Cl, Br) hydrogen bonds to weak C-H⋯Y (Y = F, Cl, π) interactions. N-H⋯Cl/Br hydrogen bonds offer the major driving force in the crystal packing of salts 1-2 while N-H⋯O hydrogen bonds are found in salts 3-8.

  18. Solid-state acid-base interactions in complexes of heterocyclic bases with dicarboxylic acids: crystallography, hydrogen bond analysis, and 15N NMR spectroscopy.

    PubMed

    Li, Z Jane; Abramov, Yuriy; Bordner, Jon; Leonard, Jason; Medek, Ales; Trask, Andrew V

    2006-06-28

    A cancer candidate, compound 1, is a weak base with two heterocyclic basic nitrogens and five hydrogen-bonding functional groups, and is sparingly soluble in water rendering it unsuitable for pharmaceutical development. The crystalline acid-base pairs of 1, collectively termed solid acid-base complexes, provide significant increases in the solubility and bioavailability compared to the free base, 1. Three dicarboxylic acid-base complexes, sesquisuccinate 2, dimalonate 3, and dimaleate 4, show the most favorable physicochemical profiles and are studied in greater detail. The structural analyses of the three complexes using crystal structure and solid-state NMR reveal that the proton-transfer behavior in these organic acid-base complexes vary successively correlating with Delta pKa. As a result, 2 is a neutral complex, 3 is a mixed ionic and zwitterionic complex and 4 is an ionic salt. The addition of the acidic components leads to maximized hydrogen bond interactions forming extended three-dimensional networks. Although structurally similar, the packing arrangements of the three complexes are considerably different due to the presence of multiple functional groups and the flexible backbone of 1. The findings in this study provide insight into the structural characteristics of complexes involving heterocyclic bases and carboxylic acids, and demonstrate that X-ray crystallography and 15N solid-state NMR are truly complementary in elucidating hydrogen bonding interactions and the degree of proton transfer of these complexes.

  19. Hydrogen bonding in microsolvation: photoelectron imaging and theoretical studies on Au(x)(-)-(H2O)(n) and Au(x)(-)-(CH3OH)(n) (x = 1, 2; n = 1, 2) complexes.

    PubMed

    Wu, Xia; Tan, Kai; Tang, Zichao; Lu, Xin

    2014-03-14

    We have combined photoelectron velocity-map imaging (VMI) spectroscopy and theoretical calculations to elucidate the geometry and energy properties of Aux(-)(Solv)n clusters with x = 1, 2; n = 1, 2; and Solv = H2O and CH3OH. Besides the blue-shifted vertical electron detachment energies (VDEs) of the complexes Au1,2(-)(Solv)n with the increase of the solvation number (n), we independently probed two distinct Au(-)(CH3OH)2 isomers, which combined with MP2/aug-cc-pVTZ(pp) calculations represent a competition between O···H-O hydrogen bonds (HBs) and Au···H-O nonconventional hydrogen bonds (NHBs). Complementary calculations provide the total binding energies of the low-energy isomers. Moreover, the relationship between the total binding energies and total VDEshift is discussed. We found that the Au1,2(-) anions exhibit halide-analogous behavior in microsolvation. These findings also demonstrate that photoelectron velocity map imaging spectroscopy with the aid of the ab initio calculations is an effective tool for investigating weak-interaction complexes.

  20. A rare polyglycine type II-like helix motif in naturally occurring proteins.

    PubMed

    Warkentin, Eberhard; Weidenweber, Sina; Schühle, Karola; Demmer, Ulrike; Heider, Johann; Ermler, Ulrich

    2017-11-01

    Common structural elements in proteins such as α-helices or β-sheets are characterized by uniformly repeating, energetically favorable main chain conformations which additionally exhibit a completely saturated hydrogen-bonding network of the main chain NH and CO groups. Although polyproline or polyglycine type II helices (PP II or PG II ) are frequently found in proteins, they are not considered as equivalent secondary structure elements because they do not form a similar self-contained hydrogen-bonding network of the main chain atoms. In this context our finding of an unusual motif of glycine-rich PG II -like helices in the structure of the acetophenone carboxylase core complex is of relevance. These PG II -like helices form hexagonal bundles which appear to fulfill the criterion of a (largely) saturated hydrogen-bonding network of the main-chain groups and therefore may be regarded in this sense as a new secondary structure element. It consists of a central PG II -like helix surrounded by six nearly parallel PG II -like helices in a hexagonal array, plus an additional PG II -like helix extending the array outwards. Very related structural elements have previously been found in synthetic polyglycine fibers. In both cases, all main chain NH and CO groups of the central PG II -helix are saturated by either intra- or intermolecular hydrogen-bonds, resulting in a self-contained hydrogen-bonding network. Similar, but incomplete PG II -helix patterns were also previously identified in a GTP-binding protein and an antifreeze protein. © 2017 Wiley Periodicals, Inc.

  1. Three-dimensional six-connecting organic building blocks based on polychlorotriphenylmethyl units--synthesis, self-assembly, and magnetic properties.

    PubMed

    Roques, Nans; Maspoch, Daniel; Wurst, Klaus; Ruiz-Molina, Daniel; Rovira, Concepció; Veciana, Jaume

    2006-12-13

    The synthesis of a three-dimensional, six-connecting, organic building block based on a robust, rigid, and open-shell polychlorotriphenylmethyl (PTM) unit (radical 1) is reported, and its self-assembly properties are described in detail. The tendencies of this highly polar molecule and its hydrogenated precursor, compound 4, to form hydrogen bonds with oxygenated solvents ([1THF(6)] and [4THF(6)]) were reduced by replacing THF with diethyl ether in the crystallization process to yield two-dimensional (2D) hydrogen-bonded structures ([1(Et(2)O)(3)] and [4(Et(2)O)(3)]). The presence of direct hydrogen bonds between the radicals in the latter phase of 1 gives rise to very weak ferromagnetic intermolecular interactions at low temperatures, whereas when the radicals are isolated by THF molecules these interactions are antiferromagnetic and very weak. The role played by the carboxylic groups not only in the self-assembly properties but also in the transmission of the magnetic interactions has been illustrated by determination of the crystal structure and measurement of the magnetic properties of the corresponding hexaester radical 6, in which the close packing of molecular units gives rise to weak antiferromagnetic intermolecular interactions. Attempts to avoid solvation of the molecules in the solid state and to increase the structural and magnetic dimensionality were pursued by recrystallization of both compounds 1 and 4 from concentrated nitric acid, affording two three-dimensional (3D) robust hydrogen-bonded structures. While the structure obtained with compound 4 is characterized by the presence of polar channels and boxes containing water guest molecules along the c axis, radical 1 was oxidized to the corresponding fuchsone 10, which presented a completely different close-packed, guest-free structure.

  2. Supramolecular polymerization of benzene-1,3,5-tricarboxamide: a molecular dynamics simulation study.

    PubMed

    Bejagam, Karteek K; Fiorin, Giacomo; Klein, Michael L; Balasubramanian, Sundaram

    2014-05-15

    Supramolecular polymerization in the family of benzene-1,3,5-tricarboxamide (BTA) has been investigated using atomistic molecular dynamics (MD) simulations. Gas phase calculations using a nonpolarizable force field reproduce the cooperativity in binding energy and intermolecular structure seen in quantum chemical calculations. Both quantum chemical and force field based calculations suggest that the ground state structure of the BTA dimer contains two donor hydrogen bonds and one acceptor hydrogen bond rather than the conjectured three-donor and zero-acceptor hydrogen-bonded state. MD simulations of BTA molecules in a realistic solvent, n-nonane, demonstrate the self-assembly process. The free energy (FE) of dimerization and of solvation has been determined. The solvated dimer of BTA with hexyl tails is more stable than two monomers by about 13 kcal/mol. Furthermore, the FE of association of a BTA molecule to an oligomer exhibits a dependence on the oligomer size, which is a robust signature of cooperative self-assembly.

  3. Hydrogen-bonded side chain liquid crystalline block copolymer: Molecular design, synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Chao, Chi-Yang

    Block copolymers can self-assemble into highly regular, microphase-separated morphologies with dimensions at nanometer length scales. Potential applications such as optical wavelength photonic crystals, templates for nanolithographic patterning, or nanochannels for biomacromolecular separation take advantage of the well-ordered, controlled size microdomains of block copolymers. Side-chain liquid crystalline block copolymers (SCLCBCPs) are drawing increasing attention since the incorporation of liquid crystallinity turns their well-organized microstructures into dynamic functional materials. As a special type of block copolymer, hydrogen-bonded SCLCBCPs are unique, compositionally tunable materials with multiple dynamic functionalities that can readily respond to thermal, electrical and mechanical fields. Hydrogen-bonded SCLCBCPs were synthesized and assembled from host poly(styrene- b-acrylic acid) diblock copolymers with narrow molecular weight distributions as proton donors and guest imidazole functionalized mesogenic moieties as proton acceptors. In these studies non-covalent hydrogen bonding is employed to connect mesogenic side groups to a block copolymer backbone, both for its dynamic character as well as for facile materials preparation. The homogeneity and configuration of the hydrogen-bonded complexes were determined by both the molecular architecture of imidazolyl side groups and the process conditions. A one-dimensional photonic crystal composed of high molecular weight hydrogen-bonded SCLCBCP, with temperature dependent optical wavelength stop bands was successfully produced. The microstructures of hydrogen-bonded complexes could be rapidly aligned in an AC electric field at temperatures below the order-disorder transition but above their glass transitions. Remarkable dipolar properties of the mesogenic groups and thermal dissociation of hydrogen bonds are key elements to fast orientation switching. Studies of a wide range of mesogen and polymer combinations were carried out to investigate the interplay between morphology, mesophase behavior and blend composition (molar ratios of proton acceptors to proton donors). A critical composition for mesophase formation was identified and the characteristics of the H-bonded complexes below the critical blend ratios were very different than those above. Hydrogen bonding was also used to direct microphase separation of miscible poly(hydroxystyrene-b-methyl methacrylate) diblock copolymer by adopting imidazolyl additives able to hydrogen bond with poly(hydroxystyrene). The miscibility between PHS and PMMA segments was diminished significantly by introducing small quantities of H-binding additives. The critical blend ratio for microphase separation was determined more by the molecular structure of the additives than the number of hydrogen bonds formed between PHS and additives.

  4. Ammonia-hydrogen bromide and ammonia-hydrogen iodide complexes: anion photoelectron and ab initio studies.

    PubMed

    Eustis, S N; Whiteside, A; Wang, D; Gutowski, M; Bowen, K H

    2010-01-28

    The ammonia-hydrogen bromide and ammonia-hydrogen iodide, anionic heterodimers were studied by anion photoelectron spectroscopy. In complementary studies, these anions and their neutral counterparts were also investigated via ab initio theory at the coupled cluster level. In both systems, neutral NH(3)...HX dimers were predicted to be linear, hydrogen-bonded complexes, whereas their anionic dimers were found to be proton-transferred species of the form, (NH(4)(+)X(-))(-). Both experimentally measured and theoretically predicted vertical detachment energies (VDE) are in excellent agreement for both systems, with values for (NH(4)(+)Br(-))(-) being 0.65 and 0.67 eV, respectively, and values for (NH(4)(+)I(-))(-) being 0.77 and 0.81 eV, respectively. These systems are discussed in terms of our previous study of (NH(4)(+)Cl(-))(-).

  5. Investigation of supramolecular synthons and structural characterisation of aminopyridine-carboxylic acid derivatives

    PubMed Central

    2014-01-01

    Background Co-crystal is a structurally homogeneous crystalline material that contains two or more neutral building blocks that are present in definite stoichiometric amounts. The main advantage of co-crystals is their ability to generate a variety of solid forms of a drug that have distinct physicochemical properties from the solid co-crystal components. In the present investigation, five co-crystals containing 2-amino-6-chloropyridine (AMPY) moiety were synthesized and characterized. Results The crystal structure of 2-amino-6-chloropyridine (AMPY) (I), and the robustness of pyridine-acid supramolecular synthon were discussed in four stoichiometry co-crystals of AMPY…BA (II), AMPY…2ABA (III), AMPY…3CLBA (IV) and AMPY…4NBA (V). The abbreviated designations used are benzoic acid (BA), 2-aminobenzoic acid (2ABA), 3-chlorobenzoic acid (3CLBA) and 4-nitrobenzoic acid (4NBA). All the crystalline materials have been characterized by 1HNMR, 13CNMR, IR, photoluminescence, TEM analysis and X-ray diffraction. The supramolecular assembly of each co-crystal is analyzed and discussed. Conclusions Extensive N---H · · · N/N---H · · · O/O---H · · · N hydrogen bonds are found in (I-V), featuring different supramolecular synthons. In the crystal structure, for compound (I), the 2-amino-6-chloropyridine molecules are linked together into centrosymmetric dimers by hydrogen bonds to form homosynthon, whereas for compounds (II-V), the carboxylic group of the respective acids (benzoic acid, 2-aminobenzoic acid, 3-chlorobenzoic acid and 4-nitrobenzoic acid) interacts with pyridine molecule in a linear fashion through a pair of N---H · · · O and O---H · · · N hydrogen bonds, generating cyclic hydrogen-bonded motifs with the graph-set notation R 2 2 8 , to form heterosynthon. In compound (II), another intermolecular N---H · · · O hydrogen bonds further link these heterosynthons into zig-zag chains. Whereas in compounds (IV) and (V), these heterosynthons are centrosymmetrically paired via N---H · · · O hydrogen bonds and each forms a complementary DADA [D = donor and A = acceptor] array of quadruple hydrogen bonds, with graph-set notation R238, R228 and R238. PMID:24887234

  6. Investigation of supramolecular synthons and structural characterisation of aminopyridine-carboxylic acid derivatives.

    PubMed

    Hemamalini, Madhukar; Loh, Wan-Sin; Quah, Ching Kheng; Fun, Hoong-Kun

    2014-01-01

    Co-crystal is a structurally homogeneous crystalline material that contains two or more neutral building blocks that are present in definite stoichiometric amounts. The main advantage of co-crystals is their ability to generate a variety of solid forms of a drug that have distinct physicochemical properties from the solid co-crystal components. In the present investigation, five co-crystals containing 2-amino-6-chloropyridine (AMPY) moiety were synthesized and characterized. The crystal structure of 2-amino-6-chloropyridine (AMPY) (I), and the robustness of pyridine-acid supramolecular synthon were discussed in four stoichiometry co-crystals of AMPY…BA (II), AMPY…2ABA (III), AMPY…3CLBA (IV) and AMPY…4NBA (V). The abbreviated designations used are benzoic acid (BA), 2-aminobenzoic acid (2ABA), 3-chlorobenzoic acid (3CLBA) and 4-nitrobenzoic acid (4NBA). All the crystalline materials have been characterized by (1)HNMR, (13)CNMR, IR, photoluminescence, TEM analysis and X-ray diffraction. The supramolecular assembly of each co-crystal is analyzed and discussed. Extensive N---H · · · N/N---H · · · O/O---H · · · N hydrogen bonds are found in (I-V), featuring different supramolecular synthons. In the crystal structure, for compound (I), the 2-amino-6-chloropyridine molecules are linked together into centrosymmetric dimers by hydrogen bonds to form homosynthon, whereas for compounds (II-V), the carboxylic group of the respective acids (benzoic acid, 2-aminobenzoic acid, 3-chlorobenzoic acid and 4-nitrobenzoic acid) interacts with pyridine molecule in a linear fashion through a pair of N---H · · · O and O---H · · · N hydrogen bonds, generating cyclic hydrogen-bonded motifs with the graph-set notation [Formula: see text] , to form heterosynthon. In compound (II), another intermolecular N---H · · · O hydrogen bonds further link these heterosynthons into zig-zag chains. Whereas in compounds (IV) and (V), these heterosynthons are centrosymmetrically paired via N---H · · · O hydrogen bonds and each forms a complementary DADA [D = donor and A = acceptor] array of quadruple hydrogen bonds, with graph-set notation [Formula: see text], [Formula: see text] and [Formula: see text].

  7. Phenyl/Perfluorophenyl Stacking Interactions Enhance Structural Order in Two-Dimensional Covalent Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Justin C; Braunecker, Wade A; Hurst, Katherine E

    A two-dimensional imine-based covalent organic framework (COF) was designed and synthesized such that phenyl and perfluorophenyl structural units can seamlessly alternate between layers of the framework. X-ray diffraction of the COF powders reveals a striking increase in crystallinity for the COF with self-complementary phenyl/perfluorophenyl interactions (FASt-COF). Whereas measured values of the Brunauer-Emmet-Teller (BET) surface areas for the nonfluorinated Base-COF and the COF employing hydrogen bonding were ~37% and 59%, respectively, of their theoretical Connolly surface areas, the BET value for FASt-COF achieves >90% of its theoretical value (~1700 m2/g). Transmission electron microscopy images also revealed unique micron-sized rodlike features inmore » FASt-COF that were not present in the other materials. The results highlight a promising approach for improving surface areas and long-range order in two-dimensional COFs.« less

  8. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

    PubMed Central

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-01-01

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics. PMID:24232455

  9. Porous Hydrogen-Bonded Organic Frameworks.

    PubMed

    Han, Yi-Fei; Yuan, Ying-Xue; Wang, Hong-Bo

    2017-02-13

    Ordered porous solid-state architectures constructed via non-covalent supramolecular self-assembly have attracted increasing interest due to their unique advantages and potential applications. Porous metal-coordination organic frameworks (MOFs) are generated by the assembly of metal coordination centers and organic linkers. Compared to MOFs, porous hydrogen-bonded organic frameworks (HOFs) are readily purified and recovered via simple recrystallization. However, due to lacking of sufficiently ability to orientate self-aggregation of building motifs in predictable manners, rational design and preparation of porous HOFs are still challenging. Herein, we summarize recent developments about porous HOFs and attempt to gain deeper insights into the design strategies of basic building motifs.

  10. Molecular self-recognition: a chiral [Mn(II)6] wheel via donor-acceptor π···π contacts and H-bonds.

    PubMed

    Barrios, L A; Salinas-Uber, J; Roubeau, O; Teat, S J; Aromí, G

    2015-03-18

    A multinucleating ligand capable of establishing different types of intermolecular interactions, when combined with acetate groups leads to the assembly of a chiral [Mn(II)3] cluster poised for a process of self-recognition through a combination of perfectly complementary weak forces.

  11. Ion mobility and clustering of sodium hydroxybenzoates in aqueous solutions: a molecular dynamics simulation study.

    PubMed

    Gujt, Jure; Podlipnik, Črtomir; Bešter-Rogač, Marija; Spohr, Eckhard

    2014-09-28

    The relative position of the hydroxylic and the carboxylic group in the isomeric hydroxybenzoate (HB) anions is known to have a large impact on transport properties of this species. It also influences crucially the self-organisation of cationic surfactants. In this article a systematic investigation of aqueous solutions of the ortho, meta, and para isomers of the HB anion is presented. Molecular dynamics simulations of all three HB isomers were conducted for two different concentrations at 298.15 K and using two separate water models. From the resulting trajectories we calculated the self-diffusion coefficient of each isomer. According to the calculated self-diffusion coefficients, isomers were ranked in the order o-HB > m-HB > p-HB at both concentrations for both the used SPC and SPC/E water models, which agrees very well with the experiment. The structural analysis revealed that at lower concentration, where the tendency for dimerisation or cluster formation is low, hydrogen bonding with water determines the mobility of the HB anion. o-HB forms the least hydrogen bonds and is therefore the most mobile, and p-HB, which forms the most hydrogen bonds with water, is the least mobile isomer. At higher concentration the formation of clusters also needs to be considered. The ortho isomer predominantly forms dimers with 2 hydrogen bonds per dimer between one OH and one carboxylate group of each anion. m-HB mostly forms clusters of sizes around 5 and p-HB forms clusters of sizes even larger than 10, which can be either rings or chains.

  12. 6-[(Dimethyl­amino)methyl­ene­amino]-1,3-dimethyl­pyrimidine-2,4(1H,3H)-dione dihydrate

    PubMed Central

    Das, Subrata; Saikia, Binoy K.; Sridhar, B.; Thakur, Ashim J.

    2008-01-01

    Uracil, the pyrimidine nucleobase, which combined with adenine forms one of the major motifs present in the biopolymer RNA, is also involved in the self-assembly of RNA. In the title compound, C9H14N4O2·2H2O, the asymmetric unit contains one dimethyl­amino­uracil group and two water mol­ecules. The plane of the N=C—NMe2 side chain is inclined at 27.6 (5)° to the plane of the uracil ring. Both water mol­ecules form O—H⋯O hydrogen bonds with the carbonyl O atoms of the uracil group. Additional water–water hydrogen-bond inter­actions are also observed in the crystal structure. The O—H⋯O hydrogen bonds lead to the formation of a two-dimensional hydrogen-bonded network cage consisting of two dimethyl­amino­uracil groups and six water mol­ecules. PMID:21201655

  13. Design of new disulfide-based organic compounds for the improvement of self-healing materials.

    PubMed

    Matxain, Jon M; Asua, José M; Ruipérez, Fernando

    2016-01-21

    Self-healing materials are a very promising kind of materials due to their capacity to repair themselves. Among others, diphenyl disulfide-based compounds (Ph2S2) appear to be among the best candidates to develop materials with optimum self-healing properties. However, few is known regarding both the reaction mechanism and the electronic structure that make possible such properties. In this vein, theoretical approaches are of great interest. In this work, we have carried out theoretical calculations on a wide set of different disulfide compounds, both aromatic and aliphatic, in order to elucidate the prevalent reaction mechanism and the necessary electronic conditions needed for improved self-healing properties. Two competitive mechanisms were considered, namely, the metathesis and the radical-mediated mechanism. According to our calculations, the radical-mediated mechanism is the responsible for this process. The formation of sulfenyl radicals strongly depends on the S-S bond strength, which can be modulated chemically by the use of proper derivatives. At this point, amino derivatives appear to be the most promising ones. In addition to the S-S bond strength, hydrogen bonding between disulfide chains seems to be relevant to favour the contact among disulfide units. This is crucial for the reaction to take place. The calculated hydrogen bonding energies are of the same order of magnitude as the S-S bond energies. Finally, reaction barriers have been analysed for some promising candidates. Two reaction mechanisms were compared, namely, the [2+2] metathesis reaction mechanism and the [2+1] radical-mediated mechanism. No computational evidence for the existence of any transition state for the metathesis mechanism was found, which indicates that the radical-mediated mechanism is the one responsible in the self-healing process of these materials. Interestingly, the calculated reaction barriers are around 10 kcal mol(-1) regardless the substituent employed. All these results suggest that the radical formation and the structural role of the hydrogen bonding prevale over kinetics. Having this in mind, as a conclusion, some new compounds are proposed for the design of future self-healing materials with improved features.

  14. Molecular Basis for the Recognition of Higher Fullerenes into Ureidopyrimidinone-Cyclotriveratrylene Self-Assembled Capsules.

    PubMed

    Huerta, Elisa; Serapian, Stefano Artin; Santos, Eva; Cequier, Enrique; Bo, Carles; de Mendoza, Javier

    2016-09-12

    Fullerenes C60 , C70 , and C84 may be readily encaged within a hydrogen-bonded dimeric capsule, based on two concave cyclotriveratrylene (CTV) scaffolds, each containing three self-complementary 2-ureido-4-[1H]-pyrimidinone (UPy) subunits. NMR spectroscopy and circular dichroism studies, complemented by dispersion-corrected DFT calculations, are reported with the aim of characterizing such capsule-fullerene complexes both structurally and energetically. Six fullerenes are considered: in agreement with experiments, calculations find that encapsulation is most favorable for C84 (on a par with C90 ), and follows the trend C60

  15. Distinctly Different Glass Transition Behaviors of Trehalose Mixed with Na2HPO 4 or NaH 2PO 4: Evidence for its Molecular Origin.

    PubMed

    Weng, Lindong; Elliott, Gloria D

    2015-07-01

    The present study is aimed at understanding how the interactions between sugar molecules and phosphate ions affect the glass transition temperature of their mixtures, and the implications for pharmaceutical formulations. The glass transition temperature (Tg) and the α-relaxation temperature (Tα) of dehydrated trehalose/sodium phosphate mixtures (monobasic or dibasic) were determined by differential scanning calorimetry and dynamic mechanical analysis, respectively. Molecular dynamics simulations were also conducted to investigate the microscopic interactions between sugar molecules and phosphate ions. The hydrogen-bonding characteristics and the self-aggregation features of these mixtures were quantified and compared. Thermal analysis measurements demonstrated that the addition of NaH2PO4 decreased both the glass transition temperature and the α-relaxation temperature of the dehydrated trehalose/NaH2PO4 mixture compared to trehalose alone while both Tg and Tα were increased by adding Na2HPO4 to pure trehalose. The hydrogen-bonding interactions between trehalose and HPO4(2-) were found to be stronger than both the trehalose-trehalose hydrogen bonds and those formed between trehalose and H2PO4(-). The HPO4(2-) ions also aggregated into smaller clusters than H2PO4(-) ions. The trehalose/Na2HPO4 mixture yielded a higher T g than pure trehalose because marginally self-aggregated HPO4(2-) ions established a strengthened hydrogen-bonding network with trehalose molecules. In contrast H2PO4(-) ions served only as plasticizers, resulting in a lower Tg of the mixtures than trehalose alone, creating large-sized ionic pockets, weakening interactions, and disrupting the original hydrogen-bonding network amongst trehalose molecules.

  16. Distinctly Different Glass Transition Behaviors of Trehalose Mixed with Na2HPO4 or NaH2PO4: Evidence for its Molecular Origin

    PubMed Central

    Weng, Lindong; Elliott, Gloria D.

    2015-01-01

    Purpose The present study is aimed at understanding how the interactions between sugar molecules and phosphate ions affect the glass transition temperature of their mixtures, and the implications for pharmaceutical formulations. Methods The glass transition temperature (Tg) and the α-relaxation temperature (Tα) of dehydrated trehalose/sodium phosphate mixtures (monobasic or dibasic) were determined by differential scanning calorimetry and dynamic mechanical analysis, respectively. Molecular dynamics simulations were also conducted to investigate the microscopic interactions between sugar molecules and phosphate ions. The hydrogen-bonding characteristics and the self-aggregation features of these mixtures were quantified and compared. Results Thermal analysis measurements demonstrated that the addition of NaH2PO4 decreased both the glass transition temperature and the α-relaxation temperature of the dehydrated trehalose/NaH2PO4 mixture compared to trehalose alone while both Tg and Tα were increased by adding Na2HPO4 to pure trehalose. The hydrogen-bonding interactions between trehalose and HPO42− were found to be stronger than both the trehalose-trehalose hydrogen bonds and those formed between trehalose and H2PO4−. The HPO42− ions also aggregated into smaller clusters than H2PO4− ions. Conclusions The trehalose/Na2HPO4 mixture yielded a higher Tg than pure trehalose because marginally self-aggregated HPO42− ions established a strengthened hydrogen-bonding network with trehalose molecules. In contrast H2PO4− ions served only as plasticizers, resulting in a lower Tg of the mixtures than trehalose alone, creating large-sized ionic pockets, weakening interactions, and disrupting the original hydrogen-bonding network amongst trehalose molecules. PMID:25537342

  17. Persistent Self-Association of Solute Molecules in Solution.

    PubMed

    Tang, Weiwei; Mo, Huaping; Zhang, Mingtao; Parkin, Sean; Gong, Junbo; Wang, Jingkang; Li, Tonglei

    2017-11-02

    The structural evolvement of a solute determines the crystallization outcome. The self-association mechanism leading to nucleation, however, remains poorly understood. Our current study explored the solution chemistry of a model compound, tolfenamic acid (TFA), in three different solvents mainly by solution NMR. It was found that hydrogen-bonded pairs of solute-solute or solute-solvent stack with each through forming a much weaker π-π interaction as the concentration increases. Depending on the solvent, configurations of the solution species may be retained in the resultant crystal structure or undergo rearrangement. Yet, the π-π stacking is always retained in the crystal regardless of the solvent used for the crystallization. The finding suggests that nucleation not only involves the primary intermolecular interaction (hydrogen bonding) but also engages the secondary forces in the self-assembly process.

  18. Effect of various bleaching treatments on shear bond strength of different universal adhesives and application modes

    PubMed Central

    2018-01-01

    Objectives The aim of this in vitro study was to evaluate the bond strength of 2 universal adhesives used in different application modes to bleached enamel. Materials and Methods Extracted 160 sound human incisors were used for the study. Teeth were divided into 4 treatment groups: No treatment, 35% hydrogen peroxide, 16% carbamid peroxide, 7.5% carbamid peroxide. After bleaching treatments, groups were divided into subgroups according to the adhesive systems used and application modes (n = 10): 1) Single Bond Universal, etch and rinse mode; 2) Single Bond Universal, self-etch mode; 3) Gluma Universal, etch and rinse mode; 4) Gluma Universal, self-etch mode. After adhesive procedures nanohybrid composite resin cylinders were bonded to the enamel surfaces. All specimens were subjected to shear bond strength (SBS) test after thermocycling. Data were analyzed using a 3-way analysis of variance (ANOVA) and Tukey post hoc test. Results No significant difference were found among bleaching groups (35% hydrogen peroxide, 16% carbamid peroxide, 7.5% carbamid peroxide, and no treatment groups) in the mean SBS values. There was also no difference in SBS values between Single Bond Universal and Gluma Universal at same application modes, whereas self-etch mode showed significantly lower SBS values than etch and rinse mode (p < 0.05). Conclusions The bonding performance of the universal adhesives was enhanced with the etch and rinse mode application to bleached enamel and non-bleached enamel. PMID:29765900

  19. 2DCOS and PCMW2D analysis of FT-IR/ATR spectra measured at variable temperatures on-line to a polyurethane polymerization

    NASA Astrophysics Data System (ADS)

    Schuchardt, Patrick; Unger, Miriam; Siesler, Heinz W.

    2018-01-01

    In the present communication the potential of 2DCOS analysis and the spin-off technique perturbation-correlation moving window 2D (PCMW2D) analysis is illustrated with reference to spectroscopic changes observed in a data set recorded by in-line fiber-coupled FT-IR spectroscopy in the attenuated total reflection (ATR) mode during a polyurethane solution polymerization at different temperatures. In view of the chemical functionalities involved, hydrogen bonding plays an important role in this polymerization reaction. Based on the 2DCOS and PCMW2D analysis, the sequence of hydrogen bonding changes accompanying the progress of polymerization and precipitation of solid polymer can be determined. Complementary to the kinetic data derived from the original variable-temperature spectra in a previous publication the results provide a more detailed picture of the investigated solution polymerization.

  20. Probing the interaction of archaeal DNA polymerases with deaminated bases using X-ray crystallography and non-hydrogen bonding isosteric base analogues.

    PubMed

    Killelea, Tom; Ghosh, Samantak; Tan, Samuel S; Heslop, Pauline; Firbank, Susan J; Kool, Eric T; Connolly, Bernard A

    2010-07-13

    Archaeal family-B DNA polymerases stall replication on encountering the pro-mutagenic bases uracil and hypoxanthine. This publication describes an X-ray crystal structure of Thermococcus gorgonarius polymerase in complex with a DNA containing hypoxanthine in the single-stranded region of the template, two bases ahead of the primer-template junction. Full details of the specific recognition of hypoxanthine are revealed, allowing a comparison with published data that describe uracil binding. The two bases are recognized by the same pocket, in the N-terminal domain, and make very similar protein-DNA interactions. Specificity for hypoxanthine (and uracil) arises from a combination of polymerase-base hydrogen bonds and shape fit between the deaminated bases and the pocket. The structure with hypoxanthine at position 2 explains the stimulation of the polymerase 3'-5' proofreading exonuclease, observed with deaminated bases at this location. A beta-hairpin element, involved in partitioning the primer strand between the polymerase and exonuclease active sites, inserts between the two template bases at the extreme end of the double-stranded DNA. This denatures the two complementary primer bases and directs the resulting 3' single-stranded extension toward the exonuclease active site. Finally, the relative importance of hydrogen bonding and shape fit in determining selectivity for deaminated bases has been examined using nonpolar isosteres. Affinity for both 2,4-difluorobenzene and fluorobenzimidazole, non-hydrogen bonding shape mimics of uracil and hypoxanthine, respectively, is strongly diminished, suggesting polar protein-base contacts are important. However, residual interaction with 2,4-difluorobenzene is seen, confirming a role for shape recognition.

  1. Supramolecular architecture based on [Fe(CN)6]3- metallotectons and melaminium synthons

    NASA Astrophysics Data System (ADS)

    Krichen, Firas; Walha, Siwar; Lhoste, Jérôme; Bulou, Alain; Kabadou, Ahlem; Goutenoire, François

    2017-10-01

    Assembly involving [Fe(CN)6]3- metallotectons as building units and melaminium organic cation has been envisioned in order to elaborate a hybrid supramolecular based on ionic H-bonds with formula {(H-mel)4[Fe(CN)6]Cl} (H-mel+: melaminium cation). The compound has been prepared by diffusion method and characterized by single-crystal X-ray diffraction, EDX analysis, and Raman-IR spectroscopies with assignment from ab initio calculations. The melaminium exhibit self cationic coupling with cyclic hydrogen bonds to give a one dimensional {[H-mel]+}∝ synthon. Therefore, these cationic ribbons are inter-linked via hydrogen bonds by the anionic tectons [Fe(CN)6]3- and chlorine anion resulting on a 3D network. Molecular hirshfeld surfaces revealed that the crystal structure has been supported mainly by Nsbnd H⋯N and Nsbnd H⋯Cl intermolecular Hydrogen bonds and by favoured C⋯C and C⋯N weak interactions.

  2. Why are sec-alkylperoxyl bimolecular self-reactions orders of magnitude faster than the analogous reactions of tert-alkylperoxyls? The unanticipated role of CH hydrogen bond donation.

    PubMed

    Lee, Richmond; Gryn'ova, Ganna; Ingold, K U; Coote, Michelle L

    2016-08-24

    High-level ab initio calculations are used to identify the mechanism of secondary (and primary) alkylperoxyl radical termination and explain why their reactions are much faster than their tertiary counterparts. Contrary to existing literature, the decomposition of both tertiary and non-tertiary tetroxides follows the same asymmetric two-step bond cleavage pathway to form a caged intermediate of overall singlet multiplicity comprising triplet oxygen and two alkoxyl radicals. The alpha hydrogen atoms of non-tertiary species facilitate this process by forming unexpected CHO hydrogen bonds to the evolving O2. For non-tertiary peroxyls, subsequent alpha hydrogen atom transfer then yields the experimentally observed non-radical products, ketone, alcohol and O2, whereas for tertiary species, this reaction is precluded and cage escape of the (unpaired) alkoxyl radicals is a likely outcome with important consequences for autoxidation.

  3. Sequence specificity of mutagen-nucleic acid complexes in solution: intercalation and mutagen-base pair overlap geometries for proflavine binding to dC-dC-dG-dG and dG-dG-dC-dC self-complementary duplexes.

    PubMed

    Patel, D J; Canuel, L L

    1977-07-01

    The complex formed between the mutagen proflavine and the dC-dC-dG-dG and dG-dG-dC-dC self-complementary tetranucleotide duplexes has been monitored by proton high resolution nuclear magnetic resonance spectroscopy in 0.1 M phosphate solution at high nucleotide/drug ratios. The large upfield shifts (0.5 to 0.85 ppm) observed at all the proflavine ring nonexchangeable protons on complex formation are consistent with intercalation of the mutagen between base pairs of the tetranucleotide duplex. We have proposed an approximate overlap geometry between the proflavine ring and nearest neighbor base pairs at the intercalation site from a comparison between experimental shifts and those calculated for various stacking orientations. We have compared the binding of actinomycin D, propidium diiodide, and proflavine to self-complementary tetranucleotide sequences dC-dC-dG-dG and dG-dG-dC-dC by UV absorbance changes in the drug bands between 400 and 500 nm. Actinomycin D exhibits a pronounced specificity for sequences with dG-dC sites (dG-dG-dC-dC), while propidium diiodide and proflavine exhibit a specificity for sequences with dC-dG sites (dC-dC-dG-dG). Actinomycin D binds more strongly than propidium diiodide and proflavine to dC-dG-dC-dG (contains dC-dG and dG-dC binding sites), indicative of the additional stabilization from hydrogen bonding and hydrophobic interactions between the pentapeptide lactone rings of actinomycin D and the base pair edges and sugar-phosphate backbone of the tetranucleotide duplex.

  4. Sequence specificity of mutagen-nucleic acid complexes in solution: Intercalation and mutagen-base pair overlap geometries for proflavine binding to dC-dC-dG-dG and dG-dG-dC-dC self-complementary duplexes

    PubMed Central

    Patel, Dinshaw J.; Canuel, Lita L.

    1977-01-01

    The complex formed between the mutagen proflavine and the dC-dC-dG-dG and dG-dG-dC-dC self-complementary tetranucleotide duplexes has been monitored by proton high resolution nuclear magnetic resonance spectroscopy in 0.1 M phosphate solution at high nucleotide/drug ratios. The large upfield shifts (0.5 to 0.85 ppm) observed at all the proflavine ring nonexchangeable protons on complex formation are consistent with intercalation of the mutagen between base pairs of the tetranucleotide duplex. We have proposed an approximate overlap geometry between the proflavine ring and nearest neighbor base pairs at the intercalation site from a comparison between experimental shifts and those calculated for various stacking orientations. We have compared the binding of actinomycin D, propidium diiodide, and proflavine to self-complementary tetranucleotide sequences dC-dC-dG-dG and dG-dG-dC-dC by UV absorbance changes in the drug bands between 400 and 500 nm. Actinomycin D exhibits a pronounced specificity for sequences with dG-dC sites (dG-dG-dC-dC), while propidium diiodide and proflavine exhibit a specificity for sequences with dC-dG sites (dC-dC-dG-dG). Actinomycin D binds more strongly than propidium diiodide and proflavine to dC-dG-dC-dG (contains dC-dG and dG-dC binding sites), indicative of the additional stabilization from hydrogen bonding and hydrophobic interactions between the pentapeptide lactone rings of actinomycin D and the base pair edges and sugar-phosphate backbone of the tetranucleotide duplex. PMID:268613

  5. The tropolone-isobutylamine complex: a hydrogen-bonded troponoid without dominant π-π interactions.

    PubMed

    Vealey, Zachary N; Mercado, Brandon Q; Vaccaro, Patrick H

    2016-10-01

    Tropolone long has served as a model system for unraveling the ubiquitous phenomena of proton transfer and hydrogen bonding. This molecule, which juxtaposes ketonic, hydroxylic, and aromatic functionalities in a framework of minimal complexity, also has provided a versatile platform for investigating the synergism among competing intermolecular forces, including those generated by hydrogen bonding and aryl coupling. Small members of the troponoid family typically produce crystals that are stabilized strongly by pervasive π-π, C-H...π, or ion-π interactions. The organic salt (TrOH·iBA) formed by a facile proton-transfer reaction between tropolone (TrOH) and isobutylamine (iBA), namely isobutylammonium 7-oxocyclohepta-1,3,5-trien-1-olate, C 4 H 12 N + ·C 7 H 5 O 2 - , has been investigated by X-ray crystallography, with complementary quantum-chemical and statistical-database analyses serving to elucidate the nature of attendant intermolecular interactions and their synergistic effects upon lattice-packing phenomena. The crystal structure deduced from low-temperature diffraction measurements displays extensive hydrogen-bonding networks, yet shows little evidence of the aryl forces (viz. π-π, C-H...π, and ion-π interactions) that typically dominate this class of compounds. Density functional calculations performed with and without the imposition of periodic boundary conditions (the latter entailing isolated subunits) documented the specificity and directionality of noncovalent interactions occurring between the proton-donating and proton-accepting sites of TrOH and iBA, as well as the absence of aromatic coupling mediated by the seven-membered ring of TrOH. A statistical comparison of the structural parameters extracted for key hydrogen-bond linkages to those reported for 44 previously known crystals that support similar binding motifs revealed TrOH·iBA to possess the shortest donor-acceptor distances of any troponoid-based complex, combined with unambiguous signatures of enhanced proton-delocalization processes that putatively stabilize the corresponding crystalline lattice and facilitate its surprisingly rapid formation under ambient conditions.

  6. The molecular basis of the solution properties of hyaluronan investigated by confocal fluorescence recovery after photobleaching.

    PubMed Central

    Gribbon, P; Heng, B C; Hardingham, T E

    1999-01-01

    Hyaluronan (HA) is a highly hydrated polyanion, which is a network-forming and space-filling component in the extracellular matrix of animal tissues. Confocal fluorescence recovery after photobleaching (confocal-FRAP) was used to investigate intramolecular hydrogen bonding and electrostatic interactions in hyaluronan solutions. Self and tracer lateral diffusion coefficients within hyaluronan solutions were measured over a wide range of concentrations (c), with varying electrolyte and at neutral and alkaline pH. The free diffusion coefficient of fluoresceinamine-labeled HA of 500 kDa in PBS was 7.9 x 10(-8) cm(2) s(-1) and of 830 kDa HA was 5.6 x 10(-8) cm(2) s(-1). Reductions in self- and tracer-diffusion with c followed a stretched exponential model. Electrolyte-induced polyanion coil contraction and destiffening resulted in a 2.8-fold increase in self-diffusion between 0 and 100 mM NaCl. Disruption of hydrogen bonds by strong alkali (0.5 M NaOH) resulted in further larger increases in self- and tracer-diffusion coefficients, consistent with a more dynamic and permeable network. Concentrated hyaluronan solution properties were attributed to hydrodynamic and entanglement interactions between domains. There was no evidence of chain-chain associations. At physiological electrolyte concentration and pH, the greatest contribution to the intrinsic stiffness of hyaluronan appeared to be due to hydrogen bonds between adjacent saccharides. PMID:10512840

  7. Comparing Ullmann Coupling on Noble Metal Surfaces: On-Surface Polymerization of 1,3,6,8-Tetrabromopyrene on Cu(111) and Au(111).

    PubMed

    Pham, Tuan Anh; Song, Fei; Nguyen, Manh-Thuong; Li, Zheshen; Studener, Florian; Stöhr, Meike

    2016-04-18

    The on-surface polymerization of 1,3,6,8-tetrabromopyrene (Br4 Py) on Cu(111) and Au(111) surfaces under ultrahigh vacuum conditions was investigated by a combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Deposition of Br4 Py on Cu(111) held at 300 K resulted in a spontaneous debromination reaction, generating the formation of a branched coordination polymer network stabilized by C-Cu-C bonds. After annealing at 473 K, the C-Cu-C bonds were converted to covalent C-C bonds, leading to the formation of a covalently linked molecular network of short oligomers. In contrast, highly ordered self-assembled two-dimensional (2D) patterns stabilized by both Br-Br halogen and Br-H hydrogen bonds were observed upon deposition of Br4 Py on Au(111) held at 300 K. Subsequent annealing of the sample at 473 K led to a dissociation of the C-Br bonds and the formation of disordered metal-coordinated molecular networks. Further annealing at 573 K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann reaction, but also influences the formation of different types of intermolecular bonds and thus, determines the final polymer network morphology. DFT calculations further support our experimental findings obtained by STM and XPS and add complementary information on the reaction pathway of Br4 Py on the different substrates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanophores for Self-Healing Applications

    DTIC Science & Technology

    2013-09-09

    macroscopic failure. One of the first discovered mechanochemical reactions was the self - healing of vulcanized rubber . Damaging mechanical force...therefore have potential self - healing features. Using the serendipitous case of rubber as a model, mechanophores that produce reactive species under...Mechanophores for Self - Healing Applications Supramolecular polymers held together by hydrogen bonds make efficient self - healing systems. A rubber -like polymer

  9. Chiral self-recognition: direct spectroscopic detection of the homochiral and heterochiral dimers of propylene oxide in the gas phase.

    PubMed

    Su, Zheng; Borho, Nicole; Xu, Yunjie

    2006-12-27

    In this report, we describe rotational spectroscopic and high-level ab initio studies of the 1:1 chiral molecular adduct of propylene oxide dimer. The complexes are bound by weak secondary hydrogen bonds, that is, the O(epoxy)...H-C noncovalent interactions. Six homochiral and six heterochiral conformers were predicted to be the most stable configurations where each monomer acts as a proton acceptor and a donor simultaneously, forming two six- or five-membered intermolecular hydrogen-bonded rings. Rotational spectra of six, that is, three homochiral and heterochiral conformer pairs, out of the eight conformers that were predicted to have sufficiently large permanent electric dipole moments were measured and analyzed. The relative conformational stability order and the signs of the chiral recognition energies of the six conformers were determined experimentally and were compared to the ab initio computational results. The experimental observations and the ab initio calculations suggest that the concerted effort of these weak secondary hydrogen bonds can successfully lock the subunits in a particular orientation and that the overall binding strength is comparable to a classic hydrogen bond.

  10. THz spectra and corresponding vibrational modes of DNA base pair cocrystals and polynucleotides

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Huang, Lin; Liu, Yunfei; Li, Shuhua

    2018-07-01

    The generalized energy-based fragmentation (GEBF) approach has been applied to study the THz spectra and vibrational modes of base pair cocrystals under periodic boundary conditions (denoted as PBC-GEBF). Results of vibrational mode reveal that hydrogen bonds play a pivotal role in the pairing process of base crystals, where most Nsbnd H and Csbnd H bonds stretch to some extent. We also found that hydrogen bonds of a self-made A:T cocrystal completely break in a transition from liquid to the solid state, while self-made C:G cocrystal is different and easier to form a cocrystal, as confirmed by X-ray diffraction (XRD) and terahertz (THz) spectra. Furthermore, we have studied DNA polynucleotides (in both A and B forms) found that the vibrational modes changed a lot during the process of their forming double strand. Despite the key role played by hydrogen bonds, the key contribution originates from collective motions of the main skeleton. A comparative study of the spectra of some stranded fragments suggests that different sequences or forms have similar spectra in THz band. They distinguish from each other mainly in the low-frequency regions, especially below 1 THz. This study would make great contributions to the molecular dynamics model based DNA long-chain structure simulation in the future study.

  11. Investigation of steric influences on hydrogen-bonding motifs in cyclic ureas by using X-ray, neutron, and computational methods.

    PubMed

    McCormick, Laura J; McDonnell-Worth, Ciaran; Platts, James A; Edwards, Alison J; Turner, David R

    2013-11-01

    A series of urea-derived heterocycles, 5N-substituted hexahydro-1,3,5-triazin-2-ones, has been prepared and their structures have been determined for the first time. This family of compounds only differ in their substituent at the 5-position (which is derived from the corresponding primary amine), that is, methyl (1), ethyl (2), isopropyl (3), tert-butyl (4), benzyl (5), N,N-(diethyl)ethylamine (6), and 2-hydroxyethyl (7). The common heterocyclic core of these molecules is a cyclic urea, which has the potential to form a hydrogen-bonding tape motif that consists of self-associative R₂²(8) dimers. The results from X-ray crystallography and, where possible, Laue neutron crystallography show that the hydrogen-bonding motifs that are observed and the planarity of the hydrogen bonds appear to depend on the steric hindrance at the α-carbon atom of the N substituent. With the less-hindered substituents, methyl and ethyl, the anticipated tape motif is observed. When additional methyl groups are added onto the α-carbon atom, as in the isopropyl and tert-butyl derivatives, a different 2D hydrogen-bonding motif is observed. Despite the bulkiness of the substituents, the benzyl and N,N-(diethyl)ethylamine derivatives have methylene units at the α-carbon atom and, therefore, display the tape motif. The introduction of a competing hydrogen-bond donor/acceptor in the 2-hydroxyethyl derivative disrupts the tape motif, with a hydroxy group interrupting the N-H···O=C interactions. The geometry around the hydrogen-bearing nitrogen atoms, whether planar or non-planar, has been confirmed for compounds 2 and 5 by using Laue neutron diffraction and rationalized by using computational methods, thus demonstrating that distortion of O-C-N-H torsion angles occurs to maintain almost-linear hydrogen-bonding interactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Study of hydrogen bond polarized IR spectra of cinnamic acid crystals

    NASA Astrophysics Data System (ADS)

    Flakus, Henryk T.; Jabłońska, Magdalena

    2004-11-01

    This paper presents the results of investigation of the polarized IR spectra of cinnamic acid and of its deuterium derivative crystals. The spectra were measured by a transmission method, using polarized light, at the room temperature and at 77 K, for two different crystalline faces. Theoretical analysis of the results concerned linear dichroic effects, H/D isotopic and temperature effects, observed in the spectra of the hydrogen and of the deuterium bonds in cinnamic acid crystals, at the frequency ranges of the νO-H and the νO-D bands. The basic crystal spectral properties could be satisfactorily interpreted in a quantitative way for a centrosymmetric cyclic hydrogen bond dimer model. Such a model explains not only a two-branch structure of the νO-H and νO-D bands in crystalline spectra, but also some essential linear dichroic effects in the band frequency ranges, measured for isotopically diluted crystals. Model calculations, performed within the limits of the 'strong-coupling' model, allowed for quantitative interpretation and for understanding of the basic properties of the hydrogen bond IR spectra of cinnamic acid crystals, H/D isotopic, temperature and dichroic effects included. In the scope of our studies the mechanism of H/D isotopic 'self-organization' processes, taking place in the crystal hydrogen bond lattices, was also recognized. It was proved that for isotopically diluted crystalline samples of cinnamic acid, a non-random distribution of protons and deuterons occurs exclusively in the hydrogen bond dimers. Nevertheless, these co-operative interactions between the hydrogen bonds do not involve the adjacent hydrogen bond dimers in each unit cell. The two-branch fine structure pattern of the νO-H and νO-D bands was ascribed to the vibronic mechanism of vibrational dipole selection rule breaking in centrosymmetric hydrogen bond dimers. The observed in the spectra very high intensity of the forbidden transition sub-band in the analyzed νO-H and νO-D bands is a manifestation of an extremely effective symmetry rule breaking mechanism. It correlates with a relatively large excess electron charge on the cinnamic aid dimer carboxyl groups. This effect is a result of a partial withdrawal of the electron charge, from the conjugated π-bond systems of the styryl substituents, by the carboxyl groups. This statement has been supported by ab initio calculations.

  13. A simple hydrogen-bonded chain in (3Z)-3-{1-[(5-phenyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one, and a hydrogen-bonded ribbon of centrosymmetric rings in the self-assembled adduct (3Z)-3-{1-[(5-methyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one-6-(2-hydroxyethyl)-2,5-dimethylpyrazolo[1,5-a]pyrimidin-7(4H)-one (1/1).

    PubMed

    Quiroga, Jairo; Portilla, Jaime; Cobo, Justo; Glidewell, Christopher

    2010-01-01

    (3Z)-3-{1-[(5-Phenyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one, C(15)H(15)N(3)O(2), (I), and the stoichiometric adduct (3Z)-3-{1-[(5-methyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one-6-(2-hydroxyethyl)-2,5-dimethylpyrazolo[1,5-a]pyrimidin-7(4H)-one (1/1), C(10)H(13)N(3)O(2).C(10)H(13)N(3)O(2), (II), in which the two components have the same composition but different constitutions, are formed in the reactions of 2-acetyl-4-butyrolactone with 5-amino-3-phenyl-1H-pyrazole and 5-amino-3-methyl-1H-pyrazole, respectively. In each compound, the furanone component contains an intramolecular N-H...O hydrogen bond. The molecules of (I) are linked into a chain by a single intermolecular N-H...O hydrogen bond, while in (II), a combination of one O-H...N hydrogen bond, within the selected asymmetric unit, and two N-H...O hydrogen bonds link the molecular components into a ribbon containing alternating centrosymmetric R(4)(4)(20) and R(6)(6)(22) rings.

  14. Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation

    PubMed Central

    Serganov, Alexander; Keiper, Sonja; Malinina, Lucy; Tereshko, Valentina; Skripkin, Eugene; Höbartner, Claudia; Polonskaia, Anna; Phan, Anh Tuân; Wombacher, Richard; Micura, Ronald; Dauter, Zbigniew; Jäschke, Andres; Patel, Dinshaw J

    2015-01-01

    The majority of structural efforts addressing RNA’s catalytic function have focused on natural ribozymes, which catalyze phosphodiester transfer reactions. By contrast, little is known about how RNA catalyzes other types of chemical reactions. We report here the crystal structures of a ribozyme that catalyzes enantioselective carbon-carbon bond formation by the Diels-Alder reaction in the unbound state and in complex with a reaction product. The RNA adopts a λ-shaped nested pseudoknot architecture whose preformed hydrophobic pocket is precisely complementary in shape to the reaction product. RNA folding and product binding are dictated by extensive stacking and hydrogen bonding, whereas stereoselection is governed by the shape of the catalytic pocket. Catalysis is apparently achieved by a combination of proximity, complementarity and electronic effects. We observe structural parallels in the independently evolved catalytic pocket architectures for ribozyme- and antibody-catalyzed Diels-Alder carbon-carbon bond-forming reactions. PMID:15723077

  15. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    NASA Astrophysics Data System (ADS)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.; Franco, Ignacio

    2017-03-01

    The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The simulations combine classical molecular dynamics of the mechanical deformation of the junction with non-equilibrium Green's function computations of the electronic transport. As shown, in these complexes hydrogen bonds mediate transport either by directly participating as a possible transport pathway or by stabilizing molecular conformations with enhanced conductance properties. Further, we observe that force-conductance correlations can be very sensitive to small changes in the chemical structure of the complexes and provide detailed information about the behavior of single molecules that cannot be gleaned from either measurement alone. In fact, there are regions during the elongation that are only mechanically active, others that are only conductance active, and regions where both force and conductance changes as the complex is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to interrogate basic structure-transport relations at the single-molecule limit.

  16. Probing the interaction of archaeal DNA polymerases with deaminated bases using X-ray crystallography and non-hydrogen bonding isosteric base analogues†

    PubMed Central

    Killelea, Tom; Ghosh, Samantak; Tan, Samuel S.; Heslop, Pauline; Firbank, Susan; Kool, Eric T.; Connolly, Bernard A.

    2010-01-01

    Archaeal family-B DNA polymerases stall replication on encountering the pro-mutagenic bases uracil and hypoxanthine. This publication describes an X-ray crystal structure of Thermococcus gorgonarius polymerase in complex with a DNA containing hypoxanthine in the single-stranded region of the template, two bases ahead of the primer-template junction. Full details of the specific recognition of hypoxanthine are revealed, allowing a comparison with published data that describes uracil binding. The two bases are recognized by the same pocket, in the N-terminal domain, and make very similar protein-DNA interactions. Specificity for hypoxanthine (and uracil) arises from a combination of polymerase-base hydrogen bonds and shape fit between the deaminated bases and the pocket. The structure with hypoxanthine at the +2 position explains the stimulation of the polymerase 3′-5′ proof reading exonuclease, observed with deaminated bases at this location. A β hairpin element, involved in partitioning the primer strand between the polymerase and exonuclease active sites, inserts between the two template bases at the extreme end of the double stranded DNA. This denatures the two complementary primer bases and directs the resulting 3′ single-stranded extension towards the exonuclease active site. Finally the relative importance of hydrogen bonding and shape fit in determining selectivity for deaminated bases has been examined using non-polar isosteres. Affinity for both 2,4 difluorobenzene and fluorobenzimidazole, non-hydrogen bonding shape mimics of uracil and hypoxanthine respectively, is strongly diminished, suggesting polar protein-base contacts are important. However, residual interaction with 2,4 difluorobenzene is seen, confirming a role for shape recognition. PMID:20527806

  17. A high level Ab initio study of the anionic hydrogen-bonded complexes FH-CN-, FH-NC-, H2O-CN- and H2O-NC-

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.

    1989-01-01

    HF, H2O, CN- and their hydrogen-bonded complexes were studied using state-of-the-art ab initio quantum mechanical methods. A large Gaussian one particle basis set consisting of triple zeta plus double polarization plus diffuse s and p functions (TZ2P + diffuse) was used. The theoretical methods employed include self consistent field, second order Moller-Plesset perturbation theory, singles and doubles configuration interaction theory and the singles and doubles coupled cluster approach. The FH-CN- and FH-NC- and H2O-CN-, H2O-NC- pairs of complexes are found to be essentially isoenergetic. The first pair of complexes are predicted to be bound by approx. 24 kcal/mole and the latter pair bound by approximately 15 kcal/mole. The ab initio binding energies are in good agreement with the experimental values. The two being shorter than the analogous C-N hydrogen bond. The infrared (IR) spectra of the two pairs of complexes are also very similar, though a severe perturbation of the potential energy surface by proton exchange means that the accurate prediction of the band center of the most intense IR mode requires a high level of electronic structure theory as well as a complete treatment of anharmonic effects. The bonding of anionic hydrogen-bonded complexes is discussed and contrasted with that of neutral hydrogen-bonded complexes.

  18. Fiber post etching with hydrogen peroxide: effect of concentration and application time.

    PubMed

    de Sousa Menezes, Murilo; Queiroz, Ellyne Cavalcanti; Soares, Paulo Vinícius; Faria-e-Silva, André Luis; Soares, Carlos José; Martins, Luis Roberto Marcondes

    2011-03-01

    Etching is necessary to expose the fibers and enable both mechanical and chemical bonding of the resin core to the fiber post. This study evaluated the effect of concentration and application time of hydrogen peroxide on the surface topography and bond strength of glass fiber posts to resin cores. Fiber posts were etched with 24% or 50% hydrogen peroxide for 1, 5, or 10 min (n = 10). Posts without any treatment were used as a control. After etching, the posts were silanated and adhesive resin was applied. The posts were positioned into a mold to allow a self-cured resin core to be inserted. The post/resin assembly was serially sectioned into five beams that were subjected to a tensile bond strength test. Data were subjected to two-way ANOVA and Tukey test (α = 0.05). The surface topography was analyzed using scanning electronic microscopy. Non-etched post presents a relatively smooth surface without fiber exposure. Application of hydrogen peroxide increased the surface roughness and exposed the fibers. All experimental conditions yielded similar bond strength values that were higher than those obtained in the control group. Both 24% and 50% hydrogen peroxide exposure increased the bond strength of resin to the posts, irrespective of the application time. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Self-assemblies, helical ribbons and gelation tuned by solvent-gelator interaction in a bi-1,3,4-oxadiazole gelator

    NASA Astrophysics Data System (ADS)

    Zhao, Chengxiao; Bai, Binglian; Wang, Haitao; Qu, Songnan; Xiao, Guanjun; Tian, Taiji; Li, Min

    2013-04-01

    A bi-1,3,4-oxadiazole derivative (BOXDH-T12) showed intramolecular charge transition at concentrations lower than 1 × 10-5 mol/L. The self-assembling behaviors of BOXDH-T12 depended on solvents that it self-assembled into H-aggregates in alcohols and slipped packing aggregates in DMSO. FTIR, 1H NMR and TGA results revealed that strong gelator-gelator hydrogen bonding interaction induced H-aggregation of BOXDH-T12 in alcohols and the interactions between DMSO and BOXDH-T12 molecules caused a slipped stacking. BOXDH-T12 can gel the mixtures of DMSO and ethanol through a cooperative effect of the hydrogen bonding, van der Waals interaction and π-π stacking forces, furthermore, helical ribbons could be observed in DMSO/ethanol due to DMSO molecule interacting. In alcohols, solvophobic/solvophilic effect plays a critical role in gelation behaviors.

