Sample records for self-consistent coronal heating

  1. Flux-tube divergence, coronal heating, and the solar wind

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.

    1993-01-01

    Using model calculations based on a self-consistent treatment of the coronal energy balance, we show how the magnetic flux-tube divergence rate controls the coronal temperature and the properties of the solar wind. For a fixed input of mechanical and Alfven-wave energy at the coronal base, we find that as the divergence rate increases, the maximum coronal temperature decreases but the mass flux leaving the sun gradually increases. As a result, the asymptotic wind speed decreases with increasing expansion factor near the sun, in agreement with empirical studies. As noted earlier by Withbroe, the calculated mass flux at the sun is remarkably insensitive to parameter variations; when combined with magnetohydrodynamic considerations, this self-regulatory property of the model explains the observed constancy of the mass flux at earth.

  2. Solar flare model atmospheres

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.

    1993-01-01

    Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.

  3. A Spectroscopic Study of the Energy Deposition in the Low Corona: Connecting Global Modeling to Observations

    NASA Astrophysics Data System (ADS)

    Szente, J.; Landi, E.; Toth, G.; Manchester, W.; van der Holst, B.; Gombosi, T. I.

    2017-12-01

    We are looking for signatures of coronal heating process using a physically consistent 3D MHD model of the global corona. Our approach is based on the Alfvén Wave Solar atmosphere Model (AWSoM), with a domain ranging from the upper chromosphere (50,000K) to the outer corona, and the solar wind is self-consistently heated and accelerated by the dissipation of low-frequency Alfvén waves. Taking into account separate electron and anisotropic proton heating, we model the coronal plasma at the same time and location as observed by Hinode/EIS, and calculate the synthetic spectra that we compare with the observations. With the obtained synthetic spectra, we are able to directly calculate line intensities, line width, thermal and nonthermal motions, line centroids, Doppler shift distributions and compare our predictions to real measurements. Our results directly test the extent to which Alfvénic heating is present in the low corona.

  4. CLOSED-FIELD CORONAL HEATING DRIVEN BY WAVE TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downs, Cooper; Lionello, Roberto; Mikić, Zoran

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditionsmore » is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.« less

  5. Closed-field Coronal Heating Driven by Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Downs, Cooper; Lionello, Roberto; Mikić, Zoran; Linker, Jon A.; Velli, Marco

    2016-12-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.

  6. The Interaction of Coronal Mass Ejections with Alfvénic Turbulence

    NASA Astrophysics Data System (ADS)

    Manchester, Ward, IV; Van Der Holst, Bart

    2017-09-01

    We provide a first attempt to understand the interaction between Alfvén wave turbulence, kinetic instabilities and temperature anisotropies in the environment of a fast coronal mass ejection (CME) near the Sun. The impact of a fast CME on the solar corona causes turbulent energy, thermal energy and dissipative heating to increase by orders of magnitude, and produces conditions suitable for a host of kinetic instabilities. We study these CME-induced effects with the recently developed Alfvén Wave Solar Model, with which we are able to self-consistently simulate the turbulent energy transport and dissipation as well as isotropic electron heating and anisotropic proton heating. Furthermore, the model also offers the capability to address the effects of fire hose, mirror mode, and cyclotron kinetic instabilities on proton energy partitioning all in a global-scale numerical simulation. We find amplified turbulent energy in the CME sheath, along with strong wave reflection at the shock combine to cause wave dissipation rates to increase by more than a factor of 100. In contrast, wave energy is greatly diminished by adiabatic expansion in the flux rope. Finally, we find proton temperature anisotropies are limited by kinetic instabilities to a level consistent with solar wind observations.

  7. The Interaction of Coronal Mass Ejections with Alfvenic Turbulence

    NASA Astrophysics Data System (ADS)

    Manchester, W.; van der Holst, B.

    2017-12-01

    We provide a first attempt to understand the interaction between Alfven wave turbulence, kinetic instabilities and temperature anisotropies in the environment of a fast coronal mass ejection (CME). The impact of a fast CME on the solar corona causes turbulent energy, thermal energy and dissipative heating to increase by orders of magnitude, and produces conditions suitable for a host of kinetic instabilities. We study these CME-induced effects with the recently developed Alfven Wave Solar Model, with which we are able to self-consistently simulate the turbulent energy transport and dissipation as well as isotropic electron heating and anisotropic proton heating. Furthermore, the model also offers the capability to address the effects of firehose, mirror mode, and cyclotron kinetic instabilities on proton energy partitioning, all in a global-scale numerical simulation. We find turbulent energy greatly enhanced in the CME sheath, strong wave reflection at the shock, which leads to wave dissipation rates increasing by more than a factor of 100. In contrast, wave energy is greatly diminished by adiabatic expansion in the flux rope. Finally, we find proton temperature anisotropies are limited by kinetic instabilities to a level consistent with solar wind observations.

  8. A Self-consistent Model of the Coronal Heating and Solar Wind Acceleration Including Compressible and Incompressible Heating Processes

    NASA Astrophysics Data System (ADS)

    Shoda, Munehito; Yokoyama, Takaaki; Suzuki, Takeru K.

    2018-02-01

    We propose a novel one-dimensional model that includes both shock and turbulence heating and qualify how these processes contribute to heating the corona and driving the solar wind. Compressible MHD simulations allow us to automatically consider shock formation and dissipation, while turbulent dissipation is modeled via a one-point closure based on Alfvén wave turbulence. Numerical simulations were conducted with different photospheric perpendicular correlation lengths {λ }0, which is a critical parameter of Alfvén wave turbulence, and different root-mean-square photospheric transverse-wave amplitudes δ {v}0. For the various {λ }0, we obtain a low-temperature chromosphere, high-temperature corona, and supersonic solar wind. Our analysis shows that turbulence heating is always dominant when {λ }0≲ 1 {Mm}. This result does not mean that we can ignore the compressibility because the analysis indicates that the compressible waves and their associated density fluctuations enhance the Alfvén wave reflection and therefore the turbulence heating. The density fluctuation and the cross-helicity are strongly affected by {λ }0, while the coronal temperature and mass-loss rate depend weakly on {λ }0.

  9. SELF-ORGANIZATION OF RECONNECTING PLASMAS TO MARGINAL COLLISIONALITY IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imada, S.; Zweibel, E. G.

    We explore the suggestions by Uzdensky and Cassak et al. that coronal loops heated by magnetic reconnection should self-organize to a state of marginal collisionality. We discuss their model of coronal loop dynamics with a one-dimensional hydrodynamic calculation. We assume that many current sheets are present, with a distribution of thicknesses, but that only current sheets thinner than the ion skin depth can rapidly reconnect. This assumption naturally causes a density-dependent heating rate which is actively regulated by the plasma. We report nine numerical simulation results of coronal loop hydrodynamics in which the absolute values of the heating rates aremore » different but their density dependences are the same. We find two regimes of behavior, depending on the amplitude of the heating rate. In the case that the amplitude of heating is below a threshold value, the loop is in stable equilibrium. Typically, the upper and less dense part of a coronal loop is collisionlessly heated and conductively cooled. When the amplitude of heating is above the threshold, the conductive flux to the lower atmosphere required to balance collisionless heating drives an evaporative flow which quenches fast reconnection, ultimately cooling and draining the loop until the cycle begins again. The key elements of this cycle are gravity and the density dependence of the heating function. Some additional factors are present, including pressure-driven flows from the loop top, which carry a large enthalpy flux and play an important role in reducing the density. We find that on average the density of the system is close to the marginally collisionless value.« less

  10. Self consistent MHD modeling of the solar wind from coronal holes with distinct geometries

    NASA Technical Reports Server (NTRS)

    Stewart, G. A.; Bravo, S.

    1995-01-01

    Utilizing an iterative scheme, a self-consistent axisymmetric MHD model for the solar wind has been developed. We use this model to evaluate the properties of the solar wind issuing from the open polar coronal hole regions of the Sun, during solar minimum. We explore the variation of solar wind parameters across the extent of the hole and we investigate how these variations are affected by the geometry of the hole and the strength of the field at the coronal base.

  11. Coronal Heating and the Magnetic Flux Content of the Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Previously, from analysis of SOHO coronal images in combination with Kitt Peak magnetograms, we found that the quiet corona is the sum of two components: the large-scale corona and the coronal network. The large-scale corona consists of all coronal-temperature (T approximately 10(exp 6) K) structures larger than supergranules (greater than approximately 30,000 kilometers). The coronal network (1) consists of all coronal-temperature structures smaller than supergranules, (2) is rooted in and loosely traces the photospheric magnetic network, (3) has its brightest features seated on polarity dividing lines (neutral lines) in the network magnetic flux, and (4) produces only about 5% of the total coronal emission in quiet regions. The heating of the coronal network is apparently magnetic in origin. Here, from analysis of EIT coronal images of quiet regions in combination with magnetograms of the same quiet regions from SOHO/MDI and from Kitt Peak, we examine the other 95% of the quiet corona and its relation to the underlying magnetic network. We find: (1) Dividing the large-scale corona into its bright and dim halves divides the area into bright "continents" and dark "oceans" having spans of 2-4 supergranules. (2) These patterns are also present in the photospheric magnetograms: the network is stronger under the bright half and weaker under the dim half. (3) The radiation from the large-scale corona increases roughly as the cube root of the magnetic flux content of the underlying magnetic network. In contrast, the coronal radiation from an active region increases roughly linearly with the magnetic flux content of the active region. We assume, as is widely held, that nearly all of the large-scale corona is magnetically rooted in the network. Our results suggest that either the coronal heating in quiet regions has a large non-magnetic component, or, if the heating is predominantly produced via the magnetic field, the mechanism is significantly different than in active regions.

  12. Plasma properties and magnetic field structure of the solar corona, based on coordinated Max 1991 observations from SERTS, the VLA, and magnetographs

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.

    1995-01-01

    The purposes of this investigation are to use existing, calibrated, coaligned sets of coordinated multiwaveband observations of the Sun to determine the coronal magnetic field strength and structure, and interpret the collective observations in terms of a self-consistent model of the coronal plasma and magnetic field. This information is vital to understanding processes such as coronal heating, solar wind acceleration, pre-flare energy storage, and active region evolution. Understanding these processes is the central theme of Max '91, the NASA-supported series of solar observing campaigns under which the observations acquired for this work were obtained. The observations came from NASA/GSFC's Solar EUV Rocket Telescope and Spectrograph (SERTS), the Very Large Array (VLA), and magnetographs. The technique of calculating the coronal magnetic field is to establish the contributions to the microwave emission from the two main emission mechanisms: thermal bremsstrahlung and thermal gyroemission. This is done by using the EUV emission to determine values of the coronal plasma quantities needed to calculate the thermal bremsstrahlung contribution to the microwave emission. Once the microwave emission mechanism(s) are determined, the coronal magnetic field can be calculated. A comparison of the coronal magnetic field derived from the coordinated multiwaveband observations with extrapolations from photospheric magnetograms will provide insight into the nature of the coronal magnetic field.

  13. MULTI-STRAND CORONAL LOOP MODEL AND FILTER-RATIO ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourouaine, Sofiane; Marsch, Eckart, E-mail: bourouaine@mps.mpg.d

    2010-01-10

    We model a coronal loop as a bundle of seven separate strands or filaments. Each of the loop strands used in this model can independently be heated (near their left footpoints) by Alfven/ion-cyclotron waves via wave-particle interactions. The Alfven waves are assumed to penetrate the strands from their footpoints, at which we consider different wave energy inputs. As a result, the loop strands can have different heating profiles, and the differential heating can lead to a varying cross-field temperature in the total coronal loop. The simulation of Transition Region and Coronal Explorer (TRACE) observations by means of this loop modelmore » implies two uniform temperatures along the loop length, one inferred from the 171:195 filter ratio and the other from the 171:284 ratio. The reproduced flat temperature profiles are consistent with those inferred from the observed extreme-ultraviolet coronal loops. According to our model, the flat temperature profile is a consequence of the coronal loop consisting of filaments, which have different temperatures but almost similar emission measures in the cross-field direction. Furthermore, when we assume certain errors in the simulated loop emissions (e.g., due to photometric uncertainties in the TRACE filters) and use the triple-filter analysis, our simulated loop conditions become consistent with those of an isothermal plasma. This implies that the use of TRACE or EUV Imaging Telescope triple filters for observation of a warm coronal loop may not help in determining whether the cross-field isothermal assumption is satisfied or not.« less

  14. CONSTRAINING A MODEL OF TURBULENT CORONAL HEATING FOR AU MICROSCOPII WITH X-RAY, RADIO, AND MILLIMETER OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cranmer, Steven R.; Wilner, David J.; MacGregor, Meredith A.

    2013-08-01

    Many low-mass pre-main-sequence stars exhibit strong magnetic activity and coronal X-ray emission. Even after the primordial accretion disk has been cleared out, the star's high-energy radiation continues to affect the formation and evolution of dust, planetesimals, and large planets. Young stars with debris disks are thus ideal environments for studying the earliest stages of non-accretion-driven coronae. In this paper we simulate the corona of AU Mic, a nearby active M dwarf with an edge-on debris disk. We apply a self-consistent model of coronal loop heating that was derived from numerical simulations of solar field-line tangling and magnetohydrodynamic turbulence. We alsomore » synthesize the modeled star's X-ray luminosity and thermal radio/millimeter continuum emission. A realistic set of parameter choices for AU Mic produces simulated observations that agree with all existing measurements and upper limits. This coronal model thus represents an alternative explanation for a recently discovered ALMA central emission peak that was suggested to be the result of an inner 'asteroid belt' within 3 AU of the star. However, it is also possible that the central 1.3 mm peak is caused by a combination of active coronal emission and a bright inner source of dusty debris. Additional observations of this source's spatial extent and spectral energy distribution at millimeter and radio wavelengths will better constrain the relative contributions of the proposed mechanisms.« less

  15. Closed Field Coronal Heating Models Inspired by Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M. M.

    2013-12-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence dissipation (WTD) phenomenology for the heating of closed coronal loops. To do so, we employ an implementation of non-WKB equations designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic equations in 1D for an idealized loop, and the relevance to a range of solar conditions is established by computing solutions for several hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-sun and active region conditions. The importance of the self-reflection term in producing realistic heating scale heights and thermal non-equilibrium cycles is discussed, and preliminary 3D thermodynamic MHD simulations using this formulation are presented. Research supported by NASA and NSF.

  16. AN INVESTIGATION OF TIME LAG MAPS USING THREE-DIMENSIONAL SIMULATIONS OF HIGHLY STRATIFIED HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winebarger, Amy R.; Lionello, Roberto; Downs, Cooper

    2016-11-10

    The location and frequency of coronal energy release provide a significant constraint on the coronal heating mechanism. The evolution of the intensity observed in coronal structures found from time lag analysis of Atmospheric Imaging Assembly (AIA) data has been used to argue that heating must occur sporadically. Recently, we have demonstrated that quasi-steady, highly stratified (footpoint) heating can produce results qualitatively consistent with the evolution of observed coronal structures. The goals of this paper are to demonstrate that time lag analysis of 3D simulations of footpoint heating are qualitatively consistent with time lag analysis of observations and to use themore » 3D simulations to further understand whether time lag analysis is a useful tool in defining the evolution of coronal structures. We find the time lag maps generated from simulated data are consistent with the observed time lag maps. We next investigate several example points. In some cases, the calculated time lag reflects the evolution of a unique loop along the line of sight, though there may be additional evolving structures along the line of sight. We confirm that using the multi-peak AIA channels can produce time lags that are difficult to interpret. We suggest using a different high temperature channel, such as an X-ray channel. Finally, we find that multiple evolving structures along the line of sight can produce time lags that do not represent the physical properties of any structure along the line of sight, although the cross-correlation coefficient of the lightcurves is high. Considering the projected geometry of the loops may reduce some of the line-of-sight confusion.« less

  17. NUMERICAL SIMULATIONS OF CORONAL HEATING THROUGH FOOTPOINT BRAIDING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansteen, V.; Pontieu, B. De; Carlsson, M.

    2015-10-01

    Advanced three-dimensional (3D) radiative MHD simulations now reproduce many properties of the outer solar atmosphere. When including a domain from the convection zone into the corona, a hot chromosphere and corona are self-consistently maintained. Here we study two realistic models, with different simulated areas, magnetic field strength and topology, and numerical resolution. These are compared in order to characterize the heating in the 3D-MHD simulations which self-consistently maintains the structure of the atmosphere. We analyze the heating at both large and small scales and find that heating is episodic and highly structured in space, but occurs along loop-shaped structures, andmore » moves along with the magnetic field. On large scales we find that the heating per particle is maximal near the transition region and that widely distributed opposite-polarity field in the photosphere leads to a greater heating scale height in the corona. On smaller scales, heating is concentrated in current sheets, the thicknesses of which are set by the numerical resolution. Some current sheets fragment in time, this process occurring more readily in the higher-resolution model leading to spatially highly intermittent heating. The large-scale heating structures are found to fade in less than about five minutes, while the smaller, local, heating shows timescales of the order of two minutes in one model and one minutes in the other, higher-resolution, model.« less

  18. Detection of Heating Processes in Coronal Loops by Soft X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawate, Tomoko; Narukage, Noriyuki; Ishikawa, Shin-nosuke; Imada, Shinsuke

    2017-08-01

    Imaging and Spectroscopic observations in the soft X-ray band will open a new window of the heating/acceleration/transport processes in the solar corona. The soft X-ray spectrum between 0.5 and 10 keV consists of the electron thermal free-free continuum and hot coronal lines such as O VIII, Fe XVII, Mg XI, Si XVII. Intensity of free-free continuum emission is not affected by the population of ions, whereas line intensities especially from highly ionized species have a sensitivity of the timescale of ionization/recombination processes. Thus, spectroscopic observations of both continuum and line intensities have a capability of diagnostics of heating/cooling timescales. We perform a 1D hydrodynamic simulation coupled with the time-dependent ionization, and calculate continuum and line intensities under different heat input conditions in a coronal loop. We also examine the differential emission measure of the coronal loop from the time-integrated soft x-ray spectra. As a result, line intensity shows a departure from the ionization equilibrium and shows different responses depending on the frequency of the heat input. Solar soft X-ray spectroscopic imager will be mounted in the sounding rocket experiment of the Focusing Optics X-ray Solar Imager (FOXSI). This observation will deepen our understanding of heating processes to solve the “coronal heating problem”.

  19. Multiple Ions Resonant Heating and Acceleration by Alfven/cyclotron Fluctuations in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Xie, H.; Ofman, L.

    2003-12-01

    We study the interaction between protons, and multiple minor ions (O5+, He++) and a given cyclotron resonant spectra in coronal hole plasma. One-dimensional hybrid simulations are performed in initially homogeneous, collisionless, magnetized plasma with waves propagating parallel to the background magnetic field. The self-consistent hybrid simulations are used to study how multiple minor species may affect the resonance interaction between a spectrum of waves and the solar wind protons. The results of the simulations provide a clear picture of wave-particle interaction under various coronal conditions, which can explain 1) how multiple minor ions affect the resonant heating and the temperature anisotropy of the solar wind protons by a given wave spectrum; 2) how energy is distributed and transferred among waves and different ion species; 3) the growth and damping of different beam microinstability modes, including both inward and outward waves; 4) the formation of proton double-peak distribution in the solar wind.

  20. On Heating the Sun's Corona by Magnetic Explosions: Feasibility in Active Regions and prospects for Quiet Regions and Coronal Holes

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.; Suess, Steven T.

    1999-01-01

    We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action of the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles. We then apply this magnetic-configuration framework for flare heating to the strong coronal heating observed by the Yohkoh Soft X-ray Telescope in an active region with strongly sheared core fields observed by the MSFC vector magnetograph. All of the strong coronal heating is in continually microflaring sheared core fields or in extended loops rooted against the active core fields. Thus, the strong heating occurs in field configurations consistent with the heating being driven by frequent core-field explosions that are smaller but similar to those in confined flares and flaring arches. From analysis of the thermal and magnetic energetics of two selected core-field microflares and a bright extended loop, we find that (1) it is energetically feasible for the sheared core fields to drive all of the coronal heating in the active region via a staccato of magnetic microexplosions, (2) the microflares at the feet of the extended loop behave as the flares at the feet of flaring arches in that more coronal heating is driven within the active bipole than in the extended loop, (3) the filling factor of the X-ray plasma in the core field microflares and in the extended loop is approximately 0.1, and (4) to release enough magnetic energy for a typical microflare (10^27 - 10^28 erg), a microflaring strand of sheared core field need expand and/or untwist by only a few percent at most. Finally, we point out that (1) the field configurations for strong coronal heating in our example active region (i.e., neutral-line core fields, many embedded in the feet of extended loops) are present in abundance in the magnetic network in quiet regions and coronal holes, and (2) it is known that many network bipoles do microflare and that many produce detectable coronal heating. We therefore propose that exploding sheared core fields are the drivers of most of the heating and dynamics of the solar atmosphere, ranging from the largest and most powerful coronal mass ejections and flares, to the vigorous microflaring and coronal heating in active regions, to the multitude of fine-scale explosive events in the magnetic network. The low-lysing exploding core fields in the network drive microflares, spicules, global coronal heating, and ,consequently, the solar wind.

  1. Coronal Heating and the Magnetic Flux Content of the Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Previously, from analysis of SOHO/EIT coronal images in combination with Kitt Peak magnetograms (Falconer et al 1998, ApJ, 501, 386-396), we found that the quiet corona is the sum of two components: the e-scale corona and the coronal network. The large-scale corona consists of all coronal-temperature (T approx. 10(exp 6) K) structures larger than supergranules (>approx.30,000 km). The coronal network (1) consists of all coronal-temperature structures smaller than supergranules, (2) is rooted in and loosely traces the photospheric magnetic network, (3) has its brightest features seated on polarity dividing fines (neutral lines) in the network magnetic flux, and (4) produces only about 5% of the total coronal emission in quiet regions. The heating of the coronal network is apparently magnetic in origin. Here, from analysis of EIT coronal images of quiet regions in combination with magnetograms of the same quiet regions from SOHO/MDI and from Kitt Peak, we examine the other 95% of the quiet corona and its relation to the underlying magnetic network. We find: (1) Dividing the large-scale corona into its bright and dim halves divides the area into bright "continents" and dark "oceans" having spans of 2-4 supergranules. (2) These patterns are also present in the photospheric magnetograms: the network is stronger under the bright half and weaker under the dim half. (3) The radiation from the large-scale corona increases roughly as the cube root of the magnetic flux content of the underlying magnetic network. In contrast, Fisher et A (1998, ApJ, 508, 985-998) found that the coronal radiation from an active region increases roughly linearly with the magnetic flux content of the active region. We assume, as is widely held, that nearly all of the large-scale corona is magnetically rooted in the network. Our results, together with the result of Fisher et al (1999), suggest that either the coronal heating in quiet regions has a large non-magnetic component, or, if the heating is predominantly produced via the magnetic field, the mechanism is significantly different than in active regions. This work is funded by NASA's Office of Space Science through the Solar Physics Supporting Research and Technology Program and the Sun-Earth Connection Guest Investigator Program.

  2. Microflaring in Low-Lying Core Fields and Extended Coronal Heating in the Quiet Sun

    NASA Technical Reports Server (NTRS)

    Porter, Jason G.; Falconer, D. A.; Moore, Ronald L.

    1999-01-01

    We have previously reported analyses of Yohkoh SXT data examining the relationship between the heating of extended coronal loops (both within and stemming from active regions) and microflaring in core fields lying along neutral lines near their footpoints (J. G. Porter, D. A. Falconer, and R. L. Moore 1998, in Solar Jets and Coronal Plumes, ed. T. Guyenne, ESA SP-421, and references therein). We found a surprisingly poor correlation of intensity variations in the extended loops with individual microflares in the compact heated areas at their feet, despite considerable circumstancial evidence linking the heating processes in these regions. Now, a study of Fe XII image sequences from SOHO EIT show that similar associations of core field structures with the footpoints of very extended coronal features can be found in the quiet Sun. The morphology is consistent with the finding of Wang et al. (1997, ApJ 484, L75) that polar plumes are rooted at sites of mixed polarity in the magnetic network. We find that the upstairs/downstairs intensity variations often follow the trend, identified in the active region observations, of a weak correspondence. Apparently much of the coronal heating in the extended loops is driven by a type of core field magnetic activity that is "cooler" than the events having the coronal signature of microflares, i.e., activity that results in little heating within the core fields themselves. This work was funded by the Solar Physics Branch of NASA's Office of Space Science through the SR&T Program and the SEC Guest Investigator Program.

  3. Signatures of Steady Heating in Time Lag Analysis of Coronal Emission

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2016-01-01

    Among the multitude of methods used to investigate coronal heating, the time lag method of Viall Klimchuk is becoming increasingly prevalent as an analysis technique that is complementary to those that are traditionally used.The time lag method cross correlates light curves at a given spatial location obtained in spectral bands that sample different temperature plasmas. It has been used most extensively with data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. We have previously applied the time lag method to entire active regions and surrounding the quiet Sun and created maps of the results. We find that the majority of time lags are consistent with the cooling of coronal plasma that has been impulsively heated. Additionally, a significant fraction of the map area has a time lag of zero. This does not indicate a lack of variability. Rather, strong variability must be present, and it must occur in phase between the different channels. We have previously shown that these zero time lags are consistent with the transition region response to coronal nanoflares, although other explanations are possible. A common misconception is that the zero time lag indicates steady emission resulting from steady heating. Using simulated and observed light curves, we demonstrate here that highly correlated light curves at zero time lag are not compatible with equilibrium solutions. Such light curves can only be created by evolution

  4. New Evidence that CMEs are Self-Propelled Magnetic Bubbles

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Seuss, Steven T.

    2007-01-01

    We briefly describe the "standard model" for the production of coronal mass ejections (CMEs), and our view of how it works. We then summarize pertinent recent results that we have found from SOHO observations of CMEs and the flares at the sources of these magnetic explosions. These results support our interpretation of the standard model: a CME is basically a self-propelled magnetic bubble, a low-beta plasmoitl, that (1) is built and unleashed by the tether-cutting reconnection that builds and heats the coronal flare arcade, (2) can explode from a flare site that is far from centered under the full-blown CME in the outer corona, and (3) drives itself out into the solar wind by pushing on the surrounding coronal magnetic field.

  5. Turbulent resistive heating of solar coronal arches

    NASA Technical Reports Server (NTRS)

    Benford, G.

    1983-01-01

    The possibility that coronal heating occurs by means of anomalous Joule heating by electrostatic ion cyclotron waves is examined, with consideration given to currents running from foot of a loop to the other. It is assumed that self-fields generated by the currents are absent and currents follow the direction of the magnetic field, allowing the plasma cylinder to expand radially. Ion and electron heating rates are defined within the cylinder, together with longitudinal conduction and convection, radiation and cross-field transport, all in terms of Coulomb and turbulent effects. The dominant force is identified as electrostatic ion cyclotron instability, while ion acoustic modes remain stable. Rapid heating from an initial temperature of 10 eV to 100-1000 eV levels is calculated, with plasma reaching and maintaining a temperature in the 100 eV range. Strong heating is also possible according to the turbulent Ohm's law and by resistive heating.

  6. CORONAL FOURIER POWER SPECTRA: IMPLICATIONS FOR CORONAL SEISMOLOGY AND CORONAL HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ireland, J.; McAteer, R. T. J.; Inglis, A. R., E-mail: jack.ireland@nasa.gov

    The dynamics of regions of the solar corona are investigated using Atmospheric Imaging Assembly 171 Å and 193 Å data. The coronal emission from the quiet Sun, coronal loop footprints, coronal moss, and from above a sunspot is studied. It is shown that the mean Fourier power spectra in these regions can be described by a power law at lower frequencies that tails to a flat spectrum at higher frequencies, plus a Gaussian-shaped contribution that varies depending on the region studied. This Fourier spectral shape is in contrast to the commonly held assumption that coronal time series are well describedmore » by the sum of a long timescale background trend plus Gaussian-distributed noise, with some specific locations also showing an oscillatory signal. The implications of the observed spectral shape on the fields of coronal seismology and the automated detection of oscillations in the corona are discussed. The power-law contribution to the shape of the Fourier power spectrum is interpreted as being due to the summation of a distribution of exponentially decaying emission events along the line of sight. This is consistent with the idea that the solar atmosphere is heated everywhere by small energy deposition events.« less

  7. OSO 8 observational limits to the acoustic coronal heating mechanism

    NASA Technical Reports Server (NTRS)

    Bruner, E. C., Jr.

    1981-01-01

    An improved analysis of time-resolved line profiles of the C IV resonance line at 1548 A has been used to test the acoustic wave hypothesis of solar coronal heating. It is shown that the observed motions and brightness fluctuations are consistent with the existence of acoustic waves. Specific account is taken of the effect of photon statistics on the observed velocities, and a test is devised to determine whether the motions represent propagating or evanescent waves. It is found that on the average about as much energy is carried upward as downward such that the net acoustic flux density is statistically consistent with zero. The statistical uncertainty in this null result is three orders of magnitue lower than the flux level needed to heat the corona.

  8. First Demonstration of a Coronal Mass Ejection Driven by Helicity Condensation

    NASA Astrophysics Data System (ADS)

    Dahlin, J. T.; Antiochos, S. K.; DeVore, C. R.

    2017-12-01

    Understanding the mechanism for CMEs/eruptive flares is one of the most important problems in all space science. Two classes of theories have been proposed: ideal processes such as the torus instability, or magnetic reconnection as in the breakout model. Previous simulations of eruptions have used special assumptions, such as a particular initial condition ripe for instability and/or particular boundary conditions designed to induce eruption. We report on a simulation in which the initial state is the minimum-energy potential field, and the system is driven solely by the small-scale random motions observed for photospheric convection. The only requirement on the system is that the flows are sufficiently complex to induce pervasive and random reconnection throughout the volume, as expected for coronal heating, and a net helicity is injected into the corona, in agreement with the observed hemispheric helicity preference. We find that as a result of a turbulent-like cascade, the helicity "condenses" onto a polarity inversion line forming a filament channel, which eventually erupts explosively. We discuss the implications of this fully self-consistent eruption simulation for understanding CMEs/flares and for interpreting coronal observations. This work was supported by the NASA LWS and SR Programs.

  9. Chromosphere to 1 AU Simulation of the 2011 March 7th Event: A Comprehensive Study of Coronal Mass Ejection Propagation

    NASA Astrophysics Data System (ADS)

    Jin, M.; Manchester, W. B.; van der Holst, B.; Sokolov, I.; Tóth, G.; Vourlidas, A.; de Koning, C. A.; Gombosi, T. I.

    2017-01-01

    We perform and analyze the results of a global magnetohydrodynamic simulation of the fast coronal mass ejection (CME) that occurred on 2011 March 7. The simulation is made using the newly developed Alfvén Wave Solar Model (AWSoM), which describes the background solar wind starting from the upper chromosphere and extends to 24 R⊙. Coupling AWSoM to an inner heliosphere model with the Space Weather Modeling Framework extends the total domain beyond the orbit of Earth. Physical processes included in the model are multi-species thermodynamics, electron heat conduction (both collisional and collisionless formulations), optically thin radiative cooling, and Alfvén-wave turbulence that accelerates and heats the solar wind. The Alfvén-wave description is physically self-consistent, including non-Wentzel-Kramers-Brillouin reflection and physics-based apportioning of turbulent dissipative heating to both electrons and protons. Within this model, we initiate the CME by using the Gibson-Low analytical flux rope model and follow its evolution for days, in which time it propagates beyond STEREO A. A detailed comparison study is performed using remote as well as in situ observations. Although the flux rope structure is not compared directly due to lack of relevant ejecta observation at 1 au in this event, our results show that the new model can reproduce many of the observed features near the Sun (e.g., CME-driven extreme ultraviolet [EUV] waves, deflection of the flux rope from the coronal hole, “double-front” in the white light images) and in the heliosphere (e.g., shock propagation direction, shock properties at STEREO A).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antolin, P.; Vissers, G.; Shibata, K., E-mail: antolin@astro.uio.n, E-mail: g.j.m.vissers@astro.uio.n, E-mail: shibata@kwasan.kyoto-u.ac.j

    Reported observations in H{alpha}, Ca II H, and K or other chromospheric lines of coronal rain trace back to the days of the Skylab mission. Corresponding to cool and dense plasma, coronal rain is often observed falling down along coronal loops in active regions. A physical explanation for this spectacular phenomenon has been put forward thanks to numerical simulations of loops with footpoint-concentrated heating, a heating scenario in which cool condensations naturally form in the corona. This effect has been termed 'catastrophic cooling' and is the predominant explanation for coronal rain. In this work, we further investigate the link betweenmore » this phenomenon and the heating mechanisms acting in the corona. We start by analyzing observations of coronal rain at the limb in the Ca II H line performed by the Hinode satellite, and derive interesting statistical properties concerning the dynamics. We then compare the observations with 1.5-dimensional MHD simulations of loops being heated by small-scale discrete events concentrated toward the footpoints (that could come, for instance, from magnetic reconnection events), and by Alfven waves generated at the photospheric level. Both our observation and simulation results suggest that coronal rain is a far more common phenomenon than previously thought. Also, we show that the structure and dynamics of condensations are far more sensitive to the internal pressure changes in loops than to gravity. Furthermore, it is found that if a loop is predominantly heated from Alfven waves, coronal rain is inhibited due to the characteristic uniform heating they produce. Hence, coronal rain may not only point to the spatial distribution of the heating in coronal loops but also to the agent of the heating itself. We thus propose coronal rain as a marker for coronal heating mechanisms.« less

  11. Coronal Heating and the Magnetic Field in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Falconer, D. A.; Tiwari, S. K.; Winebarger, A. R.; Moore, R. L.

    2017-12-01

    A strong dependence of active-region (AR) coronal heating on the magnetic field is demonstrated by the strong correlation of AR X-ray luminosity with AR total magnetic flux (Fisher et al 1998 ApJ). AR X-ray luminosity is also correlated with AR length of strong-shear neutral line in the photospheric magnetic field (Falconer 1997). These two whole-AR magnetic parameters are also correlated with each other. From 150 ARs observed within 30 heliocentric degrees from disk center by AIA and HMI on SDO, using AR luminosity measured from the hot component of the AIA 94 Å band (Warren et al 2012, ApJ) near the time of each of 3600 measured HMI vector magnetograms of these ARs and a wide selection of whole-AR magnetic parameters from each vector magnetogram after it was deprojected to disk center, we find: (1) The single magnetic parameter having the strongest correlation with AR 94-hot luminosity is the length of strong-field neutral line. (2) The two-parameter combination having the strongest still-stronger correlation with AR 94-hot luminosity is a combination of AR total magnetic flux and AR neutral-line length weighted by the vertical-field gradient across the neutral line. We interpret these results to be consistent with the results of both Fisher et al (1998) and Falconer (1997), and with the correlation of AR coronal loop heating with loop field strength recently found by Tiwari et al (2017, ApJ Letters). Our interpretation is that, in addition to depending strongly on coronal loop field strength, AR coronal heating has a strong secondary positive dependence on the rate of flux cancelation at neutral lines at coronal loop feet. This work was funded by the Living With a Star Science and Heliophysics Guest Investigators programs of NASA's Heliophysics Division.

  12. On the structure of solar and stellar coronae - Loops and loop heat transport

    NASA Technical Reports Server (NTRS)

    Litwin, Christof; Rosner, Robert

    1993-01-01

    We discuss the principal constraints on mechanisms for structuring and heating the outer atmospheres - the coronae - of stars. We argue that the essential cause of highly localized heating in the coronae of stars like the sun is the spatially intermittent nature of stellar surface magnetic fields, and that the spatial scale of the resulting coronal structures is related to the spatial structure of the photospheric fields. We show that significant constraints on coronal heating mechanisms derive from the observed variations in coronal emission, and, in addition, show that the observed structuring perpendicular to coronal magnetic fields imposes severe constraints on mechanisms for heat dispersal in the low-beta atmosphere. In particular, we find that most of commonly considered mechanisms for heat dispersal, such as anomalous diffusion due to plasma turbulence or magnetic field line stochasticity, are much too slow to account for the observed rapid heating of coronal loops. The most plausible mechanism appears to be reconnection at the interface between two adjacent coronal flux bundles. Based on a model invoking hyperresistivity, we show that such a mechanism naturally leads to dominance of isolated single bright coronal loops and to bright coronal plasma structures whose spatial scale transverse to the local magnetic field is comparable to observed dimensions of coronal X-ray loops.

  13. Alfvén Wave Turbulence as a Coronal Heating Mechanism: Simultaneously Predicting the Heating Rate and the Wave-induced Emission Line Broadening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oran, R.; Landi, E.; Holst, B. van der

    We test the predictions of the Alfvén Wave Solar Model (AWSoM), a global wave-driven magnetohydrodynamic (MHD) model of the solar atmosphere, against high-resolution spectra emitted by the quiescent off-disk solar corona. AWSoM incorporates Alfvén wave propagation and dissipation in both closed and open magnetic field lines; turbulent dissipation is the only heating mechanism. We examine whether this mechanism is consistent with observations of coronal EUV emission by combining model results with the CHIANTI atomic database to create synthetic line-of-sight spectra, where spectral line widths depend on thermal and wave-related ion motions. This is the first time wave-induced line broadening ismore » calculated from a global model with a realistic magnetic field. We used high-resolution SUMER observations above the solar west limb between 1.04 and 1.34 R {sub ⊙} at the equator, taken in 1996 November. We obtained an AWSoM steady-state solution for the corresponding period using a synoptic magnetogram. The 3D solution revealed a pseudo-streamer structure transversing the SUMER line of sight, which contributes significantly to the emission; the modeled electron temperature and density in the pseudo-streamer are consistent with those observed. The synthetic line widths and the total line fluxes are consistent with the observations for five different ions. Further, line widths that include the contribution from the wave-induced ion motions improve the correspondence with observed spectra for all ions. We conclude that the turbulent dissipation assumed in the AWSoM model is a viable candidate for explaining coronal heating, as it is consistent with several independent measured quantities.« less

  14. An Efficient Approximation of the Coronal Heating Rate for use in Global Sun-Heliosphere Simulations

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2010-02-01

    The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of debate. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent one-dimensional models have been found to reproduce many observed features of the solar wind by assuming the energy comes from Alfvén waves that are partially reflected, then dissipated by magnetohydrodynamic turbulence. However, the nonlocal physics of wave reflection has made it difficult to apply these processes to more sophisticated (three-dimensional) models. This paper presents a set of robust approximations to the solutions of the linear Alfvén wave reflection equations. A key ingredient of the turbulent heating rate is the ratio of inward-to-outward wave power, and the approximations developed here allow this to be written explicitly in terms of local plasma properties at any given location. The coronal heating also depends on the frequency spectrum of Alfvén waves in the open-field corona, which has not yet been measured directly. A model-based assumption is used here for the spectrum, but the results of future measurements can be incorporated easily. The resulting expression for the coronal heating rate is self-contained, computationally efficient, and applicable directly to global models of the corona and heliosphere. This paper tests and validates the approximations by comparing the results to exact solutions of the wave transport equations in several cases relevant to the fast and slow solar wind.

  15. The Fate of Cool Material in the Hot Corona: Solar Prominences and Coronal Rain

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Antolin, Patrick; Sun, Xudong; Vial, Jean-Claude; Berger, Thomas

    2017-08-01

    As an important chain of the chromosphere-corona mass cycle, some of the million-degree hot coronal mass undergoes a radiative cooling instability and condenses into material at chromospheric or transition-region temperatures in two distinct forms - prominences and coronal rain (some of which eventually falls back to the chromosphere). A quiescent prominence usually consists of numerous long-lasting, filamentary downflow threads, while coronal rain consists of transient mass blobs falling at comparably higher speeds along well-defined paths. It remains puzzling why such material of similar temperatures exhibit contrasting morphologies and behaviors. We report recent SDO/AIA and IRIS observations that suggest different magnetic environments being responsible for such distinctions. Specifically, in a hybrid prominence-coronal rain complex structure, we found that the prominence material is formed and resides near magnetic null points that favor the radiative cooling process and provide possibly a high plasma-beta environment suitable for the existence of meandering prominence threads. As the cool material descends, it turns into coronal rain tied onto low-lying coronal loops in a likely low-beta environment. Such structures resemble to certain extent the so-called coronal spiders or cloud prominences, but the observations reported here provide critical new insights. We will discuss the broad physical implications of these observations for fundamental questions, such as coronal heating and beyond (e.g., in astrophysical and/or laboratory plasma environments).

  16. New Evidence that Magnetoconvection Drives Solar–Stellar Coronal Heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.

    2017-07-10

    How magnetic energy is injected and released in the solar corona, keeping it heated to several million degrees, remains elusive. Coronal heating generally increases with increasing magnetic field strength. From a comparison of a nonlinear force-free model of the three-dimensional active region coronal field to observed extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal loops, despite being rooted in the strongest magnetic flux, are invisible, and (2) the brightest loops have one foot in an umbra or penumbra and the other foot in another sunspot’s penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidencemore » that magnetoconvection drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Broadly, our results indicate that depending on the field strength in both feet, the photospheric feet of a coronal loop on any convective star can either engender or quench coronal heating in the loop’s body.« less

  17. Invisibility of Solar Active Region Umbra-to-Umbra Coronal Loops: New Evidence that Magnetoconvection Drives Solar-Stellar Coronal Heating

    NASA Technical Reports Server (NTRS)

    Tiwari, Sanjiv K.; Thalmann, Julia K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy R.

    2017-01-01

    Coronal heating generally increases with increasing magnetic field strength: the EUV/X-ray corona in active regions is 10--100 times more luminous and 2--4 times hotter than that in quiet regions and coronal holes, which are heated to only about 1.5 MK, and have fields that are 10--100 times weaker than that in active regions. From a comparison of a nonlinear force-free model of the three-dimensional active region coronal field to observed extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal loops, despite being rooted in the strongest magnetic flux, are invisible, and (2) the brightest loops have one foot in an umbra or penumbra and the other foot in another sunspot's penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidence that magnetoconvection drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Our results from EUV observations and nonlinear force-free modeling of coronal magnetic field imply that, for any coronal loop on the Sun or on any other convective star, as long as the field can be braided by convection in at least one loop foot, the stronger the field in the loop, the stronger the coronal heating.

  18. Quantification of the Energy Dissipated by Alfven Waves in a Polar Coronal Hole

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Savin, D. W.

    2013-12-01

    We present a measurement of the energy carried and dissipated by Alfven waves in a polar coronal hole. Alfven waves have been proposed as the energy source that heats the corona and drives the solar wind. Previous work has shown that line widths decrease with height in coronal holes, which is a signature of wave damping, but have been unable to quantify the energy lost by the waves. This is because line widths depend on both the non-thermal velocity vnt and the ion temperature Ti. We have implemented a means to separate the Ti and vnt contributions using the observation that, at low heights, the waves are undamped and the ion temperatures do not change with height. This enables us to determine the amount of energy carried by the waves at low heights, which is proportional to vnt. We find the initial energy flux density present was 6.7×0.7×10^5 erg cm^-2 s^-1, which is sufficient to heat the coronal hole and accelerate the solar wind during the 2007 - 2009 solar minimum. Additionally, we find that about 85% of this energy is dissipated below 1.5 R_sun, sufficiently low that thermal conduction can transport the energy throughout the coronal hole, heating it and driving the fast solar wind. The remaining energy is roughly consistent with what models show is needed to provide the extended heating above the sonic point for the fast solar wind. We have also studied Ti, which we found to be in the range of 1 - 2 MK, depending on the ion species.

  19. EVIDENCE FOR EVAPORATION-INCOMPLETE CONDENSATION CYCLES IN WARM SOLAR CORONAL LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froment, C.; Auchère, F.; Bocchialini, K.