  20. Spontaneous adsorption on a hydrophobic surface governed by hydrogen bonding.

    PubMed

    Dang, Fuquan; Hasegawa, Takeshi; Biju, Vasudevanpillai; Ishikawa, Mitsuru; Kaji, Noritada; Yasui, Takao; Baba, Yoshinobu

    2009-08-18

    Spontaneous adsorption from solution onto solid surface is a common phenomenon in nature, but the force that governs adsorption is still a matter of considerable debate. (1, 2) We found that surfactants and cellulose adsorb from solution onto a poly(methyl methacrylate) (PMMA) surface in an ordered and cooperative way governed by hydrogen bonding. The glucose rings of n-dodecyl-beta-D-maltoside (DDM) and hydroxyethylcellulose (HEC) stand perpendicular to the surface, H-bond to the surface COOMe groups with their C=O and Me-O bonds parallel to the surface, and form a tight monolayer. The non-H-bonded COOMe groups orient their C=O bonds perpendicular to the surface. In contrast, the glucose rings of hydrophobically modified hydroxyethylcellulose (HMHEC) lie flat with the side chains perpendicular to the surface and H-bond to the perpendicular-oriented C=O groups. The non-H-bonded COOMe groups orient their C=O bonds parallel but Me-O bonds near-perpendicular to the surface for stabilizing HMHEC. The current work provides a detailed picture of how surface-active molecules interact with a solid surface and self-assemble into greatly different architectures.

  1. Electron detachment of the hydrogen-bonded amino acid side-chain guanine complexes

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Gu, Jiande; Leszczynski, Jerzy

    2007-07-01

    The photoelectron spectra of the hydrogen-bonded amino acid side-chain-guanine complexes has been studied at the partial third order (P3) self-energy approximation of the electron propagator theory. The correlation between the vertical electron detachment energy and the charge distributions on the guanine moiety reveals that the vertical electron detachment energy (VDE) increases as the positive charge distribution on the guanine increases. The low VDE values determined for the negatively charged complexes of the guanine-side-chain-group of Asp/Glu suggest that the influence of the H-bonded anionic groups on the VDE of guanine could be more important than that of the anionic backbone structure. The even lower vertical electron detachment energy for guanine is thus can be expected in the H-bonded protein-DNA systems.

  2. Light-induced changes in silicon nanocrystal based solar cells: Modification of silicon-hydrogen bonding on silicon nanocrystal surface under illumination

    NASA Astrophysics Data System (ADS)

    Kim, Ka-Hyun; Johnson, Erik V.; Cabarrocas, Pere Roca i.

    2016-07-01

    Hydrogenated polymorphous silicon (pm-Si:H) is a material consisting of a small volume fraction of nanocrystals embedded in an amorphous matrix. pm-Si:H solar cells demonstrate interesting initial degradation behaviors such as rapid initial change in photovoltaic parameters and self-healing after degradation during light-soaking. The precise dynamics of the light-induced degradation was studied in a series of light-soaking experiments under various illumination conditions such as AM1.5G and filtered 570 nm yellow light. Hydrogen effusion experiment before and after light-soaking further revealed that the initial degradation of pm-Si:H solar cells originate from the modification of silicon-hydrogen bonding on the surface of silicon nanocrystals in pm-Si:H.

  3. Hydrogen anion and subgap states in amorphous In-Ga-Zn-O thin films for TFT applications

    NASA Astrophysics Data System (ADS)

    Bang, Joonho; Matsuishi, Satoru; Hosono, Hideo

    2017-06-01

    Hydrogen is an impurity species having an important role in the physical properties of semiconductors. Despite numerous studies, the role of hydrogen in oxide semiconductors remains an unsolved puzzle. This situation arises from insufficient information about the chemical state of the impurity hydrogen. Here, we report direct evidence for anionic hydrogens bonding to metal cations in amorphous In-Ga-Zn-O (a-IGZO) thin films for thin-film transistors (TFT) applications and discuss how the hydrogen impurities affect the electronic structure of a-IGZO. Infrared absorption spectra of self-standing a-IGZO thin films prepared by sputtering reveal the presence of hydrogen anions as a main hydrogen species (concentration is ˜1020 cm-3) along with the hydrogens in the form of the hydroxyl groups (˜1020 cm-3). Density functional theory calculations show that bonds between these hydride ions with metal centers give rise to subgap states above the top of the valence band, implying a crucial role of anionic hydrogen in the negative bias illumination stress instability commonly observed in a-IGZO TFTs.

  4. The Transition from Hydrogen Bonding to Ionization in (HCI)n(NH3)n and (HCI)n(H2O)n Clusters: Consequences for Anharmonic Vibrational Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Gerber, R. Benny; Janda, Kenneth C.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Anharmonic vibrational frequencies and intensities are calculated for 1:1 and 2:2 (HCl)(sub n)(NH3)(sub n) and (HCl)(sub n)(H2O)(sub n) complexes, employing the correlation-corrected vibrational self-consistent field method with ab initio potential surfaces at the MP2/TZP computational level. In this method, the anharmonic coupling between all vibrational modes is included, which is found to be important for the systems studied. For the 4:4 (HCl)(sub n)(H2O)(sub n) complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Just as the (HCl)(sub n)(NH3)(sub n) structure switches from hydrogen-bonded to ionic for n=2, the (HCl)(sub n)(H2O)(sub n) switches to ionic structure for n=4. For (HCl)2(H2O)2, the lowest energy structure corresponds to the hydrogen-bonded form. However, configurations of the ionic form are separated from this minimum by a barrier of less than an O-H stretching quantum. This suggests the possibility of experiments on ionization dynamics using infrared excitation of the hydrogen-bonded form. The strong cooperative effects on the hydrogen bonding, and concomitant transition to ionic bonding, makes an accurate estimate of the large anharmonicity crucial for understanding the infrared spectra of these systems. The anharmonicity is typically of the order of several hundred wave numbers for the proton stretching motions involved in hydrogen or ionic bonding, and can also be quite large for the intramolecular modes. In addition, the large cooperative effects in the 2:2 and higher order (HCl(sub n)(H2O)(sub n) complexes may have interesting implications for solvation of hydrogen halides at ice surfaces.

  5. Exploiting NH···Cl Hydrogen Bonding Interactions in Cooperative Metallosupramolecular Polymerization.

    PubMed

    Langenstroer, Anja; Dorca, Yeray; Kartha, Kalathil K; Mayoral, Maria Jose; Stepanenko, Vladimir; Fernández, Gustavo; Sánchez, Luis

    2018-05-10

    The self-assembly features of hydrophobic bispyridyldichlorido Pd(II) complexes, equipped with an extended aromatic surface derived from oligophenyleneethynylene (OPE) and polarizable amide functional groups, are reported. The cooperative supramolecular polymerization of these complexes results in bundles of thin fibers in which the monomer units are arranged in a translationally displaced or slipped fashion. Spectroscopic and microscopy studies reveal that these assemblies are held together by simultaneous π-stacking of the OPE moieties and NH···ClPd hydrogen bonds. These unconventional forces are often observed in crystal engineering but remain largely unexploited in supramolecular polymers. Both steric and electronic effects (the presence of bulky and polarizable metal-bound Cl ligands as well as hydrogen bonding donor NH units) prevent the establishment of short Pd-Pd contacts and strongly condition the aggregation mode of the reported complexes, in close analogy to the previously reported amphiphilic Pd(II) complex 4. The results presented herein shed light on the subtle interplay between different noncovalent interactions and their impact on the self-assembly of metallosupramolecular systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Anti-cooperative supramolecular polymerization: a new K2-K model applied to the self-assembly of perylene bisimide dye proceeding via well-defined hydrogen-bonded dimers.

    PubMed

    Gershberg, Jana; Fennel, Franziska; Rehm, Thomas H; Lochbrunner, Stefan; Würthner, Frank

    2016-03-01

    A perylene bisimide dye bearing amide functionalities at the imide positions derived from amino acid l-alanine and a dialkoxy-substituted benzyl amine self-assembles into tightly bound dimers by π-π-stacking and hydrogen bonding in chloroform. In less polar or unpolar solvents like toluene and methylcyclohexane, and in their mixtures, these dimers further self-assemble into extended oligomeric aggregates in an anti-cooperative process in which even numbered aggregates are highly favoured. The stepwise transition from dimers into oligomers can not be properly described by conventional K 2 - K model, and thus a new K 2 - K aggregation model has been developed, which interpretes the present anti-cooperative supramolecular polymerization more appropriately. The newly developed K 2 - K model will be useful to describe self-assembly processes of a plethora of other π-conjugated molecules that are characterized by a favored dimer species.

  7. Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals.

    PubMed

    Cao, Liming; Yuan, Daosheng; Xu, Chuanhui; Chen, Yukun

    2017-10-19

    Cellulose nanocrystals represent a promising and environmentally friendly reinforcing nanofiller for polymers, especially for rubbers and elastomers. Here, a simple approach via latex mixing is used to fabricate biobased, healable rubber with high strength based on epoxidized natural rubber (ENR). Tunicate cellulose nanocrystals (t-CNs) isolated from marine biomass with a high aspect ratio are used to improve both mechanical properties and self-healing behavior of the material. By introducing dynamic hydrogen bond supramolecular networks between oxygenous groups of ENR and hydroxyl groups on the t-CN surface, together with chain interdiffusion in permanently but slightly cross-linked rubber, self-healing and mechanical properties are facilitated significantly in the resulting materials. Macroscopic tensile healing behavior and microscopic morphology analyses are carried out to evaluate the performance of the materials. Both t-CN content and healing time have significant influence on healing behavior. The results indicate that a synergistic effect between molecular interdiffusion and dynamic hydrogen bond supramolecular networks leads to the improved self-healing behavior.

  8. Supramolecular features of 2-(chlorophenyl)-3-[(chlorobenzylidene)-amino]-2,3-dihydroquinazolin-4(1H)-ones: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Mandal, Arkalekha; Patel, Bhisma K.

    2018-03-01

    The molecular structures of two isomeric 2-(chlorophenyl)-3-[(chlorobenzylidene)-amino] substituted 2,3-dihydroquinazolin-4(1H)-ones have been determined via single crystal XRD. Both isomers contain chloro substitutions on each of the phenyl rings and as a result a broad spectrum of halogen mediated weak interactions are viable in their crystal structures. The crystal packing of these compounds is stabilized by strong N-H⋯O hydrogen bond and various weak, non-classical hydrogen bonds acting synergistically. Both the molecules contain a chiral center and the weak interactions observed in them are either chiral self-discriminatory or chiral self-recognizing in nature. The weak interactions and spectral features of the compounds have been studied through experimental as well as computational methods including DFT, MEP, NBO and Hiresfeld surface analyses. In addition, the effect of different weak interactions to dictate either chiral self-recognition or self-discrimination in crystal packing has been elucidated.

  9. Superhydrogels of nanotubes capable of capturing heavy-metal ions.

    PubMed

    Song, Shasha; Wang, Haiqiao; Song, Aixin; Hao, Jingcheng

    2014-01-01

    Self-assembly regulated by hydrogen bonds was successfully achieved in the system of lithocholic acid (LCA) mixed with three organic amines, ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA), in aqueous solutions. The mixtures of DEA/LCA exhibit supergelation capability and the hydrogels consist of plenty of network nanotubes with uniform diameters of about 60 nm determined by cryogenic TEM. Interestingly, the sample with the same concentration in a system of EA and LCA is a birefringent solution, in which spherical vesicles and can be transformed into nanotubes as the amount of LCA increases. The formation of hydrogels could be driven by the delicate balance of diverse noncovalent interactions, including electrostatic interactions, hydrophobic interactions, steric effects, van der Waals forces, and mainly hydrogen bonds. The mechanism of self-assembly from spherical bilayer vesicles into nanotubes was proposed. The dried hydrogels with nanotubes were explored to exhibit the excellent capability for capturing heavy-metal ions, for example, Cu(2+), Co(2+), Ni(2+), Pb(2+), and Hg(2+). The superhydrogels of nanotubes from the self-assembly of low-molecular-weight gelators mainly regulated by hydrogen bonds used for the removal of heavy-metal ions is simple, green, and high efficiency, and provide a strategic approach to removing heavy-metal ions from industrial sewage. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enhanced Electronic Communication and Electrochemical Sensitivity Benefiting from the Cooperation of Quadruple Hydrogen Bonding and π-π Interactions in Graphene/Multi-Walled Carbon Nanotube Hybrids.

    PubMed

    Wang, Qiguan; Wang, Sumin; Shang, Jiayin; Qiu, Shenbao; Zhang, Wenzhi; Wu, Xinming; Li, Jinhua; Chen, Weixing; Wang, Xinhai

    2017-02-22

    By designing a molecule labeled as UPPY with both ureidopyrimidinone (UP) and pyrene (PY) units, the supramolecular self-assembly of multiwalled carbon nanotube (MWNT) and reduced graphene oxide (rGO) was driven by the UP quadruple hydrogen-bonding and PY-based π-π interactions to form a novel hybrid of rGO-UPPY-MWNT in which the morphology of rGO-wrapped MWNT was found. Bridged by the two kinds of noncovalent bonding, enhanced electronic communication occurred in rGO-UPPY-MWNT. Also, under the cooperation of UP quadruple hydrogen-bonding and PY-based π-π interactions, higher electrical conductivity and better charge transfer were observed for rGO-UPPY-MWNT, compared with the rGO-MWNT composite without such noncovalent bonds, and that with just single PY-based π-π interaction (rGO-PY-MWNT) or UP quadruple hydrogen bond (rGO-UP-MWNT). Specifically, the electrical conductivity of rGO-PY-MWNT hybrids was increased approximately sevenfold, and the interfacial charge transfer resistance was nearly decreased by 1 order of magnitude compared with rGO-MWNT, rGO-UP-MWNT, and rGO-PY-MWNT. Resulting from its excellent electrical conductivity and charge transfer properties, the rGO-UPPY-MWNT modified electrode exhibited enhanced electrochemical activity toward dopamine with detection limit as low as 20 nM.

  11. THE ROLE OF COMPETITION EFFECT IN THE SELF-ASSEMBLY STRUCTURE OF 3,5-DIPHENYLBENZOIC ACID AND 2,2‧:6‧,2″-TERPYRIDINE-4‧-CARBOXYLIC ACID ON Ag(110)

    NASA Astrophysics Data System (ADS)

    Hu, Yufen; Li, Wei; Lu, Yan; Wang, Zhongping; Leng, Xinli; Liao, Qinghua; Liu, Xiaoqing; Wang, Li

    The self-assembly structures of 2,2‧:6‧,2‧‧-terpyridine-4‧-carboxylic acid (C16H11N3O2; YN) molecules and 3,5-diphenylbenzoic acid (C19H14O2; YC) molecules on Ag(110) surface have been investigated by scanning tunneling microscopy (STM) and Density Functional Theory (DFT) calculation. The YC molecules form two different well-organized structures due to the π-π stacking and dipole-dipole interactions. When three C atoms of YC molecules are replaced by three N atoms to form YN molecules, the main driving force to form ordered assembly structures of YN molecule is changed to metal-organic coordination bond and hydrogen bond. The dramatic changes of main driving force between YC/Ag(110) and YN/Ag(110) system demonstrate that the N atoms are apt to form metal-organic coordination bond and hydrogen bond but dipole-dipole interactions and π-π stacking are relative to C atoms. These findings further reveal that the optimization design of organic molecules could vary the main driving force and then lead to the change of the molecular self-assembly structures.

  12. Interactions of Enolizable Barbiturate Dyes.

    PubMed

    Schade, Alexander; Schreiter, Katja; Rüffer, Tobias; Lang, Heinrich; Spange, Stefan

    2016-04-11

    The specific barbituric acid dyes 1-n-butyl-5-(2,4-dinitro-phenyl) barbituric acid and 1-n-butyl-5-{4-[(1,3-dioxo-1H-inden-(3 H)-ylidene)methyl]phenyl}barbituric acid were used to study complex formation with nucleobase derivatives and related model compounds. The enol form of both compounds shows a strong bathochromic shift of the UV/Vis absorption band compared to the rarely coloured keto form. The keto-enol equilibria of the five studied dyes are strongly dependent on the properties of the environment as shown by solvatochromic studies in ionic liquids and a set of organic solvents. Enol form development of the barbituric acid dyes is also associated with alteration of the hydrogen bonding pattern from the ADA to the DDA type (A=hydrogen bond acceptor site, D=donor site). Receptor-induced altering of ADA towards DDA hydrogen bonding patterns of the chromophores are utilised to study supramolecular complex formation. As complementary receptors 9-ethyladenine, 1-n-butylcytosine, 1-n-butylthymine, 9-ethylguanidine and 2,6-diacetamidopiridine were used. The UV/Vis spectroscopic response of acid-base reaction compared to supramolecular complex formation is evaluated by (1)H NMR titration experiments and X-ray crystal structure analyses. An increased acidity of the barbituric acid derivative promotes genuine salt formation. In contrast, supramolecular complex formation is preferred for the weaker acidic barbituric acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hydrogen-bonding A(LS)2-type low-molecular-mass gelator and its thermotropic mesomorphic behavior.

    PubMed

    Hou, Qiufei; Wang, Shichao; Zang, Libin; Wang, Xiaoliang; Jiang, Shimei

    2009-10-15

    A unique cholesterol-based A(LS)2-type gelator, which is a hydrogen-bonding complex based on an ALS-type non-gelator molecule 3-cholesteryl 4-(trans-2-(4-pyridinyl)vinyl)phenyl succinate and a counterpart 3-cholesteryloxycarbonylpropanoic acid, shows strong gelation ability in alcohol and aromatic solvents. The formed gel has a high Tg at low gelation concentration, and its xerogel shows fibrillar microstructure revealed by scanning electron microscopy (SEM). FTIR confirms the existence of intermolecular hydrogen bond in the gelator, and X-ray diffraction (XRD) analysis reveals that the gelator possesses a folded conformation in gel and self-assembles into the fibrillar structure mainly by van der Waals interaction between cholesteryl moieties of the gelator. Further more, the thermotropic behavior of the xerogel is studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), which shows typical optical textures of liquid crystals.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bie Haiying; Lu Jing; Yu Jiehui

    Three novel thiocyanate supramolecular compounds have been synthesized and characterized by X-ray diffraction and fluorescent spectra. Compound [pipH]{sub 2}[Co(NCS){sub 4}] (pip=piperazine) 1 possesses a two-dimensional layer connected by the combination of N-H...N hydrogen bonds and weak S...S contacts. Under the same conditions, using nickel salt instead of cobalt salt as a starting material, we obtained a different two-dimensional supramolecular layer [pipH]{sub 2}[Ni(NCS){sub 4}] 2 connected by unusual N-H...S hydrogen bonds and weak S...S contacts. In order to observe the influence of the dimension of ligand on the self-assembly structure, dabco was used for substituting pip, and compound [dabcoH]{sub 2}[Ni(NCS){sub 4}]more » (dabco=1,4-Diazabicyclo[2.2.2] octane) 3 was gained, which constructed two-dimensional, highly wavy network with hourglass-shaped cavities only through N-H...S hydrogen bonds.« less

  15. Pyrene-nucleobase conjugates: synthesis, oligonucleotide binding and confocal bioimaging studies.

    PubMed

    Jabłoński, Artur; Fritz, Yannic; Wagenknecht, Hans-Achim; Czerwieniec, Rafał; Bernaś, Tytus; Trzybiński, Damian; Woźniak, Krzysztof; Kowalski, Konrad

    2017-01-01

    Fluorescent pyrene-linker-nucleobase (nucleobase = thymine, adenine) conjugates with carbonyl and hydroxy functionalities in the linker were synthesized and characterized. X-ray single-crystal structure analysis performed for the pyrene-C(O)CH 2 CH 2 -thymine ( 2 ) conjugate reveals dimers of molecules 2 stabilized by hydrogen bonds between the thymine moieties. The photochemical characterization showed structure-dependent fluorescence properties of the investigated compounds. The conjugates bearing a carbonyl function represent weak emitters as compared to compounds with a hydroxy function in the linker. The self-assembly properties of pyrene nucleobases were investigated in respect to their binding to single and double strand oligonucleotides in water and in buffer solution. In respect to the complementary oligothymidine T 10 template in water, compounds 3 and 5 both show a self-assembling behavior according to canonical base-base pairing. However, in buffer solution, derivative 5 was much more effective than 3 in binding to the T 10 template. Furthermore the adenine derivative 5 binds to the double-stranded (dA) 10 -T 10 template with a self-assembly ratio of 112%. Such a high value of a self-assembly ratio can be rationalized by a triple-helix-like binding, intercalation, or a mixture of both. Remarkably, compound 5 also shows dual staining pattern in living HeLa cells. Confocal microscopy confirmed that 5 predominantly stains mitochondria but it also accumulates in the nucleoli of the cells.

  16. THz spectra and corresponding vibrational modes of DNA base pair cocrystals and polynucleotides.

    PubMed

    Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Huang, Lin; Liu, Yunfei; Li, Shuhua

    2018-07-05

    The generalized energy-based fragmentation (GEBF) approach has been applied to study the THz spectra and vibrational modes of base pair cocrystals under periodic boundary conditions (denoted as PBC-GEBF). Results of vibrational mode reveal that hydrogen bonds play a pivotal role in the pairing process of base crystals, where most NH and CH bonds stretch to some extent. We also found that hydrogen bonds of a self-made A:T cocrystal completely break in a transition from liquid to the solid state, while self-made C:G cocrystal is different and easier to form a cocrystal, as confirmed by X-ray diffraction (XRD) and terahertz (THz) spectra. Furthermore, we have studied DNA polynucleotides (in both A and B forms) found that the vibrational modes changed a lot during the process of their forming double strand. Despite the key role played by hydrogen bonds, the key contribution originates from collective motions of the main skeleton. A comparative study of the spectra of some stranded fragments suggests that different sequences or forms have similar spectra in THz band. They distinguish from each other mainly in the low-frequency regions, especially below 1 THz. This study would make great contributions to the molecular dynamics model based DNA long-chain structure simulation in the future study. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Fluorescence Correlation Spectroscopy to Study Diffusion of Polymer Chains within Layered Hydrogen-Bonded Polymer Films

    NASA Astrophysics Data System (ADS)

    Pristinski, Denis; Kharlampieva, Evguenia; Sukhishvili, Svetlana

    2002-03-01

    Fluorescence Correlation Spectroscopy (FCS) has been used to probe molecular motions within polymer multilayers formed by hydrogen-bonding sequential self-assembly. Polyethylene glycol (PEG) molecules were end-labeled with the fluorescent tags, and self-assembled with polymethacrylic acid (PMAA) using layer-by-layer deposition. We have found that molecules included in the top adsorbed layer have significant mobility at the millisecond time scale, probably due to translational diffusion. However, their dynamics deviate from classical Brownian motion with a single diffusion time. Possible reasons for the deviation are discussed. We found that motions were significantly slowed with increasing depth within the PEG/PMAA multilayer. This phenomena occured in a narrow pH range around 4.0 in which intermolecular interactions were relatively weak.

  18. The two faces of hydrogen-bond strength on triple AAA-DDD arrays.

    PubMed

    Lopez, Alfredo Henrique Duarte; Caramori, Giovanni Finoto; Coimbra, Daniel Fernando; Parreira, Renato Luis Tame; da Silva, Éder Henrique

    2013-12-02

    Systems that are connected through multiple hydrogen bonds are the cornerstone of molecular recognition processes in biology, and they are increasingly being employed in supramolecular chemistry, specifically in molecular self-assembly processes. For this reason, the effects of different substituents (NO2, CN, F, Cl, Br, OCH3 and NH2) on the electronic structure, and consequently on the magnitude of hydrogen bonds in triple AAA-DDD arrays (A=acceptor, D=donor) were evaluated in the light of topological [electron localization function (ELF) and quantum theory of atoms in molecules (QTAIM)], energetic [Su-Li energy-decomposition analysis (EDA) and natural bond orbital analysis (NBO)], and geometrical analysis. The results based on local H-bond descriptors (geometries, QTAIM, ELF, and NBO) indicate that substitutions with electron-withdrawing groups on the AAA module tend to strengthen, whereas electron-donating substituents tend to weaken the covalent character of the AAA-DDD intermolecular H-bonds, and also indicate that the magnitude of the effect is dependent on the position of substitution. In contrast, Su-Li EDA results show an opposite behavior when compared to local H-bond descriptors, indicating that electron-donating substituents tend to increase the magnitude of H-bonds in AAA-DDD arrays, and thus suggesting that the use of local H-bond descriptors describes the nature of H bonds only partially, not providing enough insight about the strength of such H bonds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The role of differing probe and target strand lengths in DNA microarrays investigated via Monte Carlo molecular simulation

    NASA Astrophysics Data System (ADS)

    Rivard, Brea R.; Cooper, Sarah J.; Stubbs, John M.

    2018-02-01

    DNA duplexes consisting of a 25mer together with shorter complementary sequences were studied over a range of temperature and surface binding motifs using a coarse-grained two-site nucleotide model. Results were analyzed in terms of hydrogen bonding interactions and structural characteristics and indicate that hybridization is most stable when furthest from the surface binding site. Strand elongation and straightening near the bound end are found to be correlated to duplex destabilization.

  20. Recognition of Watson-Crick base pairs: constraints and limits due to geometric selection and tautomerism

    PubMed Central

    Yusupov, Marat; Yusupova, Gulnara

    2014-01-01

    The natural bases of nucleic acids have a strong preference for one tautomer form, guaranteeing fidelity in their hydrogen bonding potential. However, base pairs observed in recent crystal structures of polymerases and ribosomes are best explained by an alternative base tautomer, leading to the formation of base pairs with Watson-Crick-like geometries. These observations set limits to geometric selection in molecular recognition of complementary Watson-Crick pairs for fidelity in replication and translation processes. PMID:24765524

  1. A Monte Carlo simulation study of associated liquid crystals

    NASA Astrophysics Data System (ADS)

    Berardi, R.; Fehervari, M.; Zannoni, C.

    We have performed a Monte Carlo simulation study of a system of ellipsoidal particles with donor-acceptor sites modelling complementary hydrogen-bonding groups in real molecules. We have considered elongated Gay-Berne particles with terminal interaction sites allowing particles to associate and form dimers. The changes in the phase transitions and in the molecular organization and the interplay between orientational ordering and dimer formation are discussed. Particle flip and dimer moves have been used to increase the convergency rate of the Monte Carlo (MC) Markov chain.

  2. Thio-phene-2-carbonyl azide.

    PubMed

    Hsu, Gene C; Singer, Laci M; Cordes, David B; Findlater, Michael

    2013-01-01

    The title compound, C5H3N3OS, is almost planar (r.m.s. deviation for the ten non-H atoms = 0.018 Å) and forms an extended layer structure in the (100) plane, held together via hydrogen-bonding inter-actions between adjacent mol-ecules. Of particular note is the occurrence of RC-H⋯N(-)=N(+)=NR inter-actions between an aromatic C-H group and an azide moiety which, in conjunction with a complementary C-H⋯O=C inter-action, forms a nine-membered ring.

  3. Spectral response of crystalline acetanilide and N -methylacetamide: Vibrational self-trapping in hydrogen-bonded crystals

    NASA Astrophysics Data System (ADS)

    Edler, Julian; Hamm, Peter

    2004-06-01

    Femtosecond pump-probe and Fourier transform infrared spectroscopy is applied to compare the spectral response of the amide I band and the NH-stretching band of acetanilide (ACN) and N -methylacetamide (NMA), as well as their deuterated derivatives. Both molecules form hydrogen-bonded molecular crystals that are regarded to be model systems for polypeptides and proteins. The amide I bands of both ACN and NMA show a temperature-dependent sideband, while the NH bands are accompanied by a sequence of equidistantly spaced satellite peaks. These spectral anomalies are interpreted as a signature of vibrational self-trapping. Two different types of states can be identified in both crystals in the pump-probe signal: a delocalized free-exciton state and a set of localized self-trapped states. The phonons that mediate self-trapping in ACN and deuterated ACN are identified by their temperature dependence, confirming our previous results. The study shows that the substructure of the NH band in NMA (amide A and amide B bands) originates, at least partly, from vibrational self-trapping and not, as often assumed, from a Fermi resonance.

  4. Controlling hydrogenation activity and selectivity of bimetallic surfaces and catalysts

    NASA Astrophysics Data System (ADS)

    Murillo, Luis E.

    Studies of bimetallic systems are of great interest in catalysis due to the novel properties that they often show in comparison with the parent metals. The goals of this dissertation are: (1) to expand the studies of self-hydrogenation and hydrogenation reactions on bimetallic surfaces under ultra high vacuum conditions (UHV) using different hydrocarbon as probe molecules; (2) to attempt to correlate the surface science findings with supported catalyst studies under more realistic conditions; and (3) to investigate the competitive hydrogenation of C=C versus C=O bonds on Pt(111) modified by different 3d transition metals. Hydrogenation studies using temperature programmed desorption (TPD) on Ni/Pt(111) bimetallic surfaces have demonstrated an enhancement in the low temperature hydrogenation activity relative to that of clean Pt(111). This novel hydrogenation pathway can be achieved under UHV conditions by controlling the structures of the bimetallic surfaces. A low temperature hydrogenation activity of 1-hexene and 1-butene has been observed on a Pt-Ni-Pt(111) subsurface structure, where Ni atoms are mainly present on the second layer of the Pt(111) single crystal. These results are in agreement with previous studies of self-hydrogenation and hydrogenation of cyclohexene. However, a much higher dehydrogenation activity is observed in the reaction of cyclohexene to produce benzene, demonstrating that the hydrocarbon structure has an effect on the reaction pathways. On the other hand, self-hydrogenation of 1-butene is not observed on the Pt-Ni-Pt(111) surface, indicating that the chain length (or molecular weight) has a significant effect on the selfhydrogenation activity. The gas phase reaction of cyclohexene on Ni/Pt supported on alumina catalysts has also shown a higher self-hydrogenation activity in comparison with the same reaction performed on supported monometallic catalysts. The effects of metal loading and impregnation sequence of the metal precursors are also discussed. Chemisorption, TPD, FTIR using a batch reactor for the self-hydrogenation of cyclohexene and CO adsorbed on the bimetallic surfaces were carried out to correlate surface science findings with experiments on supported bimetallic catalysts. To expand the studies on the effect of bimetallic structures on hydrogenation reactions, molecules with multiple functional groups such as alpha,beta-unsaturated aldehydes were also investigated. Studies of selective hydrogenation of a,ss-unsaturated aldehydes toward the desired unsaturated alcohols are of interest for the production of fine chemicals and pharmaceuticals. In these compounds, competitive hydrogenation of the C=C and C=O bonds occurs. TPD and HREELS experiments of acrolein (CH2=CH-CH=O) on Pt-based bimetallic surfaces are performed to investigate their effects on the hydrogenation activity of the C-O bond. The production of the desired unsaturated alcohol, allyl alcohol, has been observed for the first time on Pt-Ni-Pt(111) under UHV conditions. However, the propionaldehyde yield is five times higher than the allyl alcohol yield. Thus, a preferential isomerization reaction of allyl alcohol to propionaldehyde is very likely to occur on the Pt-Ni-Pt(111) surface as observed on the desorption studies of allyl alcohol on this surface. The hydrogenation of acrolein is also carried out under UHV conditions on other 3d-transition metal/Pt(111) surfaces such as Co/Pt(111), Fe/Pt(111), and Cu/Pt(111). So far, the highest activity and allyl alcohol yield are found on the Pt-Ni-Pt(111) surface with pre-adsorbed hydrogen.

  5. One barbiturate and two solvated thiobarbiturates containing the triply hydrogen-bonded ADA/DAD synthon, plus one ansolvate and three solvates of their coformer 2,4-diaminopyrimidine.

    PubMed

    Hützler, Wilhelm Maximilian; Egert, Ernst; Bolte, Michael

    2016-09-01

    A path to new synthons for application in crystal engineering is the replacement of a strong hydrogen-bond acceptor, like a C=O group, with a weaker acceptor, like a C=S group, in doubly or triply hydrogen-bonded synthons. For instance, if the C=O group at the 2-position of barbituric acid is changed into a C=S group, 2-thiobarbituric acid is obtained. Each of the compounds comprises two ADA hydrogen-bonding sites (D = donor and A = acceptor). We report the results of cocrystallization experiments of barbituric acid and 2-thiobarbituric acid, respectively, with 2,4-diaminopyrimidine, which contains a complementary DAD hydrogen-bonding site and is therefore capable of forming an ADA/DAD synthon with barbituric acid and 2-thiobarbituric acid. In addition, pure 2,4-diaminopyrimidine was crystallized in order to study its preferred hydrogen-bonding motifs. The experiments yielded one ansolvate of 2,4-diaminopyrimidine (pyrimidine-2,4-diamine, DAPY), C4H6N4, (I), three solvates of DAPY, namely 2,4-diaminopyrimidine-1,4-dioxane (2/1), 2C4H6N4·C4H8O2, (II), 2,4-diaminopyrimidine-N,N-dimethylacetamide (1/1), C4H6N4·C4H9NO, (III), and 2,4-diaminopyrimidine-1-methylpyrrolidin-2-one (1/1), C4H6N4·C5H9NO, (IV), one salt of barbituric acid, viz. 2,4-diaminopyrimidinium barbiturate (barbiturate is 2,4,6-trioxopyrimidin-5-ide), C4H7N4(+)·C4H3N2O3(-), (V), and two solvated salts of 2-thiobarbituric acid, viz. 2,4-diaminopyrimidinium 2-thiobarbiturate-N,N-dimethylformamide (1/2) (2-thiobarbiturate is 4,6-dioxo-2-sulfanylidenepyrimidin-5-ide), C4H7N4(+)·C4H3N2O2S(-)·2C3H7NO, (VI), and 2,4-diaminopyrimidinium 2-thiobarbiturate-N,N-dimethylacetamide (1/2), C4H7N4(+)·C4H3N2O2S(-)·2C4H9NO, (VII). The ADA/DAD synthon was succesfully formed in the salt of barbituric acid, i.e. (V), as well as in the salts of 2-thiobarbituric acid, i.e. (VI) and (VII). In the crystal structures of 2,4-diaminopyrimidine, i.e. (I)-(IV), R2(2)(8) N-H...N hydrogen-bond motifs are preferred and, in two structures, additional R3(2)(8) patterns were observed.

  6. Selective Attachment of Nucleic Acid Molecules to Patterned Self-Assembled Surfaces.

    DTIC Science & Technology

    1994-12-01

    of different sequence is accomplished by placement of 8 liquid portions of nucleic acids at the desired position on the 9 filter. This method is...acids are selectively 24 bound from regions to which nucleic acids are excluded, other than 25 by placement of liquid aliquots (generally >1 Al) of...is typically non-covalent (i.e., ionic 16 bonding, or, less often, hydrogen bonding). Advantageously, non- 17 covalent bonding of nucleic acid

  7. Homopolymer self-assembly into stable nanoparticles: concerted action of hydrophobic association and hydrogen bonding in thermoresponsive poly(alkylacrylic acid)s.

    PubMed

    Sedlák, Marián

    2012-03-01

    A new approach to polymer self-assembly was presented recently [M. Sedlák, Č. Koňák, J. Dybal, Macromolecules 2009, 2, 7430-7438 and 7439-7446.] (1, 2) where stable polymeric nanoparticles were formed from poly(ethylacrylic acid) homopolymers without any assembly triggering additives, simply by heating polymer solution under conditions of thermosensitivity to certain temperature. In the current Article, we present successful results on poly(propylacrylic acid), which is a more hydrophobic polymer. We also present results on a less hydrophobic polymer from this series, poly(methacrylic acid), from which nanoparticles cannot be formed. Comparison of results on all three polymers gives a solid physicochemical insight and supports the molecular mechanism of the self-assembly previously suggested: The solvent quality gradually worsens upon heating of a thermosensitive polymer solution, and polymer-polymer contacts are preferred over polymer-solvent contacts, which leads to the formation of polymer assemblies. The presence of a significant amount of charge on chains prevents macroscopic phase separation. Upon subsequent cooling to laboratory temperature, the assemblies (nanoparticles) should eventually dissolve; however, this is not the case due to the fact that polymer chains brought to a close proximity at elevated temperatures become hydrogen-bonded. In addition, hydrogen bonds strengthen upon cooling. Mainly carboxylic-carboxylate hydrogen bonds (COOH····COO(-)) are responsible for the irreversibility of the process and the stability of nanoparticles. Conclusions are supported by results from static and dynamic light scattering, FTIR spectroscopy, and cryo-TEM microscopy. Size of nanoparticles can be monitored during the growth and custom-tailored by tuning critical parameters, especially the degree of ionization, temperature, and time of heating. Nanoparticles are stable over long periods of time. They are stable in a broad range of salt concentrations, including physiological conditions, and possess a mild acceptable degree of polydispersity.

  8. Chromatographic Assessment of Hydrogen-Bond Donating Ability

    DTIC Science & Technology

    1993-04-22

    hydrogen-bond donors used in cocrystallizations . Hydrogen-bond donor solutes are chromatographed on a poly(vinylpyridine-divinylbenzene) column under...provides an a priori measure of the hydrogen- bond acidity of a potential cocrystal component. 20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT...general heuristic principle that has guided our cocrystallization studies is "the best hydrogen-bond donor hydrogen bonds to the best hydrogen-bond acceptor

  9. H-Bonding Assisted Self-Assembly of Anionic and Neutral Ligand on Metal: A Comprehensive Strategy To Mimic Ditopic Ligands in Olefin Polymerization.

    PubMed

    Mote, Nilesh R; Patel, Ketan; Shinde, Dinesh R; Gaikwad, Shahaji R; Koshti, Vijay S; Gonnade, Rajesh G; Chikkali, Samir H

    2017-10-16

    Self-assembly of two neutral ligands on a metal to mimic bidentate ligand coordination has been frequently encountered in the recent past, but self-assembly of an anionic ligand on a metal template alongside a neutral ligand remains an elusive target. Such a self-assembly is hampered by additional complexity, wherein a highly negatively charged anion can form intermolecular hydrogen bonding with the supramolecular motif, leaving no scope for self-assembly with neutral ligand. Presented here is the self-association of anionic ligand 3-ureidobenzoic acid (2a) and neutral ligand 1-(3-(diphenylphosphanyl)phenyl)urea (1a) on a metal template to yield metal complex [{COOC 6 H 4 NH(CO)NH 2 }{Ph 2 PC 6 H 4 NH(CO)NH 2 }PdMeDMSO] (4a). The identity of 4a was established by NMR and mass spectroscopy. Along the same lines, 3-(3-phenylureido)benzoic acid (2b) and 1-(3-(diphenylphosphanyl)phenyl)-3-phenylurea (1b) self-assemble on a metal template to produce palladium complex [{COOC 6 H 4 NH(CO)NHPh}{Ph 2 PC 6 H 4 NH(CO)NHPh}PdMePy] (5c). The existence of 5c was confirmed by Job plot, 1-2D NMR spectroscopy, deuterium labeling, IR spectroscopy, UV-vis spectroscopy, model complex synthesis, and DFT calculations. These solution and gas phase investigations authenticated the presence of intramolecular hydrogen bonding between hydrogen's of 1b and carbonyl oxygen of 2b. The generality of the supramolecular approach has been validated by preparing six complexes from four monodentate ligands, and their synthetic utility was demonstrated in ethylene polymerization. Complex 4a was found to be the most active, leading to the production of highly branched polyethylene with a molecular weight of 55700 g/mol and melting temperature of 112 °C.

  10. Chemical and constitutional influences in the self-assembly of functional supramolecular hydrogen-bonded nanoscopic fibres.

    PubMed

    Puigmartí-Luis, Josep; Minoia, Andrea; Pérez Del Pino, Angel; Ujaque, Gregori; Rovira, Concepció; Lledós, Agustí; Lazzaroni, Roberto; Amabilino, David B

    2006-12-13

    A new series of secondary amides bearing long alkyl chains with pi-electron-donor cores has been synthesized and characterised, and their self-assembly upon casting at surfaces has been studied. The different supramolecular assemblies of the materials have been visualized by using atomic force microscopy (AFM) and transmission electron microscopy (TEM). It is possible to obtain well-defined fibres of these aromatic core molecules as a result of the hydrogen bonds between the amide groups. Indeed, by altering the alkyl-chain lengths, constitutions, concentrations and solvent, it is possible to form different rodlike aggregates on graphite. Aggregate sizes with a lower limit of 6-8 nm width have been reached for different amide derivatives, while others show larger aggregates with rodlike morphologies which are several micrometers in length. For one compound that forms nanofibres, doping was performed by using a chemical oxidant, and the resulting layer on graphite was shown to exhibit metallic-like spectroscopy curves when probed with current-sensing AFM. This technique also revealed current maps of the surface of the molecular material. Fibre formation not only takes place on the graphite surface: nanometre scale rods have been imaged by using TEM on a grid after evaporation of solutions of the compounds in chloroform. Molecular modelling proves the importance of the hydrogen bonds in the generation of the fibres, and indicates that the constitution of the molecules is vital for the formation of the desired columnar stacks, results that are consistent with the images obtained by microscopic techniques. The results show the power of noncovalent bonds in self-assembly processes that can lead to electrically conducting nanoscale supramolecular wires.

  11. Pyromellitamide aggregates and their response to anion stimuli.

    PubMed

    Webb, James E A; Crossley, Maxwell J; Turner, Peter; Thordarson, Pall

    2007-06-06

    The N,N',N'',N'''-1,2,4,5-tetra(ethylhexanoate) pyromellitamide is found to be capable of both intermolecular aggregation and binding to small anions. It is synthesized by aminolysis of pyromellitic anhydride with ethanolamine, followed by a reaction with hexanoyl chloride. The single-crystal X-ray structure of the pyromellitamide shows that it forms one-dimensional columnar stacks through an intermolecular hydrogen-bonding network. It also forms self-assembled gels in nonpolar solvents, presumably by a hydrogen-bonding network similar to the solid-state structure as shown by IR and XRD studies. Aggregation by intermolecular hydrogen bonding of the pyromellitamide is also observed by NMR and IR in solution. Fitting of NMR dilution data for pyromellitamide in d6-acetone to a cooperative aggregation model gave KE=232 M-1 and positive cooperativity of aggregation (rho=0.22). The pyromellitamide binds to a range of small anions with the binding strength decreasing in the order chloride>acetate>bromide>nitrate approximately iodide. The data indicate that the pyromellitamide binds two anions and that it displays negative cooperativity. The intermolecular aggregation of the pyromellitamide can also be altered using small anion stimuli; anion addition to preformed self-assembled pyromellitamide gels causes their collapse. The kinetics of anion-induced gel collapse are qualitatively correlated to the binding affinities of the same anions in solution. The cooperative anion binding properties and the sensitivity of the self-assembled gels formed by pyromellitamide toward anions could be useful in the development of sensors and switching/releasing devices.

  12. Preparation of high toughness nanocomposite hydrogel with UV protection performance and self-healing property

    NASA Astrophysics Data System (ADS)

    He, Xiaoyan; Wang, Meng; Zhang, Caiyun; Liu, Liqin

    2017-07-01

    An ultraviolet shielding hydrogel of P(NaSS-co-MPTC)/TiO2 was prepared by introducing TiO2 nanoparticles (TiO2 NPS) into polyampholyte matrix through photo-initiated radical copolymerization of cationic monomer of 3-(methacrylamide) propyltrimethylammonium chloride (MPTC) and anionic monomer of sodium 4-vinylbenzenesulfonate (NaSS) in the aqueous solution of sodium chloride (NaCl). FTIR, XPS, TEM, XRD, and SEM were used to characterize the morphology and structure of hydrogel of P(NaSS-co-MPTC)/TiO2. The result showed that anatase TiO2 NPS with the size about 15 20 nm were not just acted as ultraviolet shielding agent and general photo-initiator, they also could be crosslinked in polyampholyte matrix by hydrogen bonding between hydroxyl groups on the surface of TiO2 NPS and sulfonate groups on the polymer chains. Based on two kinds of reversible weak bonds of hydrogen bond and ionic bond, the P(NaSS-co-MPTC)/TiO2 hydrogel exhibited excellent mechanical properties and self-healing ability at ambient conditions, which will greatly increase its service life being a UV inhibitor.

  13. Spectroscopic and theoretical investigations of alkali metal linoleates and oleinates

    NASA Astrophysics Data System (ADS)

    Świsłocka, Renata; Regulska, Ewa; Jarońko, Paweł; Lewandowski, Włodzimierz

    2017-11-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the linoleic (cis-9,cis-12-octadecadienoic) and oleic (cis-9-octadecenoic) acids was investigated. The complementary analytical methods: vibrational (IR, Raman) and electronic (UV) molecular absorption spectroscopy as well as DFT quantum mechanical calculations (charge distribution, angles between bonds, bond lengths, theoretical IR and NMR spectra) were carried out. The regular shifts of bands connected with carboxylate anion in the spectra of studied salts were observed. Some bonds and angles reduced or elongated in the series: acid→Li→Na→K linoleates/oleinates. The highest changes were noted for bond lengths and angles concerning COO- ion. The electronic charge distribution in studied molecules was also discussed. Total atomic charges of carboxylate anion decrease as a result of the replacement of hydrogen atom with alkali metal cation. The increasing values of dipole moment and decreasing values of total energy in the order: linoleic/oleic acid→lithium→sodium→potassium linoleates/oleinates indicate an increase in stability of the compounds.

  14. Self-Attractive Hartree Decomposition: Partitioning Electron Density into Smooth Localized Fragments.

    PubMed

    Zhu, Tianyu; de Silva, Piotr; Van Voorhis, Troy

    2018-01-09

    Chemical bonding plays a central role in the description and understanding of chemistry. Many methods have been proposed to extract information about bonding from quantum chemical calculations, the majority of them resorting to molecular orbitals as basic descriptors. Here, we present a method called self-attractive Hartree (SAH) decomposition to unravel pairs of electrons directly from the electron density, which unlike molecular orbitals is a well-defined observable that can be accessed experimentally. The key idea is to partition the density into a sum of one-electron fragments that simultaneously maximize the self-repulsion and maintain regular shapes. This leads to a set of rather unusual equations in which every electron experiences self-attractive Hartree potential in addition to an external potential common for all the electrons. The resulting symmetry breaking and localization are surprisingly consistent with chemical intuition. SAH decomposition is also shown to be effective in visualization of single/multiple bonds, lone pairs, and unusual bonds due to the smooth nature of fragment densities. Furthermore, we demonstrate that it can be used to identify specific chemical bonds in molecular complexes and provides a simple and accurate electrostatic model of hydrogen bonding.

  15. Characterization and reactivity of organic monolayers on gold and platinum surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chien-Ching

    1995-12-06

    Purpose is to understand how the mobilization, dielectric, orientation, composition, coverage, and structure of self-assembled organic monolayers on metal surfaces affects the surface reactivities and properties of these films in order to facilitate the construction of desired films. Two model systems were used: tiols at Au and aromatic acids at Pt. Surface analysis methods, including contact angle, electrochemistry, ellipsometry, infrared reflection absorption spectroscopy (IRRAS), and x-ray photospectroscopy, were used to study the self-assembled organic monolayers on Au and Pt. IRRAS, contact angle, and electrochemistry were used to determine the surface pK a of phenylcarboxylic acids and pyridylcarboxylic acids monolayers onmore » Pt. These techniques were also used to determine the orientation of polymethylene chain axis and the carboxylic follow the structural evolution of the chains and end group of the thiolate monolayers during formation. IRRAS was also used to assess the carboxylic acid group in terms of its possible existence as the non-hydrogen-bonded species, the hydrogen-bonded dimeric group, and the hydrogen-bonded polymeric group. These different forms of the end group were also followed vs coverage, as well as the reactivity vs solution pH. IRRAS and contact angle were used to calculate the rate constant of the esterification of carboxylic acid-terminated monolayers on Au.« less

  16. Role of Naphthenic Acids in Controlling Self-Aggregation of a Polyaromatic Compound in Toluene.

    PubMed

    Teklebrhan, Robel B; Jian, Cuiying; Choi, Phillip; Xu, Zhenghe; Sjöblom, Johan

    2016-04-14

    In this work, a series of molecular dynamics simulations were performed to investigate the effect of naphthenic acids (NAs) in early stage self-assembly of polyaromatic (PA) molecules in toluene. By exploiting NA molecules of the same polar functional group but different aliphatic/cycloaliphatic nonpolar tails, it was found that irrespective of the presence of the NA molecules in the system, the dominant mode of π-π stacking is a twisted, offset parallel stacking of a slightly larger overlapping area. Unlike large NA molecules, the presence of small NA molecules enhanced the number of π-π stacked PA molecules by suppressing the hydrogen bonding interactions among the PA molecules. Smaller NA molecules were found to have a higher tendency to associate with PA molecules than larger NA molecules. Moreover, the size and distribution of π-π stacking structures were affected to different degrees by changing the size and structural features of the NA molecules in the system. It was further revealed that the association between NA and PA molecules, mainly through hydrogen bonding, creates a favorable local environment for the overlap of PA cores (i.e., π-π stacking growth) by depressing the hydrogen bonding between PA molecules, which results in the removal of some toluene molecules from the vicinity of the PA molecules.

  17. Self-encapsulation of [MII(phen)2(H2O)2]2+ (M=Co, Zn) in one-dimensional nanochannels of [MII(H2O)6(BTC)2]4- (M=Co, Cu, Mn): a high HQ/CAT ratio catalyst for hydroxylation of phenols.

    PubMed

    Bi, Jianhong; Kong, Lingtao; Huang, Zixiang; Liu, Jinhuai

    2008-06-02

    Four novel three-dimensional (3D) microporous supramolecular compounds containing nanosized channels, namely, [Co(phen)2(H2O)2]2[Co(H2O)6].2BTC.21.5H2O (1), [Co(phen)2(H2O)2]2[Cu(H2O)6].2BTC.21.5H2O (2), [Co(phen)2(H2O)2]2[Mn(H2O)6].2BTC.18H2O (3), and [Zn(phen)2(H2O)2]2[Mn(H2O)6].2BTC.22.5H2O (4), were synthesized from 1,3,5-benzenetricarboxylate (BTC), 1,10-phenanthroline (phen), and the transition-metal salt(s) by self-assembly. Single-crystal X-ray structural analysis showed that the resulting 3D microporous supramolecular frameworks consist of a two-dimensional (2D) hydrogen-bonded host framework of [MII(H2O)6(BTC)2]4- (M=Co for 1, Cu for 2, Mn for 3, 4) with rectangular-shaped cavities containing [MII(phen)2(H2O)2]2+ (M=Co for 1-3, Zn for 4) guests. The guest complex is encapsulated in the 2D hydrogen-bonded host framework by hydrogen bonding and aromatic pi-pi stacking interactions, forming the 3D hydrogen-bonded framework. The catalytic activities of 1, 2, 3, and 4 were studied using hydroxylation of phenols with 30% aqueous H2O2 as a test reaction. The compounds displayed a good phenol conversion ratio and excellent channel selectivity in the hydroxylation reaction, with a maximum hydroquinone (HQ)/catechol (CAT) ratio of 3.9.

  18. Structual Effects of Cytidine 2^' Ribose Modifications as Determined by Irmpd Action Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hamlow, Lucas; He, Chenchen; Fan, Lin; Wu, Ranran; Yang, Bo; Rodgers, M. T.; Berden, Giel; Oomens, J.

    2015-06-01

    Modified nucleosides, both naturally occurring and synthetic play an important role in understanding and manipulating RNA and DNA. Naturally occurring modified nucleosides are commonly found in functionally important regions of RNA and also affect antibiotic resistance or sensitivity. Synthetic modifications of nucleosides such as fluorinated and arabinosyl nucleosides have found uses as anti-virals and chemotherapy agents. Understanding the effect that modifications have on structure and glycosidic bond stability may lend insight into the functions of these modified nucleosides. Modifications such as the naturally occurring 2^'-O-methylation and the synthetic 2^'-fluorination are believed to help stabilize the nucleoside through the glycosidic bond stability and intramolecular hydrogen bonding. Changing the sugar from ribose to arabinose alters the stereochemistry at the 2^' position and thus shifts the 3D orientation of the 2^'-hydroxyl group, which also affects intramolecular hydrogen bonding and glycosidic bond stability. The structures of 2^'-deoxy-2^'-fluorocytidine, 2^'-O-methylcytidine and cytosine arabinoside are examined in the current work by measuring the infrared spectra in the IR fingerprint region using infrared multiple photon dissociation (IRMPD) action spectroscopy. The structures accessed in the experiments were determined via comparison of the measured IRMPD action spectra to the theoretical linear IR spectra determined by density functional theory and molecular modeling for the stable low-energy structures. Although glycosidic bond stability cannot be quantitatively determined from this data, complementary TCID studies will establish the effect of these modifications. Comparison of these modified nucleosides with their RNA and DNA analogues will help elucidate differences in their intrinsic chemistry.

  19. Molecular Structure of a Helical ribbon in a Peptide Self-Assembly

    NASA Astrophysics Data System (ADS)

    Hwang, Wonmuk; Marini, Davide; Kamm, Roger D.; Zhang, Shuguang

    2002-03-01

    We have studied the molecular structure of nanometer scale helical ribbons observed during self-assembly of the peptide KFE8 (amino acid sequence: FKFEFKFE) (NanoLetters (2002, in press)). By analyzing the hydrogen bonding patterns between neighboring peptide backbones, we constructed a number of possible β-sheets. Using all possible combinations of these, we built helical ribbons with dimensions close to those found experimentally and performed molecular dynamics simulations to identify the most stable structure. Solvation effects were implemented by the analytic continuum electrostatics (ACE) model developed by Schaefer and Karplus (J. Phys. Chem. 100, 1578 (1996)). By applying electrostatic double layer theory, we incorporated the effect of pH by scaling the amount of charge on the sidechains. Our results suggest that the helical ribbon is comprised of a double β-sheet where the inner and the outer helices have distinct hydrogen bonding patterns. Our approach has general applicability to the study of helices formed by the self-assembly of β-sheet forming peptides with various amino acid sequences.

  20. New Polymorph Form of Dexamethasone Acetate.

    PubMed

    Silva, Ronaldo Pedro da; Ambrósio, Mateus Felipe Schuchter; Piovesan, Luciana Almeida; Freitas, Maria Clara Ramalho; Aguiar, Daniel Lima Marques de; Horta, Bruno Araújo Cautiero; Epprecht, Eugenio Kahn; San Gil, Rosane Aguiar da Silva; Visentin, Lorenzo do Canto

    2018-02-01

    A new monohydrated polymorph of dexamethasone acetate was crystallized and its crystal structure characterized. The different analytical techniques used for describing its structural and vibrational properties were: single crystal and polycrystal X-ray diffraction, solid state nuclear magnetic resonance, infrared spectroscopy. A Hirshfeld surface analysis was carried out through self-arrangement cemented by H-bonds observed in this new polymorph. This new polymorph form appeared because of self-arrangement via classical hydrogen bonds around the water molecule. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Thermally controllable reflective characteristics from rupture and self-assembly of hydrogen bonds in cholesteric liquid crystals.

    PubMed

    Hu, Wang; Cao, Hui; Song, Li; Zhao, Haiyan; Li, Sijin; Yang, Zhou; Yang, Huai

    2009-10-22

    A cholesteric liquid crystal (Ch-LC) composite, made of a series of cholesteryl esters, a nematic LC, and a hydrogen bond (H-bond) chiral dopant (HCD), was prepared and filled into a planar treated cell. When the cell was heated, the selective reflection of the cell exhibited an unusual blue shift. One of the reasonable mechanisms was that the helical twisting power (HTP) value of cholesteryl esters increased with an increasing temperature. The other one was that the H-bonds of HCD were ruptured when the temperature was above 60.0 degrees C and HCD was split into two kinds of new chiral dopants, which made the HTP value of the chiral dopants change a lot, thus changing the pitch length of the composite greatly. On the basis of this mechanism, a novel thermally controllable reflective color paper could be achieved.

  2. Catalytic coupling of sp2- and sp-hybridized carbon-hydrogen bonds with vinylmetalloid compounds.

    PubMed

    Marciniec, Bogdan

    2007-10-01

    In the Account given herein, it has been shown that silylative coupling of olefins, well-recognized as a new catalytic route for the activation of double bond C-H bond of olefins and double bond C-Si bond of vinylsilicon compounds with ethylene elimination, can be extended over both other vinylmetalloid derivatives (double bond C-E) (where E = Ge, B, and others) as well as the activation of triple bond C-H, double bond C aryl-H, and -O-H bond of alcohols and silanols. This general transformation is catalyzed by transition-metal complexes (mainly Ru and Rh) containing or initiating TM-H and/or TM-E bonds (inorganometallics). This new general catalytic route for the activation of double bond C-H and triple bond C-H as well as double bond C-E bonds called metallative coupling or trans-metalation (cross-coupling, ring-closing, and polycondensation) constitutes an efficient method (complementary to metathesis) for stereo- and regioselective synthesis of a variety of molecular and macromolecular compounds of vinyl-E (E = Si, B, and Ge) and ethynyl-E (E = Si and Ge) functionality, also potent organometallic reagents for efficient synthesis of highly pi-conjugated organic compounds. The mechanisms of the catalysis of this deethenative metalation have been supported by equimolar reactions of TM-H and/or TM-E with initial substances and reactions with deuterium-labeled reagents.

  3. Hydrogen bonding. Part 25. The nature of the hydrogen bond in hydroxytropenylium chloride (tropone hydrochloride)

    NASA Astrophysics Data System (ADS)

    Harmon, Kenneth M.; Cross, Joan E.; Toccalino, Patricia L.

    1988-08-01

    Hydroxytropenylium iodide and bromide contain normal electrostatic OH⋯X - hydrogen bonds. Hydroxytropenylium chloride, however, contains a hydrogen bond intermediate between the normal electrostatic type and the very strong covalent type, similar to the hydrogen bonds found in choline fluoride or the Type I C∞v hydrogen dihalide ions. Infrared comparisons with compounds previously studied demonstrate that the hydroxytropenylium ion is a stronger hydrogen bond donor than either choline cation or protonated betaine cation, and suggest that hydroxytropenylium fluoride, if it can be prepared, should contain a three-center covalent hydrogen bond.

  4. Structural and electronic properties of barbituric acid and melamine-containing ribonucleosides as plausible components of prebiotic RNA: implications for prebiotic self-assembly.

    PubMed

    Kaur, Sarabjeet; Sharma, Purshotam; Wetmore, Stacey D

    2017-11-22

    The RNA world hypothesis assumes that RNA was the first informational polymer that originated from prebiotic chemical soup. However, since the reaction of d-ribose with canonical nucleobases (A, C, G and U) fails to yield ribonucleosides (rNs) in substantial amounts, the spontaneous origin of rNs and the subsequent synthesis of RNA remains an unsolved mystery. To this end, it has been suggested that RNA may have evolved from primitive genetic material (preRNA) composed of simpler prebiotic heterocycles that spontaneously form glycosidic bonds with ribose. As an effort toward evaluating this hypothesis, the present study uses density functional theory (DFT) to assess the suitability of barbituric acid (BA) and melamine (MM) to act as prebiotic nucleobases, both of which have recently been shown to spontaneously form a glycosidic bond with ribose and organize into supramolecular assemblies in solution. The significant strength of hydrogen bonds involving BA and MM indicates that such interactions may have played a crucial role in their preferential selection over competing heterocycles that interact solely through stacking interactions from the primordial soup during the early phase of evolution. However, the greater stability of stacked dimers involving BA or MM and the canonical nucleobases compared to those consisting solely of BA and/or MM points towards the possible evolution of intermediate informational polymers consisting of prebiotic and canonical nucleobases, which could have eventually evolved into RNA. Analysis of the associated rNs reveals an anti conformational preference for the biologically-relevant β-anomer of both BA and MM rNs, which will allow complementary WC-like hydrogen bonding that can stabilize preRNA polymers. Large calculated deglycosylation barriers suggest BA rNs containing C-C glycosidic bonds are relevant in challenging prebiotic environments such as volcanic geotherms, while lower barriers indicate the MM rNs containing C-N-C glycosidic linkages may have been more likely synthesized from simple precursors such as urea-ice in icy (polar) regions. Together, our quantum chemical data clarifies the physicochemical interactions and stability of potential prebiotically-relevant constituents of BA and MM polymeric assemblies, and complements information from previous experimental studies to bolster the candidature of these heterocycles as prebiotic nucleobases.

  5. H-Bond Self-Assembly: Folding versus Duplex Formation.

    PubMed

    Núñez-Villanueva, Diego; Iadevaia, Giulia; Stross, Alexander E; Jinks, Michael A; Swain, Jonathan A; Hunter, Christopher A

    2017-05-17

    Linear oligomers equipped with complementary H-bond donor (D) and acceptor (A) sites can interact via intermolecular H-bonds to form duplexes or fold via intramolecular H-bonds. These competing equilibria have been quantified using NMR titration and dilution experiments for seven systems featuring different recognition sites and backbones. For all seven architectures, duplex formation is observed for homo-sequence 2-mers (AA·DD) where there are no competing folding equilibria. The corresponding hetero-sequence AD 2-mers also form duplexes, but the observed self-association constants are strongly affected by folding equilibria in the monomeric states. When the backbone is flexible (five or more rotatable bonds separating the recognition sites), intramolecular H-bonding is favored, and the folded state is highly populated. For these systems, the stability of the AD·AD duplex is 1-2 orders of magnitude lower than that of the corresponding AA·DD duplex. However, for three architectures which have more rigid backbones (fewer than five rotatable bonds), intramolecular interactions are not observed, and folding does not compete with duplex formation. These systems are promising candidates for the development of longer, mixed-sequence synthetic information molecules that show sequence-selective duplex formation.

  6. Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin

    2014-08-01

    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.

  7. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.

    PubMed

    Moriuchi, Toshiyuki; Hirao, Toshikazu

    2010-07-20

    The highly ordered molecular assemblies in proteins can have a variety of functions, as observed in enzymes, receptors, and the like. Synthetic scientists are constructing bioinspired systems by harnessing the self-assembling properties of short peptides. Secondary structures such as alpha-helices, beta-sheets, and beta-turns are important in protein folding, which is mostly directed and stabilized by hydrogen bonding and the hydrophobic interactions of side chains. The design of secondary structure mimics that are composed of short peptides has attracted much attention, both for gaining fundamental insight into the factors affecting protein folding and for developing pharmacologically useful compounds, artificial receptors, asymmetric catalysts, and new materials. Ferrocenes are an organometallic scaffold with a central reverse-turn unit based on the inter-ring spacing of about 3.3 A, which is a suitable distance for hydrogen bonding between attached peptide strands. The conjugation of organometallic compounds with biomolecules such as amino acids, peptides, and DNA should provide novel systems that reflect properties of both the ferrocene and the biologically derived moieties. In this Account, we focus on recent advances in the design of ferrocene-peptide bioconjugates, which help illustrate the peptidomimetic basis for protein folding and the means of constructing highly ordered molecular assemblies. Ferrocene-peptide bioconjugates are constructed to form chirality-organized structures in both solid and solution states. The ferrocene serves as a reliable organometallic scaffold for the construction of protein secondary structures via intramolecular hydrogen bonding: the attached dipeptide strands are constrained within the appropriate dimensions. The introduction of the chiral dipeptide chains into the ferrocene scaffold induces the conformational enantiomerization of the ferrocenyl moiety; the chirality-organized structure results from intramolecular hydrogen bonding. The configuration and sequence of the amino acids are instrumental in the process. Regulation of the directionality and specificity of hydrogen bonding is a key component in the design of various molecular assemblies. Ferrocene-peptide bioconjugates also have a strong tendency to self-assemble through the contributions of available hydrogen-bonding donors in the solid state. Some ferrocene-peptide bioconjugates bearing only one dipeptide chain exhibit a helically ordered molecular assembly through a network of intermolecular (rather than intramolecular) hydrogen bonds. The propensity to form the chiral helicity appears to be controlled by the chirality of the dipeptide chains. Organization of host molecules is a useful strategy for forming artificial receptors. The conformationally regulated ferrocene-peptide bioconjugate provides the chirality-organized binding site for size-selective and chiral recognition of dicarboxylic acids through multipoint hydrogen bonds. Metal ions serve a variety of purposes in proteins, including structural stabilization for biological function. The complexation of ferrocene-peptide bioconjugates with palladium(II) compounds not only stabilizes the chirality conformational regulation but also induces conformational regulation of the dipeptide chain through complexation and intramolecular chirality organization. Construction of the chirality-organized ferrocene-peptide bioconjugates is also achieved by metal-directed assembly. These varied examples amply demonstrate the value of ferrocene-peptide bioconjugates in asserting architectural control over highly ordered molecular assemblies.

  8. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  9. Matrix isolation studies of hydrogen bonding - An historical perspective

    NASA Astrophysics Data System (ADS)

    Barnes, Austin J.

    2018-07-01

    An historical introduction sets matrix isolation in perspective with other spectroscopic techniques for studying hydrogen-bonded complexes. This is followed by detailed accounts of various aspects of hydrogen-bonded complexes that have been studied using matrix isolation spectroscopy: Matrix effects: stabilisation of complexes. Strongly hydrogen-bonded molecular complexes: the vibrational correlation diagram. Anomalous spectra: the Ratajczak-Yaremko model. Metastable complexes. Csbnd H hydrogen bonding and blue shifting hydrogen bonds.

  10. Influence of C-H···O Hydrogen Bonds on Macroscopic Properties of Supramolecular Assembly.

    PubMed

    Ji, Wei; Liu, Guofeng; Li, Zijian; Feng, Chuanliang

    2016-03-02

    For CH···O hydrogen bonds in assembled structures and the applications, one of the critical issues is how molecular spatial structures affect their interaction modes as well as how to translate the different modes into the macroscopic properties of materials. Herein, coumarin-derived isomeric hydrogelators with different spatial structures are synthesized, where only nitrogen atoms locate at the ortho, meso, or para position in the pyridine ring. The gelators can self-assemble into single crystals and nanofibrous networks through CH···O interactions, which are greatly influenced by nitrogen spatial positions in the pyridine ring, leading to the different self-assembly mechanisms, packing modes, and properties of the nanofibrous networks. Typically, different cell proliferation rates are obtained on the different CH···O bonds driving nanofibrous structures, implying that tiny variation of the stereo-position of nitrogen atoms can be sensitively detected by cells. The study paves a novel way to investigate the influence of isomeric molecular assembly on macroscopic properties and functions of materials.

  11. Pyrene–nucleobase conjugates: synthesis, oligonucleotide binding and confocal bioimaging studies

    PubMed Central

    Jabłoński, Artur; Fritz, Yannic; Wagenknecht, Hans-Achim; Czerwieniec, Rafał; Bernaś, Tytus; Trzybiński, Damian; Woźniak, Krzysztof

    2017-01-01

    Fluorescent pyrene–linker–nucleobase (nucleobase = thymine, adenine) conjugates with carbonyl and hydroxy functionalities in the linker were synthesized and characterized. X-ray single-crystal structure analysis performed for the pyrene–C(O)CH2CH2–thymine (2) conjugate reveals dimers of molecules 2 stabilized by hydrogen bonds between the thymine moieties. The photochemical characterization showed structure-dependent fluorescence properties of the investigated compounds. The conjugates bearing a carbonyl function represent weak emitters as compared to compounds with a hydroxy function in the linker. The self-assembly properties of pyrene nucleobases were investigated in respect to their binding to single and double strand oligonucleotides in water and in buffer solution. In respect to the complementary oligothymidine T10 template in water, compounds 3 and 5 both show a self-assembling behavior according to canonical base–base pairing. However, in buffer solution, derivative 5 was much more effective than 3 in binding to the T10 template. Furthermore the adenine derivative 5 binds to the double-stranded (dA)10–T10 template with a self-assembly ratio of 112%. Such a high value of a self-assembly ratio can be rationalized by a triple-helix-like binding, intercalation, or a mixture of both. Remarkably, compound 5 also shows dual staining pattern in living HeLa cells. Confocal microscopy confirmed that 5 predominantly stains mitochondria but it also accumulates in the nucleoli of the cells. PMID:29259662

  12. Recyclable graphene oxide grafted with poly(N-isopropylacrylamide) and its enhanced selective adsorption for phenols

    NASA Astrophysics Data System (ADS)

    Gong, Zailin; Li, Shujin; Han, Weifang; Wang, Jiaping; Ma, Jun; Zhang, Xiangdong

    2016-01-01

    The graphene oxide (GO) was synthesized with Brodie's method and grafted with poly (N-isopropylacrylamide) (NIPAM) in aqueous solution at ambient temperature. Compared with the initial GO, the PNIPAM graft GO (GO-PNIPAM) has larger surface area, pore volume and self-flocculation effect with rapid response to temperature. Moreover, the GO-PNIPAM also has selective adsorptions with different phenol pollutants because of the different interactions of hydrogen bonds and the molecule structure of the adsorbates. Compared with phenol and bisphenol A, hydroquinone has better adsorption on GO-PNIPAM because of the ample phenolic hydroxyl group and the appropriate molecule structure. The adsorption performance of hydroquinone on GO-PNIPAM is also temperature sensitive because of the thermoresponsive transition of the hydrogen bond. The thermoresponsive adsorption and self-flocculation will make the GO-PNIPAM recyclable in the potential water remediation.

  13. Raman Spectroscopy of Cocrystals

    NASA Astrophysics Data System (ADS)

    Rooney, Frank; Reardon, Paul; Ochoa, Romulo; Abourahma, Heba; Marti, Marcus; Dimeo, Rachel

    2010-02-01

    Cocrystals are a class of compounds that consist of two or more molecules that are held together by hydrogen bonding. Pharmaceutical cocrystals are those that contain an active pharmaceutical ingredient (API) as one of the components. Pharmaceutical cocrystals are of particular interest and have gained a lot of attention in recent years because they offer the ability to modify the physical properties of the API, like solubility and bioavailability, without altering the chemical structure of the API. The APIs that we targeted for our studies are theophylline (Tp) and indomethacin (Ind). These compounds have been mixed with complementary coformers (cocrystal former) that include acetamide (AcONH2), melamine (MLM), nicotinic acid (Nic-COOH), 4-cyanopyridine (4-CNPy) and 4-aminopyridine (4-NH2Py). Raman spectroscopy has been used to characterize these cocrystals. Spectra of the cocrystals were compared to those of the coformers to analyze for peak shifts, specifically those corresponding to hydrogen bonding. A 0.5 m CCD Spex spectrometer was used, in a micro-Raman setup, for spectral analysis. An Argon ion Coherent laser at 514.5 nm was used as the excitation source. )

  14. Hydrogen bond and halogen bond inside the carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  15. Hydrogen bonding in a mixture of protic ionic liquids: a molecular dynamics simulation study.

    PubMed

    Paschek, Dietmar; Golub, Benjamin; Ludwig, Ralf

    2015-04-07

    We report results of molecular dynamics (MD) simulations characterising the hydrogen bonding in mixtures of two different protic ionic liquids sharing the same cation: triethylammonium-methylsulfonate (TEAMS) and triethylammonium-triflate (TEATF). The triethylammonium-cation acts as a hydrogen-bond donor, being able to donate a single hydrogen-bond. Both, the methylsulfonate- and the triflate-anions can act as hydrogen-bond acceptors, which can accept multiple hydrogen bonds via their respective SO3-groups. In addition, replacing a methyl-group in the methylsulfonate by a trifluoromethyl-group in the triflate significantly weakens the strength of a hydrogen bond from an adjacent triethylammonium cation to the oxygen-site in the SO3-group of the anion. Our MD simulations show that these subtle differences in hydrogen bond strength significantly affect the formation of differently-sized hydrogen-bonded aggregates in these mixtures as a function of the mixture-composition. Moreover, the reported hydrogen-bonded cluster sizes can be predicted and explained by a simple combinatorial lattice model, based on the approximate coordination number of the ions, and using statistical weights that mostly account for the fact that each anion can only accept three hydrogen bonds.

  16. Crystalline modification of a rare earth nucleating agent for isotactic polypropylene based on its self-assembly.

    PubMed

    Zhang, Yuanming; Sun, Tingting; Jiang, Wei; Han, Guangting

    2018-05-01

    In this paper, the crystalline modification of a rare earth nucleating agent (WBG) for isotactic polypropylene (PP) based on its supramolecular self-assembly was investigated by differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscopy. In addition, the relationship between the self-assembly structure of the nucleating agent and the crystalline structure, as well as the possible reason for the self-assembly behaviour, was further studied. The structure evolution of WBG showed that the self-assembly structure changed from a needle-like structure to a dendritic structure with increase in the content of WBG. When the content of WBG exceeded a critical value (0.4 wt%), it self-assembled into a strip structure. This revealed that the structure evolution of WBG contributed to the K β and the crystallization morphology of PP with different content of WBG. In addition, further studies implied that the behaviour of self-assembly was a liquid-solid transformation of WBG, followed by a liquid-liquid phase separation of molten isotactic PP and WBG. The formation of the self-assembly structure was based on the free molecules by hydrogen bond dissociation while being heated, followed by aggregation into another structure by hydrogen bond association while being cooled. Furthermore, self-assembly behaviour depends largely on the interaction between WBG themselves.

  17. Intra- and intermolecular H-bond mediated tautomerization and dimerization of 3-methyl-1,2-cyclopentanedione: Infrared spectroscopy in argon matrix and CCl 4 solution

    NASA Astrophysics Data System (ADS)

    Samanta, Amit K.; Pandey, Prasenjit; Bandyopadhyay, Biman; Mukhopadhyay, Anamika; Chakraborty, Tapas

    2011-05-01

    Mid-infrared spectra of 3-methyl-1,2-cyclopentanedione (3-MeCPD) have been recorded by isolating the molecule in a cold argon matrix (8 K) and also in CCl 4 solution at room temperature. The spectral features reveal that in both media, the molecule exists exclusively in an enol tautomeric form, which is stabilized by an intramolecular O sbnd H⋯O hydrogen bond. NBO analysis shows that the preferred conformer is further stabilized because of hyperconjugation interaction between the methyl and vinyl group of the enol tautomer. In CCl 4 solution, the molecule undergoes extensive self association and generates a doubly hydrogen bonded centrosymmetric dimer. The dimerization constant ( K d) is estimated to have a value of ˜9 L mol -1 at room temperature (25 °C) and the thermodynamic parameters, Δ H°, Δ S° and Δ G°, of dimerization are estimated by measuring K d at several temperatures within the range 22-60 °C. The same dimer is also produced when the matrix is annealed at a higher temperature. In addition, a non-centrosymmetric singly hydrogen bonded dimer is also identified in the argon matrix. A comparison between the spectral features of the two dimers indicates that the dimerization effect on doubly H-bonded case is influenced by cooperative interaction between the two H-bonds.

  18. An effective hierarchical model for the biomolecular covalent bond: an approach integrating artificial chemistry and an actual terrestrial life system.

    PubMed

    Oohashi, Tsutomu; Ueno, Osamu; Maekawa, Tadao; Kawai, Norie; Nishina, Emi; Honda, Manabu

    2009-01-01

    Under the AChem paradigm and the programmed self-decomposition (PSD) model, we propose a hierarchical model for the biomolecular covalent bond (HBCB model). This model assumes that terrestrial organisms arrange their biomolecules in a hierarchical structure according to the energy strength of their covalent bonds. It also assumes that they have evolutionarily selected the PSD mechanism of turning biological polymers (BPs) into biological monomers (BMs) as an efficient biomolecular recycling strategy We have examined the validity and effectiveness of the HBCB model by coordinating two complementary approaches: biological experiments using existent terrestrial life, and simulation experiments using an AChem system. Biological experiments have shown that terrestrial life possesses a PSD mechanism as an endergonic, genetically regulated process and that hydrolysis, which decomposes a BP into BMs, is one of the main processes of such a mechanism. In simulation experiments, we compared different virtual self-decomposition processes. The virtual species in which the self-decomposition process mainly involved covalent bond cleavage from a BP to BMs showed evolutionary superiority over other species in which the self-decomposition process involved cleavage from BP to classes lower than BM. These converging findings strongly support the existence of PSD and the validity and effectiveness of the HBCB model.

  19. H+-type and OH--type biological protonic semiconductors and complementary devices

    NASA Astrophysics Data System (ADS)

    Deng, Yingxin; Josberger, Erik; Jin, Jungho; Rousdari, Anita Fadavi; Helms, Brett A.; Zhong, Chao; Anantram, M. P.; Rolandi, Marco

    2013-10-01

    Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H+ hop along chains of hydrogen bonds between water molecules and hydrophilic residues - proton wires. These wires also support the transport of OH- as proton holes. Discriminating between H+ and OH- transport has been elusive. Here, H+ and OH- transport is achieved in polysaccharide- based proton wires and devices. A H+- OH- junction with rectifying behaviour and H+-type and OH--type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H+ and OH- to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems.

  20. H+-type and OH−-type biological protonic semiconductors and complementary devices

    PubMed Central

    Deng, Yingxin; Josberger, Erik; Jin, Jungho; Rousdari, Anita Fadavi; Helms, Brett A.; Zhong, Chao; Anantram, M. P.; Rolandi, Marco

    2013-01-01

    Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H+ hop along chains of hydrogen bonds between water molecules and hydrophilic residues – proton wires. These wires also support the transport of OH− as proton holes. Discriminating between H+ and OH− transport has been elusive. Here, H+ and OH− transport is achieved in polysaccharide- based proton wires and devices. A H+- OH− junction with rectifying behaviour and H+-type and OH−-type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H+ and OH− to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems. PMID:24089083

  1. Synergizing Noncovalent Bonding Interactions in the Self-Assembly of Organic Charge-Transfer Ferroelectrics and Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Cao, Dennis

    Contemporary supramolecular chemistry---chemistry beyond the molecule---seeks to leverage noncovalent bonding interactions to generate emergent properties and complexity. These aims extend beyond the solution phase and into the solid state, where crystalline organic materials have attracted much attention for their ability to imitate the physical properties of inorganic crystals. This Thesis outlines my efforts to understand the properties of the solid-state materials that are self-assembled with noncovalent bonding motifs which I have helped to realize. In the first five Chapters, I chronicle the development of the lock-arm supramolecular ordering (LASO) paradigm, which is a general molecular design strategy for amplifying the crystallization of charge transfer complexes that revolves around the synergistic action of hydrogen bonding and charge transfer interactions. In an effort to expand upon the LASO paradigm, I identify a two-point halogen-bonding motif which appears to operate orthogonally from the hydrogen bonding and charge transfer interactions. Since some of these single crystalline materials are ferroelectric at room temperature, I discuss the implications of these experimental observations and reconcile them with the centrosymmetric space groups assigned after X-ray crystallographic refinements. I conclude in the final two Chapters by recording my endeavors to control the assembly of metal-organic frameworks (MOFs) with noncovalent bonding interactions between [2]catenane-bearing struts. First of all, I describe the formation of syndiotactic pi-stacked 2D MOF layers before highlighting a two-component MOF that assembles with a magic number ratio of components that is independent of the molar proportions present in the crystallization medium.

  2. Synthesis and Characterization of Supramolecular Colloids.

    PubMed

    Vilanova, Neus; De Feijter, Isja; Voets, Ilja K

    2016-04-22

    Control over colloidal assembly is of utmost importance for the development of functional colloidal materials with tailored structural and mechanical properties for applications in photonics, drug delivery and coating technology. Here we present a new family of colloidal building blocks, coined supramolecular colloids, whose self-assembly is controlled through surface-functionalization with a benzene-1,3,5-tricarboxamide (BTA) derived supramolecular moiety. Such BTAs interact via directional, strong, yet reversible hydrogen-bonds with other identical BTAs. Herein, a protocol is presented that describes how to couple these BTAs to colloids and how to quantify the number of coupling sites, which determines the multivalency of the supramolecular colloids. Light scattering measurements show that the refractive index of the colloids is almost matched with that of the solvent, which strongly reduces the van der Waals forces between the colloids. Before photo-activation, the colloids remain well dispersed, as the BTAs are equipped with a photo-labile group that blocks the formation of hydrogen-bonds. Controlled deprotection with UV-light activates the short-range hydrogen-bonds between the BTAs, which triggers the colloidal self-assembly. The evolution from the dispersed state to the clustered state is monitored by confocal microscopy. These results are further quantified by image analysis with simple routines using ImageJ and Matlab. This merger of supramolecular chemistry and colloidal science offers a direct route towards light- and thermo-responsive colloidal assembly encoded in the surface-grafted monolayer.

  3. Hydrogen bonding between nitriles and hydrogen halides and the topological properties of molecular charge distributions

    NASA Astrophysics Data System (ADS)

    Boyd, Russell J.; Choi, Sai Cheng

    1986-08-01

    The topological properties of the charge density of the hydrogen-bonded complexes between nitrites and hydrogen chloride correlate linearly with theoretical estimates of the hydrogen-bond energy. At the 6-31G ** level, the hydrogenbond energies range from a low of 10 kJ/mol m NCCN—HC1 to a high of 38 kJ/mol in LiCN—HCl. A linear relationship between the charge density at the hydrogen-bond critical point and the NH internuclear distance of the RCN—HC1 complexes indicates that the generalization of the bond-length-bond-order relationship of CC bonds due to Bader, Tang, Tal and Biegler-König can be extended to intermolecular hydrogen bonding.

  4. Supramolecularly engineered perylene bisimide assemblies exhibiting thermal transition from columnar to multilamellar structures.

    PubMed

    Yagai, Shiki; Usui, Mari; Seki, Tomohiro; Murayama, Haruno; Kikkawa, Yoshihiro; Uemura, Shinobu; Karatsu, Takashi; Kitamura, Akihide; Asano, Atsushi; Seki, Shu

    2012-05-09

    Perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI) was functionalized with ditopic cyanuric acid to organize it into complex columnar architectures through the formation of hydrogen-bonded supermacrocycles (rosette) by complexing with ditopic melamines possessing solubilizing alkoxyphenyl substituents. The aggregation study in solution using UV-vis and NMR spectroscopies showed the formation of extended aggregates through hydrogen-bonding and π-π stacking interactions. The cylindrical fibrillar nanostructures were visualized by microscopic techniques (AFM, TEM), and the formation of lyotropic mesophase was confirmed by polarized optical microscopy and SEM. X-ray diffraction study revealed that a well-defined hexagonal columnar (Col(h)) structure was formed by solution-casting of fibrillar assemblies. All of these results are consistent with the formation of hydrogen-bonded PBI rosettes that spontaneously organize into the Col(h) structure. Upon heating the Col(h) structure in the bulk state, a structural transition to a highly ordered lamellar (Lam) structure was observed by variable-temperature X-ray diffraction, differential scanning calorimetry, and AFM studies. IR study showed that the rearrangement of the hydrogen-bonding motifs occurs during the structural transition. These results suggest that such a striking structural transition is aided by the reorganization in the lowest level of self-organization, i.e., the rearrangement of hydrogen-bonded motifs from rosette to linear tape. A remarkable increase in the transient photoconductivity was observed by the flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements upon converting the Col(h) structure to the Lam structure. Transient absorption spectroscopy revealed that electron transfer from electron-donating alkoxyphenyl groups of melamine components to electron-deficient PBI moieties takes place, resulting in a higher probability of charge carrier generation in the Lam structure compared to the Col(h) structure.

  5. How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding?

    NASA Astrophysics Data System (ADS)

    Henderleiter, J.; Smart, R.; Anderson, J.; Elian, O.

    2001-08-01

    Students completing a year-long organic chemistry sequence were interviewed to assess how they understood, explained, and applied knowledge of hydrogen bonding to the physical behavior of molecules. Students were asked to define hydrogen bonding and explain situations in which hydrogen bonding could occur. They were asked to predict and explain how hydrogen bonding influences boiling point, the solubility of molecules, and NMR and IR spectra. Results suggest that although students may be able to give appropriate definitions of hydrogen bonding and may recognize when this phenomenon can occur, significant numbers cannot apply their knowledge of hydrogen bonding to physical properties of molecules or to the interpretation of spectral data. Some possess misconceptions concerning boiling points and the ability of molecules to induce hydrogen bonding. Instructional strategies must be adjusted to address these issues.

  6. Ethylene glycol revisited: Molecular dynamics simulations and visualization of the liquid and its hydrogen-bond network☆

    PubMed Central

    Kaiser, Alexander; Ismailova, Oksana; Koskela, Antti; Huber, Stefan E.; Ritter, Marcel; Cosenza, Biagio; Benger, Werner; Nazmutdinov, Renat; Probst, Michael

    2014-01-01

    Molecular dynamics simulations of liquid ethylene glycol described by the OPLS-AA force field were performed to gain insight into its hydrogen-bond structure. We use the population correlation function as a statistical measure for the hydrogen-bond lifetime. In an attempt to understand the complicated hydrogen-bonding, we developed new molecular visualization tools within the Vish Visualization shell and used it to visualize the life of each individual hydrogen-bond. With this tool hydrogen-bond formation and breaking as well as clustering and chain formation in hydrogen-bonded liquids can be observed directly. Liquid ethylene glycol at room temperature does not show significant clustering or chain building. The hydrogen-bonds break often due to the rotational and vibrational motions of the molecules leading to an H-bond half-life time of approximately 1.5 ps. However, most of the H-bonds are reformed again so that after 50 ps only 40% of these H-bonds are irreversibly broken due to diffusional motion. This hydrogen-bond half-life time due to diffusional motion is 80.3 ps. The work was preceded by a careful check of various OPLS-based force fields used in the literature. It was found that they lead to quite different angular and H-bond distributions. PMID:24748697

  7. Molecularly Tuning the Radicaloid N-H···O═C Hydrogen Bond.

    PubMed

    Lu, Norman; Chung, Wei-Cheng; Ley, Rebecca M; Lin, Kwan-Yu; Francisco, Joseph S; Negishi, Ei-Ichi

    2016-03-03

    Substituent effects on the open shell N-H···O═C hydrogen-bond has never been reported. This study examines how 12 functional groups composed of electron donating groups (EDG), halogen atoms and electron withdrawing groups (EWG) affect the N-H···O═C hydrogen-bond properties in a six-membered cyclic model system of O═C(Y)-CH═C(X)N-H. It is found that group effects on this open shell H-bonding system are significant and have predictive trends when X = H and Y is varied. When Y is an EDG, the N-H···O═C hydrogen-bond is strengthened; and when Y is an EWG, the bond is weakened; whereas the variation in electronic properties of X group do not exhibit a significant impact upon the hydrogen bond strength. The structural impact of the stronger N-H···O═C hydrogen-bond are (1) shorter H and O distance, r(H···O) and (2) a longer N-H bond length, r(NH). The stronger N-H···O═C hydrogen-bond also acts to pull the H and O in toward one another which has an effect on the bond angles. Our findings show that there is a linear relationship between hydrogen-bond angle and N-H···O═C hydrogen-bond energy in this unusual H-bonding system. In addition, there is a linear correlation of the r(H···O) and the hydrogen bond energy. A short r(H···O) distance corresponds to a large hydrogen bond energy when Y is varied. The observed trends and findings have been validated using three different methods (UB3LYP, M06-2X, and UMP2) with two different basis sets.

  8. Human Islet Amyloid Polypeptide N-Terminus Fragment Self-Assembly: Effect of Conserved Disulfide Bond on Aggregation Propensity

    NASA Astrophysics Data System (ADS)

    Ilitchev, Alexandre I.; Giammona, Maxwell J.; Do, Thanh D.; Wong, Amy G.; Buratto, Steven K.; Shea, Joan-Emma; Raleigh, Daniel P.; Bowers, Michael T.

    2016-06-01

    Amyloid formation by human islet amyloid polypeptide (hIAPP) has long been implicated in the pathogeny of type 2 diabetes mellitus (T2DM) and failure of islet transplants, but the mechanism of IAPP self-assembly is still unclear. Numerous fragments of hIAPP are capable of self-association into oligomeric aggregates, both amyloid and non-amyloid in structure. The N-terminal region of IAPP contains a conserved disulfide bond between cysteines at position 2 and 7, which is important to hIAPP's in vivo function and may play a role in in vitro aggregation. The importance of the disulfide bond in this region was probed using a combination of ion mobility-based mass spectrometry experiments, molecular dynamics simulations, and high-resolution atomic force microscopy imaging on the wildtype 1-8 hIAPP fragment, a reduced fragment with no disulfide bond, and a fragment with both cysteines at positions 2 and 7 mutated to serine. The results indicate the wildtype fragment aggregates by a different pathway than either comparison peptide and that the intact disulfide bond may be protective against aggregation due to a reduction of inter-peptide hydrogen bonding.

  9. Retention properties of novel beta-CD bonded stationary phases in reversed-phase HPLC mode.

    PubMed

    Zhao, Yanyan; Guo, Zhimou; Zhang, Yongping; Xue, Xingya; Xu, Qing; Li, Xiuling; Liang, Xinmiao; Zhang, Yukui

    2009-05-15

    With the given special structures, the CD bonded stationary phases are expected to have complementary retention properties with conventional C18 stationary phase, which will be helpful to enhance the polar selectivity in RP mode separation. In this work, two beta-cyclodextrin (beta-CD) bonded stationary phases for reversed-phase HPLC, including 1, 12-dodecyldiol linked beta-CD stationary phase (CD1) and olio (ethylene glycol) (OEG) linked beta-CD stationary phase (CD2), have been synthesized via click chemistry. The resulting materials were characterized with FT-IR and elemental analysis, which proved the successful immobilization of ligands. The similarities and differences in retention characteristics between the CD and C18 stationary phases have been elucidated by using comparative linear solvation energy relationships (LSERs). The force related to solute McGowan volume has no significant difference, while the hydrogen bonding and dipolar interactions between solutes and CD stationary phases are stronger than between solutes and C18, which is attributed to the special structures (CD and triazole groups) of CD stationary phases. Chemical origins are interpreted by comparison between CD1 and CD2. Similar dispersive interactions of CD1 and CD2 are attributed to their similar length of spacer arms. CD2 which contains OEG spacer arm has relative weaker HBD acidity but stronger HBA basicity. CD stationary phases display no serious different methylene selectivity and higher polar selectivity than in the case of C18. Higher acid selectivity and lower basic selectivity are observed on CD2 than on CD1. Distinctive retention properties and good complementary separation selectivity to C18 make the novel CD bonded stationary phases available for more application in RPLC.

  10. Cocrystals of 6-methyl-2-thiouracil: presence of the acceptor-donor-acceptor/donor-acceptor-donor synthon.

    PubMed

    Hützler, Wilhelm Maximilian; Egert, Ernst

    2015-03-01

    The results of seven cocrystallization experiments of the antithyroid drug 6-methyl-2-thiouracil (MTU), C(5)H(6)N(2)OS, with 2,4-diaminopyrimidine, 2,4,6-triaminopyrimidine and 6-amino-3H-isocytosine (viz. 2,6-diamino-3H-pyrimidin-4-one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen-bonding site, while the three coformers show complementary DAD hydrogen-bonding sites and therefore should be capable of forming an ADA/DAD N-H...O/N-H...N/N-H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6-methyl-2-thiouracil-2,4-diaminopyrimidine-1-methylpyrrolidin-2-one (1/1/2), C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(5)H(9)NO, (I), 6-methyl-2-thiouracil-2,4-diaminopyrimidine (1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4), (II), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylacetamide (2/1/2), 2C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(4)H(9)NO, (III), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylformamide (2/1/2), C(5)H(6)N(2)OS·0.5C(4)H(6)N(4)·C(3)H(7)NO, (IV), 2,4,6-triaminopyrimidinium 6-methyl-2-thiouracilate-6-methyl-2-thiouracil-N,N-dimethylformamide (1/1/2), C(4)H(8)N(5)(+)·C(5)H(5)N(2)OS(-)·C(5)H(6)N(2)OS·2C(3)H(7)NO, (V), 6-methyl-2-thiouracil-6-amino-3H-isocytosine-N,N-dimethylformamide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(3)H(7)NO, (VI), and 6-methyl-2-thiouracil-6-amino-3H-isocytosine-dimethyl sulfoxide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(2)H(6)OS, (VII). Whereas in cocrystal (I) an R(2)(2)(8) interaction similar to the Watson-Crick adenine/uracil base pair is formed and a two-dimensional hydrogen-bonding network is observed, the cocrystals (II)-(VII) contain the triply hydrogen-bonded ADA/DAD N-H...O/N-H...N/N-H...S synthon and show a one-dimensional hydrogen-bonding network. Although 2,4-diaminopyrimidine possesses only one DAD hydrogen-bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).

  11. Top-Down Hydrogen-Deuterium Exchange Analysis of Protein Structures Using Ultraviolet Photodissociation.

    PubMed

    Brodie, Nicholas I; Huguet, Romain; Zhang, Terry; Viner, Rosa; Zabrouskov, Vlad; Pan, Jingxi; Petrotchenko, Evgeniy V; Borchers, Christoph H

    2018-03-06

    Top-down hydrogen-deuterium exchange (HDX) analysis using electron capture or transfer dissociation Fourier transform mass spectrometry (FTMS) is a powerful method for the analysis of secondary structure of proteins in solution. The resolution of the method is a function of the degree of fragmentation of backbone bonds in the proteins. While fragmentation is usually extensive near the N- and C-termini, electron capture (ECD) or electron transfer dissociation (ETD) fragmentation methods sometimes lack good coverage of certain regions of the protein, most often in the middle of the sequence. Ultraviolet photodissociation (UVPD) is a recently developed fast-fragmentation technique, which provides extensive backbone fragmentation that can be complementary in sequence coverage to the aforementioned electron-based fragmentation techniques. Here, we explore the application of electrospray ionization (ESI)-UVPD FTMS on an Orbitrap Fusion Lumos Tribrid mass spectrometer to top-down HDX analysis of proteins. We have incorporated UVPD-specific fragment-ion types and fragment-ion mixtures into our isotopic envelope fitting software (HDX Match) for the top-down HDX analysis. We have shown that UVPD data is complementary to ETD, thus improving the overall resolution when used as a combined approach.

  12. An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins

    PubMed Central

    Cao, Zheng; Bowie, James U

    2014-01-01

    Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α-helices compared to β-sheets by ∼0.2 kcal/mol. [2] Charge-stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ∼2 kcal/mol on average, and can be as strong as –7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by –4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies. PMID:24501090

  13. A Vibrational Spectral Maker for Probing the Hydrogen-Bonding Status of Protonated Asp and Glu Residues

    PubMed Central

    Nie, Beining; Stutzman, Jerrod; Xie, Aihua

    2005-01-01

    Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. We report an infrared vibrational spectral marker for probing the hydrogen-bond number for buried, protonated Asp or Glu residues in proteins. Ab initio computational studies were performed on hydrogen-bonding interactions of a COOH group with a variety of side-chain model compounds of polar and charged amino acids in vacuum using density function theory. For hydrogen-bonding interactions with polar side-chain groups, our results show a strong correlation between the C=O stretching frequency and the hydrogen bond number of a COOH group: ∼1759–1776 cm−1 for zero, ∼1733–1749 cm−1 for one, and 1703–1710 cm−1 for two hydrogen bonds. Experimental evidence for this correlation will be discussed. In addition, we show an approximate linear correlation between the C=O stretching frequency and the hydrogen-bond strength. We propose that a two-dimensional infrared spectroscopy, C=O stretching versus O-H stretching, may be employed to identify the specific type of hydrogen-bonding interaction. This vibrational spectral marker for hydrogen-bonding interaction is expected to enhance the power of time-resolved Fourier transform infrared spectroscopy for structural characterization of functionally important intermediates of proteins. PMID:15653739

  14. Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Zhou, Li-Peng; Guo, Xiao-Qing; Cai, Li-Xuan; Sun, Qing-Fu

    2017-06-01

    Container-molecules are attractive to chemists due to their unique structural characteristics comparable to enzymes and receptors in nature. We report here a family of artificial self-assembled macrocyclic containers that feature induced-fit transformations in response to different anionic guests. Five metal-organic macrocycles with empirical formula of MnL2n (M=Metal L=Ligand n=3, 4, 5, 6, 7) are selectively obtained starting from one simple benzimidazole-based ligand and square-planar palladium(II) ions, either by direct anion-adaptive self-assembly or induced-fit transformations. Hydrogen-bonding interactions between the inner surface of the macrocycles and the anionic guests dictate the shape and size of the product. A comprehensive induced-fit transformation map across all the MnL2n species is drawn, with a representative reconstitution process from Pd7L14 to Pd3L6 traced in detail, revealing a gradual ring-shrinking mechanism. We envisage that these macrocyclic molecules with adjustable well-defined hydrogen-bonding pockets will find wide applications in molecular sensing or catalysis.

  15. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts.

    PubMed

    Taylor, Martin J; Jiang, Li; Reichert, Joachim; Papageorgiou, Anthoula C; Beaumont, Simon K; Wilson, Karen; Lee, Adam F; Barth, Johannes V; Kyriakou, Georgios

    2017-04-20

    Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfural adopts a planar geometry on clean Pt(111) at low coverage, tilting at higher coverage to form a densely packed furfural adlayer. This switch in adsorption geometry strongly influences product selectivity. STM reveals the formation of hydrogen-bonded networks for planar furfural, which favor decarbonylation on clean Pt(111) and hydrogenolysis in the presence of coadsorbed hydrogen. Preadsorbed hydrogen promotes furfural hydrogenation to furfuryl alcohol and its subsequent hydrogenolysis to methyl furan, while suppressing residual surface carbon. Furfural chemistry over Pt is markedly different from that over Pd, with weaker adsorption over the former affording a simpler product distribution than the latter; Pd catalyzes a wider range of chemistry, including ring-opening to form propene. Insight into the role of molecular orientation in controlling product selectivity will guide the design and operation of more selective and stable Pt catalysts for furfural hydrogenation.

  16. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts

    PubMed Central

    2017-01-01

    Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfural adopts a planar geometry on clean Pt(111) at low coverage, tilting at higher coverage to form a densely packed furfural adlayer. This switch in adsorption geometry strongly influences product selectivity. STM reveals the formation of hydrogen-bonded networks for planar furfural, which favor decarbonylation on clean Pt(111) and hydrogenolysis in the presence of coadsorbed hydrogen. Preadsorbed hydrogen promotes furfural hydrogenation to furfuryl alcohol and its subsequent hydrogenolysis to methyl furan, while suppressing residual surface carbon. Furfural chemistry over Pt is markedly different from that over Pd, with weaker adsorption over the former affording a simpler product distribution than the latter; Pd catalyzes a wider range of chemistry, including ring-opening to form propene. Insight into the role of molecular orientation in controlling product selectivity will guide the design and operation of more selective and stable Pt catalysts for furfural hydrogenation. PMID:29225721

  17. Tetraalkylammonium Salts as Hydrogen-Bonding Catalysts.

    PubMed

    Shirakawa, Seiji; Liu, Shiyao; Kaneko, Shiho; Kumatabara, Yusuke; Fukuda, Airi; Omagari, Yumi; Maruoka, Keiji

    2015-12-21

    Although the hydrogen-bonding ability of the α hydrogen atoms on tetraalkylammonium salts is often discussed with respect to phase-transfer catalysts, catalysis that utilizes the hydrogen-bond-donor properties of tetraalkylammonium salts remains unknown. Herein, we demonstrate hydrogen-bonding catalysis with newly designed tetraalkylammonium salt catalysts in Mannich-type reactions. The structure and the hydrogen-bonding ability of the new ammonium salts were investigated by X-ray diffraction analysis and NMR titration studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Linear solvation energy relationships: 36. Molecular properties governing solubilities of organic nonelectrolytes in water.

    PubMed

    Kamlet, M J; Doherty, R M; Abboud, J L; Abraham, M H; Taft, R W

    1986-04-01

    Molar solubilities of non-hydrogen bond donor and weak hydrogen bond donor liquid aliphatic solutes in water, or the nearly equivalent quantities, Sg/Kgw, where Kgw is the gas-water partition coefficient and Sg is the solute concentration in the solute saturated vapor (Sg = Patm/24.5) are well correlated by the equation: log Sw congruent to log (Sg/Kgw) = 0.54 - 3.32V/100 + 0.46 pi* + 5.17 (beta or beta m) (at 25 degrees C) n = 105, r = 0.9954, SD = 0.137 V is the solute molar volume (the molecular weight divided by the liquid density at 20 degrees C), and pi* and beta are the solvatochromic parameters that are measures of solute dipolarity-polarizability and hydrogen bond acceptor basicity. The equation, which applies to liquid monofunctional aliphatic solutes is used to calculate additional new beta and beta m values. The beta m values, which are intended to apply to self-associated compounds when acting as "monomer" solutes, are: methanol, 0.42; all primary alkanols, 0.45; all secondary alkanols, 0.51; and all tertiary alkanols, 0.57.

  19. Investigating the effects of peptoid substitutions in self-assembly of Fmoc-diphenylalanine derivatives.

    PubMed

    Rajbhandary, Annada; Nilsson, Bradley L

    2017-03-01

    Low molecular weight agents that undergo self-assembly into fibril networks with hydrogel properties are promising biomaterials. Most low molecular weight hydrogelators are discovered empirically or serendipitously due to imperfect understanding of the mechanisms of self-assembly, the packing structure of self-assembled materials, and how the self-assembly process corresponds to emergent hydrogelation. Herein, the mechanisms of self-assembly and hydrogelation of N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-PhePhe), a well-studied low molecular weight hydrogelator, is probed by systematic comparison with derivatives in which Phe residues are replaced by corresponding N-benzyl glycine peptoid (Nphe) analogs. Peptoids are peptidomimetics that shift display of side chain functionality from the α-carbon to the terminal nitrogen. This alters the hydrogen bonding capacity, the side chain presentation geometry, amide cis/trans isomerization equilibrium, and β-sheet potential of the peptoid relative to the corresponding amino acid in the context of peptidic polymers. It was found that amino acid/peptoid hybrids Fmoc-Phe-Nphe and Fmoc-Nphe-Phe have altered fibril self-assembly propensity and reduced hydrogelation capacity relative to the parent dipeptide, and that fibril self-assembly of the dipeptoid, Fmoc-Nphe-Nphe, is completely curtailed. These findings provide insight into the potential of low molecular weight peptoids and peptide/peptoid hybrids as hydrogelation agents and illuminate the importance of hydrogen bonding and π-π interaction geometry in facilitating self-assembly of Fmoc-Phe-Phe. © 2016 Wiley Periodicals, Inc.

  20. Angle-Resolved Photoemission of Solvated Electrons in Sodium-Doped Clusters.

    PubMed

    West, Adam H C; Yoder, Bruce L; Luckhaus, David; Saak, Clara-Magdalena; Doppelbauer, Maximilian; Signorell, Ruth

    2015-04-16

    Angle-resolved photoelectron spectroscopy of the unpaired electron in sodium-doped water, methanol, ammonia, and dimethyl ether clusters is presented. The experimental observations and the complementary calculations are consistent with surface electrons for the cluster size range studied. Evidence against internally solvated electrons is provided by the photoelectron angular distribution. The trends in the ionization energies seem to be mainly determined by the degree of hydrogen bonding in the solvent and the solvation of the ion core. The onset ionization energies of water and methanol clusters do not level off at small cluster sizes but decrease slightly with increasing cluster size.

  1. Hydrogen-bonding Interactions between Apigenin and Ethanol/Water: A Theoretical Study

    NASA Astrophysics Data System (ADS)

    Zheng, Yan-Zhen; Zhou, Yu; Liang, Qin; Chen, Da-Fu; Guo, Rui; Lai, Rong-Cai

    2016-10-01

    In this work, hydrogen-bonding interactions between apigenin and water/ethanol were investigated from a theoretical perspective using quantum chemical calculations. Two conformations of apigenin molecule were considered in this work. The following results were found. (1) For apigenin monomer, the molecular structure is non-planar, and all of the hydrogen and oxygen atoms can be hydrogen-bonding sites. (2) Eight and seven optimized geometries are obtained for apigenin (I)-H2O/CH3CH2OH and apigenin (II)-H2O/CH3CH2OH complexes, respectively. In apigenin, excluding the aromatic hydrogen atoms in the phenyl substituent, all other hydrogen atoms and the oxygen atoms form hydrogen-bonds with H2O and CH3CH2OH. (3) In apigenin-H2O/CH3CH2OH complexes, the electron density and the E(2) in the related localized anti-bonding orbital are increased upon hydrogen-bond formation. These are the cause of the elongation and red-shift of the X-H bond. The sum of the charge change transfers from the hydrogen-bond acceptor to donor. The stronger interaction makes the charge change more intense than in the less stable structures. (4) Most of the hydrogen-bonds in the complexes are electrostatic in nature. However, the C4-O5···H, C9-O4···H and C13-O2···H hydrogen-bonds have some degree of covalent character. Furthermore, the hydroxyl groups of the apigenin molecule are the preferred hydrogen-bonding sites.

  2. The influence of hydrogen bonding on partition coefficients

    NASA Astrophysics Data System (ADS)

    Borges, Nádia Melo; Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.; Ribeiro, Jean F. R.; Rocha, Josmar R.; Sartori, Geraldo Rodrigues

    2017-02-01

    This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect `frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.

  3. Hydroperoxides as Hydrogen Bond Donors

    NASA Astrophysics Data System (ADS)

    Møller, Kristian H.; Tram, Camilla M.; Hansen, Anne S.; Kjaergaard, Henrik G.

    2016-06-01

    Hydroperoxides are formed in the atmosphere following autooxidation of a wide variety of volatile organics emitted from both natural and anthropogenic sources. This raises the question of whether they can form hydrogen bonds that facilitate aerosol formation and growth. Using a combination of Fourier transform infrared spectroscopy, FT-IR, and ab initio calculations, we have compared the gas phase hydrogen bonding ability of tert-butylhydroperoxide (tBuOOH) to that of tert-butanol (tBuOH) for a series of bimolecular complexes with different acceptors. The hydrogen bond acceptor atoms studied are nitrogen, oxygen, phosphorus and sulphur. Both in terms of calculated redshifts and binding energies (BE), our results suggest that hydroperoxides are better hydrogen bond donors than the corresponding alcohols. In terms of hydrogen bond acceptor ability, we find that nitrogen is a significantly better acceptor than the other three atoms, which are of similar strength. We observe a similar trend in hydrogen bond acceptor ability with other hydrogen bond donors including methanol and dimethylamine.

  4. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations reveal that the slow relaxation rates of interfacial waters in the vicinity of lipids are originated from the chemical confinement of concerted hydrogen bond networks. The analysis suggests that the networks in the hydration layer of membranes dynamically facilitate the water mediated lipid-lipid associations which can provide insights on the thermodynamic stability of soft interfaces relevant to biological systems in the future.

  5. Two unprecedented aromatic guanidines supramolecular chains self-assembled by hydrogen bonding interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen; Huang, Yichao; Zhang, Jiangwei; Zhu, Li; Chen, Kun; Hao, Jian

    2015-10-01

    Two aromatic guanidine derivatives, C6H5N = C(NHCy)2 (1), (n-TBA)C6H5NHC(NHCy)2Mo2O7 (2) (Cy = cyclohexyl), were synthetized with high yields. Both of them self-assembled into supramolecules via H-bond interactions. Single crystal XRD indicated that crystal 1 showed helix chains combining pseudo four-fold and pseudo six-fold symmetries, while crystal 2 presented ladder chains with alternate ring structures. In this paper, a novel way to design ladder-like supramolecular chains from helix chains was presented, using POMs (polyoxometalates) to provide protons to help assembly.

  6. Hydrogen bonds of sodium alginate/Antarctic krill protein composite material.

    PubMed

    Yang, Lijun; Guo, Jing; Yu, Yue; An, Qingda; Wang, Liyan; Li, Shenglin; Huang, Xuelin; Mu, Siyang; Qi, Shanwei

    2016-05-20

    Sodium alginate/Antarctic krill protein composite material (SA/AKP) was successfully obtained by blending method. The hydrogen bonds of SA/AKP composite material were analyzed by Fourier transform infrared spectroscopy (FT-IR) and Nuclear magnetic resonance hydrogen spectrum (HNMR). Experiment manifested the existence of intermolecular and intramolecular hydrogen bonds in SA/AKP system; strength of intermolecular hydrogen bond enhanced with the increase of AKP in the composite material and the interaction strength of hydrogen bonding followed the order: OH…Ether O>OH…π>OH…N. The percentage of intermolecular hydrogen bond decreased with increase of pH. At the same time, the effect of hydrogen bonds on properties of the composite material was discussed. The increase of intermolecular hydrogen bonding led to the decrease of crystallinity, increase of apparent viscosity and surface tension, as well as obvious decrease of heat resistance of SA/AKP composite material. SA/AKP fiber SEM images and energy spectrum showed that crystallized salt was separated from the fiber, which possibly led to the fibrillation of the composite fibers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The CH/π hydrogen bond: Implication in chemistry

    NASA Astrophysics Data System (ADS)

    Nishio, M.

    2012-06-01

    The CH/π hydrogen bond is the weakest extreme of hydrogen bonds that occurs between a soft acid CH and a soft base π-system. Implication in chemistry of the CH/π hydrogen bond includes issues of conformation, crystal packing, and specificity in host/guest complexes. The result obtained by analyzing the Cambridge Structural Database is reviewed. The peculiar axial preference of isopropyl group in α-phellandrene and folded conformation of levopimaric acid have been explained in terms of the CH/π hydrogen bond, by high-level ab initio MO calculations. Implication of the CH/π hydrogen bond in structural biology is also discussed, briefly.

  8. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.

    PubMed

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-12-30

    Amides are important atmospheric organic-nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N -methylformamide, N , N -dimethylformamide, acetamide, N -methylacetamide and N , N -dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH-amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O-H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  9. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol

    PubMed Central

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-01-01

    Amides are important atmospheric organic–nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH–amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O–H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components. PMID:28042825

  10. Theoretical and experimental studies of water interaction in acetate based ionic liquids.

    PubMed

    Shi, Wei; Damodaran, Krishnan; Nulwala, Hunaid B; Luebke, David R

    2012-12-05

    Water interactions in 1-ethyl-3-methylimidazolium acetate ([emim][CH(3)COO]) were studied utilizing classical and ab initio simulation methods. The self-diffusivities for water and the ionic liquid (IL) were studied experimentally using pulse field gradient NMR spectroscopy and correlated with computational results. Water forms hydrogen bonding networks with the ionic liquid, and depending on the concentration of water, there are profound effects on the self-diffusivities of the various species. Both simulation and experiments show that the self-diffusivities for species in the water-[emim][CH(3)COO] system exhibit minima at 40-50 mol% water. Water interaction with the [CH(3)COO](-) anion predominates over the water-water and water-cation interactions at most water concentrations. Simulations further indicate that decreasing water-[CH(3)COO](-) interaction will increase the IL and water self-diffusivities. Self-diffusivities in the water-IL systems are dependent upon the cation in a complex way. Water interactions with [P(4444)][CH(3)COO] are reduced compared to [emim][CH(3)COO]. The [P(4444)](+) cation is bulkier than the [emim](+) cation and has a smaller self-diffusivity, but when water was introduced to [P(4444)] [CH(3)COO], the water-[CH(3)COO](-) hydrogen bonding network in the [P(4444)][CH(3)COO] was much smaller than the one observed in [emim][CH(3)COO].

  11. HBonanza: A Computer Algorithm for Molecular-Dynamics-Trajectory Hydrogen-Bond Analysis

    PubMed Central

    Durrant, Jacob D.; McCammon, J. Andrew

    2011-01-01

    In the current work, we present a hydrogen-bond analysis of 2,673 ligand-receptor complexes that suggests the total number of hydrogen bonds formed between a ligand and its protein receptor is a poor predictor of ligand potency; furthermore, even that poor prediction does not suggest a statistically significant correlation between hydrogen-bond formation and potency. While we are not the first to suggest that hydrogen bonds on average do not generally contribute to ligand binding affinities, this additional evidence is nevertheless interesting. The primary role of hydrogen bonds may instead be to ensure specificity, to correctly position the ligand within the active site, and to hold the protein active site in a ligand-friendly conformation. We also present a new computer program called HBonanza (hydrogen-bond analyzer) that aids the analysis and visualization of hydrogen-bond networks. HBonanza, which can be used to analyze single structures or the many structures of a molecular dynamics trajectory, is open source and python implemented, making it easily editable, customizable, and platform independent. Unlike many other freely available hydrogen-bond analysis tools, HBonanza provides not only a text-based table describing the hydrogen-bond network, but also a Tcl script to facilitate visualization in VMD, a popular molecular visualization program. Visualization in other programs is also possible. A copy of HBonanza can be obtained free of charge from http://www.nbcr.net/hbonanza. PMID:21880522

  12. Enormous Hydrogen Bond Strength Enhancement through π-Conjugation Gain: Implications for Enzyme Catalysis.

    PubMed

    Wu, Chia-Hua; Ito, Keigo; Buytendyk, Allyson M; Bowen, K H; Wu, Judy I

    2017-08-22

    Surprisingly large resonance-assistance effects may explain how some enzymes form extremely short, strong hydrogen bonds to stabilize reactive oxyanion intermediates and facilitate catalysis. Computational models for several enzymic residue-substrate interactions reveal that when a π-conjugated, hydrogen bond donor (XH) forms a hydrogen bond to a charged substrate (Y - ), XH can become significantly more π-electron delocalized, and this "extra" stabilization may boost the [XH···Y - ] hydrogen bond strength by ≥15 kcal/mol. This reciprocal relationship departs from the widespread pK a concept (i.e., the idea that short, strong hydrogen bonds form when the interacting moieties have matching pK a values), which has been the rationale for enzymic acid-base reactions. The findings presented here provide new insight into how short, strong hydrogen bonds could form in enzymes.

  13. Investigation of hydrogen bonding and self-association in neat HCONH 2 and the binary mixture (HCONH 2+CH 3OH) by concentration dependent Raman study and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ojha, Animesh K.; Srivastava, Sunil K.; Koster, J.; Shukla, M. K.; Leszczynski, J.; Asthana, B. P.; Kiefer, W.

    2004-02-01

    Raman spectra of neat formamide (HCONH 2) and its binary mixture (HCONH 2+CH 3OH) with hydrogen donor solvent, methanol (CH 3OH) were investigated using a sensitive scanning multichannel detection scheme, which is simultaneously more precise also, especially when the observed Raman line profile has multiple component bands. The spectra in the two regions, namely 1200-1500 and 1500-1800 cm -1 were recorded with varying mole fractions of the reference molecule, HCONH 2, from 0.1 to 0.9. The spectra in the region 1200-1500 cm -1 show a broad band at ˜1312 cm -1, which shows a peculiar concentration dependence, and a relatively sharp peak at ˜1392 cm -1, whose peak position is not influenced by concentration. The spectra in the region 1500-1800 cm -1 also show two peaks, one at ˜1593 cm -1 and the other one at ˜1668 cm -1 which are assigned to NH 2 bending and ν(CO) stretching vibrations, respectively. Both these Raman bands show an appreciable upshift of ˜15-20 cm -1 and the one at ˜1668 cm -1 has also a distinct asymmetry towards higher wavenumber. The optimized geometries and vibrational wavenumbers of various normal modes for neat formamide as well as its hydrogen-bonded complexes were also calculated using ab initio theory at the MP2 level. The results have been used to understand and explain the concentration dependent changes in the spectral features in terms of hydrogen bonding and self-association.