    2015-07-10

    Quasi-constant heating at the footpoints of loops leads to evaporation and condensation cycles of the plasma: thermal non-equilibrium (TNE). This phenomenon is believed to play a role in the formation of prominences and coronal rain. However, it is often discounted as being involved in the heating of warm loops because the models do not reproduce observations. Recent simulations have shown that these inconsistencies with observations may be due to oversimplifications of the geometries of the models. In addition, our recent observations reveal that long-period intensity pulsations (several hours) are common in solar coronal loops. These periods are consistent with thosemore » expected from TNE. The aim of this paper is to derive characteristic physical properties of the plasma for some of these events to test the potential role of TNE in loop heating. We analyzed three events in detail using the six EUV coronal channels of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We performed both a differential emission measure (DEM) and a time-lag analysis, including a new method to isolate the relevant signal from the foreground and background emission. For the three events, the DEM undergoes long-period pulsations, which is a signature of periodic heating even though the loops are captured in their cooling phase, as is the bulk of the active regions. We link long-period intensity pulsations to new signatures of loop heating with strong evidence for evaporation and condensation cycles. We thus simultaneously witness widespread cooling and TNE. Finally, we discuss the implications of our new observations for both static and impulsive heating models.« less

  20. The Formation of Coronal Loops by Thermal Instability in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Mok, Yung; Mikic, Zoran; Lionello, Roberto; Linker, Jon A.

    2008-01-01

    Plasma loops in solar active regions have been observed in EUV and soft X-rays for decades. Their formation mechanism and properties, however, are still not fully understood. Predictions by early models, based on 1D hydrostatic equilibria with uniform plasma heating, are not consistent with high-resolution measurements. In this Letter, we demonstrate, via 3D simulations, that a class of heating models can lead to the dynamic formation of plasma loops provided the plasma is heated sufficiently to match SXT soft X-ray measurements. We show that individual flux tubes in a 3D magnetic structure tend to stand out against their neighbors. The loops have large aspect ratios and nearly uniform cross sections in the corona, similar to those observed by EIT and TRACE. The coronal EUV emission from these thermally unstable solutions is roughly consistent with EIT measurements. The solution oscillates in time through a large-amplitude, nonlinear cycle, leading to repeated brightening and fading of the loops.

  1. A Two-Fluid, MHD Coronal Model

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.

    1998-01-01

    We describe first results from a numerical two-fluid MHD model of the global structure of the solar corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and momentum sources are required to produce high speed wind from coronal holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature in the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UVCS, and with the Ulysses/SWOOPS proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 solar radii and 5 solar radii (2RS and 5RS) is similar to the density reported from SPARTAN 201-01 measurements by Fisher and Guhathakurta. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer, the temperature and density are similar to those reported empirically by Li et al and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub s), as it is in all other MHD coronal streamer models.

  2. The evolution of active region loop plasma

    NASA Technical Reports Server (NTRS)

    Krall, K. R.; Antiochos, S. K.

    1980-01-01

    The adjustment of coronal active-region loops to changes in their heating rate is investigated numerically. The one-dimensional hydrodynamic equations are solved subject to boundary conditions in which heat flux-induced mass exchange between coronal and chromospheric components is allowed. The calculated evolution of physical parameters suggests that (1) mass supplied during chromospheric evaporation is much more effective in moderating coronal temperature excursions than when downward heat flux is dissipated by a static chromosphere, and (2) the method by which the chromosphere responds to changing coronal conditions can significantly influence coronal readjustment time scales. Observations are cited which illustrate the range of possible fluctuations in the heating rates.

  3. Key aspects of coronal heating

    PubMed Central

    Klimchuk, James A.

    2015-01-01

    We highlight 10 key aspects of coronal heating that must be understood before we can consider the problem to be solved. (1) All coronal heating is impulsive. (2) The details of coronal heating matter. (3) The corona is filled with elemental magnetic stands. (4) The corona is densely populated with current sheets. (5) The strands must reconnect to prevent an infinite build-up of stress. (6) Nanoflares repeat with different frequencies. (7) What is the characteristic magnitude of energy release? (8) What causes the collective behaviour responsible for loops? (9) What are the onset conditions for energy release? (10) Chromospheric nanoflares are not a primary source of coronal plasma. Significant progress in solving the coronal heating problem will require coordination of approaches: observational studies, field-aligned hydrodynamic simulations, large-scale and localized three-dimensional magnetohydrodynamic simulations, and possibly also kinetic simulations. There is a unique value to each of these approaches, and the community must strive to coordinate better. PMID:25897094

  4. Conversion from mutual helicity to self-helicity observed with IRIS

    NASA Astrophysics Data System (ADS)

    Li, L. P.; Peter, H.; Chen, F.; Zhang, J.

    2014-10-01

    Context. In the upper atmosphere of the Sun observations show convincing evidence for crossing and twisted structures, which are interpreted as mutual helicity and self-helicity. Aims: We use observations with the new Interface Region Imaging Spectrograph (IRIS) to show the conversion of mutual helicity into self-helicity in coronal structures on the Sun. Methods: Using far UV spectra and slit-jaw images from IRIS and coronal images and magnetograms from SDO, we investigated the evolution of two crossing loops in an active region, in particular, the properties of the Si IV line profile in cool loops. Results: In the early stage two cool loops cross each other and accordingly have mutual helicity. The Doppler shifts in the loops indicate that they wind around each other. As a consequence, near the crossing point of the loops (interchange) reconnection sets in, which heats the plasma. This is consistent with the observed increase of the line width and of the appearance of the loops at higher temperatures. After this interaction, the two new loops run in parallel, and in one of them shows a clear spectral tilt of the Si IV line profile. This is indicative of a helical (twisting) motion, which is the same as to say that the loop has self-helicity. Conclusions: The high spatial and spectral resolution of IRIS allowed us to see the conversion of mutual helicity to self-helicity in the (interchange) reconnection of two loops. This is observational evidence for earlier theoretical speculations. Movie associated with Fig. 1 and Appendix A are available in electronic form at http://www.aanda.org

  5. Turbulence-driven Coronal Heating and Improvements to Empirical Forecasting of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  6. Coronal Heating: Testing Models of Coronal Heating by Forward-Modeling the AIA Emission of the Ansample of Coronal Loops

    NASA Astrophysics Data System (ADS)

    Malanushenko, A. V.

    2015-12-01

    We present a systemic exploration of the properties of coronal heating, by forward-modeling the emission of the ensemble of 1D quasi-steady loops. This approximations were used in many theoretical models of the coronal heating. The latter is described in many such models in the form of power laws, relating heat flux through the photosphere or volumetric heating to the strength of the magnetic field and length of a given field line. We perform a large search in the parameter space of these power laws, amongst other variables, and compare the resulting emission of the active region to that observed by AIA. We use a recently developed magnetic field model which uses shapes of coronal loops to guide the magnetic model; the result closely resembles observed structures by design. We take advantage of this, by comparing, in individual sub-regions of the active region, the emission of the active region and its synthetic model. This study allows us to rule out many theoretical models and formulate predictions for the heating models to come.

  7. Alfven Waves in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; McIntosh, S. W.; Keil, S. L.; Judge, P. G.; Schad, T.; Seeley, D. H.; Edmondson, J.

    2007-12-01

    We present observations of the coronal intensity, line-of-sight velocity, and linear polarization obtained in the FeXIII 1074.7 nm coronal emission line with the Coronal Multi-channel Polarimeter (CoMP) instrument. Analysis of these observations reveal ubiquitous upward propagating waves with phase speeds of 1-4 Mm/s and trajectories consistent with the direction of the magnetic field inferred from the linear polarization measurements. We can definitively identify these as Alfvén waves. An estimate of the energy carried by the waves that we spatially resolve indicates that they are unable to heat the solar corona, however, unresolved waves may carry sufficient energy.

  8. Constraints on active region coronal heating properties from observations and modeling of chromospheric, transition region, and coronal emission

    NASA Astrophysics Data System (ADS)

    Testa, P.; Polito, V.; De Pontieu, B.; Carlsson, M.; Reale, F.; Allred, J. C.; Hansteen, V. H.

    2017-12-01

    We investigate coronal heating properties in active region cores in non-flaring conditions, using high spatial, spectral, and temporal resolution chromospheric/transition region/coronal observations coupled with detailed modeling. We will focus, in particular, on observations with the Interface Region Imaging Spectrograph (IRIS), joint with observations with Hinode (XRT and EIS) and SDO/AIA. We will discuss how these observations and models (1D HD and 3D MHD, with the RADYN and Bifrost codes) provide useful diagnostics of the coronal heating processes and mechanisms of energy transport.

  9. Explaining observed red and blue-shifts using multi-stranded coronal loops

    NASA Astrophysics Data System (ADS)

    Regnier, S.; Walsh, R. W.; Pearson, J.

    2012-03-01

    Magnetic plasma loops have been termed the building blocks of the solar atmosphere. However, it must be recognised that if the range of loop structures we can observe do consist of many ''sub-resolution'' elements, then current one-dimensional hydrodynamic models are really only applicable to an individual plasma element or strand. Thus a loop should be viewed is an amalgamation of these strands. They could operate in thermal isolation from one another with a wide range of temperatures occurring across the structural elements. This scenario could occur when the energy release mechanism consists of localised, discrete bursts of energy that are due to small scale reconnection sites within the coronal magnetic field- the nanoflare coronal heating mechanism. These energy bursts occur in a time-dependent manner, distributed along the loop/strand length, giving a heating function that depends on space and time. An important observational discovery with the Hinode/EIS spectrometer is the existence of red and blue-shifts in coronal loops depending on the location of the footpoints (inner or outer parts of the active region), and the temperature of the emission line in which the Doppler shifts are measured. Based on the multi-stranded model developed by Sarkar and Walsh (2008, ApJ, 683, 516), we show that red and blue-shifts exist in different simulated Hinode/EIS passbands: cooler lines (OV-SiVII) being dominated by red-shifts, whilst hotter lines (FeXV-CaXVII) are a combination of both. The distribution of blue-shifts depends on the energy input and not so much on the heating location. Characteristic Doppler shifts generated fit well with observed values. We also simulate the Hinode/EIS rasters to closely compare our simulation with the observations. Even if not statistically significant, loops can have footpoints with opposite Doppler shifts.

  10. Coronal magnetohydrodynamic waves and oscillations: observations and quests.

    PubMed

    Aschwanden, Markus J

    2006-02-15

    Coronal seismology, a new field of solar physics that emerged over the last 5 years, provides unique information on basic physical properties of the solar corona. The inhomogeneous coronal plasma supports a variety of magnetohydrodynamics (MHD) wave modes, which manifest themselves as standing waves (MHD oscillations) and propagating waves. Here, we briefly review the physical properties of observed MHD oscillations and waves, including fast kink modes, fast sausage modes, slow (acoustic) modes, torsional modes, their diagnostics of the coronal magnetic field, and their physical damping mechanisms. We discuss the excitation mechanisms of coronal MHD oscillations and waves: the origin of the exciter, exciter propagation, and excitation in magnetic reconnection outflow regions. Finally, we consider the role of coronal MHD oscillations and waves for coronal heating, the detectability of various MHD wave types, and we estimate the energies carried in the observed MHD waves and oscillations: Alfvénic MHD waves could potentially provide sufficient energy to sustain coronal heating, while acoustic MHD waves fall far short of the required coronal heating rates.

  11. Constraints on CME Evolution from in situ Observations of Ionic Charge States

    NASA Technical Reports Server (NTRS)

    Gruesbeck, Jacob R.; Lepri, Susan T.; Zurbuchen, Thomas H.; Antiochos, Spiro K.

    2010-01-01

    We present a novel procedure for deriving the physical properties of Coronal Mass Ejections (CMES) in the corona. Our methodology uses in-situ measurements of ionic charge states of C, O, Si and Fe in the heliosphere and interprets them in the context of a model for the early evolution of ICME plasma, between 2 - 5 R-solar. We find that the data can be fit only by an evolution that consists of an initial heating of the plasma, followed by an expansion that ultimately results in cooling. The heating profile is consistent with a compression of coronal plasma due to flare reconnect ion jets and an expansion cooling due to the ejection, as expected from the standard CME/flare model. The observed frozen-in ionic charge states reflect this time-history and, therefore, provide important constraints for the heating and expansion time-scales, as well as the maximum temperature the CME plasma is heated to during its eruption. Furthermore, our analysis places severe limits on the possible density of CME plasma in the corona. We discuss the implications of our results for CME models and for future analysis of ICME plasma composition.

  12. Large-Scale Coronal Heating, Clustering of Coronal Bright Points, and Concentration of Magnetic Flux

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1998-01-01

    By combining quiet-region Fe XII coronal images from SOHO/EIT with magnetograms from NSO/Kitt Peak and from SOHO/MDI, we show that on scales larger than a supergranule the population of network coronal bright points and the magnetic flux content of the network are both markedly greater under the bright half of the quiet corona than under the dim half. These results (1) support the view that the heating of the entire corona in quiet regions and coronal holes is driven by fine-scale magnetic activity (microflares, explosive events, spicules) seated low in the magnetic network, and (2) suggest that this large-scale modulation of the magnetic flux and coronal heating is a signature of giant convection cells.

  13. Relating magnetic reconnection to coronal heating

    PubMed Central

    Longcope, D. W.; Tarr, L. A.

    2015-01-01

    It is clear that the solar corona is being heated and that coronal magnetic fields undergo reconnection all the time. Here we attempt to show that these two facts are related—i.e. coronal reconnection generates heat. This attempt must address the fact that topological change of field lines does not automatically generate heat. We present one case of flux emergence where we have measured the rate of coronal magnetic reconnection and the rate of energy dissipation in the corona. The ratio of these two, , is a current comparable to the amount of current expected to flow along the boundary separating the emerged flux from the pre-existing flux overlying it. We can generalize this relation to the overall corona in quiet Sun or in active regions. Doing so yields estimates for the contribution to coronal heating from magnetic reconnection. These estimated rates are comparable to the amount required to maintain the corona at its observed temperature. PMID:25897089

  14. On the theory of coronal heating mechanisms

    NASA Technical Reports Server (NTRS)

    Kuperus, M.; Ionson, J. A.; Spicer, D. S.

    1980-01-01

    Theoretical models describing solar coronal heating mechanisms are reviewed in some detail. The requirements of chromospheric and coronal heating are discussed in the context of the fundamental constraints encountered in modelling the outer solar atmosphere. Heating by acoustic processes in the 'nonmagnetic' parts of the atmosphere is examined with particular emphasis on the shock wave theory. Also discussed are theories of heating by electrodynamic processes in the magnetic regions of the corona, either magnetohydrodynamic waves or current heating in the regions with large electric current densities (flare type heating). Problems associated with each of the models are addressed.

  15. Coronal Heating by Magnetic Explosions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.; Suess, Steven T.

    1998-01-01

    We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles.

  16. Observations and Numerical Models of Solar Coronal Heating Associated with Spicules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontieu, B. De; Martinez-Sykora, J.; Moortel, I. De

    Spicules have been proposed as significant contributors to the mass and energy balance of the corona. While previous observations have provided a glimpse of short-lived transient brightenings in the corona that are associated with spicules, these observations have been contested and are the subject of a vigorous debate both on the modeling and the observational side. Therefore, it remains unclear whether plasma is heated to coronal temperatures in association with spicules. We use high-resolution observations of the chromosphere and transition region (TR) with the Interface Region Imaging Spectrograph and of the corona with the Atmospheric Imaging Assembly on board themore » Solar Dynamics Observatory to show evidence of the formation of coronal structures associated with spicular mass ejections and heating of plasma to TR and coronal temperatures. Our observations suggest that a significant fraction of the highly dynamic loop fan environment associated with plage regions may be the result of the formation of such new coronal strands, a process that previously had been interpreted as the propagation of transient propagating coronal disturbances. Our observations are supported by 2.5D radiative MHD simulations that show heating to coronal temperatures in association with spicules. Our results suggest that heating and strong flows play an important role in maintaining the substructure of loop fans, in addition to the waves that permeate this low coronal environment.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, M.; Manchester, W. B.; Holst, B. van der

    We perform and analyze the results of a global magnetohydrodynamic simulation of the fast coronal mass ejection (CME) that occurred on 2011 March 7. The simulation is made using the newly developed Alfvén Wave Solar Model (AWSoM), which describes the background solar wind starting from the upper chromosphere and extends to 24 R {sub ⊙}. Coupling AWSoM to an inner heliosphere model with the Space Weather Modeling Framework extends the total domain beyond the orbit of Earth. Physical processes included in the model are multi-species thermodynamics, electron heat conduction (both collisional and collisionless formulations), optically thin radiative cooling, and Alfvén-wavemore » turbulence that accelerates and heats the solar wind. The Alfvén-wave description is physically self-consistent, including non-Wentzel–Kramers–Brillouin reflection and physics-based apportioning of turbulent dissipative heating to both electrons and protons. Within this model, we initiate the CME by using the Gibson-Low analytical flux rope model and follow its evolution for days, in which time it propagates beyond STEREO A . A detailed comparison study is performed using remote as well as in situ observations. Although the flux rope structure is not compared directly due to lack of relevant ejecta observation at 1 au in this event, our results show that the new model can reproduce many of the observed features near the Sun (e.g., CME-driven extreme ultraviolet [EUV] waves, deflection of the flux rope from the coronal hole, “double-front” in the white light images) and in the heliosphere (e.g., shock propagation direction, shock properties at STEREO A ).« less

  18. Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolsey, Lauren N.; Cranmer, Steven R.

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPESTmore » is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.« less

  19. A Two-Fluid, MHD Coronal Model

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.

    1999-01-01

    We describe first results from a numerical two-fluid MHD model of the global structure of the solar Corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and Momentum sources are required to produce high speed wind from Corona] holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature above the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UltraViolet Coronagraph Spectrometer instrument (UVCS), and with the Ulysses/Solar Wind Observations Over the Poles of the Sun instrument (SWOOPS) proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 and 5 solar radii (2 and 5 R(sub S)) is similar to the density reported from SPARTAN 201.-01 measurements by Fisher and Guhathakurta [19941. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer the temperature and density are similar to those reported empirically by Li et al. [1998], and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub S), as it is in all other MHD coronal streamer models [e.g., Steinolfson et al., 1982; also G. A. Gary and D. Alexander, Constructing the coronal magnetic field, submitted to Solar Physics, 1998].

  20. Relative elemental abundance and heating constraints determined for the solar corona from SERTS measurements

    NASA Technical Reports Server (NTRS)

    Falconer, David A.

    1994-01-01

    Intensities of EUV spectral lines were measured as a function of radius off the solar limb by two flights of Goddard's Solar EUV Rocket Telescope and Spectrograph (SERTS) for three quiet sun regions. The density scale height, line-ratio densities, line-ratio temperatures, and emission measures were determined. The line-ratio temperature determined from the ionization balances of Arnaud and Rothenflug (1985) were more self-consistent than the line-ratio temperatures obtained from the values of Arnaud and Raymond (1992). Limits on the filling factor were determined from the emission measure and the line-ratio densities for all three regions. The relative abundances of silicon, aluminum, and chromium to iron were determined. Results did agree with standard coronal relative elemental abundances for one observation, but did not agree for another. Aluminum was overabundant while silicon was underabundant. Heating was required above 1.15 solar radii for all three regions studied. For two regions, local nonconductive heating is needed for any filling factor, and in all three regions for filling factor of 0.1.

  1. Coronal and Prominence Plasmas

    NASA Technical Reports Server (NTRS)

    Poland, Arthur I. (Editor)

    1986-01-01

    Various aspects of solar prominences and the solar corona are discussed. The formation of prominences, prominence diagnostics and structure, prominence dissappearance, large scale coronal structure, coronal diagnostics, small scale coronal structure, and non-equilibrium/coronal heating are among the topics covered.

  2. On Heating Large Bright Coronal Loops by Magnetic Microexplosions at their Feet

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L; Falconer, D. A.; Porter, Jason G.

    1999-01-01

    In previous work, by registering Yohkoh SXT coronal X-ray images with MSFC vector magnetograms, we found that: (1) many of the larger bright coronal loops rooted at one or both ends in an active region are rooted around magnetic islands of included polarity, (2) the core field encasing the neutral line encircling the island is strongly sheared, and (3) this sheared core field is the seat of frequent microflares. This suggests that the coronal heating in these extended bright loops is driven by many small explosive releases of stored magnetic energy from the sheared core field at their feet, some of which magnetic microexplosions also produce the microflare heating in the core fields. In this paper, we show that this scenario is feasible in terms of the energy Abstract: required for the observed coronal heating and the magnetic energy available in the observed sheared core fields. In a representative active region, from the X-ray and vector field data, we estimate the coronal heating consumption by a selected typical large bright loop, the coronal heating consumption by a typical microflare at the foot of this loop, the frequency of microflares at the foot, and the available magnetic energy in the microflaring core field. We find that: (1) the rate of magnetic energy release to power the microflares at the foot (approx. 6 x 10(ext 25)erg/s) is enough to also power the coronal heating in the body of the extended loop (approx. 2 x l0(exp 25 erg/s), and (2) there is enough stored magnetic energy in the sheared core field to sustain the microflaring and extended loop heating for about a day, which is a typical time for buildup of neutral-line magnetic shear in an active region. This work was funded by the Solar Physics Branch of NASA's Office of Space Science through the SR&T Program and the SEC Guest Investigator Program.

  3. Observational Consequences of Coronal Heating Mechanisms

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy R.; Cirtain, Jonathan C.; Golub, Leon; Kobayashi, Ken

    2014-01-01

    The coronal heating problem remains unsolved today, 80 years after its discovery, despite 50 years of suborbital and orbital coronal observatories. Tens of theoretical coronal heating mechanisms have been suggested, but only a few have been able to be ruled out. In this talk, we will explore the reasons for the slow progress and discuss the measurements that will be needed for potential breakthrough, including imaging the solar corona at small spatial scales, measuring the chromospheric magnetic fields, and detecting the presence of high temperature, low emission measure plasma. We will discuss three sounding rocket instruments developed to make these measurements: the High resolution Resolution Coronal Imager (Hi-C), the Chromospheric Lyman-Alpha Spectropolarimeter (CLASP), and the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS).

  4. New Instruments to Isolate the Coronal Heating Mechanism

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy

    2014-01-01

    The coronal heating problem remains unsolved today, 80 years after its discovery, despite 50 years of suborbital and orbital coronal observatories. Tens of theoretical coronal heating mechanisms have been suggested, but only a few have been able to be ruled out. In this talk, we will explore the reasons for the slow progress and discuss the measurements that will be needed for potential breakthrough, including imaging the solar corona at small spatial scales, measuring the chromospheric magnetic fields, and detecting the presence of high temperature, low-emission measure plasma. We will discuss three sounding rocket instruments developed to make these measurements: the High-resolution Resolution Coronal Imager (Hi-C), the Chromospheric Lyman-Alpha Spectropolarimeter (CLASP), and the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS).

  5. A contemporary view of coronal heating.

    PubMed

    Parnell, Clare E; De Moortel, Ineke

    2012-07-13

    Determining the heating mechanism (or mechanisms) that causes the outer atmosphere of the Sun, and many other stars, to reach temperatures orders of magnitude higher than their surface temperatures has long been a key problem. For decades, the problem has been known as the coronal heating problem, but it is now clear that 'coronal heating' cannot be treated or explained in isolation and that the heating of the whole solar atmosphere must be studied as a highly coupled system. The magnetic field of the star is known to play a key role, but, despite significant advancements in solar telescopes, computing power and much greater understanding of theoretical mechanisms, the question of which mechanism or mechanisms are the dominant supplier of energy to the chromosphere and corona is still open. Following substantial recent progress, we consider the most likely contenders and discuss the key factors that have made, and still make, determining the actual (coronal) heating mechanism (or mechanisms) so difficult.

  6. Contagious Coronal Heating from Recurring Emergence of Magnetic Flux

    NASA Astrophysics Data System (ADS)

    Moore, R. L.; Falconer, D. A.; Sterling, A. C.

    2002-01-01

    For each of six old bipolar active regions, we present and interpret Yohkoh/SXT and SOHO/MDI observations of the development, over several days, of enhanced coronal heating in and around the old bipole in response to new magnetic flux emergence within the old bipole. The observations show: 1. In each active region, new flux emerges in the equatorward side of the old bipole, around a lone remaining leading sunspot and/or on the equatorward end of the neutral line of the old bipole. 2. The emerging field is marked by intense internal coronal heating, and enhanced coronal heating occurs in extended loops stemming from the emergence site. 3. In five of the six cases, a "rooster tail" of coronal loops in the poleward extent of the old bipole also brightens in response to the flux emergence. 4. There are episodes of enhanced coronal heating in surrounding magnetic fields that are contiguous with the old bipole but are not directly connected to the emerging field. From these observations, we suggest that the accommodation of localized newly emerged flux within an old active region entails far reaching adjustments in the 3D magnetic field throughout the active region and in surrounding fields in which the active region is embedded, and that these adjustments produce the extensive enhanced coronal heating. We Also Note That The Reason For The recurrence of flux emergence in old active regions may be that active-region flux tends to emerge in giant-cell convection downflows. If so, the poleward "rooster tail" is a coronal flag of a long-lasting downflow in the convection zone. This work was funded by NASA's Office of Space Science through the Solar Physics Supporting Research and Technology Program and the Sun-Earth Connection Guest Investigator Program.

  7. Contagious Coronal Heating from Recurring Emergence of Magnetic Flux

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David; Sterling, Alphonse; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For each of six old bipolar active regions, we present and interpret Yohkoh/SXT and SOHO/MDI observations of the development, over several days, of enhanced coronal heating in and around the old bipole in response to new magnetic flux emerge= within the old bipole. The observations show: 1. In each active region, new flux emerges in the equatorward side of the old bipole, around a lone remaining leading sunspot and/or on the equatorward end of the neutral line of the old bipole. 2. The emerging field is marked by intense internal coronal heating, and enhanced coronal heating occurs in extended loops stemming from the emergence site. 3. In five of the six cases, a "rooster tail" of coronal loops in the poleward extent of the old bipole also brightens in response to the flux emergence. 4. There are episodes of enhanced coronal heating in surrounding magnetic fields that are contiguous with the old bipole but are not directly connected to the emerging field. From these observations, we suggest that the accommodation of localized newly emerged flux within an old active region entails far reaching adjustments in the 3D magnetic field throughout the active region and in surrounding fields in which the active region is embedded, and that these adjustments produce the extensive enhanced coronal heating. We also note that the reason for the recurrence of flux emergence in old active regions may be that active region flux tends to emerge in giant-cell convection downflows. If so, the poleward "rooster tail" is a coronal flag of a long-lasting downflow in the convection zone. This work was funded by NASA's Office of Space Science through the Solar Physics Supporting Research and Technology Program and the Sun-Earth Connection Guest Investigator Program.

  8. Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes In Quiet Regions and Coronal Holes?

    NASA Technical Reports Server (NTRS)

    Avallone, Ellis; Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy

    2017-01-01

    Coronal plumes are bright magnetic funnels that are found in quiet regions and coronal holes that extend high into the solar corona whose lifetimes can last from hours to days. The heating processes that make plumes bright involve the magnetic field at the base of the plume, but their intricacies remain mysterious. Raouafi et al. (2014) infer from observation that plume heating is a consequence of magnetic reconnection at the base, whereas Wang et al. (2016) infer that plume heating is a result of convergence of the magnetic flux at the plume's base, or base flux. Both papers suggest that the base flux in their plumes is of mixed polarity, but do not quantitatively measure the base flux or consider whether a critical magnetic field strength is required for plume production. To investigate the magnetic origins of plume heating, we track plume luminosity in the 171 Å wavelength as well as the abundance and strength of the base flux over the lifetimes of six unipolar coronal plumes. Of these, three are in coronal holes and three are in quiet regions. For this sample, we find that plume heating is triggered when convergence of the base flux surpasses a field strength of approximately 300 - 500 Gauss, and that the luminosity of both quiet region and coronal hole plumes respond similarly to the strength of the magnetic field in the base.

  9. Large-Scale Coronal Heating from "Cool" Activity in the Solar Magnetic Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1999-01-01

    In Fe XII images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi-supergranular (large-scale corona). In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. Taken together, the coronal network emission and bright point emission are only about 5% of the entire quiet solar coronal Fe XII emission. Here we investigate the relationship between the large-scale corona and the network as seen in three different EIT filters (He II, Fe IX-X, and Fe XII). Using the median-brightness contour, we divide the large-scale Fe XII corona into dim and bright halves, and find that the bright-half/dim half brightness ratio is about 1.5. We also find that the bright half relative to the dim half has 10 times greater total bright point Fe XII emission, 3 times greater Fe XII network emission, 2 times greater Fe IX-X network emission, 1.3 times greater He II network emission, and has 1.5 times more magnetic flux. Also, the cooler network (He II) radiates an order of magnitude more energy than the hotter coronal network (Fe IX-X, and Fe XII). From these results we infer that: 1) The heating of the network and the heating of the large-scale corona each increase roughly linearly with the underlying magnetic flux. 2) The production of network coronal bright points and heating of the coronal network each increase nonlinearly with the magnetic flux. 3) The heating of the large-scale corona is driven by widespread cooler network activity rather than by the exceptional network activity that produces the network coronal bright points and the coronal network. 4) The large-scale corona is heated by a nonthermal process since the driver of its heating is cooler than it is. This work was funded by the Solar Physics Branch of NASA's office of Space Science through the SR&T Program and the SEC Guest Investigator Program.

  10. Energy balance of stellar coronae. I - Methods and examples. II - Effect of coronal heating

    NASA Technical Reports Server (NTRS)

    Hammer, R.

    1982-01-01

    Simplified models of magnetically open coronal regions are computed, with the aim of fulfilling appropriate boundary conditions at the base of the atmosphere, at the critical point, and at infinity. The models are determined by the stellar mass and radius and by the amount and location of coronal heating, and this dependence is analyzed in terms of pressure, temperature, characteristic heights, energy losses, mass loss, and asymptotic behavior. The results are used to classify the magnetically open coronal regions according to the energy loss mechanism that dominates in the region between the base and the critical point, and it is shown that more complicated heating mechanisms may be replaced by the presented exponential heating law, provided that the damping length is suitably chosen.

  11. Magnetic Roots and the Driving of Extended Coronal Heating

    NASA Technical Reports Server (NTRS)

    Porter, Jason G.; Falconer, D. A.; Moore, Ronald L.; Harvey, Karen L.; Rabin, Douglas M.; Shimizu, T.

    1998-01-01

    We report results from a continuation of a previous study, in which we found large bright coronal loops within active regions and extending from active regions that have one end rooted near an island of included magnetic polarity that is a site of enhanced coronal heating and microflares. This suggested that magnetic activity such as microflaring results in enhanced heating in both the compact core field around the island and in the large loops extending from it. We might expect that the intensity variations due to enhanced heating in the compact and extended structures would be correlated. However, although some ex- tended loops do respond to the largest events taking place in the core fields near their feet, they do not show a clear response to most smaller individual events nor to the overall envelope of coronal heating activity in the core fields at their feet as determined from longer-term observations. Thus, while it is clear that the extended loops' heating is being driven from their ends at the magnetic islands, much of this heating is apparently by some form of footpoint activity that is not strongly coupled to the heating in the footpoint core fields. One possibility is that the remote heating in the extended loops is driven by reconnection at the magnetic null over the island, and that this reconnection is driven mainly by core-field activity that produces little coronal heating within the core field itself, perhaps in the manner of the numerical simulations by Karpen, Antiochos, and DeVore.

  12. Thermally Driven One-Fluid Electron-Proton Solar Wind: Eight-Moment Approximation

    NASA Astrophysics Data System (ADS)

    Olsen, Espen Lyngdal; Leer, Egil

    1996-05-01

    In an effort to improve the "classical" solar wind model, we study an eight-moment approximation hydrodynamic solar wind model, in which the full conservation equation for the heat conductive flux is solved together with the conservation equations for mass, momentum, and energy. We consider two different cases: In one model the energy flux needed to drive the solar wind is supplied as heat flux from a hot coronal base, where both the density and temperature are specified. In the other model, the corona is heated. In that model, the coronal base density and temperature are also specified, but the temperature increases outward from the coronal base due to a specified energy flux that is dissipated in the corona. The eight-moment approximation solutions are compared with the results from a "classical" solar wind model in which the collision-dominated gas expression for the heat conductive flux is used. It is shown that the "classical" expression for the heat conductive flux is generally not valid in the solar wind. In collisionless regions of the flow, the eight-moment approximation gives a larger thermalization of the heat conductive flux than the models using the collision-dominated gas approximation for the heat flux, but the heat flux is still larger than the "saturation heat flux." This leads to a breakdown of the electron distribution function, which turns negative in the collisionless region of the flow. By increasing the interaction between the electrons, the heat flux is reduced, and a reasonable shape is obtained on the distribution function. By solving the full set of equations consistent with the eight-moment distribution function for the electrons, we are thus able to draw inferences about the validity of the eight-moment description of the solar wind as well as the validity of the very commonly used collision-dominated gas approximation for the heat conductive flux in the solar wind.

  13. Catastrophic cooling and cessation of heating in the solar corona

    NASA Astrophysics Data System (ADS)

    Peter, H.; Bingert, S.; Kamio, S.

    2012-01-01

    Context. Condensations in the more than 106 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. Aims: We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. Methods: For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. Results: The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. Conclusions: This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation. Movies are available in electronic form at http://www.aanda.org

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.

    Ubiquitous solar atmospheric coronal and transition region bright points (BPs) are compact features overlying strong concentrations of magnetic flux. Here, we utilize high-cadence observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to provide the first observations of extreme ultraviolet quiet-Sun (QS) network BP activity associated with sigmoidal structuring. To our knowledge, this previously unresolved fine structure has never been associated with such small-scale QS events. This QS event precedes a bi-directional jet in a compact, low-energy, and low-temperature environment, where evidence is found in support of the typical fan-spine magnetic field topology. As in active regionsmore » and micro-sigmoids, the sigmoidal arcade is likely formed via tether-cutting reconnection and precedes peak intensity enhancements and eruptive activity. Our QS BP sigmoid provides a new class of small-scale structuring exhibiting self-organized criticality that highlights a multi-scaled self-similarity between large-scale, high-temperature coronal fields and the small-scale, lower-temperature QS network. Finally, our QS BP sigmoid elevates arguments for coronal heating contributions from cooler atmospheric layers, as this class of structure may provide evidence favoring mass, energy, and helicity injections into the heliosphere.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antolin, P.; Rouppe van der Voort, L., E-mail: patrick.antolin@astro.uio.no, E-mail: v.d.v.l.rouppe@astro.uio.no

    Observed in cool chromospheric lines, such as H{alpha} or Ca II H, coronal rain corresponds to cool and dense plasma falling from coronal heights. Considered as a peculiar sporadic phenomenon of active regions, it has not received much attention since its discovery more than 40 years ago. Yet, it has been shown recently that a close relationship exists between this phenomenon and the coronal heating mechanism. Indeed, numerical simulations have shown that this phenomenon is most likely due to a loss of thermal equilibrium ensuing from a heating mechanism acting mostly toward the footpoints of loops. We present here onemore » of the first high-resolution spectroscopic observations of coronal rain, performed with the CRisp Imaging Spectro Polarimeter (CRISP) instrument at the Swedish Solar Telescope. This work constitutes the first attempt to assess the importance of coronal rain in the understanding of the coronal magnetic field in active regions. With the present resolution, coronal rain is observed to literally invade the entire field of view. A large statistical set is obtained in which dynamics (total velocities and accelerations), shapes (lengths and widths), trajectories (angles of fall of the blobs), and thermodynamic properties (temperatures) of the condensations are derived. Specifically, we find that coronal rain is composed of small and dense chromospheric cores with average widths and lengths of {approx}310 km and {approx}710 km, respectively, average temperatures below 7000 K, displaying a broad distribution of falling speeds with an average of {approx}70 km s{sup -1}, and accelerations largely below the effective gravity along loops. Through estimates of the ion-neutral coupling in the blobs we show that coronal rain acts as a tracer of the coronal magnetic field, thus supporting the multi-strand loop scenario, and acts as a probe of the local thermodynamic conditions in loops. We further elucidate its potential in coronal heating. We find that the cooling in neighboring strands occurs simultaneously in general suggesting a similar thermodynamic evolution among strands, which can be explained by a common footpoint heating process. Constraints for coronal heating models of loops are thus provided. Estimates of the fraction of coronal volume with coronal rain give values between 7% and 30%. Estimates of the occurrence time of the phenomenon in loops set times between 5 and 20 hr, implying that coronal rain may be a common phenomenon, in agreement with the frequent observations of cool downflows in extreme-ultraviolet lines. The coronal mass drain rate in the form of coronal rain is estimated to be on the order of 5 Multiplication-Sign 10{sup 9} g s{sup -1}, a significant quantity compared to the estimate of mass flux into the corona from spicules.« less

  16. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  17. An Assessment of Magnetic Conditions for Strong Coronal Heating in Solar Active Regions by Comparing Observed Loops with Computed Potential Field Lines

    NASA Technical Reports Server (NTRS)

    Gary, G. A.; Moore, R. L.; Porter, J. G.; Falconer, D. A.

    1999-01-01

    We report further results on the magnetic origins of coronal heating found from registering coronal images with photospheric vector magnetograms. For two complementary active regions, we use computed potential field lines to examine the global non-potentiality of bright extended coronal loops and the three-dimensional structure of the magnetic field at their feet, and assess the role of these magnetic conditions in the strong coronal heating in these loops. The two active regions are complementary, in that one is globally potential and the other is globally nonpotential, while each is predominantly bipolar, and each has an island of included polarity in its trailing polarity domain. We find the following: (1) The brightest main-arch loops of the globally potential active region are brighter than the brightest main- arch loops of the globally strongly nonpotential active region. (2) In each active region, only a few of the mainarch magnetic loops are strongly heated, and these are all rooted near the island. (3) The end of each main-arch bright loop apparently bifurcates above the island, so that it embraces the island and the magnetic null above the island. (4) At any one time, there are other main-arch magnetic loops that embrace the island in the same manner as do the bright loops but that are not selected for strong coronal heating. (5) There is continual microflaring in sheared core fields around the island, but the main-arch bright loops show little response to these microflares. From these observational and modeling results we draw the following conclusions: (1) The heating of the main-arch bright loops arises mainly from conditions at the island end of these loops and not from their global non-potentiality. (2) There is, at most, only a loose coupling between the coronal heating in the bright loops of the main arch and the coronal heating in the sheared core fields at their feet, although in both the heating is driven by conditions/events in and around the island. (3) The main-arch bright loops are likely to be heated via reconnection driven at the magnetic null over the island. The details of how and where (along the null line) the reconnection is driven determine which of the split-end loops are selected for strong heating. (4) The null does not appear to be directly involved in the heating of the sheared core fields or in the heating of an extended loop rooted in the island. Rather, these all appear to be heated by microflares in the sheared core field.

  18. Evidence for Precursors of the Coronal Hole Jets in Solar Bright Points

    NASA Astrophysics Data System (ADS)

    Bagashvili, Salome R.; Shergelashvili, Bidzina M.; Japaridze, Darejan R.; Kukhianidze, Vasil; Poedts, Stefaan; Zaqarashvili, Teimuraz V.; Khodachenko, Maxim L.; De Causmaecker, Patrick

    2018-03-01

    A set of 23 observations of coronal jet events that occurred in coronal bright points has been analyzed. The focus was on the temporal evolution of the mean brightness before and during coronal jet events. In the absolute majority of the cases either single or recurrent coronal jets (CJs) were preceded by slight precursor disturbances observed in the mean intensity curves. The key conclusion is that we were able to detect quasi-periodical oscillations with characteristic periods from sub-minute up to 3–4 minute values in the bright point brightness that precedes the jets. Our basic claim is that along with the conventionally accepted scenario of bright-point evolution through new magnetic flux emergence and its reconnection with the initial structure of the bright point and the coronal hole, certain magnetohydrodynamic (MHD) oscillatory and wavelike motions can be excited and these can take an important place in the observed dynamics. These quasi-oscillatory phenomena might play the role of links between different epochs of the coronal jet ignition and evolution. They can be an indication of the MHD wave excitation processes due to the system entropy variations, density variations, or shear flows. It is very likely a sharp outflow velocity transverse gradients at the edges between the open and closed field line regions. We suppose that magnetic reconnections can be the source of MHD waves due to impulsive generation or rapid temperature variations, and shear flow driven nonmodel MHD wave evolution (self-heating and/or overreflection mechanisms).

  19. MHD Modeling of Coronal Loops: the Transition Region Throat

    NASA Technical Reports Server (NTRS)

    Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.

    2014-01-01

    Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims. The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods. We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 millikelvin. Results. We find that the area can change substantially with the quasi-steady heating rate, e.g., by approx. 40% at 0.5 millikelvin as the loop temperature varies between 1 millikelvin and 4 millikelvin, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves.

  20. Alfvén Waves in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; McIntosh, S. W.; Keil, S. L.; Judge, P. G.; Schad, T.; Seeley, D. H.; Edmondson, J.

    2007-08-01

    Alfvén waves, transverse incompressible magnetic oscillations, have been proposed as a possible mechanism to heat the Sun’s corona to millions of degrees by transporting convective energy from the photosphere into the diffuse corona. We report the detection of Alfvén waves in intensity, line-of-sight velocity, and linear polarization images of the solar corona taken using the FeXIII 1074.7-nanometer coronal emission line with the Coronal Multi-Channel Polarimeter (CoMP) instrument at the National Solar Observatory, New Mexico. Ubiquitous upward propagating waves were seen, with phase speeds of 1 to 4 megameters per second and trajectories consistent with the direction of the magnetic field inferred from the linear polarization measurements. An estimate of the energy carried by the waves that we spatially resolved indicates that they are too weak to heat the solar corona; however, unresolved Alfvén waves may carry sufficient energy.

  1. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. I: Properties of the Corona and the Spectrum of Escaping Radiation

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Jorn; Begelman, Mitchell C.

    1997-01-01

    We present the properties of accretion disk corona (ADC) models in which the radiation field, the temperature, and the total opacity of the corona are determined self-consistently. We use a nonlinear Monte Carlo code to perform the calculations. As an example, we discuss models in which the corona is situated above and below a cold accretion disk with a plane-parallel (slab) geometry, similar to the model of Haardt & Maraschi. By Comptonizing the soft radiation emitted by the accretion disk, the corona is responsible for producing the high-energy component of the escaping radiation. Our models include the reprocessing of radiation in the accretion disk. Here the photons either are Compton-reflected or photoabsorbed, giving rise to fluorescent line emission and thermal emission. The self- consistent coronal temperature is determined by balancing heating (due to viscous energy dissipation) with Compton cooling, determined using the fully relativistic, angle-dependent cross sections. The total opacity is found by balancing pair productions with annihilations. We find that, for a disk temperature kT(sub BB) approx. less than 200 eV, these coronae are unable to have a self-consistent temperature higher than approx. 140 keV if the total optical depth is approx. less than 0.2, regardless of the compactness parameter of the corona and the seed opacity. This limitation corresponds to the angle-averaged spectrum of escaping radiation having a photon index approx. greater than 1.8 within the 5-30 keV band. Finally, all models that have reprocessing features also predict a large thermal excess at lower energies. These constraints make explaining the X-ray spectra of persistent black hole candidates with ADC models very problematic.

  2. Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T.

    1997-01-01

    By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (greater than or approximately equals 20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45 deg), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45 deg). From this sample, we find that: (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G; (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km); (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines; (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them; (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them; and (6) the brightness of a persistently bright Coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions: (1) requires the presence of a polarity inversion in the magnetic field near at least one of the loop footpoints; (2) is greatly aided by the presence of strong shear in the core magnetic field along that neutral line; and (3) is controlled by some variable process that acts in this magnetic environment. We infer that this variable process is low-lying reconnection accompanying flux cancellation.