  14. Stimuli-controlled self-assembly of diverse tubular aggregates from one single small monomer

    NASA Astrophysics Data System (ADS)

    Shi, Qixun; Javorskis, Tomas; Bergquist, Karl-Erik; Ulčinas, Artūras; Niaura, Gediminas; Matulaitienė, Ieva; Orentas, Edvinas; Wärnmark, Kenneth

    2017-04-01

    The design and synthesis of new stimuli-responsive hydrogen-bonding monomers that display a diversity of self-assembly pathways is of central importance in supramolecular chemistry. Here we describe the aggregation properties of a simple, intrinsically C2-symmetric enantiopure bicyclic cavity compound bearing a terminally unsubstituted ureidopyrimidinone fragment fused with a pyrrole moiety in different solvents and in the absence and presence of C60 and C70 guests. The tetrameric cyclic aggregate is selectively obtained in chlorinated solvents, where only part of the available hydrogen bonding sites are utilized, whereas in toluene or upon addition of C70 guests, further aggregation into tubular supramolecular polymers is achieved. The open-end cyclic assemblies rearrange into a closed-shell capsule upon introduction of C60 with an accompanied symmetry breaking of the monomer. Our study demonstrates that a C60 switch can be used to simultaneously control the topology and occupancy of tubular assemblies resulting from the aggregation of small monomers.

  15. A simple structural hydrazide-based gelator as a fluoride ion colorimetric sensor.

    PubMed

    Bai, Binglian; Ma, Jie; Wei, Jue; Song, Jianxi; Wang, Haitao; Li, Min

    2014-06-07

    A 4-nitrobenzohydrazide derivative, N-(3,4,5-octyloxybenzoyl)-N'-(4'-nitrobenzoyl)hydrazine (C8), was synthesized. It could form stable gels in some of the tested organic solvents. The wide-angle X-ray diffraction analysis showed that the xerogels exhibited a layered structure. SEM images revealed that the molecules self-assembled into fibrous aggregates in the xerogels. FT-IR studies confirmed that the intermolecular hydrogen bonding between C=O and N-H groups was the major driving force for the formation of self-assembling gel processes. The gel is utilized for a 'naked eye' detection of fluoride ions, through a reversible gel-sol transition, which is associated with a color change from colorless to red. An extended conjugated system formed through the phenyl group and a five-membered ring based on intramolecular hydrogen bonding between the oxygen atom near the deprotonation nitrogen atom and the other NH, which is responsible for the dramatic color change upon addition of fluoride ions.

  16. Origins of Protons in C-H Bond Insertion Products of Phenols: Proton-Self-Sufficient Function via Water Molecules.

    PubMed

    Luo, Zhoujie; Gao, Ya; Zhu, Tong; Zhang, John Zenghui; Xia, Fei

    2017-08-31

    Water molecules can serve as proton shuttles for proton transfer in the C-H bond insertion reactions catalyzed by transition metal complexes. Recently, the control experiments performed for C-H bond insertion of phenol and anisol by gold carbenes show that large discrepancy exists in the yields of hydrogenated and deuterated products. Thus, we conducted a detailed theoretical analysis on the function of water molecules in the C-H bond insertion reactions. The comparison of calculated results and control experiments indicates that the solution water molecules play a crucial role of proton shuttle in C-H bond insertion. In particular, it was found that the hydroxyl groups in phenols were capable of donating protons via water shuttles for the production of C-H products, which had a substantial influence on the yields of inserted products. The hydroxyl groups instead of C-H bonds in phenols function like "proton reservoirs" in the C-H bond insertion, which we call the "proton self-sufficient" (PSS) function of phenol. The PSS function of phenol indicates that the substrates with and without proton reservoirs will lead to different C-H bond insertion products.

  17. Nonlinear vibrational excitations in molecular crystals molecular mechanics calculations

    NASA Astrophysics Data System (ADS)

    Pumilia, P.; Abbate, S.; Baldini, G.; Ferro, D. R.; Tubino, R.

    1992-03-01

    The coupling constant for vibrational solitons χ has been examined in a molecular mechanics model for acetanilide (ACN) molecular crystal. According to A.C. Scott, solitons can form and propagate in solid acetanilide over a threshold energy value. This can be regarded as a structural model for the spines of hydrogen bond chains stabilizing the α helical structure of proteins. A one dimensional hydrogen bond chain of ACN has been built, for which we have found that, even though experimental parameters are correctly predicted, the excessive rigidity of the isolated chain prevents the formation of a localized distortion around the excitation. Yet, C=O coupling value with softer lattice modes could be rather high, allowing self-trapping to take place.

  18. Reduction of Line Edge Roughness of Polystyrene-block-Poly(methyl methacrylate) Copolymer Nanopatterns By Introducing Hydrogen Bonding at the Junction Point of Two Block Chains.

    PubMed

    Lee, Kyu Seong; Lee, Jaeyong; Kwak, Jongheon; Moon, Hong Chul; Kim, Jin Kon

    2017-09-20

    To apply well-defined block copolymer nanopatterns to next-generation lithography or high-density storage devices, small line edge roughness (LER) of nanopatterns should be realized. Although polystyrene-block-poly(methyl methacrylate) copolymer (PS-b-PMMA) has been widely used to fabricate nanopatterns because of easy perpendicular orientation of the block copolymer nanodomains and effective removal of PMMA block by dry etching, the fabricated nanopatterns show poorer line edge roughness (LER) due to relatively small Flory-Huggins interaction parameter (χ) between PS and PMMA chains. Here, we synthesized PS-b-PMMA with urea (U) and N-(4-aminomethyl-benzyl)-4-hydroxymethyl-benzamide (BA) moieties at junction of PS and PMMA chains (PS-U-BA-PMMA) to improve the LER. The U-BA moieties serves as favorable interaction (hydrogen bonding) sites. The LER of PS line patterns obtained from PS-U-BA-PMMA was reduced ∼25% compared with that obtained from neat PS-b-PMMA without BA and U moieties. This is attributed to narrower interfacial width induced by hydrogen bonding between two blocks, which is confirmed by small-angle X-ray scattering. This result implies that the introduction of hydrogen bonding into block copolymer interfaces offers an opportunity to fabricate well-defined nanopatterns with improved LER by block copolymer self-assembly, which could be a promising alternative to next-generation extreme ultraviolet lithography.

  19. A polarizable dipole-dipole interaction model for evaluation of the interaction energies for N-H···O=C and C-H···O=C hydrogen-bonded complexes.

    PubMed

    Li, Shu-Shi; Huang, Cui-Ying; Hao, Jiao-Jiao; Wang, Chang-Sheng

    2014-03-05

    In this article, a polarizable dipole-dipole interaction model is established to estimate the equilibrium hydrogen bond distances and the interaction energies for hydrogen-bonded complexes containing peptide amides and nucleic acid bases. We regard the chemical bonds N-H, C=O, and C-H as bond dipoles. The magnitude of the bond dipole moment varies according to its environment. We apply this polarizable dipole-dipole interaction model to a series of hydrogen-bonded complexes containing the N-H···O=C and C-H···O=C hydrogen bonds, such as simple amide-amide dimers, base-base dimers, peptide-base dimers, and β-sheet models. We find that a simple two-term function, only containing the permanent dipole-dipole interactions and the van der Waals interactions, can produce the equilibrium hydrogen bond distances compared favorably with those produced by the MP2/6-31G(d) method, whereas the high-quality counterpoise-corrected (CP-corrected) MP2/aug-cc-pVTZ interaction energies for the hydrogen-bonded complexes can be well-reproduced by a four-term function which involves the permanent dipole-dipole interactions, the van der Waals interactions, the polarization contributions, and a corrected term. Based on the calculation results obtained from this polarizable dipole-dipole interaction model, the natures of the hydrogen bonding interactions in these hydrogen-bonded complexes are further discussed. Copyright © 2013 Wiley Periodicals, Inc.

  20. Red-Shifting versus Blue-Shifting Hydrogen Bonds: Perspective from Ab Initio Valence Bond Theory.

    PubMed

    Chang, Xin; Zhang, Yang; Weng, Xinzhen; Su, Peifeng; Wu, Wei; Mo, Yirong

    2016-05-05

    Both proper, red-shifting and improper, blue-shifting hydrogen bonds have been well-recognized with enormous experimental and computational studies. The current consensus is that there is no difference in nature between these two kinds of hydrogen bonds, where the electrostatic interaction dominates. Since most if not all the computational studies are based on molecular orbital theory, it would be interesting to gain insight into the hydrogen bonds with modern valence bond (VB) theory. In this work, we performed ab initio VBSCF computations on a series of hydrogen-bonding systems, where the sole hydrogen bond donor CF3H interacts with ten hydrogen bond acceptors Y (═NH2CH3, NH3, NH2Cl, OH(-), H2O, CH3OH, (CH3)2O, F(-), HF, or CH3F). This series includes four red-shifting and six blue-shifting hydrogen bonds. Consistent with existing findings in literature, VB-based energy decomposition analyses show that electrostatic interaction plays the dominating role and polarization plays the secondary role in all these hydrogen-bonding systems, and the charge transfer interaction, which denotes the hyperconjugation effect, contributes only slightly to the total interaction energy. As VB theory describes any real chemical bond in terms of pure covalent and ionic structures, our fragment interaction analysis reveals that with the approaching of a hydrogen bond acceptor Y, the covalent state of the F3C-H bond tends to blue-shift, due to the strong repulsion between the hydrogen atom and Y. In contrast, the ionic state F3C(-) H(+) leads to the red-shifting of the C-H vibrational frequency, owing to the attraction between the proton and Y. Thus, the relative weights of the covalent and ionic structures essentially determine the direction of frequency change. Indeed, we find the correlation between the structural weights and vibrational frequency changes.

  1. On the nature of hydrogen bonding between the phosphatidylcholine head group and water and dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Dabkowska, Aleksandra P.; Lawrence, M. Jayne; McLain, Sylvia E.; Lorenz, Christian D.

    2013-01-01

    Molecular dynamics simulations are used to provide a detailed investigation of the hydrogen bond networks around the phosphatidylcholine (PC) head group in 1,2-dipropionyl-sn-glycero-3-phosphocholine in pure water, 10 mol.% and 30 mol.% dimethylsulfoxide (DMSO)-water solutions. Specifically, it is observed that DMSO replaces those water molecules that are within the first solvation shell of the choline, phosphate and ester groups of the PC head group, but are not hydrogen-bonded to the group. The effect of the presence of DMSO on the hydrogen bond network around the PC head groups of the lipid changes with the concentration of DMSO. In comparison to the hydrogen bond network observed in the pure water system, the number of hydrogen-bonded chains of solvent molecules increases slightly for the 10 mol.% DMSO system, while, in the 30 mol.% DMSO system, the number of hydrogen-bonded chains of solvent molecules decreases.

  2. Hydrogen bond dynamics in bulk alcohols.

    PubMed

    Shinokita, Keisuke; Cunha, Ana V; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  3. Hydrogen release at metal-oxide interfaces: A first principle study of hydrogenated Al/SiO2 interfaces

    NASA Astrophysics Data System (ADS)

    Huang, Jianqiu; Tea, Eric; Li, Guanchen; Hin, Celine

    2017-06-01

    The Anode Hydrogen Release (AHR) mechanism at interfaces is responsible for the generation of defects, that traps charge carriers and can induce dielectric breakdown in Metal-Oxide-Semiconductor Field Effect Transistors. The AHR has been extensively studied at Si/SiO2 interfaces but its characteristics at metal-silica interfaces remain unclear. In this study, we performed Density Functional Theory (DFT) calculations to study the hydrogen release mechanism at the typical Al/SiO2 metal-oxide interface. We found that interstitial hydrogen atoms can break interfacial Alsbnd Si bonds, passivating a Si sp3 orbital. Interstitial hydrogen atoms can also break interfacial Alsbnd O bonds, or be adsorbed at the interface on aluminum, forming stable Alsbnd Hsbnd Al bridges. We showed that hydrogenated Osbnd H, Sisbnd H and Alsbnd H bonds at the Al/SiO2 interfaces are polarized. The resulting bond dipole weakens the Osbnd H and Sisbnd H bonds, but strengthens the Alsbnd H bond under the application of a positive bias at the metal gate. Our calculations indicate that Alsbnd H bonds and Osbnd H bonds are more important than Sisbnd H bonds for the hydrogen release process.

  4. Self-association of plant wax components: a thermodynamic analysis.

    PubMed

    Casado, C G; Heredia, A

    2001-01-01

    Excess specific heat, C(p)()(E), of binary mixtures of selected components of plant cuticular waxes has been determined. This thermodynamic parameter gives an explanation of the special molecular arrangement in crystalline and amorphous zones of plant waxes. C(p)()(E) values indicate that hydrogen bonding between chains results in the formation of amorphous zones. Conclusions on the self-asembly process of plant waxes have been also made.

  5. Porous framework of T{sub 2}[Fe(CN){sub 6}].xH{sub 2}O with T=Co, Ni, Cu, Zn, and H{sub 2} storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, M.; Reguera, L.; Rodriguez-Hernandez, J.

    2008-11-15

    The materials under study were prepared from aqueous solutions of ferrocyanic acid and salts of the involved transition metals and their crystal structure solved and refined from X-ray powder diffraction data. Complementary information from thermogravimetric, infrared and Moessbauer data was also used for the structural study. Three different crystal structures were found: hexagonal (P-3) for Zn with the zinc atom coordinated to three N ends of CN groups plus a water molecule, cubic (Pm-3m) for Ni and Cu, and monoclinic (P2{sub 1}/m) for Co. For Ni and Cu the obtained solids have an open channel framework related to 50% ofmore » vacancies for the building unit, [Fe(CN){sub 6}]. In the as-synthesized material the framework free volume is occupied by coordinated and hydrogen-bonded water molecules. These of hexacyanoferrates (II) have received certain attention as prototype of materials for the hydrogen storage. In the anhydrous phase of Ni and Cu, 50% of the metal (T) coordination sites, located at the cavities surface, will be available to interact with the hydrogen molecule. However, when the crystal waters are removed the porous frameworks collapse as it is suggested by H{sub 2} and CO{sub 2} adsorption data. For Co, a structure of stacked layers was found where the cobalt atoms have both tetrahedral and octahedral coordination. The layers remain together through a network of hydrogen-bonding interactions between coordinated and weakly bonded water molecules. No H{sub 2} adsorption was observed in the anhydrous phase of Co. For Zn, the porous framework remains stable on the water removal but with a system of narrow channels and a small available volume, also inaccessible to H{sub 2}. - Graphical abstract: Structure of stacked layers for CO{sub 2}[Fe(CN){sub 6}].xH{sub 2}O.« less

  6. A Novel and Non-Cytotoxic Self-Healing Supramolecular Elastomer Synthesized with Small Molecular Biological Acids.

    PubMed

    Liu, Ling; Pan, Cheng; Zhang, Liqun; Guo, Baochun

    2016-10-01

    A novel and non-cytotoxic self-healing supramolecular elastomer (SE) is synthesized with small-molecular biological acids by hydrogen-bonding interactions. The synthesized SEs behave as rubber at room temperature without additional plasticizers or crosslinkers, which is attributed to the phase-separated structure. The SE material exhibits outstanding self-healing capability at room temperature and essential non-cytotoxicity, which makes it a potential candidate for biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solid-phase molecular recognition of cytosine based on proton-transfer reaction. Part II. supramolecular architecture in the cocrystals of cytosine and its 5-Fluoroderivative with 5-Nitrouracil

    PubMed Central

    2011-01-01

    Background Cytosine is a biologically important compound owing to its natural occurrence as a component of nucleic acids. Cytosine plays a crucial role in DNA/RNA base pairing, through several hydrogen-bonding patterns, and controls the essential features of life as it is involved in genetic codon of 17 amino acids. The molecular recognition among cytosines, and the molecular heterosynthons of molecular salts fabricated through proton-transfer reactions, might be used to investigate the theoretical sites of cytosine-specific DNA-binding proteins and the design for molecular imprint. Results Reaction of cytosine (Cyt) and 5-fluorocytosine (5Fcyt) with 5-nitrouracil (Nit) in aqueous solution yielded two new products, which have been characterized by single-crystal X-ray diffraction. The products include a dihydrated molecular salt (CytNit) having both ionic and neutral hydrogen-bonded species, and a dihydrated cocrystal of neutral species (5FcytNit). In CytNit a protonated and an unprotonated cytosine form a triply hydrogen-bonded aggregate in a self-recognition ion-pair complex, and this dimer is then hydrogen bonded to one neutral and one anionic 5-nitrouracil molecule. In 5FcytNit the two neutral nucleobase derivatives are hydrogen bonded in pairs. In both structures conventional N-H...O, O-H...O, N-H+...N and N-H...N- intermolecular interactions are most significant in the structural assembly. Conclusion The supramolecular structure of the molecular adducts formed by cytosine and 5-fluorocytosine with 5-nitrouracil, CytNit and 5FcytNit, respectively, have been investigated in detail. CytNit and 5FcytNit exhibit widely differing hydrogen-bonding patterns, though both possess layered structures. The crystal structures of CytNit (Dpka = -0.7, molecular salt) and 5FcytNit (Dpka = -2.0, cocrystal) confirm that, at the present level of knowledge about the nature of proton-transfer process, there is not a strict correlation between the Dpka values and the proton transfer, in that the acid/base pka strength is not a definite guide to predict the location of H atoms in the solid state. Eventually, the absence in 5FcytNit of hydrogen bonds involving fluorine is in agreement with findings that covalently bound fluorine hardly ever acts as acceptor for available Brønsted acidic sites in the presence of competing heteroatom acceptors. PMID:21888640

  8. Determining the Energetics of the Hydrogen Bond through FTIR: A Hands-On Physical Chemistry Lab Experiment

    ERIC Educational Resources Information Center

    Guerin, Abby C.; Riley, Kristi; Rupnik, Kresimir; Kuroda, Daniel G.

    2016-01-01

    Hydrogen bonds are very important chemical structures that are responsible for many unique and important properties of solvents, such as the solvation power of water. These distinctive features are directly related to the stabilization energy conferred by hydrogen bonds to the solvent. Thus, the characterization of hydrogen bond energetics has…

  9. Molecular dynamics simulation study of hydrogen bonding in aqueous poly(ethylene oxide) solutions.

    PubMed

    Smith, G D; Bedrov, D; Borodin, O

    2000-12-25

    A molecular dynamics simulation study of hydrogen bonding in poly(ethylene oxide) (PEO)/water solutions was performed. PEO-water and water-water hydrogen bonding manifested complex dependence on both composition and temperature. Strong water clustering in concentrated solutions was seen. Saturation of hydrogen bonding at w(p) approximately equal to 0.5 and a dramatic decrease in PEO-water hydrogen bonding with increasing temperature, consistent with experimentally observed closed-loop phase behavior, were observed. Little tendency toward intermolecular bridging of PEO chains by water molecules was seen.

  10. The Born-Oppenheimer molecular simulations of infrared spectra of crystalline poly-(R)-3-hydroxybutyrate with analysis of weak Csbnd H⋯Odbnd C hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Brela, Mateusz Z.; Boczar, Marek; Wójcik, Marek J.; Sato, Harumi; Nakajima, Takahito; Ozaki, Yukihiro

    2017-06-01

    In this letter we present results of study of weak Csbnd H⋯Odbnd C hydrogen bonds of crystalline poly-(R)-3-hydroxybutyrate (PHB) by using Born-Oppenheimer molecular dynamics. The polymeric structure and IR spectra of PHB result from the presence of the weak hydrogen bonds. We applied the post-molecular dynamics analysis to consider a Cdbnd O motion as indirectly involved in the hydrogen bonds. Quantization of the nuclear motion of the oxygens was done to perform detailed analysis of the strength and properties of the Cdbnd O bands involved in the weak hydrogen bonds. We have also shown the dynamic character of the weak hydrogen bond interactions.

  11. Carbon Dots as Fillers Inducing Healing/Self-Healing and Anticorrosion Properties in Polymers.

    PubMed

    Zhu, Cheng; Fu, Yijun; Liu, Changan; Liu, Yang; Hu, Lulu; Liu, Juan; Bello, Igor; Li, Hao; Liu, Naiyun; Guo, Sijie; Huang, Hui; Lifshitz, Yeshayahu; Lee, Shuit-Tong; Kang, Zhenhui

    2017-08-01

    Self-healing is the way by which nature repairs damage and prolongs the life of bio entities. A variety of practical applications require self-healing materials in general and self-healing polymers in particular. Different (complex) methods provide the rebonding of broken bonds, suppressing crack, or local damage propagation. Here, a simple, versatile, and cost-effective methodology is reported for initiating healing in bulk polymers and self-healing and anticorrosion properties in polymer coatings: introduction of carbon dots (CDs), 5 nm sized carbon nanocrystallites, into the polymer matrix forming a composite. The CDs are blended into polymethacrylate, polyurethane, and other common polymers. The healing/self-healing process is initiated by interfacial bonding (covalent, hydrogen, and van der Waals bonding) between the CDs and the polymer matrix and can be optimized by modifying the functional groups which terminate the CDs. The healing properties of the bulk polymer-CD composites are evaluated by comparing the tensile strength of pristine (bulk and coatings) composites to those of fractured composites that are healed and by following the self-healing of scratches intentionally introduced to polymer-CD composite coatings. The composite coatings not only possess self-healing properties but also have superior anticorrosion properties compared to those of the pure polymer coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hydrogen bonding. Part 18. The nature of the OHF hydrogen bond in choline fluoride

    NASA Astrophysics Data System (ADS)

    Harmon, Kenneth M.; Madeira, Susan L.; Jacks, Marshan J.; Avci, Günsel F.; Thiel, Anne C.

    1985-05-01

    The infrared spectrum of the OHF hydrogen bond in choline fluoride is completely different from the spectra of the electrostatic O—H⋯X hydrogen bonds in the other choline halides; however, this spectrum cannot be accounted for in terms of a "very strong" covalent OHF bond such as those found in carboxylic acid—fluoride ion complexes or postulated for betaine hydrofluoride. The spectrum of choline fluoride is interpreted best in terms of an intermediate type of unsymmetrical hydrogen bond ( r° O⋯F = ˜ 256 pm) which shows strong intensity enhancement for the first overtone of the OHF bending vibration.

  13. Self-healing and thermoreversible rubber from supramolecular assembly.

    PubMed

    Cordier, Philippe; Tournilhac, François; Soulié-Ziakovic, Corinne; Leibler, Ludwik

    2008-02-21

    Rubbers exhibit enormous extensibility up to several hundred per cent, compared with a few per cent for ordinary solids, and have the ability to recover their original shape and dimensions on release of stress. Rubber elasticity is a property of macromolecules that are either covalently cross-linked or connected in a network by physical associations such as small glassy or crystalline domains, ionic aggregates or multiple hydrogen bonds. Covalent cross-links or strong physical associations prevent flow and creep. Here we design and synthesize molecules that associate together to form both chains and cross-links via hydrogen bonds. The system shows recoverable extensibility up to several hundred per cent and little creep under load. In striking contrast to conventional cross-linked or thermoreversible rubbers made of macromolecules, these systems, when broken or cut, can be simply repaired by bringing together fractured surfaces to self-heal at room temperature. Repaired samples recuperate their enormous extensibility. The process of breaking and healing can be repeated many times. These materials can be easily processed, re-used and recycled. Their unique self-repairing properties, the simplicity of their synthesis, their availability from renewable resources and the low cost of raw ingredients (fatty acids and urea) bode well for future applications.

  14. A Flexible Stretchable Hydrogel Electrolyte for Healable All-in-One Configured Supercapacitors.

    PubMed

    Guo, Ying; Zheng, Kaiqiang; Wan, Pengbo

    2018-04-01

    The development of integrated high-performance supercapacitors with all-in-one configuration, excellent flexibility and autonomously intrinsic self-healability, and without the extra healable film layers, is still tremendously challenging. Compared to the sandwich-like laminated structures of supercapacitors with augmented interfacial contact resistance, the flexible healable integrated supercapacitor with all-in-one structure could theoretically improve their interfacial contact resistance and energy densities, simplify the tedious device assembly process, prolong the lifetime, and avoid the displacement and delamination of multilayered configurations under deformations. Herein, a flexible healable all-in-one configured supercapacitor with excellent flexibility and reliable self-healing ability by avoiding the extra healable film substrates and the postassembled sandwich-like laminated structures is developed. The healable all-in-one configured supercapacitor is prepared from in situ polymerization and deposition of nanocomposites electrode materials onto the two-sided faces of the self-healing hydrogel electrolyte separator. The self-healing hydrogel film is obtained from the physically crosslinked hydrogel with enormous hydrogen bonds, which can endow the healable capability through dynamic hydrogen bonding. The assembled all-in-one configured supercapacitor exhibits enhanced capacitive performance, good cycling stability, reliable self-healing capability, and excellent flexibility. It holds broad prospects for obtaining various flexible healable all-in-one configured supercapacitors for working as portable energy storage devices in wearable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dock 'n roll: folding of a silk-inspired polypeptide into an amyloid-like beta solenoid.

    PubMed

    Zhao, Binwu; Cohen Stuart, Martien A; Hall, Carol K

    2016-04-20

    Polypeptides containing the motif ((GA)mGX)n occur in silk and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two hydrophobic shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II' β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for molecules to reach the folded state.

  16. A density functional theory study on the hydrogen bonding interactions between luteolin and ethanol.

    PubMed

    Zheng, Yan-Zhen; Xu, Jing; Liang, Qin; Chen, Da-Fu; Guo, Rui; Fu, Zhong-Min

    2017-08-01

    Ethanol is one of the most commonly used solvents to extract flavonoids from propolis. Hydrogen bonding interactions play an important role in the properties of liquid system. The main objective of the work is to study the hydrogen bonding interactions between flavonoid and ethanol. Luteolin is a very common flavonoid that has been found in different geographical and botanical propolis. In this work, it was selected as the representative flavonoid to do detailed research. The study was performed from a theoretical perspective using density functional theory (DFT) method. After careful optimization, there exist nine optimized geometries for the luteolin - CH 3 CH 2 OH complex. The binding distance of X - H···O, and the bond length, vibrational frequency, and electron density changes of X - H all indicate the formation of the hydrogen bond in the optimized geometries. In the optimized geometries, it is found that: (1) except for the H2', H5', and H6', CH 3 CH 2 OH has formed hydrogen bonds with all the hydrogen and oxygen atoms in luteolin. The hydrogen atoms in the hydroxyl groups of luteolin form the strongest hydrogen bonds with CH 3 CH 2 OH; (2) all of the hydrogen bonds are closed-shell interactions; (3) the strongest hydrogen bond is the O3' - H3'···O in structure A, while the weakest one is the C3 - H3···O in structure E; (4) the hydrogen bonds of O3' - H3'···O, O - H···O4, O - H···O3' and O - H···O7 are medium strength and covalent dominant in nature. While the other hydrogen bonds are weak strength and possess a dominant character of the electrostatic interactions in nature.

  17. A tensegrity model for hydrogen bond networks in proteins.

    PubMed

    Bywater, Robert P

    2017-05-01

    Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger - covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance ("closure") is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins ("domains") as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating elements in fibrous proteins.

  18. Multicomponent hollow tubules formed using phytosterol and gamma-oryzanol-based compounds: an understanding of their molecular embrace.

    PubMed

    Rogers, Michael A; Bot, Arjen; Lam, Ricky Sze Ho; Pedersen, Tor; May, Tim

    2010-08-19

    The formation kinetics of self-assembling tubules composed of phytosterol:gamma-oryzanol mixtures were investigated at the Canadian Light Source on the mid-IR beamline using synchrotron radiation and Fourier transform infrared spectroscopy (FT-IR). The Avrami model was fitted to the changing hydrogen bonding density occurring at 3450 cm(-1). The nucleation process was found to be highly dependent on the molecular structure of the phytosterol. The nucleation event for cholesterol:gamma-oryzanol was determined to be sporadic whereas 5alpha-cholestan-3beta-ol:gamma-oryzanol and beta-sitosterol:gamma-oryzanol underwent instantaneous nucleation. One-dimensional growth occurred for each phytosterol:gamma-oryzanol mixture and involved the evolution of highly specific intermolecular hydrogen bonds. More detailed studies on the cholesterol:gamma-oryzanol system indicated that the nucleation activation energy, determined from multiple rate constants, obtained using the Avrami model, was at a minimum when the two compounds were at a 1:1 weight ratio. This resulted in drastic differences to the microscopic structures and affected the macroscopic properties such as turbidity. The formation of the phytosterol:gamma-oryzanol complex was due to intermolecular hydrogen bonding, which was in agreement with the infrared spectroscopic evidence.

  19. Thermodynamics of single polyethylene and polybutylene glycols with hydrogen-bonding ends: A transition from looped to open conformations

    NASA Astrophysics Data System (ADS)

    Lee, Eunsang; Paul, Wolfgang

    2018-02-01

    A variety of linear polymer precursors with hydrogen bonding motifs at both ends enable us to design supramolecular polymer systems with tailored macroscopic properties including self-healing. In this study, we investigate thermodynamic properties of single polyethylene and polybutylene glycols with hydrogen bonding motifs. In this context, we first build a coarse-grained model of building blocks of the supramolecular polymer system based on all-atom molecular structures. The density of states of the single precursor is obtained using the stochastic approximation Monte Carlo method. Constructing canonical partition functions from the density of states, we find the transition from looped to open conformations at transition temperatures which are non-monotonously changing with an increasing degree of polymerization due to the competition between chain stiffness and loop-forming entropy penalty. In the complete range of chain length under investigation, a coexistence of the looped and open morphologies at the transition temperature is shown regardless of whether the transition is first-order-like or continuous. Polyethylene and polybutylene glycols show similar behavior in all the thermodynamic properties but the transition temperature of the more flexible polybutylene glycol is shown to change more gradually.

  20. Influence of temporary cement contamination on the surface free energy and dentine bond strength of self-adhesive cements.

    PubMed

    Takimoto, Masayuki; Ishii, Ryo; Iino, Masayoshi; Shimizu, Yusuke; Tsujimoto, Akimasa; Takamizawa, Toshiki; Ando, Susumu; Miyazaki, Masashi

    2012-02-01

    The surface free energy and dentine bond strength of self-adhesive cements were examined after the removal of temporary cements. The labial dentine surfaces of bovine mandibular incisors were wet ground with #600-grit SiC paper. Acrylic resin blocks were luted to the prepared dentine surfaces using HY Bond Temporary Cement Hard (HY), IP Temp Cement (IP), Fuji TEMP (FT) or Freegenol Temporary Cement (TC), and stored for 1 week. After removal of the temporary cements with an ultrasonic tip, the contact angle values of five specimens per test group were determined for the three test liquids, and the surface-energy parameters of the dentine surfaces were calculated. The dentine bond strengths of the self-adhesive cements were measured after removal of the temporary cements in a shear mode at a crosshead speed of 1.0mm/min. The data were subjected to one-way analysis of variance (ANOVA) followed by Tukey's HSD test. For all surfaces, the value of the estimated surface tension component γ(S)(d) (dispersion) was relatively constant at 41.7-43.3 mJm(-2). After removal of the temporary cements, the value of the γ(S)(h) (hydrogen-bonding) component decreased, particularly with FT and TC. The dentine bond strength of the self-adhesive cements was significantly higher for those without temporary cement contamination (8.2-10.6 MPa) than for those with temporary cement contamination (4.3-7.1 MPa). The γ(S) values decreased due to the decrease of γ(S)(h) values for the temporary cement-contaminated dentine. Contamination with temporary cements led to lower dentine bond strength. The presence of temporary cement interferes with the bonding performance of self-adhesive cements to dentine. Care should be taken in the methods of removal of temporary cement when using self-adhesive cements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Sensitivity of hydrogen bonds of DNA and RNA to hydration, as gauged by 1JNH measurements in ethanol-water mixtures.

    PubMed

    Manalo, Marlon N; Kong, Xiangming; LiWang, Andy

    2007-04-01

    Hydrogen-bond lengths of nucleic acids are (1) longer in DNA than in RNA, and (2) sequence dependent. The physicochemical basis for these variations in hydrogen-bond lengths is unknown, however. Here, the notion that hydration plays a significant role in nucleic acid hydrogen-bond lengths is tested. Watson-Crick N1...N3 hydrogen-bond lengths of several DNA and RNA duplexes are gauged using imino 1J(NH) measurements, and ethanol is used as a cosolvent to lower water activity. We find that 1J(NH) values of DNA and RNA become less negative with added ethanol, which suggests that mild dehydration reduces hydrogen-bond lengths even as the overall thermal stabilities of these duplexes decrease. The 1J(NH) of DNA are increased in 8 mol% ethanol to those of RNA in water, which suggests that the greater hydration of DNA plays a significant role in its longer hydrogen bonds. The data also suggest that ethanol-induced dehydration is greater for the more hydrated G:C base pairs and thereby results in greater hydrogen-bond shortening than for the less hydrated A:T/U base pairs of DNA and RNA.

  2. A theoretical perspective of the nature of hydrogen-bond types - the atoms in molecules approach

    NASA Astrophysics Data System (ADS)

    Vijaya Pandiyan, B.; Kolandaivel, P.; Deepa, P.

    2014-06-01

    Hydrogen bonds and their strength were analysed based on their X-H proton-donor bond properties and the parameters of the H-Y distance (Y proton acceptor). Strong, moderate and weak interactions in hydrogen-bond types were verified through the proton affinities of bases (PA), deprotanation enthalpies of acids (DPE) and the chemical shift (σ). The aromaticity and anti-aromaticity were analysed by means of the NICS (0) (nucleus-independent chemical shift), NICS (1) and ΔNICS (0), ΔNICS (1) of hydrogen-bonded molecules. The strength of a hydrogen bond depends on the capacity of hydrogen atom engrossing into the electronegative acceptor atom. The correlation between the above parameters and their relations were discussed through curve fitting. Bader's theory of atoms in molecules has been applied to estimate the occurrence of hydrogen bonds through eight criteria reported by Popelier et al. The lengths and potential energy shifts have been found to have a strong negative linear correlation, whereas the lengths and Laplacian shifts have a strong positive linear correlation. This study illustrates the common factors responsible for strong, moderate and weak interactions in hydrogen-bond types.

  3. Femtosecond Study of Self-Trapped Vibrational Excitons in Crystalline Acetanilide

    NASA Astrophysics Data System (ADS)

    Edler, J.; Hamm, P.; Scott, A. C.

    2002-02-01

    Femtosecond IR spectroscopy of delocalized NH excitations of crystalline acetanilide confirms that self-trapping in hydrogen-bonded peptide units exists and does stabilize the excitation. Two phonons with frequencies of 48 and 76 cm -1 are identified as the major degrees of freedom that mediate self-trapping. After selective excitation of the free exciton, self-trapping occurs within a few 100 fs. Excitation of the self-trapped states disappears from the spectral window of this investigation on a 1 ps time scale, followed by a slow ground state recovery of the hot ground state within 18 ps.

  4. Femtosecond study of self-trapped vibrational excitons in crystalline acetanilide.

    PubMed

    Edler, J; Hamm, P; Scott, A C

    2002-02-11

    Femtosecond IR spectroscopy of delocalized NH excitations of crystalline acetanilide confirms that self-trapping in hydrogen-bonded peptide units exists and does stabilize the excitation. Two phonons with frequencies of 48 and 76 cm (-1) are identified as the major degrees of freedom that mediate self-trapping. After selective excitation of the free exciton, self-trapping occurs within a few 100 fs. Excitation of the self-trapped states disappears from the spectral window of this investigation on a 1 ps time scale, followed by a slow ground state recovery of the hot ground state within 18 ps.

  5. Quantum mechanical electronic structure calculation reveals orientation dependence of hydrogen bond energy in proteins.

    PubMed

    Mondal, Abhisek; Datta, Saumen

    2017-06-01

    Hydrogen bond plays a unique role in governing macromolecular interactions with exquisite specificity. These interactions govern the fundamental biological processes like protein folding, enzymatic catalysis, molecular recognition. Despite extensive research work, till date there is no proper report available about the hydrogen bond's energy surface with respect to its geometric parameters, directly derived from proteins. Herein, we have deciphered the potential energy landscape of hydrogen bond directly from the macromolecular coordinates obtained from Protein Data Bank using quantum mechanical electronic structure calculations. The findings unravel the hydrogen bonding energies of proteins in parametric space. These data can be used to understand the energies of such directional interactions involved in biological molecules. Quantitative characterization has also been performed using Shannon entropic calculations for atoms participating in hydrogen bond. Collectively, our results constitute an improved way of understanding hydrogen bond energies in case of proteins and complement the knowledge-based potential. Proteins 2017; 85:1046-1055. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Hydrogen bonds and heat diffusion in α-helices: a computational study.

    PubMed

    Miño, German; Barriga, Raul; Gutierrez, Gonzalo

    2014-08-28

    Recent evidence has shown a correlation between the heat diffusion pathways and the known allosteric communication pathways in proteins. Allosteric communication in proteins is a central, yet unsolved, problem in biochemistry, and the study and characterization of the structural determinants that mediate energy transfer among different parts of proteins is of major importance. In this work, we characterized the role of hydrogen bonds in diffusivity of thermal energy for two sets of α-helices with different abilities to form hydrogen bonds. These hydrogen bonds can be a constitutive part of the α-helices or can arise from the lateral chains. In our in vacuo simulations, it was observed that α-helices with a higher possibility of forming hydrogen bonds also had higher rates of thermalization. Our simulations also revealed that heat readily flowed through atoms involved in hydrogen bonds. As a general conclusion, according to our simulations, hydrogen bonds fulfilled an important role in heat diffusion in structural patters of proteins.

  7. Tunneling readout of hydrogen-bonding based recognition

    PubMed Central

    Chang, Shuai; He, Jin; Kibel, Ashley; Lee, Myeong; Sankey, Otto; Zhang, Peiming; Lindsay, Stuart

    2009-01-01

    Hydrogen bonding has a ubiquitous role in electron transport1,2 and in molecular recognition, with DNA base-pairing being the best known example.3 Scanning tunneling microscope (STM) images4 and measurements of the decay of tunnel-current as a molecular junction is pulled apart by the STM tip, 5 are sensitive to hydrogen-bonded interactions. Here we show that these tunnel-decay signals can be used to measure the strength of hydrogen bonding in DNA basepairs. Junctions that are held together by three hydrogen bonds per basepair (e.g., guanine-cytosine interactions) are stiffer than junctions held together by two hydrogen bonds per basepair (e.g., adenine-thymine interactions). Similar, but less-pronounced, effects are observed on the approach of the tunneling probe, implying that hydrogen-bond dependent attractive forces also have a role in determining the rise of current. These effects provide new mechanisms for making sensors that transduce a molecular recognition event into an electronic signal. PMID:19421214

  8. Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase

    PubMed Central

    Blakeley, Matthew P.; Ruiz, Federico; Cachau, Raul; Hazemann, Isabelle; Meilleur, Flora; Mitschler, Andre; Ginell, Stephan; Afonine, Pavel; Ventura, Oscar N.; Cousido-Siah, Alexandra; Haertlein, Michael; Joachimiak, Andrzej; Myles, Dean; Podjarny, Alberto

    2008-01-01

    We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 Å, 100K; 0.80 Å, 15K; 1.75 Å, 293K), neutron Laue data (2.2 Å, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes. PMID:18250329

  9. Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase.

    PubMed

    Blakeley, Matthew P; Ruiz, Federico; Cachau, Raul; Hazemann, Isabelle; Meilleur, Flora; Mitschler, Andre; Ginell, Stephan; Afonine, Pavel; Ventura, Oscar N; Cousido-Siah, Alexandra; Haertlein, Michael; Joachimiak, Andrzej; Myles, Dean; Podjarny, Alberto

    2008-02-12

    We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 A, 100K; 0.80 A, 15K; 1.75 A, 293K), neutron Laue data (2.2 A, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes.

  10. Quantum Model of Catalysis Based on a Mobile Proton Revealed by Subatomic X-ray and Neutron Diffraction Studies of h-aldose Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blakeley, M. P.; Ruiz, Fredrico; Cachau, Raul

    2008-01-01

    We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 Angstroms, 100K; 0.80 Angstroms, 15K; 1.75 Angstroms, 293K), neutron Laue data (2.2 Angstroms, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes.

  11. Binding of urea and thiourea with a barbiturate derivative: experimental and theoretical approach.

    PubMed

    Dixit, Namrata; Shukla, P K; Mishra, P C; Mishra, Lallan; Roesky, Herbert W

    2010-01-14

    A barbiturate derivative [1,5-dihydro-5-[5-pyrimidine-2,4(1H,3H)-dionyl]-2H-chromeno[2,3-d] pyrimidine-2,4(3H)-dione)] (L1) possesses functionalities complementary to amide and thioamide. Hence its binding with urea and thiourea, is monitored using UV-vis and fluorescence titrations as well as isothermal titration calorimetry (ITC) study. Theoretical studies on hydrogen-bonded complexes of L1-urea and L1-thiourea in the gas phase, aqueous, and DMSO medium are carried out using density functional theory (DFT) at the B3LYP/6-31G** level. The theoretical calculations support the experimental results.

  12. Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications.

    PubMed

    Galek, Peter T A; Chisholm, James A; Pidcock, Elna; Wood, Peter A

    2014-02-01

    Statistical models to predict the number of hydrogen bonds that might be formed by any donor or acceptor atom in a crystal structure have been derived using organic structures in the Cambridge Structural Database. This hydrogen-bond coordination behaviour has been uniquely defined for more than 70 unique atom types, and has led to the development of a methodology to construct hypothetical hydrogen-bond arrangements. Comparing the constructed hydrogen-bond arrangements with known crystal structures shows promise in the assessment of structural stability, and some initial examples of industrially relevant polymorphs, co-crystals and hydrates are described.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newcomb, Christina J.; Sur, Shantanu; Lee, Sungsoo S.

    The nanostructures of self-assembling biomaterials have been previously designed to tune the release of growth factors in order to optimize biological repair and regeneration. We report here on the discovery that weakly cohesive peptide nanostructures in terms of intermolecular hydrogen bonding, when combined with low concentrations of osteogenic growth factor, enhance both BMP-2 and Wnt mediated signaling in myoblasts and bone marrow stromal cells, respectively. Conversely, analogous nanostructures with enhanced levels of internal hydrogen bonding and cohesion lead to an overall reduction in BMP-2 signaling. We propose that the mechanism for enhanced growth factor signaling by the nanostructures is relatedmore » to their ability to increase diffusion within membrane lipid rafts. The phenomenon reported here could lead to new nanomedicine strategies to mediate growth factor signaling for translational targets.« less

  14. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems.

    PubMed

    Broer, Dirk J; Bastiaansen, Cees M W; Debije, Michael G; Schenning, Albertus P H J

    2012-07-16

    Functional organic materials are of great interest for a variety of applications. To obtain precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals has proven to be an extremely useful tool in the development of well-defined nanostructured materials. We have chosen the illustrative example of photopolymerizable hydrogen-bonding mesogens to show that a wide variety of functional materials can be made from a relatively simple set of building blocks. Upon mixing these compounds with other reactive mesogens, nematic, chiral nematic, and smectic or columnar liquid-crystalline phases can be formed that can be applied as actuators, sensors and responsive reflectors, and nanoporous membranes, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ab initio atomic recombination reaction energetics on model heat shield surfaces

    NASA Technical Reports Server (NTRS)

    Senese, Fredrick; Ake, Robert

    1992-01-01

    Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.

  16. Proline induced disruption of the structure and dynamics of water.

    PubMed

    Yu, Dehong; Hennig, Marcus; Mole, Richard A; Li, Ji Chen; Wheeler, Cheryl; Strässle, Thierry; Kearley, Gordon J

    2013-12-21

    We use quasi-elastic neutron scattering spectroscopy to study the diffusive motion of water molecules at ambient temperature as a function of the solute molar fraction of the amino acid, proline. We validate molecular dynamics simulations against experimental quasielastic neutron scattering data and then use the simulations to reveal, and understand, a strong dependence of the translational self-diffusion coefficient of water on the distance to the amino acid molecule. An analysis based on the juxtaposition of water molecules in the simulation shows that the rigidity of proline imposes itself on the local water structure, which disrupts the hydrogen-bond network of water leading to an increase in the mean lifetime of hydrogen bonds. The net effect is some distortion of the proline molecule and a slowing down of the water mobility.

  17. Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Kohei; Ji, Wei; Palmer, Liam C.

    Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses revealed that hydrogen bonds between peptidesmore » were reinforced by covalent bond formation, enabling the fiber elongation. To examine these materials for their potential biomedical applications, cytotoxicity of nanofibers against C2C12 premyoblast cells was tested. We demonstrated that cell viability increased with an increase in fiber length, presumably because of the suppressed disruption of cell membranes by the fiber end-caps.« less

  18. Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion

    DOE PAGES

    Sato, Kohei; Ji, Wei; Palmer, Liam C.; ...

    2017-06-22

    Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses revealed that hydrogen bonds between peptidesmore » were reinforced by covalent bond formation, enabling the fiber elongation. To examine these materials for their potential biomedical applications, cytotoxicity of nanofibers against C2C12 premyoblast cells was tested. We demonstrated that cell viability increased with an increase in fiber length, presumably because of the suppressed disruption of cell membranes by the fiber end-caps.« less

  19. NASA Tech Briefs, June 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Device for Measuring Low Flow Speed in a Duct, Measuring Thermal Conductivity of a Small Insulation Sample, Alignment Jig for the Precise Measurement of THz Radiation, Autoignition Chamber for Remote Testing of Pyrotechnic Devices, Microwave Power Combiners for Signals of Arbitrary Amplitude, Synthetic Foveal Imaging Technology, Airborne Antenna System for Minimum-Cycle-Slip GPS Reception, Improved Starting Materials for Back-Illuminated Imagers, Multi-Modulator for Bandwidth-Efficient Communication, Some Improvements in Utilization of Flash Memory Devices, GPS/MEMS IMU/Microprocessor Board for Navigation, T/R Multi-Chip MMIC Modules for 150 GHz, Pneumatic Haptic Interfaces, Device Acquires and Retains Rock or Ice Samples, Cryogenic Feedthrough Test Rig, Improved Assembly for Gas Shielding During Welding or Brazing, Two-Step Plasma Process for Cleaning Indium Bonding Bumps, Tool for Crimping Flexible Circuit Leads, Yb14MnSb11 as a High-Efficiency Thermoelectric Material, Polyimide-Foam/Aerogel Composites for Thermal Insulation, Converting CSV Files to RKSML Files, Service Management Database for DSN Equipment, Chemochromic Hydrogen Leak Detectors, Compatibility of Segments of Thermoelectric Generators, Complementary Barrier Infrared Detector, JPL Greenland Moulin Exploration Probe, Ultra-Lightweight Self-Deployable Nanocomposite Structure for Habitat Applications, and Room-Temperature Ionic Liquids for Electrochemical Capacitors.

  20. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  1. Polymer films

    DOEpatents

    Granick, Steve [Champaign, IL; Sukhishvili, Svetlana A [Maplewood, NJ

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  2. Dynamic Properties of DNA-Programmable Nanoparticle Crystallization.

    PubMed

    Yu, Qiuyan; Zhang, Xuena; Hu, Yi; Zhang, Zhihao; Wang, Rong

    2016-08-23

    The dynamics of DNA hybridization is very important in DNA-programmable nanoparticle crystallization. Here, coarse-grained molecular dynamics is utilized to explore the structural and dynamic properties of DNA hybridizations for a self-complementary DNA-directed nanoparticle self-assembly system. The hexagonal close-packed (HCP) and close-packed face-centered cubic (FCC) ordered structures are identified for the systems of different grafted DNA chains per nanoparticle, which are in good agreement with the experimental results. Most importantly, the dynamic crystallization processes of DNA hybridizations are elucidated by virtue of the mean square displacement, the percentage of hybridizations, and the lifetime of DNA bonds. The lifetime can be modeled by the DNA dehybridization, which has an exponential form. The lifetime of DNA bonds closely depends on the temperature. A suitable temperature for the DNA-nanoparticle crystallization is obtained in the work. Moreover, a too large volume fraction hinders the self-assembly process due to steric effects. This work provides some essential information for future design of nanomaterials.

  3. Self-Diffusion in Amorphous Silicon by Local Bond Rearrangements

    NASA Astrophysics Data System (ADS)

    Kirschbaum, J.; Teuber, T.; Donner, A.; Radek, M.; Bougeard, D.; Böttger, R.; Hansen, J. Lundsgaard; Larsen, A. Nylandsted; Posselt, M.; Bracht, H.

    2018-06-01

    Experiments on self-diffusion in amorphous silicon (Si) were performed at temperatures between 460 to 600 ° C . The amorphous structure was prepared by Si ion implantation of single crystalline Si isotope multilayers epitaxially grown on a silicon-on-insulator wafer. The Si isotope profiles before and after annealing were determined by means of secondary ion mass spectrometry. Isothermal diffusion experiments reveal that structural relaxation does not cause any significant intermixing of the isotope interfaces whereas self-diffusion is significant before the structure recrystallizes. The temperature dependence of self-diffusion is described by an Arrhenius law with an activation enthalpy Q =(2.70 ±0.11 ) eV and preexponential factor D0=(5.5-3.7+11.1)×10-2 cm2 s-1 . Remarkably, Q equals the activation enthalpy of hydrogen diffusion in amorphous Si, the migration of bond defects determining boron diffusion, and the activation enthalpy of solid phase epitaxial recrystallization reported in the literature. This close agreement provides strong evidence that self-diffusion is mediated by local bond rearrangements rather than by the migration of extended defects as suggested by Strauß et al. (Phys. Rev. Lett. 116, 025901 (2016), 10.1103/PhysRevLett.116.025901).

  4. Noncovalent Organocatalysis Based on Hydrogen Bonding: Elucidation of Reaction Paths by Computational Methods

    NASA Astrophysics Data System (ADS)

    Etzenbach-Effers, Kerstin; Berkessel, Albrecht

    In this article, the functions of hydrogen bonds in organocatalytic reactions are discussed on atomic level by presenting DFT studies of selected examples. Theoretical investigation provides a detailed insight in the mechanism of substrate activation and orientation, and the stabilization of transition states and intermediates by hydrogen bonding (e.g. oxyanion hole). The examples selected comprise stereoselective catalysis by bifunctional thioureas, solvent catalysis by fluorinated alcohols in epoxidation by hydrogen peroxide, and intramolecular cooperative hydrogen bonding in TADDOL-type catalysts.

  5. Hydroxylamine and methoxyamine mutagenesis: displacement of the tautomeric equilibrium of the promutagen N6-methoxyadenosine by complementary base pairing.

    PubMed

    Stolarski, R; Kierdaszuk, B; Hagberg, C E; Shugar, D

    1984-06-19

    The imino-amino tautomeric equilibrium of the promutagenic adenosine analogue N6-methoxy-2',3',5'-tri-O-methyladenosine [OMe6A(Me)3], in solvents of various polarities, has been studied with the aid of 1H and 13C NMR spectroscopy. The high energy barrier (free enthalpy delta G = 80 +/- 5 kJ X mol-1) between the two tautomeric species renders possible direct observation of the independent sets of all 1H and 13C signals from each of them. The equilibrium ranges from 10% imino in CCl4 to 90% in aqueous medium. Thermodynamic parameters, including energy barriers and lifetimes, were calculated from the temperature dependence of the equilibrium. Essentially similar results prevail for the promutagenic N6-hydroxy analogue. The conformations of the sugar moieties, and of the base about the glycosidic bond, for both tautomers are similar to those for adenosine. The conformation of the exocyclic N6-OCH3 group, which determines the ability of each species to form planar associates (hydrogen-bonded base pairs), has also been evaluated. Formation of autoassociates of OMe6A(Me)3 and of heteroassociates with the potentially complementary 2',3',5'-tri-O-methyluridine and -cytidine, in chloroform solution, was also investigated. The amino form base pairs with uridine and the imino form with cytidine. Formation of a complementary base pair by a given tautomeric species was accompanied by an increase of up to 10% in the population of this species and a concomitant decrease in population of the other species.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Molecular mechanism of gelation upon the addition of water to a solution of poly(acrylonitrile) in dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Kulik, V. B.; Savitskii, A. V.; Fetisov, O. I.; Usov, V. V.

    2010-05-01

    The solidification of a solution of poly(acrylonitrile) (PAN) in dimethylsulfoxide (DMSO) upon introduction of water into the solution is studied by Raman spectroscopy. In the absence of water, DMSO molecules are found to produce dipole-dipole bonds with PAN molecules. Upon the introduction of water, DMSO molecules produce hydrogen bonds with it and bands at 1005 and 1015 cm-1 appear in the Raman spectrum, which are assigned to the valence vibrations of S=O bonds involved in the hydrogen bonds. Simultaneously, water molecules produce hydrogen bonds with PAN molecules: R-C≡N...H-O-H...N≡C-R, where R is the carbon skeleton of a PAN molecule. Accordingly, a band at 2250 cm-1 arises in the Raman spectrum, which is assigned to the valence vibrations of C≡N bonds producing hydrogen bonds with a water molecule. When the water content is low and the DMSO concentration is high, the length of the hydrogen bonds varies in wide limits and the band at 2250 cm-1 is wide. As the water content rises, DMSO molecules come out of PAN, the variation of the hydrogen bond length in it decreases (the band at 2250 cm-1 narrows), and a high-viscosity system (gel) arises that consists of PAN molecules bonded to water molecules via “equally strong” hydrogen bonds.

  7. The dynamics of solvation dictates the conformation of polyethylene oxide in aqueous, isobutyric acid and binary solutions.

    PubMed

    Dahal, Udaya R; Dormidontova, Elena E

    2017-04-12

    Polymers hydrogen-bonding with solvent represent an important broad class of polymers, properties of which depend on solvation. Using atomistic molecular dynamics simulations with the OPLS/AA force field we investigate the effect of hydrogen bonding on PEO conformation and chain mobility by comparing its behavior in isobutyric acid and aqueous solutions. In agreement with experimental data, we found that in isobutyric acid PEO forms a rather rigid extended helical structure, while in water it assumes a highly flexible coil conformation. We show that the difference in PEO conformation and flexibility is the result of the hydrogen bond stability and overall solvent dynamics near PEO. Isobutyric acid forms up to one hydrogen bond per repeat unit of PEO and interacts with PEO for a prolonged period of time, thereby stabilizing the helical structure of the polymer and reducing its segmental mobility. In contrast, water forms on average 1.2 hydrogen bonds per repeat unit of PEO (with 60% of water forming a single hydrogen bond and 40% of water forming two hydrogen bonds) and resides near PEO for a noticeably shorter time than isobutyric acid, leading to the well-documented high segmental mobility of PEO in water. We also analyze PEO conformation, hydrogen bonding and segmental mobility in binary water/isobutyric acid solutions and find that in the phase separated region PEO resides in the isobutyric-rich phase forming about 25% of its hydrogen bonds with isobutyric acid and 75% with water. We show that the dynamics of solvation affects the equilibrium properties of macromolecules, such as conformation, and by mixing of hydrogen bond-donating solvents one can significantly alter both polymer conformation and its local dynamics.

  8. FT-IR and computer modeling study of hydrogen bonding in N-alkyl acrylamide-toluene binary mixtures

    NASA Astrophysics Data System (ADS)

    Rumyantsev, Misha; Kazantsev, Oleg A.; Kamorina, Sofia I.; Kamorin, Denis M.; Sivokhin, Alexey P.

    2016-10-01

    Degree of hydrogen bonding driven self-association of N-(n-butyl)acrylamide, N-(n-octyl)acrylamide, N-(sec-octyl)acrylamide and N-(tert-octyl)acrylamide in toluene was investigated using IR spectroscopy and computer modeling methods. Consistent results were demonstrated in the treatment of the Amide-I (νC=O), Amide-II (δN-H and νC-N) and Amide-A (νN-H) absorption bands in IR spectra. Thus, the content of non-bonded (free) amide groups decreases from 83-98% to 8-20% and the content of linear polyassociates increases to 80-90% with an increase in monomer concentration from 0.5 wt% to 50 wt%. The content of cyclic dimers was equal to the value between 5 and 10% regardless of the initial monomer concentration. Dependences of the association degree and the content of the linear polyassociates on the concentration were found to be similar for all of the studied amides.

  9. Predictions of glass transition temperature for hydrogen bonding biomaterials.

    PubMed

    van der Sman, R G M

    2013-12-19

    We show that the glass transition of a multitude of mixtures containing hydrogen bonding materials correlates strongly with the effective number of hydroxyl groups per molecule, which are available for intermolecular hydrogen bonding. This correlation is in compliance with the topological constraint theory, wherein the intermolecular hydrogen bonds constrain the mobility of the hydrogen bonded network. The finding that the glass transition relates to hydrogen bonding rather than free volume agrees with our recent finding that there is little difference in free volume among carbohydrates and polysaccharides. For binary and ternary mixtures of sugars, polyols, or biopolymers with water, our correlation states that the glass transition temperature is linear with the inverse of the number of effective hydroxyl groups per molecule. Only for dry biopolymer/sugar or sugar/polyol mixtures do we find deviations due to nonideal mixing, imposed by microheterogeneity.

  10. Frequent side chain methyl carbon-oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structures.

    PubMed

    Yesselman, Joseph D; Horowitz, Scott; Brooks, Charles L; Trievel, Raymond C

    2015-03-01

    The propensity of backbone Cα atoms to engage in carbon-oxygen (CH · · · O) hydrogen bonding is well-appreciated in protein structure, but side chain CH · · · O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH · · · O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH · · · O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH · · · O hydrogen bonding contributes to the energetics of protein structure and folding. © 2014 Wiley Periodicals, Inc.

  11. Potential State-selective Hydrogen Bond Formation Can Modulate Activation and Desensitization of the α7 Nicotinic Acetylcholine Receptor*

    PubMed Central

    Wang, Jingyi; Papke, Roger L.; Stokes, Clare; Horenstein, Nicole A.

    2012-01-01

    A series of arylidene anabaseines were synthesized to probe the functional impact of hydrogen bonding on human α7 nicotinic acetylcholine receptor (nAChR) activation and desensitization. The aryl groups were either hydrogen bond acceptors (furans), donors (pyrroles), or neither (thiophenes). These compounds were tested against a series of point mutants of the ligand-binding domain residue Gln-57, a residue hypothesized to be proximate to the aryl group of the bound agonist and a putative hydrogen bonding partner. Q57K, Q57D, Q57E, and Q57L were chosen to remove the dual hydrogen bonding donor/acceptor ability of Gln-57 and replace it with hydrogen bond donating, hydrogen bond accepting, or nonhydrogen bonding ability. Activation of the receptor was compromised with hydrogen bonding mismatches, for example, pairing a pyrrole with Q57K or Q57L, or a furan anabaseine with Q57D or Q57E. Ligand co-applications with the positive allosteric modulator PNU-120596 produced significantly enhanced currents whose degree of enhancement was greater for 2-furans or -pyrroles than for their 3-substituted isomers, whereas the nonhydrogen bonding thiophenes failed to show this correlation. Interestingly, the PNU-120596 agonist co-application data revealed that for wild-type α7 nAChR, the 3-furan desensitized state was relatively stabilized compared with that of 2-furan, a reversal of the relationship observed with respect to the barrier for entry into the desensitized state. These data highlight the importance of hydrogen bonding on the receptor-ligand state, and suggest that it may be possible to fine-tune features of agonists that mediate state selection in the nAChR. PMID:22556416

  12. Comparing and Correlating Solubility Parameters Governing the Self-Assembly of Molecular Gels Using 1,3:2,4-Dibenzylidene Sorbitol as the Gelator

    PubMed Central

    2014-01-01

    Solvent properties play a central role in mediating the aggregation and self-assembly of molecular gelators and their growth into fibers. Numerous attempts have been made to correlate the solubility parameters of solvents and gelation abilities of molecular gelators, but a comprehensive comparison of the most important parameters has yet to appear. Here, the degree to which partition coefficients (log P), Henry’s law constants (HLC), dipole moments, static relative permittivities (εr), solvatochromic ET(30) parameters, Kamlet–Taft parameters (β, α, and π), Catalan’s solvatochromic parameters (SPP, SB, and SA), Hildebrand solubility parameters (δi), and Hansen solubility parameters (δp, δd, δh) and the associated Hansen distance (Rij) of 62 solvents (covering a wide range of properties) can be correlated with the self-assembly and gelation of 1,3:2,4-dibenzylidene sorbitol (DBS) gelation, a classic molecular gelator, is assessed systematically. The approach presented describes the basis for each of the parameters and how it can be applied. As such, it is an instructional blueprint for how to assess the appropriate type of solvent parameter for use with other molecular gelators as well as with molecules forming other types of self-assembled materials. The results also reveal several important insights into the factors favoring the gelation of solvents by DBS. The ability of a solvent to accept or donate a hydrogen bond is much more important than solvent polarity in determining whether mixtures with DBS become solutions, clear gels, or opaque gels. Thermodynamically derived parameters could not be correlated to the physical properties of the molecular gels unless they were dissected into their individual HSPs. The DBS solvent phases tend to cluster in regions of Hansen space and are highly influenced by the hydrogen-bonding HSP, δh. It is also found that the fate of this molecular gelator, unlike that of polymers, is influenced not only by the magnitude of the distance between the HSPs for DBS and the HSPs of the solvent, Rij, but also by the directionality of Rij: if the solvent has a larger hydrogen-bonding HSP (indicating stronger H-bonding) than that of the DBS, then clear gels are formed; opaque gels form when the solvent has a lower δh than does DBS. PMID:24849281

  13. Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1,3:2,4-dibenzylidene sorbitol as the gelator.

    PubMed

    Lan, Yaqi; Corradini, Maria G; Liu, Xia; May, Tim E; Borondics, Ferenc; Weiss, Richard G; Rogers, Michael A

    2014-12-02

    Solvent properties play a central role in mediating the aggregation and self-assembly of molecular gelators and their growth into fibers. Numerous attempts have been made to correlate the solubility parameters of solvents and gelation abilities of molecular gelators, but a comprehensive comparison of the most important parameters has yet to appear. Here, the degree to which partition coefficients (log P), Henry's law constants (HLC), dipole moments, static relative permittivities (ε(r)), solvatochromic E(T)(30) parameters, Kamlet-Taft parameters (β, α, and π), Catalan's solvatochromic parameters (SPP, SB, and SA), Hildebrand solubility parameters (δ(i)), and Hansen solubility parameters (δ(p), δ(d), δ(h)) and the associated Hansen distance (R(ij)) of 62 solvents (covering a wide range of properties) can be correlated with the self-assembly and gelation of 1,3:2,4-dibenzylidene sorbitol (DBS) gelation, a classic molecular gelator, is assessed systematically. The approach presented describes the basis for each of the parameters and how it can be applied. As such, it is an instructional blueprint for how to assess the appropriate type of solvent parameter for use with other molecular gelators as well as with molecules forming other types of self-assembled materials. The results also reveal several important insights into the factors favoring the gelation of solvents by DBS. The ability of a solvent to accept or donate a hydrogen bond is much more important than solvent polarity in determining whether mixtures with DBS become solutions, clear gels, or opaque gels. Thermodynamically derived parameters could not be correlated to the physical properties of the molecular gels unless they were dissected into their individual HSPs. The DBS solvent phases tend to cluster in regions of Hansen space and are highly influenced by the hydrogen-bonding HSP, δ(h). It is also found that the fate of this molecular gelator, unlike that of polymers, is influenced not only by the magnitude of the distance between the HSPs for DBS and the HSPs of the solvent, R(ij), but also by the directionality of R(ij): if the solvent has a larger hydrogen-bonding HSP (indicating stronger H-bonding) than that of the DBS, then clear gels are formed; opaque gels form when the solvent has a lower δ(h) than does DBS.

  14. Activation energies for dissociation of double strand oligonucleotide anions: evidence for watson-crick base pairing in vacuo.

    PubMed

    Schnier, P D; Klassen, J S; Strittmatter, E F; Williams, E R

    1998-09-23

    The dissociation kinetics of a series of complementary and noncomplementary DNA duplexes, (TGCA)(2) (3-), (CCGG)(2) (3-), (AATTAAT)(2) (3-), (CCGGCCG)(2) (3-), A(7)*T(7) (3-), A(7)*A(7) (3-), T(7)*T(7) (3-), and A(7)*C(7) (3-) were investigated using blackbody infrared radiative dissociation in a Fourier transform mass spectrometer. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained. Activation energies range from 1.2 to 1.7 eV, and preexponential factors range from 10(13) to 10(19) s(-1). Dissociation of the duplexes results in cleavage of the noncovalent bonds and/or cleavage of covalent bonds leading to loss of a neutral nucleobase followed by backbone cleavage producing sequence-specific (a - base) and w ions. Four pieces of evidence are presented which indicate that Watson-Crick (WC) base pairing is preserved in complementary DNA duplexes in the gas phase: i. the activation energy for dissociation of the complementary dimer, A(7)*T(7) (3-), to the single strands is significantly higher than that for the related noncomplementary A(7)*A(7) (3-) and T(7)*T(7) (3-) dimers, indicating a stronger interaction between strands with a specific base sequence, ii. extensive loss of neutral adenine occurs for A(7)*A(7) (3-) and A(7)*C(7) (3-) but not for A(7)*T(7) (3-) consistent with this process being shut down by WC hydrogen bonding, iii. a correlation is observed between the measured activation energy for dissociation to single strands and the dimerization enthalpy (-DeltaH(d)) in solution, and iv. molecular dynamics carried out at 300 and 400 K indicate that WC base pairing is preserved for A(7)*T(7) (3-) duplex, although the helical structure is essentially lost. In combination, these results provide strong evidence that WC base pairing can exist in the complete absence of solvent.

  15. NMR experiments for the rapid identification of P=O···H-X type hydrogen bonds in nucleic acids.

    PubMed

    Duchardt-Ferner, Elke; Wöhnert, Jens

    2017-10-01

    Hydrogen bonds involving the backbone phosphate groups occur with high frequency in functional RNA molecules. They are often found in well-characterized tertiary structural motifs presenting powerful probes for the rapid identification of these motifs for structure elucidation purposes. We have shown recently that stable hydrogen bonds to the phosphate backbone can in principle be detected by relatively simple NMR-experiments, providing the identity of both the donor hydrogen and the acceptor phosphorous within the same experiment (Duchardt-Ferner et al., Angew Chem Int Ed Engl 50:7927-7930, 2011). However, for imino and hydroxyl hydrogen bond donor groups rapidly exchanging with the solvent as well as amino groups broadened by conformational exchange experimental sensitivity is severely hampered by extensive line broadening. Here, we present improved methods for the rapid identification of hydrogen bonds to phosphate groups in nucleic acids by NMR. The introduction of the SOFAST technique into 1 H, 31 P-correlation experiments as well as a BEST-HNP experiment exploiting 3h J N,P rather than 2h J H,P coupling constants enables the rapid and sensitive identification of these hydrogen bonds in RNA. The experiments are applicable for larger RNAs (up to ~ 100-nt), for donor groups influenced by conformational exchange processes such as amino groups and for hydrogen bonds with rather labile hydrogens such as 2'-OH groups as well as for moderate sample concentrations. Interestingly, the size of the through-hydrogen bond scalar coupling constants depends not only on the type of the donor group but also on the structural context. The largest coupling constants were measured for hydrogen bonds involving the imino groups of protonated cytosine nucleotides as donors.

  16. The nature of hydrogen-bonding interactions in nonsteroidal anti-inflammatory drugs revealed by polarized IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hachuła, Barbara

    2018-01-01

    The influence of hydrogen-bonding interactions in the solid phase on the IR spectroscopic pattern of the νOsbnd H band of nonsteroidal anti-inflammatory drugs (NSAIDs) was studied experimentally by IR spectroscopy with the use of polarized light at two temperatures (293 K and 77 K) and in isotopic dilution. The neat and deuterated crystals of (S)-naproxen ((S)-NPX), (R)-flurbiprofen ((R)-FBP), (RS)-flurbiprofen ((RS)-FBP) and (RS)-ketoprofen ((RS)-KTP) were obtained by melt crystallization between the two squeezed CaF2 plates. The vibrational spectra of selected α-aryl propionic acid derivatives (2APAs) reflected the characteristics of their hydrogen-bond networks, i.e., 2APAs were characterized by the chain ((S)-NPX, (R)-FBP) and by dimeric ((RS)-FBP, (RS)-KTP) arrangement of hydrogen bonds in the crystal lattice. Spectroscopic results showed that the interchain (through-space) exciton coupling, between two laterally-spaced hydrogen bonds, dominates in the crystals of four NSAIDs. The same exciton coupled hydrogen bonds were also responsible for the H/D isotopic recognition mechanism in the crystalline spectra of deuterated 2APAs. The presented spectral results may help to predict the hydrogen bond motifs in the crystalline NSAIDs, which structures are not yet known, based on their IR spectra of hydrogen bond in the crystals.

  17. Cooperatively enhanced ionic hydrogen bonds in Cl-(CH3OH)(1-3)Ar clusters.

    PubMed

    Beck, Jordan P; Lisy, James M

    2010-09-23

    Infrared predissociation (IRPD) spectra of Cl−(CH3OH)1-3Ar and Cl-(CH3OD)1-3Ar were obtained in the OH and CH stretching regions. The use of methanol-d1 was necessary to distinguish between CH stretches and hydrogen-bonded OH features. The spectra of Cl-(CH3OH)2-3Ar show intense features at frequencies lower than the CH stretches, indicating structures with very strong hydrogen bonds. These strong hydrogen bonds arise from structures in which a Cl-···methanol ionic hydrogen bond is cooperatively enhanced by the presence of a second shell and, in the case of Cl-(CH3OH)3Ar, a third shell methanol. The strongest hydrogen bond is observed in the Cl-(CH3OH)3Ar spectrum at 2733 cm-1, shifted a remarkable -948 cm-1 from the neutral, gas-phase methanol value. Harmonic, ab initio frequency calculations are not adequate in describing these strong hydrogen bonds. Therefore, we describe a simple computational approach to better approximate the hydrogen bond frequencies. Overall, the results of this study indicate that high-energy isomers are very efficiently trapped using our experimental method of introducing Cl- into neutral, cold methanol-argon clusters.

  18. A Relativity Enhanced, Medium-Strong Au(I)···H-N Hydrogen Bond in a Protonated Phenylpyridine-Gold(I) Thiolate.

    PubMed

    Berger, Raphael J F; Schoiber, Jürgen; Monkowius, Uwe

    2017-01-17

    Gold is an electron-rich metal with a high electronegativity comparable to that of sulfur. Hence, hydrogen bonds of the Au(I)···H-E (E = electronegative element) type should be possible, but their existence is still under debate. Experimental results are scarce and often contradictory. As guidance for possible preparative work, we have theoretically investigated (ppyH)Au(SPh) (ppy = 2-phenylpyridine) bearing two monoanionic ligands which are not strongly electronegative at the same time to further increase the charge density on the gold(I) atom. The protonated pyridine nitrogen atom in ppy is geometrically ideally suited to place a proton in close proximity to the gold atom in a favorable geometry for a classical hydrogen bond arrangement. Indeed, the results of the calculations indicate that the hydrogen bonded conformation of (ppyH)Au(SPh) represents a minimum geometry with bond metrics in the expected range for medium-strong hydrogen bonds [r(N-H) = 1.043 Å, r(H···Au) = 2.060 Å, a(N-H···Au) = 141.4°]. The energy difference between the conformer containing the H···Au bond and another conformer without a hydrogen bond amounts to 7.8 kcal mol -1 , which might serve as an estimate of the hydrogen bond strength. Spectroscopic properties were calculated, yielding further characteristics of such hydrogen bonded gold species.

  19. Persistent hydrogen bonding in polymorphic crystal structures.

    PubMed

    Galek, Peter T A; Fábián, László; Allen, Frank H

    2009-02-01

    The significance of hydrogen bonding and its variability in polymorphic crystal structures is explored using new automated structural analysis methods. The concept of a chemically equivalent hydrogen bond is defined, which may be identified in pairs of structures, revealing those types of bonds that may persist, or not, in moving from one polymorphic form to another. Their frequency and nature are investigated in 882 polymorphic structures from the Cambridge Structural Database. A new method to compare conformations of equivalent molecules is introduced and applied to derive distinct subsets of conformational and packing polymorphs. The roles of chemical functionality and hydrogen-bond geometry in persistent interactions are systematically explored. Detailed structural comparisons reveal a large majority of persistent hydrogen bonds that are energetically crucial to structural stability.

  20. Hydrogen bonding pattern in N-benzoyl(- DL-)- L-phenylalanines as revealed by solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Potrzebowski, M. J.; Schneider, C.; Tekely, P.

    1999-11-01

    The nature of the hydrogen bonding pattern has been investigated in N-benzoyl- DL-phenylalanine ( 1) and N-benzoyl- L-phenylalanine ( 2) polymorphes by solid-state NMR spectroscopy. It has been shown that the multiple resonances of carboxyl carbon in 2 are directly connected to different types of hydrogen bonding. The differences in intermolecular distances of carboxyl groups involved in different types of hydrogen bonding have been visualized by the 2D exchange and 1D ODESSA experiments. Potential applications of such a new approach include the exploration of intermolecular distances in hydrogen bonded compounds with singly labeled biomolecules.

  1. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    PubMed Central

    Nagy, Peter I.

    2014-01-01

    A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic) in acid-base complexes have been surveyed. PMID:25353178

  2. Hydrogen Bonds and Life in the Universe.

    PubMed

    Vladilo, Giovanni; Hassanali, Ali

    2018-01-03

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a "covalent-bond stage" to a "hydrogen-bond stage" in prebiotic chemistry.

  3. Hydrogen Bonds and Life in the Universe

    PubMed Central

    2018-01-01

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry. PMID:29301382

  4. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability

    NASA Astrophysics Data System (ADS)

    Wu, Qian; Wei, Junjie; Xu, Bing; Liu, Xinhua; Wang, Hongbo; Wang, Wei; Wang, Qigang; Liu, Wenguang

    2017-01-01

    Dual amide hydrogen bond crosslinked and strengthened high strength supramolecular polymer conductive hydrogels were fabricated by simply in situ doping poly (N-acryloyl glycinamide-co-2-acrylamide-2-methylpropanesulfonic) (PNAGA-PAMPS) hydrogels with PEDOT/PSS. The nonswellable conductive hydrogels in PBS demonstrated high mechanical performances—0.22-0.58 MPa tensile strength, 1.02-7.62 MPa compressive strength, and 817-1709% breaking strain. The doping of PEDOT/PSS could significantly improve the specific conductivities of the hydrogels. Cyclic heating and cooling could lead to reversible sol-gel transition and self-healability due to the dynamic breakup and reconstruction of hydrogen bonds. The mending hydrogels recovered not only the mechanical properties, but also conductivities very well. These supramolecular conductive hydrogels could be designed into arbitrary shapes with 3D printing technique, and further, printable electrode can be obtained by blending activated charcoal powder with PNAGA-PAMPS/PEDOT/PSS hydrogel under melting state. The fabricated supercapacitor via the conducting hydrogel electrodes possessed high capacitive performances. These cytocompatible conductive hydrogels have a great potential to be used as electro-active and electrical biomaterials.

  5. Role of Thermal Process on Self-Assembled Structures of 4′-([2,2′:6′,2″-Terpyridin]-4′-Yl)-[1,1′-Biphenyl]-4-Carboxylic Acid on Au(III)

    PubMed Central

    Liu, Xiaoqing; Wang, Yongli; Song, Xin; Chen, Feng; Ouyang, Hongping; Zhang, Xueao; Cai, Yingxiang; Liu, Xiaoming; Wang, Li

    2013-01-01

    The role of dynamic processes on self-assembled structures of 4′-([2,2′:6′, 2″-terpyridin]-4′-yl)-[1,1′-biphenyl]-4-carboxylic acid (l) molecules on Au(III) has been studied by scanning tunneling microscopy. The as-deposited monolayer is closed-packed and periodic in a short-range due to dipole forces. A thermal annealing process at 110 degrees drives such disordered monolayer into ordered chain-like structures, determined by the combination of the dipole forces and hydrogen bonding. Further annealing at 130 degrees turns the whole monolayer into a bowknot-like structure in which hydrogen bonding plays the dominant role in the formation of assembled structures. Such dependence of an assembled structure on the process demonstrates that an assembled structure can be regulated and controlled not only by the molecular structure but also by the thermal process to form the assembled structure. PMID:23478440

  6. Self-Assembled Structures of Benzoic Acid on Au(111) Surface

    NASA Astrophysics Data System (ADS)

    Vu, Thu-Hien; Wandlowski, Thomas

    2017-06-01

    Electrochemical scanning tunneling microscopy combined with cyclic voltammetry were employed to explore the self-assembly of benzoic acid (BA) on a Au(111) substrate surface in a 0.1-M HClO4 solution. At the negatively charged surface, BA molecules form two highly ordered physisorbed adlayers with their phenyl rings parallel to the substrate surface. High-resolution scanning tunneling microscopy images reveal the packing arrangement and internal molecular structures. The striped pattern and zigzag structure of the BA adlayers are composed of parallel rows of dimers, in which two BA molecules are bound through a pair of O-H···O hydrogen bonds. Increasing the electrode potential further to positive charge densities of Au(111) leads to the desorption of the physisorbed hydrogen-bonded networks and the formation of a chemisorbed adlayer. BA molecules change their orientation from planar to upright fashion, which is accompanied by the deprotonation of the carboxyl group. Furthermore, potential-induced formation and dissolution of BA adlayers were also investigated. Structural transitions between the various types of ordered adlayers occur according to a nucleation and growth mechanism.

  7. Effects of hydrogen bond on the melting point of azole explosives

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Hua; Shen, Chen; Liu, Yu-Cun; Luo, Jin; Duan, Yingjie

    2018-07-01

    Melting point is an important index to determine whether an explosive can be a melt cast carrier. In this study, the relationship among the molecular structure, crystal structure, and melting point of explosives was investigated by using nitroazole compounds. Hydrogen bonds influence crystal packing modes in chemically understandable ways. Hydrogen bonds also affect the changes in entropy and enthalpy in balancing melting process. Hence, different types of hydrogen bonds in explosive crystal structures were compared when the relationship between the molecular structure and the melting point of nitroazole explosives were analyzed. The effects of methyl and amino groups on intermolecular hydrogen bonds were also compared. Results revealed that the methyl and amino groups connected on the N(1) of the heterocyclic compound can reduce the melting point of azole explosive. This finding is possible because methyl and amino groups destroy the intermolecular hydrogen bond of the heterocyclic compound.

  8. Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs

    PubMed Central

    2016-01-01

    Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general. PMID:27195654

  9. Hydrogen bonding in phytohormone-auxin (IAA) and its derivatives

    NASA Astrophysics Data System (ADS)

    Kojić-Prodić, Biserka; Kroon, Jan; Puntarec, Vitomir

    1994-06-01

    The significant importance of hydrogen bonds in biological structures and enzymatic reactions has been demonstrated in many examples. As a part of the molecular recognition study of auxins (plant growth hormones) the influence of hydrogen bonding on molecular conformation, particularly of the carboxyl group, which is one of the biologically active ligand sites, has been studied by X-ray diffraction and computational chemistry methods. The survey includes about 40 crystal structures of free auxins such as indol-3-ylacetic acid and its n-alkylated and halogenated derivatives but also bound auxins such as N-(indol-3-ylacetyl)- L-amino acids, and carbohydrate conjugates. The study includes hydrogen bonds of the NH⋯O and OH⋯O types. The classification of hydrogen bond patterns based on the discrimination between the centrosymmetric and non-centrosymmetric space groups and several examples of hydrogen bond systematics on graph set analysis are also shown.

  10. Hydrogen bonds and twist in cellulose microfibrils.

    PubMed

    Kannam, Sridhar Kumar; Oehme, Daniel P; Doblin, Monika S; Gidley, Michael J; Bacic, Antony; Downton, Matthew T

    2017-11-01

    There is increasing experimental and computational evidence that cellulose microfibrils can exist in a stable twisted form. In this study, atomistic molecular dynamics (MD) simulations are performed to investigate the importance of intrachain hydrogen bonds on the twist in cellulose microfibrils. We systematically enforce or block the formation of these intrachain hydrogen bonds by either constraining dihedral angles or manipulating charges. For the majority of simulations a consistent right handed twist is observed. The exceptions are two sets of simulations that block the O2-O6' intrachain hydrogen bond, where no consistent twist is observed in multiple independent simulations suggesting that the O2-O6' hydrogen bond can drive twist. However, in a further simulation where exocyclic group rotation is also blocked, right-handed twist still develops suggesting that intrachain hydrogen bonds are not necessary to drive twist in cellulose microfibrils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hydrogen bond disruption in DNA base pairs from (14)C transmutation.

    PubMed

    Sassi, Michel; Carter, Damien J; Uberuaga, Blas P; Stanek, Christopher R; Mancera, Ricardo L; Marks, Nigel A

    2014-09-04

    Recent ab initio molecular dynamics simulations have shown that radioactive carbon does not normally fragment DNA bases when it decays. Motivated by this finding, density functional theory and Bader analysis have been used to quantify the effect of C → N transmutation on hydrogen bonding in DNA base pairs. We find that (14)C decay has the potential to significantly alter hydrogen bonds in a variety of ways including direct proton shuttling (thymine and cytosine), thermally activated proton shuttling (guanine), and hydrogen bond breaking (cytosine). Transmutation substantially modifies both the absolute and relative strengths of the hydrogen bonding pattern, and in two instances (adenine and cytosine), the density at the critical point indicates development of mild covalent character. Since hydrogen bonding is an important component of Watson-Crick pairing, these (14)C-induced modifications, while infrequent, may trigger errors in DNA transcription and replication.

  12. The mechanism of proton conduction in phosphoric acid

    NASA Astrophysics Data System (ADS)

    Vilčiauskas, Linas; Tuckerman, Mark E.; Bester, Gabriel; Paddison, Stephen J.; Kreuer, Klaus-Dieter

    2012-06-01

    Neat liquid phosphoric acid (H3PO4) has the highest intrinsic proton conductivity of any known substance and is a useful model for understanding proton transport in other phosphate-based systems in biology and clean energy technologies. Here, we present an ab initio molecular dynamics study that reveals, for the first time, the microscopic mechanism of this high proton conductivity. Anomalously fast proton transport in hydrogen-bonded systems involves a structural diffusion mechanism in which intramolecular proton transfer is driven by specific hydrogen bond rearrangements in the surrounding environment. Aqueous media transport excess charge defects through local hydrogen bond rearrangements that drive individual proton transfer reactions. In contrast, strong, polarizable hydrogen bonds in phosphoric acid produce coupled proton motion and a pronounced protic dielectric response of the medium, leading to the formation of extended, polarized hydrogen-bonded chains. The interplay between these chains and a frustrated hydrogen-bond network gives rise to the high proton conductivity.

  13. Hydrogen bonding between hydrides of the upper-right part of the periodic table

    NASA Astrophysics Data System (ADS)

    Simončič, Matjaž; Urbic, Tomaz

    2018-05-01

    One of the most important electrostatic interactions between molecules is most definitely the hydrogen bond. Understanding the basis of this interaction may offer us the insight needed to understand its effect on the macroscopic scale. Hydrogen bonding is for example the reason for anomalous properties in compounds like water and naturally life as we know it. The strength of the bond depends on numerous factors, among them the electronegativity of participating atoms. In this work we calculated the strength of hydrogen bonds between hydrides of the upper-right part of the periodic table (C, N, O, F, P, S, Cl, As, Se, Br) using quantum-chemical methods. The aim was to determine what influences the strength of strong and weak hydrogen bonds in simple hydrides. Various relationships were checked. A relation between the strength of the bond and the electronegativity of the participating atoms was found. We also observed a correlation between the strength of hydrogen bonds and the inter-atomic distances, along with the dependence on the charge transfer on the atom of the donor. We also report characteristic geometries of different dimers.

  14. Chemical shift and electric field gradient tensors for the amide and carboxyl hydrogens in the model peptide N-acetyl-D,L-valine. Single-crystal deuterium NMR study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald, R. E., II; Bernhard, T.; Haeberlen, U.

    1993-01-01

    Solid-state NMR spectroscopy is well established as a method for describing molecular structure with resolution on the atomic scale. Many of the NMR observables result from anisotropic interactions between the nuclear spin and its environment. These observables can be described by second-rank tensors. For example, the eigenvalues of the traceless symmetric part of the hydrogen chemical shift (CS) tensor provide information about the strength of inter- or intramolecular hydrogen bonding. On the other hand, the eigenvectors of the deuterium electric field gradient (EFG) tensor give deuteron/proton bond directions with an accuracy rivalled only by neutron diffraction. In this paper themore » authors report structural information of this type for the amide and carboxyl hydrogen sites in a single crystal of the model peptide N-acetyl-D,L-valine (NAV). They use deuterium NMR to infer both the EFG and CS tensors at the amide and carboxyl hydrogen sites in NAV. Advantages of this technique over multiple-pulse proton NMR are that it works in the presence of {sup 14}N spins which are very hard to decouple from protons and that additional information in form of the EFG tensors can be derived. The change in the CS and EFG tensors upon exchange of a deuteron for a proton (the isotope effect) is anticipated to be very small; the effect on the CS tensors is certainly smaller than the experimental errors. NAV has served as a model peptide before in a variety of NMR studies, including those concerned with developing solid-state NMR spectroscopy as a method for determining the structure of proteins. NMR experiments on peptide or protein samples which are oriented in at least one dimension can provide important information about the three-dimensional structure of the peptide or the protein. In order to interpret the NMR data in terms of the structure of the polypeptide, the relationship of the CS and EFG tensors to the local symmetry elements of an amino acide, e.g., the peptide plane, is essential. The main purpose of this work is to investigate this relationship for the amide hydrogen CS tensor. The amide hydrogen CS tensor will also provide orientational information for peptide bonds in proteins complementary to that from the nitrogen CS and EFG tensors and the nitrogen-hydrogen heteronuclear dipole-dipole coupling which have been used previously to determine protein structures by solid-state NMR spectroscopy. This information will be particularly valuable because the amide hydrogen CS tensor is not axially symmetric. In addition, the use of the amide hydrogen CS interaction in high-field solid-state NMR experiments will increase the available resolution among peptide sites.« less

  15. The role of hydrogen bonding in the fluorescence quenching of 2,6-bis((E)-2-(benzoxazol-2-yl)vinyl)naphthalene (BBVN) in methanol

    NASA Astrophysics Data System (ADS)

    Hammam, Essam; Basahi, Jalal; Ismail, Iqbal; Hassan, Ibrahim; Almeelbi, Talal

    2017-02-01

    The excited state hydrogen bonding dynamics of BBVN in hydrogen donating methanol solvent was explored at the TD-BMK/cc-pVDZ level of theory with accounting for the bulk environment effects at the polarizable continuum model (PCM). The heteroatoms of the BBVN laser dye form hydrogen bonds with four methanol molecules. In the formed BBVN-(MeOH)4 complex, the A-type hydrogen bond (N…HO), of an average strength of 25 kJ mol- 1, is twofold stronger than the B-type (O…HO) one. Upon photon absorption, the total HB binding energy increases from 78.5 kJ mol- 1 in the ground state to 82.6 kJ mol- 1 in the first singlet (S1) excited state. In consequence of the hydrogen bonding interaction, the absorption band maximum of the BBVN-(MeOH)4 complex, which was anticipated at 398 nm (exp. 397), is redshifted by 5 nm relative to that of the free dye in methanol. The spectral shift of the stretching vibrational mode for the hydrogen bonded hydroxyl groups (with a maximum shift of 285 cm- 1) from that of the free methanol indicated the elevated strengthening of hydrogen bonds in the excited state. The vibrational modes associated with hydrogen bonding provide effective accepting modes for the dissipation of the excitation energy, thus, decreasing the fluorescence quantum yield of BBVN in alcohols as compared to that in the polar aprotic solvents. Since there is no sign of photochemistry or phosphorescence, it seems reasonable in view of the outcomes of this study to assign the major decay process of the excited singlet (S1) of BBVN in alcohols to vibronically induced internal conversion (IC) facilitated by hydrogen bonding.

  16. Hydrogen bond strengthening between o-nitroaniline and formaldehyde in electronic excited states: A theoretical study

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Li, An Yong

    2018-06-01

    To study the hydrogen bonds upon photoexcited, the time dependent density function method (TD DFT) was performed to investigate the excited state hydrogen bond properties of between o-nitroaniline (ONA) and formaldehyde (CH2O). The optimized structures of the complex and the monomers both in the ground state and the electronically excited states are calculated using DFT and TD DFT method respectively. Quantum chemical calculations of the electronic and vibrational absorption spectra are also carried out by TD DFT method at the different level. The complex ONA⋯CH2O forms the intramolecular hydrogen bond and intermolecular hydrogen bonds. Since the strength of hydrogen bonds can be measured by studying the vibrational absorption spectra of the characteristic groups on the hydrogen bonding acceptor and donor, it evidently confirms that the hydrogen bonds is strengthened in the S1/S2/T1 excited states upon photoexcitation. As a result, the hydrogen bonds cause that the CH stretch frequency of the proton donor CH2O has a blue shift, and the electron excitations leads to a frequency red shift of Ndbnd O and Nsbnd H stretch modes in the o-nitroaniline(ONA) and a small frequency blue shift of CH stretch mode in the formaldehyde(CH2O) in the S1 and S2 excited states. The excited states S1, S2 and T1 are locally excited states where only the ONA moiety is excited, but the CH2O moiety remains in its ground state.

  17. Modeling the self-assembly of functionalized fullerenes on solid surfaces using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bubnis, Gregory J.

    Since their discovery 25 years ago, carbon fullerenes have been widely studied for their unique physicochemical properties and for applications including organic electronics and photovoltaics. For these applications it is highly desirable for crystalline fullerene thin films to spontaneously self-assemble on surfaces. Accordingly, many studies have functionalized fullerenes with the aim of tailoring their intermolecular interactions and controlling interactions with the solid substrate. The success of these rational design approaches hinges on the subtle interplay of intermolecular forces and molecule-substrate interactions. Molecular modeling is well-suited to studying these interactions by directly simulating self-assembly. In this work, we consider three different fullerene functionalization approaches and for each approach we carry out Monte Carlo simulations of the self-assembly process. In all cases, we use a "coarse-grained" molecular representation that preserves the dominant physical interactions between molecules and maximizes computational efficiency. The first approach we consider is the traditional gold-thiolate SAM (self-assembled monolayer) strategy which tethers molecules to a gold substrate via covalent sulfur-gold bonds. For this we study an asymmetric fullerene thiolate bridged by a phenyl group. Clusters of 40 molecules are simulated on the Au(111) substrate at different temperatures and surface coverage densities. Fullerenes and S atoms are found to compete for Au(111) surface sites, and this competition prevents self-assembly of highly ordered monolayers. Next, we investigate self-assembled monolayers formed by fullerenes with hydrogen-bonding carboxylic acid substituents. We consider five molecules with different dimensions and symmetries. Monte Carlo cooling simulations are used to find the most stable solid structures of clusters adsorbed to Au(111). The results show cases where fullerene-Au(111) attraction, fullerene close-packing, and hydrogen-bonding interactions can cooperate to guide self-assembly or compete to hinder it. Finally, we consider three bis-fullerene molecules, each with a different "bridging group" covalently joining two fullerenes. To effectively study the competing "standing-up" and "lying-down" morphologies, we use Monte Carlo simulations in conjunction with replica exchange and force field biasing methods. For clusters adsorbed to smooth model surfaces, we determine free energy landscapes and demonstrate their utility for rationalizing and predicting self-assembly.

  18. Self-assembled chiral helical nanofibers by amphiphilic dipeptide derived from d- or l-threonine and application as a template for the synthesis of Au and Ag nanoparticles.

    PubMed

    Zhang, Han; Xin, Xia; Sun, Jichao; Zhao, Liupeng; Shen, Jinglin; Song, Zhaohua; Yuan, Shiling

    2016-12-15

    The discovery of a class of self-assembling peptides that spontaneously undergo self-organization into well-ordered structures opened a new avenue for molecular fabrication of biological materials. In this paper, the structure controlled helical nanofibers were prepared by two artificial β-sheet dipeptides with long alkyl chains derived from l- and d-threonine (Thr) and sodium hydroxide (NaOH). These helical nanofibers have been characterized using transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffraction (XRD). It was demonstrated that the helicity of the nanofibers could be easily controlled by changing the chirality of the constituent amino acids in the peptide species (d- or l-threonine). Moreover, the hydrogen bonding interactions between the amide groups as well as the hydrophobic interactions among the alkyl chains play important roles in the self-assembly process. It also can be observed that with the passage of time, the hydrogen bonding interactions between the individual nanofiber induced the conversion from nanofibers to nanobelts. Particularly, gold and silver nanoparticles performed good catalytic ability were synthesized using the assembled nanofibers as template. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Evaluating the potential for halogen bonding in ketosteroid isomerase’s oxyanion hole using unnatural amino acid mutagenesis

    PubMed Central

    Kraut, Daniel A; Churchil, Michael J; Dawson, Phillip E

    2009-01-01

    There has recently been an increasing interest in controlling macromolecular conformations and interactions through halogen bonding. Halogen bonds are favorable electrostatic interactions between polarized, electropositive chlorine, bromine or iodine atoms and electronegative atoms such as oxygen or nitrogen. These interactions have been likened to hydrogen bonds both in terms of their favored acceptor molecules, their geometries, and their energetics. We asked whether a halogen bond could replace a hydrogen bond in the oxyanion hole of ketosteroid isomerase, using semi-synthetic enzyme containing para-halogenated phenylalanine derivatives to replace the tyrosine hydrogen bond donor. Formation of a halogen bond to the oxyanion in the transition state would be expected to rescue the effects of mutation to phenylalanine, but all of the halogenated enzymes were comparable in activity to the phenylalanine mutant. We conclude that, at least in this active site, a halogen bond cannot functionally replace a hydrogen bond. PMID:19260691

  20. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively.

    PubMed

    Ni, Yicun; Skinner, J L

    2015-07-07

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm(-1) and a positive band centered at 1670 cm(-1). We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  1. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    NASA Astrophysics Data System (ADS)

    Ni, Yicun; Skinner, J. L.

    2015-07-01

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm-1 and a positive band centered at 1670 cm-1. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  2. Anion-Receptor Mediated Oxidation of Carbon Monoxide to Carbonate by Peroxide Dianion

    DOE PAGES

    Nava, Matthew; Lopez, Nazario; Muller, Peter; ...

    2015-10-14

    The reactivity of peroxide dianion O 2 2– has been scarcely explored in organic media due to the lack of soluble sources of this reduced oxygen species. We now report the finding that the encapsulated peroxide cryptate, [O 2cmBDCA-5t-H 6] 2– (1), reacts with carbon monoxide in organic solvents at 40 °C to cleanly form an encapsulated carbonate. Characterization of the resulting hexacarboxamide carbonate cryptate by single crystal X-ray diffraction reveals that carbonate dianion forms nine complementary hydrogen bonds with the hexacarboxamide cryptand, [CO 3cmBDCA-5t-H 6] 2– (2), a conclusion that is supported by spectroscopic data. Labeling studies and 17Omore » solid-state NMR data confirm that two-thirds of the oxygen atoms in the encapsulated carbonate derive from peroxide dianion, while the carbon is derived from CO. Further evidence for the formation of a carbonate cryptate was obtained by three methods of independent synthesis: treatment of (i) free cryptand with K 2CO 3; (ii) monodeprotonated cryptand with PPN[HCO 3]; and (iii) free cryptand with TBA[OH] and atmospheric CO 2. This work demonstrates CO oxidation mediated by a hydrogen-bonding anion receptor, constituting an alternative to transition-metal catalysis.« less

  3. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Yicun; Skinner, J. L.

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFGmore » spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm{sup −1} and a positive band centered at 1670 cm{sup −1}. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.« less

  4. Structure-based Understanding of Binding Affinity and Mode ...

    EPA Pesticide Factsheets

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicab

  5. 1,5-Bis[1-(2,4-dihy­droxy­phen­yl)ethyl­idene]carbonohydrazide dimethyl­formamide disolvate

    PubMed Central

    He, Qing-Peng; Tan, Bo; Lu, Ze-Hua

    2010-01-01

    In the title compound, C17H18N4O5·2C3H7NO, two solvent mol­ecules are linked to the main mol­ecule via N—H⋯O and O—H⋯O hydrogen bonds, forming a hydrogen-bonded trimer. Intra­molecular O—H⋯N hydrogen bonds influence the mol­ecular conformation of the main mol­ecule, and the two benzene rings form a dihedral angle of 10.55 (18)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds link hydrogen-bonded trimers into ribbons extending along the b axis. PMID:21589135

  6. A molecular dynamics study of ethanol-water hydrogen bonding in binary structure I clathrate hydrate with CO2

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ohmura, Ryo; Ripmeester, John A.

    2011-02-01

    Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO2 molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.

  7. The nature of hydrogen-bonding interactions in nonsteroidal anti-inflammatory drugs revealed by polarized IR spectroscopy.

    PubMed

    Hachuła, Barbara

    2018-01-05

    The influence of hydrogen-bonding interactions in the solid phase on the IR spectroscopic pattern of the ν OH band of nonsteroidal anti-inflammatory drugs (NSAIDs) was studied experimentally by IR spectroscopy with the use of polarized light at two temperatures (293K and 77K) and in isotopic dilution. The neat and deuterated crystals of (S)-naproxen ((S)-NPX), (R)-flurbiprofen ((R)-FBP), (RS)-flurbiprofen ((RS)-FBP) and (RS)-ketoprofen ((RS)-KTP) were obtained by melt crystallization between the two squeezed CaF 2 plates. The vibrational spectra of selected α-aryl propionic acid derivatives (2APAs) reflected the characteristics of their hydrogen-bond networks, i.e., 2APAs were characterized by the chain ((S)-NPX, (R)-FBP) and by dimeric ((RS)-FBP, (RS)-KTP) arrangement of hydrogen bonds in the crystal lattice. Spectroscopic results showed that the interchain (through-space) exciton coupling, between two laterally-spaced hydrogen bonds, dominates in the crystals of four NSAIDs. The same exciton coupled hydrogen bonds were also responsible for the H/D isotopic recognition mechanism in the crystalline spectra of deuterated 2APAs. The presented spectral results may help to predict the hydrogen bond motifs in the crystalline NSAIDs, which structures are not yet known, based on their IR spectra of hydrogen bond in the crystals. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Simulation of the effect of hydrogen bonds on water activity of glucose and dextran using the Veytsman model.

    PubMed

    De Vito, Francesca; Veytsman, Boris; Painter, Paul; Kokini, Jozef L

    2015-03-06

    Carbohydrates exhibit either van der Waals and ionic interactions or strong hydrogen bonding interactions. The prominence and large number of hydrogen bonds results in major contributions to phase behavior. A thermodynamic framework that accounts for hydrogen bonding interactions is therefore necessary. We have developed an extension of the thermodynamic model based on the Veytsman association theory to predict the contribution of hydrogen bonds to the behavior of glucose-water and dextran-water systems and we have calculated the free energy of mixing and its derivative leading to chemical potential and water activity. We compared our calculations with experimental data of water activity for glucose and dextran and found excellent agreement far superior to the Flory-Huggins theory. The validation of our calculations using experimental data demonstrated the validity of the Veytsman model in properly accounting for the hydrogen bonding interactions and successfully predicting water activity of glucose and dextran. Our calculations of the concentration of hydrogen bonds using the Veytsman model were instrumental in our ability to explain the difference between glucose and dextran and the role that hydrogen bonds play in contributing to these differences. The miscibility predictions showed that the Veytsman model is also able to correctly describe the phase behavior of glucose and dextran. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A complete active space valence bond method with nonorthogonal orbitals

    NASA Astrophysics Data System (ADS)

    Hirao, Kimihiko; Nakano, Haruyuki; Nakayama, Kenichi

    1997-12-01

    A complete active space self-consistent field (SCF) wave function is transformed into a valence bond type representation built from nonorthogonal orbitals, each strongly localized on a single atom. Nonorthogonal complete active space SCF orbitals are constructed by Ruedenberg's projected localization procedure so that they have maximal overlaps with the corresponding minimum basis set of atomic orbitals of the free-atoms. The valence bond structures which are composed of such nonorthogonal quasiatomic orbitals constitute the wave function closest to the concept of the oldest and most simple valence bond method. The method is applied to benzene, butadiene, hydrogen, and methane molecules and compared to the previously proposed complete active space valence bond approach with orthogonal orbitals. The results demonstrate the validity of the method as a powerful tool for describing the electronic structure of various molecules.

  10. Venlafaxine besylate monohydrate

    PubMed Central

    Corvalan, Carolina H.; Vega, Daniel R.

    2013-01-01

    The title compound {systematic name: [2-(1-hydroxycyclohexyl)-2-(4-methoxyphenyl)ethyl]dimethylazanium benzene­sulfonate monohydrate}, C17H28NO2 +·C6H5O3S−·H2O, is a besylate salt hydrate of the anti­depressant drug venlafaxine. In the crystal, besylate anions and water mol­ecules self-assemble, forming hydrogen-bonded dimers linked around inversion centers, with graph set R 4 4(6). The crystal packing features a chain of alternate dimers and venlafaxine cations in the b-axis direction with the components linked by O—H⋯O hydrogen bonds and C—H⋯O and C—H⋯π inter­actions. This is the first example of a venlafaxine cation with a closed conformation, as it features an intra­molecular N—H⋯O inter­action involving the protonated N atom. PMID:24454196

  11. Putting Cocrystal Stoichiometry to Work: A Reactive Hydrogen-Bonded "Superassembly" Enables Nanoscale Enlargement of a Metal-Organic Rhomboid via a Solid-State Photocycloaddition.

    PubMed

    Chu, Qianli; Duncan, Andrew J E; Papaefstathiou, Giannis S; Hamilton, Tamara D; Atkinson, Manza B J; Mariappan, S V Santhana; MacGillivray, Leonard R

    2018-04-11

    Enlargement of a self-assembled metal-organic rhomboid is achieved via the organic solid state. The solid-state synthesis of an elongated organic ligand was achieved by a template directed [2 + 2] photodimerization in a cocrystal. Initial cocrystals obtained of resorcinol template and reactant alkene afforded a 1:2 cocrystal with the alkene in a stacked yet photostable geometry. Cocrystallization performed in the presence of excess template resulted in a 3:2 cocrystal composed of novel discrete 10-component hydrogen-bonded "superassemblies" wherein the alkenes undergo a head-to-head [2 + 2] photodimerization. Isolation and reaction of elongated photoproduct with Cu(II) ions afforded a metal-organic rhomboid of nanoscale dimensions that hosts small molecules in the solid state as guests.

  12. Role of Monomer Sequence, Hydrogen Bonding and Mesoscale Architecture in Marine Antifouling Coatings

    NASA Astrophysics Data System (ADS)

    Segalman, Rachel

    Polypeptoids are non-natural, sequence specific polymers that offer the opportunity to probe the effect of monomer sequence, chirality, and chain shape on self-assembly and surface properties. Additionally, polypeptoid synthesis is more scaleable than traditional polypeptides suggesting their utility in large area applications. We have designed efficient marine anti-fouling coatings by using triblock copolymer scaffolds to which polypeptoids are tethered in order to tune both the modulus and surface energies with great precision. Surprisingly, when short sequences are tethered to a polymer backbone, polypeptoids consistently outperform analogous polypeptides in antifouling properties. We hypothesize that the hydrogen bonding inherent to the polypeptide backbone drives the observed differences in performance. We also find that the polymer scaffold housing the polypeptoids also plays a crucial role in directing surface presentation and therefore the overall coating properties.

  13. Unusual para-substituent effects on the intramolecular hydrogen-bond in hydrazone-based switches.

    PubMed

    Su, Xin; Lõkov, Märt; Kütt, Agnes; Leito, Ivo; Aprahamian, Ivan

    2012-11-04

    A "V"-shaped Hammett plot shows that resonance-assisted hydrogen bonding does not dictate the strength of the intramolecular hydrogen bond in the E isomers of hydrazone-based switches because it involves an aromatic pyridyl ring.

  14. Oxidative coupling of sp 2 and sp 3 carbon-hydrogen bonds to construct dihydrobenzofurans.

    PubMed

    Shi, Jiang-Ling; Wang, Ding; Zhang, Xi-Sha; Li, Xiao-Lei; Chen, Yu-Qin; Li, Yu-Xue; Shi, Zhang-Jie

    2017-08-10

    Metal-catalyzed cross-couplings provide powerful, concise, and accurate methods to construct carbon-carbon bonds from organohalides and organometallic reagents. Recent developments extended cross-couplings to reactions where one of the two partners connects with an aryl or alkyl carbon-hydrogen bond. From an economic and environmental point of view, oxidative couplings between two carbon-hydrogen bonds would be ideal. Oxidative coupling between phenyl and "inert" alkyl carbon-hydrogen bonds still awaits realization. It is very difficult to develop successful strategies for oxidative coupling of two carbon-hydrogen bonds owning different chemical properties. This article provides a solution to this challenge in a convenient preparation of dihydrobenzofurans from substituted phenyl alkyl ethers. For the phenyl carbon-hydrogen bond activation, our choice falls on the carboxylic acid fragment to form the palladacycle as a key intermediate. Through careful manipulation of an additional ligand, the second "inert" alkyl carbon-hydrogen bond activation takes place to facilitate the formation of structurally diversified dihydrobenzofurans.Cross-dehydrogenative coupling is finding increasing application in synthesis, but coupling two chemically distinct sites remains a challenge. Here, the authors report an oxidative coupling between sp 2 and sp 3 carbons by sequentially activating the more active aryl site followed by the alkyl position.

  15. Hydrogen Bonding Stabilized Self-Assembly of Inorganic Nanoparticles: Mechanism and Collective Properties.

    PubMed

    Yue, Mingli; Li, Yanchun; Hou, Ying; Cao, Wenxin; Zhu, Jiaqi; Han, Jiecai; Lu, Zhongyuan; Yang, Ming

    2015-06-23

    Developing a simple and efficient method to organize nanoscale building blocks into ordered superstructures, understanding the mechanism for self-assembly and revealing the essential collective properties are crucial steps toward the practical use of nanostructures in nanotechnology-based applications. In this study, we showed that the high-yield formation of ZnO nanoparticle chains with micrometer length can be readily achieved by the variation of solvents from methanol to water. Spectroscopic studies confirmed the solvent effect on the surface properties of ZnO nanoparticles, which were found to be critical for the formation of anisotropic assemblies. Quantum mechanical calculations and all atom molecular dynamic simulations indicated the contribution of hydrogen bonding for stabilizing the structure in water. Dissipative particle dynamics further revealed the importance of solvent-nanoparticle interactions for promoting one-dimensional self-assembly. The branching of chains was found upon aging, resulting in the size increase of the ensembles and network formation. Steady-state and time-resolved luminescent spectroscopes, which probed the variation of defect-related emission, revealed stronger Forster resonance energy transfer (FRET) between nanoparticles when the chain networks were formed. The high efficiency of FRET quenching can be ascribed to the presence of multiple energy transfer channels, as well as the short internanoparticle distances and the dipole alignment.

  16. Oligo(phenylenevinylene) hybrids and self-assemblies: versatile materials for excitation energy transfer.

    PubMed

    Praveen, Vakayil K; Ranjith, Choorikkat; Bandini, Elisa; Ajayaghosh, Ayyappanpillai; Armaroli, Nicola

    2014-06-21

    Oligo(phenylenevinylene)s (OPVs) are extensively investigated π-conjugated molecules that exhibit absorption and fluorescence in the UV-Vis spectral region, which can be widely tuned by chemical functionalisation and external control (e.g. solvent, temperature, pH). Further modulation of the optoelectronic properties of OPVs is possible by supramolecular aggregation, primarily driven by hydrogen bonding or π-stacking interactions. In recent years, extensive research work has been accomplished in exploiting the unique combination of the structural and electronic properties of OPVs, most of which has been targeted at the preparation of molecules and materials featuring photoinduced energy transfer. This review intends to offer an overview of the multicomponent arrays and self-assembled materials based on OPV which have been designed to undergo energy transfer by means of a thorough choice of excitation donor-acceptor partners. We present a few selected examples of photoactive dyads and triads containing organic moieties (e.g. fullerene, phenanthroline) as well as coordination compounds (Cu(I) complexes). We then focus more extensively on self-assembled materials containing suitably functionalised OPVs that lead to hydrogen bonded aggregates, helical structures, gels, nanoparticles, vesicles, mesostructured organic-inorganic hybrid films, functionalised nanoparticles and quantum dots. In most cases, these materials exhibit luminescence whose colour and intensity is related to the efficiency and direction of the energy transfer processes.

  17. Structural characteristics of hydrated protons in the conductive channels: effects of confinement and fluorination studied by molecular dynamics simulation.

    PubMed

    Zhang, Ning; Song, Yuechun; Ruan, Xuehua; Yan, Xiaoming; Liu, Zhao; Shen, Zhuanglin; Wu, Xuemei; He, Gaohong

    2016-09-21

    The relationship between the proton conductive channel and the hydrated proton structure is of significant importance for understanding the deformed hydrogen bonding network of the confined protons which matches the nanochannel. In general, the structure of hydrated protons in the nanochannel of the proton exchange membrane is affected by several factors. To investigate the independent effect of each factor, it is necessary to eliminate the interference of other factors. In this paper, a one-dimensional carbon nanotube decorated with fluorine was built to investigate the independent effects of nanoscale confinement and fluorination on the structural properties of hydrated protons in the nanochannel using classical molecular dynamics simulation. In order to characterize the structure of hydrated protons confined in the channel, the hydrogen bonding interaction between water and the hydrated protons has been studied according to suitable hydrogen bond criteria. The hydrogen bond criteria were proposed based on the radial distribution function, angle distribution and pair-potential energy distribution. It was found that fluorination leads to an ordered hydrogen bonding structure of the hydrated protons near the channel surface, and confinement weakens the formation of the bifurcated hydrogen bonds in the radial direction. Besides, fluorination lowers the free energy barrier of hydronium along the nanochannel, but slightly increases the barrier for water. This leads to disintegration of the sequential hydrogen bond network in the fluorinated CNTs with small size. In the fluorinated CNTs with large diameter, the lower degree of confinement produces a spiral-like sequential hydrogen bond network with few bifurcated hydrogen bonds in the central region. This structure might promote unidirectional proton transfer along the channel without random movement. This study provides the cooperative effect of confinement dimension and fluorination on the structure and hydrogen bonding of the slightly acidic water in the nanoscale channel.

  18. The change in hydrogen bond strength accompanying charge rearrangement: Implications for enzymatic catalysis

    PubMed Central

    Shan, Shu-ou; Herschlag, Daniel

    1996-01-01

    The equilibrium for formation of the intramolecular hydrogen bond (KHB) in a series of substituted salicylate monoanions was investigated as a function of ΔpKa, the difference between the pKa values of the hydrogen bond donor and acceptor, in both water and dimethyl sulfoxide. The dependence of log KHB upon ΔpKa is linear in both solvents, but is steeper in dimethyl sulfoxide (slope = 0.73) than in water (slope = 0.05). Thus, hydrogen bond strength can undergo substantially larger increases in nonaqueous media than aqueous solutions as the charge density on the donor or acceptor atom increases. These results support a general mechanism for enzymatic catalysis, in which hydrogen bonding to a substrate is strengthened as charge rearranges in going from the ground state to the transition state; the strengthening of the hydrogen bond would be greater in a nonaqueous enzymatic active site than in water, thus providing a rate enhancement for an enzymatic reaction relative to the solution reaction. We suggest that binding energy of an enzyme is used to fix the substrate in the low-dielectric active site, where the strengthening of the hydrogen bond in the course of a reaction is increased. PMID:8962076

  19. Deactivation of 6-Aminocoumarin Intramolecular Charge Transfer Excited State through Hydrogen Bonding

    PubMed Central

    Krystkowiak, Ewa; Dobek, Krzysztof; Maciejewski, Andrzej

    2014-01-01

    This paper presents results of the spectral (absorption and emission) and photophysical study of 6-aminocoumarin (6AC) in various aprotic hydrogen-bond forming solvents. It was established that solvent polarity as well as hydrogen-bonding ability influence solute properties. The hydrogen-bonding interactions between S1-electronic excited solute and solvent molecules were found to facilitate the nonradiative deactivation processes. The energy-gap dependence on radiationless deactivation in aprotic solvents was found to be similar to that in protic solvents. PMID:25244014

  20. Block Copolymer-Based Supramolecular Elastomers with High Extensibility and Large Stress Generation Capability

    NASA Astrophysics Data System (ADS)

    Noro, Atsushi; Hayashi, Mikihiro

    We prepared block copolymer-based supramolecular elastomers with high extensibility and large stress generation capability. Reversible addition fragmentation chain transfer polymerizations were conducted under normal pressure and high pressure to synthesize several large molecular weight polystyrene-b-[poly(butyl acrylate)-co-polyacrylamide]-b-polystyrene (S-Ba-S) block copolymers. Tensile tests revealed that the largest S-Ba-S with middle block molecular weight of 3140k achieved a breaking elongation of over 2000% with a maximum tensile stress of 3.6 MPa and a toughness of 28 MJ/m3 while the reference sample without any middle block hydrogen bonds, polystyrene-b-poly(butyl acrylate)-b-polystyrene with almost the same molecular weight, was merely viscous and not self-standing. Hence, incorporation of hydrogen bonds into a long soft middle block was found to be beneficial to attain high extensibility and large stress generation capability probably due to concerted combination of entropic changes and internal potential energy changes originaing from the dissociation of multiple hydrogen bonds by elongation. This work was supported by JSPS KAKENHI Grant Numbers 13J02357, 24685035, 15K13785, and 23655213 for M.H. and A.N. A.N. also expresses his gratitude for Tanaka Rubber Science & Technology Award by Enokagaku-Shinko Foundation, Japan.

  1. Exploring contribution of intermolecular interactions in supramolecular layered assembly of naphthyridine co-crystals: Insights from Hirshfeld surface analysis of their crystalline states

    NASA Astrophysics Data System (ADS)

    Seth, Saikat Kumar; Das, Nirmal Kumar; Aich, Krishnendu; Sen, Debabrata; Fun, Hoong-Kun; Goswami, Shyamaprasad

    2013-09-01

    Co-crystals of 1a and 1b have been prepared by slow evaporation of the solutions of mixtures of 2,7-dimethyl-1,8-naphthyridine (1), urea (a) and thiourea (b). The structures of the complexes are determined by the single crystal X-ray diffraction and a detailed investigation of the crystal packing and classification of intermolecular interactions is presented by means of Hirshfeld surface analysis which is of considerable current interest in crystal engineering. The X-ray study reveals that the co-crystal formers are envisioned to produce N-H⋯N hydrogen bond as well as N-H⋯O/N-H⋯S pair-wise hydrogen bonds and also the weaker aromatic π⋯π interactions which cooperatively take part in the crystal packing. The recurring feature of the self-assembly in the compounds is the appearance of the molecular ribbon through multiple hydrogen bonding which are further stacked into molecular layers by π⋯π stacking interactions. Hirshfeld surface analysis for visually analyzing intermolecular interactions in crystal structures employing molecular surface contours and 2D Fingerprint plots have been used to examine molecular shapes. Crystal structure analysis supported with the Hirshfeld surface and fingerprint plots enabled the identification of the significant intermolecular interactions.