  3. The Role of Type II Spicules in the Upper Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2012-01-01

    We examine the suggestion that most of the hot plasma in the Sun's co rona comes from type II spicule material that is heated as it is ejected from the chromosphere. This contrasts with the traditional view th at the corona is filled via chromospheric evaporation that results fr om coronal heating. We explore the observational consequences of a hy pothetical spicule dominated corona and conclude from the large discr epancy between predicted and actual observations that only a small fraction of the hot plasma can be supplied by spicules (<2% in active regions and <5% in the quiet Sun). The red- blue asymmetries of EUV spec tral lines and the ratio of lower transition region (LTR; T< or =0.1 MK) to coronal emission measures are both predicted to be 2 orders of magnitude larger than observed. Furthermore, hot spicule material would cool dramatically by adiabatic expansion as it rises into the corona, so coronal heating would be required to maintain the high temperatu res that are seen at all altitudes. The necessity of coronal heating is inescapable. Traditional coronal heating models predict far too little emission from the LTR, and we suggest that this emission comes pr imarily from the bulk of the spicule material that is heated to < or =0.1 MK and is visible in He II (304 ?A) as it falls back to the surf ace.

  4. The Role of Type II Spicules in the Upper Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Klimchuk, J. A.

    2012-12-01

    We examine the suggestion that most of the hot plasma in the Sun's corona comes from type II spicule material that is heated as it is ejected from the chromosphere. This contrasts with the traditional view that the corona is filled via chromospheric evaporation that results from coronal heating. We explore the observational consequences of a hypothetical spicule dominated corona and conclude from the large discrepancy between predicted and actual observations that only a small fraction of the hot plasma can be supplied by spicules (<2% in active regions and <5% in the quiet Sun). The red-blue asymmetries of EUV spectral lines and the ratio of lower transition region (LTR; T<0.1 MK) to coronal emission measures are both predicted to be 2 orders of magnitude larger than observed. Furthermore, hot spicule material would cool dramatically by adiabatic expansion as it rises into the corona, so coronal heating would likely be required to maintain the high temperatures that are seen at all altitudes. The necessity of coronal heating seems inescapable. Traditional coronal heating models predict far too little emission from the LTR, and we suggest that this emission comes primarily from the bulk of the spicule material that is heated to <0.1 MK and is visible in He II (304 A) as it falls back to the surface.

  5. A Survey of Nanoflare Properties in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Klimchuk, J. A.

    2013-12-01

    We investigate coronal heating using a systematic technique to analyze the properties of nanoflares in active regions (AR). Our technique computes cooling times, or time-lags, on a pixel-by-pixel basis using data taken with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. Our technique has the advantage that it allows us to analyze all of the coronal AR emission, including the so-called diffuse emission. We recently presented results using this time-lag analysis on NOAA AR 11082 (Viall & Klimchuk 2012) and found that the majority of the pixels contained cooling plasma along their line of sight, consistent with impulsive coronal nanoflare heating. Additionally, our results showed that the nanoflare energy is stronger in the AR core and weaker in the active region periphery. Are these results representative of the nanoflare properties exhibited in the majority of ARs, or is AR 11082 unique? Here we present the time-lag results for a survey of ARs and show that these nanoflare patterns are born out in other active regions, for a range of ages, magnetic complexity, and total unsigned magnetic flux. Other aspects of the nanoflare properties, however, turn out to be dependent on certain AR characteristics.

  6. Observations and Modeling of Transition Region and Coronal Heating Associated with Spicules

    NASA Astrophysics Data System (ADS)

    De Pontieu, B.; Martinez-Sykora, J.; De Moortel, I.; Chintzoglou, G.; McIntosh, S. W.

    2017-12-01

    Spicules have been proposed as significant contributorsto the coronal energy and mass balance. While previous observationshave provided a glimpse of short-lived transient brightenings in thecorona that are associated with spicules, these observations have beencontested and are the subject of a vigorous debate both on the modelingand the observational side so that it remains unclear whether plasmais heated to coronal temperatures in association with spicules. We use high-resolution observations of the chromosphere and transition region with the Interface Region Imaging Spectrograph (IRIS) and ofthe corona with the Atmospheric Imaging Assembly (AIA) onboard theSolar Dynamics Observatory (SDO) to show evidence of the formation of coronal structures as a result of spicular mass ejections andheating of plasma to transition region and coronaltemperatures. Our observations suggest that a significant fraction of the highly dynamic loop fan environment associated with plage regions may be the result of the formation of such new coronal strands, a process that previously had been interpreted as the propagation of transient propagating coronal disturbances (PCD)s. Our observationsare supported by 2.5D radiative MHD simulations that show heating tocoronal temperatures in association with spicules. Our results suggest that heating and strong flows play an important role in maintaining the substructure of loop fans, in addition to the waves that permeate this low coronal environment. Our models also matches observations ofTR counterparts of spicules and provides an elegant explanation forthe high apparent speeds of these "network jets".

  7. Feel the Burn: What accounts for spatial variations in coronal heating?

    NASA Astrophysics Data System (ADS)

    Atwood, Shane; Kankelborg, Charles C.

    2016-05-01

    The coronal volume is filled with magnetic field, yet only part of that volume has sufficient heating to exhibit hot x-ray loops. How does the Sun decide where the heat goes? Using XRT and AIA images and HMI magnetograms, we identify footpoints of hot coronal loops, and magnetically similar regions underlying relatively unheated corona. We then use IRIS rasters and sit-and-stare observations to compare the spatial, temporal, and spectral structure of these relatively ``heated’’ and ``unheated’’ regions. We seek a signature of upward propagating energy that could be associated with hot active region loops.

  8. THE CONTRIBUTION OF CORONAL JETS TO THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lionello, R.; Török, T.; Titov, V. S.

    Transient collimated plasma eruptions in the solar corona, commonly known as coronal (or X-ray) jets, are among the most interesting manifestations of solar activity. It has been suggested that these events contribute to the mass and energy content of the corona and solar wind, but the extent of these contributions remains uncertain. We have recently modeled the formation and evolution of coronal jets using a three-dimensional (3D) magnetohydrodynamic (MHD) code with thermodynamics in a large spherical domain that includes the solar wind. Our model is coupled to 3D MHD flux-emergence simulations, i.e., we use boundary conditions provided by such simulationsmore » to drive a time-dependent coronal evolution. The model includes parametric coronal heating, radiative losses, and thermal conduction, which enables us to simulate the dynamics and plasma properties of coronal jets in a more realistic manner than done so far. Here, we employ these simulations to calculate the amount of mass and energy transported by coronal jets into the outer corona and inner heliosphere. Based on observed jet-occurrence rates, we then estimate the total contribution of coronal jets to the mass and energy content of the solar wind to (0.4–3.0)% and (0.3–1.0)%, respectively. Our results are largely consistent with the few previous rough estimates obtained from observations, supporting the conjecture that coronal jets provide only a small amount of mass and energy to the solar wind. We emphasize, however, that more advanced observations and simulations (including parametric studies) are needed to substantiate this conjecture.« less

  9. Two-phase Heating in Flaring Loops

    NASA Astrophysics Data System (ADS)

    Zhu, Chunming; Qiu, Jiong; Longcope, Dana W.

    2018-03-01

    We analyze and model a C5.7 two-ribbon solar flare observed by the Solar Dynamics Observatory, Hinode, and GOES on 2011 December 26. The flare is made of many loops formed and heated successively over one and half hours, and their footpoints are brightened in the UV 1600 Å before enhanced soft X-ray and EUV missions are observed in flare loops. Assuming that anchored at each brightened UV pixel is a half flaring loop, we identify more than 6700 half flaring loops, and infer the heating rate of each loop from the UV light curve at the footpoint. In each half loop, the heating rate consists of two phases: intense impulsive heating followed by a low-rate heating that is persistent for more than 20 minutes. Using these heating rates, we simulate the evolution of their coronal temperatures and densities with the model of the “enthalpy-based thermal evolution of loops.” In the model, suppression of thermal conduction is also considered. This model successfully reproduces total soft X-ray and EUV light curves observed in 15 passbands by four instruments GOES, AIA, XRT, and EVE. In this flare, a total energy of 4.9 × 1030 erg is required to heat the corona, around 40% of this energy is in the slow-heating phase. About two-fifths of the total energy used to heat the corona is radiated by the coronal plasmas, and the other three fifth transported to the lower atmosphere by thermal conduction.

  10. Resonant electrodynamic heating of stellar coronal loops: An LRC circuit analogue

    NASA Technical Reports Server (NTRS)

    Ionson, J. A.

    1980-01-01

    The electrodynamic coupling of stellar coronal loops to underlying beta velocity fields. A rigorous analysis revealed that the physics can be represented by a simple yet equivalent LRC circuit analogue. This analogue points to the existence of global structure oscillations which resonantly excite internal field line oscillations at a spatial resonance within the coronal loop. Although the width of this spatial resonance, as well as the induced currents and coronal velocity field, explicitly depend upon viscosity and resistivity, the resonant form of the generalized electrodynamic heating function is virtually independent of irreversibilities. This is a classic feature of high quality resonators that are externally driven by a broad band source of spectral power. Applications to solar coronal loops result in remarkable agreement with observations.

  11. Coronal Heating and the Increase of Coronal Luminosity with Magnetic Flux

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Falconer, D. A.; Porter, J. G.; Hathaway, D. H.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present the observed scaling of coronal luminosity with magnetic flux in a set of quiet regions. Comparison of this with the observed scaling found for active regions suggests an underlying difference between coronal heating in active regions and quiet regions. From SOHO/EIT coronal images and SOHO/MDI magnetograms of four similar large quiet regions, we measure L(sub corona) and Phi(sub total) in random subregions ranging in area from about four supergranules [(70,000 km)(exp 2)] to about 100 supergranules [(0.5 R(sub sun))(exp 2)], where L(sub corona) is the luminosity of the corona in a subregion and Phi(sub total) is the flux content of the magnetic network in the subregion. This sampling of our quiet regions yields a correlation plot of Log L(sub corona) vs Log Phi(sub total) appropriate for comparison with the corresponding plot for active regions. For our quiet regions, the mean values of L(sub corona) and Phi(sub total) both increase linearly with area (simply because each set of subregions of the same area has very nearly the same mean coronal luminosity per unit area and mean magnetic flux per unit area), and in each constant-area set the values of L(sub corona) and Phi(sub total) 'scatter' about their means for that area. This results in the linear least-squares fit to the Log ((L (sub corona)), vs Log ((Phi (sub total)) plot having a slope somewhat less than one. If active regions mimicked our quiet regions in that all large sets of same-area active regions had the same mean coronal luminosity per unit area and same mean magnetic flux per unit area, then the least-squares fit to their Log((L (sub corona)) vs Log((Phi (sub total)) plot would also have a slope of less than one. Instead, the slope for active regions is 1.2. Given the observed factor of three scatter about the least-squares linear fit, this slope is consistent with Phi(sub total) on average increasing linearly with area (A) as in quiet regions, but L(sub corona) on average increasing as the volume (A(exp 1.5)) of the active region instead of as the area. This possibility is reasonable if the heating in active regions is a burning down of previously-stored coronal magnetic energy rather than a steady dissipation of energy flux from below as expected in quiet regions.

  12. The Foggy EUV Corona and Coronal Heating by MHD Waves from Explosive Reconnection Events

    NASA Technical Reports Server (NTRS)

    Moore, Ron L.; Cirtain, Jonathan W.; Falconer, David A.

    2008-01-01

    In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e. g., the 0.1 arcsec/pixel resolution of the Hi-C sounding-rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and below the base of the corona where they are seen as UV explosive events, EUV blinkers, and type II spicules. These MHD waves propagate across field lines and dissipate, heating the plasma in the field between the bright loops and plumes.

  13. FOXSI-2 Observations and Coronal Heating

    NASA Astrophysics Data System (ADS)

    Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S. N.; Buitrago Casas, J. C.; Takahashi, T.; Foster, N.

    2015-12-01

    Energy release and particle acceleration on the Sun is a frequent occurrence associated with a number of different solar phenomenon including but not limited to solar flares, coronal mass ejections and nanoflares. The exact mechanism through which particles are accelerated and energy is released is still not well understood. This issue is related to the unsolved coronal heating problem, the mystery of the heating mechanism for the million degree solar corona. One prevalent theory posits the existence of a multitude of small flares, dubbed nanoflares. Recent observations of active region AR11890 by IRIS (Testa et al. 2014) are consistent with numerical simulations of heating by impulsive beams of nonthermal electrons, suggesting that nanoflares may be similar to large flares in that they accelerate particles. Furthermore, observations by the EUNIS sounding rocket (Brosius et al. 2014) of faint Fe XIX (592.2 Angstrom) emission in an active region is indicative of plasma at temperatures of at least 8.9 MK providing further evidence of nanoflare heating. One of the best ways to gain insight into accelerated particles on the Sun and the presence of hot plasma is by observing the Sun in hard X-rays (HXR). We present on observations taken during the second successful flight of the Focusing Optics X-ray Solar Imager (FOXSI-2). FOXSI flew on December 11, 2014 with upgraded optics as well as new CdTe strip detectors. FOXSI-2 observed thermal emission (4-15 keV) from at least three active regions (AR#12234, AR#12233, AR#12235) and observed regions of the Sun without active regions. We present on using FOXSI observations to test the presence of hot temperatures in and outside of active regions.

  14. SELF-ORGANIZED BRAIDING AND THE STRUCTURE OF CORONAL LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Mitchell A.; Asgari-Targhi, Mahboubeh, E-mail: m.berger@exeter.ac.u, E-mail: m.asgari@ucl.ac.u

    2009-11-01

    The Parker model for heating of the solar corona involves reconnection of braided magnetic flux elements. Much of this braiding is thought to occur at as yet unresolved scales, for example, braiding of threads within an extreme-ultraviolet or X-ray loop. However, some braiding may be still visible at scales accessible to TRACE or Hinode. We suggest that attempts to estimate the amount of braiding at these scales must take into account the degree of coherence of the braid structure. In this paper, we examine the effect of reconnection on the structure of a braided magnetic field. We demonstrate that simplemore » models of braided magnetic fields which balance the input of topological structure with reconnection evolve to a self-organized critical state. An initially random braid can become highly ordered, with coherence lengths obeying power-law distributions. The energy released during reconnection also obeys a power law. Our model gives more frequent (but smaller) energy releases nearer to the ends of a coronal loop.« less

  15. Shock heating in numerical simulations of kink-unstable coronal loops

    PubMed Central

    Bareford, M. R.; Hood, A. W.

    2015-01-01

    An analysis of the importance of shock heating within coronal magnetic fields has hitherto been a neglected area of study. We present new results obtained from nonlinear magnetohydrodynamic simulations of straight coronal loops. This work shows how the energy released from the magnetic field, following an ideal instability, can be converted into thermal energy, thereby heating the solar corona. Fast dissipation of magnetic energy is necessary for coronal heating and this requirement is compatible with the time scales associated with ideal instabilities. Therefore, we choose an initial loop configuration that is susceptible to the fast-growing kink, an instability that is likely to be created by convectively driven vortices, occurring where the loop field intersects the photosphere (i.e. the loop footpoints). The large-scale deformation of the field caused by the kinking creates the conditions for the formation of strong current sheets and magnetic reconnection, which have previously been considered as sites of heating, under the assumption of an enhanced resistivity. However, our simulations indicate that slow mode shocks are the primary heating mechanism, since, as well as creating current sheets, magnetic reconnection also generates plasma flows that are faster than the slow magnetoacoustic wave speed. PMID:25897092

  16. MHD modeling of coronal loops: the transition region throat

    NASA Astrophysics Data System (ADS)

    Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.

    2014-04-01

    Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims: The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods: We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. Results: We find that the area can change substantially with the quasi-steady heating rate, e.g., by ~40% at 0.5 MK as the loop temperature varies between 1 MK and 4 MK, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves. The movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  17. Solar Jets as Sources of Outflows, Heating and Waves

    NASA Astrophysics Data System (ADS)

    Nishizuka, N.

    2013-05-01

    Recent space solar observations of the Sun, such as Hinode and SDO, have revealed that magnetic reconnection is ubiquitous in the solar atmosphere, ranging from small scale reconnection (observed as nanoflares) to large scale one (observed as long duration flares or giant arcades). Especially recent Hinode observations has found various types of tiny chromospheric jets, such as chromospheric anemone jets, penumbral microjets and light bridge jets from sunspot umbra. It was also found that the corona is full of tiny X-ray jets. Often they are seen as helical spinning jets with Alfvenic waves in the corona. Sometimes they are seen as chromospheric jets with slow-mode magnetoacoustic waves and sometimes as unresolved jet-like events at the footpoint of recurrent outflows and waves at the edge of the active region. There is increasing evidence of magnetic reconnection in these tiny jets and its association with waves. The origin of outflows and waves is one of the issues concerning coronal heating and solar wind acceleration. To answer this question, we had a challenge to reproduce solar jets with laboratory plasma experiment and directly measured outflows and waves. As a result, we could find a propagating wave excited by magnetic reconnection, whose energy flux is 10% of the released magnetic energy. That is enough for solar wind acceleration and locally enough for coronal heating, consistent with numerical MHD simulations of solar jets. Here we would discuss recent observations with Hinode, theories and experimental results related to jets and waves by magnetic reconnection, and discuss possible implication to reconnection physics, coronal heating and solar wind acceleration.

  18. Energy conversion in the coronal plasma

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.

    1986-01-01

    Solar and stellar X-ray emission are the observed waste products of the interplay between magnetic fields and the motion of stellar plasma. Theoretical understanding of the process of coronal heating is of utmost importance, since the high temperature is what defines the corona in the first place. Most of the research described deals with the aspects of the several rivalling theories for coronal heating. The rest of the papers deal with processes of energy conversion related to flares.

  19. The Coronal Monsoon: Thermal Nonequilibrium Revealed by Periodic Coronal Rain

    NASA Astrophysics Data System (ADS)

    Auchère, Frédéric; Froment, Clara; Soubrié, Elie; Antolin, Patrick; Oliver, Ramon; Pelouze, Gabriel

    2018-02-01

    We report on the discovery of periodic coronal rain in an off-limb sequence of Solar Dynamics Observatory/Atmospheric Imaging Assembly images. The showers are co-spatial and in phase with periodic (6.6 hr) intensity pulsations of coronal loops of the sort described by Auchère et al. and Froment et al. These new observations make possible a unified description of both phenomena. Coronal rain and periodic intensity pulsations of loops are two manifestations of the same physical process: evaporation/condensation cycles resulting from a state of thermal nonequilibrium. The fluctuations around coronal temperatures produce the intensity pulsations of loops, and rain falls along their legs if thermal runaway cools the periodic condensations down and below transition-region temperatures. This scenario is in line with the predictions of numerical models of quasi-steadily and footpoint heated loops. The presence of coronal rain—albeit non-periodic—in several other structures within the studied field of view implies that this type of heating is at play on a large scale.

  20. Multidimensional Modeling of Coronal Rain Dynamics

    NASA Astrophysics Data System (ADS)

    Fang, X.; Xia, C.; Keppens, R.

    2013-07-01

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  1. Stellar activity and coronal heating: an overview of recent results

    PubMed Central

    Testa, Paola; Saar, Steven H.; Drake, Jeremy J.

    2015-01-01

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars. PMID:25897087

  2. MODELING THE LINE-OF-SIGHT INTEGRATED EMISSION IN THE CORONA: IMPLICATIONS FOR CORONAL HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viall, Nicholeen M.; Klimchuk, James A.

    2013-07-10

    One of the outstanding problems in all of space science is uncovering how the solar corona is heated to temperatures greater than 1 MK. Though studied for decades, one of the major difficulties in solving this problem has been unraveling the line-of-sight (LOS) effects in the observations. The corona is optically thin, so a single pixel measures counts from an indeterminate number (perhaps tens of thousands) of independently heated flux tubes, all along that pixel's LOS. In this paper we model the emission in individual pixels imaging the active region corona in the extreme ultraviolet. If LOS effects are notmore » properly taken into account, erroneous conclusions regarding both coronal heating and coronal dynamics may be reached. We model the corona as an LOS integration of many thousands of completely independently heated flux tubes. We demonstrate that despite the superposition of randomly heated flux tubes, nanoflares leave distinct signatures in light curves observed with multi-wavelength and high time cadence data, such as those data taken with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. These signatures are readily detected with the time-lag analysis technique of Viall and Klimchuk in 2012. Steady coronal heating leaves a different and equally distinct signature that is also revealed by the technique.« less

  3. OBSERVATIONAL SIGNATURES OF CORONAL LOOP HEATING AND COOLING DRIVEN BY FOOTPOINT SHUFFLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlburg, R. B.; Taylor, B. D.; Einaudi, G.

    The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence, the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is nonuniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scalesmore » that, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50,000 km length and axial magnetic field intensities ranging from 0.01 to 0.04 T are presented. To connect these simulations to observations, we use the computed number densities and temperatures to synthesize the intensities expected in emission lines typically observed with the Extreme Ultraviolet Imaging Spectrometer on Hinode. These intensities are used to compute differential emission measure distributions using the Monte Carlo Markov Chain code, which are very similar to those derived from observations of solar active regions. We conclude that coronal heating is found to be strongly intermittent in space and time, with only small portions of the coronal loop being heated: in fact, at any given time, most of the corona is cooling down.« less

  4. Comparison between two models of energy balance in coronal loops

    NASA Astrophysics Data System (ADS)

    Mac Cormack, C.; López Fuentes, M.; Vásquez, A. M.; Nuevo, F. A.; Frazin, R. A.; Landi, E.

    2017-10-01

    In this work we compare two models to analyze the energy balance along coronal magnetic loops. For the first stationary model we deduce an expression of the energy balance along the loops expressed in terms of quantities provided by the combination of differential emission measure tomography (DEMT) applied to EUV images time series and potential extrapolations of the coronal magnetic field. The second applied model is a 0D hydrodynamic model that provides the evolution of the average properties of the coronal plasma along the loops, using as input parameters the loop length and the heating rate obtained with the first model. We compare the models for two Carrington rotations (CR) corresponding to different periods of activity: CR 2081, corresponding to a period of minimum activity observed with the Extreme Ultraviolet Imager (EUVI) on board of the Solar Terrestrial Relations Observatory (STEREO), and CR 2099, corresponding to a period of activity increase observed with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The results of the models are consistent for both rotations.

  5. Origins of the Solar Wind

    NASA Technical Reports Server (NTRS)

    Warren, Harry; Gurman, Joseph (Technical Monitor)

    2002-01-01

    This paper presented the differential emission measure analysis of SUMER observations of a coroner streamer. We found that: The coroner streamer is isothermal at all heights. This suggests that the loops comprising the streamer must have very flat temperature profiles. The coroner streamer is "overdense" relative to the predictions of hydrostatic equilibrium at most heights. At the lowest heights the streamer is actually "underdense". The SUMER temperature measurements are not consistent with those derived from simultaneous SXT observations. SXT indicates systematically higher temperatures as well as a strong temperature gradient. These SUMER measurements yield somewhat lower temperatures and no gradient in the temperature with height. Previous work has suggested that there may be a hot component to the streamer that is preferentially observed with SXT. Our analysis shows that high temperature emission lines would be observed with SUMER if this were true and thus discounts this possibility. We suggested that scattered light in SXT might produce spurious temperature measurements. The temperature and density structure of this coroner streamer are very similar to "TRACE" active region loops (flat temperature profiles, overdense relative to uniform heating, and relatively cool temperatures).

  6. Density and white light brightness in looplike coronal mass ejections - Temporal evolution

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Hundhausen, A. J.

    1988-01-01

    Three ambient coronal models suitable for studies of time-dependent phenomena were used to investigate the propagation of coronal mass ejections initiated in each atmosphere by an identical energy source. These models included those of a static corona with a dipole magnetic field, developed by Dryer et al. (1979); a steady polytropic corona with an equatorial coronal streamer, developed by Steinolfson et al. (1982); and Steinolfson's (1988) model of heated corona with an equatorial coronal streamer. The results indicated that the first model does not adequately represent the general characteristics of observed looplike mass ejections, and the second model simulated only some of the observed features. Only the third model, which included a heating term and a streamer, was found to yield accurate simulation of the mess ejection observations.

  7. THE ROLE OF TORSIONAL ALFVEN WAVES IN CORONAL HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antolin, P.; Shibata, K., E-mail: antolin@astro.uio.n, E-mail: shibata@kwasan.kyoto-u.ac.j

    In the context of coronal heating, among the zoo of magnetohydrodynamic (MHD) waves that exist in the solar atmosphere, Alfven waves receive special attention. Indeed, these waves constitute an attractive heating agent due to their ability to carry over the many different layers of the solar atmosphere sufficient energy to heat and maintain a corona. However, due to their incompressible nature these waves need a mechanism such as mode conversion (leading to shock heating), phase mixing, resonant absorption, or turbulent cascade in order to heat the plasma. Furthermore, their incompressibility makes their detection in the solar atmosphere very difficult. Newmore » observations with polarimetric, spectroscopic, and imaging instruments such as those on board the Japanese satellite Hinode, or the Crisp spectropolarimeter of the Swedish Solar Telescope or the Coronal Multi-channel Polarimeter, are bringing strong evidence for the existence of energetic Alfven waves in the solar corona. In order to assess the role of Alfven waves in coronal heating, in this work we model a magnetic flux tube being subject to Alfven wave heating through the mode conversion mechanism. Using a 1.5 dimensional MHD code, we carry out a parameter survey varying the magnetic flux tube geometry (length and expansion), the photospheric magnetic field, the photospheric velocity amplitudes, and the nature of the waves (monochromatic or white-noise spectrum). The regimes under which Alfven wave heating produces hot and stable coronae are found to be rather narrow. Independently of the photospheric wave amplitude and magnetic field, a corona can be produced and maintained only for long (>80 Mm) and thick (area ratio between the photosphere and corona >500) loops. Above a critical value of the photospheric velocity amplitude (generally a few km s{sup -1}) the corona can no longer be maintained over extended periods of time and collapses due to the large momentum of the waves. These results establish several constraints on Alfven wave heating as a coronal heating mechanism, especially for active region loops.« less

  8. Using observations of slipping velocities to test the hypothesis that reconnection heats the active region corona

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Longcope, Dana; Guo, Yang; Ding, Mingde

    2017-08-01

    Numerous proposed coronal heating mechanisms have invoked magnetic reconnection in some role. Testing such a mechanism requires a method of measuring magnetic reconnection coupled with a prediction of the heat delivered by reconnection at the observed rate. In the absence of coronal reconnection, field line footpoints move at the same velocity as the plasma they find themselves in. The rate of coronal reconnection is therefore related to any discrepancy observed between footpoint motion and that of the local plasma — so-called slipping motion. We propose a novel method to measure this velocity discrepancy by combining a sequence of non-linear force-free field extrapolations with maps of photospheric velocity. We obtain both from a sequence of vector magnetograms of an active region (AR). We then propose a method of computing the coronal heating produced under the assumption the observed slipping velocity was due entirely to coronal reconnection. This heating rate is used to predict density and temperature at points along an equilibrium loop. This, in turn, is used to synthesize emission in EUV and SXR bands. We perform this analysis using a sequence of HMI vector magnetograms of a particular AR and compare synthesized images to observations of the same AR made by SDO. We also compare differential emission measure inferred from those observations to that of the modeled corona.

  9. Solar coronal loop heating by cross-field wave transport

    NASA Technical Reports Server (NTRS)

    Amendt, Peter; Benford, Gregory

    1989-01-01

    Solar coronal arches heated by turbulent ion-cyclotron waves may suffer significant cross-field transport by these waves. Nonlinear processes fix the wave-propagation speed at about a tenth of the ion thermal velocity, which seems sufficient to spread heat from a central core into a large cool surrounding cocoon. Waves heat cocoon ions both through classical ion-electron collisions and by turbulent stochastic ion motions. Plausible cocoon sizes set by wave damping are in roughly kilometers, although the wave-emitting core may be only 100 m wide. Detailed study of nonlinear stabilization and energy-deposition rates predicts that nearby regions can heat to values intermediate between the roughly electron volt foot-point temperatures and the about 100 eV core, which is heated by anomalous Ohmic losses. A volume of 100 times the core volume may be affected. This qualitative result may solve a persistent problem with current-driven coronal heating; that it affects only small volumes and provides no way to produce the extended warm structures perceptible to existing instruments.

  10. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  11. Evidence for Widespread Cooling in an Active Region Observed with the SDO Atmospheric Imaging Assembly

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-01-01

    A well known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions. Is this cooling pattern a common property of active region coronal plasma, or does it only occur in unique circumstances, locations, and times? The new SDO/AIA data provide a wonderful opportunity to answer this question systematically for an entire active region. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hours of images of AR 11082 observed on 19 June 2010. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the active region including the diffuse emission between loops for the entire 24 hour duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hour time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than approx. 0.8 MK. This suggests that the bulk of the emitting coronal plasma in this active region is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  12. REVIEWS OF TOPICAL PROBLEMS: Coronal magnetic loops

    NASA Astrophysics Data System (ADS)

    Zaitsev, Valerii V.; Stepanov, Alexander V.

    2008-11-01

    The goal of this review is to outline some new ideas in the physics of coronal magnetic loops, the fundamental structural elements of the atmospheres of the Sun and flaring stars, which are involved in phenomena such as stellar coronal heating, flare energy release, charged particle acceleration, and the modulation of optical, radio, and X-ray emissions. The Alfvén-Carlqvist view of a coronal loop as an equivalent electric circuit allows a good physical understanding of loop processes. Describing coronal loops as MHD-resonators explains various ways in which flaring emissions from the Sun and stars are modulated, whereas modeling them by magnetic mirror traps allows one to describe the dynamics and emission of high-energy particles. Based on these approaches, loop plasma and fast particle parameters are obtained and models for flare energy release and stellar corona heating are developed.

  13. Characterizing a Model of Coronal Heating and Solar Wind Acceleration Based on Wave Turbulence.

    NASA Astrophysics Data System (ADS)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M.

    2014-12-01

    Understanding the nature of coronal heating and solar wind acceleration is a key goal in solar and heliospheric research. While there have been many theoretical advances in both topics, including suggestions that they may be intimately related, the inherent scale coupling and complexity of these phenomena limits our ability to construct models that test them on a fundamental level for realistic solar conditions. At the same time, there is an ever increasing impetus to improve our spaceweather models, and incorporating treatments for these processes that capture their basic features while remaining tractable is an important goal. With this in mind, I will give an overview of our exploration of a wave-turbulence driven (WTD) model for coronal heating and solar wind acceleration based on low-frequency Alfvénic turbulence. Here we attempt to bridge the gap between theory and practical modeling by exploring this model in 1D HD and multi-dimensional MHD contexts. The key questions that we explore are: What properties must the model possess to be a viable model for coronal heating? What is the influence of the magnetic field topology (open, closed, rapidly expanding)? And can we simultaneously capture coronal heating and solar wind acceleration with such a quasi-steady formulation? Our initial results suggest that a WTD based formulation performs adequately for a variety of solar and heliospheric conditions, while significantly reducing the number of free parameters when compared to empirical heating and solar wind models. The challenges, applications, and future prospects of this type of approach will also be discussed.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, X.; Xia, C.; Keppens, R.

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation ofmore » blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.« less

  15. Observing the Roots of Coronal Heating - in the Chromosphere

    NASA Astrophysics Data System (ADS)

    McIntosh, S. W.; de Pontieu, B.; Hansteen, V. H.; Schrjver, K.

    2009-12-01

    I will discuss recent results using Hinode/SOT-EIS-XRT, SOHO/SUMER, CRISP (at the Swedish Solar Telescope) and TRACE that provide a direct connection between coronal dynamics and those of the lower atmosphere. We use chromospheric measurements (H-alpha and Ca II 8542 spectral imaging, and Ca II H images), as well as UV spectra (EIS and SUMER), and EUV/X-ray images (XRT and TRACE) to show that faint, high-speed upflows at velocities of 50-100 km/s across a wide range of temperatures from chromospheric (10,000 K), through lower and upper transition region (0.1 to 0.7 MK) and coronal temperatures (2 MK) are associated with significant mass-loading of the corona with hot plasma. Our observations are incompatible with current models in which coronal heating occurs as a result of nanoflares at coronal heights. Instead we suggest that a significant fraction of heating of plasma to coronal temperatures may occur at chromospheric heights in association with jets driven from below (the recently discovered type II spicules). Illustrating the mass and energy transport between the chromosphere, transition region and corona, as deduced from Hinode observations. Convective flows and oscillations in the convection zone and photosphere of the Sun buffet the magnetic field of the Sun. This leads to at least two different kinds of jets in the chromosphere: Type I, and II spicules. Type II spicules drive matter upward violently and likely form when magnetic field reconnects because of stresses introduced by convective flows. A significant fraction of the plasma in type II spicules is heated to coronal temperatures (>1MK), providing the corona with hot plasma. The correlation between the chromospheric and coronal parts of the spicules depends greatly on the viewing angle between the line-of-sight and the direction of the upward flows. Order of magnitude estimates indicate that the mass supplied by type II spicules plays a significant role in supplying the corona with hot plasma.

  16. Microphysics of Waves and Instabilities in the Solar Wind and their Macro Manifestations in the Corona and Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph (Technical Monitor); Habbal, Shadia Rifai

    2004-01-01

    Investigations of the physical processes responsible for coronal heating and the acceleration of the solar wind were pursued with the use of our recently developed 2D MHD solar wind code and our 1D multifluid code. In particular, we explored (1) the role of proton temperature anisotropy in the expansion of the solar wind, (2) the role of plasma parameters at the coronal base in the formation of high speed solar wind streams at mid-latitudes, and (3) the heating of coronal loops.

  17. EXTENSION OF THE MURAM RADIATIVE MHD CODE FOR CORONAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempel, M., E-mail: rempel@ucar.edu

    2017-01-01

    We present a new version of the MURaM radiative magnetohydrodynamics (MHD) code that allows for simulations spanning from the upper convection zone into the solar corona. We implement the relevant coronal physics in terms of optically thin radiative loss, field aligned heat conduction, and an equilibrium ionization equation of state. We artificially limit the coronal Alfvén and heat conduction speeds to computationally manageable values using an approximation to semi-relativistic MHD with an artificially reduced speed of light (Boris correction). We present example solutions ranging from quiet to active Sun in order to verify the validity of our approach. We quantifymore » the role of numerical diffusivity for the effective coronal heating. We find that the (numerical) magnetic Prandtl number determines the ratio of resistive to viscous heating and that owing to the very large magnetic Prandtl number of the solar corona, heating is expected to happen predominantly through viscous dissipation. We find that reasonable solutions can be obtained with values of the reduced speed of light just marginally larger than the maximum sound speed. Overall this leads to a fully explicit code that can compute the time evolution of the solar corona in response to photospheric driving using numerical time steps not much smaller than 0.1 s. Numerical simulations of the coronal response to flux emergence covering a time span of a few days are well within reach using this approach.« less

  18. SAROS: Solar Active Region Observations from Spacelab

    NASA Technical Reports Server (NTRS)

    Krieger, A. S.

    1985-01-01

    A definition study of the SAROS investigation was conducted. An instrument design and mode of operation was established which was consistent with the capabilities of the Space Transportation System. Upon completion of the definition phase study the program was placed on hold for approximately five years before being terminated. Consequently, the promise which this investigation held for understanding the heating processes in coronal loops remains unfulfilled.

  19. Energy balance of stellar coronae. III - Effect of stellar mass and radius

    NASA Technical Reports Server (NTRS)

    Hammer, R.

    1984-01-01

    A homologous transformation is derived which permits the application of the numerical coronal models of Hammer from a star with solar mass and radius to other stars. This scaling requires a few approximations concerning the lower boundary conditions and the temperature dependence of the conductivity and emissivity. These approximations are discussed and found to be surprisingly mild. Therefore, the scaling of the coronal models to other stars is rather accurate; it is found to be particularly accurate for main-sequence stars. The transformation is used to derive an equation that gives the maximum temperature of open coronal regions as a function of stellar mass and radius, the coronal heating flux, and the characteristic damping length over which the corona is heated.

  20. CHROMOSPHERIC AND CORONAL WAVE GENERATION IN A MAGNETIC FLUX SHEATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Yoshiaki; Hansteen, Viggo; Gudiksen, Boris

    2016-08-10

    Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab “pump” the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field inmore » the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in the chromosphere and higher tends to oscillate with a period of ν ≈ 4 mHz. We conclude that this process of “magnetic pumping” is a most plausible mechanism for the direct generation of longitudinal chromospheric and coronal compressive waves within magnetic flux concentrations, and it may provide an important heat source in the chromosphere. It may also be responsible for certain types of dynamic fibrils.« less

  1. Coronal Heating and the Need for High-Resolution Observations

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2008-01-01

    Despite excellent progress in recent years in understanding coronal heating, there remain many crucial questions that are still unanswered. Limitations in the observations are one important reason. Both theoretical and observational considerations point to the importance of small spatial scales, impulsive energy release, strong dynamics, and extreme plasma nonuniformity. As a consequence, high spatial resolution, broad temperature coverage, high temperature fidelity, and sensitivity to velocities and densities are all critical observational parameters. Current instruments lack one or more of these properties, and this has led to considerable ambiguity and confusion. In this talk, I will discuss recent ideas about coronal heating and emphasize that high spatial resolution observations, especially spectroscopic observations, are needed to make major progress on this important problem.

  2. What Dominates the Coronal Emission Spectrum During the Cycle of Impulsive Heating and Cooling?

    NASA Technical Reports Server (NTRS)

    Bradshaw, Stephen J.; Klimchuk, James A.

    2011-01-01

    The smoking gun of small-scale, impulsive events heating the solar corona is expected to be the presence of a hot ( > 5 MK) plasma component. Evidence for this has been scarce, but has gradually begun to accumulate due to recent studies designed to constrain the high temperature part of the emission measure distribution. However, the detected hot component is often weaker than models predict and this is due in part to the common modeling assumption that the ionization balance remains in equilibrium. The launch of the latest generation of space-based observing instrumentation aboard Hinode and the Solar Dynamics Observatory (SDO) has brought the matter of the ionization state of the plasma firmly to the forefront. It is timely to consider exactly what emission current instruments would detect when observing a corona heated impulsively on small-scales by nanoflares. Only after we understand the full effects of nonequilibrium ionization can we draw meaningful conclusions about the plasma that is (or is not) present. We have therefore performed a series of hydrodynamic simulations for a variety of different nanoflare properties and initial conditions. Our study has led to several key conclusions. 1. Deviations from equilibrium are greatest for short-duration nanoflares at low initial coronal densities. 2. Hot emission lines are the most affected and are suppressed sometimes to the point of being invisible. 3. The emission detected in all of the SDO-AIA channels is generally dominated by warm, over-dense, cooling plasma. 4. It is difficult not to create coronal loops that emit strongly at 1.5 MK and in the range 2 to 5 MK, which are the most commonly observed kind, for a broad range of nanoflare scenarios. 5. The Fe XV (284.16 ) emission in most of our models is about 10 times brighter than the Ca XVII (192.82 ) emission, consistent with observations. Our overarching conclusion is that small-scale, impulsive heating inducing a nonequilibrium ionization state leads to predictions for observable quantities that are entirely consistent with what is actually observed.

  3. Observations of Upward Propagating Waves in the Transition Region and Corona above Sunspots

    NASA Astrophysics Data System (ADS)

    Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong; Li, Bo; Fu, Hui

    2018-03-01

    We present observations of persistent oscillations of some bright features in the upper-chromosphere/transition region above sunspots taken by IRIS SJ 1400 Å and upward propagating quasi-periodic disturbances along coronal loops rooted in the same region taken by the AIA 171 Å passband. The oscillations of the features are cyclic oscillatory motions without any obvious damping. The amplitudes of the spatial displacements of the oscillations are about 1″. The apparent velocities of the oscillations are comparable to the sound speed in the chromosphere, but the upward motions are slightly larger than that of the downward. The intensity variations can take 24%–53% of the background, suggesting nonlinearity of the oscillations. The FFT power spectra of the oscillations show a dominant peak at a period of about 3 minutes, which is consistent with the omnipresent 3 minute oscillations in sunspots. The amplitudes of the intensity variations of the upward propagating coronal disturbances are 10%–15% of the background. The coronal disturbances have a period of about 3 minutes, and propagate upward along the coronal loops with apparent velocities in a range of 30 ∼ 80 km s‑1. We propose a scenario in which the observed transition region oscillations are powered continuously by upward propagating shocks, and the upward propagating coronal disturbances can be the recurrent plasma flows driven by shocks or responses of degenerated shocks that become slow magnetic-acoustic waves after heating the plasma in the coronal loops at their transition-region bases.

  4. Effect of Local Thermal Equilibrium Misbalance on Long-wavelength Slow Magnetoacoustic Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakariakov, V. M.; Afanasyev, A. N.; Kumar, S.

    Evolution of slow magnetoacoustic waves guided by a cylindrical magnetic flux tube that represents a coronal loop or plume, is modeled accounting for the effects of finite gas pressure, weak nonlinearity, dissipation by thermal conduction and viscosity, and the misbalance between the cooling by optically thin radiation and unspecified heating of the plasma. An evolutionary equation of the Burgers–Malthus type is derived. It is shown that the cooling/heating misbalance, determined by the derivatives of the combined radiative cooling and heating function, with respect to the density, temperature, and magnetic field at the thermal equilibrium affect the wave rather strongly. Thismore » effect may either cause additional damping, or counteract it, or lead to the gradual amplification of the wave. In the latter case, the coronal plasma acts as an active medium for the slow magnetoacoustic waves. The effect of the cooling/heating misbalance could be important for coronal slow waves, and could be responsible for certain discrepancies between theoretical results and observations, in particular, the increased or decreased damping lengths and times, detection of the waves at certain heights only, and excitation of compressive oscillations. The results obtained open up a possibility for the diagnostics of the coronal heating function by slow magnetoacoustic waves.« less

  5. Heating and Cooling of Coronal Loops with Turbulent Suppression of Parallel Heat Conduction.

    PubMed

    Bian, Nicolas; Emslie, A Gordon; Horne, Duncan; Kontar, Eduard P

    2018-01-10

    Using the "enthalpy-based thermal evolution of loops" (EBTEL) model, we investigate the hydrodynamics of the plasma in a flaring coronal loop in which heat conduction is limited by turbulent scattering of the electrons that transport the thermal heat flux. The EBTEL equations are solved analytically in each of the two (conduction-dominated and radiation-dominated) cooling phases. Comparison of the results with typical observed cooling times in solar flares shows that the turbulent mean free path λ T lies in a range corresponding to a regime in which classical (collision-dominated) conduction plays at most a limited role. We also consider the magnitude and duration of the heat input that is necessary to account for the enhanced values of temperature and density at the beginning of the cooling phase and for the observed cooling times. We find through numerical modeling that in order to produce a peak temperature ≃1.5 × 10 7 K and a 200 s cooling time consistent with observations, the flare-heating profile must extend over a significant period of time; in particular, its lingering role must be taken into consideration in any description of the cooling phase. Comparison with observationally inferred values of post-flare loop temperatures, densities, and cooling times thus leads to useful constraints on both the magnitude and duration of the magnetic energy release in the loop, as well as on the value of the turbulent mean free path λ T .

  6. Undamped transverse oscillations of coronal loops as a self-oscillatory process

    NASA Astrophysics Data System (ADS)

    Nakariakov, V. M.; Anfinogentov, S. A.; Nisticò, G.; Lee, D.-H.

    2016-06-01

    Context. Standing transverse oscillations of coronal loops are observed to operate in two regimes: rapidly decaying, large amplitude oscillations and undamped small amplitude oscillations. In the latter regime the damping should be compensated by energy supply, which allows the loop to perform almost monochromatic oscillations with almost constant amplitude and phase. Different loops oscillate with different periods. The oscillation amplitude does not show dependence on the loop length or the oscillation period. Aims: We aim to develop a low-dimensional model explaining the undamped kink oscillations as a self-oscillatory process caused by the effect of negative friction. The source of energy is an external quasi-steady flow, for example, supergranulation motions near the loop footpoints or external flows in the corona. Methods: We demonstrate that the interaction of a quasi-steady flow with a loop can be described by a Rayleigh oscillator equation that is a non-linear ordinary differential equation, with the damping and resonant terms determined empirically. Results: Small-amplitude self-oscillatory solutions to the Rayleigh oscillator equation are harmonic signals of constant amplitude, which is consistent with the observed properties of undamped kink oscillations. The period of self-oscillations is determined by the frequency of the kink mode. The damping by dissipation and mode conversion is compensated by the continuous energy deposition at the frequency of the natural oscillation. Conclusions: We propose that undamped kink oscillations of coronal loops may be caused by the interaction of the loops with quasi-steady flows, and hence are self-oscillations, which is analogous to producing a tune by moving a bow across a violin string.