  2. DNA Photo Lithography with Cinnamate-based Photo-Bio-Nano-Glue

    NASA Astrophysics Data System (ADS)

    Feng, Lang; Li, Minfeng; Romulus, Joy; Sha, Ruojie; Royer, John; Wu, Kun-Ta; Xu, Qin; Seeman, Nadrian; Weck, Marcus; Chaikin, Paul

    2013-03-01

    We present a technique to make patterned functional surfaces, using a cinnamate photo cross-linker and photolithography. We have designed and modified a complementary set of single DNA strands to incorporate a pair of opposing cinnamate molecules. On exposure to 360nm UV, the cinnamate makes a highly specific covalent bond permanently linking only the complementary strands containing the cinnamates. We have studied this specific and efficient crosslinking with cinnamate-containing DNA in solution and on particles. UV addressability allows us to pattern surfaces functionally. The entire surface is coated with a DNA sequence A incorporating cinnamate. DNA strands A'B with one end containing a complementary cinnamated sequence A' attached to another sequence B, are then hybridized to the surface. UV photolithography is used to bind the A'B strand in a specific pattern. The system is heated and the unbound DNA is washed away. The pattern is then observed by thermo-reversibly hybridizing either fluorescently dyed B' strands complementary to B, or colloids coated with B' strands. Our techniques can be used to reversibly and/or permanently bind, via DNA linkers, an assortment of molecules, proteins and nanostructures. Potential applications range from advanced self-assembly, such as templated self-replication schemes recently reported, to designed physical and chemical patterns, to high-resolution multi-functional DNA surfaces for genetic detection or DNA computing.

  3. Molecular interaction of (ethanol)2-water heterotrimers.

    PubMed

    Mejía, Sol M; Espinal, Juan F; Restrepo, Albeiro; Mondragón, Fanor

    2007-08-23

    The potential energy surface of the (ethanol)2-water heterotrimers for the trans and gauche conformers of ethanol was studied using density functional theory. The same approximation was used for characterizing representative clusters of (ethanol)3, (methanol)3, and (methanol)2-water. Trimerization energies and enthalpies as well as the analysis of geometric parameters suggest that the structures with a cyclic pattern in the three hydrogen bonds of the type O-H---O (primary hydrogen bonds), where all molecules are proton donor-acceptor at the same time, are more stable than those with just two primary hydrogen bonds. Additionally, we propose the formation of "secondary hydrogen bonds" between hydrogen atoms of the methyl group of ethanol and the oxygen atom of water or other ethanol molecule (C-H---O), which were found to be weaker than the primary hydrogen bonds.

  4. Heterogeneous Amyloid β-Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy.

    PubMed

    Ho, Jia-Jung; Ghosh, Ayanjeet; Zhang, Tianqi O; Zanni, Martin T

    2018-02-08

    Two-dimensional sum-frequency generation spectroscopy (2D SFG) is used to study the structures of the pentapeptide FGAIL on hydrogen bond promoting surfaces. FGAIL is the most amyloidogenic portion of the human islet amyloid polypeptide (hIAPP or amylin). In the presence of a pure gold surface, FGAIL does not form ordered structures. When the gold is coated with a self-assembled monolayer of mercaptobenzoic acid (MBA), 2D SFG spectra reveal features associated with β-sheets. Also observed are cross peaks between the FGAIL peptides and the carboxylic acid groups of the MBA monolayer, indicating that the peptides are in close contact with the surface headgroups. In the second set of samples, FGAIL peptides chemically ligated to the MBA monolayer also exhibited β-sheet features but with a much simpler spectrum. From simulations of the experiments, we conclude that the hydrogen bond promoting surface catalyzes the formation of both parallel and antiparallel β-sheet structures with several different orientations. When ligated, parallel sheets with only a single orientation are the primary structure. Thus, this hydrogen bond promoting surface creates a heterogeneous distribution of polymorph structures, consistent with a concentration effect that allows nucleation of many different amyloid seeding structures. A single well-defined seed favors one polymorph over the others, showing that the concentrating influence of a membrane can be counterbalanced by factors that favor directed fiber growth. These experiments lay the foundation for the measurement and interpretation of β-sheet structures with heterodyne-detected 2D SFG spectroscopy. The results of this model system suggest that a heterogeneous distribution of polymorphs found in nature are an indication of nonselective amyloid aggregation whereas a narrow distribution of polymorph structures is consistent with a specific protein or lipid interaction that directs fiber growth.

  5. Synthesis, Physicochemical Properties, and Hydrogen Bonding of 4(5)-Substituted 1-H-Imidazole-2-carboxamide, A Potential Universal Reader for DNA Sequencing by Recognition Tunneling

    PubMed Central

    Liang, Feng; Li, Shengqing

    2012-01-01

    We have developed a chemical reagent that recognizes all naturally occurring DNA bases, a so called universal reader, for DNA sequencing by recognition tunnelling in nanopores.[1] The primary requirements for this type of molecules are the ability to form non-covalent complexes with individual DNA bases and to generate recognizable electronic signatures under an electrical bias. 1-H-imidazole-2-carboxamide was designed as such a recognition moiety to interact with the DNA bases through hydrogen bonding. In the present study, we first furnished a synthetic route to 1-H-imidazole-2-carboxamide containing a short ω-functionalized alkyl chain at its 4(5) position for its attachment to metal and carbon electrodes. The acid dissociation constants of the imidazole-2-carboxamide were then determined by UV spectroscopy. The data show that the 1-H-imidazole-2-carboxamide exists in a neutral form between pH 6–10. Density functional theory (DFT) and NMR studies indicate that the imidazole ring exists in prototropic tautomers. We propose an intramolecular mechanism for tautomerization of 1-H-imidazole-2-carboxamide. In addition, the imidazole-2-carboxamide can self-associate to form hydrogen bonded dimers. NMR titration found that naturally occurring nucleosides interacted with 1-H-imidazole-2-carboxamide through hydrogen bonding in a tendency of dG>dC≫dT> dA. These studies are indispensable to assisting us in understanding the molecular recognition that takes place in the nanopore where routinely used analytical tools such as NMR and FTIR cannot be conveniently applied. PMID:22461259

  6. Hydrogen bond docking preference in furans: Osbnd H ⋯ π vs. Osbnd H ⋯ O

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaotong; Tsona, Narcisse T.; Tang, Shanshan; Du, Lin

    2018-02-01

    The docking sites of hydrogen bonds in complexes formed between 2,2,2-trifluoroethanol (TFE), furan (Fu), and 2-methyl furan (MF) have been investigated. Using density functional theory (DFT) calculations, gas phase and matrix isolation FTIR spectroscopies, the strengths of Osbnd H ⋯ O and Osbnd H ⋯ π hydrogen bonds in the complexes were compared to find the docking preference. Calculations suggest that the hydrogen bond donor, TFE, is more likely to dock onto the oxygen atom of the aromatic furans ring, and consequently, the Osbnd H ⋯ O type hydrogen bond is relatively stronger than the Osbnd H ⋯ π type. The FTIR spectrum in the OH-stretching fundamental range obtained at room temperatures has been compared with that obtained at extremely low temperatures in the matrix. The fundamental and the red shifts of OH-stretching vibrations were observed in both FTIR spectra, confirming the formation of hydrogen bonded complexes. By assessing the ability of furan and MF to participate in the formation of Osbnd H ⋯ O hydrogen bond, the effect of ring methylation has been highlighted. From the calculated geometric and thermodynamic parameters as well as the frequency shift of the OH-stretching vibrations in complexes, TFE-MF is found to be more stable than TFE-Fu, which suggests that the strength of the Osbnd H ⋯ O hydrogen bond in TFE-MF originates from the high activity of the furan molecule caused by the methylation of the aromatic ring. The present study furthers the knowledge of docking preference in heteroaromatic molecules and is helpful to understand the nature of intermolecular interactions between hydrogen bond donors and acceptors, including both electron-deficient atoms and π cloud.

  7. Combined Molecular Dynamics, Atoms in Molecules, and IR Studies of the Bulk Monofluoroethanol and Bulk Ethanol To Understand the Role of Organic Fluorine in the Hydrogen Bond Network.

    PubMed

    Biswas, Biswajit; Mondal, Saptarsi; Singh, Prashant Chandra

    2017-02-16

    The presence of the fluorocarbon group in fluorinated alcohols makes them an important class of molecules that have diverse applications in the field of separation techniques, synthetic chemistry, polymer industry, and biology. In this paper, we have performed the density function theory calculation along with atom in molecule analysis, molecular dynamics simulation, and IR measurements of bulk monofluoroethanol (MFE) and compared them with the data for bulk ethanol (ETH) to understand the effect of the fluorocarbon group in the structure and the hydrogen bond network of bulk MFE. It has been found that the intramolecular O-H···F hydrogen bond is almost absent in bulk MFE. Molecular dynamics simulation and density function theory calculation along with atom in molecule analysis clearly depict that in the case of bulk MFE, a significant amount of intermolecular O-H···F and C-H···F hydrogen bonds are present along with the intermolecular O-H···O hydrogen bond. The presence of intermolecular O-H···F and C-H···F hydrogen bonds causes the difference in the IR spectrum of bulk MFE as compared to bulk ETH. This study clearly depicts that the organic fluorine (fluorocarbon) of MFE acts as a hydrogen bond acceptor and plays a significant role in the structure and hydrogen bond network of bulk MFE through the formation of weak O-H···F as well C-H···F hydrogen bonds, which may be one of the important reasons behind the unique behavior of the fluoroethanols.

  8. Quantum mechanics models of the methanol dimer: OH⋯O hydrogen bonds of β-d-glucose moieties from crystallographic data.

    PubMed

    Cintrón, Michael Santiago; Johnson, Glenn P; French, Alfred D

    2017-04-18

    The interaction of two methanol molecules, simplified models of carbohydrates and cellulose, was examined using a variety of quantum mechanics (QM) levels of theory. Energy plots for hydrogen bonding distance (H⋯O) and angle (OH⋯O) were constructed. All but two experimental structures were located in stabilized areas on the vacuum phase energy plots. Each of the 399 models was analyzed with Bader's atoms-in-molecules (AIM) theory, which showed a widespread ability by the dimer models to form OH⋯O hydrogen bonds that have bond paths and Bond Critical Points. Continuum solvation calculations suggest that a portion of the energy-stabilized structures could occur in the presence of water. A survey of the Cambridge Structural Database (CSD) for all donor-acceptor interactions in β-D-glucose moieties examined the similarities and differences among the hydroxyl groups and acetal oxygen atoms that participate in hydrogen bonds. Comparable behavior was observed for the O2H, O3H, O4H, and O6H hydroxyls, acting either as acceptors or donors. Ring O atoms showed distinct hydrogen bonding behavior that favored mid-length hydrogen bonds. Published by Elsevier Ltd.

  9. Water: two liquids divided by a common hydrogen bond.

    PubMed

    Soper, Alan K

    2011-12-08

    The structure of water is the subject of a long and ongoing controversy. Unlike simpler liquids, where atomic interactions are dominated by strong repulsive forces at short distances and weaker attractive (van der Waals) forces at longer distances, giving rise to local atomic coordination numbers of order 12, water has pronounced and directional hydrogen bonds which cause the dense liquid close-packed structure to open out into a disordered and dynamic network, with coordination number 4-5. Here I show that water structure can be accurately represented as a mixture of two identical, interpenetrating, molecular species separated by common hydrogen bonds. Molecules of one type can form hydrogen bonds with molecules of the other type but cannot form hydrogen bonds with molecules of the same type. These hydrogen bonds are strong along the bond but weak with respect to changes in the angle between neighboring bonds. The observed pressure and temperature dependence of water structure and thermodynamic properties follow naturally from this choice of water model, and it also gives a simple explanation of the enduring claims based on spectroscopic evidence that water is a mixture of two components. © 2011 American Chemical Society

  10. Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.

    PubMed

    Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2017-09-11

    The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.

  11. Multiple hydrogen bonds. Mass spectra of hydrogen bonded heterodimers. A comparison of ESI- and REMPI-ReTOF-MS.

    PubMed

    Taubitz, Jörg; Lüning, Ulrich; Grotemeyer, Jürgen

    2004-11-07

    Resonance enhanced multi-photon ionization-reflectron time of flight mass spectrometry is the analytical method of choice to observe hydrogen bonded supramolecules in the gas phase when protonation of basic centers competes with cluster formation.

  12. HYDROGEN BONDING IN THE METHANOL DIMER

    USDA-ARS?s Scientific Manuscript database

    In this work, two methanol molecules are placed in different arrangements to study hydrogen bonding in carbohydrate materials such as cellulose. Energy was calculated as a function of both hydrogen bond length and angle over wide ranges, using quantum mechanics (QM). The QM wavefunctions are analyze...

  13. Rupture of DNA aptamer: New insights from simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Rakesh Kumar; Nath, Shesh; Kumar, Sanjay

    2015-10-28

    Base-pockets (non-complementary base-pairs) in a double-stranded DNA play a crucial role in biological processes. Because of thermal fluctuations, it can lower the stability of DNA, whereas, in case of DNA aptamer, small molecules, e.g., adenosinemonophosphate and adenosinetriphosphate, form additional hydrogen bonds with base-pockets termed as “binding-pockets,” which enhance the stability. Using the Langevin dynamics simulations of coarse grained model of DNA followed by atomistic simulations, we investigated the influence of base-pocket and binding-pocket on the stability of DNA aptamer. Striking differences have been reported here for the separation induced by temperature and force, which require further investigation by single moleculemore » experiments.« less

  14. Self-assembly of 3,5-bis(ethoxycarbonyl)pyrazolate anions and ammonium cations of beta-phenylethylamine or homoveratrylamine into hetero-double-stranded helical structures.

    PubMed

    Reviriego, Felipe; Sanz, Ana; Navarro, Pilar; Latorre, Julio; García-España, Enrique; Liu-Gonzalez, Malva

    2009-08-21

    Hydrogen-bonded double-stranded hetero-helices are formed when reacting sodium 3,5-bis(ethoxycarbonyl)pyrazolate with beta-phenethylammonium or homoveratrylammonium chloride, in which one of the strands is defined by the ammonium cations and the other one by the pyrazolate anions.

  15. Diels-Alder Trapping of Photochemically Generated o-Xylenols: Application in the Synthesis of Novel Organic Molecules and Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2003-01-01

    Bis(o-xylenol) equivalents are useful synthetic intermediates in the construction of polymers and hydroxyl substituted organic molecules which can organize by hydrogen bonded self-assembly into unique supramolecular structures. These polymers and supramolecular materials have potential use as coatings and thin films in aerospace, electronic and biomedical applications.

  16. Multiple hydrogen bonding in excited states of aminopyrazine in methanol solution: time-dependent density functional theory study.

    PubMed

    Chai, Shuo; Yu, Jie; Han, Yong-Chang; Cong, Shu-Lin

    2013-11-01

    Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Hydrogen-bonded supramolecular structures of three related 4-(5-nitro-2-furyl)-1,4-dihydropyridines.

    PubMed

    Quesada, Antonio; Argüello, Jacqueline; Squella, Juan A; Wardell, James L; Low, John N; Glidewell, Christopher

    2006-01-01

    In ethyl 5-cyano-2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3-carboxylate, C15H15N3O5, the molecules are linked into chains by a single N-H...O hydrogen bond. The molecules in diethyl 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarboxylate, C17H20N2O7, are linked by a combination of one N-H...O hydrogen bond and two C-H...O hydrogen bonds into sheets built from equal numbers of R(2)(2)(17) and R(4)(4)(18) rings. In 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarbonitrile, C13H10N4O3, the molecules are linked by a combination of a three-centre N-H...(O)2 hydrogen bond and two independent two-centre C-H...O hydrogen bonds into complex sheets containing four types of ring.

  18. Hydrogen bonding effects on the reorganization energy for photoinduced charge separation reaction between porphyrin and quinone studied by nanosecond laser flash photolysis.

    PubMed

    Yago, Tomoaki; Gohdo, Masao; Wakasa, Masanobu

    2010-02-25

    Alcohol concentration dependences of photoinduced charge separation (CS) reaction of zinc tetraphenyl-porphyrin (ZnTPP) and duroquinone (DQ) were investigated in benzonitrile by a nanosecond laser flash photolysis technique. The photoinduced CS reaction was accelerated by the addition of alcohols, whereas the addition of acetonitrile caused little effect on the CS reactions. The simple theory was developed to calculate an increase in reorganization energies induced by the hydrogen bonding interactions between DQ and alcohols using the chemical equilibrium constants for the hydrogen bonding complexes through the concerted pathway and the stepwise one. The experimental results were analyzed by using the Marcus equation where we took into account the hydrogen bonding effects on the reorganization energy and the reaction free energy for the CS reaction. The observed alcohol concentration dependence of the CS reaction rates was well explained by the formation of the hydrogen bonding complexes through the concerted pathway, demonstrating the increase in the reorganization energy by the hydrogen bonding interactions.

  19. Mapping the force field of a hydrogen-bonded assembly

    NASA Astrophysics Data System (ADS)

    Sweetman, A. M.; Jarvis, S. P.; Sang, Hongqian; Lekkas, I.; Rahe, P.; Wang, Yu; Wang, Jianbo; Champness, N. R.; Kantorovich, L.; Moriarty, P.

    2014-05-01

    Hydrogen bonding underpins the properties of a vast array of systems spanning a wide variety of scientific fields. From the elegance of base pair interactions in DNA to the symmetry of extended supramolecular assemblies, hydrogen bonds play an essential role in directing intermolecular forces. Yet fundamental aspects of the hydrogen bond continue to be vigorously debated. Here we use dynamic force microscopy (DFM) to quantitatively map the tip-sample force field for naphthalene tetracarboxylic diimide molecules hydrogen-bonded in two-dimensional assemblies. A comparison of experimental images and force spectra with their simulated counterparts shows that intermolecular contrast arises from repulsive tip-sample interactions whose interpretation can be aided via an examination of charge density depletion across the molecular system. Interpreting DFM images of hydrogen-bonded systems therefore necessitates detailed consideration of the coupled tip-molecule system: analyses based on intermolecular charge density in the absence of the tip fail to capture the essential physical chemistry underpinning the imaging mechanism.

  20. Supramolecular Engineering of Hierarchically Self-Assembled, Bioinspired, Cholesteric Nanocomposites Formed by Cellulose Nanocrystals and Polymers.

    PubMed

    Zhu, Baolei; Merindol, Remi; Benitez, Alejandro J; Wang, Baochun; Walther, Andreas

    2016-05-04

    Natural composites are hierarchically structured by combination of ordered colloidal and molecular length scales. They inspire future, biomimetic, and lightweight nanocomposites, in which extraordinary mechanical properties are in reach by understanding and mastering hierarchical structure formation as tools to engineer multiscale deformation mechanisms. Here we describe a hierarchically self-assembled, cholesteric nanocomposite with well-defined colloid-based helical structure and supramolecular hydrogen bonds engineered on the molecular level in the polymer matrix. We use reversible addition-fragmentation transfer polymerization to synthesize well-defined hydrophilic, nonionic polymers with a varying functionalization density of 4-fold hydrogen-bonding ureidopyrimidinone (UPy) motifs. We show that these copolymers can be coassembled with cellulose nanocrystals (CNC), a sustainable, stiff, rod-like reinforcement, to give ordered cholesteric phases with characteristic photonic stop bands. The dimensions of the helical pitch are controlled by the ratio of polymer/CNC, confirming a smooth integration into the colloidal structure. With respect to the effect of the supramolecular motifs, we demonstrate that those regulate the swelling when exposing the biomimetic hybrids to water, and they allow engineering the photonic response. Moreover, the amount of hydrogen bonds and the polymer fraction are decisive in defining the mechanical properties. An Ashby plot comparing previous ordered CNC-based nanocomposites with our new hierarchical ones reveals that molecular engineering allows us to span an unprecedented mechanical property range from highest inelastic deformation (strain up to ∼13%) to highest stiffness (E ∼ 15 GPa) and combinations of both. We envisage that further rational design of the molecular interactions will provide efficient tools for enhancing the multifunctional property profiles of such bioinspired nanocomposites.

  1. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.

    PubMed

    Elsaesser, Thomas

    2009-09-15

    Hydrogen bonding plays a key role in the structural, physical, and chemical properties of liquids such as water and in macromolecular structures such as proteins. Vibrational spectroscopy is an important tool for understanding hydrogen bonding because it provides a way to observe local molecular geometries and their interaction with the environment. Linear vibrational spectroscopy has mapped characteristic changes of vibrational spectra and the occurrence of new bands that form upon hydrogen bonding. However, linear vibrational spectroscopy gives very limited insight into ultrafast dynamics of the underlying molecular interactions, such as the motions of hydrogen-bonded groups, energy dissipation and delocalization, and the fluctuations within hydrogen-bonded structures that occur in the ultrafast time domain. Nonlinear vibrational spectroscopy with its femtosecond time resolution can discern these dynamic processes in real time and has emerged as an important tool for unraveling molecular dynamics and for quantifying interactions that govern the vibrational and structural dynamics of hydrogen bonds. This Account reviews recent progress originating from third-order nonlinear methods of coherent multidimensional vibrational spectroscopy. Ultrafast dynamics of intermolecular hydrogen bonds are addressed for a number of prototype systems: hydrogen-bonded carboxylic acid dimers in an aprotic liquid environment, the disordered fluctuating hydrogen-bond network of liquid water, and DNA oligomers interacting with water. Cyclic carboxylic acid dimers display a rich scheme of vibrational couplings, resulting in OH stretching absorption bands with highly complex spectral envelopes. Two-dimensional spectroscopy of acetic acid dimers in a nonpolar liquid environment demonstrates that multiple Fermi resonances of the OH stretching mode with overtones and combination tones of fingerprint vibrations dominate both the 2D and linear absorption spectra. The coupling of the OH stretching mode with low-frequency hydrogen-bonding modes leads to additional progressions and coherent low-frequency hydrogen-bond motions in the subpicosecond time domain. In water, the 2D spectra reveal ultrafast spectral diffusion on a sub-100 fs time scale caused by the ultrafast structural fluctuations of the strongly coupled hydrogen-bond network. Librational motions play a key role for the ultrafast loss of structural memory. Spectral diffusion rates are enhanced by resonant transfer of OH stretching quanta between water molecules, typically occurring on a 100 fs time scale. In DNA oligomers, femtosecond nonlinear vibrational spectroscopy resolves NH and OH stretching bands in the highly congested infrared spectra of these molecules, which contain alternating adenine-thymine pairs. Studies at different levels of hydration reveal the spectral signatures of water molecules directly interacting with the phosphate groups of DNA and of a second water species forming a fluctuating environment around the DNA oligomers. We expect that the application of 2D infrared spectroscopy in an extended spectral range will reveal the intrinsic coupling between water and specific functional units of DNA.

  2. Investigation of hydrophobic interactions mediating the self-assembly of supramolecular host/guest polymer complexes utilizing Simultaneous Multiple Sample Light Scattering (SMSLS)

    NASA Astrophysics Data System (ADS)

    Payne, Molly; Jarand, Curtis; Grayson, Scott; Reed, Wayne

    While living systems spontaneously heal injuries, most man made materials cannot recover from damage. Incorporating self-healing properties into synthetic polymers could significantly extend product lifetime, safety, and applications. Most reported approaches to incorporate healing into synthetic materials, however, require external stimuli such as chemical additives, heat, and light exposure. Although dynamic bonds have been explored, particularly using a hydrogen bond motif, this has not been fully investigated in an aqueous environment. To address this, hosts and guests that dynamically associate in water have been investigated to build aqueous self-healing materials. These association values were probed for various host/guest complexes using Simultaneous Multiple Sample Light Scattering (SMSLS), a technique that measures the size of aggregates via light scattering while varying concentration and other environmental factors. NSF EPSCoR IIA1430280.

  3. Influence of molecular electronic properties on the IR spectra of dimeric hydrogen bond systems: polarized spectra of 2-hydroxybenzothiazole and 2-mercaptobenzothiazole crystals

    NASA Astrophysics Data System (ADS)

    Flakus, Henryk T.; Miros, Artur; Jones, Peter G.

    2002-01-01

    We have studied the polarized IR spectra of the hydrogen-bonded molecular crystals of 2-hydroxybenzothiazole (HBT) and 2-mercaptobenzothiazole (MBT). The crystal structure of 2-hydroxybenzothiazole was determined by X-ray diffraction. The polarized spectra of the crystals were measured, in the frequency ranges of the νN-H and νN-D bands, at room temperature, and at 77 K. In both systems an extremely strong H/D isotopic effect in the spectra was observed, involving reduction of the well-developed νN-H band fine structure to a single prominent νN-D line only. The two νN-H bands were also shown to exhibit almost identical properties, band shapes, temperature and dichroic properties included. The spectra were quantitatively reconstituted, along with the strong isotopic effect, when calculated using the 'strong-coupling' theory, assuming the centrosymmetric dimers of HBT or MBT to be the structural units responsible for the crystalline spectral properties. The similarity of the spectra of the two crystalline systems was considered to be a result of longer-distance couplings between the proton vibrations in the dimers, via the aromatic ring electrons. When investigating the 'residual' νN-H band shapes for crystals isotopically diluted by deuterium, we observed some 'self-organization' effects in the spectra, indicating the energetically favored presence of two identical hydrogen isotopes in each hydrogen bond dimer.

  4. Hydrogenated amorphous silicon formation by flux control and hydrogen effects on the growth mechanism

    NASA Astrophysics Data System (ADS)

    Toyoda, H.; Sugai, H.; Kato, K.; Yoshida, A.; Okuda, T.

    1986-06-01

    The composition of particle flux to deposit hydrogenated amorphous silicon films in a glow discharge is controlled by a combined electrostatic-magnetic deflection technique. As a result, the films are formed firstly without hydrogen ion flux, secondly by neutral flux only, and thirdly by all species fluxes. Comparison of these films reveals the significant role of hydrogen in the surface reactions. Hydrogen breaks the Si-Si bond, decreases the sticking probability of the Si atom, and replaces the SiH bond by a SiH2 bond to increase the hydrogen content of the films.

  5. Dock ’n Roll: Folding of a Silk-Inspired Polypeptide into an Amyloid-like Beta Solenoid

    PubMed Central

    Zhao, Binwu; Cohen Stuart, Martien A.; Hall, Carol K.

    2016-01-01

    Polypeptides containing the motif ((GA)mGX)n occur in silk (we refer to them as ‘silk-like’) and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II’ β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for molecules to reach the folded state. PMID:26947809

  6. A Computational and Theoretical Study of Conductance in Hydrogen-bonded Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Wimmer, Michael

    This thesis is devoted to the theoretical and computational study of electron transport in molecular junctions where one or more hydrogen bonds are involved in the process. While electron transport through covalent bonds has been extensively studied, in recent work the focus has been shifted towards hydrogen-bonded systems due to their ubiquitous presence in biological systems and their potential in forming nano-junctions between molecular electronic devices and biological systems. This analysis allows us to significantly expand our comprehension of the experimentally observed result that the inclusion of hydrogen bonding in a molecular junction significantly impacts its transport properties, a fact that has important implications for our understanding of transport through DNA, and nano-biological interfaces in general. In part of this work I have explored the implications of quasiresonant transport in short chains of weakly-bonded molecular junctions involving hydrogen bonds. I used theoretical and computational analysis to interpret recent experiments and explain the role of Fano resonances in the transmission properties of the junction. In a different direction, I have undertaken the study of the transversal conduction through nucleotide chains that involve a variable number of different hydrogen bonds, e.g. NH˙˙˙O, OH˙˙˙O, and NH˙˙˙N, which are the three most prevalent hydrogen bonds in biological systems and organic electronics. My effort here has focused on the analysis of electronic descriptors that allow a simplified conceptual and computational understanding of transport properties. Specifically, I have expanded our previous work where the molecular polarizability was used as a conductance descriptor to include the possibility of atomic and bond partitions of the molecular polarizability. This is important because it affords an alternative molecular description of conductance that is not based on the conventional view of molecular orbitals as transport channels. My findings suggest that the hydrogen-bond networks are crucial in understanding the conductance of these junctions. A broader impact of this work pertains the fact that characterizing transport through hydrogen bonding networks may help in developing faster and cost-effective approaches to personalized medicine, to advance DNA sequencing and implantable electronics, and to progress in the design and application of new drugs.

  7. Hydrogen bonds and antiviral activity of benzaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2012-09-01

    We have obtained the Fourier transform IR spectra of solutions of benzaldehyde derivatives having different antiviral activities against a herpes virus. We observe a correlation between the presence of hydrogen bonds in the benzaldehyde molecules and the appearance of antiviral properties in the compounds. For compounds having antiviral activity, we have obtained spectral data suggesting the existence of hydrogen bonds of the type C=OṡṡṡH-O and O-HṡṡṡO in the molecules. When the hydrogen atom in the hydroxyl groups are replaced by a methyl group, no intramolecular hydrogen bonds are formed and the compounds lose their antiviral activity.

  8. Quantum nature of protons in water probed by scanning tunneling microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Lü, Jing-Tao; Feng, Yexin; Chen, Ji; Peng, Jinbo; Lin, Zeren; Meng, Xiangzhi; Wang, Zhichang; Li, Xin-Zheng; Wang, En-Ge; Jiang, Ying; Jing-Tao Lü Team; Xin-Zheng Li Team

    The complexity of hydrogen-bonding interaction largely arises from the quantum nature of light hydrogen nuclei, which has remained elusive for decades. Here we report the direct assessment of nuclear quantum effects on the strength of a single hydrogen bond formed at a water-salt interface, using tip-enhanced inelastic electron tunneling spectroscopy (IETS) based on a low-temperature scanning tunneling microscope (STM). The IETS signals are resonantly enhanced by gating the frontier orbitals of water via a chlorine-terminated STM tip, such that the hydrogen-bonding strength can be determined with unprecedentedly high accuracy from the redshift in the O-H stretching frequency of water. Isotopic substitution experiments combined with quantum simulations reveal that the anharmonic quantum fluctuations of hydrogen nuclei weaken the weak hydrogen bonds and strengthen the relatively strong ones. However, this trend can be completely reversed when the hydrogen bond is strongly coupled to the polar atomic sites of the surface.

  9. Towards the synthesis of prenylated phloroglucinol derivatives: An X-ray crystallographic and DFT study of unexpected reaction products

    NASA Astrophysics Data System (ADS)

    Akerman, Matthew P.; Mkhize, Zimbili; van Heerden, Fanie R.

    2018-07-01

    Owing to their bioactivity and prevalence in medicinal plant extracts, prenylated phloroglucinols have garnered significant interest. Towards the synthesis of prenylated phloroglucinol derivatives, 2,4,6-trihydroxy-3-(3-methylbut-2-enyl)acetophenone is required as an intermediate. Herein, this was synthesised by a tandem Claisen-Cope rearrangement reaction on 2,4-bis(methoxymethoxy)-6-(3-methylbut-2-enyloxy)acetophenone and a subsequent hydrolysis to remove protecting groups. This reaction yielded the desired product as well as three by-products. Two of these by-products were isomeric chromane derivatives (2 and 3) and the third was a methoxy derivative (4). These compounds have been studied by single crystal X-ray crystallography and DFT methods. Compound (2) crystallised in the P21/c space group with two hydrogen-bonded molecules in the asymmetric unit (Z = 8). Compound (4) crystallised in the Pbca space group with a single molecule in the asymmetric unit (Z = 8). Both compounds formed extensive supramolecular structures supported by hydrogen bonds in the solid state. Compound (2) forms a simple one-dimensional hydrogen-bonded chain co-linear with the a-axis. Compound (4) forms a two-dimensional supramolecular structure comprising "pentameric" hydrogen-bonded motifs linked by additional H-bonds to form the supramolecular structure. Both structures showed intramolecular hydrogen bonds between the acetyl oxygen and adjacent OH group. DFT simulations were used to probe the relative energies of the molecules and hydrogen bonds. These simulations showed that the intramolecular hydrogen bond has a substantial stabilising effect with an interaction strength of 70.64 kJ mol-1. The formation of the hydrogen-bonded dimer of (2) from which the supramolecular structure is formed has a ΔHassoc constant of -42.32 kJ mol-1, illustrating that the formation of the hydrogen-bonded structure is energetically favourable.

  10. The role of hydrogen bonding in the fluorescence quenching of 2,6-bis((E)-2-(benzoxazol-2-yl)vinyl)naphthalene (BBVN) in methanol.

    PubMed

    Hammam, Essam; Basahi, Jalal; Ismail, Iqbal; Hassan, Ibrahim; Almeelbi, Talal

    2017-02-15

    The excited state hydrogen bonding dynamics of BBVN in hydrogen donating methanol solvent was explored at the TD-BMK/cc-pVDZ level of theory with accounting for the bulk environment effects at the polarizable continuum model (PCM). The heteroatoms of the BBVN laser dye form hydrogen bonds with four methanol molecules. In the formed BBVN-(MeOH) 4 complex, the A-type hydrogen bond (N…HO), of an average strength of 25kJmol -1 , is twofold stronger than the B-type (O…HO) one. Upon photon absorption, the total HB binding energy increases from 78.5kJmol -1 in the ground state to 82.6kJmol -1 in the first singlet (S 1 ) excited state. In consequence of the hydrogen bonding interaction, the absorption band maximum of the BBVN-(MeOH) 4 complex, which was anticipated at 398nm (exp. 397), is redshifted by 5nm relative to that of the free dye in methanol. The spectral shift of the stretching vibrational mode for the hydrogen bonded hydroxyl groups (with a maximum shift of 285cm -1 ) from that of the free methanol indicated the elevated strengthening of hydrogen bonds in the excited state. The vibrational modes associated with hydrogen bonding provide effective accepting modes for the dissipation of the excitation energy, thus, decreasing the fluorescence quantum yield of BBVN in alcohols as compared to that in the polar aprotic solvents. Since there is no sign of photochemistry or phosphorescence, it seems reasonable in view of the outcomes of this study to assign the major decay process of the excited singlet (S 1 ) of BBVN in alcohols to vibronically induced internal conversion (IC) facilitated by hydrogen bonding. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Molecular mechanism of gelation with ethylene glycol added to a solution of polyacrylonitrile in dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Vettegren', V. I.; Machalaba, N. N.; Zharov, V. B.; Kulik, V. B.; Savitskii, A. V.

    2011-06-01

    The mechanism of solidifying a solution of polyacrylonitrile (PAN) in dimethylsulfoxide (DMSO) into which ethylene glycol is added is studied by the method of Raman spectroscopy. In the absence of ethylene glycol, DMSO molecules produce dipole-dipole bonds to PAN molecules. Upon adding ethylene glycol, DMSO molecules form hydrogen bonds with it and a line at 1000 cm-1 appears in the Raman spectrum, which is assigned to the valence vibrations of S=O bonds involved in the hydrogen bonds. After DMSO is removed, ethylene glycol molecules produce hydrogen bonds with two neighboring PAN molecules, giving rise to a band at 2264 cm-1, which is assigned to the valence vibrations of C≡N bonds involved in these hydrogen bonds. A high-viscosity gel consisting of PAN molecules arises in which these molecules are bonded to each other through ethylene glycol molecules.

  12. Hydrogen bonds in the vicinity of the special pair of the bacterial reaction center probed by hydrostatic high-pressure absorption spectroscopy.

    PubMed

    Kangur, Liina; Jones, Michael R; Freiberg, Arvi

    2017-12-01

    Using the native bacteriochlorophyll a pigment cofactors as local probes, we investigated the response to external hydrostatic high pressure of reaction center membrane protein complexes from the photosynthetic bacterium Rhodobacter sphaeroides. Wild-type and engineered complexes were used with a varied number (0, 1 or 2) of hydrogen bonds that bind the reaction center primary donor bacteriochlorophyll cofactors to the surrounding protein scaffold. A pressure-induced breakage of hydrogen bonds was established for both detergent-purified and membrane-embedded reaction centers, but at rather different pressures: between 0.2 and 0.3GPa and at about 0.55GPa, respectively. The free energy change associated with the rupture of the single hydrogen bond present in wild-type reaction centers was estimated to be equal to 13-14kJ/mol. In the mutant with two symmetrical hydrogen bonds (FM197H) a single cooperative rupture of the two bonds was observed corresponding to an about twice stronger bond, rather than a sequential rupture of two individual bonds. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Do Halogen–Hydrogen Bond Donor Interactions Dominate the Favorable Contribution of Halogens to Ligand–Protein Binding?

    PubMed Central

    2017-01-01

    Halogens are present in a significant number of drugs, contributing favorably to ligand–protein binding. Currently, the contribution of halogens, most notably chlorine and bromine, is largely attributed to halogen bonds involving favorable interactions with hydrogen bond acceptors. However, we show that halogens acting as hydrogen bond acceptors potentially make a more favorable contribution to ligand binding than halogen bonds based on quantum mechanical calculations. In addition, bioinformatics analysis of ligand–protein crystal structures shows the presence of significant numbers of such interactions. It is shown that interactions between halogens and hydrogen bond donors (HBDs) are dominated by perpendicular C–X···HBD orientations. Notably, the orientation dependence of the halogen–HBD (X–HBD) interactions is minimal over greater than 100° with favorable interaction energies ranging from −2 to −14 kcal/mol. This contrasts halogen bonds in that X–HBD interactions are substantially more favorable, being comparable to canonical hydrogen bonds, with a smaller orientation dependence, such that they make significant, favorable contributions to ligand–protein binding and, therefore, should be actively considered during rational ligand design. PMID:28657759

  14. Towards a unified description of the hydrogen bond network of liquid water: A dynamics based approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozkanlar, Abdullah, E-mail: abdullah.ozkanlar@wsu.edu; Zhou, Tiecheng; Clark, Aurora E., E-mail: auclark@wsu.edu

    2014-12-07

    The definition of a hydrogen bond (H-bond) is intimately related to the topological and dynamic properties of the hydrogen bond network within liquid water. The development of a universal H-bond definition for water is an active area of research as it would remove many ambiguities in the network properties that derive from the fixed definition employed to assign whether a water dimer is hydrogen bonded. This work investigates the impact that an electronic-structure based definition, an energetic, and a geometric definition of the H-bond has upon both topological and dynamic network behavior of simulated water. In each definition, the usemore » of a cutoff (either geometric or energetic) to assign the presence of a H-bond leads to the formation of transiently bonded or broken dimers, which have been quantified within the simulation data. The relative concentration of transient species, and their duration, results in two of the three definitions sharing similarities in either topological or dynamic features (H-bond distribution, H-bond lifetime, etc.), however no two definitions exhibit similar behavior for both classes of network properties. In fact, two networks with similar local network topology (as indicated by similar average H-bonds) can have dramatically different global network topology (as indicated by the defect state distributions) and altered H-bond lifetimes. A dynamics based correction scheme is then used to remove artificially transient H-bonds and to repair artificially broken bonds within the network such that the corrected network exhibits the same structural and dynamic properties for two H-bond definitions (the properties of the third definition being significantly improved). The algorithm described represents a significant step forward in the development of a unified hydrogen bond network whose properties are independent of the original hydrogen bond definition that is employed.« less

  15. DFT studies of the vibrational spectra of salicylic acid and related compounds

    USDA-ARS?s Scientific Manuscript database

    Compounds that exhibit intra- and intermolecular hydrogen bonds can have infrared and Raman spectra that show evidences of these hydrogen bonds. In modeling the vibrational spectra of such compounds, the addition of explicit hydrogen bonding species (e.g. solvent molecules) can often improve agreeme...

  16. Estimation of the degree of hydrogen bonding between quinoline and water by ultraviolet-visible absorbance spectroscopy in sub- and supercritical water

    NASA Astrophysics Data System (ADS)

    Osada, Mitsumasa; Toyoshima, Katsunori; Mizutani, Takakazu; Minami, Kimitaka; Watanabe, Masaru; Adschiri, Tadafumi; Arai, Kunio

    2003-03-01

    UV-visible spectra of quinoline was measured in sub- and supercritical water (25 °C

  17. On the cooperativity of association and reference energy scales in thermodynamic perturbation theory

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.

    2016-11-01

    Equations of state for hydrogen bonding fluids are typically described by two energy scales. A short range highly directional hydrogen bonding energy scale as well as a reference energy scale which accounts for dispersion and orientationally averaged multi-pole attractions. These energy scales are always treated independently. In recent years, extensive first principles quantum mechanics calculations on small water clusters have shown that both hydrogen bond and reference energy scales depend on the number of incident hydrogen bonds of the water molecule. In this work, we propose a new methodology to couple the reference energy scale to the degree of hydrogen bonding in the fluid. We demonstrate the utility of the new approach by showing that it gives improved predictions of water-hydrocarbon mutual solubilities.

  18. Hirshfeld atom refinement for modelling strong hydrogen bonds.

    PubMed

    Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon

    2014-09-01

    High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.

  19. Can Csbnd H⋯Fsbnd C hydrogen bonds alter crystal packing features in the presence of Nsbnd H⋯Odbnd C hydrogen bond?

    NASA Astrophysics Data System (ADS)

    Yadav, Hare Ram; Choudhury, Angshuman Roy

    2017-12-01

    Intermolecular interactions involving organic fluorine have been the contemporary field of research in the area of organic solid state chemistry. While a group of researchers had refuted the importance of "organic fluorine" in guiding crystal structures, others have provided evidences for in favor of fluorine mediated interactions in the solid state. Many systematic studies have indicated that the "organic fluorine" is capable of offering weak hydrogen bonds through various supramolecular synthons, mostly in the absence of other stronger hydrogen bonds. Analysis of fluorine mediated interaction in the presence of strong hydrogen bonds has not been highlighted in detail. Hence a thorough structural investigation is needed to understand the role of "organic fluorine" in crystal engineering of small organic fluorinated molecules having the possibility of strong hydrogen bond formation in the solution and in the solid state. To fulfil this aim, we have synthesized a series of fluorinated amides using 3-methoxyphenylacetic acid and fluorinated anilines and studied their structural properties through single crystal and powder X-ray diffraction methods. Our results indicated that the "organic fluorine" plays a significant role in altering the packing characteristics of the molecule in building specific crystal lattices even in the presence of strong hydrogen bond.

  20. Variations of the Hydrogen Bonding and of the Hydrogen Bonded Network in Ethanol-Water Mixtures on Cooling.

    PubMed

    Pothoczki, Szilvia; Pusztai, Laszlo; Bako, Imre

    2018-06-12

    Molecular dynamics computer simulations have been conducted for ethanol-water liquid mixtures in the water-rich side of the composition range, with 10, 20 and 30 mol % of the alcohol, at temperatures between room temperature and the experimental freezing point of the given mixture. All-atom type (OPLS) interatomic potentials have been assumed for ethanol, in combination with two kinds of rigid water models (SPC/E and TIP4P/2005). Both combinations have provided excellent reproductions of the experimental X-ray total structure factors at each temperature; this yielded a strong basis for further structural analyses. Beyond partial radial distribution functions, various descriptors of hydrogen bonded assemblies, as well as of the hydrogen bonded network have been determined. A clear tendency was observed towards that an increasing proportion of water molecules participate in hydrogen bonding with exactly 2 donor- and 2 acceptor sites as temperature decreases. Concerning larger assemblies held together by hydrogen bonding, the main focus was put on the properties of cyclic entities: it was found that, similarly to methanol-water mixtures, the number of hydrogen bonded rings has increased with lowering temperature. However, for ethanol-water mixtures the dominance of not the six-, but of the five-fold rings could be observed.

  1. Proton Transfer and Low-Barrier Hydrogen Bonding: a Shifting Vibrational Landscape Dictated by Large Amplitude Tunneling

    NASA Astrophysics Data System (ADS)

    Vealey, Zachary; Foguel, Lidor; Vaccaro, Patrick

    2017-06-01

    Our fundamental understanding of synergistic hydrogen-bonding and proton-transfer phenomena has been advanced immensely by studies of model systems in which the coherent transduction of hydrons is mediated by two degenerate equilibrium configurations that are isolated from one another by a potential barrier of substantial height. This topography advantageously affords unambiguous signatures for the underlying state-resolved dynamics in the form of tunneling-induced spectral bifurcations, the magnitudes of which encode both the overall efficacy and the detailed mechanism of the unimolecular transformation. As a prototypical member of this class of compounds, 6-hydroxy-2-formylfulvene (HFF) supports an unusual quasi-linear O-H...O \\leftrightarrow O...H-O reaction coordinate that presents a minimal impediment to proton migration - a situation commensurate with the concepts of low-barrier hydrogen bonding (which are characterized by great strength, short distance, and a vanishingly small barrier for hydron migration). A variety of fluorescence-based, laser-spectroscopic probes have been deployed in a cold supersonic free-jet expansion to explore the vibrational landscape and anomalously large tunneling-induced shifts that dominate the ˜{X}^{1}A_{1} potential-energy surface of HFF, thus revealing the most rapid proton tunneling ever reported for a molecular ground state (τ_{pt}≤120fs). The surprising efficiency of such tunneling-mediated processes stems from proximity of the zero-point level to the barrier crest and produces a dramatic alteration in the canonical pattern of vibrational features that reflects, in part, the subtle transition from quantum-mechanical barrier penetration to classical over-the-barrier dynamics. The ultrafast proton-transfer regime that characterizes the ˜{X}^{1}A_{1} manifold will be juxtaposed against analogous findings for the lowest-lying singlet excited state ˜{A}^{1}B_{2} (π*←π), where a marked change in the nature of the reaction coordinate leads to the near-complete quenching of proton transfer. Experimental results, as well as complementary quantum-chemical analyses, will be discussed and contrasted with those obtained for related hydron-migration systems in an effort to highlight the unique bonding motifs and reaction propensities evinced by HFF.

  2. Template switching between PNA and RNA oligonucleotides

    NASA Technical Reports Server (NTRS)

    Bohler, C.; Nielsen, P. E.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1995-01-01

    The origin of the RNA world is not easily understood, as effective prebiotic syntheses of the components of RNA, the beta-ribofuranoside-5'-phosphates, are hard to envisage. Recognition of this difficulty has led to the proposal that other genetic systems, the components of which are more easily formed, may have preceded RNA. This raises the question of how transitions between one genetic system and another could occur. Peptide nucleic acid (PNA) resembles RNA in its ability to form double-helical complexes stabilized by Watson-Crick hydrogen bonding between adenine and thymine and between cytosine and guanine, but has a backbone that is held together by amide rather than by phosphodiester bonds. Oligonucleotides bases on RNA are known to act as templates that catalyse the non-enzymatic synthesis of their complements from activated mononucleotides, we now show that RNA oligonucleotides facilitate the synthesis of complementary PNA strands and vice versa. This suggests that a transition between different genetic systems can occur without loss of information.

  3. Theoretical study of the changes in the vibrational characteristics arising from the hydrogen bonding between Vitamin C ( L-ascorbic acid) and H 2O

    NASA Astrophysics Data System (ADS)

    Dimitrova, Yordanka

    2006-02-01

    The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C ( L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d, p) calculations and DFT (BLYP) calculations with 6-31G(d, p) and 6-31++G(d, p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm -1. The magnitude of the wavenumber shifts is indicative of relatively strong OH···H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric O sbnd H stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.

  4. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.

    PubMed

    Park, Young Jun; Park, Jung-Woo; Jun, Chul-Ho

    2008-02-01

    The development of an efficient catalytic activation (cleavage) system for C-H and C-C bonds is an important challenge in organic synthesis, because these bonds comprise a variety of organic molecules such as natural products, petroleum oils, and polymers on the earth. Among many elegant approaches utilizing transition metals to activate C-H and C-C bonds facilely, chelation-assisted protocols based on the coordinating ability of an organic moiety have attracted great attention, though they have often suffered from the need for an intact coordinating group in a substrate. In this Account, we describe our entire efforts to activate C-H or C-C bonds adjacent to carbonyl groups by employing a new concept of metal-organic cooperative catalysis (MOCC), which enables the temporal installation of a 2-aminopyridyl group into common aldehydes or ketones in a catalytic way. Consequently, a series of new catalytic reactions such as alcohol hydroacylation, oxo-ester synthesis, C-C triple bond cleavage, hydrative dimerization of alkynes, and skeletal rearrangements of cyclic ketones was realized through MOCC. In particular, in the quest for an optimized MOCC system composed of a Wilkinson's catalyst (Ph 3P) 3RhCl and an organic catalyst (2-amino-3-picoline), surprising efficiency enhancements could be achieved when benzoic acid and aniline were introduced as promoters for the aldimine formation process. Furthermore, a notable accomplishment of C-C bond activation has been made using 2-amino-3-picoline as a temporary chelating auxiliary in the reactions of unstrained ketones with various terminal olefins and Wilkinson's catalyst. In the case of seven-membered cyclic ketones, an interesting ring contraction to five- or six-membered ones takes place through skeletal rearrangements initiated by the C-C bond activation of MOCC. On the other hand, the fundamental advances of these catalytic systems into recyclable processes could be achieved by immobilizing both metal and organic components using a hydrogen-bonded self-assembled system as a catalyst support. This catalyst-recovery system provides a homogeneous phase at high temperature during the reaction and a heterogeneous phase at room temperature after the reaction. The product could be separated conveniently from the self-assembly support system by decanting the upper layer. The immobilized catalysts of both 2-aminopyridine and rhodium metal species sustained high catalytic activity for up to the eight catalytic reactions. In conclusion, the successful incorporation of an organocatalytic cycle into a transition metal catalyzed reaction led us to find MOCC for C-H and C-C bond activation. In addition, the hydrogen-bonded self-assembled support has been developed for an efficient and effective recovery system of homogeneous catalysts and could be successful in immobilizing both metal and organic catalysts.

  5. Self-assembly of dimeric tetraurea calix[4]pyrrole capsules

    PubMed Central

    Ballester, Pablo; Gil-Ramírez, Guzmán

    2009-01-01

    Calix[4]pyrroles having extended aromatic cavities have been functionalized with 4 ureas in the para position of their meso phenyl substituents. This elaboration of the upper rim was completed in 2 synthetic steps starting from the α,α,α,α-tetranitro isomer of the calix[4]pyrrole obtained in the acid catalyzed condensation of p-nitrophenyl methyl ketone and pyrrole. In dichloromethane solution and in the presence of 4,4′-bipyridine N-N′-dioxide the tetraurea calix[4]pyrrole dimerizes reversibly forming a cyclic array of 16 hydrogen bonds and encapsulating 1 molecule of bis-N-oxide. The encapsulated guest is bound in the cavity by hydrogen bonding to the 2 endohedral calix[4]pyrrole centers. Further evidence for dimerization of the tetraurea calix[4]pyrroles is provided by 1H-NMR experiments and by the formation of mixed capsules. PMID:19261848

  6. Counteranion Driven Homochiral Assembly of a Cationic C3-Symmetric Gelator through Ion-Pair Assisted Hydrogen Bond.

    PubMed

    Maity, Arunava; Gangopadhyay, Monalisa; Basu, Arghya; Aute, Sunil; Babu, Sukumaran Santhosh; Das, Amitava

    2016-09-07

    The helical handedness in achiral self-assemblies is mostly complex due to spontaneous symmetry breaking or kinetically controlled random assembly formation. Here an attempt has been made to address this issue through chiral anion exchange. A new class of cationic achiral C3-symmetric gelator devoid of any conventional gelation assisting functional units is found to form both right- and left-handed helical structures. A chiral counteranion exchange-assisted approach is successfully introduced to control the chirality sign and thereby to obtain preferred homochiral assemblies. Formation of anion-assisted chiral assembly was confirmed by circular dichroism (CD) spectroscopy, microscopic images, and crystal structure. The X-ray crystal structure reveals the construction of helical assemblies with opposite handedness for (+)- and (-)-chiral anion reformed gelators. The appropriate counteranion driven ion-pair-assisted hydrogen-bonding interactions are found responsible for the helical bias control in this C3-symmetric gelator.

  7. Chirality-selected phase behaviour in ionic polypeptide complexes

    DOE PAGES

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; ...

    2015-01-14

    In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with amore » β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.« less

  8. Computational study of red- and blue-shifted Csbnd H⋯Se hydrogen bond in Q3Csbnd H⋯SeH2 (Q = Cl, F, H) complexes

    NASA Astrophysics Data System (ADS)

    Chopra, Pragya; Chakraborty, Shamik

    2018-01-01

    This work presents Csbnd H⋯Se hydrogen bonding interaction at the MP2 level of theory. The system Q3Csbnd H⋯SeH2 (Q = Cl, F, and H) provides an opportunity to investigate red- and blue-shifted hydrogen bonds. The origin of the red- and blue-shift in Csbnd H stretching frequency has been investigated using Natural Bond Orbital analysis. A large amount of electron density is being transferred to the σ∗Csbnd H orbital in red-shifted Cl3Csbnd H⋯SeH2. Electron density transfer in the blue-shifted F3Csbnd H⋯SeH2 is primarily to the remote fluorine atoms. Further, due to polarization of the Csbnd H bond, the contradicting effects of rehybridization and hyperconjugation are important. The extent of hyperconjugation reigns predominant in explaining the nature of the Csbnd H⋯Se hydrogen bond in Q3Csbnd H⋯SeH2 complexes as the hydrogen bond acceptor remain same in this investigation. Red- and blue-shift in Q3Csbnd H⋯SeH2 (Q = Cl and F) complexes is best described by pro-improper hydrogen bond donor concept.

  9. Hydrogen Bonding: Between Strengthening the Crystal Packing and Improving Solubility of Three Haloperidol Derivatives.

    PubMed

    Saluja, Hardeep; Mehanna, Ahmed; Panicucci, Riccardo; Atef, Eman

    2016-06-01

    The purpose of this study is to confirm the impact of polar functional groups on inter and intra-molecular hydrogen bonding in haloperidol (HP) and droperidol (DP) and, hence, their effects on dissolution using a new approach. To confirm our theory, a new molecule: deshydroxy-haloperidol (DHP) was designed and its synthesis was requested from a contract laboratory. The molecule was then studied and compared to DP and HP. Unlike DHP, both the HP and DP molecules have hydrogen donor groups, therefore, DHP was used to confirm the relative effects of the hydrogen donor group on solubility and crystal packing. The solid dispersions of the three structurally related molecules: HP, DP, and DHP were prepared using PVPK30, and characterized using XRPD and IR. A comparative dissolution study was carried out in aqueous medium. The absence of a hydrogen bonding donor group in DHP resulted in an unexpected increase in its aqueous solubility and dissolution rate from solid dispersion, which is attributed to weaker crystal pack. The increased dissolution rate of HP and DP from solid dispersions is attributed to drug-polymer hydrogen bonding that interferes with the drug-drug intermolecular hydrogen bonding and provides thermodynamic stability of the dispersed drug molecules. The drug-drug intermolecular hydrogen bond is the driving force for precipitation and crystal packing.

  10. DNA polymerase catalysis in the absence of Watson-Crick hydrogen bonds

    PubMed Central

    Potapova, Olga; Chan, Chikio; DeLucia, Angela M.; Helquist, Sandra A.; Kool, Eric T.; Grindley, Nigel D. F.; Joyce, Catherine M.

    2008-01-01

    We report the first pre-steady-state kinetic studies of DNA replication in the absence of hydrogen bonds. We have used nonpolar nucleotide analogues that mimic the shape of a Watson-Crick base pair in order to investigate the kinetic consequences of a lack of hydrogen bonds in the polymerase reaction catalyzed by the Klenow fragment of DNA Polymerase I from Escherichia coli. With a thymine isostere lacking hydrogen bonding ability in the nascent pair, the efficiency (kpol/Kd) of the polymerase reaction is decreased by 30-fold, affecting ground state (Kd) and transition state (kpol) approximately equally. When both thymine and adenine analogues in the nascent pair lack hydrogen bonding ability, the efficiency of the polymerase reaction is decreased by about 1000-fold, with most the decrease attributable to the transition state. Reactions using nonpolar analogues at the primer terminal base pair demonstrated the requirement for a hydrogen bond between the polymerase and the minor groove of the primer-terminal base. The R668A mutation of Klenow fragment abolished this requirement, identifying R668 as the probable hydrogen bond donor. Detailed examination of the kinetic data suggested that Klenow fragment has an extremely low tolerance of even minor deviations of the analogue base pairs from ideal Watson-Crick geometry. Consistent with this idea, some analogue pairings were better tolerated by Klenow fragment mutants having more spacious active sites. By contrast, the Y-family polymerase Dbh was much less sensitive to changes in base pair dimensions, and more dependent on hydrogen bonding between base-paired partners. PMID:16411765

  11. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides.

    PubMed

    Mphahlele, Malose Jack; Maluleka, Marole Maria; Rhyman, Lydia; Ramasami, Ponnadurai; Mampa, Richard Mokome

    2017-01-04

    The structures of the mono- and the dihalogenated N -unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (¹H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)-NH₂ single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the ¹H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide ( ABB ) as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar-NH₂ single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p) basis set revealed that the conformer ( A ) with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  12. Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing Rh(III) ions as the model surfaces.

    PubMed

    Ueno, Takafumi; Abe, Satoshi; Koshiyama, Tomomi; Ohki, Takahiro; Hikage, Tatsuo; Watanabe, Yoshihito

    2010-03-01

    Metal-ion accumulation on protein surfaces is a crucial step in the initiation of small-metal clusters and the formation of inorganic materials in nature. This event is expected to control the nucleation, growth, and position of the materials. There remain many unknowns, as to how proteins affect the initial process at the atomic level, although multistep assembly processes of the materials formation by both native and model systems have been clarified at the macroscopic level. Herein the cooperative effects of amino acids and hydrogen bonds promoting metal accumulation reactions are clarified by using porous hen egg white lysozyme (HEWL) crystals containing Rh(III) ions, as model protein surfaces for the reactions. The experimental results reveal noteworthy implications for initiation of metal accumulation, which involve highly cooperative dynamics of amino acids and hydrogen bonds: i) Disruption of hydrogen bonds can induce conformational changes of amino-acid residues to capture Rh(III) ions. ii) Water molecules pre-organized by hydrogen bonds can stabilize Rh(III) coordination as aqua ligands. iii) Water molecules participating in hydrogen bonds with amino-acid residues can be replaced by Rh(III) ions to form polynuclear structures with the residues. iv) Rh(III) aqua complexes are retained on amino-acid residues through stabilizing hydrogen bonds even at low pH (approximately 2). These metal-protein interactions including hydrogen bonds may promote native metal accumulation reactions and also may be useful in the preparation of new inorganic materials that incorporate proteins.

  13. The origins of femtomolar protein-ligand binding: hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site.

    PubMed

    DeChancie, Jason; Houk, K N

    2007-05-02

    The unusually strong reversible binding of biotin by avidin and streptavidin has been investigated by density functional and MP2 ab initio quantum mechanical methods. The solvation of biotin by water has also been studied through QM/MM/MC calculations. The ureido moiety of biotin in the bound state hydrogen bonds to five residues, three to the carbonyl oxygen and one for each--NH group. These five hydrogen bonds act cooperatively, leading to stabilization that is larger than the sum of individual hydrogen-bonding energies. The charged aspartate is the key residue that provides the driving force for cooperativity in the hydrogen-bonding network for both avidin and streptavidin by greatly polarizing the urea of biotin. If the residue is removed, the network is disrupted, and the attenuation of the energetic contributions from the neighboring residues results in significant reduction of cooperative interactions. Aspartate is directly hydrogen-bonded with biotin in streptavidin and is one residue removed in avidin. The hydrogen-bonding groups in streptavidin are computed to give larger cooperative hydrogen-bonding effects than avidin. However, the net gain in electrostatic binding energy is predicted to favor the avidin-bicyclic urea complex due to the relatively large penalty for desolvation of the streptavidin binding site (specifically expulsion of bound water molecules). QM/MM/MC calculations involving biotin and the ureido moiety in aqueous solution, featuring PDDG/PM3, show that water interactions with the bicyclic urea are much weaker than (strept)avidin interactions due to relatively low polarization of the urea group in water.

  14. Acetonitrile-water hydrogen-bonded interaction: Matrix-isolation infrared and ab initio computation

    NASA Astrophysics Data System (ADS)

    Gopi, R.; Ramanathan, N.; Sundararajan, K.

    2015-08-01

    The 1:1 hydrogen-bonded complex of acetonitrile (CH3CN) and water (H2O) was trapped in Ar and N2 matrices and studied using infrared technique. Ab initio computations showed two types of complexes formed between CH3CN and H2O, a linear complex A with a Ctbnd N⋯H interaction between nitrogen of CH3CN and hydrogen of H2O and a cyclic complex B, in which the interactions are between the hydrogen of CH3CN with oxygen of H2O and hydrogen of H2O with π cloud of sbnd Ctbnd N of CH3CN. Vibrational wavenumber calculations revealed that both the complexes A and B were minima on the potential energy surface. Interaction energies computed at B3LYP/6-311++G(d,p) showed that linear complex A is more stable than cyclic complex B. Computations identified a blue shift of ∼11.5 cm-1 and a red shift of ∼6.5 cm-1 in the CN stretching mode for the complexes A and B, respectively. Experimentally, we observed a blue shift of ∼15.0 and ∼8.3 cm-1 in N2 and Ar matrices, respectively, in the CN stretching mode of CH3CN, which supports the formation of complex A. The Onsager Self Consistent Reaction Field (SCRF) model was used to explain the influence of matrices on the complexes A and B. To understand the nature of the interactions, Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were carried out for the complexes A and B.

  15. Influence of spacer moiety and length of end chain for the phase stability in complementary, double hydrogen bonded liquid crystals, MA:nOBAs

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, A. V. N.; Chalapathi, P. V.; Srinivasulu, M.; Muniprasad, M.; Potukuchi, D. M.

    2015-01-01

    Supra molecular liquid crystals formed by the Hydrogen Bonding interaction between a non-mesogenic aliphatic dicarboxylic acid viz., COOHsbnd CH2sbnd COOH (Malonic Acid, MA); and mesogenic aromatic, N-(p-n-alkoxy benzoic)Acids, (i.e., nOBAs) for n = 3, 4, 5, 7, 8, 9, 10, 11 and 12, labeled as nOBA:COOHsbnd [CH2]msbnd COOH:nOBAs, abbreviated as MA:nOBAs are reported. 1H NMR and 13C NMR studies confirm the formation of HBLC complexes. Infrared (IR) studies confirm the complementary, double, alternative type of HB. Polarized Optical Microscopy (POM) and Differential Scanning Calorimetry (DSC) studies infer N, SmC, SmX, SmCRE, SmF, SmG LC phase variance. SmX phase exhibiting finger print texture grows in MA:nOBAs for n = 10, 11 and 12 by the interruption of SmC phase with decreasing temperature. Re-Entrant SmC (SmCRE) grows by the cooling of SmX. I-N, N-C, X-CRE, C-G, CRE-F, F-G and G-Solid transitions exhibit first order nature. C-X is found to be second order nature in n = 10 and 11. C-X in n = 12 and X-CRE and CRE-F transitions are found to be weak first order nature. Influence of lengths of end chain (n) and spacer (m) for the overall LC phase [ΔT]LC; tilted phase [ΔT]Tilt; SmC phase [ΔT]C and SmX phase [ΔT]X stabilities is discussed in the wake of data on other HBLCs with similar molecular structure. Prevalence of SmX phase in MA:nOBAs with m = 1 infers repulsive interaction between the π-electronic cloud of aromatic boards of nOBAs. Model molecule predicts a twisted configuration of π-cloud around the molecular long axis. Finger print texture of SmX validates the model.

  16. Correlated hydrogen bonding fluctuations and vibrational cross peaks in N-methyl acetamide: simulation based on a complete electrostatic density functional theory map.

    PubMed

    Hayashi, Tomoyuki; Mukamel, Shaul

    2006-11-21

    The coherent nonlinear response of the entire amide line shapes of N-methyl acetamide to three infrared pulses is simulated using an electrostatic density functional theory map. Positive and negative cross peaks contain signatures of correlations between the fundamentals and the combination state. The amide I-A and I-III cross-peak line shapes indicate positive correlation and anticorrelation of frequency fluctuations, respectively. These can be ascribed to correlated hydrogen bonding at C[double bond]O and N-H sites. The amide I frequency is negatively correlated with the hydrogen bond on carbonyl C[double bond]O, whereas the amide A and III are negatively and positively correlated, respectively, with the hydrogen bond on amide N-H.

  17. 2-Amino-5-chloro-pyrimidin-1-ium hydrogen maleate.

    PubMed

    Fun, Hoong-Kun; Hemamalini, Madhukar; Rajakannan, Venkatachalam

    2012-01-01

    In the title salt, C(4)H(5)ClN(3) (+)·C(4)H(3)O(4) (-), the 2-amino-5-chloro-pyrimidinium cation is protonated at one of its pyrimidine N atoms. In the roughly planar (r.m.s. deviation = 0.026 Å) hydrogen malate anion, an intra-molecular O-H⋯O hydrogen bond generates an S(7) ring. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl-ate O atoms of the anion via a pair of N-H⋯O hydrogen bonds, forming an R(2) (2)(8) ring motif. The ion pairs are connected via further N-H⋯O hydrogen bonds and a short C-H⋯O inter-action, forming layers lying parallel to the bc plane.

  18. Passivation of InGaAs(001)-(2 × 4) by Self-Limiting Chemical Vapor Deposition of a Silicon Hydride Control Layer.

    PubMed

    Edmonds, Mary; Kent, Tyler; Chagarov, Evgueni; Sardashti, Kasra; Droopad, Ravi; Chang, Mei; Kachian, Jessica; Park, Jun Hong; Kummel, Andrew

    2015-07-08

    A saturated Si-Hx seed layer for gate oxide or contact conductor ALD has been deposited via two separate self-limiting and saturating CVD processes on InGaAs(001)-(2 × 4) at substrate temperatures of 250 and 350 °C. For the first self-limiting process, a single silicon precursor, Si3H8, was dosed at a substrate temperature of 250 °C, and XPS results show the deposited silicon hydride layer saturated at about 4 monolayers of silicon coverage with hydrogen termination. STS results show the surface Fermi level remains unpinned following the deposition of the saturated silicon hydride layer, indicating the InGaAs surface dangling bonds are electrically passivated by Si-Hx. For the second self-limiting process, Si2Cl6 was dosed at a substrate temperature of 350 °C, and XPS results show the deposited silicon chloride layer saturated at about 2.5 monolayers of silicon coverage with chlorine termination. Atomic hydrogen produced by a thermal gas cracker was subsequently dosed at 350 °C to remove the Si-Cl termination by replacing with Si-H termination as confirmed by XPS, and STS results confirm the saturated Si-Hx bilayer leaves the InGaAs(001)-(2 × 4) surface Fermi level unpinned. Density function theory modeling of silicon hydride surface passivation shows an Si-Hx monolayer can remove all the dangling bonds and leave a charge balanced surface on InGaAs.

  19. Spectroscopic study of uracil, 1-methyluracil and 1-methyl-4-thiouracil: Hydrogen bond interactions in crystals and ab-initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Brela, Mateusz Z.; Boczar, Marek; Malec, Leszek M.; Wójcik, Marek J.; Nakajima, Takahito

    2018-05-01

    Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers.

  20. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability

    PubMed Central

    Wu, Qian; Wei, Junjie; Xu, Bing; Liu, Xinhua; Wang, Hongbo; Wang, Wei; Wang, Qigang; Liu, Wenguang

    2017-01-01

    Dual amide hydrogen bond crosslinked and strengthened high strength supramolecular polymer conductive hydrogels were fabricated by simply in situ doping poly (N-acryloyl glycinamide-co-2-acrylamide-2-methylpropanesulfonic) (PNAGA-PAMPS) hydrogels with PEDOT/PSS. The nonswellable conductive hydrogels in PBS demonstrated high mechanical performances—0.22–0.58 MPa tensile strength, 1.02–7.62 MPa compressive strength, and 817–1709% breaking strain. The doping of PEDOT/PSS could significantly improve the specific conductivities of the hydrogels. Cyclic heating and cooling could lead to reversible sol-gel transition and self-healability due to the dynamic breakup and reconstruction of hydrogen bonds. The mending hydrogels recovered not only the mechanical properties, but also conductivities very well. These supramolecular conductive hydrogels could be designed into arbitrary shapes with 3D printing technique, and further, printable electrode can be obtained by blending activated charcoal powder with PNAGA-PAMPS/PEDOT/PSS hydrogel under melting state. The fabricated supercapacitor via the conducting hydrogel electrodes possessed high capacitive performances. These cytocompatible conductive hydrogels have a great potential to be used as electro-active and electrical biomaterials. PMID:28134283

  1. Describing Temperature-Dependent Self-Diffusion Coefficients and Fluidity of 1- and 3-Alcohols with the Compensated Arrhenius Formalism.

    PubMed

    Fleshman, Allison M; Forsythe, Grant E; Petrowsky, Matt; Frech, Roger

    2016-09-22

    The location of the hydroxyl group in monohydroxy alcohols greatly affects the temperature dependence of the liquid structure due to hydrogen bonding. Temperature-dependent self-diffusion coefficients, fluidity (the inverse of viscosity), dielectric constant, and density have been measured for several 1-alcohols and 3-alcohols with varying alkyl chain lengths. The data are modeled using the compensated Arrhenius formalism (CAF). The CAF follows a modified transition state theory using an Arrhenius-like expression to describe the transport property, which consists of a Boltzmann factor containing an energy of activation, Ea, and an exponential prefactor containing the temperature-dependent solution dielectric constant, εs(T). Both 1- and 3-alcohols show the Ea of diffusion coefficients (approximately 43 kJ mol(-1)) is higher than the Ea of fluidity (approximately 35 kJ mol(-1)). The temperature dependence of the exponential prefactor in these associated liquids is explained using the dielectric constant and the Kirkwood-Frölich correlation factor, gk. It is argued that the dielectric constant must be used to account for the additional temperature dependence due to variations in the liquid structure (e.g., hydrogen bonding) for the CAF to accurately model the transport property.

  2. Theoretical insights into aggregation-induced helicity modulation of a perylene bisimide derivative.

    PubMed

    Liang, Lijun; Li, Xin

    2018-02-12

    Formation of helical chiroptical self-assemblies via noncovalent interaction is a widely observed phenomenon in nature, the mechanism of which remains insufficiently understood. Employing an amphiphilic perylene-sugar dyad molecule (PBI-HAG) as an example, we report that the modulatable supramolecular helicity may emerge from an aggregating process that is dominated by competition between two types of noncovalent interaction: hydrogen bonding and π-π stacking. The interplay between these two driving forces, which is greatly affected by the solvent environment, determines the morphology the supramolecular assembly of PBI-HAGs. In particular, a non-layered supramolecular structure was formed in octane owing to stabilization effects of intermolecular hydrogen bonds, whereas a layered supramolecular structure was formed in water because of energetically favorable π-π stacking of aromatic rings. The formation of distinct supramolecular architectures in different solvents was reinforced by simulated circular dichroism spectra, which show opposite signals consistent with experimental observations. The results of this study could help us understand aggregation-induced supramolecular chirality of noncovalent self-assemblies. Graphical abstract Left Typical structures of amphiphilic perylene-sugar dyad (PBI-HAG) aggregates in different octane and water. Right Simulated CD and UV-Vis spectra of core PBIs aggregates in octane and water.

  3. Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study

    NASA Astrophysics Data System (ADS)

    Shiraga, Keiichiro; Adachi, Aya; Nakamura, Masahito; Tajima, Takuro; Ajito, Katsuhiro; Ogawa, Yuichi

    2017-03-01

    Modification of the water hydrogen bond network imposed by disaccharides is known to serve as a bioprotective agent in living organisms, though its comprehensive understanding is still yet to be reached. In this study, aiming to characterize the dynamical slowing down and destructuring effect of disaccharides, we performed broadband dielectric spectroscopy, ranging from 0.5 GHz to 12 THz, of sucrose and trehalose aqueous solutions. The destructuring effect was examined in two ways (the hydrogen bond fragmentation and disordering) and our result showed that both sucrose and trehalose exhibit an obvious destructuring effect with a similar strength, by fragmenting hydrogen bonds and distorting the tetrahedral-like structure of water. This observation strongly supports a chaotropic (structure-breaking) aspect of disaccharides on the water structure. At the same time, hydration water was found to exhibit slower dynamics and a greater reorientational cooperativity than bulk water because of the strengthened hydrogen bonds. These results lead to the conclusion that strong disaccharide-water hydrogen bonds structurally incompatible with native water-water bonds lead to the rigid but destructured hydrogen bond network around disaccharides. Another important finding in this study is that the greater dynamical slowing down of trehalose was found compared with that of sucrose, at variance with the destructuring effect where no solute dependent difference was observed. This discovery suggests that the exceptionally greater bioprotective impact especially of trehalose among disaccharides is mainly associated with the dynamical slowing down (rather than the destructuring effect).

  4. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane

    NASA Technical Reports Server (NTRS)

    Zhang, S.; Holmes, T.; Lockshin, C.; Rich, A.

    1993-01-01

    A 16-residue peptide [(Ala-Glu-Ala-Glu-Ala-Lys-Ala-Lys)2] has a characteristic beta-sheet circular dichroism spectrum in water. Upon the addition of salt, the peptide spontaneously assembles to form a macroscopic membrane. The membrane does not dissolve in heat or in acidic or alkaline solutions, nor does it dissolve upon addition of guanidine hydrochloride, SDS/urea, or a variety of proteolytic enzymes. Scanning EM reveals a network of interwoven filaments approximately 10-20 nm in diameter. An important component of the stability is probably due to formation of complementary ionic bonds between glutamic and lysine side chains. This phenomenon may be a model for studying the insoluble peptides found in certain neurological disorders. It may also have implications for biomaterials and origin-of-life research.

  5. A second order thermodynamic perturbation theory for hydrogen bond cooperativity in water

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.

    2017-05-01

    It has been extensively demonstrated through first principles quantum mechanics calculations that water exhibits strong hydrogen bond cooperativity. Equations of state developed from statistical mechanics typically assume pairwise additivity, meaning they cannot account for these 3-body and higher cooperative effects. In this paper, we extend a second order thermodynamic perturbation theory to correct for hydrogen bond cooperativity in 4 site water. We demonstrate that the theory predicts hydrogen bonding structure consistent spectroscopy, neutron diffraction, and molecular simulation data. Finally, we implement the approach into a general equation of state for water.

  6. Methods of using ionic liquids having a fluoride anion as solvents

    DOEpatents

    Pagoria, Philip [Livermore, CA; Maiti, Amitesh [San Ramon, CA; Gash, Alexander [Brentwood, CA; Han, Thomas Yong [Pleasanton, CA; Orme, Christine [Oakland, CA; Fried, Laurence [Livermore, CA

    2011-12-06

    A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.

  7. Diethyl [(4-bromo­phen­yl)(5-chloro-2-hydroxy­anilino)meth­yl]phospho­nate

    PubMed Central

    Babu, V. H. H. Surendra; Krishnaiah, M.; Prasad, G. Syam; C. Suresh Reddy; Kant, Rajni

    2009-01-01

    In the title compound, C17H20BrClNO4P, inter­molecular C—H⋯O and N—H⋯O hydrogen bonds form centrosymmetric R 2 2(10) dimers linked through O—H⋯O inter­molecular hydrogen bonds, which form centrosymmetric R 2 2(16) dimers. All these hydrogen bonds form chains along [010]. In addition, the crystal structure is stabilized by weak C—H⋯Br hydrogen bonds. The very weak intramolecular N—H⋯O interaction forms a five-membered ring. PMID:21578446

  8. Intramolecular Hydrogen Bond Activation: Thiourea-Organocatalyzed Enantioselective 1,3-Dipolar Cycloaddition of Salicylaldehyde-Derived Azomethine Ylides with Nitroalkenes.

    PubMed

    Esteban, Francisco; Cieślik, Wioleta; Arpa, Enrique M; Guerrero-Corella, Andrea; Díaz-Tendero, Sergio; Perles, Josefina; Fernández-Salas, José A; Fraile, Alberto; Alemán, José

    2018-03-02

    An organocatalytic strategy for the synthesis of tetrasubstituted pyrrolidines with monoactivated azomethine ylides in high enantiomeric excess and excellent exo/endo selectivity is presented. The key to success is the intramolecular activation via hydrogen bonding through an o -hydroxy group, which allows the dipolar cycloaddition to take place in the presence of azomethine ylides bearing only one activating group. The intramolecular hydrogen bond in the azomethine ylide and the intermolecular hydrogen bond with the catalyst have been demonstrated by DFT calculations and mechanistic proofs to be crucial for the reaction to proceed.

  9. Evidence of quantum correlations in the H/D-transfer dynamics in the hydrogen bonds in partially deuterated benzoic acid crystals

    NASA Astrophysics Data System (ADS)

    Takeda, Sadamu; Tsuzumitani, Akihiko; Chatzidimitriou-Dreismann, C. A.

    1992-10-01

    A precise investigation of spin—lattice relaxation rates for protons and deuterons of partially deuterated benzoic acid crystals showed a remarkable quenching of the transfer rate of an HD pair in hydrogen-bonded dimeric units of carboxyl groups with increasing concentration of D in the surrounding hydrogen bonds. A similar effect was also observed for partially deuterated crystals of acetylenedicarboxylic acid. This finding supports recent theoretical predictions of thermally activated protonic quantum correlation in condensed matter and proposes a new mechanism for the proton transfer in hydrogen bonds in condensed matter.

  10. Research on Crack-Filling Heat Treatment and Hydrogen Permeation Test of Self-healing Tritium Permeation Barriers

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Wang, Yan; Zhang, Ying; Ouyang, Taoyuan; Zhou, Tong; Fang, Xuanwei; Suo, Jinping

    2018-04-01

    A TiC + mixture (TiC/Al2O3 (1:1 wt.%)) +Al2O3 self-healing triple layer coating (TLC) was designed and manufactured by our group, and the crack-filling heat treatment process had been roughly explored in the past. In this work, the accelerating test with a thick TiC + mixture (TiC/Al2O3 (1:1 wt.%)) double-layer coating (DLC) was carried out. The DLC coating warped when the heat treatment temperature was lower than 550 °C, which was rare in similar researches, and it crushed into fan-shaped pieces when the treatment temperature was higher than 650 °C. The two different spalling failures were explained by weight gain, porosity and stress analyses. The heating rate had a significant effect. The bonding strength and hydrogen permeation of the TLC samples were also tested. Remaining at 650 °C for 40 h was proved to be an optimal crack-filling heat treatment process, considering the hydrogen resistance.

  11. Fabrication and characterization of magnesium and calcium trimesate complexes via ion-exchange and one-pot self-assembly reaction

    NASA Astrophysics Data System (ADS)

    Ozer, Demet; Oztas, Nursen Altuntas; Köse, Dursun A.; Şahin, Onur

    2018-03-01

    Using two different synthesis methods, two diversified magnesium and calcium complexes were successfully prepared. When the ion exchange method was used, C9H14MgO11.H2O and C18H30Ca3O24 complexes were obtained. When the one-pot self-assembly reaction was used, C18H34Mg3O26.4H2O and C9H12CaO10 complexes were produced. The structural characterizations were performed by using X-ray diffraction, FT-IR and elemental analyses. Thermal behavior of complexes were also determined via TGA method. The both complexes of magnesium and calcium trimesate have micro and mesoporosity with low porosity because of hydrogen bonds. Then hydrogen storage capacities of complexes were also determined. The differences in synthesis method result in the differences on complexes structure, morphology (shape, particle size and specific surface area) and hydrogen storage capacities.

  12. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production

    DOE PAGES

    Weingarten, Adam S.; Kazantsev, Roman V.; Palmer, Liam C.; ...

    2014-10-05

    Integration into a soft material of all the molecular components necessary to generate storable fuels is an interesting target in supramolecular chemistry. The concept is inspired by the internal structure of photosynthetic organelles, such as plant chloroplasts, which colocalize molecules involved in light absorption, charge transport and catalysis to create chemical bonds using light energy. We report in this paper on the light-driven production of hydrogen inside a hydrogel scaffold built by the supramolecular self-assembly of a perylene monoimide amphiphile. The charged ribbons formed can electrostatically attract a nickel-based catalyst, and electrolyte screening promotes gelation. We found the emergent phenomenonmore » that screening by the catalyst or the electrolytes led to two-dimensional crystallization of the chromophore assemblies and enhanced the electronic coupling among the molecules. Finally, photocatalytic production of hydrogen is observed in the three-dimensional environment of the hydrogel scaffold and the material is easily placed on surfaces or in the pores of solid supports.« less

  13. Vibrational dynamics of hydrogen-bonded complexes in solutions studied with ultrafast infrared pump-probe spectroscopy.

    PubMed

    Banno, Motohiro; Ohta, Kaoru; Yamaguchi, Sayuri; Hirai, Satori; Tominaga, Keisuke

    2009-09-15

    In aqueous solution, the basis of all living processes, hydrogen bonding exerts a powerful effect on chemical reactivity. The vibrational energy relaxation (VER) process in hydrogen-bonded complexes in solution is sensitive to the microscopic environment around the oscillator and to the geometrical configuration of the hydrogen-bonded complexes. In this Account, we describe the use of time-resolved infrared (IR) pump-probe spectroscopy to study the vibrational dynamics of (i) the carbonyl CO stretching modes in protic solvents and (ii) the OH stretching modes of phenol and carboxylic acid. In these cases, the carbonyl group acts as a hydrogen-bond acceptor, whereas the hydroxyl group acts as a hydrogen-bond donor. These vibrational modes have different properties depending on their respective chemical bonds, suggesting that hydrogen bonding may have different mechanisms and effects on the VER of the CO and OH modes than previously understood. The IR pump-probe signals of the CO stretching mode of 9-fluorenone and methyl acetate in alcohol, as well as that of acetic acid in water, include several components with different time constants. Quantum chemical calculations indicate that the dynamical components are the result of various hydrogen-bonded complexes that form between solute and solvent molecules. The acceleration of the VER is due to the increasing vibrational density of states caused by the formation of hydrogen bonds. The vibrational dynamics of the OH stretching mode in hydrogen-bonded complexes were studied in several systems. For phenol-base complexes, the decay time constant of the pump-probe signal decreases as the band peak of the IR absorption spectrum shifts to lower wavenumbers (the result of changing the proton acceptor). For phenol oligomers, the decay time constant of the pump-probe signal decreases as the probe wavenumber decreases. These observations show that the VER time strongly correlates with the strength of hydrogen bonding. This acceleration may be due to increased coupling between the OH stretching mode and the accepting mode of the VER, because the low-frequency shift caused by hydrogen bond formation is very large. Unlike phenol oligomers, however, the pump-probe signals of phenol-base complexes did not exhibit probe frequency dependence. For these complexes, rapid interconversion between different conformations causes rapid fluctuations in the vibrational frequency of the OH stretching modes, and these fluctuations level the VER times of different conformations. For the benzoic acid dimer, a quantum beat at a frequency of around 100 cm(-1) is superimposed on the pump-probe signal. This result indicates the presence of strong anharmonic coupling between the intramolecular OH stretching and the intermolecular stretching modes. From a two-dimensional plot of the OH stretching wavenumber and the low-frequency wavenumber, the wavenumber of the low-frequency mode is found to increase monotonically as the probe wavenumber is shifted toward lower wavenumbers. Our results represent a quantitative determination of the acceleration of VER by the formation of hydrogen bonds. Our studies merit further evaluation and raise fundamental questions about the current theory of vibrational dynamics in the condensed phase.

  14. 2,4-Dinitrophenylhydrazine, redetermined at 120 K: a three-dimensional framework built from N-H...O, N-H...(O)2, N-H...pi(arene) and C-H...O hydrogen bonds.

    PubMed

    Wardell, James L; Low, John N; Glidewell, Christopher

    2006-06-01

    In the title compound, C6H6N4O4, the bond distances indicate significant bond fixation, consistent with charge-separated polar forms. The molecules are almost planar and there is an intramolecular N-H...O hydrogen bond. The molecules are linked into a complex three-dimensional framework structure by a combination of N-H...O, N-H...(O)2, N-H...pi(arene) and C-H...O hydrogen bonds.

  15. Photoinduced Intramolecular Bifurcate Hydrogen Bond: Unusual Mutual Influence of the Components.

    PubMed

    Sigalov, Mark V; Shainyan, Bagrat A; Sterkhova, Irina V

    2017-09-01

    A series of 7-hydroxy-2-methylidene-2,3-dihydro-1H-inden-1-ones with 2-pyrrolyl (3), 4-dimethylaminophenyl (4), 4-nitrophenyl (5), and carboxyl group (6) as substituents at the exocyclic double bond was synthesized in the form of the E-isomers (4-6) or predominantly as the Z-isomer (3) which in solution is converted to the E-isomer. The synthesized compounds and their model analogues were studied by NMR spectroscopy, X-ray analysis, and MP2 theoretical calculations. The E-isomers having intramolecular O-H···O═C hydrogen bond are converted by UV irradiation to the Z-isomers having bifurcated O-H···O···H-X hydrogen bond. Unexpected shortening (and, thus, strengthening) of the O-H···O═C component of the bifurcated hydrogen bond upon the formation of the C═O···H-X hydrogen bond was found experimentally, proved theoretically (MP2), and explained by a roundabout interaction of the H-donor (HX) and H-acceptor (C═O) via the system of conjugated bonds.

  16. Hydrogen bonding: part 78. Ab initio molecular orbital study of intra- and intermolecular hydrogen bonding in choline and betaine and their compounds with HF and H 2O

    NASA Astrophysics Data System (ADS)

    Harmon, K. M.; Avci, G. F.; Madeira, S. L.; Mounts, P. A.; Thiel, A. C.

    2001-10-01

    We previously prepared several compounds of the zwitterions [(CH3)3NCH2CH2O]0 (deprotonated choline, herein named cholaine) and [(CH3)3NCH2CO2]0 (betaine) and proposed structures based on infrared spectroscopy. We now examine these compounds with use of ab initio molecular orbital methods to further elucidate possible structure. These calculations demonstrate that: (1) cholaine and betaine both have internal CHO hydrogen bonds, and these are retained in some form in all other compounds. (2) Cholaine hydrate and hydrofluoride and betaine hydrofluoride monomers have covalent three-center hydrogen bonds between H2O or HF and negative zwitterion oxygen, and additional CHX hydrogen bonds to H2O oxygen or HF fluorine. (3) Cholaine monohydrate and cholaine hydrofluoride monohydrate form dimers of Ci symmetry which contain planar C2h (H2O·O)2 and (HOH·F)2 clusters. (4) Cholaine hydrofluoride forms head-to-tail dimers bound by intermolecular CHX hydrogen bonds; this arrangement could lead to extended linear structures in the solid state. (5) Betaine hydrofluoride, in contrast, forms a tightly bound discrete dimeric unit in which two molecules join in a head-to-head manner held together by five intermolecular hydrogen bonds and by the mutual proximities of negative fluorides to positive nitrogens.

  17. Structure of saligenin: microwave, UV and IR spectroscopy studies in a supersonic jet combined with quantum chemistry calculations.

    PubMed

    Kumar, Sumit; Singh, Santosh K; Calabrese, Camilla; Maris, Assimo; Melandri, Sonia; Das, Aloke

    2014-08-28

    In this study, we have determined the structure of a medicinally important molecule saligenin (2-hydroxybenzyl alcohol) using UV, IR and microwave absorption spectroscopy in a supersonic jet combined with ab initio calculations. The structure of the only observed conformer of saligenin corresponds to the global minimum on the conformational surface. The observed structure is stabilized by an intramolecular strong O-H···O hydrogen bonding as well as a very weak O-H···π interaction. The hydrogen bond is formed through phenolic OH as the hydrogen bond donor and benzylic OH as the hydrogen bond acceptor while the O-H···π interaction is through benzylic O-H as the hydrogen bond donor and phenyl group as the hydrogen bond acceptor. It has been observed that the benzylic OH stretching frequency in saligenin is more red-shifted compared to that in benzyl alcohol as the strong O-H···O interaction present in saligenin acts on the benzylic O-H group. In fact, there is a subtle interplay among the strong O-H···O hydrogen bond, weak O-H···π interaction, and steric effects arising from the ortho substitution of the OH group in benzyl alcohol. This fine-tuning of multiple interactions very often governs the specific structures of biomolecules and materials.

  18. How many hydrogen-bonded α-turns are possible?

    PubMed

    Schreiber, Anette; Schramm, Peter; Hofmann, Hans-Jörg

    2011-06-01

    The formation of α-turns is a possibility to reverse the direction of peptide sequences via five amino acids. In this paper, a systematic conformational analysis was performed to find the possible isolated α-turns with a hydrogen bond between the first and fifth amino acid employing the methods of ab initio MO theory in vacuum (HF/6-31G*, B3LYP/6-311 + G*) and in solution (CPCM/HF/6-31G*). Only few α-turn structures with glycine and alanine backbones fulfill the geometry criteria for the i←(i + 4) hydrogen bond satisfactorily. The most stable representatives agree with structures found in the Protein Data Bank. There is a general tendency to form additional hydrogen bonds for smaller pseudocycles corresponding to β- and γ-turns with better hydrogen bond geometries. Sometimes, this competition weakens or even destroys the i←(i + 4) hydrogen bond leading to very stable double β-turn structures. This is also the reason why an "ideal" α-turn with three central amino acids having the perfect backbone angle values of an α-helix could not be localized. There are numerous hints for stable α-turns with a distance between the C(α)-atoms of the first and fifth amino acid smaller than 6-7 Å, but without an i←(i + 4) hydrogen bond.

  19. Mechanism of conformational coupling in SecA: Key role of hydrogen-bonding networks and water interactions.

    PubMed

    Milenkovic, Stefan; Bondar, Ana-Nicoleta

    2016-02-01

    SecA uses the energy yielded by the binding and hydrolysis of adenosine triphosphate (ATP) to push secretory pre-proteins across the plasma membrane in bacteria. Hydrolysis of ATP occurs at the nucleotide-binding site, which contains the conserved carboxylate groups of the DEAD-box helicases. Although crystal structures provide valuable snapshots of SecA along its reaction cycle, the mechanism that ensures conformational coupling between the nucleotide-binding site and the other domains of SecA remains unclear. The observation that SecA contains numerous hydrogen-bonding groups raises important questions about the role of hydrogen-bonding networks and hydrogen-bond dynamics in long-distance conformational couplings. To address these questions, we explored the molecular dynamics of SecA from three different organisms, with and without bound nucleotide, in water. By computing two-dimensional hydrogen-bonding maps we identify networks of hydrogen bonds that connect the nucleotide-binding site to remote regions of the protein, and sites in the protein that respond to specific perturbations. We find that the nucleotide-binding site of ADP-bound SecA has a preferred geometry whereby the first two carboxylates of the DEAD motif bridge via hydrogen-bonding water. Simulations of a mutant with perturbed ATP hydrolysis highlight the water-bridged geometry as a key structural element of the reaction path. Copyright © 2015. Published by Elsevier B.V.

  20. H2O-CH4 and H2S-CH4 complexes: a direct comparison through molecular beam experiments and ab initio calculations.

    PubMed

    Cappelletti, David; Bartocci, Alessio; Frati, Federica; Roncaratti, Luiz F; Belpassi, Leonardo; Tarantelli, Francesco; Lakshmi, Prabha Aiswarya; Arunan, Elangannan; Pirani, Fernando

    2015-11-11

    New molecular beam scattering experiments have been performed to measure the total (elastic plus inelastic) cross sections as a function of the velocity in collisions between water and hydrogen sulfide projectile molecules and the methane target. Measured data have been exploited to characterize the range and strength of the intermolecular interaction in such systems, which are of relevance as they drive the gas phase molecular dynamics and the clathrate formation. Complementary information has been obtained by rotational spectra, recorded for the hydrogen sulfide-methane complex, with a pulsed nozzle Fourier transform microwave spectrometer. Extensive ab initio calculations have been performed to rationalize all the experimental findings. The combination of experimental and theoretical information has established the ground for the understanding of the nature of the interaction and allows for its basic components to be modelled, including charge transfer, in these weakly bound systems. The intermolecular potential for H2S-CH4 is significantly less anisotropic than for H2O-CH4, although both of them have potential minima that can be characterized as 'hydrogen bonded'.

  1. Use of π-π forces to steer the assembly of a NTA complex of Cu(II) into hydrogen bonded supramolecular layers (H 3NTA = nitrilotriacetic acid)

    NASA Astrophysics Data System (ADS)

    Dey, Biswajit; Choudhury, Somnath Ray; Suresh, Eringathodi; Jana, Atish Dipankar; Mukhopadhyay, Subrata

    2009-03-01

    We propose a crystal engineering principle where we show that it might be possible to direct the organization of molecular complexes into hydrogen bonded supramolecular layers through the use of suitable co-ligands possessing both the hydrogen-bonding as well as π-π stacking capability. This principle has been tested for the organization of [Cu(NTA) 2] units (H 3NTA = nitrilotriacetic acid, N(CH 2CO 2H) 3) in the molecular complex with formula (2-A-PH) 4[Cu(NTA) 2]·6H 2O ( 1), where 2-A-PH is protonated 2-amino-4-picoline. In 1, the 2-amino-4-picoline co-ligands have been utilized to direct the organization of [Cu(NTA) 2] units into hydrogen bonded layers. The linear stacking of π-π bonded protonated 2-amino-4-picoline molecules can be thought as the influencing agent for the organization of [Cu(NTA) 2] units into hydrogen bonded layers.

  2. Interstellar hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  3. Ratio of entropy to enthalpy in thermal transitions in biological tissues.

    PubMed

    Jacques, Steven L

    2006-01-01

    Thermal transitions in biological tissues that have been reported in the literature are summarized in terms of the apparent molar entropy (DeltaS) and molar enthalpy (DeltaH) involved in the transition. A plot of DeltaS versus DeltaH for all the data yields a straight line, consistent with the definition of free energy, DeltaG=DeltaH+TDeltaS. Various bonds may be involved in cooperative bond breakage during thermal transitions; however, for the sake of description, the equivalent number of cooperative hydrogen bonds can be cited. Most of the tissue data behave as if 10 to 20 hydrogen bonds are cooperatively broken during coagulation, with one transition, the expression of heat shock protein, involving 90 cooperative hydrogen bonds. The data are consistent with DeltaS=a+bDeltaH, where a=-327.5 J(mol K) and b=31.47 x 10(-4) K(-1). If each additional hydrogen bond adds 19 x 10(3) Jmol to DeltaH, then each additional bond adds 59.8 J(mol K) to DeltaS. Hence, the dynamics of irreversible thermal transitions can be described in terms of one free parameter, the apparent number of cooperative hydrogen bonds broken during the transition.

  4. Electron microscopic visualization of complementary labeled DNA with platinum-containing guanine derivative.

    PubMed

    Loukanov, Alexandre; Filipov, Chavdar; Mladenova, Polina; Toshev, Svetlin; Emin, Saim

    2016-04-01

    The object of the present report is to provide a method for a visualization of DNA in TEM by complementary labeling of cytosine with guanine derivative, which contains platinum as contrast-enhanced heavy element. The stretched single-chain DNA was obtained by modifying double-stranded DNA. The labeling method comprises the following steps: (i) stretching and adsorption of DNA on the support film of an electron microscope grid (the hydrophobic carbon film holding negative charged DNA); (ii) complementary labeling of the cytosine bases from the stretched single-stranded DNA pieces on the support film with platinum containing guanine derivative to form base-specific hydrogen bond; and (iii) producing a magnified image of the base-specific labeled DNA. Stretched single-stranded DNA on a support film is obtained by a rapid elongation of DNA pieces on the surface between air and aqueous buffer solution. The attached platinum-containing guanine derivative serves as a high-dense marker and it can be discriminated from the surrounding background of support carbon film and visualized by use of conventional TEM observation at 100 kV accelerated voltage. This method allows examination of specific nucleic macromolecules through atom-by-atom analysis and it is promising way toward future DNA-sequencing or molecular diagnostics of nucleic acids by electron microscopic observation. © 2016 Wiley Periodicals, Inc.

  5. Discovering H-bonding rules in crystals with inductive logic programming.

    PubMed

    Ando, Howard Y; Dehaspe, Luc; Luyten, Walter; Van Craenenbroeck, Elke; Vandecasteele, Henk; Van Meervelt, Luc

    2006-01-01

    In the domain of crystal engineering, various schemes have been proposed for the classification of hydrogen bonding (H-bonding) patterns observed in 3D crystal structures. In this study, the aim is to complement these schemes with rules that predict H-bonding in crystals from 2D structural information only. Modern computational power and the advances in inductive logic programming (ILP) can now provide computational chemistry with the opportunity for extracting structure-specific rules from large databases that can be incorporated into expert systems. ILP technology is here applied to H-bonding in crystals to develop a self-extracting expert system utilizing data in the Cambridge Structural Database of small molecule crystal structures. A clear increase in performance was observed when the ILP system DMax was allowed to refer to the local structural environment of the possible H-bond donor/acceptor pairs. This ability distinguishes ILP from more traditional approaches that build rules on the basis of global molecular properties.

  6. Probing the Low-Barrier Hydrogen Bond in Hydrogen Maleate in the Gas Phase: A Photoelectron Spectroscopy and ab Initio Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Hin-koon; Wang, Xue B.; Wang, Lai S.

    2005-12-01

    The strength of the low-barrier hydrogen bond in hydrogen maleate in the gas phase was investigated by low-temperature photoelectron spectroscopy and ab initio calculations. Photoelectron spectra of maleic and fumaric acid monoanions (cis-/trans-HO2CCHdCHCO2 -) were obtained at low temperatures and at 193 nm photon energy. Vibrational structure was observed for trans-HO2CCHdCHCO2 - due to the OCO bending modes; however, cis-HO2CCHdCHCO2 - yielded a broad and featureless spectrum. The electron binding energy of cis-HO2CCHdCHCO2 - is about 1 eV blue-shifted relative to trans-HO2CCHdCHCO2 - due to the formation of intramolecular hydrogen bond in the cis-isomer. Theoretical calculations (CCSD(T)/ aug-cc-pVTZ and B3LYP/aug-cc-pVTZ)more » were carried out to estimate the strength of the intramolecular hydrogen bond in cis-HO2CCHdCHCO2 -. Combining experimental and theoretical calculations yields an estimate of 21.5 ( 2.0 kcal/mol for the intramolecular hydrogen bond strength in hydrogen maleate.« less

  7. Aryl C—H···Cl– Hydrogen Bonding in a Fluorescent Anion Sensor

    PubMed Central

    Tresca, Blakely W.; Zakharov, Lev N.; Carroll, Calden N.; Johnson, Darren W.; Haley, Michael M.

    2014-01-01

    A new phenyl-acetylene receptor containing a carbonaceous hydrogen bond donor activates anion binding in conjunction with two stabilizing ureas. The unusual CH···Cl– hydrogen bond is apparent in solution by large 1H NMR chemical shifts and by a short, linear contact in the solid state. PMID:23843050

  8. Investigating Hydrogen Bonding in Phenol Using Infrared Spectroscopy and Computational Chemistry

    ERIC Educational Resources Information Center

    Fedor, Anna M.; Toda, Megan J.

    2014-01-01

    The hydrogen bonding of phenol can be used as an introductory model for biological systems because of its structural similarities to tyrosine, a para-substituted phenol that is an amino acid essential to the synthesis of proteins. Phenol is able to form hydrogen bonds readily in solution, which makes it a suitable model for biological…

  9. Sequence-Selective Formation of Synthetic H-Bonded Duplexes

    PubMed Central

    2017-01-01

    Oligomers equipped with a sequence of phenol and pyridine N-oxide groups form duplexes via H-bonding interactions between these recognition units. Reductive amination chemistry was used to synthesize all possible 3-mer sequences: AAA, AAD, ADA, DAA, ADD, DAD, DDA, and DDD. Pairwise interactions between the oligomers were investigated using NMR titration and dilution experiments in toluene. The measured association constants vary by 3 orders of magnitude (102 to 105 M–1). Antiparallel sequence-complementary oligomers generally form more stable complexes than mismatched duplexes. Mismatched duplexes that have an excess of H-bond donors are stabilized by the interaction of two phenol donors with one pyridine N-oxide acceptor. Oligomers that have a H-bond donor and acceptor on the ends of the chain can fold to form intramolecular H-bonds in the free state. The 1,3-folding equilibrium competes with duplex formation and lowers the stability of duplexes involving these sequences. As a result, some of the mismatch duplexes are more stable than some of the sequence-complementary duplexes. However, the most stable mismatch duplexes contain DDD and compete with the most stable sequence-complementary duplex, AAA·DDD, so in mixtures that contain all eight sequences, sequence-complementary duplexes dominate. Even higher fidelity sequence selectivity can be achieved if alternating donor–acceptor sequences are avoided. PMID:28857551

  10. Self-assembly behaviours of peptide-drug conjugates: influence of multiple factors on aggregate morphology and potential self-assembly mechanism

    NASA Astrophysics Data System (ADS)

    Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng

    2018-04-01

    Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug (S)-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.

  11. Self-assembly behaviours of peptide-drug conjugates: influence of multiple factors on aggregate morphology and potential self-assembly mechanism.

    PubMed

    Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng

    2018-04-01

    Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug ( S )-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.

  12. Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface.

    PubMed

    Vila Verde, Ana; Bolhuis, Peter G; Campen, R Kramer

    2012-08-09

    We use classical atomistic molecular dynamics simulations of two water models (SPC/E and TIP4P/2005) to investigate the orientation and reorientation dynamics of two subpopulations of OH groups belonging to water molecules at the air/water interface at 300 K: those OH groups that donate a hydrogen bond (called "bonded") and those that do not (called "free"). Free interfacial OH groups reorient in two distinct regimes: a fast regime from 0 to 1 ps and a slow regime thereafter. Qualitatively similar behavior was reported by others for free OH groups near extended hydrophobic surfaces. In contrast, the net reorientation of bonded OH groups occurs at a rate similar to that of bulk water. This similarity in reorientation rate results from compensation of two effects: decreasing frequency of hydrogen-bond breaking/formation (i.e., hydrogen-bond exchange) and faster rotation of intact hydrogen bonds. Both changes result from the decrease in density at the air/water interface relative to the bulk. Interestingly, because of the presence of capillary waves, the slowdown of hydrogen-bond exchange is significantly smaller than that reported for water near extended hydrophobic surfaces, but it is almost identical to that reported for water near small hydrophobic solutes. In this sense water at the air/water interface has characteristics of water of hydration of both small and extended hydrophobic solutes.

  13. Turn-Directed α-β Conformational Transition of α-syn12 Peptide at Different pH Revealed by Unbiased Molecular Dynamics Simulations

    PubMed Central

    Liu, Lei; Cao, Zanxia

    2013-01-01

    The transition from α-helical to β-hairpin conformations of α-syn12 peptide is characterized here using long timescale, unbiased molecular dynamics (MD) simulations in explicit solvent models at physiological and acidic pH values. Four independent normal MD trajectories, each 2500 ns, are performed at 300 K using the GROMOS 43A1 force field and SPC water model. The most clustered structures at both pH values are β-hairpin but with different turns and hydrogen bonds. Turn9-6 and four hydrogen bonds (HB9-6, HB6-9, HB11-4 and HB4-11) are formed at physiological pH; turn8-5 and five hydrogen bonds (HB8-5, HB5-8, HB10-3, HB3-10 and HB12-1) are formed at acidic pH. A common folding mechanism is observed: the formation of the turn is always before the formation of the hydrogen bonds, which means the turn is always found to be the major determinant in initiating the transition process. Furthermore, two transition paths are observed at physiological pH. One of the transition paths tends to form the most-clustered turn and improper hydrogen bonds at the beginning, and then form the most-clustered hydrogen bonds. Another transition path tends to form the most-clustered turn, and turn5-2 firstly, followed by the formation of part hydrogen bonds, then turn5-2 is extended and more hydrogen bonds are formed. The transition path at acidic pH is as the same as the first path described at physiological pH. PMID:23708094

  14. The structure of the ends of α-helices in globular proteins: effect of additional hydrogen bonds and implications for helix formation.

    PubMed

    Leader, David P; Milner-White, E James

    2011-03-01

    We prepared a set of about 2000 α-helices from a relational database of high-resolution three-dimensional structures of globular proteins, and identified additional main chain i ← i+3 hydrogen bonds at the ends of the helices (i.e., where the hydrogen bonding potential is not fulfilled by canonical i ← i+4 hydrogen bonds). About one-third of α-helices have such additional hydrogen bonds at the N-terminus, and more than half do so at the C-terminus. Although many of these additional hydrogen bonds at the C-terminus are associated with Schellman loops, the majority are not. We compared the dihedral angles at the termini of α-helices having or lacking the additional hydrogen bonds. Significant differences were found, especially at the C-terminus, where the dihedral angles at positions C2 and C1 in the absence of additional hydrogen bonds deviate substantially from those occurring within the α-helix. Using a novel approach we show how the structure of the C-terminus of the α-helix can emerge from that of constituent overlapping α-turns and β-turns, which individually show a variation in dihedral angles at different positions. We have also considered the direction of propagation of the α-helix using this approach. If one assumes that helices start as a single α-turn and grow by successive addition of further α-turns, the paths for growth in the N → C and C → N directions differ in a way that suggests that extension in the C → N direction is favored. Copyright © 2010 Wiley-Liss, Inc.

  15. Molecular dynamics study of the encapsulation capability of a PCL-PEO based block copolymer for hydrophobic drugs with different spatial distributions of hydrogen bond donors and acceptors.

    PubMed

    Patel, Sarthak K; Lavasanifar, Afsaneh; Choi, Phillip

    2010-03-01

    Molecular dynamics simulation was used to study the potential of using a block copolymer containing three poly(epsilon-caprolactone) (PCL) blocks of equal length connected to one end of a poly(ethylene oxide) (PEO) block, designated as PEO-b-3PCL, to encapsulate two classes of hydrophobic drugs with distinctively different molecular structures. In particular, the first class of drugs consisted of two cucurbitacin drugs (CuB and CuI) that contain multiple hydrogen bond donors and acceptors evenly distributed on their molecules while the other class of drugs (fenofibrate and nimodipine) contain essentially only clustered hydrogen bond acceptors. In the case of cucurbitacin drugs, the results showed that PEO-b-3PCL lowered the Flory-Huggins interaction parameters (chi) considerably (i.e., increased the drug solubility) compared to the linear di-block copolymer PEO-b-PCL with the same PCL/PEO (w/w) ratio of 1.0. However, the opposite effect was observed for fenofibrate and nimodipine. Analysis of the intermolecular interactions indicates that the number of hydrogen bonds formed between the three PCL blocks and cucurbitacin drugs is significantly higher than that of the linear di-block copolymer. On the other hand, owing to the absence of hydrogen bond donors and the clustering of the hydrogen bond acceptors on the fenofibrate and nimodipine molecules, this significantly reduces the number of hydrogen bonds formed in the multi-PCL block environment, leading to unfavourable chi values. The findings of the present work suggest that multi-hydrophobic block architecture could potentially increase the drug loading for hydrophobic drugs with structures containing evenly distributed multiple hydrogen bond donors and acceptors. (c) 2009 Elsevier Ltd. All rights reserved.

  16. High density liquid structure enhancement in glass forming aqueous solution of LiCl.

    PubMed

    Camisasca, G; De Marzio, M; Rovere, M; Gallo, P

    2018-06-14

    We investigate using molecular dynamics simulations the dynamical and structural properties of LiCl:6H 2 O aqueous solution upon supercooling. This ionic solution is a glass forming liquid of relevant interest in connection with the study of the anomalies of supercooled water. The LiCl:6H 2 O solution is easily supercooled and the liquid state can be maintained over a large decreasing temperature range. We performed simulations from ambient to 200 K in order to investigate how the presence of the salt modifies the behavior of supercooled water. The study of the relaxation time of the self-density correlation function shows that the system follows the prediction of the mode coupling theory and behaves like a fragile liquid in all the range explored. The analysis of the changes in the water structure induced by the salt shows that while the salt preserves the water hydrogen bonds in the system, it strongly affects the tetrahedral hydrogen bond network. Following the interpretation of the anomalies of water in terms of a two-state model, the modifications of the oxygen radial distribution function and the angular distribution function of the hydrogen bonds in water indicate that LiCl has the role of enhancing the high density liquid component of water with respect to the low density component. This is in agreement with recent experiments on aqueous ionic solutions.

  17. High density liquid structure enhancement in glass forming aqueous solution of LiCl

    NASA Astrophysics Data System (ADS)

    Camisasca, G.; De Marzio, M.; Rovere, M.; Gallo, P.

    2018-06-01

    We investigate using molecular dynamics simulations the dynamical and structural properties of LiCl:6H2O aqueous solution upon supercooling. This ionic solution is a glass forming liquid of relevant interest in connection with the study of the anomalies of supercooled water. The LiCl:6H2O solution is easily supercooled and the liquid state can be maintained over a large decreasing temperature range. We performed simulations from ambient to 200 K in order to investigate how the presence of the salt modifies the behavior of supercooled water. The study of the relaxation time of the self-density correlation function shows that the system follows the prediction of the mode coupling theory and behaves like a fragile liquid in all the range explored. The analysis of the changes in the water structure induced by the salt shows that while the salt preserves the water hydrogen bonds in the system, it strongly affects the tetrahedral hydrogen bond network. Following the interpretation of the anomalies of water in terms of a two-state model, the modifications of the oxygen radial distribution function and the angular distribution function of the hydrogen bonds in water indicate that LiCl has the role of enhancing the high density liquid component of water with respect to the low density component. This is in agreement with recent experiments on aqueous ionic solutions.

  18. Tuning the nature and stability of self-assemblies formed by ester benzene 1,3,5-tricarboxamides: the crucial role played by the substituents.

    PubMed

    Desmarchelier, Alaric; Alvarenga, Bruno Giordano; Caumes, Xavier; Dubreucq, Ludovic; Troufflard, Claire; Tessier, Martine; Vanthuyne, Nicolas; Idé, Julien; Maistriaux, Thomas; Beljonne, David; Brocorens, Patrick; Lazzaroni, Roberto; Raynal, Matthieu; Bouteiller, Laurent

    2016-09-20

    As the benzene 1,3,5-tricarboxamide (BTA) moiety is commonly used as the central assembling unit for the construction of functionalized supramolecular architectures, strategies to tailor the nature and stability of BTA assemblies are needed. The assembly properties of a library of structurally simple BTAs derived from amino dodecyl esters (ester BTAs, 13 members) have been studied, either in the bulk or in cyclohexane solutions, by means of a series of analytical methods (NMR, DSC, POM, FT-IR, UV-Vis, CD, ITC, high-sensitivity DSC, SANS). Two types of hydrogen-bonded species have been identified and characterized: the expected amide-bonded helical rods (or stacks) that are structurally similar to those formed by BTAs with simple alkyl side chains (alkyl BTAs), and ester-bonded dimers in which the BTAs are connected by means of hydrogen bonds linking the amide N-H and the ester C[double bond, length as m-dash]O. MM/MD calculations coupled with simulations of CD spectra allow for the precise determination of the molecular arrangement and of the hydrogen bond pattern of these dimers. Our study points out the crucial influence of the substituent attached on the amino-ester α-carbon on the relative stability of the rod-like versus dimeric assemblies. By varying this substituent, one can precisely tune the nature of the dominant hydrogen-bonded species (stacks or dimers) in the neat compounds and in cyclohexane over a wide range of temperatures and concentrations. In the neat BTAs, stacks are stable up to 213 °C and dimers above 180 °C whilst in cyclohexane stacks form at c* > 3 × 10 -5 M at 20 °C and dimers are stable up to 80 °C at 7 × 10 -6 M. Ester BTAs that assemble into stacks form a liquid-crystalline phase and yield gels or viscous solutions in cyclohexane, demonstrating the importance of controlling the structure of these assemblies. Our systematic study of these structurally similar ester BTAs also allows for a better understanding of how a single atom or moiety can impact the nature and stability of BTA aggregates, which is of importance for the future development of functionalized BTA supramolecular polymers.

  19. Development of predictive pharmacophore model for in silico screening, and 3D QSAR CoMFA and CoMSIA studies for lead optimization, for designing of potent tumor necrosis factor alpha converting enzyme inhibitors

    NASA Astrophysics Data System (ADS)

    Murumkar, Prashant Revan; Zambre, Vishal Prakash; Yadav, Mange Ram

    2010-02-01

    A chemical feature-based pharmacophore model was developed for Tumor Necrosis Factor-α converting enzyme (TACE) inhibitors. A five point pharmacophore model having two hydrogen bond acceptors (A), one hydrogen bond donor (D) and two aromatic rings (R) with discrete geometries as pharmacophoric features was developed. The pharmacophore model so generated was then utilized for in silico screening of a database. The pharmacophore model so developed was validated by using four compounds having proven TACE inhibitory activity which were grafted into the database. These compounds mapped well onto the five listed pharmacophoric features. This validated pharmacophore model was also used for alignment of molecules in CoMFA and CoMSIA analysis. The contour maps of the CoMFA/CoMSIA models were utilized to provide structural insight for activity improvement of potential novel TACE inhibitors. The pharmacophore model so developed could be used for in silico screening of any commercial/in house database for identification of TACE inhibiting lead compounds, and the leads so identified could be optimized using the developed CoMSIA model. The present work highlights the tremendous potential of the two mutually complementary ligand-based drug designing techniques (i.e. pharmacophore mapping and 3D-QSAR analysis) using TACE inhibitors as prototype biologically active molecules.

  20. Isothermal titration calorimetry study of the interaction of sweeteners with fullerenols as an artificial sweet taste receptor model.

    PubMed

    Chen, Zhong-Xiu; Guo, Gang-Min; Deng, Shao-Ping

    2009-04-08

    A fullerenol-based synthetic sweetness receptor model, consisting of polyhydroxy groups for potential hydrogen bond donor along with a spherical hydrophobic center, was proposed according to the widely accepted sweetness hypothesis. An isothermal titration calorimetry (ITC) technique was used to study mimetic interaction of this sweet receptor model with a series of sweeteners having increasing sweetness intensity. The results showed that ITC is an effective method to provide thorough and precise characterization of the energies of molecular complex formation. Binding of all of the studied sweeteners with fullerenols was found through two sets of site models. More heat was released from sweeter synthetic compounds binding with fullerenols than from less sweet carbohydrates. The results imply that hydrogen bond formation is necessary for the sweeteners to bind to the fullerenol receptor in the first stage, whereas hydrophobic effect and conformation changes that lead to favorable entropy changes occur in most cases. The preliminary results of this study help to cover the lack of information about the thermodynamic basis of understanding of the initiation of the sweet sensation. It also adds complementary physicochemical measurements available for comparison with the sweetness hypothesis. On the other hand, a correlation between the thermodynamic parameters and sweetness intensity has been made as well, which exhibits potential as a useful tool in sensory analysis.

  1. Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site.

    PubMed

    Wang, Lu; Fried, Stephen D; Boxer, Steven G; Markland, Thomas E

    2014-12-30

    Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds.

  2. Spectroscopic study of uracil, 1-methyluracil and 1-methyl-4-thiouracil: Hydrogen bond interactions in crystals and ab-initio molecular dynamics.

    PubMed

    Brela, Mateusz Z; Boczar, Marek; Malec, Leszek M; Wójcik, Marek J; Nakajima, Takahito

    2018-05-15

    Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site

    PubMed Central

    Wang, Lu; Fried, Stephen D.; Boxer, Steven G.; Markland, Thomas E.

    2014-01-01

    Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds. PMID:25503367

  4. An ab initio study of some binary complexes containing methyl fluoride and difluoromethane: red-shifting and blue-shifting hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Ramasami, Ponnadurai; Ford, Thomas A.

    2018-07-01

    The properties of a number of hydrogen-bonded complexes of methyl fluoride and difluoromethane with a range of hydrides of the first two rows of the periodic table have been computed using ab initio molecular orbital theory. The aim of this work was to identify possible examples of blue-shifting hydrogen-bonded species analogous to those formed between fluoroform and ammonia, water, phosphine and hydrogen sulphide, reported earlier. The calculations were carried out using the Gaussian-09 program, at the second-order level of Møller-Plesset perturbation theory, and with the aug-cc-pVTZ basis sets of Dunning. The properties studied include the molecular structures, the hydrogen bond energies and the vibrational spectra. The results have been interpreted with the aid of natural bond orbital theory and the quantum theory of atoms in molecules.

  5. [Intermolecular hydrogen bond between protein and flavonoid and its contribution to the stability of the flavonoids].