  7. The interpretation of simultaneous soft X-ray spectroscopic and imaging observations of an active region. [in solar corona

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Gerassimenko, M.; Krieger, A. S.; Vaiana, G. S.

    1975-01-01

    Simultaneous soft X-ray spectroscopic and broad-band imaging observations of an active region have been analyzed together to determine the parameters which describe the coronal plasma. From the spectroscopic data, models of temperature-emission measure-elemental abundance have been constructed which provide acceptable statistical fits. By folding these possible models through the imaging analysis, models which are not self-consistent can be rejected. In this way, only the oxygen, neon, and iron abundances of Pottasch (1967), combined with either an isothermal or exponential temperature-emission-measure model, are consistent with both sets of data. Contour maps of electron temperature and density for the active region have been constructed from the imaging data. The implications of the analysis for the determination of coronal abundances and for future satellite experiments are discussed.

  8. Electromechanical coupling of the solar atmosphere; Proceedings of the OSL Workshop, Capri, Italy, May 27-31, 1991

    NASA Technical Reports Server (NTRS)

    Spicer, Daniel S. (Editor); Macneice, Peter (Editor)

    1992-01-01

    The present conference discusses the role of magnetic flux tubes as communication channels, flux tube sizes and their temporal evolution, magnetic field line topology in the solar active regions, weak solar magnetic fields, explosive events and magnetic reconnection in the solar atmosphere, and 3D kinematic reconnection of plasmoids with nulls. Also discussed are coronal heating mechanisms, coronal heating through a lack of MHD equilibrium, Alfven waves in current-carrying inhomogeneous plasmas, hydrostatic models of X-ray coronal loops, MHD turbulence in an expanding atmosphere, and hot mass transport in the solar active prominence.

  9. Heating by transverse waves in simulated coronal loops

    NASA Astrophysics Data System (ADS)

    Karampelas, K.; Van Doorsselaere, T.; Antolin, P.

    2017-08-01

    Context. Recent numerical studies of oscillating flux tubes have established the significance of resonant absorption in the damping of propagating transverse oscillations in coronal loops. The nonlinear nature of the mechanism has been examined alongside the Kelvin-Helmholtz instability, which is expected to manifest in the resonant layers at the edges of the flux tubes. While these two processes have been hypothesized to heat coronal loops through the dissipation of wave energy into smaller scales, the occurring mixing with the hotter surroundings can potentially hide this effect. Aims: We aim to study the effects of wave heating from driven and standing kink waves in a coronal loop. Methods: Using the MPI-AMRVAC code, we perform ideal, three dimensional magnetohydrodynamic (MHD) simulations of both (a) footpoint driven and (b) free standing oscillations in a straight coronal flux tube, in the presence of numerical resistivity. Results: We have observed the development of Kelvin-Helmholtz eddies at the loop boundary layer of all three models considered here, as well as an increase of the volume averaged temperature inside the loop. The main heating mechanism in our setups was Ohmic dissipation, as indicated by the higher values for the temperatures and current densities located near the footpoints. The introduction of a temperature gradient between the inner tube and the surrounding plasma, suggests that the mixing of the two regions, in the case of hotter environment, greatly increases the temperature of the tube at the site of the strongest turbulence, beyond the contribution of the aforementioned wave heating mechanism. Three movies associated to Fig. 1 are available in electronic form at http://www.aanda.org

  10. THE COUPLED EVOLUTION OF ELECTRONS AND IONS IN CORONAL MASS EJECTION-DRIVEN SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manchester IV, W. B.; Van der Holst, B.; Toth, G.

    2012-09-01

    We present simulations of coronal mass ejections (CMEs) performed with a new two-temperature coronal model developed at the University of Michigan, which is able to address the coupled thermodynamics of the electron and proton populations in the context of a single fluid. This model employs heat conduction for electrons, constant adiabatic index ({gamma} = 5/3), and includes Alfven wave pressure to accelerate the solar wind. The Wang-Sheeley-Arge empirical model is used to determine the Alfven wave pressure necessary to produce the observed bimodal solar wind speed. The Alfven waves are dissipated as they propagate from the Sun and heat protonsmore » on open magnetic field lines to temperatures above 2 MK. The model is driven by empirical boundary conditions that includes GONG magnetogram data to calculate the coronal field, and STEREO/EUVI observations to specify the density and temperature at the coronal boundary by the Differential Emission Measure Tomography method. With this model, we simulate the propagation of fast CMEs and study the thermodynamics of CME-driven shocks. Since the thermal speed of the electrons greatly exceeds the speed of the CME, only protons are directly heated by the shock. Coulomb collisions low in the corona couple the protons and electrons allowing heat exchange between the two species. However, the coupling is so brief that the electrons never achieve more than 10% of the maximum temperature of the protons. We find that heat is able to conduct on open magnetic field lines and rapidly propagates ahead of the CME to form a shock precursor of hot electrons.« less

  11. The role of type II spicules in the upper solar atmosphere

    NASA Astrophysics Data System (ADS)

    Klimchuk, J. A.

    2012-12-01

    We examine the suggestion that most of the hot plasma in the Sun's corona comes from type II spicule material that is heated as it is ejected from the chromosphere. This contrasts with the traditional view that the corona is filled via chromospheric evaporation that results from coronal heating. We explore the observational consequences of a hypothetical spicule dominated corona and conclude from the large discrepancy between predicted and actual observations that only a small fraction of the hot plasma can be supplied by spicules (<2% in active regions, <5% in the quiet Sun, and <8% in coronal holes). The red-blue asymmetries of EUV spectral lines and the ratio of lower transition region (LTR;T ≤ 0.1 MK) to coronal emission measures are both predicted to be 2 orders of magnitude larger than observed. Furthermore, hot spicule material would cool dramatically by adiabatic expansion as it rises into the corona, so substantial coronal heating would be needed to maintain the high temperatures that are seen at all altitudes. We suggest that the corona contains a mixture of thin strands, some of which are populated by spicule injections, but most of which are not. A majority of the observed hot emission originates in non-spicule strands and is explained by traditional coronal heating models. However, since these models predict far too little emission from the LTR, most of this emission comes from the bulk of the spicule material that is only weakly heated and visible in He II (304 Å) as it falls back to the surface.

  12. Coronal Heating, Weak MHD Turbulence, and Scaling Laws

    NASA Technical Reports Server (NTRS)

    Rappazzo, A. F.; Velli, M.; Einaudi, G.; Dahlburg, R. B.

    2007-01-01

    Long-time high-resolution simulations of the dynamics of a coronal loop in Cartesian geometry are carried out, within the framework of reduced magnetohydrodynamics (RMHD), to understand coronal heating driven by the motion of field lines anchored in the photosphere. We unambiguously identify MHD anisotropic turbulence as the physical mechanism responsible for the transport of energy from the large scales, where energy is injected by photospheric motions, to the small scales, where it is dissipated. As the loop parameters vary, different regimes of turbulence develop: strong turbulence is found for weak axial magnetic fields and long loops, leading to Kolmogorov-like spectra in the perpendicular direction, while weaker and weaker regimes (steeper spectral slopes of total energy) are found for strong axial magnetic fields and short loops. As a consequence we predict that the scaling of the heating rate with axial magnetic field intensity B, which depends on the spectral index of total energy for given loop parameters, must vary from B3/2 for weak fields to B2 for strong fields at a given aspect ratio. The predicted heating rate is within the lower range of observed active region and quiet-Sun coronal energy losses.

  13. Research in solar plasma theory

    NASA Technical Reports Server (NTRS)

    Vanhoven, Gerard

    1992-01-01

    The main thrust and significance of our research results are presented. The topics covered include: (1) coronal structure and dynamics; (2) coronal heating; (3) filament formation; and (4) flare energy release.

  14. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    NASA Technical Reports Server (NTRS)

    Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim

    2016-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  15. OPTIMIZING GLOBAL CORONAL MAGNETIC FIELD MODELS USING IMAGE-BASED CONSTRAINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Shaela I.; Davila, Joseph M.; Uritsky, Vadim, E-mail: shaela.i.jonesmecholsky@nasa.gov

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field—an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of thismore » approach on two theoretical problems, and discuss opportunities for application.« less

  16. Simulations of fully deformed oscillating flux tubes

    NASA Astrophysics Data System (ADS)

    Karampelas, K.; Van Doorsselaere, T.

    2018-02-01

    Context. In recent years, a number of numerical studies have been focusing on the significance of the Kelvin-Helmholtz instability in the dynamics of oscillating coronal loops. This process enhances the transfer of energy into smaller scales, and has been connected with heating of coronal loops, when dissipation mechanisms, such as resistivity, are considered. However, the turbulent layer is expected near the outer regions of the loops. Therefore, the effects of wave heating are expected to be confined to the loop's external layers, leaving their denser inner parts without a heating mechanism. Aim. In the current work we aim to study the spatial evolution of wave heating effects from a footpoint driven standing kink wave in a coronal loop. Methods: Using the MPI-AMRVAC code, we performed ideal, three dimensional magnetohydrodynamic simulations of footpoint driven transverse oscillations of a cold, straight coronal flux tube, embedded in a hotter environment. We have also constructed forward models for our simulation using the FoMo code. Results: The developed transverse wave induced Kelvin-Helmholtz (TWIKH) rolls expand throughout the tube cross-section, and cover it entirely. This turbulence significantly alters the initial density profile, leading to a fully deformed cross section. As a consequence, the resistive and viscous heating rate both increase over the entire loop cross section. The resistive heating rate takes its maximum values near the footpoints, while the viscous heating rate at the apex. Conclusions: We conclude that even a monoperiodic driver can spread wave heating over the whole loop cross section, potentially providing a heating source in the inner loop region. Despite the loop's fully deformed structure, forward modelling still shows the structure appearing as a loop. A movie attached to Fig. 1 is available at http://https://www.aanda.org

  17. Physical consistency in modeling interplanetary magnetohydrodynamic fluctuations

    NASA Technical Reports Server (NTRS)

    Zhou, Y.; Matthaeus, W. H.; Roberts, D. A.; Goldstein, M. L.

    1990-01-01

    The validity of the Velli, Grappin and Mangeney (1989) model is evaluated. It is argued that the model is incorrect because it mixes different dynamical models, assumes weak nonlinearities, makes predictions that vary with observations, and violates causality. It is proposed that self-similar behavior in the coronal source region of the magnetohydrodynamic fluctuations cause the Kolmogorov-like spectra.

  18. ANALYSIS OF CORONAL RAIN OBSERVED BY IRIS , HINODE /SOT, AND SDO /AIA: TRANSVERSE OSCILLATIONS, KINEMATICS, AND THERMAL EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohutova, P.; Verwichte, E., E-mail: p.kohutova@warwick.ac.uk

    Coronal rain composed of cool plasma condensations falling from coronal heights along magnetic field lines is a phenomenon occurring mainly in active region coronal loops. Recent high-resolution observations have shown that coronal rain is much more common than previously thought, suggesting its important role in the chromosphere-corona mass cycle. We present the analysis of MHD oscillations and kinematics of the coronal rain observed in chromospheric and transition region lines by the Interface Region Imaging Spectrograph (IRIS) , the Hinode Solar Optical Telescope (SOT), and the Solar Dynamics Observatory ( SDO) Atmospheric Imaging Assembly (AIA). Two different regimes of transverse oscillationsmore » traced by the rain are detected: small-scale persistent oscillations driven by a continuously operating process and localized large-scale oscillations excited by a transient mechanism. The plasma condensations are found to move with speeds ranging from few km s{sup −1} up to 180 km s{sup −1} and with accelerations largely below the free-fall rate, likely explained by pressure effects and the ponderomotive force resulting from the loop oscillations. The observed evolution of the emission in individual SDO /AIA bandpasses is found to exhibit clear signatures of a gradual cooling of the plasma at the loop top. We determine the temperature evolution of the coronal loop plasma using regularized inversion to recover the differential emission measure (DEM) and by forward modeling the emission intensities in the SDO /AIA bandpasses using a two-component synthetic DEM model. The inferred evolution of the temperature and density of the plasma near the apex is consistent with the limit cycle model and suggests the loop is going through a sequence of periodically repeating heating-condensation cycles.« less

  19. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Testa, Paola; DeLuca, Ed; Golub, Leon

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Raymore » Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).« less

  20. Suppression of heating of coronal loops rooted in opposite polarity sunspot umbrae

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.; Panesar, Navdeep; Winebarger, Amy R.

    2016-05-01

    EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 A images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-polarity plage region. The AIA 94 A images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the HMI onboard SDO. After validation of the NLFFF model by comparison of calculated model field lines and observed loops in AIA 193 and 94, we specify the photospheric roots of the model field lines. The model field then shows the coronal magnetic loops that arch from the dim umbral areas of the opposite polarity sunspots. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.We hypothesize that the convective freedom at the feet of a coronal loop, together with the strength of the field in the body of the loop, determines the strength of the heating. In particular, we expect the hottest coronal loops to have one foot in an umbra and the other foot in opposite-polarity penumbra or plage (coronal moss), the areas of strong field in which convection is not as strongly suppressed as in umbra. Many transient, outstandingly bright, loops in the AIA 94 movie of the AR do have this expected rooting pattern. We will also present another example of AR in which we find a similar rooting pattern of coronal loops.

  1. Characteristics of the Time Variable Component of the Coronal Heating Process

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.; Poland, Art (Technical Monitor)

    2001-01-01

    The goal of the proposed study was to explore the non-steady nature of the coronal heating processes and its manifestations in the inner corona and interplanetary space by coordinating coronal SOHO observations in white light, ultraviolet, and extreme ultraviolet, with complementary radio occultation measurements during an unprecedented and rare coincidence of a total solar eclipse with the superior conjunction of a planetary spacecraft, Galileo, in February 1998. In addition, radio occultation measurements by the Mars Global Surveyor spacecraft in May 1998 spanned the inner heliosphere observed by coronal SOHO instruments and probing it to within 0.5 R(sub S), above the solar surface. Inferences of physical properties derived from these simultaneous observations were subsequently used in solar wind model computations to yield the range of plasma parameters characteristic of the fast and slow solar wind.

  2. Plasma Heating During Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Murphy, N. A.; Shen, C.; Rimple, R.; Raymond, J. C.

    2016-12-01

    Several recent observational analyses have shown that plasma heating enters into the energy budget of coronal mass ejections (CMEs) at about the same order of magnitude as the kinetic energy. The ultimate source of the heating is the magnetic field, but the mechanisms by which magnetic energy is converted to thermal energy are poorly understood. We will review observational evidence for CME heating and discuss candidate mechanisms that may be responsible for the heating. We will discuss the Python implementation of a non-equilibrium ionization model and its application to CME plasma, and report on progress on modeling three events where the Ultraviolet Coronagraph Spectrometer (UVCS) on the Solar and Heliospheric Observatory (SOHO) observed the same ejecta at multiple heights.

  3. Triennial Report 2006-2009. Commission 10: Solar Activity

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2008-01-01

    Commission 10 deals with solar activity in all of its forms, ranging from the smallest nanoflares to the largest coronal mass ejections. This report reviews scientific progress over the roughly two-year period ending in the middle of 2008. This has been an exciting time in solar physics, highlighted by the launches of the Hinode and STEREO missions late in 2006. The report is reasonably comprehensive, though it is far from exhaustive. Limited space prevents the inclusion of many significant results. The report is divided into following sections: Photosphere and Chromosphere; Transition Region; Corona and Coronal Heating; Coronal Jets; Flares; Coronal Mass Ejection Initiation; Global Coronal Waves and Shocks; Coronal Dimming; The Link Between Low Coronal CME signatures and Magnetic Clouds; Coronal Mass Ejections in the Heliosphere; and Coronal Mass Ejections and Space Weather. Primary authorship is indicated at the beginning of each section.

  4. Evidence of Nanoflare Heating in Coronal Loops Observed with Hinolde-XRT and SDO-AIA

    NASA Technical Reports Server (NTRS)

    Lopez-Fuentes, M. C.; Klimchuk, James

    2013-01-01

    We study a series of coronal loop lightcurves from X-ray and EUV observations. In search for signatures of nanoflare heating, we analyze the statistical properties of the observed lightcurves and compare them with synthetic cases obtained with a 2D cellular-automaton model based on nanoflare heating driven by photospheric motions. Our analysis shows that the observed and the model lightcurves have similar statistical properties. The asymmetries observed in the distribution of the intensity fluctuations indicate the possible presence of widespread cooling processes in sub-resolution magnetic strands.

  5. Recent Successes of Wave/Turbulence Driven Models of Solar Wind Acceleration

    NASA Astrophysics Data System (ADS)

    Cranmer, S. R.; Hollweg, J. V.; Chandran, B. D.; van Ballegooijen, A. A.

    2010-12-01

    A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a first-principles understanding of coronal heating. Also, it is still unknown whether the solar wind is "fed" through flux tubes that remain open (and are energized by footpoint-driven wavelike fluctuations) or if mass and energy are input intermittently from closed loops into the open-field regions. In this presentation, we discuss self-consistent models that assume the energy comes from solar Alfven waves that are partially reflected, and then dissipated, by magnetohydrodynamic turbulence. These models have been found to reproduce many of the observed features of the fast and slow solar wind without the need for artificial "coronal heating functions" used by earlier models. For example, the models predict a variation with wind speed in commonly measured ratios of charge states and elemental abundances that agrees with observed trends. This contradicts a commonly held assertion that these ratios can only be produced by the injection of plasma from closed-field regions on the Sun. This presentation also reviews two recent comparisons between the models and empirical measurements: (1) The models successfully predict the amplitude and radial dependence of Faraday rotation fluctuations (FRFs) measured by the Helios probes for heliocentric distances between 2 and 15 solar radii. The FRFs are a particularly sensitive test of turbulence models because they depend not only on the plasma density and Alfven wave amplitude in the corona, but also on the turbulent correlation length. (2) The models predict the correct sense and magnitude of changes seen in the polar high-speed solar wind by Ulysses from the previous solar minimum (1996-1997) to the more recent peculiar minimum (2008-2009). By changing only the magnetic field along the polar magnetic flux tube, consistent with solar and heliospheric observations at the two epochs, the model correctly predicts that the wind speed remains relatively unchanged, but the in-situ density and temperature decrease by approximately 20 percent and 10 percent, respectively.

  6. Anti­-parallel Filament Flows and Bright Dots Observed in the EUV with Hi-­C

    NASA Technical Reports Server (NTRS)

    Alexander, Caroline E.; Regnier, Stephane; Walsh, Robert; Winebarger, Amy

    2013-01-01

    Hi-C obtained the highest spatial and temporal resolution observations ever taken in the solar EUV corona. Hi-C reveals dynamics and structure at the limit of its temporal and spatial resolution. Hi-C observed various fine-scale features that SDO/AIA could not pick out. For the first time in the corona, Hi-C revealed magnetic braiding and component reconnection consistent with coronal heating. Hi-C shows evidence of reconnection and heating in several different regions and magnetic configurations with plasma being heated to 0.3 - 8 x 10(exp 6) K temperatures. Surprisingly, many of the first results highlight plasma at temperatures that are not at the peak of the response functions.

  7. Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes in Quiet Regions and Coronal Holes?

    NASA Astrophysics Data System (ADS)

    Avallone, E. A.; Tiwari, S. K.; Panesar, N. K.; Moore, R. L.

    2017-12-01

    Coronal plumes are sporadic fountain-like structures that are bright in coronal emission. Each is a magnetic funnel rooted in a strong patch of dominant-polarity photospheric magnetic flux surrounded by a predominantly-unipolar magnetic network, either in a quiet region or a coronal hole. The heating processes that make plumes bright evidently involve the magnetic field in the base of the plume, but remain mysterious. Raouafi et al. (2014) inferred from observations that plume heating is a consequence of magnetic reconnection in the base, whereas Wang et al. (2016) showed that plume heating turns on/off from convection-driven convergence/divergence of the base flux. While both papers suggest that the base magnetic flux in their plumes is of mixed polarity, these papers provide no measurements of the abundance and strength of the evolving base flux or consider whether a critical magnetic field strength is required for a plume to become noticeably bright. To address plume production and evolution, we track the plume luminosity and the abundance and strength of the base magnetic flux over the lifetimes of six coronal plumes, using Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) 171 Å images and SDO/Helioseismic and Magnetic Imager (HMI) line-of-sight magnetograms. Three of these plumes are in coronal holes, three are in quiet regions, and each plume exhibits a unipolar base flux. We track the base magnetic flux over each plume's lifetime to affirm that its convergence and divergence respectively coincide with the appearance and disappearance of the plume in 171 Å images. We tentatively find that plume formation requires enough convergence of the base flux to surpass a field strength of ˜300-500 Gauss, and that quiet Sun and coronal-hole plumes both exhibit the same behavior in the response of their luminosity in 171 Å to the strength of the magnetic field in the base.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antolin, P.; Verwichte, E., E-mail: patrick.antolin@astro.uio.no, E-mail: erwin.verwichte@warwick.ac.uk

    The condensations composing coronal rain, falling down along loop-like structures observed in cool chromospheric lines such as H{alpha} and Ca II H, have long been a spectacular phenomenon of the solar corona. However, considered a peculiar sporadic phenomenon, it has not received much attention. This picture is rapidly changing due to recent high-resolution observations with instruments such as the Hinode/Solar Optical Telescope (SOT), CRISP of the Swedish 1-m Solar Telescope, and the Solar Dynamics Observatory. Furthermore, numerical simulations have shown that coronal rain is the loss of thermal equilibrium of loops linked to footpoint heating. This result has highlighted themore » importance that coronal rain can play in the field of coronal heating. In this work, we further stress the importance of coronal rain by showing the role it can play in the understanding of the coronal magnetic field topology. We analyze Hinode/SOT observations in the Ca II H line of a loop in which coronal rain puts in evidence in-phase transverse oscillations of multiple strand-like structures. The periods, amplitudes, transverse velocities, and phase velocities are calculated, allowing an estimation of the energy flux of the wave and the coronal magnetic field inside the loop through means of coronal seismology. We discuss the possible interpretations of the wave as either standing or propagating torsional Alfven or fast kink waves. An estimate of the plasma beta parameter of the condensations indicates a condition that may allow the often observed separation and elongation processes of the condensations. We also show that the wave pressure from the transverse wave can be responsible for the observed low downward acceleration of coronal rain.« less

  9. Coronal Heating Observed with Hi-C

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy R.

    2013-01-01

    The recent launch of the High-Resolution Coronal Imager (Hi-C) as a sounding rocket has offered a new, different view of the Sun. With approx 0.3" resolution and 5 second cadence, Hi-C reveals dynamic, small-scale structure within a complicated active region, including coronal braiding, reconnection regions, Alfven waves, and flows along active region fans. By combining the Hi-C data with other available data, we have compiled a rich data set that can be used to address many outstanding questions in solar physics. Though the Hi-C rocket flight was short (only 5 minutes), the added insight of the small-scale structure gained from the Hi-C data allows us to look at this active region and other active regions with new understanding. In this talk, I will review the first results from the Hi-C sounding rocket and discuss the impact of these results on the coronal heating problem.

  10. Inference of Heating Properties from "Hot" Non-flaring Plasmas in Active Region Cores. I. Single Nanoflares

    NASA Astrophysics Data System (ADS)

    Barnes, W. T.; Cargill, P. J.; Bradshaw, S. J.

    2016-09-01

    The properties that are expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are investigated using hydrodynamic modeling tools, including a two-fluid development of the Enthalpy Based Thermal Evolution of Loops code. Here we study a single nanoflare and show that while simple models predict an emission measure distribution extending well above 10 MK, which is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium, and for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the “smoking gun” of nanoflare heating, lies between 106.6 and 107 K. Signatures of the actual heating may be detectable in some instances.

  11. "Hot" Non-flaring Plasmas in Active Region Cores Heated by Single Nanoflares

    NASA Astrophysics Data System (ADS)

    Barnes, Will Thomas; Cargill, Peter; Bradshaw, Stephen

    2016-05-01

    We use hydrodynamic modeling tools, including a two-fluid development of the EBTEL code, to investigate the properties expected of "hot" (i.e. between 106.7 and 107.2 K) non-flaring plasmas due to nanoflare heating in active regions. Here we focus on single nanoflares and show that while simple models predict an emission measure distribution extending well above 10 MK that is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium and, for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the "smoking gun" of nanoflare heating, lies between 1 MK and 10 MK. Signatures of the actual heating may be detectable in some instances.

  12. Investigating the Response of Loop Plasma to Nanoflare Heating Using RADYN Simulations

    NASA Astrophysics Data System (ADS)

    Polito, V.; Testa, P.; Allred, J.; De Pontieu, B.; Carlsson, M.; Pereira, T. M. D.; Gošić, Milan; Reale, Fabio

    2018-04-01

    We present the results of 1D hydrodynamic simulations of coronal loops that are subject to nanoflares, caused by either in situ thermal heating or nonthermal electron (NTE) beams. The synthesized intensity and Doppler shifts can be directly compared with Interface Region Imaging Spectrograph (IRIS) and Atmospheric Imaging Assembly (AIA) observations of rapid variability in the transition region (TR) of coronal loops, associated with transient coronal heating. We find that NTEs with high enough low-energy cutoff ({E}{{C}}) deposit energy in the lower TR and chromosphere, causing blueshifts (up to ∼20 km s‑1) in the IRIS Si IV lines, which thermal conduction cannot reproduce. The {E}{{C}} threshold value for the blueshifts depends on the total energy of the events (≈5 keV for 1024 erg, up to 15 keV for 1025 erg). The observed footpoint emission intensity and flows, combined with the simulations, can provide constraints on both the energy of the heating event and {E}{{C}}. The response of the loop plasma to nanoflares depends crucially on the electron density: significant Si IV intensity enhancements and flows are observed only for initially low-density loops (<109 cm‑3). This provides a possible explanation of the relative scarcity of observations of significant moss variability. While the TR response to single heating episodes can be clearly observed, the predicted coronal emission (AIA 94 Å) for single strands is below current detectability and can only be observed when several strands are heated closely in time. Finally, we show that the analysis of the IRIS Mg II chromospheric lines can help further constrain the properties of the heating mechanisms.

  13. Small-scale dynamo magnetism as the driver for heating the solar atmosphere.

    PubMed

    Amari, Tahar; Luciani, Jean-François; Aly, Jean-Jacques

    2015-06-11

    The long-standing problem of how the solar atmosphere is heated has been addressed by many theoretical studies, which have stressed the relevance of two specific mechanisms, involving magnetic reconnection and waves, as well as the necessity of treating the chromosphere and corona together. But a fully consistent model has not yet been constructed and debate continues, in particular about the possibility of coronal plasma being heated by energetic phenomena observed in the chromosphere. Here we report modelling of the heating of the quiet Sun, in which magnetic fields are generated by a subphotospheric fluid dynamo intrinsically connected to granulation. We find that the fields expand into the chromosphere, where plasma is heated at the rate required to match observations (4,500 watts per square metre) by small-scale eruptions that release magnetic energy and drive sonic motions. Some energetic eruptions can even reach heights of 10 million metres above the surface of the Sun, thereby affecting the very low corona. Extending the model by also taking into account the vertical weak network magnetic field allows for the existence of a mechanism able to heat the corona above, while leaving unchanged the physics of chromospheric eruptions. Such a mechanism rests on the eventual dissipation of Alfvén waves generated inside the chromosphere and that carry upwards the required energy flux of 300 watts per square metre. The model shows a topologically complex magnetic field of 160 gauss on the Sun's surface, agreeing with inferences obtained from spectropolarimetric observations, chromospheric features (contributing only weakly to the coronal heating) that can be identified with observed spicules and blinkers, and vortices that may be possibly associated with observed solar tornadoes.

  14. THE COLD SHOULDER: EMISSION MEASURE DISTRIBUTIONS OF ACTIVE REGION CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmelz, J. T.; Pathak, S., E-mail: jschmelz@memphis.edu

    2012-09-10

    The coronal heating mechanism for active region core loops is difficult to determine because these loops are often not resolved and cannot be studied individually. Rather, we concentrate on the 'inter-moss' areas between loop footpoints. We use observations from the Hinode EUV Imaging Spectrometer and the X-Ray Telescope to calculate the emission measure distributions of eight inter-moss areas in five different active regions. The combined data sets provide both high- and low-temperature constraints and ensure complete coverage in the temperature range appropriate for active regions. For AR 11113, the emission can be modeled with heating events that occur on timescalesmore » less than the cooling time. The loops in the core regions appear to be close to equilibrium and are consistent with steady heating. The other regions studied, however, appear to be dominated by nanoflare heating. Our results are consistent with the idea that active region age is an important parameter in determining whether steady or nanoflare heating is primarily responsible for the core emission, that is, older regions are more likely to be dominated by steady heating, while younger regions show more evidence of nanoflares.« less

  15. Coronal heating by stochastic magnetic pumping

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Uchida, Y.

    1980-01-01

    Recent observational data cast serious doubt on the widely held view that the Sun's corona is heated by traveling waves (acoustic or magnetohydrodynamic). It is proposed that the energy responsible for heating the corona is derived from the free energy of the coronal magnetic field derived from motion of the 'feet' of magnetic field lines in the photosphere. Stochastic motion of the feet of magnetic field lines leads, on the average, to a linear increase of magnetic free energy with time. This rate of energy input is calculated for a simple model of a single thin flux tube. The model appears to agree well with observational data if the magnetic flux originates in small regions of high magnetic field strength. On combining this energy input with estimates of energy loss by radiation and of energy redistribution by thermal conduction, we obtain scaling laws for density and temperature in terms of length and coronal magnetic field strength.

  16. Dynamical behaviour in coronal loops

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.

    1986-01-01

    Rapid variability has been found in two active region coronal loops observed by the X-ray Polychromator (XRP) and the Hard X-ray Imaging Spectrometer (HXIS) onboard the Solar Maximum Mission (SMM). There appear to be surprisingly few observations of the short-time scale behavior of hot loops, and the evidence presented herein lends support to the hypothesis that coronal heating may be impulsive and driven by flaring.

  17. Dynamical behaviour in coronal loops

    NASA Astrophysics Data System (ADS)

    Haisch, Bernhard M.

    Rapid variability has been found in two active region coronal loops observed by the X-ray Polychromator (XRP) and the Hard X-ray Imaging Spectrometer (HXIS) onboard the Solar Maximum Mission (SMM). There appear to be surprisingly few observations of the short-time scale behavior of hot loops, and the evidence presented herein lends support to the hypothesis that coronal heating may be impulsive and driven by flaring.

  18. Evidence of suppressed heating of coronal loops rooted in opposite polarity sunspot umbrae

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanjiv K.; Thalmann, Julia K.; Winebarger, Amy R.; Panesar, Navdeep K.; Moore, Ronald

    2015-04-01

    Observations of active region (AR) coronae in different EUV wavelengths reveal the presence of various loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 A images we identify many clearly discernible coronal loops that connect opposite-polarity plage or a sunspot to a opposite-polarity plage region. The AIA 94 A images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the Heliosesmic Magnetic Imager (HMI) onboard SDO. After validation of the NLFFF model by comparison of calculated model field lines and observed loops in AIA 193 and 94 A, we specify the photospheric roots of the model field lines. The model field then shows the coronal magnetic loops that arch from the dim umbral area of the positive-polarity sunspot to the dim umbral area of a negative-polarity sunspot. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.From this result, we further hypothesize that the convective freedom at the feet of a coronal loop, together with the strength of the field in the body of the loop, determines the strength of the heating. In particular, we expect the hottest coronal loops to have one foot in an umbra and the other foot in opposite-polarity penumbra or plage (coronal moss), the areas of strong field in which convection is not as strongly suppressed as in umbrae. Many transient, outstandingly bright, loops in the AIA 94 A movie of the AR do have this expected rooting pattern.

  19. Three-Dimensional Structure and Energy Balance of a Coronal Mass Ejection

    NASA Technical Reports Server (NTRS)

    Lee, J.-Y.; Raymond, J. C.; Ko, Y.-K.; Kim, K.-S.

    2009-01-01

    UVCS observed Doppler-shifted material of a partial halo coronal mass ejection (CME) on 2001 December 13. The observed ratio of [O VJ/O V] is a reliable density diagnostic important for assessing the state of the plasma. Earlier UVCS observations of CMEs found evidence that the ejected plasma is heated long after the eruption. This paper investigated the heating rates, which represent a significant fraction of the CME energy budget. The parameterized heating and radiative and adiabatic cooling have been used to evaluate the temperature evolution of the CME material with a time-dependent ionization state model. Continuous heating is required to match the UVCS observations. To match the O VI bright knots, a higher heating rate is required such that the heating energy is greater than the kinetic energy.

  20. A search at two eclipses for short-period waves that heat the corona

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Babcock, Bryce A.; Russell, Kevin D.; McConnochie, Timothy H.; Diaz, J. Sebastian

    2000-08-01

    As part of a study of the cause of solar coronal heating, we searched for high-frequency (~1 Hz) intensity oscillations in coronal loops in the [Fexiv] coronal green line. We summarize results from observations made at the 3 November 1994, total solar eclipse from the International Astronomical Union site in Putre, Chile, through partly cloudy skies, and at the 26 February 1998 total solar eclipse from Nord, Aruba, through clear skies. We discuss the image reduction and analysis of two simultaneous series of coronal CCD images digitized at 10 Hz for a total time of 160 s in Chile. One series of images was taken through a filter isolating the 5303 Å[Fexiv] coronal green line and the other through a 100 Å filter in the nearby K-corona continuum. We then discuss the modifications made for the 1998 eclipse, and the image reduction and analysis for those image sequences. After standard calibrations and image alignment of both data sets, we use Fourier analysis to search in the [Fexiv] channel for intensity oscillations in loops at the base of the corona. Such oscillations in the 1-Hz range are predicted as a result of density fluctuations from the resonant absorption of MHD waves. The dissipation of a significant amount of mechanical energy from the photosphere into the corona through this mechanism could provide sufficient energy to heat the corona. At neither eclipse do we find evidence for oscillations in the [Fexiv] green line at a level greater than 2% of coronal intensity.

  1. Can Thermal Nonequilibrium Explain Coronal Loops?

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.; Karpen, Judy T.; Antiochos, Spiro K.

    2010-01-01

    Any successful model of coronal loops must explain a number of observed properties. For warm (approx. 1 MK) loops, these include: 1. excess density, 2. flat temperature profile, 3. super-hydrostatic scale height, 4. unstructured intensity profile, and 5. 1000-5000 s lifetime. We examine whether thermal nonequilibrium can reproduce the observations by performing hydrodynamic simulations based on steady coronal heating that decreases exponentially with height. We consider both monolithic and multi-stranded loops. The simulations successfully reproduce certain aspects of the observations, including the excess density, but each of them fails in at least one critical way. -Xonolithic models have far too much intensity structure, while multi-strand models are either too structured or too long-lived. Storms of nanoflares remain the only viable explanation for warm loops that has been proposed so far. Our results appear to rule out the widespread existence of heating that is both highly concentrated low in the corona and steady or quasi-steady (slowly varying or impulsive with a rapid cadence). Active regions would have a very different appearance if the dominant heating mechanism had these properties. Thermal nonequilibrium may nonetheless play an important role in prominences and catastrophic cooling e(veen.gts..,coronal rain) that occupy a small fraction of the coronal volume. However, apparent inconsistencies between the models and observations of cooling events have yet to be understood.

  2. The First Ionization Potential Effect from the Ponderomotive Force: On the Polarization and Coronal Origin of Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Laming, J. Martin

    2017-08-01

    We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. In closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.

  3. The First Ionization Potential Effect from the Ponderomotive Force: On the Polarization and Coronal Origin of Alfvén Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laming, J. Martin, E-mail: laming@nrl.navy.mil

    We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. Inmore » closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.« less

  4. Latitude dependence of solar wind velocity observed at not less than 1 AU

    NASA Technical Reports Server (NTRS)

    Mitchell, D. G.; Roelof, E. C.; Wolfe, J. H.

    1981-01-01

    The large-scale solar wind velocity structure in the outer heliosphere has been systematically analyzed for Carrington rotations 1587-1541 (March 1972 to April 1976). Spacecraft data were taken from Imp 7/8 at earth, Pioneer 6, 8, and 9 near 1 AU, and Pioneer 10 and 11 between 1.6 and 5 AU. Using the constant radial velocity solar wind approximation to map all of the velocity data to its high coronal emission heliolongitude, the velocity structure observed at different spacecraft was examined for latitudinal dependence and compared with coronal structure in soft X-rays and H-alpha absorption features. The constant radial velocity approximation usually remains self-consistent in decreasing or constant velocity solar wind out to 5 AU, enabling us to separate radial from latitudinal propagation effects. Several examples of sharp nonmeridional stream boundaries in interplanetary space (about 5 deg latitude in width), often directly associated with features in coronal X-rays and H-alpha were found.

  5. Patterns of Activity in A Global Model of A Solar Active Region

    NASA Technical Reports Server (NTRS)

    Bradshaw, S. J.; Viall, N. M.

    2016-01-01

    In this work we investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of frequencies. What differs is the average frequency of the distributions. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine hydrodynamic and forward modeling codes with a magnetic field extrapolation to create a model active region and apply the time lag method to synthetic observations. Our aim is not to reproduce a particular set of observations in detail, but to recover some typical properties and patterns observed in active regions. Our key findings are the following. (1) Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. (2) Shorter coronal loops in the core cool more quickly than longer loops at the periphery. (3) All channel pairs show zero time lag when the line of sight passes through coronal loop footpoints. (4) There is strong evidence that plasma must be re-energized on a timescale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies are operating across active regions. (5) Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  6. Shock Acceleration of Solar Energetic Protons: The First 10 Minutes

    NASA Technical Reports Server (NTRS)

    Ng, Chee K.; Reames, Donald V.

    2008-01-01

    Proton acceleration at a parallel coronal shock is modeled with self-consistent Alfven wave excitation and shock transmission. 18 - 50 keV seed protons at 0.1% of plasma proton density are accelerated in 10 minutes to a power-law intensity spectrum rolling over at 300 MeV by a 2500km s-1 shock traveling outward from 3.5 solar radius, for typical coronal conditions and low ambient wave intensities. Interaction of high-energy protons of large pitch-angles with Alfven waves amplified by low-energy protons of small pitch angles is key to rapid acceleration. Shock acceleration is not significantly retarded by sunward streaming protons interacting with downstream waves. There is no significant second-order Fermi acceleration.

  7. Recent advances in coronal heating

    NASA Astrophysics Data System (ADS)

    De Moortel, Ineke; Browning, Philippa

    2015-04-01

    The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This 'coronal heating problem' requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue.

  8. Signatures Of Coronal Heating Driven By Footpoint Shuffling: Closed and Open Structures.

    NASA Astrophysics Data System (ADS)

    Velli, M. C. M.; Rappazzo, A. F.; Dahlburg, R. B.; Einaudi, G.; Ugarte-Urra, I.

    2017-12-01

    We have previously described the characteristic state of the confined coronal magnetic field as a special case of magnetically dominated magnetohydrodynamic (MHD) turbulence, where the free energy in the transverse magnetic field is continuously cascaded to small scales, even though the overall kinetic energy is small. This coronal turbulence problem is defined by the photospheric boundary conditions: here we discuss recent numerical simulations of the fully compressible 3D MHD equations using the HYPERION code. Loops are forced at their footpoints by random photospheric motions, energizing the field to a state with continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales that, in the solar corona, remain observationally unresolved: the plasma of simulated loops is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. We will also compare Reduced MHD simulations with fully compressible simulations and photospheric forcings with different time-scales compared to the Alfv'en transit time. Finally, we will discuss the differences between the closed field and open field (solar wind) turbulence heating problem, leading to observational consequences that may be amenable to Parker Solar Probe and Solar Orbiter.

  9. Heating of an Erupting Prominence Associated with a Solar Coronal Mass Ejection on 2012 January 27

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jin-Yi; Moon, Yong-Jae; Kim, Kap-Sung

    2017-07-20

    We investigate the heating of an erupting prominence and loops associated with a coronal mass ejection and X-class flare. The prominence is seen as absorption in EUV at the beginning of its eruption. Later, the prominence changes to emission, which indicates heating of the erupting plasma. We find the densities of the erupting prominence using the absorption properties of hydrogen and helium in different passbands. We estimate the temperatures and densities of the erupting prominence and loops seen as emission features using the differential emission measure method, which uses both EUV and X-ray observations from the Atmospheric Imaging Assembly onmore » board the Solar Dynamics Observatory and the X-ray Telescope on board Hinode . We consider synthetic spectra using both photospheric and coronal abundances in these calculations. We verify the methods for the estimation of temperatures and densities for the erupting plasmas. Then, we estimate the thermal, kinetic, radiative loss, thermal conduction, and heating energies of the erupting prominence and loops. We find that the heating of the erupting prominence and loop occurs strongly at early times in the eruption. This event shows a writhing motion of the erupting prominence, which may indicate a hot flux rope heated by thermal energy release during magnetic reconnection.« less

  10. Microphysics of Waves and Instabilities in the Solar Wind and Their Macro Manifestations in the Corona and Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia Rifai

    2005-01-01

    Investigations of the physical processes responsible for coronal heating and the acceleration of the solar wind were pursued with the use of our recently developed 2D MHD solar wind code and our 1D multifluid code. In particular, we explored: (1) the role of proton temperature anisotropy in the expansion of the solar (2) the role of plasma parameters at the coronal base in the formation of high (3) a three-fluid model of the slow solar wind (4) the heating of coronal loops (5) a newly developed hybrid code for the study of ion cyclotron resonance in wind, speed solar wind streams at mid-latitudes, the solar wind.

  11. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    NASA Technical Reports Server (NTRS)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    The solar corona is much hotter (>=10(exp 6) K) than its surface (approx 6000 K), puzzling astrophysicists for several decades. Active region (AR) corona is again hotter than the quiet Sun (QS) corona by a factor of 4-10. The most widely accepted mechanism that could heat the active region corona is the energy release by current dissipation via reconnection of braided magnetic field structure, first proposed by E. N. Parker three decades ago. The first observational evidence for this mechanism has only recently been presented by Cirtain et al. by using High-resolution Coronal Imager (Hi-C) observations of an AR corona at a spatial resolution of 0.2 arcsec, which is required to resolve the coronal loops, and was not available before the rocket flight of Hi-C in July 2012. The Hi-C project is led by NASA/MSFC. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. We are currently investigating the changes taking place in photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. For this purpose, we are also using SDO/AIA data of +/- 2 hours around the 5 minutes Hi-C flight. In the present talk, I will first summarize some of the results of the Hi-C observations and then present some results from our recent analysis on what photospheric processes feed the magnetic energy that dissipates into heat in coronal loops.

  12. AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, A. W.; Cargill, P. J.; Tam, K. V.

    For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread andmore » this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.« less

  13. TRIGGER MECHANISM OF SOLAR SUBFLARES IN A BRAIDED CORONAL MAGNETIC STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Sanjiv K.; Alexander, Caroline E.; Winebarger, Amy R.