    PubMed

    Fang, Ru; Leng, Xiao-jing; Wu, Xia; Li, Qi; Hao, Rui-fang; Ren, Fa-zheng; Jing, Hao

    2012-01-01

    The interactions between three proteins (BSA, lysozyme and myoglobin) and three flavonoids (quercetin, kaempferol and rutin) were analyzed, using three-dimensional fluorescence spectrometry in combination with UV-Vis spectrometry and Fourier transform infrared (FTIR) spectroscopy. The stabilities of unbound flavonoids and protein-bound flavonoids were compared. The correlation between the interaction and stability was analyzed. The results showed that the hydrophobic interaction was the main binding code in all proteins and flavonoids systems. However, the hydrogen bond has been involved merely in the BSA system. The stability of all three flavonoids (quercetin, kaempferol and rutin) was improved by BSA. There was a great correlation between the hydrogen bonding and the stability of the flavonoids in the presence of BSA. It suggested that the protection of BSA on the flavonoids was due to the intermolecular hydrogen bonding between BSA and flavonoid, and the stronger hydrogen bonding resulted in more protection.

  6. Hydrogen-bonded structures from adamantane-based catechols

    NASA Astrophysics Data System (ADS)

    Kawahata, Masatoshi; Matsuura, Miku; Tominaga, Masahide; Katagiri, Kosuke; Yamaguchi, Kentaro

    2018-07-01

    Adamantane-based bis- and tris-catechols were synthesized to examine the effect of hydrogen bonds on the arrangement and packing of the components in the crystalline state. Single-crystal X-ray crystallographic analysis revealed that hydrogen bonds formed by the hydroxyl groups of catechol groups play essential roles in the production of various types of unique structures. 1,3-Bis(3,4-dihydroxyphenyl)adamantane (1) provided hydrogen-bonded network structures composed of helical chains in crystal from chloroform/methanol, and layer structures in crystal from ethyl acetate/hexane. The complexation of 1 with 1,3,5-trinitrobenzene or 1,2,4,5-tetracyanobenzene resulted in the formation of co-crystals, respectively. One-dimensional hydrogen-bonded structures were constructed from the adamantane-based molecules, which participated in charge-transfer interactions with guests. 1,3,5-Tris(3,4-dihydroxyphenyl)adamantane also afforded crystal, and the components were assembled into infinite polymers.

  7. dl-Asparaginium nitrate

    PubMed Central

    Moussa Slimane, Nabila; Cherouana, Aouatef; Bendjeddou, Lamia; Dahaoui, Slimane; Lecomte, Claude

    2009-01-01

    In the title compound, C4H9N2O3 +·NO3 −, alternatively called (1RS)-2-carbamoyl-1-carboxy­ethanaminium nitrate, the asymmetric unit comprises one asparaginium cation and one nitrate anion. The strongest cation–cation O—H⋯O hydrogen bond in the structure, together with other strong cation–cation N—H⋯O hydrogen bonds, generates a succession of infinite chains of R 2 2(8) rings along the b axis. Additional cation–cation C—H⋯O hydrogen bonds link these chains into two-dimensional layers formed by alternating R 4 4(24) and R 4 2(12) rings. Connections between these layers are provided by the strong cation–anion N—H⋯O hydrogen bonds, as well as by one weak C—H⋯O inter­action, thus forming a three-dimensional network. Some of the cation–anion N—H⋯O hydrogen bonds are bifurcated of the type D—H⋯(A 1,A 2). PMID:21577586

  8. Switching off hydrogen-bond-driven excitation modes in liquid methanol

    DOE PAGES

    Bellissima, Stefano; González, Miguel A.; Bafile, Ubaldo; ...

    2017-08-30

    Hydrogen bonding plays an essential role on intermolecular forces, and consequently on the thermodynamics of materials defined by this elusive bonding character. It determines the property of a vital liquid as water as well as many processes crucial for life. The longstanding controversy on the nature of the hydrogen bond (HB) can be settled by looking at the effect of a vanishing HB interaction on the microscopic properties of a given hydrogen-bonded fluid. This task suits the capabilities of computer simulations techniques, which allow to easily switch off HB interactions. We then use molecular dynamics to study the microscopic propertiesmore » of methanol, a prototypical HB liquid. Fundamental aspects of the dynamics of methanol at room temperature were contextualised only very recently and its rich dynamics was found to have striking analogies with that of water. The lower temperature (200 K) considered in the present study led us to observe that the molecular centre-of-mass dynamics is dominated by four modes. Most importantly, the computational ability to switch on and off hydrogen bonds permitted us to identify which, among these modes, have a pure HB-origin. This clarifies the role of hydrogen bonds in liquid dynamics, disclosing new research opportunities and unexplored interpretation schemes.« less

  9. A general mixture equation of state for double bonding carboxylic acids with ≥2 association sites

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.

    2018-05-01

    In this paper, we obtain the first general multi-component solution to Wertheim's thermodynamic perturbation theory for the case that molecules can participate in cyclic double bonds. In contrast to previous authors, we do not restrict double bonding molecules to a 2-site association scheme. Each molecule in a multi-component mixture can have an arbitrary number of donor and acceptor association sites. The one restriction on the theory is that molecules can have at most one pair of double bonding sites. We also incorporate the effect of hydrogen bond cooperativity in cyclic double bonds. We then apply this new association theory to 2-site and 3-site models for carboxylic acids within the polar perturbed chain statistical associating fluid theory equation of state. We demonstrate the accuracy of the approach by comparison to both pure and multi-component phase equilibria data. It is demonstrated that the 3-site association model gives substantially a different hydrogen bonding structure than a 2-site approach. We also demonstrate that inclusion of hydrogen bond cooperativity has a substantial effect on a liquid phase hydrogen bonding structure.

  10. Site-specific binding of a water molecule to the sulfa drugs sulfamethoxazole and sulfisoxazole: a laser-desorption isomer-specific UV and IR study.

    PubMed

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W

    2018-03-07

    To determine the preferred water molecule binding sites of the polybasic sulfa drugs sulfamethoxazole (SMX) and sulfisoxazole (SIX), we have studied their monomers and monohydrated complexes through laser-desorption conformer-specific UV and IR spectroscopy. Both the SMX and SIX monomer adopt a single conformer in the molecular beam. On the basis of their conformer-specific IR spectra in the NH stretch region, these conformers were assigned to the SMX and SIX global minimum structures, both exhibiting a staggered sulfonamide group and an intramolecular C-HO[double bond, length as m-dash]S hydrogen bond. The SMX-H 2 O and SIX-H 2 O complexes each adopt a single isomer in the molecular beam. Their isomeric structures were determined based on their isomer-specific IR spectra in the NH/OH stretch region. Quantum Theory of Atoms in Molecules analysis of the calculated electron densities revealed that in the SMX-H 2 O complex the water molecule donates an O-HN hydrogen bond to the heterocycle nitrogen atom and accepts an N-HO hydrogen bond from the sulfonamide NH group. In the SIX-H 2 O complex, however, the water molecule does not bind to the heterocycle but instead donates an O-HO[double bond, length as m-dash]S hydrogen bond to the sulfonamide group and accepts an N-HO hydrogen bond from the sulfonamide NH group. Both water complexes are additionally stabilized by a C ph -HOH 2 hydrogen bond. Interacting Quantum Atoms analysis suggests that all intermolecular hydrogen bonds are dominated by the short-range exchange-correlation contribution.

  11. Modeling evolution of hydrogen bonding and stabilization of transition states in the process of cocaine hydrolysis catalyzed by human butyrylcholinesterase.

    PubMed

    Gao, Daquan; Zhan, Chang-Guo

    2006-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, compared to acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylcholine. During BChE-catalyzed hydrolysis of cocaine, only G117 has a hydrogen bond with the carbonyl oxygen (O31) of the cocaine benzoyl ester in the prereactive BChE-cocaine complex, and the NH groups of G117 and A199 are hydrogen-bonded with O31 of cocaine in all of the transition states and intermediates. Surprisingly, the NH hydrogen of G116 forms an unexpected hydrogen bond with the carboxyl group of E197 side chain and, therefore, is not available to form a hydrogen bond with O31 of cocaine in the acylation. The NH hydrogen of G116 is only partially available to form a weak hydrogen bond with O31 of cocaine in some structures involved in the deacylation. The change of the estimated hydrogen-bonding energy between the oxyanion hole and O31 of cocaine during the reaction process demonstrates how the protein environment can affect the energy barrier for each step of the BChE-catalyzed hydrolysis of cocaine. These insights concerning the effects of the oxyanion hole on the energy barriers provide valuable clues on how to rationally design BChE mutants with a higher catalytic activity for the hydrolysis of (-)-cocaine. 2005 Wiley-Liss, Inc.

  12. Modeling Evolution of Hydrogen Bonding and Stabilization of Transition States in the Process of Cocaine Hydrolysis Catalyzed by Human Butyrylcholinesterase

    PubMed Central

    Gao, Daquan; Zhan, Chang-Guo

    2010-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (−)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, as compared to acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylcholine. During BChE-catalyzed hydrolysis of cocaine, only G117 has a hydrogen bond with the carbonyl oxygen (O31) of the cocaine benzoyl ester in the prereactive BChE-cocaine complex, and the NH groups of G117 and A199 are hydrogen-bonded with O31 of cocaine in all of the transition states and intermediates. Surprisingly, the NH hydrogen of G116 forms an unexpected hydrogen bond with the carboxyl group of E197 side chain and, therefore, is not available to form a hydrogen bond with O31 of cocaine in the acylation. The NH hydrogen of G116 is only partially available to form a weak hydrogen bond with O31 of cocaine in some structures involved in the deacylation. The change of the estimated hydrogen bonding energy between the oxyanion hole and O31 of cocaine during the reaction process demonstrates how the protein environment can affect the energy barrier for each step of the BChE-catalyzed hydrolysis of cocaine. These insights concerning the effects of the oxyanion hole on the energy barriers provide valuable clues on how to rationally design BChE mutants with a higher catalytic activity for the hydrolysis of (−)-cocaine. PMID:16288482

  13. Activation Energies for Dissociation of Double Strand Oligonucleotide Anions: Evidence for Watson–Crick Base Pairing in Vacuo

    PubMed Central

    Schnier, Paul D.; Klassen, John S.; Strittmatter, Eric F.; Williams*, Evan R.

    2005-01-01

    The dissociation kinetics of a series of complementary and noncomplementary DNA duplexes, (TGCA)23−, (CCGG)23−, (AATTAAT)23−, (CCGGCCG)23−, A7·T73−, A7·A73−, T7·T73−, and A7·C73− were investigated using blackbody infrared radiative dissociation in a Fourier transform mass spectrometer. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained. Activation energies range from 1.2 to 1.7 eV, and preexponential factors range from 1013 to 1019 s−1. Dissociation of the duplexes results in cleavage of the noncovalent bonds and/or cleavage of covalent bonds leading to loss of a neutral nucleobase followed by backbone cleavage producing sequence-specific (a – base) and w ions. Four pieces of evidence are presented which indicate that Watson–Crick (WC) base pairing is preserved in complementary DNA duplexes in the gas phase: i. the activation energy for dissociation of the complementary dimer, A7·T73−, to the single strands is significantly higher than that for the related noncomplementary A7·A73− and T7·T73− dimers, indicating a stronger interaction between strands with a specific base sequence, ii. extensive loss of neutral adenine occurs for A7·A73− and A7·C73− but not for A7·T73− consistent with this process being shut down by WC hydrogen bonding, iii. a correlation is observed between the measured activation energy for dissociation to single strands and the dimerization enthalpy (−ΔHd) in solution, and iv. molecular dynamics carried out at 300 and 400 K indicate that WC base pairing is preserved for A7·T73− duplex, although the helical structure is essentially lost. In combination, these results provide strong evidence that WC base pairing can exist in the complete absence of solvent. PMID:16498487

  14. Vibrational dynamics of glass forming: 2-phenylbutan-1-ol (BEP), 2-(trifluoromethyl)phenethyl alcohol (2TFMP) and 4-(trifluoromethyl)phenethyl alcohol (4TFMP) in their thermodynamic phases

    NASA Astrophysics Data System (ADS)

    Juszyńska-Gałązka, Ewa; Zając, Wojciech; Saito, Kazuya; Yamamura, Yasuhisa; Juruś, Natalia

    2018-02-01

    The complex polymorphism and vibrational dynamics of three glass-forming single-phenyl-ring alcohols (with and without fluorine atoms) have been studied by complementary methods. Glass of isotropic liquid phase and cold crystallization of metastable supercooled liquid state were detected. Temperature investigations of vibrational motions show important role of hydrogen bonds in interactions between molecules. Theoretical calculations for isolated molecule, as well as dimer- and tetramer-type aggregates of non-covalently bound molecules, allow for a good description of experimental spectra. Intermolecular interactions of molecules with ortho and para positions of CF3 group in phenyl ring have a similar influence on the spectra observed.

  15. A Stimuli-Responsive Supramolecular Hydrogel for Controlled Release of Drug

    NASA Astrophysics Data System (ADS)

    Biswas, Subharanjan; Datta, Lakshmi Priya; Roy, Soumyajit

    An inexpensive, facile, and environmentally benign method has been developed for the preparation of stimuli-responsive and self-healing polyacrylic acid-chitosan-based supramolecular hydrogels. Guanidine hydrochloride is used as the supramolecular crosslinker to form an interconnected network with polyacrylic acid-chitosan complex. Because of the dynamic equilibrium between the hydrogen-bonding sites of the components, the hydrogels were found to be self-healable and sensitive to biochemical-stimulus, such as pH. Controlled loading of drug like doxorubicin and its significant anticancer activity of such hydrogels is worth mentioning.

  16. Adhesion strength of norbornene-based self-healing agents to an amine-cured epoxy

    NASA Astrophysics Data System (ADS)

    Huang, Guang Chun; Lee, Jong Keun; Kessler, Michael R.; Yoon, Sungho

    2009-07-01

    Self-healing is triggered by crack propagation through embedded microcapsules in an epoxy matrix, which then release the liquid healing agent into the crack plane. Subsequent exposure of the healing agent to the chemical catalyst initiates ring-opening metathesis polymerization (ROMP) and bonding of the crack faces. In order to improve self-healing functionality, it is necessary to enhance adhesion of polymerized healing agent within the crack to the matrix resin. In this study, shear bond strength between different norbornene-based healing agents and an amine-cured epoxy resin was evaluated using the single lap shear test method (ASTM D3163, modified). The healing agents tested include endodicyclopentadiene (endo-DCPD), 5-ethylidene-2-norbornene (ENB) and DCPD/ENB blends. 5-Norbornene-2-methanol (NBM) was used as an adhesion promoter, containing hydroxyl groups to form hydrogen bonds with the amine-cured epoxy. A custom synthesized norbornene-based crosslinking agent was also added to improve adhesion for ENB by increasing the crosslinking density of the adhesive after ROMP. The healing agents were polymerized with varying loadings of the 1st generation Grubbs' catalyst at different reaction times and temperatures.

  17. Solvent induced temperature dependencies of NMR parameters of hydrogen bonded anionic clusters

    NASA Astrophysics Data System (ADS)

    Golubev, Nikolai S.; Shenderovich, Ilja G.; Tolstoy, Peter M.; Shchepkin, Dmitry N.

    2004-07-01

    The solvent induced temperature dependence of NMR parameters (proton and fluorine chemical shifts, the two-bond scalar spin coupling constant across the hydrogen bridge, 2hJFF) for dihydrogen trifluoride anion, (FH) 2F -, in a polar aprotic solvent, CDF 3/CDF 2Cl, is reported and discussed. The results are interpreted in terms of a simple electrostatic model, accounting a decrease of electrostatic repulsion of two negatively charged fluorine atoms on placing into a dielectric medium. The conclusion is drawn that polar medium causes some contraction of hydrogen bonds in ionic clusters combined with a decrease of hydrogen bond asymmetry.

  18. Microwave Spectrum of the Isopropanol-Water Dimer

    NASA Astrophysics Data System (ADS)

    Mead, Griffin; Finneran, Ian A.; Carroll, Brandon; Blake, Geoffrey

    2016-06-01

    Microwave spectroscopy provides a unique opportunity to study model non-covalent interactions. Of particular interest is the hydrogen bonding of water, whose various molecular properties are influenced by both strong and weak intermolecular forces. More specifically, measuring the hydrogen bonded structures of water-alcohol dimers investigates both strong (OH ··· OH) and weak (CH ··· OH) hydrogen bond interactions. Recently, we have measured the pure rotational spectrum of the isopropanol-water dimer using chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW) between 8-18 GHz. Here, we present the spectrum of this dimer and elaborate on the structure's strong and weak hydrogen bonding.

  19. Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture.

    PubMed

    Li, Wei; Thirumurugan, A; Barton, Phillip T; Lin, Zheshuai; Henke, Sebastian; Yeung, Hamish H-M; Wharmby, Michael T; Bithell, Erica G; Howard, Christopher J; Cheetham, Anthony K

    2014-06-04

    Two analogous metal-organic frameworks (MOFs) with the perovskite architecture, [C(NH2)3][Mn(HCOO)3] (1) and [(CH2)3NH2][Mn(HCOO)3] (2), exhibit significantly different mechanical properties. The marked difference is attributed to their distinct modes of hydrogen bonding between the A-site amine cation and the anionic framework. The stronger cross-linking hydrogen bonding in 1 gives rise to Young's moduli and hardnesses that are up to twice those in 2, while the thermal expansion is substantially smaller. This study presents clear evidence that the mechanical properties of MOF materials can be substantially tuned via hydrogen-bonding interactions.

  20. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  1. How cellulose stretches: synergism between covalent and hydrogen bonding.

    PubMed

    Altaner, Clemens M; Thomas, Lynne H; Fernandes, Anwesha N; Jarvis, Michael C

    2014-03-10

    Cellulose is the most familiar and most abundant strong biopolymer, but the reasons for its outstanding mechanical performance are not well understood. Each glucose unit in a cellulose chain is joined to the next by a covalent C-O-C linkage flanked by two hydrogen bonds. This geometry suggests some form of cooperativity between covalent and hydrogen bonding. Using infrared spectroscopy and X-ray diffraction, we show that mechanical tension straightens out the zigzag conformation of the cellulose chain, with each glucose unit pivoting around a fulcrum at either end. Straightening the chain leads to a small increase in its length and is resisted by one of the flanking hydrogen bonds. This constitutes a simple form of molecular leverage with the covalent structure providing the fulcrum and gives the hydrogen bond an unexpectedly amplified effect on the tensile stiffness of the chain. The principle of molecular leverage can be directly applied to certain other carbohydrate polymers, including the animal polysaccharide chitin. Related but more complex effects are possible in some proteins and nucleic acids. The stiffening of cellulose by this mechanism is, however, in complete contrast to the way in which hydrogen bonding provides toughness combined with extensibility in protein materials like spider silk.

  2. Microsolvation of Fluoromethane.

    PubMed

    Rosenberg, Robert E

    2016-09-29

    Fluorinated organic compounds are ubiquitous in the pharmaceutical and agricultural industries. To better discern the mode of action of these compounds, it is critical to understand the potential for and strength of hydrogen bonds involving fluorine. It is known that CH3F forms a hydrogen bond with H2O in the gas phase but does not dissolve in bulk water. This paper examines CH3F surrounded by one to six water molecules. For systems of similar topologies, CH3F formed hydrogen bonds of nearly the same strength as water. Although CH3F can bind to a second water cluster with only a modest loss in binding energy, it must bind to these clusters as a double hydrogen bond acceptor. This means that CH3F cannot form a low-energy cyclic 2D hydrogen bonding network with water molecules, which limits its solubility in bulk water. However, CH3F should be able to bind to the periphery of small hydrogen bonding networks. These conclusions were not appreciably altered by SMD calculations. A more complete consideration of solvation, especially entropic effects, was not undertaken. Data for geometries, population changes, and vibrational frequency shifts were also analyzed and compared to binding energies.

  3. Molecular dynamics investigation of dynamical properties of phosphatidylethanolamine lipid bilayers

    NASA Astrophysics Data System (ADS)

    Pitman, Michael C.; Suits, Frank; Gawrisch, Klaus; Feller, Scott E.

    2005-06-01

    We describe the dynamic behavior of a 1-stearoyl-2-oleoyl-phosphatidylethanolamine (SOPE) bilayer from a 20ns molecular dynamics simulation. The dynamics of individual molecules are characterized in terms of H2 spin-lattice relaxation rates, nuclear overhauser enhancement spectroscopy (NOESY) cross-relaxation rates, and lateral diffusion coefficients. Additionally, we describe the dynamics of hydrogen bonding through an analysis of hydrogen bond lifetimes and the time evolution of clusters of hydrogen bonded lipids. The simulated trajectory is shown to be consistent with experimental measures of internal, intermolecular, and diffusive motion. Consistent with our analysis of SOPE structure in the companion paper, we see hydrogen bonding dominating the dynamics of the interface region. Comparison of H2 T1 relaxation rates for chain methylene segments in phosphatidylcholine and phosphatidylethanolamine bilayers indicates that slower motion resulting from hydrogen bonding extends at least three carbons into the hydrophobic core. NOESY cross-relaxation rates compare well with experimental values, indicating the observed hydrogen bonding dynamics are realistic. Calculated lateral diffusion rates (4±1×10-8cm2/s) are comparable, though somewhat lower than, those determined by pulsed field gradient NMR methods.

  4. Hydrophobic fluorine mediated switching of the hydrogen bonding site as well as orientation of water molecules in the aqueous mixture of monofluoroethanol: IR, molecular dynamics and quantum chemical studies.

    PubMed

    Mondal, Saptarsi; Biswas, Biswajit; Nandy, Tonima; Singh, Prashant Chandra

    2017-09-20

    The local structures between water-water, alcohol-water and alcohol-alcohol have been investigated for aqueous mixtures of ethanol (ETH) and monofluoroethanol (MFE) by the deconvolution of IR bands in the OH stretching region, molecular dynamics simulation and quantum chemical calculations. It has been found that the addition of a small amount of ETH into the aqueous medium increases the strength of the hydrogen bonds between water molecules. In an aqueous mixture of MFE, the substitution of a single fluorine induces a change in the orientation as well as the hydrogen bonding site of water molecules from the oxygen to the fluorine terminal of MFE. The switching of the hydrogen bonding site of water in the aqueous mixture of MFE results in comparatively strong hydrogen bonds between MFE and water molecules as well as less clustering of water molecules, unlike the case of the aqueous mixture of ETH. These findings about the modification of a hydrogen bond network by the hydrophobic fluorine group probably make fluorinated molecules useful for pharmaceutical as well as biological applications.

  5. The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C-C bonds.

    PubMed

    Kelsen, Vinciane; Wendt, Bianca; Werkmeister, Svenja; Junge, Kathrin; Beller, Matthias; Chaudret, Bruno

    2013-04-28

    The performance of well-defined ultrasmall iron(0) nanoparticles (NPs) as catalysts for the selective hydrogenation of unsaturated C-C and C=X bonds is reported. Monodisperse iron nanoparticles of about 2 nm size are synthesized by the decomposition of {Fe(N[Si(CH3)3]2)2}2 under dihydrogen. They are found to be active for the hydrogenation of various alkenes and alkynes under mild conditions and weakly active for C=O bond hydrogenation.

  6. Real-space identification of intermolecular bonding with atomic force microscopy.

    PubMed

    Zhang, Jun; Chen, Pengcheng; Yuan, Bingkai; Ji, Wei; Cheng, Zhihai; Qiu, Xiaohui

    2013-11-01

    We report a real-space visualization of the formation of hydrogen bonding in 8-hydroxyquinoline (8-hq) molecular assemblies on a Cu(111) substrate, using noncontact atomic force microscopy (NC-AFM). The atomically resolved molecular structures enable a precise determination of the characteristics of hydrogen bonding networks, including the bonding sites, orientations, and lengths. The observation of bond contrast was interpreted by ab initio density functional calculations, which indicated the electron density contribution from the hybridized electronic state of the hydrogen bond. Intermolecular coordination between the dehydrogenated 8-hq and Cu adatoms was also revealed by the submolecular resolution AFM characterization. The direct identification of local bonding configurations by NC-AFM would facilitate detailed investigations of intermolecular interactions in complex molecules with multiple active sites.

  7. Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy.

    PubMed

    Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D

    2008-11-06

    Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.

  8. a Theoretical Investigation on 10-12 Potential of Hydrogen-Hydrogen Covalent Bond

    NASA Astrophysics Data System (ADS)

    Taneri, Sencer

    2013-05-01

    This is an analytical investigation of well-known 10-12 potential of hydrogen-hydrogen covalent bond. In this research, we will make an elaboration of the well-known 6-12 Lennard-Jones potential in case of this type of bond. Though the results are illustrated in many text books and literature, an analytical analysis for these potentials is missing almost everywhere. The power laws are valid for small radial distances, which are calculated to some extent. The internuclear separation as well as the binding energy of the hydrogen molecule are evaluated with success.

  9. A statistical mechanical theory for a two-dimensional model of water

    PubMed Central

    Urbic, Tomaz; Dill, Ken A.

    2010-01-01

    We develop a statistical mechanical model for the thermal and volumetric properties of waterlike fluids. Each water molecule is a two-dimensional disk with three hydrogen-bonding arms. Each water interacts with neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of the Truskett and Dill (TD) treatment of the “Mercedes-Benz” (MB) model. The present model gives better predictions than TD for hydrogen-bond populations in liquid water by distinguishing strong cooperative hydrogen bonds from weaker ones. We explore properties versus temperature T and pressure p. We find that the volumetric and thermal properties follow the same trends with T as real water and are in good general agreement with Monte Carlo simulations of MB water, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds for increasing temperature. The model reproduces that pressure squeezes out water’s heat capacity and leads to a negative thermal expansion coefficient at low temperatures. In terms of water structuring, the variance in hydrogen-bonding angles increases with both T and p, while the variance in water density increases with T but decreases with p. Hydrogen bonding is an energy storage mechanism that leads to water’s large heat capacity (for its size) and to the fragility in its cagelike structures, which are easily melted by temperature and pressure to a more van der Waals-like liquid state. PMID:20550408

  10. A statistical mechanical theory for a two-dimensional model of water

    NASA Astrophysics Data System (ADS)

    Urbic, Tomaz; Dill, Ken A.

    2010-06-01

    We develop a statistical mechanical model for the thermal and volumetric properties of waterlike fluids. Each water molecule is a two-dimensional disk with three hydrogen-bonding arms. Each water interacts with neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of the Truskett and Dill (TD) treatment of the "Mercedes-Benz" (MB) model. The present model gives better predictions than TD for hydrogen-bond populations in liquid water by distinguishing strong cooperative hydrogen bonds from weaker ones. We explore properties versus temperature T and pressure p. We find that the volumetric and thermal properties follow the same trends with T as real water and are in good general agreement with Monte Carlo simulations of MB water, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds for increasing temperature. The model reproduces that pressure squeezes out water's heat capacity and leads to a negative thermal expansion coefficient at low temperatures. In terms of water structuring, the variance in hydrogen-bonding angles increases with both T and p, while the variance in water density increases with T but decreases with p. Hydrogen bonding is an energy storage mechanism that leads to water's large heat capacity (for its size) and to the fragility in its cagelike structures, which are easily melted by temperature and pressure to a more van der Waals-like liquid state.

  11. A statistical mechanical theory for a two-dimensional model of water.

    PubMed

    Urbic, Tomaz; Dill, Ken A

    2010-06-14

    We develop a statistical mechanical model for the thermal and volumetric properties of waterlike fluids. Each water molecule is a two-dimensional disk with three hydrogen-bonding arms. Each water interacts with neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of the Truskett and Dill (TD) treatment of the "Mercedes-Benz" (MB) model. The present model gives better predictions than TD for hydrogen-bond populations in liquid water by distinguishing strong cooperative hydrogen bonds from weaker ones. We explore properties versus temperature T and pressure p. We find that the volumetric and thermal properties follow the same trends with T as real water and are in good general agreement with Monte Carlo simulations of MB water, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds for increasing temperature. The model reproduces that pressure squeezes out water's heat capacity and leads to a negative thermal expansion coefficient at low temperatures. In terms of water structuring, the variance in hydrogen-bonding angles increases with both T and p, while the variance in water density increases with T but decreases with p. Hydrogen bonding is an energy storage mechanism that leads to water's large heat capacity (for its size) and to the fragility in its cagelike structures, which are easily melted by temperature and pressure to a more van der Waals-like liquid state.

  12. Hydrogen bond docking site competition in methyl esters

    NASA Astrophysics Data System (ADS)

    Zhao, Hailiang; Tang, Shanshan; Du, Lin

    2017-06-01

    The Osbnd H ⋯ O hydrogen bonds in the 2,2,2-trifluoroethanol (TFE)-methyl ester complexes in the gas phase have been investigated by FTIR spectroscopy and DFT calculations. Methyl formate (MF), methyl acetate (MA), and methyl trifluoroacetate (MTFA) were chosen as the hydrogen bond acceptors. A dominant inter-molecular hydrogen bond was formed between the OH group of TFE and different docking sites in the methyl esters (carbonyl oxygen or ester oxygen). The competition of the two docking sites decides the structure and spectral properties of the complexes. On the basis of the observed red shifts of the OH-stretching transition with respect to the TFE monomer, the order of the hydrogen bond strength can be sorted as TFE-MA (119 cm- 1) > TFE-MF (93 cm- 1) > TFE-MTFA (44 cm- 1). Combining the experimental infrared spectra with the DFT calculations, the Gibbs free energies of formation were determined to be 1.5, 4.5 and 8.6 kJ mol- 1 for TFE-MA, TFE-MF and TFE-MTFA, respectively. The hydrogen bonding in the MTFA complex is much weaker than those of the TFE-MA and TFE-MF complexes due to the effect of the CF3 substitution on MTFA, while the replacement of an H atom with a CH3 group in methyl ester only slightly increases the hydrogen bond strength. Topological analysis and localized molecular orbital energy decomposition analysis was also applied to compare the interactions in the complexes.

  13. Hydrogen bonding in protic ionic liquids: structural correlations, vibrational spectroscopy, and rotational dynamics of liquid ethylammonium nitrate

    NASA Astrophysics Data System (ADS)

    Zentel, Tobias; Overbeck, Viviane; Michalik, Dirk; Kühn, Oliver; Ludwig, Ralf

    2018-02-01

    The properties of the hydrogen bonds in ethylammonium nitrate (EAN) are analyzed by using molecular dynamics simulations and infrared as well as nuclear magnetic resonance experiments. EAN features a flexible three-dimensional network of hydrogen bonds with moderate strengths, which makes it distinct from related triethylammonium-based ionic liquids. First, the network’s flexibility is manifested in a not very pronounced correlation of the hydrogen bond geometries, which is caused by rapid interchanges of bonding partners. The large flexibility of the network also leads to a substantial broadening of the mid-IR absorption band, with the contributions due to N-H stretching motions ranging from 2800 to 3250 cm-1. Finally, the different dynamics are also seen in the rotational correlation of the N-H bond vector, where a correlation time as short as 16.1 ps is observed.

  14. Phosphine-substrate recognition through the C-H...O hydrogen bond: application to the asymmetric Pauson-Khand reaction.

    PubMed

    Solà, Jordi; Riera, Antoni; Verdaguer, Xavier; Maestro, Miguel A

    2005-10-05

    A unique methine moiety attached to three heteroatoms (O, P, S) and contained in the PuPHOS and CamPHOS ligands serves as a strong hydrogen-bond donor. Nonclassical hydrogen bonding of this methine with an amido-carbonyl acceptor provides a completely diastereoselective ligand exchange process between an alkyne dicobalthexacarbonyl complex and a phosphine ligand. This weak contact has been studied by means of X-ray analysis, 1H NMR, and quantum mechanical calculations and revealed that the present interaction falls in the range of strong C-H...O=C bonds. The hydrogen-bond bias obtained in the ligand exchange process has been exploited in the asymmetric intermolecular Pauson-Khand reaction to yield the corresponding cyclization adducts in up to 94% ee.

  15. Noble gas bond and the behaviour of XeO3 under pressure.

    PubMed

    Hou, Chunju; Wang, Xianlong; Botana, Jorge; Miao, Maosheng

    2017-10-18

    Over the past few decades, the concept of hydrogen bonds, in which hydrogen is electrophilic, has been extended to halogen bonds, chalcogen bonds and pnicogen bonds. Herein, we show that such a non-covalent bonding also exists in noble gas compounds. Using first principles calculations, we illustrate the OXe-O bond in molecular crystal XeO 3 and its effect on the behavior of this compound under pressure. Our calculations show that the covalent Xe-O bond lengths were elongated with increasing pressure and correspondingly the Xe-O stretching vibration frequencies were red shifted, which is similar to the change of H-bonds under pressure. The OXe-O bond and related hopping of O between neighboring Xe sites also correspond to the structural changes in the XeO 3 compounds at about 2 GPa. Our study extends the concept of hydrogen bonding to include all p-block elements and show a new bonding type for Noble gas elements in which it acts as an electrophilic species.

  16. Injectable Self-Healing Hydrogel with Antimicrobial and Antifouling Properties.

    PubMed

    Li, Lin; Yan, Bin; Yang, Jingqi; Huang, Weijuan; Chen, Lingyun; Zeng, Hongbo

    2017-03-22

    Microbial adhesion, biofilm formation and associated microbial infection are common challenges faced by implanted biomaterials (e.g., hydrogels) in bioengineering applications. In this work, an injectable self-healing hydrogel with antimicrobial and antifouling properties was prepared through self-assembly of an ABA triblock copolymer employing catechol functionalized polyethylene glycol (PEG) as A block and poly{[2-(methacryloyloxy)-ethyl] trimethylammonium iodide}(PMETA) as B block. This hydrogel exhibits excellent thermosensitivity, and can effectively inhibit the growth of E. coli (>99.8% killing efficiency) and prevent cell attachment. It can also heal autonomously from repeated damage, through mussel-inspired catechol-mediated hydrogen bonding and aromatic interactions, exhibiting great potential in bioengineering applications.

  17. Vibrational states and optical transitions in hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Johannsen, P. G.

    1998-03-01

    Proton energies in hydrogen bonds are mostly calculated using a double Morse potential (the DMP model). This form, however, does not reproduce the experimentally observed correlation between the proton stretching frequency and the bond length in an extended bond-length region sufficiently well. An alternative potential is proposed in the present paper. The quantum states of this non-symmetric double-well potential are calculated numerically using the Numerov (Fox-Goodwin) algorithm. It is shown that the optical spectra of hydrogen bonds in various substances can be well approximated on the basis of the transition frequencies and intensities predicted by the present model. For weakly interacting OH impurities in 0953-8984/10/10/008/img1, the overtone spectrum and line intensities are well reproduced, whereas the line broadenings and the decrease of the fundamental stretching frequencies in intermediate and strong hydrogen bonds are traced back to the influence of the reduced height of the central barrier. The model is also extrapolated to the range of symmetric hydrogen bonds, and the calculated transition frequencies are discussed with respect to most recent infra-red experiments on ice under strong compression. A possible artificial infra-red signal from strained diamond anvils is thereby noted.

  18. Synthesis, Structure, and Physical Properties for a Series of Monomeric Iron(III) Hydroxo Complexes with Varying Hydrogen-Bond Networks

    PubMed Central

    Mukherjee, Jhumpa; Lucas, Robie L.; Zart, Matthew K.; Powell, Douglas R.; Day, Victor W.; Borovik, A. S.

    2013-01-01

    Mononuclear iron(III) complexes with terminal hydroxo ligands are proposed to be important species in several metalloproteins, but they have been difficult to isolate in synthetic systems. Using a series of amidate/ureido tripodal ligands, we have prepared and characterized monomeric FeIIIOH complexes with similar trigonal-bipyramidal primary coordination spheres. Three anionic nitrogen donors define the trigonal plane, and the hydroxo oxygen atom is trans to an apical amine nitrogen atom. The complexes have varied secondary coordination spheres that are defined by intramolecular hydrogen bonds between the FeIIIOH unit and the urea NH groups. Structural trends were observed between the number of hydrogen bonds and the Fe–Ohydroxo bond distances: the more intramolecular hydrogen bonds there were, the longer the Fe–O bond became. Spectroscopic trends were also found, including an increase in the energy of the O–H vibrations with a decrease in the number of hydrogen bonds. However, the FeIII/II reduction potentials were constant throughout the series (∼2.0 V vs [Cp2Fe]0/+1), which is ascribed to a balancing of the primary and secondary coordination-sphere effects. PMID:18498155

  19. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    NASA Astrophysics Data System (ADS)

    Liriano, Melissa L.; Carrasco, Javier; Lewis, Emily A.; Murphy, Colin J.; Lawton, Timothy J.; Marcinkowski, Matthew D.; Therrien, Andrew J.; Michaelides, Angelos; Sykes, E. Charles H.

    2016-03-01

    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule's intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the network's enantioselective interaction with other molecules.

  20. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liriano, Melissa L.; Lewis, Emily A.; Murphy, Colin J.

    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopicmore » understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule’s intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the network’s enantioselective interaction with other molecules.« less

  1. 3-(4-Methoxy­phen­yl)pent-2-ene-1,5-dioic acid

    PubMed Central

    Das, Ushati; Chheda, Shardul B.; Pednekar, Suhas R.; Karambelkar, Narendra P; Guru Row, T. N.

    2008-01-01

    In the title compound, C12H12O5, mol­ecules are linked into anti­parallel hydrogen-bonded sheets through inversion dimers generated via two O—H⋯O hydrogen bonds. Using the R 2 2(8) motif as a building block, hydrogen-bonded chains of a C 2 2(8) superstructure are then generated. PMID:21581357

  2. High-Resolution Crystal Structures of Protein Helices Reconciled with Three-Centered Hydrogen Bonds and Multipole Electrostatics

    PubMed Central

    Kuster, Daniel J.; Liu, Chengyu; Fang, Zheng; Ponder, Jay W.; Marshall, Garland R.

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.613 α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.613/10-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole force fields and assumed secondary structures used in low-resolution refinement of electron density of proteins, such structures in the PDB often show linear hydrogen bonding. PMID:25894612

  3. High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.

    PubMed

    Kuster, Daniel J; Liu, Chengyu; Fang, Zheng; Ponder, Jay W; Marshall, Garland R

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole force fields and assumed secondary structures used in low-resolution refinement of electron density of proteins, such structures in the PDB often show linear hydrogen bonding.

  4. TDDFT study of twisted intramolecular charge transfer and intermolecular double proton transfer in the excited state of 4‧-dimethylaminoflavonol in ethanol solvent

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Shi, Ying; Cong, Lin; Li, Hui

    2015-02-01

    Time-dependent density functional theory method at the def-TZVP/B3LYP level was employed to investigate the intramolecular and intermolecular hydrogen bonding dynamics in the first excited (S1) state of 4‧-dimethylaminoflavonol (DMAF) monomer and in ethanol solution. In the DMAF monomer, we demonstrated that the intramolecular charge transfer (ICT) takes place in the S1 state. This excited state ICT process was followed by intramolecular proton transfer. Our calculated results are in good agreement with the mechanism proposed in experimental work. For the hydrogen-bonded DMAF-EtOH complex, it was demonstrated that the intermolecular hydrogen bonds can induce the formation of the twisted intramolecular charge transfer (TICT) state and the conformational twisting is along the C3-C4 bond. Moreover, the intermolecular hydrogen bonds can also facilitate the intermolecular double proton transfer in the TICT state. A stepwise intermolecular double proton transfer process was revealed. Therefore, the intermolecular hydrogen bonds can alter the mechanism of intramolecular charge transfer and proton transfer in the excited state for the DMAF molecule.

  5. Amide-N-oxide heterosynthon and amide dimer homosynthon in cocrystals of carboxamide drugs and pyridine N-oxides.

    PubMed

    Babu, N Jagadeesh; Reddy, L Sreenivas; Nangia, Ashwini

    2007-01-01

    The carboxamide-pyridine N-oxide heterosynthon is sustained by syn(amide)N-H...O-(oxide) hydrogen bond and auxiliary (N-oxide)C-H...O(amide) interaction (Reddy, L. S.; Babu, N. J.; Nangia, A. Chem. Commun. 2006, 1369). We evaluate the scope and utility of this heterosynthon in amide-containing molecules and drugs (active pharmaceutical ingredients, APIs) with pyridine N-oxide cocrystal former molecules (CCFs). Out of 10 cocrystals in this study and 7 complexes from previous work, amide-N-oxide heterosynthon is present in 12 structures and amide dimer homosynthon occurs in 5 structures. The amide dimer is favored over amide-N-oxide synthon in cocrystals when there is competition from another H-bonding functional group, e.g., 4-hydroxybenzamide, or because of steric factors, as in carbamazepine API. The molecular organization in carbamazepine.quinoxaline N,N'-dioxide 1:1 cocrystal structure is directed by amide homodimer and anti(amide)N-H...O-(oxide) hydrogen bond. Its X-ray crystal structure matches with the third lowest energy frame calculated in Polymorph Predictor (Cerius(2), COMPASS force field). Apart from generating new and diverse supramolecular structures, hydration is controlled in one substance. 4-Picoline N-oxide deliquesces within a day, but its cocrystal with barbital does not absorb moisture at 50% RH and 30 degrees C up to four weeks. Amide-N-oxide heterosynthon has potential utility in both amide and N-oxide type drug molecules with complementary CCFs. Its occurrence probability in the Cambridge Structural Database is 87% among 27 structures without competing acceptors and 78% in 41 structures containing OH, NH, H(2)O functional groups.

  6. Discontinuities-free complete-active-space state–specific multi–reference coupled cluster theory for describing bond stretching and dissociation

    DOE PAGES

    Zaporozhets, Irina A.; Ivanov, Vladimir V.; Lyakh, Dmitry I.; ...

    2015-07-13

    The earlier proposed multi-reference state-specific coupled-cluster theory with the complete active space reference suffered from a problem of energy discontinuities when the formal reference state was changing in the calculation of the potential energy curve (PEC). A simple remedy to the discontinuity problem is found and is presented in this work. It involves using natural complete active space self-consistent field active orbitals in the complete active space coupled-cluster calculations. As a result, the approach gives smooth PECs for different types of dissociation problems, as illustrated in the calculations of the dissociation of the single bond in the hydrogen fluorine moleculemore » and of the symmetric double-bond dissociation in the water molecule.« less

  7. Three-dimensional aromatic networks.

    PubMed

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  8. Characterization of the hydrogen-bond network of water around sucrose and trehalose: H-O-H bending analysis

    NASA Astrophysics Data System (ADS)

    Shiraga, Keiichiro; Adachi, Aya; Ogawa, Yuichi

    2017-06-01

    The bioprotective properties of disaccharides have been linked to destructuring effect on the hydrogen-bond structure of the interfacial water around the disaccharide solute, but its detailed mechanisms are yet to be provided. In this study, we characterized the destructuring effect based on the complex dielectric constants of interfacial water around sucrose and trehalose in the H-O-H bending region. Our analysis showed that the destructuring effect around disaccharides involves substantial disordering of the hydrogen-bond structure and formation of strong disaccharide-water hydrogen-bond. Such a destructuring effect caused by disaccharides is totally distinct from what happens with temperature increases of neat water.

  9. Ethyl 4-(4-hydroxy­phen­yl)-6-methyl-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate monohydrate

    PubMed Central

    Das, Ushati; Chheda, Shardul B.; Pednekar, Suhas R.; Karambelkar, Narendra P; Guru Row, T. N.

    2008-01-01

    There are three formula units in the asymmetric unit of the title compound, C14H16N2O4·H2O. Mol­ecules are linked by N—H⋯O hydrogen bonds into dimers with the common R 2 2(8) graph-set motif. Between dimers, single N—H⋯O hydrogen bonds are formed between the other N—H group of each pyrimidine ring and the hydroxyl groups. The water mol­ecules accept O—H⋯O hydrogen bonds from the hydroxyl groups and donate hydrogen bonds to the ester groups. PMID:21581452

  10. An ab initio cluster study of the chemisorption of atomic cesium and hydrogen on reconstructed surfaces of gallium rich gallium arsenide

    NASA Astrophysics Data System (ADS)

    Schailey, Ronald

    1999-11-01

    Chemisorption properties of cesium and hydrogen atoms on the Ga-rich GaAs (100) (2 x 1), (2 x 2), and β(4 x 2) surfaces are investigated using ab initio self-consistent restricted open shell Hartree-Fock (ROHF) total energy calculations with Hay- Wadt effective core potentials. The effects of electron correlation have been included using many-body perturbation theory through second order, with the exception of β(4 x 2) symmetry due to computational limitations. The semiconductor surface is modeled by finite sized hydrogen saturated clusters. The effects of surface relaxation and reconstruction have been investigated in detail. Results are given for the energetics of chemisorption, charge population analysis, HOMO-LUMO gaps, and consequent possibilities of metallization for atomic cesium adsorption. For the chemisorption of atomic hydrogen, the experimentally verified mechanism of surface dimer bond breaking is investigated in detail.

  11. Ultrafast Hydrogen-Bonding Dynamics in Amyloid Fibrils.

    PubMed

    Pazos, Ileana M; Ma, Jianqiang; Mukherjee, Debopreeti; Gai, Feng

    2018-06-08

    While there are many studies on the subject of hydrogen bonding dynamics in biological systems, few, if any, have investigated this fundamental process in amyloid fibrils. Herein, we seek to add insight into this topic by assessing the dynamics of a hydrogen bond buried in the dry interface of amyloid fibrils. To prepare a suitable model peptide system for this purpose, we introduce two mutations into the amyloid-forming Aβ(16-22) peptide. The first one is a lysine analog at position 19, which is used to help form structurally homogeneous fibrils, and the second one is an aspartic acid derivative (DM) at position 17, which is intended (1) to be used as a site-specific infrared probe and (2) to serve as a hydrogen-bond acceptor to lysine so that an inter-β-sheet hydrogen bond can be formed in the fibrils. Using both infrared spectroscopy and atomic force microscopy, we show that (1) this mutant peptide indeed forms well defined fibrils, (2) when bulk solvent is removed, there is no detectable water present in the fibrils, (3) infrared results obtained with the DM probe are consistent with a protofibril structure that is composed of two antiparallel β-sheets stacked in a parallel fashion, leading to formation of the expected hydrogen bond. Using two-dimensional infrared spectroscopy, we further show that the dynamics of this hydrogen bond occur on a timescale of ~2.3 ps, which is attributed to the rapid rotation of the -NH3+ group of lysine around its Cε-Nζ bond. Taken together, these results suggest that (1) DM is a useful infrared marker in facilitating structure determination of amyloid fibrils and (2) even in the tightly packed core of amyloid fibrils certain amino acid sidechains can undergo ultrafast motions, hence contributing to the thermodynamic stability of the system.

  12. Supramolecular packing and polymorph screening of N-isonicotinoyl arylketone hydrazones with phenol and amino modifications

    NASA Astrophysics Data System (ADS)

    Hean, Duane; Michael, Joseph P.; Lemmerer, Andreas

    2018-04-01

    Thirteen structural variants based on the (E)-N‧-(1-arylethylidene)pyridohydrazide template were prepared, investigated and screened for possible polymorphic behaviour. Four variants showed from Differential Scanning Calorimetry Scans thermal events indicative of new solid-state phases. The thirteen variants included substituents R = sbnd OH or sbnd NH2 placed at ortho, meta and para positions on the phenyl ring; and shifting the pyridyl nitrogen between positions 4-, 3- and 2-. The crystal structures of twelve of the compounds were determined to explore their supramolecular structures. The outcomes of these modifications demonstrated that the pyridyl nitrogen at the 2- position is 'locked' by forming a hydrogen bond with the amide hydrogen; while placing the pyridyl nitrogen at positions 3- and 4- offers a greater opportunity for hydrogen bonding with neighbouring molecules. Such interactions include Osbnd H⋯N, Nsbnd H⋯N, Osbnd H⋯O, Nsbnd H⋯O, Nsbnd H⋯π, π⋯π stacking, as well as other weaker interactions such as Csbnd H⋯N, Csbnd H⋯O, Csbnd H⋯N(pyridyl). When OH or NH2 donors are placed in the ortho position, an intramolecular hydrogen bond is formed between the acceptor hydrazone nitrogen and the respective donor. The meta- and para-positioned donors form an unpredictable array of supramolecular structures by forming hydrogen-bonded chains with the pyridyl nitrogen and carbonyl acceptors respectively. In addition to the intramolecular and chain hydrogen bond formation demonstrated throughout the crystal structures under investigation, larger order hydrogen-bonded rings were also observed in some of the supramolecular aggregations. The extent of the hydrogen-bonded ring formations range from two to six molecular participants depending on the specific crystal structure.

  13. Orientation hydrogen-bonding effect on vibronic spectra of isoquinoline in water solvent: Franck-Condon simulation and interpretation

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hui; Wang, Shi-Ming; Wang, Chen-Wen; Zhu, Chaoyuan; Han, Ke-Li; Lin, Sheng-Hsien

    2016-10-01

    The excited-state orientation hydrogen-bonding dynamics, and vibronic spectra of isoquinoline (IQ) and its cationic form IQc in water have been investigated at the time-dependent density functional theory quantum chemistry level plus Franck-Condon simulation and interpretation. The excited-state orientation hydrogen bond strengthening has been found in IQ:H2O complex due to the charge redistribution upon excitation; this is interpreted by simulated 1:1 mixed absorption spectra of free IQ and IQ:H2O complex having best agreement with experimental results. Conversely, the orientation hydrogen bond in IQc:H2O complex would be strongly weakening in the S1 state and this is interpreted by simulated absorption spectra of free IQc having best agreement with experimental results. By performing Franck-Condon simulation, it reveals that several important vibrational normal modes with frequencies about 1250 cm-1 involving the wagging motion of the hydrogen atoms are very sensitive to the formation of the orientation hydrogen bond for the IQ/IQc:H2O complex and this is confirmed by damped Franck-Condon simulation with free IQ/IQc in water. However, the emission spectra of the IQ and IQc in water have been found differently. Upon the excitation, the simulated fluorescence of IQ in water is dominated by the IQ:H2O complex; thus hydrogen bond between IQ and H2O is much easier to form in the S1 state. While the weakened hydrogen bond in IQc:H2O complex is probably cleaved upon the laser pulse because the simulated emission spectrum of the free IQc is in better agreement with the experimental results.

  14. Mechanistic Insights on the Hydrogenation of α,β-Unsaturated Ketones and Aldehydes to Unsaturated Alcohols over Metal Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ide, Matthew S.; Hao, Bing; Neurock, Matthew

    The selective hydrogenation of unsaturated ketones (methyl vinyl ketone and benzalacetone) and unsaturated aldehydes (crotonaldehyde and cinnamaldehyde) was carried out with H₂ at 2 bar absolute over Pd/C, Pt/C, Ru/C, Au/C, Au/TiO₂, or Au/Fe₂O₃ catalysts in ethanol or water solvent at 333 K. Comparison of the turnover frequencies revealed Pd/C to be the most active hydrogenation catalyst, but the catalyst failed to produce unsaturated alcohols, indicating hydrogenation of the C=C bond was highly preferred over the C=O bond on Pd. The Pt and Ru catalysts were able to produce unsaturated alcohols from unsaturated aldehydes, but not from unsaturated ketones. Althoughmore » Au/ Fe₂O₃ was able to partially hydrogenate unsaturated ketones to unsaturated alcohols, the overall hydrogenation rate over gold was the lowest of all of the metals examined. First-principles density functional theory calculations were therefore used to explore the reactivity trends of methyl vinyl ketone (MVK) and benzalacetone (BA) hydrogenation over model Pt(111) and Ru(0001) surfaces. The observed selectivity over these metals is likely controlled by the significantly higher activation barriers to hydrogenate the C=O bond compared with those required to hydrogenate the C=C bond. Both the unsaturated alcohol and the saturated ketone, which are the primary reaction products, are strongly bound to Ru and can react further to the saturated alcohol. The lower calculated barriers for the hydrogenation steps over Pt compared with Ru account for the higher observed turnover frequencies for the hydrogenation of MVK and BA over Pt. The presence of a phenyl substituent α to the C=C bond in BA increased the barrier for C=C hydrogenation over those associated with the C=C bond in MVK; however, the increase in barriers with phenyl substitution was not adequate to reverse the selectivity trend.« less

  15. Effect of surface treatment of fiberglass posts on bond strength to root dentin.

    PubMed

    Valdivia, Andréa Dolores Correia Miranda; Novais, Veridiana Resende; Menezes, Murilo de Sousa; Roscoe, Marina Guimarães; Estrela, Carlos; Soares, Carlos José

    2014-01-01

    This study evaluated the influence of the surface treatments of fiberglass posts on bond strength to root dentin using push-out test. Forty bovine incisor roots were endodontically treated. The surface of the fiberglass posts (Exacto #2, Angelus) were treated using 4 different protocols (n=10): Control - 70% ethanol for 1 min; 37% phosphoric acid for 1 min; 10% hydrofluoric acid for 1 min; and 24% hydrogen peroxide for 1 min. After a silane coupling agent was applied for 1 min and all posts were cemented using self-adhesive resin cement (RelyX Unicem, 3M-ESPE). The roots were sectioned and two 1-mm-thick slices were obtained from each third: cervical, middle and apical. The specimens were subjected to the push-out test with a crosshead speed of 0.5 mm/min. Data were analyzed by repeated measures ANOVA followed by Tukey's HSD tests (=0.05). The surface treatment (p<0.001) and root third region (p=0.007) factors were significant. The retention to root canal was affected by surface treatment type. The post surface treatment with 24% hydrogen peroxide for 1 min yielded significantly higher bond strength when the fiberglass posts were cemented with RelyX Unicem.

  16. Aqueous heterogeneity at the air/water interface revealed by 2D-HD-SFG spectroscopy.

    PubMed

    Hsieh, Cho-Shuen; Okuno, Masanari; Hunger, Johannes; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa

    2014-07-28

    Water molecules interact strongly with each other through hydrogen bonds. This efficient intermolecular coupling causes strong delocalization of molecular vibrations in bulk water. We study intermolecular coupling at the air/water interface and find intermolecular coupling 1) to be significantly reduced and 2) to vary strongly for different water molecules at the interface--whereas in bulk water the coupling is homogeneous. For strongly hydrogen-bonded OH groups, coupling is roughly half of that of bulk water, due to the lower density in the near-surface region. For weakly hydrogen-bonded OH groups that absorb around 3500 cm(-1), which are assigned to the outermost, yet hydrogen-bonded OH groups pointing towards the liquid, coupling is further reduced by an additional factor of 2. Remarkably, despite the reduced structural constraints imposed by the interfacial hydrogen-bond environment, the structural relaxation is slow and the intermolecular coupling of these water molecules is weak. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Facile and Promising Method for Michael Addition of Indole and Pyrrole to Electron-Deficient trans-β-Nitroolefins Catalyzed by a Hydrogen Bond Donor Catalyst Feist's Acid and Preliminary Study of Antimicrobial Activity

    PubMed Central

    Al Majid, Abdullah M. A.; Islam, Mohammad Shahidul; Barakat, Assem; Al-Agamy, Mohamed H. M.; Naushad, Mu.

    2014-01-01

    The importance of cooperative hydrogen-bonding effects has been demonstrated using novel 3-methylenecyclopropane-1,2-dicarboxylic acid (Feist's acid (FA)) as hydrogen bond donor catalysts for the addition of indole and pyrrole to trans-β-nitrostyrene derivatives. Because of the hydrogen bond donor (HBD) ability, Feist's acid (FA) has been introduced as a new class of hydrogen bond donor catalysts for the activation of nitroolefin towards nucleophilic substitution reaction. It has effectively catalyzed the Michael addition of indoles and pyrrole to β-nitroolefins under optimum reaction condition to furnish the corresponding Michael adducts in good to excellent yields (up to 98%). The method is general, atom-economical, convenient, and eco-friendly and could provide excellent yields and regioselectivities. Some newly synthesized compounds were for examined in vitro antimicrobial activity and their preliminary results are reported. PMID:24574906

  18. Insight into hydrogen bonding of uranyl hydroxide layers and capsules by use of 1H magic-angle spinning NMR spectroscopy [Insight into the hydrogen bonding for uranyl hydroxides using 1H MAS NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Todd M.; Liao, Zuolei; Nyman, May

    Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less

  19. C sbnd H…F hydrogen bonds as the organising force in F-substituted α-phenyl cinnamic acid aggregates studied by the combination of FTIR spectroscopy and computations

    NASA Astrophysics Data System (ADS)

    Tolnai, B.; Kiss, J. T.; Felföldi, K.; Pálinkó, I.

    2009-04-01

    Various F-substituted E-2,3-diphenyl propenoic acid molecules were synthesised and their aggregation behaviour was studied by experimental (FT-IR spectroscopy) and computational (semiempirical and DFT) methods. Experimental approach embraced the identification of potential hydrogen bonding sites through finding the relevant IR bands and monitoring their shifts upon increasing the acid concentration and on going to the solid state. It was found that fluorine engaged in C sbnd H…F hydrogen bonding easily, where the carbon atom could be of any kind available in the molecule (aromatic, aliphatic or olefinic). Shifts were found even in moderately concentrated solutions and in the solid state too. Hydrogen bonding sites could be assigned and relevant aggregate models could be built. Molecular modelling allowed obtaining good estimates for hydrogen bond lengths and angles and visualisation of the geometric arrangements even of extended networks also became feasible.

  20. Toward prediction of alkane/water partition coefficients.

    PubMed

    Toulmin, Anita; Wood, J Matthew; Kenny, Peter W

    2008-07-10

    Partition coefficients were measured for 47 compounds in the hexadecane/water ( P hxd) and 1-octanol/water ( P oct) systems. Some types of hydrogen bond acceptor presented by these compounds to the partitioning systems are not well represented in the literature of alkane/water partitioning. The difference, DeltalogP, between logP oct and logP hxd is a measure of the hydrogen bonding potential of a molecule and is identified as a target for predictive modeling. Minimized molecular electrostatic potential ( V min) was shown to be an effective predictor of the contribution of hydrogen bond acceptors to DeltalogP. Carbonyl oxygen atoms were found to be stronger hydrogen bond acceptors for their electrostatic potential than heteroaromatic nitrogen or oxygen bound to hypervalent sulfur or nitrogen. Values of V min calculated for hydrogen-bonded complexes were used to explore polarization effects. Predicted logP hxd and DeltalogP were shown to be more effective than logP oct for modeling brain penetration for a data set of 18 compounds.

Top