    Fine-scale braiding of coronal magnetic loops by continuous footpoint motions may power coronal heating via nanoflares, which are spontaneous fine-scale bursts of internal reconnection. An initial nanoflare may trigger an avalanche of reconnection of the braids, making a microflare or larger subflare. In contrast to this internal triggering of subflares, we observe external triggering of subflares in a braided coronal magnetic field observed by the High-resolution Coronal Imager (Hi-C). We track the development of these subflares using 12 s cadence images acquired by SDO/AIA in 1600, 193, 94 Å, and registered magnetograms of SDO/HMI, over four hours centered on the Hi-Cmore » observing time. These data show numerous recurring small-scale brightenings in transition-region emission happening on polarity inversion lines where flux cancellation is occurring. We present in detail an example of an apparent burst of reconnection of two loops in the transition region under the braided coronal field which is appropriate for releasing a short reconnected loop downward and a longer reconnected loop upward. The short loop presumably submerges into the photosphere, participating in observed flux cancellation. A subflare in the overlying braided magnetic field is apparently triggered by the disturbance of the braided field by the reconnection-released upward loop. At least 10 subflares observed in this braided structure appear to be triggered this way. How common this external trigger mechanism for coronal subflares is in other active regions, and how important it is for coronal heating in general, remain to be seen.« less

  14. EFFECT OF A RADIATION COOLING AND HEATING FUNCTION ON STANDING LONGITUDINAL OSCILLATIONS IN CORONAL LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; Nakariakov, V. M.; Moon, Y.-J., E-mail: sanjaykumar@khu.ac.kr

    2016-06-10

    Standing long-period (with periods longer than several minutes) oscillations in large, hot (with a temperature higher than 3 MK) coronal loops have been observed as the quasi-periodic modulation of the EUV and microwave intensity emission and the Doppler shift of coronal emission lines, and they have been interpreted as standing slow magnetoacoustic (longitudinal) oscillations. Quasi-periodic pulsations of shorter periods, detected in thermal and non-thermal emissions in solar flares could be produced by a similar mechanism. We present theoretical modeling of the standing slow magnetoacoustic mode, showing that this mode of oscillation is highly sensitive to peculiarities of the radiative coolingmore » and heating function. We generalized the theoretical model of standing slow magnetoacoustic oscillations in a hot plasma, including the effects of the radiative losses and accounting for plasma heating. The heating mechanism is not specified and taken empirically to compensate the cooling by radiation and thermal conduction. It is shown that the evolution of the oscillations is described by a generalized Burgers equation. The numerical solution of an initial value problem for the evolutionary equation demonstrates that different dependences of the radiative cooling and plasma heating on the temperature lead to different regimes of the oscillations, including growing, quasi-stationary, and rapidly decaying. Our findings provide a theoretical foundation for probing the coronal heating function and may explain the observations of decayless long-period, quasi-periodic pulsations in flares. The hydrodynamic approach employed in this study should be considered with caution in the modeling of non-thermal emission associated with flares, because it misses potentially important non-hydrodynamic effects.« less

  15. The Multi-Spectral Solar Telescope Array (MSSTA)

    NASA Technical Reports Server (NTRS)

    Walker, A. B. C., Jr.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1997-01-01

    In 1987, our consortium pioneered the application of normal incidence multilayer X-ray optics to solar physics by obtaining the first high resolution narrow band, "thermally differentiated" images of the corona', using the emissions of the Fe IX/Fe X complex at ((lambda)lambda) approx. 171 A to 175 A, and He II Lyman (beta) at 256 A. Subsequently, we developed a rocket borne solar observatory, the Multi Spectral Solar Telescope Array (MSSTA) that pioneered multi-thermal imaging of the solar atmosphere, using high resolution narrow band X-ray, EUV and FUV optical systems. Analysis of MSSTA observations has resulted in four significant insights into the structure of the solar atmosphere: (1) the diameter of coronal loops is essentially constant along their length; (2) models of the thermal and density structure of polar plumes based on MSSTA observations have been shown to be consistent with the thesis that they are the source of high speed solar wind streams; (3) the magnetic structure of the footpoints of polar plumes is monopolar, and their thermal structure is consistent with the thesis that the chromosphere at their footpoints is heated by conduction from above; (4) coronal bright points are small loops, typically 3,500 - 20,000 km long (5 sec - 30 sec); their footpoints are located at the poles of bipolar magnetic structures that are are distinguished from other network elements by having a brighter Lyman a signature. Loop models derived for 26 bright points are consistent with the thesis that the chromosphere at their footpoints is heated by conduction from the corona.

  16. Loop heating by D.C. electric current and electromagnetic wave emissions simulated by 3-D EM particle zone

    NASA Technical Reports Server (NTRS)

    Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.

    1994-01-01

    We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.

  17. NEOCE: a new external occulting coronagraph experiment for ultimate observations of the chromosphere, corona and interface

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Fineschi, Silvano; Kuzin, Sergey; Von Fay-Siebenburgen, Erdélyi Robert

    Several ground facilities and space missions are currently dedicated to the study of the Sun at high resolution and of the solar corona in particular. However, and despite significant progress with the advent of space missions and UV, EUV and XUV direct observations of the hot chromosphere and million-degrees coronal plasma, much is yet to be achieved in the understanding of these high temperatures, fine dynamic dissipative structures and of the coronal heating in general. Recent missions have shown the definite role of a wide range of waves and of the magnetic field deep in the inner corona, at the chromosphere-corona interface, where dramatic and physically fundamental changes occur. The dynamics of the chromosphere and corona is controlled and governed by the emerging magnetic field. Accordingly, the direct measurement of the chromospheric and coronal magnetic fields is of prime importance. The solar corona consists of many localised loop-like structures or threads with the plasmas brightening and fading independently. The plasma evolution in each thread is believed to be related to the formation of filaments, each one being dynamic, in a non-equilibrium state. The mechanism sustaining this dynamics, oscillations or waves (Alfvén or other magneto-plasma waves), requires both very high-cadence, multi-spectral observations, and high resolution and coronal magnetometry. This is foreseen in the future Space Mission NEOCE (New External Occulting Coronagraph Experiment), the ultimate new generation high-resolution coronagraphic heliospheric mission, to be proposed for ESA M4. NEOCE, an evolution of the HiRISE mission, is ideally placed at the L5 Lagrangian point (for a better follow-up of CMEs), and provides FUV imaging and spectro-imaging, EUV and XUV imaging and spectroscopy, and ultimate coronagraphy by a remote external occulter (two satellites in formation flying 375 m apart minimizing scattered light) allowing to characterize temperature, densities and velocities up to the solar upper chromosphere, transition zone and inner corona with, in particular, 2D very high resolution multi-spectral imaging-spectroscopy and direct coronal magnetic field measurement: a unique set of tools to understand the structuration and onset of coronal heating. We give a detailed account of the proposed mission profile, and its major scientific objectives and model payload (in particular of the SuperASPIICS package of visible, NIR and UV, Lyman-Alpha and OVI, coronagraphs).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orange, N. Brice; Chesny, David L.; Oluseyi, Hakeem M.

    Increasing evidence for coronal heating contributions from cooler solar atmospheric layers, notably quiet Sun (QS) conditions, challenges standard solar atmospheric descriptions of bright transition region (TR) emission. As such, questions about the role of dynamic QS transients in contributing to the total coronal energy budget are raised. Using observations from the Atmospheric Imaging Assembly and Heliosemic Magnetic Imager on board the Solar Dynamics Observatory, and numerical model extrapolations of coronal magnetic fields, we investigate a dynamic QS transient that is energetically isolated to the TR and extrudes from a common footpoint shared with two heated loop arcades. A non-causal relationshipmore » is established between episodic heating of the QS transient and widespread magnetic field re-organization events, while evidence is found favoring a magnetic topology that is typical of eruptive processes. Quasi-steady interchange reconnection events are implicated as a source of the transient’s visibly bright radiative signature. We consider the QS transient’s temporally stable (≈35 minutes) radiative nature to occur as a result of the large-scale magnetic field geometries of the QS and/or relatively quiet nature of the magnetic photosphere, which possibly act to inhibit energetic build-up processes that are required to initiate a catastrophic eruption phase. This work provides insight into the QS’s thermodynamic and magnetic relation to eruptive processes that quasi-steadily heat a small-scale dynamic and TR transient. This work explores arguments of non-negligible coronal heating contributions from cool atmospheric layers in QS conditions and contributes evidence to the notion that  solar wind mass feeds off of dynamic transients therein.« less

  19. Coronae on stars

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.

    1986-01-01

    Three lines of evidence are noted to point to a flare heating source for stellar coronae: a strong correlation between time-averaged flare energy release and coronal X-ray luminosity, the high temperature flare-like component of the spectral signature of coronal X-ray emission, and the observed short time scale variability that indicates continuous flare activity. It is presently suggested that flares may represent only the extreme high energy tail of a continuous distribution of coronal energy release events.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, W. T.; Bradshaw, S. J.; Cargill, P. J., E-mail: will.t.barnes@rice.edu

    The properties that are expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are investigated using hydrodynamic modeling tools, including a two-fluid development of the Enthalpy Based Thermal Evolution of Loops code. Here we study a single nanoflare and show that while simple models predict an emission measure distribution extending well above 10 MK, which is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium, and for short nanoflares, the time taken for the coronal densitymore » to increase. The most useful temperature range to look for this plasma, often called the “smoking gun” of nanoflare heating, lies between 10{sup 6.6} and 10{sup 7} K. Signatures of the actual heating may be detectable in some instances.« less

  1. Coronal energy distribution and X-ray activity in the small scale magnetic field of the quiet sun

    NASA Technical Reports Server (NTRS)

    Habbal, S. R.

    1992-01-01

    The energy distribution in the small-scale magnetic field that pervades the solar surface, and its relationship to X-ray/coronal activity are discussed. The observed emission from the small scale structures, at temperatures characteristic of the chromosphere, transition region and corona, emanates from the boundaries of supergranular cells, within coronal bright points. This emission is characterized by a strong temporal and spatial variability with no definite pattern. The analysis of simultaneous, multiwavelength EUV observations shows that the spatial density of the enhanced as well as variable emission from the small scale structures exhibits a pronounced temperature dependence with significant maxima at 100,000 and 1,000,000 K. Within the limits of the spatial (1-5 arcsec) and temporal (1-5 min) resolution of data available at present, the observed variability in the small scale structure cannot account for the coroal heating of the quiet sun. The characteristics of their emission are more likely to be an indicator of the coronal heating mechanisms.

  2. Recent advances in coronal heating

    PubMed Central

    De Moortel, Ineke; Browning, Philippa

    2015-01-01

    The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This ‘coronal heating problem’ requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue. PMID:25897095

  3. SLOW MAGNETOACOUSTIC WAVES OBSERVED ABOVE A QUIET-SUN REGION IN A DARK CAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Jiajia; Zhou Zhenjun; Wang Yuming

    Waves play a crucial role in diagnosing the plasma properties of various structures in the solar corona and coronal heating. Slow magnetoacoustic (MA) waves are one of the important types of magnetohydrodynamic waves. In past decades, numerous slow MA waves were detected above active regions and coronal holes, but were rarely found elsewhere. Here, we investigate a 'tornado'-like structure consisting of quasi-periodic streaks within a dark cavity at about 40-110 Mm above a quiet-Sun region on 2011 September 25. Our analysis reveals that these streaks are actually slow MA wave trains. The properties of these wave trains, including phase speed,more » compression ratio, and kinetic energy density, are similar to those of the reported slow MA waves, except that the period of these waves is about 50 s, much shorter than the typical reported values (3-5 minutes).« less

  4. Spatiotemporal Organization of Energy Release Events in the Quiet Solar Corona

    NASA Technical Reports Server (NTRS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2014-01-01

    Using data from the STEREO and SOHO spacecraft, we show that temporal organization of energy release events in the quiet solar corona is close to random, in contrast to the clustered behavior of flaring times in solar active regions. The locations of the quiet-Sun events follow the meso- and supergranulation pattern of the underling photosphere. Together with earlier reports of the scale-free event size statistics, our findings suggest that quiet solar regions responsible for bulk coronal heating operate in a driven self-organized critical state, possibly involving long-range Alfvenic interactions.

  5. Wave heating of the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Arregui, Iñigo

    2015-04-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere.

  6. Wave heating of the solar atmosphere

    PubMed Central

    Arregui, Iñigo

    2015-01-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere. PMID:25897091

  7. Ponderomotive Acceleration in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Dahlburg, Russell B.; Laming, J. Martin; Taylor, Brian; Obenschain, Keith

    2017-08-01

    Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a ``byproduct'' of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal loops with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets which act to heat the loop. As a consequence of coronal magnetic reconnection, small scale, high speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  8. Why coronal flux tubes have axially invariant cross-section

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2001-10-01

    We present here a model that not only explains the long-standing mystery^1 of why solar coronal flux tubes tend towards having axially invariant cross-sections but also explains several other enigmatic features, namely: rotating jets emanating from the ends (surges), counter-streaming beams, ingestion of photospheric material, and elevated pressure/temperature compared to adjacent plasma. The model shows that when a steady current flows along a flux tube with a bulging middle (i.e., a flux tube that is initially produced by a potential magnetic field), non-conservative forces develop which accelerate fluid axially from both ends towards the middle. Remarkably, this axial pumping of fluid into the flux tube causes the flux tube cross-section and volume to decrease in a manner such that the flux tube develops an axial uniform cross-section as observed in coronal loops. The pumping process produces counter-rotating, counter-streaming Alfvenic bulk motion consistent with observations. Collision of the counter-streaming beams causes non-localized bulk heating. This picture also has relevance to astrophysical jets and coaxial spheromak guns and explains why these systems tend to form an axial jet along the geometric axis. Supported by USDOE. l ^1 J. A. Klimchuk, Solar Phys. 193, 53 (2000)

  9. Why coronal flux tubes have axially invariant cross-section

    NASA Astrophysics Data System (ADS)

    Bellan, P. M.

    2001-12-01

    We present here a model that not only explains the long-standing mystery of why solar coronal flux tubes tend towards having axially in-variant cross-sections but also explains several other enigmatic features, namely: rotating jets emanating from the ends (surges), counter-streaming beams, ingestion of photospheric material, and elevated pressure/temperature compared to adjacent plasma. The model shows that when a steady current flows along a flux tube with a bulging middle (i.e., a flux tube that is initially produced by a potential magnetic field), non-conservative forces develop which accelerate fluid axially from both ends towards the middle. Remarkably, this axial pumping of fluid into the flux tube causes the flux tube cross-section and volume to decrease in a manner such that the flux tube develops an axial uniform cross-section as observed in coronal loops. The pumping process produces counter-rotating, counter-streaming Alfvenic bulk motion consistent with observations. Collision of the counter-streaming beams causes non-localized bulk heating. This picture also has relevance to astrophysical jets and coaxial spheromak guns and explains why these systems tend to form an axial jet along the geometric axis. Supported by USDOE. [1]J. A. Klimchuk, Solar Phys. 193, 53 (2000)

  10. Energy released by the interaction of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.

    1976-01-01

    Comparisons between coronal spectroheliograms and photospheric magnetograms are presented to support the idea that as coronal magnetic fields interact, a process of field-line reconnection usually takes place as a natural way of preventing magnetic stresses from building up in the lower corona. This suggests that the energy which would have been stored in stressed fields is continuously released as kinetic energy of material being driven aside to make way for the reconnecting fields. However, this kinetic energy is negligible compared with the thermal energy of the coronal plasma. Therefore, it appears that these slow adjustments of coronal magnetic fields cannot account for even the normal heating of the corona, much less the energetic events associated with solar flares.

  11. The temperature structure, mass, and energy flow in the corona and inner solar wind

    NASA Technical Reports Server (NTRS)

    Withbroe, George L.

    1988-01-01

    Remote-sensing and in situ data are used to constrain a radiative energy balance model in order to study the radial variations of coronal temperatures, densities, and outflow speeds in several types of coronal holes and in an unstructured quiet region of the corona. A one-fluid solar wind model is used which takes into account the effects of radiative and inward conductive losses in the low corona and the chromospheric-coronal transition region. The results show that the total nonradiative energy input in magnetically open coronal regions is 5 + or - 10 to the 5th ergs/sq cm, and that most of the energy heating the coronal plasma is dissipated within 2 solar radii of the solar surface.

  12. A two-fluid model of the solar wind

    NASA Technical Reports Server (NTRS)

    Sandbaek, O.; Leer, E.; Holzer, T. E.

    1992-01-01

    A method is presented for the integration of the two-fluid solar-wind equations which is applicable to a wide variety of coronal base densities and temperatures. The method involves proton heat conduction, and may be applied to coronal base conditions for which subsonic-supersonic solar wind solutions exist.

  13. Explaining Warm Coronal Loops

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.; Karpen, Judy T.; Patsourakos, Spiros

    2008-01-01

    One of the great mysteries of coronal physics that has come to light in the last few years is the discovery that warn (- 1 INK) coronal loops are much denser than expected for quasi-static equilibrium. Both the excess densities and relatively long lifetimes of the loops can be explained with bundles of unresolved strands that are heated impulsively to very high temperatures. Since neighboring strands are at different stages of cooling, the composite loop bundle is multi-thermal, with the distribution of temperatures depending on the details of the "nanoflare storm." Emission hotter than 2 MK is predicted, but it is not clear that such emission is always observed. We consider two possible explanations for the existence of over-dense warm loops without corresponding hot emission: (1) loops are bundles of nanoflare heated strands, but a significant fraction of the nanoflare energy takes the form of a nonthermal electron beam rather then direct plasma heating; (2) loops are bundles of strands that undergo thermal nonequilibrium that results when steady heating is sufficiently concentrated near the footpoints. We present numerical hydro simulations of both of these possibilities and explore the observational consequences, including the production of hard X-ray emission and absorption by cool material in the corona.

  14. Thermal responses in a coronal loop maintained by wave heating mechanisms

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuma

    2018-05-01

    A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuously forced, the MHD waves become excited and propagate upward. Then, 1-MK temperature corona is produced naturally as the wave energy dissipates. The excited wave packets become non-linear just above the magnetic canopy, and the wave energy cascades into smaller spatial scales. Moreover, collisions between counter-propagating Alfvén wave packets increase the heating rate, resulting in impulsive temperature increases. Our model demonstrates that the heating events in the wave-heated loops can be nanoflare-like in the sense that they are spatially localized and temporally intermittent.

  15. Acceleration and heating of two-fluid solar wind by Alfven waves

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1994-01-01

    Earlier model studies of solar wind driven by thermal pressure and Alfven waves have shown that wave amplitudes of 20-30 km/s at the coronal base are sufficient to accelerate the flow to the high speeds observed in quasi-steady streams emanating from large coronal holes. We focus on the energy balance in the proton gas and show that heat conduction from the region where the waves are dissipated may play an important role in determining the proton temperature at the orbit of Earth. In models with 'classical' heat conduction we find a correlation between high flow speed, high proton temperature, and low electron temperature at 1 AU. The effect of wave heating on the development of anisotropies in the solar wind proton gas pressure is also investigated in this study.

  16. Feel the Burn, Part II: Quantifying and mapping spectral, spatial, and temporal structures of the transition region under hot and cold coronal regions

    NASA Astrophysics Data System (ADS)

    Atwood, Shane; Kankelborg, Charles C.

    2017-08-01

    The coronal volume is filled with magnetic field, yet only part of that volume has sufficient volume to exhibit hot X-ray loops. Using XRT and AIA images, we identify footpoints of hot coronal loops. We then use IRIS rasters to compare the spatial, temporal, and spectral structure of these relatively "heated" and "unheated" regions. We seek a signature of upward-propagating energy that could be associated with hot active region loops.

  17. An equatorial coronal hole at solar minimum

    NASA Technical Reports Server (NTRS)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  18. Observational Signatures of Coronal Heating Mechanisms

    NASA Astrophysics Data System (ADS)

    Judge, Philip

    1998-11-01

    Many mechanisms for heating the corona have been proposed since the problem was identified by Edlen more than 50 years ago. Identifying those that are important is a challenging problem that has so far not been resolved. One thing is clear: based upon a variety of observations, the corona is heated by conversion of magnetic flux into thermal energy. The flux emerges from sub-photospheric layers and is buffeted by photospheric dynamics. The ``coronal heating problem'' is to identify how, given the high conductivities of coronal plasma, the magnetic energy is dissipated. After reviewing some basic observational facts and placing the corona into appropriate physical regimes, I will focus on two pieces of information recently obtained from spacecraft. In one, I will discuss the interpretation of line profiles from the UVCS instrument on the SOHO spacecraft, presented by Kohl and colleagues. These observations indicate the presence of asymmetric particle distribution functions low in the solar wind, so I will discuss implications for heating mechanisms for plasma on these ``open'' field lines, in terms of ion cyclotron resonant heating by high frequency Alfven waves. In the other, I will try to review evidence for the ``nano-flare'' heating mechanism proposed by Parker to explain the heating of plasma along closed field lines, such as are present in active regions, based upon data from the SOHO and TRACE spacecraft. Parker's picture is one of slow field line ``braiding'', driven by random footpoint motions, with sudden energy release at critical energies. An attempt will be made to relate these different mechanisms by looking for the source of the high frequency waves implied by the UVCS observations.

  19. Spectroscopic Exploration of Solar Flares

    NASA Astrophysics Data System (ADS)

    Sibeck, D. G.; Paxton, L. J.; Woods, T. N.

    2016-12-01

    Professor Eugene Parker has educated and inspired the heliophysics community since the 1950s about the Parker spiral path for the solar wind, magnetic reconnection throughout the heliosphere, and coronal heating by nano-flares. Solar flares, as well as their often eruptive companions called coronal mass ejections (CMEs), have been studied for decades. While most of these studies involve imaging the Sun, observations of the Sun as a star (full-disk irradiance) have also revealed interesting results through exploring the spectral variability during flare events. Some of the new results from such studies include understanding the flare variability over all wavelengths from the energetic X-rays to the visible, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of Parker's nano-flares in continual heating of active regions.

  20. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.

  1. Modelling nanoflares in active regions and implications for coronal heating mechanisms

    PubMed Central

    Cargill, P. J.; Warren, H. P.; Bradshaw, S. J.

    2015-01-01

    Recent observations from the Hinode and Solar Dynamics Observatory spacecraft have provided major advances in understanding the heating of solar active regions (ARs). For ARs comprising many magnetic strands or sub-loops heated by small, impulsive events (nanoflares), it is suggested that (i) the time between individual nanoflares in a magnetic strand is 500–2000 s, (ii) a weak ‘hot’ component (more than 106.6 K) is present, and (iii) nanoflare energies may be as low as a few 1023 ergs. These imply small heating events in a stressed coronal magnetic field, where the time between individual nanoflares on a strand is of order the cooling time. Modelling suggests that the observed properties are incompatible with nanoflare models that require long energy build-up (over 10 s of thousands of seconds) and with steady heating. PMID:25897093

  2. Simultaneous Solar Maximum Mission (SMM) and very large array observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Lang, K. R.

    1986-01-01

    The research deals mainly with Very Large Array and Solar Maximum Mission observations of the ubiquitous coronal loops that dominate the structure of the low corona. As illustrated, the observations of thermal cyclotron lines at microwave wavelengths provide a powerful new method of accurately specifying the coronal magnetic field strength. Processes are delineated that trigger solar eruptions from coronal loops, including preburst heating and the magnetic interaction of coronal loops. Evidence for coherent burst mechanisms is provided for both the Sun and nearby stars, while other observations suggest the presence of currents that may amplify the coronal magnetic field to unexpectedly high levels. The existence is reported of a new class of compact, variable moving sources in regions of apparently weak photospheric field.

  3. Magnetic Structure of Sites of Braiding in Hi-C Active Region

    NASA Technical Reports Server (NTRS)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood. To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.

  4. Solar Coronal Heating and the Magnetic Flux Content of the Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    2003-01-01

    We investigate the heating of the quiet corona by measuring the increase of coronal luminosity with the amount of magnetic flux in the underlying network at solar minimum when there were no active regions on the face of the Sun. The coronal luminosity is measured from Fe IX/X-Fe XII pairs of coronal images from SOHO/EIT. The network magnetic flux content is measured from SOHO/MDI magnetograms. We find that the luminosity of the corona in our quiet regions increases roughly in proportion to the square root of the magnetic flux content of the network and roughly in proportion to the length of the perimeter of the network magnetic flux clumps. From (1) this result, (2) other observations of many fine-scale explosive events at the edges of network flux clumps, and (3) a demonstration that it is energetically feasible for the heating of the corona in quiet regions to be driven by explosions of granule-sized sheared-core magnetic bipoles embedded in the edges of network flux clumps, we infer that in quiet regions that are not influenced by active regions the corona is mainly heated by such magnetic activity in the edges of the network flux clumps. Our observational results together with our feasibility analysis allow us to predict that (1) at the edges of the network flux clumps there are many transient sheared-core bipoles of the size and lifetime of granules and having transverse field strengths > approx. 100 G, (2) approx. 30 of these bipoles are present per supergranule, and (3) most spicules are produced by explosions of these bipoles.

  5. Solar Coronal Heating and the Magnetic Flux Content of the Network

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Falconer, D. A.; Porter, J. G.; Hathaway, D. H.

    2003-01-01

    We investigate the heating of the quiet corona by measuring the increase of coronal luminosity with the amount of magnetic flux in the underlying network at solar minimum when there were no active regions on the face of the Sun. The coronal luminosity is measured from Fe IX/X-Fe XII pairs of coronal images from SOHO/EIT. The network magnetic flux content is measured from SOHO/MDI magnetograms. We find that the luminosity of the corona in our quiet regions increases roughly in proportion to the square root of the magnetic flux content of the network and roughly in proportion to the length of the perimeter of the network magnetic flux clumps. From (1) this result, (2) other observations of many fine-scale explosive events at the edges of network flux clumps, and (3) a demonstration that it is energetically feasible for the heating of the corona in quiet regions to be driven by explosions of granule-sized sheared-core magnetic bipoles embedded in the edges of network flux clumps, we infer that in quiet regions that are not influenced by active regions the corona is mainly heated by such magnetic activity in the edges of the network flux clumps. Our observational results together with our feasibility analysis allow us to predict that (1) at the edges of the network flux clumps there are many transient sheared-core bipoles of the size and lifetime of granules and having transverse field strengths greater than approximately - 100 G, (2) approximately 30 of these bipoles are present per supergranule, and (3) most spicules are produced by explosions of these bipoles.

  6. Core and Wing Densities of Asymmetric Coronal Spectral Profiles: Implications for the Mass Supply of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R.

    2014-02-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding ≈50 km s-1. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe XIV lines at 264.78 and 274.20 Å is used to determine wing and core densities. We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe XIV lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  7. Core and Wing Densities of Asymmetric Coronal Spectral Profiles: Implications for the Mass Supply of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R.

    2014-01-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding approximately equal to 50 km per sec. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe(sub XIV) lines at 264.78 and 274.20 Angstroms is used to determine wing and core densities.We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe(sub XIV) lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  8. Suppression of Heating of Coronal Loops Rooted in Opposite Polarity Sunspot Umbrae

    NASA Technical Reports Server (NTRS)

    Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.; Panesar, Navdeep K.; Winebarger, Amy R.

    2016-01-01

    EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 Å images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-­polarity plage region. The AIA 94 Å images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the Heliosesmic Magnetic Imager (HMI) onboard SDO. The NLFFF model, validated by comparison of calculated model field lines with observed loops in AIA 193 and 94 Å, specifies the photospheric roots of the model field lines. Some model coronal magnetic field lines arch from the dim umbral area of the positive-polarity sunspot to the dim umbral area of a negative-polarity sunspot. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.

  9. Classification of probability densities on the basis of Pearson?s curves with application to coronal heating simulations

    NASA Astrophysics Data System (ADS)

    Podladchikova, O.; Lefebvre, B.; Krasnoselskikh, V.; Podladchikov, V.

    An important task for the problem of coronal heating is to produce reliable evaluation of the statistical properties of energy release and eruptive events such as micro-and nanoflares in the solar corona. Different types of distributions for the peak flux, peak count rate measurements, pixel intensities, total energy flux or emission measures increases or waiting times have appeared in the literature. This raises the question of a precise evaluation and classification of such distributions. For this purpose, we use the method proposed by K. Pearson at the beginning of the last century, based on the relationship between the first 4 moments of the distribution. Pearson's technique encompasses and classifies a broad range of distributions, including some of those which have appeared in the literature about coronal heating. This technique is successfully applied to simulated data from the model of Krasnoselskikh et al. (2002). It allows to provide successful fits to the empirical distributions of the dissipated energy, and to classify them as a function of model parameters such as dissipation mechanisms and threshold.

  10. The Heating of Solar Coronal Loops by Alfvén Wave Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Ballegooijen, A. A.; Asgari-Targhi, M.; Voss, A.

    2017-11-01

    In this paper we further develop a model for the heating of coronal loops by Alfvén wave turbulence (AWT). The Alfvén waves are assumed to be launched from a collection of kilogauss flux tubes in the photosphere at the two ends of the loop. Using a three-dimensional magnetohydrodynamic model for an active-region loop, we investigate how the waves from neighboring flux tubes interact in the chromosphere and corona. For a particular combination of model parameters we find that AWT can produce enough heat to maintain a peak temperature of about 2.5 MK, somewhat lower than the temperatures of 3–4 MKmore » observed in the cores of active regions. The heating rates vary strongly in space and time, but the simulated heating events have durations less than 1 minute and are unlikely to reproduce the observed broad differential emission measure distributions of active regions. The simulated spectral line nonthermal widths are predicted to be about 27 km s{sup −1}, which is high compared to the observed values. Therefore, the present AWT model does not satisfy the observational constraints. An alternative “magnetic braiding” model is considered in which the coronal field lines are subject to slow random footpoint motions, but we find that such long-period motions produce much less heating than the shorter-period waves launched within the flux tubes. We discuss several possibilities for resolving the problem of producing sufficiently hot loops in active regions.« less

  11. Heating and Large Scale Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Schnack, Dalton D.

    2000-01-01

    The effort was concentrated in the areas: coronal heating mechanism, unstructured adaptive grid algorithms, numerical modeling of magnetic reconnection in the MRX experiment: effect of toroidal magnetic field and finite pressure, effect of OHMIC heating and vertical magnetic field, effect of dynamic MESH adaption.

  12. Non-inductive current driven by Alfvén waves in solar coronal loops

    NASA Astrophysics Data System (ADS)

    Elfimov, A. G.; de Azevedo, C. A.; de Assis, A. S.

    1996-08-01

    It has been shown that Alfvén waves can drive non-inductive current in solar coronal loops via collisional or collisionless damping. Assuming that all the coronal-loop density of dissipated wave power (W= 10-3 erg cm-3 s-1), which is necessary to keep the plasma hot, is due to Alfvén wave electron heating, we have estimated the axial current density driven by Alfvén waves to be ≈ 103 105 statA cm-2. This current can indeed support the quasi-stationary equilibrium and stability of coronal loops and create the poloidal magnetic field up to B θ≈1-5 G.

  13. The Fundamental Structure of Coronal Loops

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy; Warren, Harry; Cirtain, Jonathan; Kobayashi, Ken; Korreck, Kelly; Golub, Leon; Kuzin, Sergey; Walsh, Robert; DePontieu, Bart; Title, Alan; hide

    2012-01-01

    During the past ten years, solar physicists have attempted to infer the coronal heating mechanism by comparing observations of coronal loops with hydrodynamic model predictions. These comparisons often used the addition of sub ]resolution strands to explain the observed loop properties. On July 11, 2012, the High Resolution Coronal Imager (Hi ]C) was launched on a sounding rocket. This instrument obtained images of the solar corona was 0.2 ]0.3'' resolution in a narrowband EUV filter centered around 193 Angstroms. In this talk, we will compare these high resolution images to simultaneous density measurements obtained with the Extreme Ultraviolet Imaging Spectrograph (EIS) on Hinode to determine whether the structures observed with Hi ]C are resolved.

  14. Combining IRIS/Hinode Observations and Modeling: a Pathfinder for Coronal Heating

    NASA Astrophysics Data System (ADS)

    Antolin, P.; Okamoto, J.; De Pontieu, B.

    2015-12-01

    The combination of imaging and spectroscopic instruments with multiple temperature diagnostics at high spatial, temporal and spectral resolution can allow to recover the 3D plasma flow and thermodynamic evolution associated with specific coronal heating mechanisms. Although very hard considering the complexity of the solar atmosphere, this approach is becoming possible now through combination of instruments such as IRIS and Hinode, and with proper guiding from advanced numerical simulations and forward modeling. In this talk I will review recent examples of this approach, focusing on a particular, recently published, case study, that serves as a pathfinder in the search for the dominant coronal heating mechanism. In this case, resonant absorption, a long hypothesised wave-related energy conversion mechanism is spotted in action for the first time, and is characterised by a peculiar 3D motion of the plasma. With the help of 3D MHD numerical simulations and forward modeling the observational signatures of resonant absorption are characterised, matching very well the observational results. The process through which this mechanism can lead to observed significant heating in the solar corona is further identified: the resonant flow becomes turbulent following dynamic instabilities and heats the plasma. I will show how this resonance + instability process is expected in different scenarios of the solar atmosphere (the corona, prominences and spicules) and can potentially explain several observed features that remain so far unexplained.

  15. Large-Scale Coronal Heating from the Solar Magnetic Network

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Porter, Jason G.; Hathaway, David H.

    1999-01-01

    In Fe 12 images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi- supergranular. In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. The emission of the coronal network and bright points contribute only about 5% of the entire quiet solar coronal Fe MI emission. Here we investigate the large-scale corona, the supergranular and larger-scale structure that we had previously treated as a background, and that emits 95% of the total Fe XII emission. We compare the dim and bright halves of the large- scale corona and find that the bright half is 1.5 times brighter than the dim half, has an order of magnitude greater area of bright point coverage, has three times brighter coronal network, and has about 1.5 times more magnetic flux than the dim half These results suggest that the brightness of the large-scale corona is more closely related to the large- scale total magnetic flux than to bright point activity. We conclude that in the quiet sun: (1) Magnetic flux is modulated (concentrated/diluted) on size scales larger than supergranules. (2) The large-scale enhanced magnetic flux gives an enhanced, more active, magnetic network and an increased incidence of network bright point formation. (3) The heating of the large-scale corona is dominated by more widespread, but weaker, network activity than that which heats the bright points. This work was funded by the Solar Physics Branch of NASA's office of Space Science through the SR&T Program and the SEC Guest Investigator Program.

  16. TRANSITION-REGION/CORONAL SIGNATURES AND MAGNETIC SETTING OF SUNSPOT PENUMBRAL JETS: HINODE (SOT/FG), Hi-C, AND SDO/AIA OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Sanjiv K.; Moore, Ronald L.; Winebarger, Amy R.

    2016-01-10

    Penumbral microjets (PJs) are transient narrow bright features in the chromosphere of sunspot penumbrae, first characterized by Katsukawa et al. using the Ca ii H-line filter on Hinode's Solar Optical Telescope (SOT). It was proposed that the PJs form as a result of reconnection between two magnetic components of penumbrae (spines and interspines), and that they could contribute to the transition region (TR) and coronal heating above sunspot penumbrae. We propose a modified picture of formation of PJs based on recent results on the internal structure of sunspot penumbral filaments. Using data of a sunspot from Hinode/SOT, High Resolution Coronalmore » Imager, and different passbands of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we examine whether PJs have signatures in the TR and corona. We find hardly any discernible signature of normal PJs in any AIA passbands, except for a few of them showing up in the 1600 Å images. However, we discovered exceptionally stronger jets with similar lifetimes but bigger sizes (up to 600 km wide) occurring repeatedly in a few locations in the penumbra, where evidence of patches of opposite-polarity fields in the tails of some penumbral filaments is seen in Stokes-V images. These tail PJs do display signatures in the TR. Whether they have any coronal-temperature plasma is unclear. We infer that none of the PJs, including the tail PJs, directly heat the corona in active regions significantly, but any penumbral jet might drive some coronal heating indirectly via the generation of Alfvén waves and/or braiding of the coronal field.« less

  17. Kinetic Properties of an Interplanetary Shock Propagating inside a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Liu, Mingzhe; Liu, Ying D.; Yang, Zhongwei; Wilson, L. B., III; Hu, Huidong

    2018-05-01

    We investigate the kinetic properties of a typical fast-mode shock inside an interplanetary coronal mass ejection (ICME) observed on 1998 August 6 at 1 au, including particle distributions and wave analysis with the in situ measurements from Wind. Key results are obtained concerning the shock and the shock–ICME interaction at kinetic scales: (1) gyrating ions, which may provide energy dissipation at the shock in addition to wave-particle interactions, are observed around the shock ramp; (2) despite the enhanced proton temperature anisotropy of the shocked plasma, the low plasma β inside the ICME constrains the shocked plasma under the thresholds of the ion cyclotron and mirror-mode instabilities; (3) whistler heat flux instabilities, which can pitch-angle scatter halo electrons through a cyclotron resonance, are observed around the shock, and can explain the disappearance of bi-directional electrons (BDEs) inside the ICME together with normal betatron acceleration; (4) whistler waves near the shock are likely associated with the whistler heat flux instabilities excited at the shock ramp, which is consistent with the result that the waves may originate from the shock ramp; (5) the whistlers share a similar characteristic with the shocklet whistlers observed by Wilson et al., providing possible evidence that the shock is decaying because of the strong magnetic field inside the ICME.

  18. Exploration of the Characteristics of the Time Variable Component of the Coronal Heating Process

    NASA Technical Reports Server (NTRS)

    Wagner, William (Technical Monitor); Habbal, Shadia R.

    2003-01-01

    By coordinating coronal SOHO observations in white light, ultraviolet, extreme ultraviolet, with radio occultation measurements, and complementing these with modeling, two break-throughs were achieved from this funding: (1) The discovery that minor ions are accelerated much faster than protons in the fast solar wind, and (2) that the imprint of coronal density structures is carried outwards from the Sun into the solar wind. Three refereed papers and one invited review, published in the proceedings of the conference, resulted from this funding. A summary of each is given.

  19. UNRAVELLING THE COMPONENTS OF A MULTI-THERMAL CORONAL LOOP USING MAGNETOHYDRODYNAMIC SEISMOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, S. Krishna; Jess, D. B.; Klimchuk, J. A.

    Coronal loops, constituting the basic building blocks of the active Sun, serve as primary targets to help understand the mechanisms responsible for maintaining multi-million Kelvin temperatures in the solar and stellar coronae. Despite significant advances in observations and theory, our knowledge on the fundamental properties of these structures is limited. Here, we present unprecedented observations of accelerating slow magnetoacoustic waves along a coronal loop that show differential propagation speeds in two distinct temperature channels, revealing the multi-stranded and multithermal nature of the loop. Utilizing the observed speeds and employing nonlinear force-free magnetic field extrapolations, we derive the actual temperature variationmore » along the loop in both channels, and thus are able to resolve two individual components of the multithermal loop for the first time. The obtained positive temperature gradients indicate uniform heating along the loop, rather than isolated footpoint heating.« less

  20. EXPLAINING INVERTED-TEMPERATURE LOOPS IN THE QUIET SOLAR CORONA WITH MAGNETOHYDRODYNAMIC WAVE-MODE CONVERSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiff, Avery J.; Cranmer, Steven R.

    Coronal loops trace out bipolar, arch-like magnetic fields above the Sun’s surface. Recent measurements that combine rotational tomography, extreme-ultraviolet imaging, and potential-field extrapolation have shown the existence of large loops with inverted-temperature profiles, i.e., loops for which the apex temperature is a local minimum, not a maximum. These “down loops” appear to exist primarily in equatorial quiet regions near solar minimum. We simulate both these and the more prevalent large-scale “up loops” by modeling coronal heating as a time-steady superposition of (1) dissipation of incompressible Alfvén wave turbulence and (2) dissipation of compressive waves formed by mode conversion from themore » initial population of Alfvén waves. We found that when a large percentage (>99%) of the Alfvén waves undergo this conversion, heating is greatly concentrated at the footpoints and stable “down loops” are created. In some cases we found loops with three maxima that are also gravitationally stable. Models that agree with the tomographic temperature data exhibit higher gas pressures for “down loops” than for “up loops,” which is consistent with observations. These models also show a narrow range of Alfvén wave amplitudes: 3 to 6 km s{sup -1} at the coronal base. This is low in comparison to typical observed amplitudes of 20–30 km s{sup -1} in bright X-ray loops. However, the large-scale loops we model are believed to compose a weaker diffuse background that fills much of the volume of the corona. By constraining the physics of loops that underlie quiescent streamers, we hope to better understand the formation of the slow solar wind.« less

  1. A Simple Model for the Evolution of Multi-Stranded Coronal Loops

    NASA Technical Reports Server (NTRS)

    Fuentes, M. C. Lopez; Klimchuk, J. A.

    2010-01-01

    We develop and analyze a simple cellular automaton (CA) model that reproduces the main properties of the evolution of soft X-ray coronal loops. We are motivated by the observation that these loops evolve in three distinguishable phases that suggest the development, maintainance, and decay of a self-organized system. The model is based on the idea that loops are made of elemental strands that are heated by the relaxation of magnetic stress in the form of nanoflares. In this vision, usually called "the Parker conjecture" (Parker 1988), the origin of stress is the displacement of the strand footpoints due to photospheric convective motions. Modeling the response and evolution of the plasma we obtain synthetic light curves that have the same characteristic properties (intensity, fluctuations, and timescales) as the observed cases. We study the dependence of these properties on the model parameters and find scaling laws that can be used as observational predictions of the model. We discuss the implications of our results for the interpretation of recent loop observations in different wavelengths. Subject headings: Sun: corona - Sun: flares - Sun: magnetic topology - Sun: X-rays, gamma rays

  2. BOOTSTRAPPING THE CORONAL MAGNETIC FIELD WITH STEREO: UNIPOLAR POTENTIAL FIELD MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschwanden, Markus J.; Sandman, Anne W., E-mail: aschwanden@lmsal.co

    We investigate the recently quantified misalignment of {alpha}{sub mis} {approx} 20{sup 0}-40{sup 0} between the three-dimensional geometry of stereoscopically triangulated coronal loops observed with STEREO/EUVI (in four active regions (ARs)) and theoretical (potential or nonlinear force-free) magnetic field models extrapolated from photospheric magnetograms. We develop an efficient method of bootstrapping the coronal magnetic field by forward fitting a parameterized potential field model to the STEREO-observed loops. The potential field model consists of a number of unipolar magnetic charges that are parameterized by decomposing a photospheric magnetogram from the Michelson Doppler Imager. The forward-fitting method yields a best-fit magnetic field modelmore » with a reduced misalignment of {alpha}{sub PF} {approx} 13{sup 0}-20{sup 0}. We also evaluate stereoscopic measurement errors and find a contribution of {alpha}{sub SE} {approx} 7{sup 0}-12{sup 0}, which constrains the residual misalignment to {alpha}{sub NP} {approx} 11{sup 0}-17{sup 0}, which is likely due to the nonpotentiality of the ARs. The residual misalignment angle, {alpha}{sub NP}, of the potential field due to nonpotentiality is found to correlate with the soft X-ray flux of the AR, which implies a relationship between electric currents and plasma heating.« less

  3. Coronal Structures in Cool Stars: XMM-NEWTON Hybrid Stars and Coronal Evolution

    NASA Technical Reports Server (NTRS)

    Dupree, Andrea K.; Mushotzky, Richard (Technical Monitor)

    2003-01-01

    This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Beta Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, alpha TrA (K2 II-III). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars. We are attempting to determine if this model of coronal evolution is correct by using XMM-NEWTON RGS spectra for the 2 targets we were allocated through the Guest Observer program.

  4. Equilibrium models of coronal loops that involve curvature and buoyancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindman, Bradley W.; Jain, Rekha, E-mail: hindman@solarz.colorado.edu

    2013-12-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to amore » detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.« less

  5. Enthalpy-Based Thermal Evolution of Loops: II. Improvements to the Model

    NASA Technical Reports Server (NTRS)

    Cargill, P. J.; Bradshaw, S. J.; Klimchuk, J. A.

    2011-01-01

    This paper further develops the zero-dimensional (0D) hydrodynamic coronal loop model "Enthalpy-based Thermal Evolution of Loops" (EBTEL) originally proposed by Klimchuk et al (2008), which studies the plasma response to evolving coronal heating. It has typically been applied to impulsive heating events. The basis of EBTEL is the modelling of mass exchange between the corona and transition region and chromosphere in response to heating variations, with the key parameter being the ratio of transition region to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. It is found that while the evolution of the loop temperature is rather insensitive to the details of the model, accurate tracking of the density requires the inclusion of our new features. In particular, we are able to now obtain highly over-dense loops in the late cooling phase and decreases to the coronal density arising due to stratification. The 0D results are compared to a 1D hydro code (Hydrad). The agreement is acceptable, with the exception of the flare case where some versions of Hydrad can give significantly lower densities. This is attributed to the method used to model the chromosphere in a flare. EBTEL is suitable for general use as a tool for (a) quick-look results of loop evolution in response to a given heating function and (b) situations where the modelling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.

  6. Free Magnetic Energy and Coronal Heating

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy; Moore, Ron; Falconer, David

    2012-01-01

    Previous work has shown that the coronal X-ray luminosity of an active region increases roughly in direct proportion to the total photospheric flux of the active region's magnetic field (Fisher et al. 1998). It is also observed, however, that the coronal luminosity of active regions of nearly the same flux content can differ by an order of magnitude. In this presentation, we analyze 10 active regions with roughly the same total magnetic flux. We first determine several coronal properties, such as X-ray luminosity (calculated using Hinode XRT), peak temperature (calculated using Hinode EIS), and total Fe XVIII emission (calculated using SDO AIA). We present the dependence of these properties on a proxy of the free magnetic energy of the active region

  7. Hybrid Stars and Coronal Evolution

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Dupree, Andrea K.

    2004-01-01

    This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, TrA (K2 11-111). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars.

  8. Solar burst precursors and energy build-up at microwave wavelengths

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.; Wilson, Robert F.

    1986-01-01

    We summarize high-resolution microwave observations (VLA) of heating and magnetic triggering in coronal loops. Magnetic changes that precede solar eruptions on time scales of tens of minutes involve primarily emerging coronal loops and the interaction of two or more loops. Thermal cyclotron lines have been detected in coronal loops, suggesting the presence of hot current sheets that enhance emission from relatively thin layers of enhanced temperature and constant magnetic field. These current sheets may play a role in the excitation of solar bursts. A filament-associated source with a high brightness temperature and steep radiation spectrum occurs above a region of apparently weak photospheric field. This source might be attributed to currents that enhance coronal magnetic fields. Compact (phi=5 sec) transient sources with lifetimes of 30 to 60 minutes have also been detected in regions of apparently weak photospheric field. We conclude by comparing VLA observations of coronal loops with simultaneous SMM-XRP observations.

  9. Solar burst precursors and energy build-up at microwave wavelengths

    NASA Astrophysics Data System (ADS)

    Lang, Kenneth R.; Wilson, Robert F.

    We summarize high-resolution microwave observations (VLA) of heating and magnetic triggering in coronal loops. Magnetic changes that precede solar eruptions on time scales of tens of minutes involve primarily emerging coronal loops and the interaction of two or more loops. Thermal cyclotron lines have been detected in coronal loops, suggesting the presence of hot current sheets that enhance emission from relatively thin layers of enhanced temperature and constant magnetic field. These current sheets may play a role in the excitation of solar bursts. A filament-associated source with a high brightness temperature and steep radiation spectrum occurs above a region of apparently weak photospheric field. This source might be attributed to currents that enhance coronal magnetic fields. Compact (phi=5 sec) transient sources with lifetimes of 30 to 60 minutes have also been detected in regions of apparently weak photospheric field. We conclude by comparing VLA observations of coronal loops with simultaneous SMM-XRP observations.

  10. Semi-empirical models of the wind in cool supergiant stars

    NASA Technical Reports Server (NTRS)

    Kuin, N. P. M.; Ahmad, Imad A.

    1988-01-01

    A self-consistent semi-empirical model for the wind of the supergiant in zeta Aurigae type systems is proposed. The damping of the Alfven waves which are assumed to drive the wind is derived from the observed velocity profile. Solution of the ionization balance and energy equation gives the temperature structure for given stellar magnetic field and wave flux. Physically acceptable solutions of the temperature structure place limits on the stellar magnetic field. A crude formula for a critical mass loss rate is derived. For a mass loss rate below the critical value the wind cannot be cool. Comparison between the observed and the critical mass loss rate suggests that the proposed theory may provide an explanation for the coronal dividing line in the Hertzsprung-Russell diagram. The physical explanation may be that the atmosphere has a cool wind, unless it is physically impossible to have one. Stars which cannot have a cool wind release their nonthermal energy in an outer atmosphere at coronal temperatures. It is possible that in the absence of a substantial stellar wind the magnetic field has less incentive to extend radially outward, and coronal loop structures may become more dominant.

  11. Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, Justin C.; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart D.; Belcher, John W.; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony W.; Chandran, Benjamin D. G.; Cheimets, Peter; Cirtain, Jonathan W.; Cranmer, Steven R.; Curtis, David W.; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, S. Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy A.; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven P.; Korreck, Kelly E.; Larson, Davin; Lazarus, Alan J.; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James P.; Marchant, William; Maruca, Bennet A.; McComas, David J.; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew M.; Pogorelov, Nikolai; Reinhart, Matthew J.; Richardson, John D.; Robinson, Miles; Rosen, Irene; Skoug, Ruth M.; Slagle, Amanda; Steinberg, John T.; Stevens, Michael L.; Szabo, Adam; Taylor, Ellen R.; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S. T.; Zank, Gary

    2016-12-01

    The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes the implementation of the SWEAP Investigation, the driving requirements for the suite, expected performance of the instruments, and planned data products, as of mission preliminary design review.

  12. EXTREME-ULTRAVIOLET OBSERVATIONAL CONSEQUENCES OF THE SPATIAL LOCALIZATION OF NANOFLARE HEATING WITHIN A MULTISTRANDED ATMOSPHERIC LOOP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Aveek; Walsh, Robert W.

    2009-07-10

    Determining the preferred spatial location of the energy input to solar coronal loops would be an important step forward toward a more complete understanding of the coronal heating problem. Following from the 2008 paper of Sarkar and Walsh, this paper presents a short (10{sup 9} cm {identical_to}10 Mm) 'global loop' as 125 individual strands, where each strand is modeled independently by a one-dimensional hydrodynamic simulation. The strands undergo small-scale episodic heating and are coupled together through the frequency distribution of the total energy input to the loop which follows a power-law distribution with index {approx}2.29. The spatial preference of themore » swarm of heating events from apex to footpoint is investigated. From a theoretical perspective, the resulting emission-measure-weighted temperature profiles along these two extreme cases do demonstrate a possible observable difference. Subsequently, the simulated output is folded through the Transition Region and Coronal Explorer (TRACE) instrument response functions and a rederivation of the temperature using different filter ratio techniques is performed. Given the multithermal scenario created by this many-strand loop model, a broad differential emission measure results; the subsequent double and triple filter ratios are very similar to those obtained from observations. However, any potential observational signature to differentiate between apex and footpoint dominant heating is possibly below instrumental thresholds. The consequences of using a broadband instrument like TRACE and Hinode-XRT in this way are discussed.« less

  13. Quasi-static evolution of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Longcope, D. W.; Sudan, R. N.

    1992-01-01

    A formalism is developed to describe the purely quasi-static part of the evolution of a coronal loop driven by its footpoints. This is accomplished under assumptions of a long, thin loop. The quasi-static equations reveal the possibility for sudden 'loss of equilibrium' at which time the system evolves dynamically rather than quasi-statically. Such quasi-static crises produce high-frequency Alfven waves and, in conjunction with Alfven wave dissipation models, form a viable coronal heating mechanism. Furthermore, an approximate solution to the quasi-static equations by perturbation method verifies the development of small-scale spatial current structure.

  14. The pressure and energy balance of the cool corona over sunspots

    NASA Technical Reports Server (NTRS)

    Foukal, P. V.

    1976-01-01

    The 22 largest sunspots observed with the Skylab SO55 spectrometer are studied for a relation between their EUV radiation and their umbral size or magnetic classification. The ultimate goal is to determine why the coronal plasma is so cool over a sunspot and how this cool plasma manages to support itself against gravity. Based on the time behavior of the EUV emission, a steady-state model is developed for the pressure and energy balance of the cool coronal-plasma loops over the spots. Analysis of the temperature structure in a typical loop indicates that the loop is exceedingly well insulated from the outside corona, that its energy balance is determined purely by internal heating and cooling processes, and that a heat input of about 0.0001 erg/cu cm per sec is required along the full length of the loop. It is proposed that: (1) coronal material flows steadily across the field lines at the tops of the loops and falls downward along both sides under gravity; (2) the corona is heated by mechanical-energy transport across the very thin transition region immediately over network-cell interiors; and (3) strong magnetic fields tend to inhibit mechanical-energy dissipation in the corona.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R., E-mail: spatsour@cc.uoi.gr, E-mail: james.a.klimchuk@nasa.gov

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding ≈50 km s{sup –1}. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe XIV lines at 264.78 and 274.20more » Å is used to determine wing and core densities. We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe XIV lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.« less

  16. Density Fluctuations in a Polar Coronal Hole

    NASA Astrophysics Data System (ADS)

    Hahn, Michael; D’Huys, Elke; Savin, Daniel Wolf

    2018-06-01

    We have measured the root-mean-square (rms) amplitude of intensity fluctuations, ΔI, in plume and interplume regions of a polar coronal hole. These intensity fluctuations correspond to density fluctuations. Using data from the Sun Watcher using the Active Pixel System detector and Image Processing on the Project for Onboard Autonomy (Proba2), our results extend up to a height of about 1.35 R ⊙. One advantage of the rms analysis is that it does not rely on a detailed evaluation of the power spectrum, which is limited by noise levels to low heights in the corona. The rms approach can be performed up to larger heights where the noise level is greater, provided that the noise itself can be quantified. At low heights, both the absolute ΔI, and the amplitude relative to the mean intensity, ΔI/I, decrease with height. However, starting at about 1.2 R ⊙, ΔI/I increases, reaching 20%–40% by 1.35 R ⊙. This corresponds to density fluctuations of Δn e/n e ≈ 10%–20%. The increasing relative amplitude implies that the density fluctuations are generated in the corona itself. One possibility is that the density fluctuations are generated by an instability of Alfvén waves. This generation mechanism is consistent with some theoretical models and with observations of Alfvén wave amplitudes in coronal holes. Although we find that the energy of the observed density fluctuations is small, these fluctuations are likely to play an important indirect role in coronal heating by promoting the reflection of Alfvén waves and driving turbulence.

  17. REFLECTION OF PROPAGATING SLOW MAGNETO-ACOUSTIC WAVES IN HOT CORONAL LOOPS: MULTI-INSTRUMENT OBSERVATIONS AND NUMERICAL MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Sudip; Banerjee, Dipankar; Pant, Vaibhav

    Slow MHD waves are important tools for understanding coronal structures and dynamics. In this paper, we report a number of observations from the X-Ray Telescope (XRT) on board HINODE and Solar Dynamic Observatory /Atmospheric Imaging Assembly (AIA) of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and temperature of the loop plasma by performing differential emission measure (DEM) analysis on the AIA image sequence.more » The estimated speed of propagation is comparable to or lower than the local sound speed, suggesting it to be a propagating slow wave. The intensity perturbation amplitude, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observation as inputs, and perform forward modeling to synthesize AIA 94 Å images. Analyzing the synthesized images, we obtain the same properties of the observables as for the real observation. From the analysis we conclude that a footpoint heating can generate a slow wave which then reflects back and forth in the coronal loop before fading. Our analysis of the simulated data shows that the main agent for this damping is anisotropic thermal conduction.« less

  18. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: instrument capabilities and early science analysis on the quiet Sun, active regions, and flares.

    NASA Astrophysics Data System (ADS)

    Moore, Christopher S.; Woods, Tom; Caspi, Amir; Dennis, Brian R.; MinXSS Instrument Team, NIST-SURF Measurement Team

    2018-01-01

    Detection of soft X-rays (sxr) from the Sun provide direct information on coronal plasma at temperatures in excess of ~1 MK, but there have been relatively few solar spectrally resolved measurements from 0.5 – 10. keV. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, and has provided measurements from 0.8 -12 keV, with resolving power ~40 at 5.9 keV, at a nominal ~10 second time cadence. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. Instrument radiometric calibration was performed at the National Institute for Standard and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive X-ray sources. The MinXSS spectra allow for determining coronal abundance variations for Fe, Mg, Ni, Ca, Si, S, and Ar in active regions and during flares. Measurements from the first of the twin CubeSats, MinXSS-1, have proven to be consistent with the Geostationary Operational Environmental Satellite (GOES) 0.1 – 0.8 nm energy flux. Simultaneous MinXSS-1 and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations have provided the most complete sxr spectral coverage of flares in recent years. These combined measurements are vital in estimating the heating flare loops by non-thermal accelerated electrons. MinXSS-1 measurements have been combined with the Hinode X-ray Telescope (XRT) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO-AIA) to further constrain the coronal temperature distribution during quiescent times. The structure of the temperature distribution (especially for T > 5 MK) is important for deducing heating processes in the solar atmosphere. MinXSS-1 observations yield some of the tightest constraints on the high temperature component of the coronal plasma, in the absence of the intermittent solar observations from the Focusing Optic X-ray Solar Imager (FOXSI) sounding rocket and the Nuclear Spectroscopic Telescope Array (NuSTAR).

  19. Solar Wind Acceleration: Modeling Effects of Turbulent Heating in Open Flux Tubes

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    We present two self-consistent coronal heating models that determine the properties of the solar wind generated and accelerated in magnetic field geometries that are open to the heliosphere. These models require only the radial magnetic field profile as input. The first code, ZEPHYR (Cranmer et al. 2007) is a 1D MHD code that includes the effects of turbulent heating created by counter-propagating Alfven waves rather than relying on empirical heating functions. We present the analysis of a large grid of modeled flux tubes (> 400) and the resulting solar wind properties. From the models and results, we recreate the observed anti-correlation between wind speed at 1 AU and the so-called expansion factor, a parameterization of the magnetic field profile. We also find that our models follow the same observationally-derived relation between temperature at 1 AU and wind speed at 1 AU. We continue our analysis with a newly-developed code written in Python called TEMPEST (The Efficient Modified-Parker-Equation-Solving Tool) that runs an order of magnitude faster than ZEPHYR due to a set of simplifying relations between the input magnetic field profile and the temperature and wave reflection coefficient profiles. We present these simplifying relations as a useful result in themselves as well as the anti-correlation between wind speed and expansion factor also found with TEMPEST. Due to the nature of the algorithm TEMPEST utilizes to find solar wind solutions, we can effectively separate the two primary ways in which Alfven waves contribute to solar wind acceleration: 1) heating the surrounding gas through a turbulent cascade and 2) providing a separate source of wave pressure. We intend to make TEMPEST easily available to the public and suggest that TEMPEST can be used as a valuable tool in the forecasting of space weather, either as a stand-alone code or within an existing modeling framework.

  20. Low coronal signatures of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Attrill, Gemma Diana Ruth

    Coronal mass ejections (CMEs) are vast eruptions of magnetised plasma that explode from the solar atmosphere. This thesis focuses on understanding the nascent stages of CMEs, and their magnetic development as they expand into the interplanetary space of our solar system. This is an important part of our effort to understand the space weather environment that we live in, and increasingly interact with through satellite communications technologies. Predominantly through combining extreme ultra-violet imaging and magnetogram data, two low coronal signatures of CMEs, namely coronal waves and dimmings, are studied. A comprehensive list of observational properties of EIT coronal waves is compiled and potential counterparts in radio, Ha, soft X-rays and He n wavelengths are also discussed. New observational constraints on EIT coronal waves are presented, most notably diffuse coronal waves are shown to have a magnetic nature. Finding that many observational constraints are not satisfactorily explained by current theories, a new model for understanding the physical nature of diffuse coronal waves is developed. The new model interprets diffuse coronal "wave" bright fronts to be the low coronal magnetic footprint of CMEs. Implications for developing our understanding of how CMEs become large-scale in the low corona are discussed. Application of the model demonstrates how an understanding of the formation of complex global-scale coronal dimmings can be derived. For the first time it is shown that study of the evolution and magnetic nature of coronal dimming regions can be used to probe the post-eruptive evolution of the CME. Finally, a study is presented regarding why and how CME-related dimmings recover, despite the "open" magnetic connectivity of the ejecta to the Sun being maintained as indicated by electron heat flux measurements at 1 AU.

  1. On the Occurrence of Thermal Nonequilibrium in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Froment, C.; Auchère, F.; Mikić, Z.; Aulanier, G.; Bocchialini, K.; Buchlin, E.; Solomon, J.; Soubrié, E.

    2018-03-01

    Long-period EUV pulsations, recently discovered to be common in active regions, are understood to be the coronal manifestation of thermal nonequilibrium (TNE). The active regions previously studied with EIT/Solar and Heliospheric Observatory and AIA/SDO indicated that long-period intensity pulsations are localized in only one or two loop bundles. The basic idea of this study is to understand why. For this purpose, we tested the response of different loop systems, using different magnetic configurations, to different stratifications and strengths of the heating. We present an extensive parameter-space study using 1D hydrodynamic simulations (1020 in total) and conclude that the occurrence of TNE requires specific combinations of parameters. Our study shows that the TNE cycles are confined to specific ranges in parameter space. This naturally explains why only some loops undergo constant periodic pulsations over several days: since the loop geometry and the heating properties generally vary from one loop to another in an active region, only the ones in which these parameters are compatible exhibit TNE cycles. Furthermore, these parameters (heating and geometry) are likely to vary significantly over the duration of a cycle, which potentially limits the possibilities of periodic behavior. This study also confirms that long-period intensity pulsations and coronal rain are two aspects of the same phenomenon: both phenomena can occur for similar heating conditions and can appear simultaneously in the simulations.

  2. Using Coronal Hole Maps to Constrain MHD Models

    NASA Astrophysics Data System (ADS)

    Caplan, Ronald M.; Downs, Cooper; Linker, Jon A.; Mikic, Zoran

    2017-08-01

    In this presentation, we explore the use of coronal hole maps (CHMs) as a constraint for thermodynamic MHD models of the solar corona. Using our EUV2CHM software suite (predsci.com/chd), we construct CHMs from SDO/AIA 193Å and STEREO-A/EUVI 195Å images for multiple Carrington rotations leading up to the August 21st, 2017 total solar eclipse. We then contruct synoptic CHMs from synthetic EUV images generated from global thermodynamic MHD simulations of the corona for each rotation. Comparisons of apparent coronal hole boundaries and estimates of the net open flux are used to benchmark and constrain our MHD model leading up to the eclipse. Specifically, the comparisons are used to find optimal parameterizations of our wave turbulence dissipation (WTD) coronal heating model.

  3. The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning.

    PubMed

    Shell, Courtney E; Segal, Ava D; Klute, Glenn K; Neptune, Richard R

    2017-11-01

    Little evidence exists regarding how prosthesis design characteristics affect performance in tasks that challenge mediolateral balance such as turning. This study assesses the influence of prosthetic foot stiffness on amputee walking mechanics and balance control during a continuous turning task. Three-dimensional kinematic and kinetic data were collected from eight unilateral transtibial amputees as they walked overground at self-selected speed clockwise and counterclockwise around a 1-meter circle and along a straight line. Subjects performed the walking tasks wearing three different ankle-foot prostheses that spanned a range of sagittal- and coronal-plane stiffness levels. A decrease in stiffness increased residual ankle dorsiflexion (10-13°), caused smaller adaptations (<5°) in proximal joint angles, decreased residual and increased intact limb body support, increased residual limb propulsion and increased intact limb braking for all tasks. While changes in sagittal-plane joint work due to decreased stiffness were generally consistent across tasks, effects on coronal-plane hip work were task-dependent. When the residual limb was on the inside of the turn and during straight-line walking, coronal-plane hip work increased and coronal-plane peak-to-peak range of whole-body angular momentum decreased with decreased stiffness. Changes in sagittal-plane kinematics and kinetics were similar to those previously observed in straight-line walking. Mediolateral balance improved with decreased stiffness, but adaptations in coronal-plane angles, work and ground reaction force impulses were less systematic than those in sagittal-plane measures. Effects of stiffness varied with the residual limb inside versus outside the turn, which suggests that actively adjusting stiffness to turn direction may be beneficial. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A Bayesian Approach to Period Searching in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Scherrer, Bryan; McKenzie, David

    2017-03-01

    We have applied a Bayesian generalized Lomb-Scargle period searching algorithm to movies of coronal loop images obtained with the Hinode X-ray Telescope (XRT) to search for evidence of periodicities that would indicate resonant heating of the loops. The algorithm makes as its only assumption that there is a single sinusoidal signal within each light curve of the data. Both the amplitudes and noise are taken as free parameters. It is argued that this procedure should be used alongside Fourier and wavelet analyses to more accurately extract periodic intensity modulations in coronal loops. The data analyzed are from XRT Observation Program #129C: “MHD Wave Heating (Thin Filters),” which occurred during 2006 November 13 and focused on active region 10293, which included coronal loops. The first data set spans approximately 10 min with an average cadence of 2 s, 2″ per pixel resolution, and used the Al-mesh analysis filter. The second data set spans approximately 4 min with a 3 s average cadence, 1″ per pixel resolution, and used the Al-poly analysis filter. The final data set spans approximately 22 min at a 6 s average cadence, and used the Al-poly analysis filter. In total, 55 periods of sinusoidal coronal loop oscillations between 5.5 and 59.6 s are discussed, supporting proposals in the literature that resonant absorption of magnetic waves is a viable mechanism for depositing energy in the corona.

  5. A Bayesian Approach to Period Searching in Solar Coronal Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherrer, Bryan; McKenzie, David

    2017-03-01

    We have applied a Bayesian generalized Lomb–Scargle period searching algorithm to movies of coronal loop images obtained with the Hinode X-ray Telescope (XRT) to search for evidence of periodicities that would indicate resonant heating of the loops. The algorithm makes as its only assumption that there is a single sinusoidal signal within each light curve of the data. Both the amplitudes and noise are taken as free parameters. It is argued that this procedure should be used alongside Fourier and wavelet analyses to more accurately extract periodic intensity modulations in coronal loops. The data analyzed are from XRT Observation Programmore » 129C: “MHD Wave Heating (Thin Filters),” which occurred during 2006 November 13 and focused on active region 10293, which included coronal loops. The first data set spans approximately 10 min with an average cadence of 2 s, 2″ per pixel resolution, and used the Al-mesh analysis filter. The second data set spans approximately 4 min with a 3 s average cadence, 1″ per pixel resolution, and used the Al-poly analysis filter. The final data set spans approximately 22 min at a 6 s average cadence, and used the Al-poly analysis filter. In total, 55 periods of sinusoidal coronal loop oscillations between 5.5 and 59.6 s are discussed, supporting proposals in the literature that resonant absorption of magnetic waves is a viable mechanism for depositing energy in the corona.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherlock, M.; Brodrick, J. P.; Ridgers, C. P.

    Here, we compare the reduced non-local electron transport model developed to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a one-dimensional hohlraum ablation problem. We find that the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced modelmore » reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region.« less

  7. Self-consistent models for Coulomb heated X-ray pulsar atmospheres

    NASA Technical Reports Server (NTRS)

    Harding, A.; Meszaros, S. P.; Kirk, J.; Galloway, D.

    1983-01-01

    Calculations of accreting magnetized neutron star atmospheres heated by the gradual deceleration of protons via Coulomb collisions are presented. Self consistent determinations of the temperature and density structure for different accretion rates are made by assuming hydrostatic equilibrium and energy balance, coupled with radiative transfer. The full radiative transfer in two polarizations, using magnetic cross sections but with cyclotron resonance effects treated approximately, is carried out in the inhomogeneous atmospheres.

  8. LOCKYER (Large Optimized Coronagraph for KeY Emission line Research): A SMEX Mission to Provide Crucial Measurements of the Genesis of the Solar Wind and CMEs

    NASA Astrophysics Data System (ADS)

    Ko, Y. K.; Vourlidas, A.; Korendyke, C.; Laming, J. M.

    2016-12-01

    The LOCKYER mission is designed to uncover the physical processes of acceleration and heating of the quiescent and transient solar wind. It builds on the success of the Ultraviolet Coronagraph Spectrometer (UVCS) on SOHO with a massive increase in effective area at Lyman-alpha (200x larger than UVCS), thanks to a modern optical design and the use of a 4m boom. The larger effective area enables spectral line observations from many ions, including He II (at 1640 Å), allowing us to access the region where the coronal plasma transitions from fluid to kinetic behavior. In addition, a visible light channel provides simultaneous high-resolution coronagraphic images for the global coronal structure and dynamics creating a greatly-expanded UVCS-LASCO `hybrid' instrument within the tight constraints of a SMEX mission. The LOCKYER mission aims to answer the following questions: 1) What are the physical processes responsible for the heating and acceleration of the primary (proton, electron, helium) and secondary (minor ion) plasma components of the fast and slow solar wind? 2) How are CMEs heated and accelerated? LOCKYER would greatly advance our knowledge of how and where the solar wind is formed, and how the variations in coronal microphysics impact the solar wind and heliosphere. The LOCKYER measurements are highly complementary to the Solar Probe Plus and Solar Orbiter measurements and provide detailed empirical descriptions of the coronal plasma at heights where the primary energy and momentum addition occur.

  9. Correlation Length of Energy-Containing Structures in the Base of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Abramenko, V.; Zank, G. P.; Dosch, A. M.; Yurchyshyn, V.

    2013-12-01

    An essential parameter for models of coronal heating and fast solar wind acceleration that relay on the dissipation of MHD turbulence is the characteristic energy-containing length of the squared velocity and magnetic field fluctuations transverse to the mean magnetic field inside a coronal hole (CH) at the base of the corona. The characteristic length scale defines directly the heating rate. Rather surprisingly, almost nothing is known observationally about this critical parameter. Currently, only a very rough estimate of characteristic length was obtained based on the fact that the network spacing is about 30000 km. We attempted estimation of this parameter from observations of photospheric random motions and magnetic fields measured in the photosphere inside coronal holes. We found that the characteristic length scale in the photosphere is about 600-2000 km, which is much smaller than that adopted in previous models. Our results provide a critical input parameter for current models of coronal heating and should yield an improved understanding of fast solar wind acceleration. Fig. 1-- Plotted is the natural logarithm of the correlation function of the transverse velocity fluctuations u^2 versus the spatial lag r for the two CHs. The color code refers to the accumulation time intervals of 2 (blue), 5 (green), 10 (red), and 20 (black) minutes. The values of the Batchelor integral length λ the correlation length ς and the e-folding length L in km are shown. Fig. 2-- Plot of the natural logarithm of the correlation function of magnetic fluctuations b^2 versus the spatial lag r. The insert shows this plot with linear axes.

  10. CHROMOSPHERIC NANOFLARES AS A SOURCE OF CORONAL PLASMA. II. REPEATING NANOFLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, S. J.; Klimchuk, J. A., E-mail: stephen.bradshaw@rice.edu, E-mail: James.A.Klimchuk@nasa.gov

    The million degree plasma of the solar corona must be supplied by the underlying layers of the atmosphere. The mechanism and location of energy release, and the precise source of coronal plasma, remain unresolved. In earlier work, we pursued the idea that warm plasma is supplied to the corona via direct heating of the chromosphere by nanoflares, contrary to the prevailing belief that the corona is heated in situ and the chromosphere is subsequently energized and ablated by thermal conduction. We found that single (low-frequency) chromospheric nanoflares could not explain the observed intensities, Doppler-shifts, and red/blue asymmetries in Fe xiimore » and xiv emission lines. In the present work, we follow up on another suggestion that the corona could be powered by chromospheric nanoflares that repeat on a timescale substantially shorter than the cooling/draining timescale. That is, a single magnetic strand is re-supplied with coronal plasma before the existing plasma has time to cool and drain. We perform a series of hydrodynamic experiments and predict the Fe xii and xiv line intensities, Doppler-shifts, and red/blue asymmetries. We find that our predicted quantities disagree dramatically with observations and fully developed loop structures cannot be created by intermediate- or high-frequency chromospheric nanoflares. We conclude that the mechanism ultimately responsible for producing coronal plasma operates above the chromosphere, but this does not preclude the possibility of a similar mechanism powering the chromosphere, extreme examples of which may be responsible for heating chromospheric plasma to transition region temperatures (e.g., type II spicules)« less

  11. Observable Signatures of Energy Release in Braided Coronal Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontin, D. I.; Janvier, M.; Tiwari, S. K.

    We examine the turbulent relaxation of solar coronal loops containing non-trivial field line braiding. Such field line tangling in the corona has long been postulated in the context of coronal heating models. We focus on the observational signatures of energy release in such braided magnetic structures using MHD simulations and forward modeling tools. The aim is to answer the following question: if energy release occurs in a coronal loop containing braided magnetic flux, should we expect a clearly observable signature in emissions? We demonstrate that the presence of braided magnetic field lines does not guarantee a braided appearance to themore » observed intensities. Observed intensities may—but need not necessarily—reveal the underlying braided nature of the magnetic field, depending on the degree and pattern of the field line tangling within the loop. However, in all cases considered, the evolution of the braided loop is accompanied by localized heating regions as the loop relaxes. Factors that may influence the observational signatures are discussed. Recent high-resolution observations from Hi-C have claimed the first direct evidence of braided magnetic fields in the corona. Here we show that both the Hi-C data and some of our simulations give the appearance of braiding at a range of scales.« less

  12. Empirical scaling laws for coronal heating

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1983-01-01

    The origins and uses of scaling laws in studies of stellar outer atmospheres are reviewed with particular emphasis on the properties of coronal loops. Some evidence is presented for a fundamental structuring of the solar corona and the thermodynamics of scaling laws are discussed. It is found that magnetic field-related scaling laws can be obtained by relating coronal pressure, temperature, and magnetic field strength. Available data validate this method. Some parameters of the theory, however, must be treated as adjustable, and it is considered necessary to examine data from other stars in order to determine the validity of the parameters. Using detailed observational data, the applicability of single loop models is examined.

  13. Gun orientation in self-inflicted craniomaxillofacial gunshot wounds: risk factors associated with fatality.

    PubMed

    Johnson, J; Markiewicz, M R; Bell, R B; Potter, B E; Dierks, E J

    2012-08-01

    The purpose of this study was to evaluate whether orientation of a firearm predicts survival, and to identify risk factors associated with fatality in subjects with self-inflicted craniomaxillofacial gunshot wounds. A retrospective cohort study design was used. The primary predictor variable was orientation of the weapon, defined as in the coronal (lateral) or sagittal (anterior-posterior) trajectory pattern. The primary outcome variable was death for subjects on arrival or during their hospital stay. Other covariates measured include demographic, firearm-related, and psychosocial variables. Risk factors for fatality were identified using multivariate logistic regression. Of the 92 subjects that met study inclusion criteria, 47 (67.2) held the firearm in the coronal position. In the full multivariate model, coronal gun orientation (OR=7.7, 95% CI: 2.0, 30.1, p=0.003) and the absence of a psychiatric diagnosis were associated with an increased risk of fatality (OR=0.1, 95% CI: 0.04, 0.5, p=0.002). Coronal firearm orientation was associated with an increased risk of fatality following self-inflicted craniomaxillofacial gunshot injuries. A patient with a documented psychiatric disorder was not found to be more likely to succumb to this type of injury. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. The Einstein/CFA stellar survey - Overview of the data and interpretation of results

    NASA Technical Reports Server (NTRS)

    Vaiana, G. S.

    1981-01-01

    Results are presented from an extensive survey of stellar X-ray emission, using the Einstein Observatory. Over 140 stars have been detected to date, throughout the H-R diagram, thus showing that soft X-ray emission is the norm rather than the exception for stars in general. This finding is strongly at odds with pre-Einstein expectations based on standard acoustic theories of coronal heating. Typical examples of stellar X-ray detections and an overview of the survey data are presented. In combination with recent results from solar X-ray observations, the new Einstein data argue for the general applicability of magnetic field-related coronal heating mechanisms.

  15. Interaction of minor ions with fast and slow shocks

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1990-01-01

    The coronal slow shock was predicted to exist embedded in large coronal holes at 4 to 10 solar radii. A three-fluid model was used to study the jumps in minor ions propertes across the coronal slow shock. The jump conditions were formulated in the de Hoffmann-Teller frame of reference. The Rankine-Hugoniot solution determines the MHD flow and the magnetic field across the shocks. For each minor ion species, the fluid equations for the conservation of mass, momentum, and energy can be solved to determine the velocity and the temperature of the ions across the shock. A simularity solution was also obtained for heavy ions. The results show that on the downstream side of the coronal slow shock the ion temperatures are nearly proportional to the ion masses for He, O, Si, and Fe in agreement with observed ion temperatures in the inner solar wind. This indicates that the possibly existing coronal slow shock can be responsible for the observed heating of minor ions in the solar wind.

  16. Solar-burst precursors and energy buildup at microwave wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, K.R.; Willson, R.F.

    High-resolution microwave observations (VLA) of heating and magnetic triggering in coronal loops are summarized. Magnetic changes that precede solar eruptions on time scales of tens of minutes involve primarily emerging coronal loops and the interaction of two or more loops. Thermal cyclotron lines were detected in coronal loops, suggesting the presence of hot current sheets that enhance emission from relatively thin layers of enhanced temperature and constant magnetic field. These current sheets may play a role in the excitation of solar bursts. A filament-associated source with a high brightness temperature and steep radiation spectrum occurs above a region of apparentlymore » weak photospheric field. This source might be attributed to currents that enhance coronal magnetic fields. Compact (phi=5 sec) transient sources with lifetimes of 30 to 60 minutes were also detected in regions of apparently weak photospheric field. VLA observations of coronal loops are compared with simultaneous SMM-XRP observations in conclusion.« less

  17. Energy balance and stability. [in stellar coronae

    NASA Technical Reports Server (NTRS)

    Hammer, R.

    1982-01-01

    The energy balance of the outer atmospheres of solarlike stars is discussed. The energy balance of open coronal regions is considered, discussing the construction and characteristics of models of such regions in some detail. In particular, the temperature as a function of height is considered, as are the damping length dependence of the global energy balance in the region between the base of the transition region and the critical point, and the effects of changing the amount of coronal heating, the stellar mass, and the stellar radius. Models of coronal loops are more briefly discussed. The chromosphere is then included in the discussion of the energy balance, and the connection between global energy balance and global thermal stability is addressed. The observed positive correlations between the chromospheric and coronal energy losses and the pressure of the transition region is qualitatively explained.

  18. The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

    NASA Astrophysics Data System (ADS)

    Winebarger, A. R.; Savage, S. L.; Kobayashi, K.; Champey, P. R.; McKenzie, D. E.; Golub, L.; Testa, P.; Reeves, K.; Cheimets, P.; Cirtain, J. W.; Walsh, R. W.; Bradshaw, S. J.; Warren, H.; Mason, H. E.; Del Zanna, G.

    2017-12-01

    For over four decades, X-ray, EUV, and UV spectral observations have been used to measure physical properties of the solar atmosphere. At wavelengths below 10 nm, however, observations of the solar corona with simultaneous spatial and spectral resolution are limited, and not since the late 1970's have spatially resolved solar X-ray spectra been measured. Because the soft X-ray regime is dominated by emission lines formed at high temperatures, X-ray spectroscopic techniques yield insights to fundamental physical processes that are not accessible by any other means. Using a novel implementation of corrective optics, the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) will measure, for the first time, the solar spectrum from 0.6- 2.4 nm with a 6 arcsec resolution over an 8 arcmin slit. The MaGIXS mission will address on of the fundamental problems of coronal physics: the nature of coronal heating. There are several observables in the MaGIXS wavelength range that will constrain the heating frequency and hence discriminate between competing coronal heating theories. In this presentation, we will present the MaGIXS scientific motivation and provide an update on instrument development. MaGIXS will be launched from White Sands Missile Range in the summer of 2019.

  19. A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion

    DOE PAGES

    Sherlock, M.; Brodrick, J. P.; Ridgers, C. P.

    2017-08-08

    Here, we compare the reduced non-local electron transport model developed to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a one-dimensional hohlraum ablation problem. We find that the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced modelmore » reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region.« less

  20. Numerical Simulation of DC Coronal Heating

    NASA Astrophysics Data System (ADS)

    Dahlburg, Russell B.; Einaudi, G.; Taylor, Brian D.; Ugarte-Urra, Ignacio; Warren, Harry; Rappazzo, A. F.; Velli, Marco

    2016-05-01

    Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection, nonlinear thermal conduction and optically thin radiation. The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla. To connect these simulations to observations the computed number densities and temperatures are used to synthesize the intensities expected in emission lines typically observed with the Extreme ultraviolet Imaging Spectrometer (EIS) on Hinode. These intensities are then employed to compute differential emission measure distributions, which are found to be very similar to those derived from observations of solar active regions.

  1. Observational Signatures of Coronal Heating

    NASA Astrophysics Data System (ADS)

    Dahlburg, R. B.; Einaudi, G.; Ugarte-Urra, I.; Warren, H. P.; Rappazzo, A. F.; Velli, M.; Taylor, B.

    2016-12-01

    Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numericalsimulations of the fully compressible three-dimensionalmagnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection,nonlinear thermal conduction and optically thin radiation.The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi-thermal, where highly dynamical hotter and cooler plasma strands arescattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla.To connect these simulations to observations the computed numberdensities and temperatures are used to synthesize the intensities expected inemission lines typically observed with the Extreme ultraviolet Imaging Spectrometer(EIS) on Hinode. These intensities are then employed to compute differentialemission measure distributions, which are found to be very similar to those derivedfrom observations of solar active regions.

  2. HOW DID A MAJOR CONFINED FLARE OCCUR IN SUPER SOLAR ACTIVE REGION 12192?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Chaowei; Feng, Xueshang; Wu, S. T.

    We study the physical mechanism of a major X-class solar flare that occurred in the super NOAA active region (AR) 12192 using data-driven numerical magnetohydrodynamic (MHD) modeling complemented with observations. With the evolving magnetic fields observed at the solar surface as bottom boundary input, we drive an MHD system to evolve self-consistently in correspondence with the realistic coronal evolution. During a two-day time interval, the modeled coronal field has been slowly stressed by the photospheric field evolution, which gradually created a large-scale coronal current sheet, i.e., a narrow layer with intense current, in the core of the AR. The currentmore » layer was successively enhanced until it became so thin that a tether-cutting reconnection between the sheared magnetic arcades was set in, which led to a flare. The modeled reconnecting field lines and their footpoints match well the observed hot flaring loops and the flare ribbons, respectively, suggesting that the model has successfully “reproduced” the macroscopic magnetic process of the flare. In particular, with simulation, we explained why this event is a confined eruption—the consequence of the reconnection is a shared arcade instead of a newly formed flux rope. We also found a much weaker magnetic implosion effect compared to many other X-class flares.« less

  3. Joint observations of solar corona in space projects ARKA and KORTES

    NASA Astrophysics Data System (ADS)

    Vishnyakov, Eugene A.; Bogachev, Sergey A.; Kirichenko, Alexey S.; Reva, Anton A.; Loboda, Ivan P.; Malyshev, Ilya V.; Ulyanov, Artem S.; Dyatkov, Sergey Yu.; Erkhova, Nataliya F.; Pertsov, Andrei A.; Kuzin, Sergey V.

    2017-05-01

    ARKA and KORTES are two upcoming solar space missions in extreme ultraviolet and X-ray wavebands. KORTES is a sun-oriented mission designed for the Russian segment of International Space Station. KORTES consists of several imaging and spectroscopic instruments that will observe the solar corona in a number of wavebands, covering EUV and X-ray ranges. The surveillance strategy of KORTES is to cover a wide range of observations including simultaneous imaging, spectroscopic and polarization measurements. ARKA is a small satellite solar mission intended to take highresolution images of the Sun at the extreme ultraviolet wavelengths. ARKA will be equipped with two high-resolution EUV telescopes designed to collect images of the Sun with approximately 150 km spatial resolution in the field of view of about 10'×10'. The scientific results of the mission may have a significant impact on the theory of coronal heating and may help to clarify the physics of small-scale solar structures and phenomena including oscillations of fine coronal structures and the physics of micro- and nanoflares.

  4. Role of Magnetic Reconnection in Heating Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Hammoud, M. M.; El Eid, M.; Darwish, M.; Dayeh, M. A.

    2017-12-01

    The description of plasma in the context of a fluid model reveals the important phenomenon of magnetic reconnection (MGR). This process is thought to be the cause of particle heating and acceleration in various astrophysical phenomena. Examples are geomagnetic storms, solar flares, or heating the solar corona, which is the focus of the present contribution. The magnetohydrodynamic approach (MHD) provides a basic description of MGR. However, the simulation of this process is rather challenging. Although it is not yet established whether waves or reconnection play the dominant role in heating the solar atmosphere, the present goal is to examine the tremendous increase of the temperature between the solar chromosphere and the corona in a very narrow transition region. Since we are dealing with very-high temperature plasma, the modeling of such heating process seems to require a two-fluid description consisting of ions and electrons. This treatment is an extension of the one-fluid model of resistive MHD that has been recently developed by [Hammoud et al., 2017] using the modern numerical openfoam toolbox. In this work, we outline the two-fluid approach using coronal conditions, show evidence of MGR in the two-fluid description, and investigate the temperature increase as a result of this MGR process.

  5. Self-consistent models for Coulomb-heated X-ray pulsar atmospheres

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Kirk, J. G.; Galloway, D. J.; Meszaros, P.

    1984-01-01

    Calculations of accreting magnetized neutron star atmospheres heated by the gradual deceleration of Protons via Coulomb collisions are presented. Self consistent determinations of the temperature and density structure for different accretion rates are made by assuming hydrostatic equilibrium and energy balance, coupled with radiative transfer. The full radiative transfer in two polarizations, using magnetic cross sections but with cyclotron resonance effects treated approximately, is carried out in the inhomogeneous atmospheres. Previously announced in STAR as N84-12012

  6. On the Role of Interchange Reconnection in the Generation of the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Edmondson, J. K.

    2012-11-01

    The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.

  7. CAN LARGE TIME DELAYS OBSERVED IN LIGHT CURVES OF CORONAL LOOPS BE EXPLAINED IN IMPULSIVE HEATING?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lionello, Roberto; Linker, Jon A.; Mikić, Zoran

    The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower temperatures. The delay times between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. The time delays between channels for an active region exhibit a wide range of values. The maximum time delay in each channel pair can be quite large, i.e., >5000 s. These large time delays make-up 3%–26% (depending on the channel pair) of the pixels where a trustworthy, positive time delaymore » is measured. It has been suggested that these time delays can be explained by simple impulsive heating, i.e., a short burst of energy that heats the plasma to a high temperature, after which the plasma is allowed to cool through radiation and conduction back to its original state. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in two of the channel pairs and that the majority of the large time delays can only be explained by long, expanding loops with photospheric abundances. Additional observations may rule out these simulations as an explanation for the long time delays. We suggest that either the time delays found in this manner may not be representative of real loop evolution, or that the impulsive heating and cooling scenario may be too simple to explain the observations, and other potential heating scenarios must be explored.« less

  8. Coronal Heating, Spicules, and Solar-B

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Porter, Jason; Hathaway, David; Yamauchi, Yohei

    2003-01-01

    Falconer et al. investigated the heating of the quiet corona by measuring the increase of coronal luminosity with the amount of the magnetic flux in the underlying network at solar minimum when there were no active regions on the face of the Sun. The coronal luminosity was measured from Fe IX/X - Fe XII pairs of coronal images from SOHO/EIT, under the assumption that practically all of the coronal luminosity in these very quiet regions came from plasma in the temperature range 0.9 x 10(exp 6) K is less than or equal to T is less than or equal to 1.3 x 10(exp 6) K. The network magnetic flux content was measured from SOHO/MDI magnetograms. It was found that luminosity of the corona in these quiet regions increased roughly in proportion to the square root of the magnetic flux content of the network and roughly in proportion to the length of the perimeter of the network flux clumps. From 1) this result; 2) the observed occurrence of many fine-scale explosive events (e.g., spicules) at the edges of network flux clumps; and 3) a demonstration that it is energetically feasible for the heating of the corona in quiet regions to be driven by explosions of granule-sized sheared-core magnetic bipoles embedded in the edges of the network flux clumps, Falconer et al. infer that in quiet regions that are not influenced by active regions the corona is mainly heated by such magnetic activity in the edges of the network flux clumps. From their observational results together with their feasibility analysis, Falconer et al. predict that 1) At the edges of the network flux clumps there are many transient sheared core bipoles of the size and lifetime of granules and having transverse field strengths greater than approx. 100 G; 2) Approx. 30 of these bipoles are present per supergranule; and 3) Most spicules are produced by explosions of these bipoles. The photospheric vector magnetograms, chromospheric filtergrams, and EUV spectra from Solar-B are expected to have sufficient sensitivity, spatial resolution, and cadence to test these predictions. The Falconer et al. (2003) inferred mixed-polarity magnetic flux at the base of spicules is compatible with the observed magnetic structure of Ha macrospicules recently found by Yamuchi et al. (2003).

  9. Magnetic structure of sites of braiding in Hi-C active region

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanjiv Kumar; Alexander, Caroline; Winebarger, Amy R.; Moore, Ronald L.

    2014-06-01

    High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood.To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.For this work, SKT and CEA were supported by an appointment to the NASA Postdoctoral Program at the NASA Marshall Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA, and AW and RLM were supported by funding from the Living With a Star Targeted Research and Technology Program of the Heliophysics Division of NASA's Science Mission Directorate.

  10. Measurements of coronal Faraday rotation at 4.6 R {sub ☉}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kooi, Jason E.; Fischer, Patrick D.; Buffo, Jacob J.

    2014-03-20

    Many competing models for the coronal heating and acceleration mechanisms of the high-speed solar wind depend on the solar magnetic field and plasma structure in the corona within heliocentric distances of 5 R {sub ☉}. We report on sensitive Very Large Array (VLA) full-polarization observations made in 2011 August, at 5.0 and 6.1 GHz (each with a bandwidth of 128 MHz) of the radio galaxy 3C 228 through the solar corona at heliocentric distances of 4.6-5.0 R {sub ☉}. Observations at 5.0 GHz permit measurements deeper in the corona than previous VLA observations at 1.4 and 1.7 GHz. These Faradaymore » rotation observations provide unique information on the magnetic field in this region of the corona. The measured Faraday rotation on this day was lower than our a priori expectations, but we have successfully modeled the measurement in terms of observed properties of the corona on the day of observation. Our data on 3C 228 provide two lines of sight (separated by 46'', 33,000 km in the corona). We detected three periods during which there appeared to be a difference in the Faraday rotation measure between these two closely spaced lines of sight. These measurements (termed differential Faraday rotation) yield an estimate of 2.6-4.1 GA for coronal currents. Our data also allow us to impose upper limits on rotation measure fluctuations caused by coronal waves; the observed upper limits were 3.3 and 6.4 rad m{sup –2} along the two lines of sight. The implications of these results for Joule heating and wave heating are briefly discussed.« less

  11. Origin and Ion Charge State Evolution of Solar Wind Transients during 4 - 7 August 2011

    NASA Astrophysics Data System (ADS)

    Rodkin, D.; Goryaev, F.; Pagano, P.; Gibb, G.; Slemzin, V.; Shugay, Y.; Veselovsky, I.; Mackay, D. H.

    2017-07-01

    We present a study of the complex event consisting of several solar wind transients detected by the Advanced Composition Explorer (ACE) on 4 - 7 August 2011, which caused a geomagnetic storm with Dst=-110 nT. The supposed coronal sources, three flares and coronal mass ejections (CMEs), occurred on 2 - 4 August 2011 in active region (AR) 11261. To investigate the solar origin and formation of these transients, we study the kinematic and thermodynamic properties of the expanding coronal structures using the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic field maps were used as the input data for the 3D magnetohydrodynamic (MHD) model to describe the flux rope ejection (Pagano, Mackay, and Poedts, 2013b). We characterize the early phase of the flux rope ejection in the corona, where the usual three-component CME structure formed. The flux rope was ejected with a speed of about 200 km s^{-1} to the height of 0.25 R_{⊙}. The kinematics of the modeled CME front agrees well with the Solar Terrestrial Relations Observatory (STEREO) EUV measurements. Using the results of the plasma diagnostics and MHD modeling, we calculate the ion charge ratios of carbon and oxygen as well as the mean charge state of iron ions of the 2 August 2011 CME, taking into account the processes of heating, cooling, expansion, ionization, and recombination of the moving plasma in the corona up to the frozen-in region. We estimate a probable heating rate of the CME plasma in the low corona by matching the calculated ion composition parameters of the CME with those measured in situ for the solar wind transients. We also consider the similarities and discrepancies between the results of the MHD simulation and the observations.

  12. Creation of current filaments in the solar corona

    NASA Technical Reports Server (NTRS)

    Mikic, Z.; Schnack, D. D.; Van Hoven, G.

    1989-01-01

    It has been suggested that the solar corona is heated by the dissipation of electric currents. The low value of the resistivity requires the magnetic field to have structure at very small length scales if this mechanism is to work. In this paper it is demonstrated that the coronal magnetic field acquires small-scale structure through the braiding produced by smooth, randomly phased, photospheric flows. The current density develops a filamentary structure and grows exponentially in time. Nonlinear processes in the ideal magnetohydrodynamic equations produce a cascade effect, in which the structure introduced by the flow at large length scales is transferred to smaller scales. If this process continues down to the resistive dissipation length scale, it would provide an effective mechanism for coronal heating.

  13. Stellar coronae at the end of the main sequence - A ROSAT survey of the late M dwarfs

    NASA Technical Reports Server (NTRS)

    Fleming, Thomas A.; Giampapa, Mark S.; Schmitt, J. H. M. M.; Bookbinder, Jay A.

    1993-01-01

    We present X-ray data, both detections and upper limits, from the ROSAT all-sky survey for most known M dwarfs later than type M5, as well as from selected ROSAT pointed observations of some of these stars. We compare these data with similar data for early M dwarfs in an attempt to probe the nature of the magnetic dynamo and coronal heating mechanism for the very late M dwarfs, which are presumably totally convective. Our results indicate that late M dwarfs can have coronae which are just as active as those for the early M dwarfs and that coronal heating efficiency for 'saturated' stars does not drop at spectral type M6.

  14. Stellar coronae at the end of the main sequence: A Rosat survey of the late M dwarfs

    NASA Technical Reports Server (NTRS)

    Fleming, T. A.; Giampapa, M. S.; Schmitt, J. H. M. M.; Bookbinder, J. A.

    1993-01-01

    X-ray data, both detections and upper limits, from the Rosat all sky survey for most known M dwarfs later than type M5 are presented. Selected Rosat pointed observations of some of these stars are included. These data are compared to similar data for early M dwarfs in an attempt to probe the nature of the magnetic dynamo and coronal heating mechanism for the very late M dwarfs, which are presumably totally convective. The results indicate that late M dwarfs can have coronae which are just as active as those for the early M dwarfs and that coronal heating efficiency for 'saturated' stars does not drop at spectral type M6.

  15. The RS CVn Binary HD 155555: A Comparative Study of the Atmospheres for the Two Component Stars

    NASA Technical Reports Server (NTRS)

    Airapetian, V. S.; Dempsey, R. C.

    1997-01-01

    We present GHRS/HST observations of the RS CVn binary system HD 155555. Several key UV emission lines (Fe XXI, Si IV, O V, C IV) have been analyzed to provide information about the heating rate throughout the atmosphere from the chromosphere to the corona. We show that both the G and K components reveal features of a chromosphere, transition region and corona. The emission measure distribution as a function of temperature for both components is derived and compared with the RS Cvn system, HR 1099, and the Sun. The transition region and coronal lines of both stars show nonthermal broadenings of approx. 20-30 km/s. Possible physical implications for coronal heating mechanisms are discussed.

  16. Evolution of Fine-scale Penumbral Magnetic Structure and Formation of Penumbral Jets

    NASA Astrophysics Data System (ADS)

    Tiwari, S. K.; Moore, R. L.; Rempel, M.; Winebarger, A. R.

    2015-12-01

    Sunspot penumbra consists of spines (more vertical field) and penumbral filaments (interspines). Spines are outward extension of umbra. Penumbral filaments are recently found, both in observations and magnetohydrodynamic (MHD) simulations, to be magnetized stretched granule-like convective cells, with strong upflows near the head that continues along the central axis with weakening strength of the flow. Strong downflows are found at the tails of filaments and weak downflows along the sides of it. These lateral downflows often contain opposite polarity magnetic field to that of spines; most strongly near the heads of filaments. In spite of this advancement in understanding of small-scale structure of sunspot penumbra, how the filaments and spines evolve and interact remains uncertain. Penumbral jets, bright, transient features, seen in the chromosphere, are one of several dynamic events in sunspot penumbra. It has been proposed that these penumbral microjets result from component (acute angle) reconnection of the magnetic field in spines with that in interspines and could contribute to transition-region and coronal heating above sunspots. In a recent investigation, it was proposed that the jets form as a result of reconnection between the opposite polarity field at edges of filaments with spine field, and it was found that these jets do not significantly directly heat the corona above sunspots. We discuss how the proposed formation of penumbral jets is integral to the formation mechanism of penumbral filaments and spines, and may explain why penumbral jets are few and far between. We also point out that the generation of the penumbral jets could indirectly drive coronal heating via generation of MHD waves or braiding of the magnetic field.

  17. Repeated Structures Found After the Solar Maximum in the Butterfly Diagrams of Coronal Holes

    NASA Astrophysics Data System (ADS)

    Hofer, M. Y.; Storini, M.

    2003-09-01

    The influence of the solar cycle evolution on the coronal hole space-time distribution is well known, for polar as well as for equatorial isolated sources of high speed solar wind. Among them the long-lived coronal holes occurrence from the sunspot cycle 21 on is investigated, using the coronal hole catalogue based on HeI (1083 nm) observations (Sanchez-Ibarra and Barraza-Paredes). In at least these two solar cycles (n. 21 and n. 22) a similar structure in the latitude-time diagram of coronal holes is found. The area occurs shortly after the solar maximum at around ~35° heliolatitude and consists of over several Carrington Rotations stable coronal holes (>5 Carr. Rot.s). The diagonal disappears 2-3 years later at the helioequator. Furthermore, the analysis results in a close relation between long-lived isolated coronal holes and the soft X-class flares.

  18. HiRISE/NEOCE: an ESA M5 formation flying proposed mission combining high resolution and coronagraphy for ultimate observations of the chromosphere, corona and interface

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Von Fay-Siebenburgen Erdélyi, Robert

    2016-07-01

    The global understanding of the solar environment through the magnetic field emergence and dissipation, and its influence on Earth, is at the centre of the four major thematics addressed by HiRISE/NEOCE (High Resolution Imaging and Spectroscopy Explorer/New Externally Occulted Coronagraph Experiment). They are interlinked and also complementary: the internal structure of the Sun determines the surface activity and dynamics that trigger magnetic field structuring which evolution, variation and dissipation will, in turn, explain the coronal heating onset and the major energy releases that feed the influence of the Sun on Earth. The 4 major themes of HiRISE/NEOCE are: - fine structure of the chromosphere-corona interface by 2D spectroscopy in FUV at very high resolution; - coronal heating roots in inner corona by ultimate externally-occulted coronagraphy; - resolved and global helioseismology thanks to continuity and stability of observing at L1 Lagrange point; - solar variability and space climate with a global comprehensive view of UV variability as well. Recent missions have shown the definite role of waves and of the magnetic field deep in the inner corona, at the chromosphere-corona interface, where dramatic changes occur. The dynamics of the chromosphere and corona is controlled by the emerging magnetic field, guided by the coronal magnetic field. Accordingly, the direct measurement of the chromospheric and coronal magnetic fields is of prime importance. This is implemented in HiRISE/NEOCE, to be proposed for ESA M5 ideally placed at the L1 Lagrangian point, providing FUV imaging and spectro-imaging, EUV and XUV imaging and spectroscopy, and ultimate coronagraphy by a remote external occulter (two satellites in formation flying 375 m apart minimizing scattered light) allowing to characterize temperature, densities and velocities up to the solar upper chromosphere, transition zone and inner corona with, in particular, 2D very high resolution multi-spectral imaging-spectroscopy and direct coronal magnetic field measurement: a unique set of tools to understand the structuration and onset of coronal heating. We give a detailed account of the major scientific objectives, and present the ESA M5 proposed mission profile and model payload (in particular of the SuperASPIICS package of visible, NIR and UV, Lyman-Alpha and OVI, coronagraphs).

  19. Solar Coronal Loop Dynamics Near the Null Point Above Active Region NOAA 2666

    NASA Astrophysics Data System (ADS)

    Filippov, B.

    2018-06-01

    We analyse observations of a saddle-like structure in the corona above the western limb of the Sun on 2017 July 18. The structure was clearly outlined by coronal loops with typical coronal temperature no more than 1 MK. The dynamics of loops showed convergence towards the centre of the saddle in the vertical direction and divergence in the horizontal direction. The event is a clear example of smooth coronal magnetic field reconnection. No heating manifestations in the reconnection region or magnetically connected areas were observed. Potential magnetic field calculations, which use as the boundary condition the SDO/HMI magnetogram taken on July 14, showed the presence of a null point at the height of 122 arcsec above the photosphere just at the centre of the saddle structure. The shape of field lines fits the fan-spine magnetic configuration above NOAA 2666.

  20. The Role of Magnetic Reconnection in Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro; DeVore, C. R.

    2008-01-01

    The central challenge in solar/heliospheric physics is to understand how the emergence and transport of magnetic flux at the photosphere drives the structure and dynamics that we observe in the corona and heliosphere. This presentation focuses on the role of magnetic reconnection in determining solar/heliospheric activity. We demonstrate that two generic properties of the photospheric magnetic and velocity fields are responsible for the ubiquitous reconnection in the corona. First, the photospheric velocities are complex, which leads to the injection of energy and helicity into the coronal magnetic fields and to the efficient, formation of small-scale structure. Second, the flux distribution at the photosphere is multi-polar, which implies that topological discontinuities and, consequently, current sheets, must be present in the coronal magnetic field. We: present numerical simulations showing that photospherically-driven reconnection is responsible for the heating and dynamics of coronal plasma, and for the topology of the coronal/heliospheric magnetic field.

  1. Observational features of equatorial coronal hole jets

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Bothmer, V.; Patsourakos, S.; Zimbardo, G.

    2010-03-01

    Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet events are selected by requiring at least some visibility in both COR1 and EUVI instruments. We report 15 jet events, and we discuss their main features. For one event, the uplift velocity has been determined as about 200 km s-1, while the deceleration rate appears to be about 0.11 km s-2, less than solar gravity. The average jet visibility time is about 30 min, consistent with jet observed in polar regions. On the basis of the present dataset, we provisionally conclude that there are not substantial physical differences between polar and equatorial coronal hole jets.

  2. Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be Lowered (Postprint)

    DTIC Science & Technology

    2012-03-01

    understood simply from differences in the areas of the coronal holes , as opposed to differences in the surface fields within them. In this study, we...invoke smaller source surface radii in the potential-field source-surface (PFSS) model to construct a consistent picture of the observed coronal holes ...that the values of ≈1.9 R and ≈1.8 R for the cycles 22 and 23 minimum periods, respectively, produce the best results. The larger coronal holes

  3. FORWARD MODELING OF STANDING KINK MODES IN CORONAL LOOPS. II. APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ding; Doorsselaere, Tom Van, E-mail: DYuan2@uclan.ac.uk

    2016-04-15

    Magnetohydrodynamic waves are believed to play a significant role in coronal heating, and could be used for remote diagnostics of solar plasma. Both the heating and diagnostic applications rely on a correct inversion (or backward modeling) of the observables into the thermal and magnetic structures of the plasma. However, due to the limited availability of observables, this is an ill-posed issue. Forward modeling is designed to establish a plausible mapping of plasma structuring into observables. In this study, we set up forward models of standing kink modes in coronal loops and simulate optically thin emissions in the extreme ultraviolet bandpasses,more » and then adjust plasma parameters and viewing angles to match three events of transverse loop oscillations observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We demonstrate that forward models could be effectively used to identify the oscillation overtone and polarization, to reproduce the general profile of oscillation amplitude and phase, and to predict multiple harmonic periodicities in the associated emission intensity and loop width variation.« less

  4. 75th Anniversary of `Existence of Electromagnetic-Hydrodynamic Waves'

    NASA Astrophysics Data System (ADS)

    Russell, Alexander J. B.

    2018-05-01

    We have recently passed the 75th anniversary of one of the most important results in solar and space physics: Hannes Alfvén's discovery of Alfvén waves and the Alfvén speed. To celebrate the anniversary, this article recounts some major episodes in the history of magnetohydrodynamic (MHD) waves. Following an initially cool reception, Alfvén's ideas were propelled into the spotlight by Fermi's work on cosmic rays, the new mystery of coronal heating, and, as scientific perception of interplanetary space shifted dramatically and the space race started, detection of Alfvén waves in the solar wind. From then on, interest in MHD waves boomed, laying the foundations for modern remote observations of MHD waves in the Sun, coronal seismology, and some of today's leading theories of coronal heating and solar wind acceleration. In 1970, Alfvén received the Nobel Prize for his work in MHD, including these discoveries. The article concludes with some reflection about what the history implies about the way we do science, especially the advantages and pitfalls of idealised mathematical models.

  5. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    NASA Technical Reports Server (NTRS)

    Tiwari, Sanjiv K.; Alexander, Caroline E.; Winebarger, Amy R.; Moore, Ronald L.

    2014-01-01

    Hi-C: first observational evidence of field line braiding in the AR corona; NLFFF extrapolations support. Flux emergence and/or cancellation in the coronal braided region generate large stresses and tension in the coronal field loops which is released as heat in the corona. The field in these sub-regions are highly sheared and have apparent high speed plasma flows, therefore, the contribution from shearing flows to power the coronal and transition region heating can not be ruled out! The spatial resolution of Hi-­C is five times better than AIA. The cadence of Hi-C is 2.5 - 6 times better than AIA. The 193 Å was selected because of the strong emission line of Fe XII (peak formation temperature of 1.5 MK). Hi-­C collected data for 345 s @ 5.4 s cadence. The Hi-C target region was NOAA AR 11520; 11 July 2012, 18:51-18:57 UT. NLFFF extrapolation confirms the braided structure, and free magnetic energy estimates in the given volume.

  6. Flow properties of the solar wind obtained from white light data and a two-fluid model

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia Rifai; Esser, Ruth; Guhathakurta, Madhulika; Fisher, Richard

    1994-01-01

    The flow properties of the solar wind from 1 R(sub s) to 1 AU were obtained using a two fluid model constrained by density and scale height temperatures derived from white light observations, as well as knowledge of the electron temperature in coronal holes. The observations were obtained with the white light coronographs on SPARTAN 201-1 and at Mauna Loa (Hawaii), in a north polar coronal hole from 1.16 to 5.5 R(sub s) on 11 Apr. 1993. By specifying the density, temperature, Alfven wave velocity amplitude and heating function at the coronal base, it was found that the model parameters fit well the constraints of the empirical density profiles and temperatures. The optimal range of the input parameters was found to yield a higher proton temperature than electron temperature in the inner corona. The results indicate that no preferential heating of the protons at larger distances is needed to produce higher proton than electron temperatures at 1 AU, as observed in the high speed solar wind.

  7. Solar off-limb line widths: Alfvén waves, ion-cyclotron waves, and preferential heating

    NASA Astrophysics Data System (ADS)

    Dolla, L.; Solomon, J.

    2008-05-01

    Context: Alfvén waves and ion-cyclotron absorption of high-frequency waves are frequently brought into models devoted to coronal heating and fast solar-wind acceleration. Signatures of ion-cyclotron resonance have already been observed in situ in the solar wind (HELIOS spacecrafts) and, recently, in the upper corona (UVCS/SOHO remote-sensing results). Aims: We propose a method to constrain both the Alfvén wave amplitude and the preferential heating induced by ion-cyclotron resonance, above a partially developed polar coronal hole observed with the SUMER/SOHO spectrometer. Methods: The instrumental stray light contribution is first substracted from the spectra. By supposing that the non-thermal velocity is related to the Alfvén wave amplitude, it is constrained through a density diagnostic and the gradient of the width of the Mg X 625 Å line. The temperatures of several coronal ions, as functions of the distance above the limb, are then determined by substracting the non-thermal component to the observed line widths. Results: The effect of stray light explains the apparent decrease with height in the width of several spectral lines, this decrease usually starting about 0.1-0.2 R_⊙ above the limb. This result rules out any direct evidence of damping of the Alfvén waves, often suggested by other authors. We also find that the ions with the smallest charge-to-mass ratios are the hottest ones at a fixed altitude and that they are subject to a stronger heating, as compared to the others, between 57´´ and 102´´ above the limb. This constitutes a serious clue to ion-cyclotron preferential heating.

  8. Long-period Intensity Pulsations in Coronal Loops Explained by Thermal Non-equilibrium Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froment, C.; Auchère, F.; Bocchialini, K.

    In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit us to strongly constrain heating scenarios. While TNE is currently the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with the Solar and Heliospheric Observatory /EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with themore » Solar Dynamics Observatory /Atmospheric Imaging Assembly (AIA) show strong evidence for TNE in warm loops. In this paper, a realistic loop geometry from linear force-free field (LFFF) extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that, for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyze in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with those deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This consequently provides important information on the heating localization and timescale for these loops.« less

  9. The Relationship Between X-Ray Radiance and Magnetic Flux

    NASA Astrophysics Data System (ADS)

    Pevtsov, Alexei A.; Fisher, George H.; Acton, Loren W.; Longcope, Dana W.; Johns-Krull, Christopher M.; Kankelborg, Charles C.; Metcalf, Thomas R.

    2003-12-01

    We use soft X-ray and magnetic field observations of the Sun (quiet Sun, X-ray bright points, active regions, and integrated solar disk) and active stars (dwarf and pre-main-sequence) to study the relationship between total unsigned magnetic flux, Φ, and X-ray spectral radiance, LX. We find that Φ and LX exhibit a very nearly linear relationship over 12 orders of magnitude, albeit with significant levels of scatter. This suggests a universal relationship between magnetic flux and the power dissipated through coronal heating. If the relationship can be assumed linear, it is consistent with an average volumetric heating rate Q~B/L, where B is the average field strength along a closed field line and L is its length between footpoints. The Φ-LX relationship also indicates that X-rays provide a useful proxy for the magnetic flux on stars when magnetic measurements are unavailable.

  10. New techniques for the characterisation of dynamical phenomena in solar coronal images

    NASA Astrophysics Data System (ADS)

    Robbrecht, E.

    2007-02-01

    During a total solar eclipse, a narrow strip of the Earth's surface is shielded completely by the Moon from the disk of the Sun. In this strip, the corona appears crown-like around the shade of the Moon. It was uncertain until the middle of the 20th century whether the corona was a solar phenomenon or if it was related to the Moon or whether it represented an artifact produced by the Earth's atmosphere. The answer to this question was provided by Grotrian (1939) and Edlèn (1942). Based on studies of iron emission lines, they suggested that the surface of the Sun is surrounded by a hot tenuous gas having a temperature of million degrees Kelvin and thus in a state of high ionization. This discovery was a result from spectroscopy, a field of research which started in 1666 with Sir Isaac Newton's observations of sunlight, dispersed by a prism. It is now clear that the hot solar corona is made of a low density plasma, highly structured by the magnetic field on length scales ranging from the Sun's diameter to the limit of angular resolution (e.g. Démoulin and Klein 2000). The need to resolve and study the corona down to such scales has determined a vigorous scientific and technological impulse toward the development of solar Ultraviolet (UV) and X-ray telescopes with high spatial and temporal resolution. With the advent of the satellite SOHO (Solar and Heliospheric Observatory, see chapter 1), the picture of a quiet corona was definitely sent to the past. EUV (Extreme UV) image sequences of the lower solar corona revealed a finely structured medium constantly agitated by a wide variety of transients (e.g. Harrison 1998). Active regions consisting of large magnetic loops with enhanced temperature and density are observed, as well as "quiet" areas, coronal holes and numerous structures of different scales such as plumes, jets, spicules, X-ray bright points, blinkers, all structured by magnetic fields. Launched in 1998, the Transition Region And Coronal Explorer (TRACE) was an important step on the way to subarcsecond telescopes. It allows a spatial resolution of 1" in the EUV and UV bands and, simultaneously, a temporal resolution of the order of a few seconds. Coronal physics studies are dominated by two major and interlinked problems: coronal heating and solar wind acceleration. Above the chromosphere there is a thin transition layer in which the temperature suddenly increases and density drops. How can the temperature of the solar corona be three orders of magnitude higher than the temperature of the photosphere? In order for this huge temperature gradient to be stationary, non-thermal energy must be transported from below the photosphere towards the chromosphere and corona and converted into heat to balance the radiative and conductive losses. This puzzle of origin, transport and conversion of energy is referred to as the "coronal heating problem". Due to its fundamental role in the structuring of the corona, the magnetic field is supposed to play an important role in the heating. In this dissertation we describe two aspects of solar coronal dynamics: waves in coronal loops (Part I) and coronal mass ejections (Part II). We investigate the influence of (semi-) automated techniques on solar coronal research. This is a timely discussion since the observation of solar phenomena is transitioning from manual detection to "Solar Image Processing". Our results are mainly based on images from the Extreme UV Imaging Telescope (EIT) and the Large Angle and Spectrometric Coronagraph (LASCO), two instruments onboard the satellite SOHO (Solar and Heliospheric Observatory) of which we recently celebrated its 11th anniversary. The high quality of the images together with the long timespan created a valuable database for solar physics research. Part I reports on the first detection of slow magnetoacoustic waves in transequatorial coronal loops observed in high cadence image sequences simultaneously produced by EIT and TRACE (Transition Region And Coronal Explorer). Ten years of EUV observations made it clear that these disturbances are a widespread phenomenon in active region loops. The existence of these waves in the corona had been predicted by the theory of magnetohydrodynamics (MHD), which we revise briefly. Just like in helioseismology, coronal seismology uses observations of oscillations to derive physical parameters which are not directly measurable, such as the Alfvén speed or the magnetic field strength. The comparison with helioseismology does not fully hold in the sense that the dense photosphere does not allow any seeing inside. Instead, for the corona we do have direct observations, but because of its optical thinness these observations leave space for many interpretations. At the end of the forties, it was suggested that the corona could be heated by the dissipation of acoustic waves (sound waves) driven by the p-mode oscillations, generated by turbulence in the convection zone. While they travel upwards, these waves form shocks and heat the plasma by viscous dissipation. Nowadays, they are believed to be only important for lower chromospheric heating. By the time the upper chromosphere is reached, the acoustic waves are heavily damped and what rests is reflected by the steep temperature and density gradients in the transition zone. As such, they cannot deposit enough energy in the corona to sufficiently heat it to the observed temperatures. Dissipation of magnetic energy by Alfvén waves or directly by the reconnection process in current sheets are considered to be more likely to heat the corona. Part II addresses the question of detecting coronal mass ejections (CMEs) in coronagraphic white light data. The study of CMEs is a rather young (≲ 30 years) field of research. Coronal mass ejections are sudden expulsions of mass and magnetic field from the solar corona into the interplanetary medium. A classical CME carries away some 10^15 g of coronal mass and can liberate energies of 10^23-10^25 J. They are often observed n association with low coronal activity, such as flares and filament eruptions. During the first years of CME observation, it was believed that a flare was a necessary condition for CME occurrence. The widely accepted picture today is that flares and CMEs are both different manifestations of magnetic field restructuring through reconnection (flare) and the expulsion of mass (CME). Up till now, the SOHO mission has been the best mission for CME studies because of the increased resolution, cadence, sensitivity and dynamic range of the LASCO instruments, but also because of the large array of ground-based instruments (Howard 2006). The complexity of the CME-picture grew likewise. The next mission with a coronagraph is the NASA STEREO mission (Solar Terrestrial Relations Observatory), launched on 26 Oct. 2006. In chapter 4 we test the possibility of automatically detecting CMEs in LASCO data. We describe the algorithm CACTus (Computer Aided CME Tracking) and test its validity on a short period of 6 days. In chapter 5 we present our newly constructed CME catalog based on our automated detection scheme. It is the first automatically generated catalog which runs over a complete solar cycle (cycle 23). It required no human interaction, which implies it is totally objective. It includes all transients obeying the observational definition of CME as a "new, discrete, bright, white-light feature in the coronagraph field-of-view moving radially outward" (Hundhausen et al. 1984). As a result, our catalog contains much more events, mostly narrow, than are included in the classical CDAW CME catalog (Yashiro et al. 2004) which is assembled manually. We discuss the CME rate over the solar cycle and present important new statistics on the CACTus CME parameters (size, latitude, speed). CME research has gained an increased interest due to their strong space weather impact. Space weather is defined by the European Space Agency (ESA) 1 as the "conditions on the Sun and in the solar wind, magnetosphere, ionosphere and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health." The significance of space weather lies in its potential impact on man-made technologies on Earth and in space, for example, on satellites and spacecraft, electricity power grids, pipelines, radio and telephone communications and on geophysical exploration. Space weather also has implications for manned space flight, both in Earth orbit and further out into space. Solar activity is the main source of space weather. It is now well established that CMEs are the primary cause of geomagnetic storms and that their associated shocks accelerate high energetic particles. These particles can directly and indirectly influence the operation of spacecraft and affect communication and navigation. In order to protect systems and people that might be at risk from space weather effects, we need to understand the causes of space weather and try to predict its impact on the heliosphere as soon as possible. A growing field in this respect is Solar mage Processing (SIP). It allows continuous monitoring and interpretation of new incoming data. This is not only interesting for space weather forecasting, but it is also needed to be able to handle efficiently the large data flow which is expected from recently launched and future missions. In chapter 6 we revise the current capabilities for automated detection of CMEs and related phenomena.

  11. Self-consistent description of a system of interacting phonons

    NASA Astrophysics Data System (ADS)

    Poluektov, Yu. M.

    2015-11-01

    A proposal for a method of self-consistent description of phonon systems. This method generalizes the Debye model to account for phonon-phonon interaction. The idea of "self-consistent" phonons is introduced; their speed depends on the temperature and is determined by solving a non-linear equation. The Debye energy is also a function of the temperature within the framework of the proposed approach. The thermodynamics of "self-consistent" phonon gas are built. It is shown that at low temperatures the cubic law temperature dependence of specific heat acquires an additional term that is proportional to the seventh power of the temperature. This seems to explain the reason why the cubic law for specific heat is observed only at relatively low temperatures. At high temperatures, the theory predicts a linear deviation with respect to temperature from the Dulong-Petit law, which is observed experimentally. A modification to the melting criteria is considered, to account for the phonon-phonon interaction.

  12. Wave Propagation Around Coronal Structures: Stratification, Buoyancy, Small Scale Formation

    NASA Astrophysics Data System (ADS)

    Tomlinson, S. M.; Rappazzo, F.; Velli, M.

    2017-12-01

    We study the propagation of waves in a coronal medium characterized by stratification and structure in density. temperature and magnetic field. It is well known that average gradients affect the propagation of Alfvén and other MHD waves via reflection, phase mixing, resonant absorption and other coupling phenomena. Here we discuss how the interplay of propagation on inhomogeneous, stratified structures with nonlinear interactions may lead to interesting effects including preferential heating, buoyancy, and plasma acceleration.

  13. Chromospheres of Coronal Stars

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.

    1996-01-01

    We summarize the main results obtained from the analysis of ultraviolet emission line profiles of coronal late-type stars observed with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. The excellent GHRS spectra provide new information on magnetohydrodynamic phenomena in the chromospheres and transition regions of these stars. One exciting new result is the discovery of broad components in the transition region lines of active stars that we believe provide evidence for microflare heating in these stars.

  14. A Magnetic Reconnection Event in the Solar Atmosphere Driven by Relaxation of a Twisted Arch Filament System

    NASA Astrophysics Data System (ADS)

    Huang, Zhenghua; Mou, Chaozhou; Fu, Hui; Deng, Linhua; Li, Bo; Xia, Lidong

    2018-02-01

    We present high-resolution observations of a magnetic reconnection event in the solar atmosphere taken with the New Vacuum Solar Telescope, Atmospheric Imaging Assembly (AIA), and Helioseismic and Magnetic Imager (HMI). The reconnection event occurred between the threads of a twisted arch filament system (AFS) and coronal loops. Our observations reveal that the relaxation of the twisted AFS drives some of its threads to encounter the coronal loops, providing inflows of the reconnection. The reconnection is evidenced by flared X-shape features in the AIA images, a current-sheet-like feature apparently connecting post-reconnection loops in the Hα + 1 Å images, small-scale magnetic cancelation in the HMI magnetograms and flows with speeds of 40–80 km s‑1 along the coronal loops. The post-reconnection coronal loops seen in the AIA 94 Å passband appear to remain bright for a relatively long time, suggesting that they have been heated and/or filled up by dense plasmas previously stored in the AFS threads. Our observations suggest that the twisted magnetic system could release its free magnetic energy into the upper solar atmosphere through reconnection processes. While the plasma pressure in the reconnecting flux tubes are significantly different, the reconfiguration of field lines could result in transferring of mass among them and induce heating therein.

  15. Prominence Bubbles and Plumes: Thermo-magnetic Buoyancy in Coronal Cavity Systems

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Hurlburt, N.

    2009-05-01

    The Hinode/Solar Optical Telescope continues to produce high spatial and temporal resolution images of solar prominences in both the Ca II 396.8 nm H-line and the H-alpha 656.3 nm line. Time series of these images show that many quiescent prominences produce large scale (50 Mm) dark "bubbles" that "inflate" into, and sometimes burst through, the prominence material. In addition, small-scale (2--5 Mm) dark plumes are seen rising into many quiescent prominences. We show typical examples of both phenomena and argue that they originate from the same mechanism: concentrated and heated magnetic flux that rises due to thermal and magnetic buoyancy to equilibrium heights in the prominence/coronal-cavity system. More generally, these bubbles and upflows offer a source of both magnetic flux and mass to the overlying coronal cavity, supporting B.C. Low's theory of CME initiation via steadily increasing magnetic buoyancy breaking through the overlying helmut streamer tension forces. Quiescent prominences are thus seen as the lowermost parts of the larger coronal cavity system, revealing through thermal effects both the cooled downflowing "drainage" from the cavity and the heated upflowing magnetic "plasmoids" supplying the cavity. We compare SOT movies to new 3D compressible MHD simulations that reproduce the dark turbulent plume dynamics to establish the magnetic and thermal character of these buoyancy-driven flows into the corona.

  16. Self-consistent Black Hole Accretion Spectral Models and the Forgotten Role of Coronal Comptonization of Reflection Emission

    NASA Astrophysics Data System (ADS)

    Steiner, James F.; García, Javier A.; Eikmann, Wiebke; McClintock, Jeffrey E.; Brenneman, Laura W.; Dauser, Thomas; Fabian, Andrew C.

    2017-02-01

    Continuum and reflection spectral models have each been widely employed in measuring the spins of accreting black holes. However, the two approaches have not been implemented together in a photon-conserving, self-consistent framework. We develop such a framework using the black hole X-ray binary GX 339-4 as a touchstone source, and we demonstrate three important ramifications. (1) Compton scattering of reflection emission in the corona is routinely ignored, but is an essential consideration given that reflection is linked to the regimes with strongest Comptonization. Properly accounting for this causes the inferred reflection fraction to increase substantially, especially for the hard state. Another important impact of the Comptonization of reflection emission by the corona is the downscattered tail. Downscattering has the potential to mimic the relativistically broadened red wing of the Fe line associated with a spinning black hole. (2) Recent evidence for a reflection component with a harder spectral index than the power-law continuum is naturally explained as Compton-scattered reflection emission. (3) Photon conservation provides an important constraint on the hard state’s accretion rate. For bright hard states, we show that disk truncation to large scales R\\gg {R}{ISCO} is unlikely as this would require accretion rates far in excess of the observed \\dot{M} of the brightest soft states. Our principal conclusion is that when modeling relativistically broadened reflection, spectral models should allow for coronal Compton scattering of the reflection features, and when possible, take advantage of the additional constraining power from linking to the thermal disk component.

  17. Evidence for Nonuniform Heating of Coronal Loops Inferred from Multithread Modeling of TRACE Data

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Nightingale, Richard W.; Alexander, David

    2000-10-01

    The temperature Te(s) and density structure ne(s) of active region loops in EUV observed with TRACE is modeled with a multithread model, synthesized from the summed emission of many loop threads that have a distribution of maximum temperatures and that satisfy the steady state Rosner-Tucker-Vaiana (RTV) scaling law, modified by Serio et al. for gravitational stratification (called RTVSp in the following). In a recent Letter, Reale & Peres demonstrated that this method can explain the almost isothermal appearance of TRACE loops (observed by Lenz et al.) as derived from the filter-ratio method. From model-fitting of the 171 and 195 Å fluxes of 41 loops, which have loop half-lengths in the range of L=4-320 Mm, we find that (1) the EUV loops consist of near-isothermal loop threads with substantially smaller temperature gradients than are predicted by the RTVSp model; (2) the loop base pressure, p0~0.3+/-0.1 dynes cm-2, is independent of the loop length L, and it agrees with the RTVSp model for the shortest loops but exceeds the RTVSp model up to a factor of 35 for the largest loops; and (3) the pressure scale height is consistent with hydrostatic equilibrium for the shortest loops but exceeds the temperature scale height up to a factor of ~3 for the largest loops. The data indicate that cool EUV loops in the temperature range of Te~0.8-1.6 MK cannot be explained with the static steady state RTVSp model in terms of uniform heating but are fully consistent with Serio's model in the case of nonuniform heating (RTVSph), with heating scale heights in the range of sH=17+/-6 Mm. This heating function provides almost uniform heating for small loops (L<~20 Mm), but restricts heating to the footpoints of large loops (L~50-300 Mm).

  18. To BG or not to BG: Background Subtraction for EIT Coronal Loops

    NASA Astrophysics Data System (ADS)

    Beene, J. E.; Schmelz, J. T.

    2003-05-01

    One of the few observational tests for various coronal heating models is to determine the temperature profile along coronal loops. Since loops are such an abundant coronal feature, this method originally seemed quite promising - that the coronal heating problem might actually be solved by determining the temperature as a function of arc length and comparing these observations with predictions made by different models. But there are many instruments currently available to study loops, as well as various techniques used to determine their temperature characteristics. Consequently, there are many different, mostly conflicting temperature results. We chose data for ten coronal loops observed with the Extreme ultraviolet Imaging Telescope (EIT), and chose specific pixels along each loop, as well as corresponding nearby background pixels where the loop emission was not present. Temperature analysis from the 171-to-195 and 195-to-284 angstrom image ratios was then performed on three forms of the data: the original data alone, the original data with a uniform background subtraction, and the original data with a pixel-by-pixel background subtraction. The original results show loops of constant temperature, as other authors have found before us, but the 171-to-195 and 195-to-284 results are significantly different. Background subtraction does not change the constant-temperature result or the value of the temperature itself. This does not mean that loops are isothermal, however, because the background pixels, which are not part of any contiguous structure, also produce a constant-temperature result with the same value as the loop pixels. These results indicate that EIT temperature analysis should not be trusted, and the isothermal loops that result from EIT (and TRACE) analysis may be an artifact of the analysis process. Solar physics research at the University of Memphis is supported by NASA grants NAG5-9783 and NAG5-12096.

  19. MHD Modelling of Coronal Loops: Injection of High-Speed Chromospheric Flows

    NASA Technical Reports Server (NTRS)

    Petralia, A.; Reale, F.; Orlando, S.; Klimchuk, J. A.

    2014-01-01

    Context. Observations reveal a correspondence between chromospheric type II spicules and bright upward-moving fronts in the corona observed in the extreme-ultraviolet (EUV) band. However, theoretical considerations suggest that these flows are probably not the main source of heating in coronal magnetic loops. Aims. We investigate the propagation of high-speed chromospheric flows into coronal magnetic flux tubes and the possible production of emission in the EUV band. Methods. We simulated the propagation of a dense 104 K chromospheric jet upward along a coronal loop by means of a 2D cylindrical MHD model that includes gravity, radiative losses, thermal conduction, and magnetic induction. The jet propagates in a complete atmosphere including the chromosphere and a tenuous cool (approximately 0.8 MK) corona, linked through a steep transition region. In our reference model, the jet initial speed is 70 km per second, its initial density is 10(exp 11) per cubic centimeter, and the ambient uniform magnetic field is 10 G. We also explored other values of jet speed and density in 1D and different magnetic field values in 2D, as well as the jet propagation in a hotter (approximately 1.5 MK) background loop. Results. While the initial speed of the jet does not allow it to reach the loop apex, a hot shock-front develops ahead of it and travels to the other extreme of the loop. The shock front compresses the coronal plasma and heats it to about 10(exp 6) K. As a result, a bright moving front becomes visible in the 171 Angstrom channel of the SDO/AIA mission. This result generally applies to all the other explored cases, except for the propagation in the hotter loop. Conclusions. For a cool, low-density initial coronal loop, the post-shock plasma ahead of upward chromospheric flows might explain at least part of the observed correspondence between type II spicules and EUV emission excess.

  20. Principle of Minimum Energy in Magnetic Reconnection in a Self-organized Critical Model for Solar Flares

    NASA Astrophysics Data System (ADS)

    Farhang, Nastaran; Safari, Hossein; Wheatland, Michael S.

    2018-05-01

    Solar flares are an abrupt release of magnetic energy in the Sun’s atmosphere due to reconnection of the coronal magnetic field. This occurs in response to turbulent flows at the photosphere that twist the coronal field. Similar to earthquakes, solar flares represent the behavior of a complex system, and expectedly their energy distribution follows a power law. We present a statistical model based on the principle of minimum energy in a coronal loop undergoing magnetic reconnection, which is described as an avalanche process. We show that the distribution of peaks for the flaring events in this self-organized critical system is scale-free. The obtained power-law index of 1.84 ± 0.02 for the peaks is in good agreement with satellite observations of soft X-ray flares. The principle of minimum energy can be applied for general avalanche models to describe many other phenomena.

  1. Measuring Elemental Abundances in Impulsive Heating Events with EIS

    NASA Astrophysics Data System (ADS)

    Warren, Harry; Doschek, George A.; Young, Peter

    2015-04-01

    It is well established that elemental abundances vary in the solar atmosphere and that this variation is organized by first ionization potential (FIP). Previous studies have indicated that in the solar corona low FIP elements, such as Fe, Si, and Mg, are enriched relative to high FIP elements, such as H, He, C, N, and O. In this paper we report on measurements of plasma composition made during transient heating events observed at transition region temperatures with the Extreme Ultraviolet Imaging Spectrometer (EIS) on Hinode. During these events the intensities of O IV, V, and VI emission lines are enhanced relative to emission lines from Mg V, VI, and VII and indicate a composition close to that of the photosphere. Differential emission measure calculations show a broad distribution of temperatures in these events. Long-lived coronal structures, in contrast, show an enrichment of low FIP elements and relatively narrow temperature distributions. We conjecture that plasma composition is an important signature of the coronal heating process, with impulsive heating leading to the evaporation of unfractionated material from the lower layers of the solar atmosphere and higher frequency heating leading to the accumulation of low-FIP elements in the corona.

  2. Transition Region Abundance Measurements During Impulsive Heating Events

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.; Brooks, David H.; Doschek, George A.; Feldman, Uri

    2016-06-01

    It is well established that elemental abundances vary in the solar atmosphere and that this variation is organized by first ionization potential (FIP). Previous studies have shown that in the solar corona, low-FIP elements such as Fe, Si, Mg, and Ca, are generally enriched relative to high-FIP elements such as C, N, O, Ar, and Ne. In this paper we report on measurements of plasma composition made during impulsive heating events observed at transition region temperatures with the Extreme Ultraviolet Imaging Spectrometer (EIS) on Hinode. During these events the intensities of O IV, v, and VI emission lines are enhanced relative to emission lines from Mg v, VI, and vii and Si VI and vii, and indicate a composition close to that of the photosphere. Long-lived coronal fan structures, in contrast, show an enrichment of low-FIP elements. We conjecture that the plasma composition is an important signature of the coronal heating process, with impulsive heating leading to the evaporation of unfractionated material from the lower layers of the solar atmosphere and higher-frequency heating leading to long-lived structures and the accumulation of low-FIP elements in the corona.

  3. Theory of many-body radiative heat transfer without the constraint of reciprocity

    NASA Astrophysics Data System (ADS)

    Zhu, Linxiao; Guo, Yu; Fan, Shanhui

    2018-03-01

    Using a self-consistent scattered field approach based on fluctuational electrodynamics, we develop compact formulas for radiative heat transfer in many-body systems without the constraint of reciprocity. The formulas allow for efficient numerical calculation for a system consisting of a large number of bodies, and are in principle exact. As a demonstration, for a nonreciprocal many-body system, we investigate persistent heat current at thermal equilibrium and directional heat transfer when the system is away from thermal equilibrium.

  4. Thermal Properties of A Solar Coronal Cavity Observed with the X-Ray Telescope on Hinode

    NASA Technical Reports Server (NTRS)

    Reeves, Katherine K.; Gibson, Sarah E.; Kucera, Theresa A.; Hudson, Hugh S.; Kano, Ryouhei

    2011-01-01

    Coronal cavities are voids in coronal emission often observed above high latitude filament channels. Sometimes, these cavities have areas of bright X-ray emission in their centers. In this study, we use data from the X-ray Telescope (XRT) on the Hinode satellite to examine the thermal emission properties of a cavity observed during July 2008 that contains bright X-ray emission in its center. Using ratios of XRT filters, we find evidence for elevated temperatures in the cavity center. The area of elevated temperature evolves from a ring-shaped structure at the beginning of the observation, to an elongated structure two days later, finally appearing as a compact round source four days after the initial observation. We use a morphological model to fit the cavity emission, and find that a uniform structure running through the cavity does not fit the observations well. Instead, the observations are reproduced by modeling several short cylindrical cavity "cores" with different parameters on different days. These changing core parameters may be due to some observed activity heating different parts of the cavity core at different times. We find that core temperatures of 1.75 MK, 1.7 MK and 2.0 MK (for July 19, July 21 and July 23, respectively) in the model lead to structures that are consistent with the data, and that line-of-sight effects serve to lower the effective temperature derived from the filter ratio.

  5. Current systems of coronal loops in 3D MHD simulations

    NASA Astrophysics Data System (ADS)

    Warnecke, J.; Chen, F.; Bingert, S.; Peter, H.

    2017-11-01

    Aims: We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down and where they might be justified. Methods: We analyze a three-dimensional (3D) magnetohydrodynamic (MHD) model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux and the horizontal motions at the surface a coronal loop forms self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. Results: We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. This is caused by the inclination of the loop together with the footpoint motion. Around the loop, the currents form a complex non-force-free helical structure. This is directly related to a bipolar current structure at the loop footpoints at the base of the corona and a local reduction of the background magnetic field (I.e., outside the loop) caused by the plasma flow into and along the loop. Furthermore, the locally reduced magnetic pressure in the loop allows the loop to sustain a higher density, which is crucial for the emission in extreme UV. The action of the flow on the magnetic field hosting the loop turns out to also be responsible for the observed squashing of the loop. Conclusions: The complex magnetic field and current system surrounding it can only be modeled in 3D MHD models where the magnetic field has to balance the plasma pressure. A one-dimensional coronal loop model or a force-free extrapolation cannot capture the current system and the complex interaction of the plasma and the magnetic field in the coronal loop, despite the fact that the loop is under low-β conditions.

  6. Mapping the Solar Wind from its Source Region into the Outer Corona

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1998-01-01

    Knowledge of the radial variation of the plasma conditions in the coronal source region of the solar wind is essential to exploring coronal heating and solar wind acceleration mechanisms. The goal of the present proposal is to determine as many plasma parameters in that region as possible by coordinating different observational techniques, such as Interplanetary Scintillation Observations, spectral line intensity observations, polarization brightness measurements and X-ray observations. The inferred plasma parameters are then used to constrain solar wind models.

  7. Ballet of Loops

    NASA Image and Video Library

    2018-06-11

    Giant, bright coronal loops trace out the magnetic field lines above an active region from June 4-6, 2018. The wavelength of extreme ultraviolet light shown here is emitted by ionized iron travelling along the field lines, super-heated to approximately 1 million degrees K. Coronal loops were not seen in this level of detail until the Solar Dynamics Observatory was launched in 2010 and came online, giving solar scientists new data with which to study the Sun and its processes. https://photojournal.jpl.nasa.gov/catalog/PIA22508

  8. Connecting white light to in situ observations of 22 coronal mass ejections from the Sun to 1 AU

    NASA Astrophysics Data System (ADS)

    Moestl, C.; Amla, K.; Farrugia, C. J.; Hall, J. R.; Liewer, P. C.; De Jong, E.; Colaninno, R. C.; Vourlidas, A.; Veronig, A. M.; Rollett, T.; Temmer, M.; Peinhart, V.; Davies, J.; Lugaz, N.; Liu, Y. D.; McEnulty, T.; Luhmann, J. G.; Galvin, A. B.

    2013-12-01

    We study the feasibility of using a Heliospheric Imager (HI) instrument, such as STEREO/HI, for unambiguously connecting remote images to in situ observations of coronal mass ejection (CMEs). Our goal is to develop and test methods to predict CME parameters from heliospheric images, but our dataset can actually be used to benchmark any ICME propagation model. The results are of interest concerning future missions such as Solar Orbiter, or a dedicated space weather mission at the Sun-Earth L5 point (e.g. EASCO mission concept). We compare the predictions for speed and arrival time for 22 CME events (between 2008-2012), each observed remotely by one STEREO spacecraft, to the interplanetary coronal mass ejection (ICME) speed and arrival time observed at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). We use forward modeling for STEREO-COR2, and geometrical models for STEREO-HII, assuming different CME front shapes (Fixed-Phi, Harmonic Mean, Self-similar expansion), and fit them to the CME time-elongation functions with the SolarSoft SATPLOT tool, assuming constant CME speed and direction. The arrival times derived from imaging match the in situ ones +/- 8 hours, and speeds are consistent within +/-300 km/s, including CME apex/flank effects. We find no preference in the predictive capability for any of the 3 geometries used on the full dataset, consisting of front- and backsided, slow and fast CMEs (up to 2700 km/s). We search for new empirical relations between the predicted and observed speeds and arrival times, enhancing the HI predictive capabilities. Additionally, for very fast and back-sided CMEs, strong differences between the results of the HI models arise, consistent with theoretical expectations by Lugaz and Kintner (2013, Solar Physics). This work has received funding from the European Commission FP7 Project COMESEP (263252).

  9. Electron Beam Return-Current Losses in Solar Flares: Initial Comparison of Analytical and Numerical Results

    NASA Technical Reports Server (NTRS)

    Holman, Gordon

    2010-01-01

    Accelerated electrons play an important role in the energetics of solar flares. Understanding the process or processes that accelerate these electrons to high, nonthermal energies also depends on understanding the evolution of these electrons between the acceleration region and the region where they are observed through their hard X-ray or radio emission. Energy losses in the co-spatial electric field that drives the current-neutralizing return current can flatten the electron distribution toward low energies. This in turn flattens the corresponding bremsstrahlung hard X-ray spectrum toward low energies. The lost electron beam energy also enhances heating in the coronal part of the flare loop. Extending earlier work by Knight & Sturrock (1977), Emslie (1980), Diakonov & Somov (1988), and Litvinenko & Somov (1991), I have derived analytical and semi-analytical results for the nonthermal electron distribution function and the self-consistent electric field strength in the presence of a steady-state return-current. I review these results, presented previously at the 2009 SPD Meeting in Boulder, CO, and compare them and computed X-ray spectra with numerical results obtained by Zharkova & Gordovskii (2005, 2006). The phYSical significance of similarities and differences in the results will be emphasized. This work is supported by NASA's Heliophysics Guest Investigator Program and the RHESSI Project.

  10. Shock Formation and Energy Dissipation of Slow Magnetosonic Waves in Coronal Plumes

    NASA Technical Reports Server (NTRS)

    Cuntz, M.; Suess, S. T.

    2003-01-01

    We study the shock formation and energy dissipation of slow magnetosonic waves in coronal plumes. The wave parameters and the spreading function of the plumes as well as the base magnetic field strength are given by empirical constraints mostly from SOHO/UVCS. Our models show that shock formation occurs at low coronal heights, i.e., within 1.3 bun, depending on the model parameters. In addition, following analytical estimates, we show that scale height of energy dissipation by the shocks ranges between 0.15 and 0.45 Rsun. This implies that shock heating by slow magnetosonic waves is relevant at most heights, even though this type of waves is apparently not a solely operating energy supply mechanism.

  11. Theoretical studies of the physics of the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1992-01-01

    Significant advances in our theoretical basis for understanding several physical processes related to dynamical phenomena on the sun were achieved. We have advanced a new model for spicules and fibrils. We have provided a simple physical view of resonance absorption of MHD surface waves; this allowed an approximate mathematical procedure for obtaining a wealth of new analytical results which we applied to coronal heating and p-mode absorption at magnetic regions. We provided the first comprehensive models for the heating and acceleration of the transition region, corona, and solar wind. We provided a new view of viscosity under coronal conditions. We provided new insights into Alfven wave propagation in the solar atmosphere. And recently we have begun work in a new direction: parametric instabilities of Alfven waves.

  12. Modelling of nitrogen seeding experiments in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Casali, L.; Fable, E.; Dux, R.; Ryter, F.; ASDEX Upgrade Team

    2018-03-01

    Experiments using nitrogen were conducted in H-mode plasmas at ASDEX Upgrade that has a full-W wall. The edge region of H-mode plasmas is modulated by the edge-localized modes (ELMs) which lead to a loss of energy and particles from the confined plasma. In order to gain a better understanding of the complex physical mechanisms which govern the behaviour of radiation and impurities in the presence of ELMs, the evolution of impurities and radiation has been modelled in a time-dependent way. The simulations have been carried out with the ASTRA-STRAHL package featuring the self-consistent interplay between impurity transport, radiation, heat and particle transport of the background plasma, and the effects of ELMs. ELMs are modelled based on the two different assumptions of a diffusive and a convective transport, respectively. The experimental discharge behaviour was reproduced providing only transport coefficients, heat, and particle source. The results underlie the importance of non-coronal effects through the ELM-induced transport which lead to a strong enhancement of the nitrogen radiation. Taking these effects into account is crucial in order to not underestimate the radiation. The radiation properties of high-Z impurities such as tungsten are instead very weakly influenced by non-coronal effects due to its faster equilibration time. While the nitrogen density does not change significantly decreasing the ELM frequency, tungsten density and consequently the radiation increase strongly. The degree to which W is flushed out depends on whether the ELM transport is diffusive or convective. Simulations show that for the N seeded cases considered here, the diffusive model reproduces more accurately the experimental observations. The different behaviour of N and W can be explained in terms of profile peaking which increases with Z (neoclassical pinch). The strong increase in W radiation when the ELM frequency is decreased is not only due to the lack of a sufficiently strong flush out of this impurity but also to the fact that the long time between two crashes gives the impurities time to penetrate further into the plasma escaping the region where they can be flushed out. This is in agreement with the experimental observations and highlights the importance of maintaining high ELM frequencies for the stability and performance of the discharges.

  13. Self-Consistent and Time-Dependent Solar Wind Models

    NASA Technical Reports Server (NTRS)

    Ong, K. K.; Musielak, Z. E.; Rosner, R.; Suess, S. T.; Sulkanen, M. E.

    1997-01-01

    We describe the first results from a self-consistent study of Alfven waves for the time-dependent, single-fluid magnetohydrodynamic (MHD) solar wind equations, using a modified version of the ZEUS MHD code. The wind models we examine are radially symmetrical and magnetized; the initial outflow is described by the standard Parker wind solution. Our study focuses on the effects of Alfven waves on the outflow and is based on solving the full set of the ideal nonlinear MHD equations. In contrast to previous studies, no assumptions regarding wave linearity, wave damping, and wave-flow interaction are made; thus, the models naturally account for the back-reaction of the wind on the waves, as well as for the nonlinear interaction between different types of MHD waves. Our results clearly demonstrate when momentum deposition by Alfven waves in the solar wind can be sufficient to explain the origin of fast streams in solar coronal holes; we discuss the range of wave amplitudes required to obtained such fast stream solutions.

  14. Ionosphere-thermosphere energy budgets for the ICME storms of March 2013 and 2015 estimated with GITM and observational proxies

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, O. P.; Meng, X.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Lu, G.

    2017-09-01

    The ionosphere-thermosphere (IT) energy partitioning for the interplanetary coronal mass ejection (ICME) storms of 16-19 March 2013 and 2015 is estimated with the Global Ionosphere-Thermosphere Model (GITM), empirical models and proxies derived from in situ measurements. We focus on auroral heating, Joule heating, and thermospheric cooling. Solar wind data, F10.7, OVATION Prime model and the Weimer 2005 model are used to drive GITM from above. Thermospheric nitric oxide and carbon dioxide cooling emission powers and fluxes are estimated from TIMED/SABER measurements. Assimilative mapping of ionospheric electrodynamics (AMIE) estimations of hemispheric power and Joule heating are presented, based on data from global magnetometers, the AMPERE magnetic field data, SSUSI auroral images, and the SuperDARN radar network. Modeled Joule heating and auroral heating of the IT system are mostly controlled by external driving in the March 2013 and 2015 storms, while NO cooling persists into the storm recovery phase. The total heating in the model is about 1000 GW to 3000 GW. Additionally, we intercompare contributions in selected energy channels for five coronal mass ejection-type storms modeled with GITM. Modeled auroral heating shows reasonable agreement with AMIE hemispheric power and is higher than other observational proxies. Joule heating and infrared cooling are likely underestimated in GITM. We discuss challenges and discrepancies in estimating and global modeling of the IT energy partitioning, especially Joule heating, during geomagnetic storms.

  15. Chapter 5: Waves and Oscillations in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Erdélyi, Robert

    2008-10-01

    The actual operating heating process that generates and sustains the hot solar corona has so far defied a quantitative understanding despite efforts spanning over half a century. Particular attention is paid here towards the exploration of the coronal heating problem from the perspectives of MHD waves and oscillations. Do MHD waves play any role in the heating of the solar atmosphere? In order to attempt answering this question, first we need do embark on the key properties of the heating of the solar atmosphere...

  16. Enthalpy-Based Thermal Evolution of Loops: III. Comparison of Zero-Dimensional Models

    NASA Technical Reports Server (NTRS)

    Cargill, P. J.; Bradshaw, Stephen J.; Klimchuk, James A.

    2012-01-01

    Zero dimensional (0D) hydrodynamic models, provide a simple and quick way to study the thermal evolution of coronal loops subjected to time-dependent heating. This paper presents a comparison of a number of 0D models that have been published in the past and is intended to provide a guide for those interested in either using the old models or developing new ones. The principal difference between the models is the way the exchange of mass and energy between corona, transition region and chromosphere is treated, as plasma cycles into and out of a loop during a heating-cooling cycle. It is shown that models based on the principles of mass and energy conservation can give satisfactory results at some, or, in the case of the Enthalpy Based Thermal Evolution of Loops (EBTEL) model, all stages of the loop evolution. Empirical models can lead to low coronal densities, spurious delays between the peak density and temperature, and, for short heating pulses, overly short loop lifetimes.

  17. A comparison of non-local electron transport models relevant to inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Sherlock, Mark; Brodrick, Jonathan; Ridgers, Christopher

    2017-10-01

    We compare the reduced non-local electron transport model developed by Schurtz et al. to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a 1-dimensional hohlraum ablation problem. We find the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced model reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. IRIS Observations of Coronal Rain and Prominences: Return Flows of the Chromosphere-Corona Mass Cycle

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Berger, Thomas; Antolin, Patrick; Schrijver, Karel

    2014-06-01

    It has recently been recognized that a mass cycle (e.g., Berger et al. 2011; McIntosh et al. 2012) between the hot, tenuous solar corona and the cool, dense chromosphere underneath it plays an important role in the mass budget and dynamic evolution of the solar atmosphere. Although the corona ultimately loses mass through the solar wind and coronal mass ejections, a fraction of its mass returns to the chromosphere in coronal rain, downflows of prominences, and other as-yet unidentified processes. We present here analysis of joint observations of IRIS, SDO/AIA, and Hinode/SOT of such phenomena. By utilizing the wide temperature coverage (logT: 4 - 7) provided by these instruments combined, we track the coronal cooling sequence (e.g., Schrijver 2001; Liu et al. 2012; Berger et al. 2012) leading to the formation of such material at transition region or chromospheric temperatures (logT: 4 - 5) in the million-degree corona. We compare the cooling times with those expected from the radiative cooling instability. We also measure the kinematics and densities of such downflows and infer their mass fluxes, which are compared to the upward mass fluxes into the corona, e.g., those associated with spicules and flux emergence. Special attention is paid to coronal rain formed near cusp-shaped portions of coronal loops, funnel-shaped prominences at dips of coronal loops, and their respective magnetic environments. With the information about where and when such catastrophic cooling events take place, we discuss the implications for the enigmatic coronal heating mechanisms (e.g., Antolin et al. 2010).

  19. Joint SDO and IRIS Observations of a Novel, Hybrid Prominence-Coronal Rain Complex

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Antolin, Patrick; Sun, Xudong; Gao, Lijia; Vial, Jean-Claude; Gibson, Sarah; Okamoto, Takenori; Berger, Thomas; Uitenbroek, Han; De Pontieu, Bart

    2016-10-01

    Solar prominences and coronal rain are intimately related phenomena, both involving cool material at chromospheric temperatures within the hot corona and both playing important roles as part of the return flow of the chromosphere-corona mass cycle. At the same time, they exhibit distinct morphologies and dynamics not yet well understood. Quiescent prominences consist of numerous long-lasting, filamentary downflow threads, while coronal rain is more transient and falls comparably faster along well-defined curved paths. We report here a novel, hybrid prominence-coronal rain complex in an arcade-fan geometry observed by SDO/AIA and IRIS, which provides new insights to the underlying physics of such contrasting behaviors. We found that the supra-arcade fan region hosts a prominence sheet consisting of meandering threads with broad line widths. As the prominence material descends to the arcade, it turns into coronal rain sliding down coronal loops with line widths 2-3 times narrower. This contrast suggests that distinct local plasma and magnetic conditions determine the fate of the cool material, a scenario supported by our magnetic field extrapolations from SDO/HMI. Specifically, the supra-arcade fan (similar to those in solar flares; e.g., McKenzie 2013) is likely situated in a current sheet, where the magnetic field is weak and the plasma-beta could be close to unity, thus favoring turbulent flows like those prominence threads. In contrast, the underlying arcade has a stronger magnetic field and most likely a low-beta environment, such that the material is guided along magnetic field lines to appear as coronal rain. We will discuss the physical implications of these observations beyond prominence and coronal rain.

  20. CORONAL MAGNETIC FIELDS DERIVED FROM SIMULTANEOUS MICROWAVE AND EUV OBSERVATIONS AND COMPARISON WITH THE POTENTIAL FIELD MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyawaki, Shun; Nozawa, Satoshi; Iwai, Kazumasa

    2016-02-10

    We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only themore » radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J.

    We investigate the scaling properties of the long-range temporal evolution and intermittency of Atmospheric Imaging Assembly/ Solar Dynamics Observatory intensity observations in four solar environments: an active region core, a weak emission region, and two core loops. We use two approaches: the probability distribution function (PDF) of time series increments and multifractal detrended fluctuation analysis (MF-DFA). Noise taints the results, so we focus on the 171 Å waveband, which has the highest signal-to-noise ratio. The lags between pairs of wavebands distinguish between coronal versus transition region (TR) emission. In all physical regions studied, scaling in the range of 15–45 minutesmore » is multifractal, and the time series are anti-persistent on average. The degree of anti-correlation in the TR time series is greater than that for coronal emission. The multifractality stems from long-term correlations in the data rather than the wide distribution of intensities. Observations in the 335 Å waveband can be described in terms of a multifractal with added noise. The multiscaling of the extreme-ultraviolet data agrees qualitatively with the radiance from a phenomenological model of impulsive bursts plus noise, and also from ohmic dissipation in a reduced magnetohydrodynamic model for coronal loop heating. The parameter space must be further explored to seek quantitative agreement. Thus, the observational “signatures” obtained by the combined tests of the PDF of increments and the MF-DFA offer strong constraints that can systematically discriminate among models for coronal heating.« less

  2. Non-equilibrium ionization by a periodic electron beam. I. Synthetic coronal spectra and implications for interpretation of observations

    NASA Astrophysics Data System (ADS)

    Dzifčáková, E.; Dudík, J.; Mackovjak, Š.

    2016-05-01

    Context. Coronal heating is currently thought to proceed via the mechanism of nanoflares, small-scale and possibly recurring heating events that release magnetic energy. Aims: We investigate the effects of a periodic high-energy electron beam on the synthetic spectra of coronal Fe ions. Methods: Initially, the coronal plasma is assumed to be Maxwellian with a temperature of 1 MK. The high-energy beam, described by a κ-distribution, is then switched on every period P for the duration of P/ 2. The periods are on the order of several tens of seconds, similar to exposure times or cadences of space-borne spectrometers. Ionization, recombination, and excitation rates for the respective distributions are used to calculate the resulting non-equilibrium ionization state of Fe and the instantaneous and period-averaged synthetic spectra. Results: Under the presence of the periodic electron beam, the plasma is out of ionization equilibrium at all times. The resulting spectra averaged over one period are almost always multithermal if interpreted in terms of ionization equilibrium for either a Maxwellian or a κ-distribution. Exceptions occur, however; the EM-loci curves appear to have a nearly isothermal crossing-point for some values of κs. The instantaneous spectra show fast changes in intensities of some lines, especially those formed outside of the peak of the respective EM(T) distributions if the ionization equilibrium is assumed. Movies 1-5 are available in electronic form at http://www.aanda.org

  3. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1998-01-01

    The coronal magnetic field defines the structure of the solar corona, the position of the heliospheric current sheet, the regions of fast and slow solar wind, and the most likely sites of coronal mass ejections. There are few measurements of the magnetic fields in the corona, but the line-of-sight component of the global magnetic fields in the photosphere have been routinely measured for many years (for example, at Stanford's Wilcox Solar Observatory, and at the National Solar Observatory at Kitt Peak). The SOI/MDI instrument is now providing high-resolution full-disk magnetograms several times a day. Understanding the large-scale structure of the solar corona and inner heliosphere requires accurately mapping the measured photospheric magnetic field into the corona and outward. Ideally, a model should not only extrapolate the magnetic field, but should self-consistently reconstruct both the plasma and magnetic fields in the corona and solar wind. Support from our NASA SR&T contract has allowed us to develop three-dimensional magnetohydrodynamic (MHD) computations of the solar corona that incorporate observed photospheric magnetic fields into the boundary conditions. These calculations not only describe the magnetic field in the corona and interplanetary spice, but also predict the plasma properties as well. Our computations thus far have been successful in reproducing many aspects of both coronal and interplanetary data, including the structure of the streamer belt, the location of coronal hole boundaries, and the position and shape of the heliospheric current sheet. The most widely used technique for extrapolating the photospheric magnetic field into the corona and heliosphere are potential field models, such as the potential field source-surface model (PFSS),and the potential field current-sheet (PFCS) model

  4. Acceleration of Ions and Electrons by Coronal Shocks

    NASA Astrophysics Data System (ADS)

    Sandroos, A.

    2013-12-01

    Diffusive shock acceleration (DSA) of particles at collisionless shock waves driven by coronal mass ejections (CMEs) is the best developed theory for the genesis of gradual solar energetic particle (SEP) events. According to DSA, particles scatter from fluctuations present in the ambient magnetic field, which causes some particles to encounter the shock front repeatedly and to gain energy during each crossing. DSA operating in solar corona is a complex process whose outcome depends on multiple parameters such as shock speed and strength, magnetic geometry, and composition of seed particles. Currently, STEREO and other near-Earth spacecraft are providing valuable multi-point information on how SEP properties, such as composition and energy spectra, vary in longitude. Initial results have shown that longitude distributions of large CME-associated SEP events are much wider than previously thought. These findings have many important consequences on SEP modeling. For example, it is important to extend the present models into two or three spatial coordinates to properly account for the effects of coronal and interplanetary magnetic geometry and the evolution of the CME-driven shock wave on the acceleration and transport of SEPs. We present a new model for the shock acceleration of ions and electrons in the solar corona and discuss implications for particle properties (energy spectra, longitudinal distribution, composition) in the resulting gradual SEP events. We also discuss the possible emission of type II radio waves by the accelerated coronal electrons. In the new model, the ion pitch angle scattering rate is calculated from modeled Alfvén wave power spectra using quasilinear theory. The energy gained by ions in scatterings are self-consistently removed from waves so that total energy (ions+waves) is conserved. New model has been implemented on massively parallel simulation platform Corsair.

  5. Tango

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Jeffrey

    Tango enables the accelerated numerical solution of the multiscale problem of self-consistent transport and turbulence. Fast turbulence results in fluxes of heat and particles that slowly change the mean profiles of temperature and density. The fluxes are computed by separate turbulence simulation codes; Tang solves for the self-consistent change in mean temperature or density given those fluxes.

  6. Characterizing the Background Corona with SDO/AIA

    NASA Technical Reports Server (NTRS)

    Napier, Kate; Alexander, Caroline; Winebarger, Amy

    2014-01-01

    Characterizing the nature of the solar coronal background would enable scientists to more accurately determine plasma parameters, and may lead to a better understanding of the coronal heating problem. Because scientists study the 3D structure of the Sun in 2D, any line-of-sight includes both foreground and background material, and thus, the issue of background subtraction arises. By investigating the intensity values in and around an active region, using multiple wavelengths collected from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) over an eight-hour period, this project aims to characterize the background as smooth or structured. Different methods were employed to measure the true coronal background and create minimum intensity images. These were then investigated for the presence of structure. The background images created were found to contain long-lived structures, including coronal loops, that were still present in all of the wavelengths, 131, 171, 193, 211, and 335 A. The intensity profiles across the active region indicate that the background is much more structured than previously thought.

  7. Coronal rain in magnetic bipolar weak fields

    NASA Astrophysics Data System (ADS)

    Xia, C.; Keppens, R.; Fang, X.

    2017-07-01

    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org

  8. The structure and spectrum of the accretion shock in the atmospheres of young stars

    NASA Astrophysics Data System (ADS)

    Dodin, Alexandr

    2018-04-01

    The structure and spectrum of the accretion shock have been self-consistently simulated for a wide range of parameters typical for Classical T Tauri Stars (CTTS). Radiative cooling of the shocked gas was calculated, taking into account the self-absorption and non-equilibrium (time-dependent) effects in the level populations. These effects modify the standard cooling curve for an optically thin plasma in coronal equilibrium, however the shape of high-temperature (T > 3 × 105 K) part of the curve remains unchanged. The applied methods allow us to smoothly describe the transition from the cooling flow to the hydrostatic stellar atmosphere. Thanks to this approach, it has been found that the narrow component of He II lines is formed predominantly in the irradiated stationary atmosphere (hotspot), i.e. at velocities of the settling gas <2 km s-1. The structure of the pre-shock region is calculated simultaneously with the heated atmosphere. The simulation shows that the pre-shock gas produces a noticeable emission component in He II lines and practically does not manifest itself in He I lines (λλ 5876, 10830 Å). The ultraviolet spectrum of the hotspot is distorted by the pre-shock gas, namely numerous red-shifted emission and absorption lines overlap each other forming a pseudo-continuum. The spectrum of the accretion region at high pre-shock densities ˜1014 cm-3 is fully formed in the in-falling gas and can be qualitatively described as a spectrum of a star with an effective temperature derived from the Stefan-Boltzmann law via the full energy flux.

  9. Planned Visible Emission Line Space Solar Coronagraph on-board Aditya-1

    NASA Astrophysics Data System (ADS)

    Singh, Jagdev

    2012-07-01

    An imaging visible emission line internally occulted coronagraph using 20 cm off axis parabolic mirror has been designed and planned to be launched in 2014. The coronagraph will have the facility to take images of the solar simultaneously, in the green [Fe xiv] and the red [Fe x] emission lines up to 1.5 solar radii with a frequency of about 3 Hz using 0.5 nm pass band filters and the images in continuum at 580 nm up to 3 solar radii. The satellite has been named as Aditya-1 and the scientific objectives of this payload are: (i) to investigate the existence of intensity oscillations for the study of wave driven coronal heating, (ii) to study the dynamics and formation of coronal loops and temperature structure of the coronal features, (iii) to study the origin, cause and acceleration of Coronal Mass Ejections (CME's) and other solar active features, and (iv) Coronal magnetic field topology and the 3-dimensional structures of the CMEs using polarization information. The fabrication of the pay load will be done in the laboratories of LEOS, SAC, ISAC, IIA and USO and launched by ISRO. Here we shall discuss the design and the realization of the mission.

  10. Thermal stability of static coronal loops: Part 1: Effects of boundary conditions

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Shoub, E. C.; An, C. H.; Emslie, A. G.

    1985-01-01

    The linear stability of static coronal-loop models undergoing thermal perturbations was investigated. The effect of conditions at the loop base on the stability properties of the models was considered in detail. The question of appropriate boundary conditions at the loop base was considered and it was concluded that the most physical assumptions are that the temperature and density (or pressure) perturbations vanish there. However, if the base is taken to be sufficiently deep in the chromosphere, either several chromospheric scale heights or several coronal loop lengths in depth, then the effect of the boundary conditions on loop stability becomes negligible so that all physically acceptable conditions are equally appropriate. For example, one could as well assume that the velocity vanishes at the base. The growth rates and eigenmodes of static models in which gravity is neglected and in which the coronal heating is a relatively simple function, either constant per-unit mass or per-unit volume were calculated. It was found that all such models are unstable with a growth rate of the order of the coronal cooling time. The physical implications of these results for the solar corona and transition region are discussed.

  11. Closed coronal structures. V - Gasdynamic models of flaring loops and comparison with SMM observations

    NASA Technical Reports Server (NTRS)

    Peres, G.; Serio, S.; Vaiana, G.; Acton, L.; Leibacher, J.; Rosner, R.; Pallavicini, R.

    1983-01-01

    A time-dependent one-dimensional code incorporating energy, momentum and mass conservation equations, and taking the entire solar atmospheric structure into account, is used to investigate the hydrodynamic response of confined magnetic structures to strong heating perturbations. Model calculation results are compared with flare observations which include the light curves of spectral lines formed over a wide range of coronal flare temperatures, as well as determinations of Doppler shifts for the high temperature plasma. It is shown that the numerical simulation predictions are in good overall agreement with the observed flare coronal plasma evolution, correctly reproducing the temporal profile of X-ray spectral lines and their relative intensities. The predicted upflow velocities support the interpretation of the blueshifts as due to evaporation of chromospheric material.

  12. Global Energetics of Solar Flares. VI. Refined Energetics of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2017-09-01

    In this study, we refine the coronal mass ejection (CME) model that was presented in an earlier study of the global energetics of solar flares and associated CMEs and apply it to all (860) GOES M- and X-class flare events observed during the first seven years (2010-2016) of the Solar Dynamics Observatory (SDO) mission. The model refinements include (1) the CME geometry in terms of a 3D volume undergoing self-similar adiabatic expansion, (2) the solar gravitational deceleration during the propagation of the CME, which discriminates between eruptive and confined CMEs, (3) a self-consistent relationship between the CME center-of-mass motion detected during EUV dimming and the leading-edge motion observed in white-light coronagraphs, (4) the equipartition of the CME’s kinetic and thermal energies, and (5) the Rosner-Tucker-Vaiana scaling law. The refined CME model is entirely based on EUV-dimming observations (using Atmospheric Imager Assembly (AIA)/SDO data) and complements the traditional white-light scattering model (using Large-Angle and Spectrometric Coronagraph Experiment (LASCO)/Solar and Heliospheric Observatory data), and both models are independently capable of determining fundamental CME parameters. Comparing the two methods, we find that (1) LASCO is less sensitive than AIA in detecting CMEs (in 24% of the cases), (2) CME masses below {m}{cme}≲ {10}14 g are underestimated by LASCO, (3) AIA and LASCO masses, speeds, and energies agree closely in the statistical mean after the elimination of outliers, and (4) the CME parameters speed v, emission measure-weighted flare peak temperature T e , and length scale L are consistent with the following scaling laws: v\\propto {T}e1/2, v\\propto {({m}{cme})}1/4, and {m}{cme}\\propto {L}2.

  13. Thermodynamic Structure of Collision-Dominated Expanding Plasma: Heating of Interplanetary Coronal Mass Injections

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Richardson, J. D.; Belcher, J. W.; Kasper, J. C.; Elliott, H. A.

    2006-01-01

    We investigate the thermodynamic structure of interplanetary coronal mass ejections (ICMEs) using combined surveys of the ejecta between 0.3 and 20 AU. ICMEs are shown to have a moderate expansion in the solar wind compared with theoretical predictions. The expansion seems to be governed by a polytrope with gamma approx. 1.3 in this distance range. We find that Coulomb collisions are important contributors to the ion-ion equilibration process in the ICME plasma. The alpha-proton differential speed quickly drops to below 10 km/s due to strong Coulomb collisions. However, the two species of particles are far from thermal equilibrium with a temperature ratio T(sub alpha/T(sub p) = 4-6, suggestive of a preferential heating of alpha particles. The plasma heating rate as a function of heliocentric &stance required for the temperature profile is deduced by taking into account the expansion and energy transfer between protons and alphas via Coulomb collisions. The turbulence dissipation rate is also inferred from the inertial range power spectrum of magnetic fluctuations within ICMEs. Comparison of the turbulence dissipation rate with the required heating rate shows that turbulence dissipation seems sufficient to explain the ICME heating. Sources powering the turbulence are also investigated by examining the instabilities induced by temperature anisotropies and energy deposition by pickup ions.

  14. Subresolution Activity in Solar and Stellar Coronae from Magnetic Field Line Tangling

    NASA Astrophysics Data System (ADS)

    Rappazzo, A. F.; Dahlburg, R. B.; Einaudi, G.; Velli, M.

    2018-05-01

    The heating of coronal loops is investigated to understand the observational consequences in terms of the thermodynamics and radiative losses from the Sun as well as the magnetized coronae of stars with an outer convective envelope. The dynamics of the Parker coronal heating model are studied for different ratios of the photospheric forcing velocity timescale tp to the Alfvén crossing time along a loop tA. It is shown that for tp/tA ≳ 10-24 the heating rate and maximum temperature are largest and approximately independent of tp/tA, leading to a strong emission in X-rays and EUV. On the opposite decreasing tp/tA to smaller values leads to lower heating rates and plasma temperatures, and consequently fading high-energy radiative emission once tp/tA ≲ 1-3. The average volumetric loop heating rate is shown to scale as ℓ _p u_p B_0^2/4π L^2, where ℓp and up are respectively the convective granule length-scale and velocity, B0 is the intensity of the strong magnetic field threading the loop, and L the loop length. These findings support a recent hypothesis explaining ultracool dwarf observations of stars with similar magnetic field strength but radically different topologies displaying different radiative emission.

  15. Thermal energy creation and transport and X-ray/EUV emission in a thermodynamic MHD CME simulation

    NASA Astrophysics Data System (ADS)

    Reeves, K.; Mikic, Z.; Torok, T.; Linker, J.; Murphy, N. A.

    2017-12-01

    We model a CME using the PSI 3D numerical MHD code that includes coronal heating, thermal conduction and radiative cooling in the energy equation. The magnetic flux distribution at 1 Rs is produced by a localized subsurface dipole superimposed on a global dipole field, mimicking the presence of an active region within the global corona. We introduce transverse electric fields near the neutral line in the active region to form a flux rope, then a converging flow is imposed that causes the eruption. We follow the formation and evolution of the current sheet and find that instabilities set in soon after the reconnection commences. We simulate XRT and AIA EUV emission and find that the instabilities manifest as bright features emanating from the reconnection region. We examine the quantities responsible for plasma heating and cooling during the eruption, including thermal conduction, radiation, adiabatic compression and expansion, coronal heating and ohmic heating due to dissipation of currents. We find that the adiabatic compression plays an important role in heating the plasma around the current sheet, especially in the later stages of the eruption when the instabilities are present. Thermal conduction also plays an important role in the transport of thermal energy away from the current sheet region throughout the reconnection process.

  16. Global Energetics of Solar Flares. V. Energy Closure in Flares and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Caspi, Amir; Cohen, Christina M. S.; Holman, Gordon; Jing, Ju; Kretzschmar, Matthieu; Kontar, Eduard P.; McTiernan, James M.; Mewaldt, Richard A.; O'Flannagain, Aidan; Richardson, Ian G.; Ryan, Daniel; Warren, Harry P.; Xu, Yan

    2017-02-01

    In this study we synthesize the results of four previous studies on the global energetics of solar flares and associated coronal mass ejections (CMEs), which include magnetic, thermal, nonthermal, and CME energies in 399 solar M- and X-class flare events observed during the first 3.5 yr of the Solar Dynamics Observatory (SDO) mission. Our findings are as follows. (1) The sum of the mean nonthermal energy of flare-accelerated particles ({E}{nt}), the energy of direct heating ({E}{dir}), and the energy in CMEs ({E}{CME}), which are the primary energy dissipation processes in a flare, is found to have a ratio of ({E}{nt}+{E}{dir}+{E}{CME})/{E}{mag}=0.87+/- 0.18, compared with the dissipated magnetic free energy {E}{mag}, which confirms energy closure within the measurement uncertainties and corroborates the magnetic origin of flares and CMEs. (2) The energy partition of the dissipated magnetic free energy is: 0.51 ± 0.17 in nonthermal energy of ≥slant 6 {keV} electrons, 0.17 ± 0.17 in nonthermal ≥slant 1 {MeV} ions, 0.07 ± 0.14 in CMEs, and 0.07 ± 0.17 in direct heating. (3) The thermal energy is almost always less than the nonthermal energy, which is consistent with the thick-target model. (4) The bolometric luminosity in white-light flares is comparable to the thermal energy in soft X-rays (SXR). (5) Solar energetic particle events carry a fraction ≈ 0.03 of the CME energy, which is consistent with CME-driven shock acceleration. (6) The warm-target model predicts a lower limit of the low-energy cutoff at {e}c≈ 6 {keV}, based on the mean peak temperature of the differential emission measure of T e = 8.6 MK during flares. This work represents the first statistical study that establishes energy closure in solar flare/CME events.

  17. Kinetic modeling of Nernst effect in magnetized hohlraums.

    PubMed

    Joglekar, A S; Ridgers, C P; Kingham, R J; Thomas, A G R

    2016-04-01

    We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.

  18. Mapping the Solar Wind from its Source Region into the Outer Corona

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1997-01-01

    Knowledge of the radial variation of the plasma conditions in the coronal source region of the solar wind is essential to exploring coronal heating and solar wind acceleration mechanisms. The goal of the proposal was to determine as many plasma parameters in the solar wind acceleration region and beyond as possible by coordinating different observational techniques, such as Interplanetary Scintillation Observations, spectral line intensity observations, polarization brightness measurements and X-ray observations. The inferred plasma parameters were then used to constrain solar wind models.

  19. Physics of solar activity

    NASA Technical Reports Server (NTRS)

    Sturrock, Peter A.

    1993-01-01

    The aim of the research activity was to increase our understanding of solar activity through data analysis, theoretical analysis, and computer modeling. Because the research subjects were diverse and many researchers were supported by this grant, a select few key areas of research are described in detail. Areas of research include: (1) energy storage and force-free magnetic field; (2) energy release and particle acceleration; (3) radiation by nonthermal electrons; (4) coronal loops; (5) flare classification; (6) longitude distributions of flares; (7) periodicities detected in the solar activity; (8) coronal heating and related problems; and (9) plasma processes.

  20. Coronal Hole Rotating Towards Us

    NASA Image and Video Library

    2018-05-22

    A good-sized coronal hole came around to where it is just about facing Earth (May 16-18, 2018). Coronal holes are areas of open magnetic field from which solar wind (consisting of charged particles) streams into space. The video clip covers two days and was taken in a wavelength of extreme ultraviolet light. Such streams of particles take several days to reach Earth, but they can generate aurora, particularly nearer the poles. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA00575

  1. Convection in stars and heating of coronae

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1991-01-01

    The properties of convection in the sun and other cool stars are summarized. Recent studies of convection which have involved the use of supercomputers to model the flow of compressible gas in three dimensions are discussed. It is shown how the results of these computations may eventualy provide an understanding of how nonthermal processes heat coronal gas to temperatures of millions of degrees.

  2. Evidence for magnetic energy storage in coronal active regions

    NASA Technical Reports Server (NTRS)

    Krieger, A. S.; De Feiter, L. D.; Vaiana, G. S.

    1976-01-01

    Examination of X-ray images obtained by the S-054 X-ray spectrographic telescope on Skylab shows the presence of some atypical X-ray-emitting coronal structures in active regions which are not consistent with potential extrapolations of photospheric magnetic fields. Analysis of the observed temporal changes in the X-ray-emitting active-region structures demonstrates that the majority of these consist of brightness changes representing temperature (and perhaps density) variations of the material in the loops.

  3. Classical Heat-Flux Measurements in Coronal Plasmas from Collective Thomson-Scattering Spectra

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2016-10-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude was used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer-Härm flux (qSH = - κ∇Te ) and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. Additional experiments probed plasma waves perpendicular to the temperature gradient. The data show small effects resulting from heat flux compared to probing waves along the temperature gradient. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  4. The Large-scale Coronal Structure of the 2017 August 21 Great American Eclipse: An Assessment of Solar Surface Flux Transport Model Enabled Predictions and Observations

    NASA Astrophysics Data System (ADS)

    Nandy, Dibyendu; Bhowmik, Prantika; Yeates, Anthony R.; Panda, Suman; Tarafder, Rajashik; Dash, Soumyaranjan

    2018-01-01

    On 2017 August 21, a total solar eclipse swept across the contiguous United States, providing excellent opportunities for diagnostics of the Sun’s corona. The Sun’s coronal structure is notoriously difficult to observe except during solar eclipses; thus, theoretical models must be relied upon for inferring the underlying magnetic structure of the Sun’s outer atmosphere. These models are necessary for understanding the role of magnetic fields in the heating of the corona to a million degrees and the generation of severe space weather. Here we present a methodology for predicting the structure of the coronal field based on model forward runs of a solar surface flux transport model, whose predicted surface field is utilized to extrapolate future coronal magnetic field structures. This prescription was applied to the 2017 August 21 solar eclipse. A post-eclipse analysis shows good agreement between model simulated and observed coronal structures and their locations on the limb. We demonstrate that slow changes in the Sun’s surface magnetic field distribution driven by long-term flux emergence and its evolution governs large-scale coronal structures with a (plausibly cycle-phase dependent) dynamical memory timescale on the order of a few solar rotations, opening up the possibility for large-scale, global corona predictions at least a month in advance.

  5. EFFECT OF CORONAL TEMPERATURE ON THE SCALE OF SOLAR CHROMOSPHERIC JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iijima; Yokoyama, T.H., E-mail: h.iijima@eps.s.u-tokyo.ac.jp

    2015-10-20

    We investigate the effect of coronal temperature on the formation process of solar chromospheric jets using two-dimensional magnetohydrodynamic simulations of the region from the upper convection zone to the lower corona. We develop a new radiative magnetohydrodynamic code for the dynamic modeling of the solar atmosphere, employing an LTE equation of state, optically thick radiative loss in the photosphere, optically thin radiative loss in the chromosphere and the corona, and thermal conduction along the magnetic field lines. Many chromospheric jets are produced in the simulations by shock waves passing through the transition region. We find that these jets are projectedmore » farther outward when the coronal temperature is lower (similar to that in coronal holes) and shorter when the coronal temperature is higher (similar to that in active regions). When the coronal temperature is high, the deceleration of the chromospheric jets is consistent with the model in which deceleration is determined by the periodic chromospheric shock waves. However, when the coronal temperature is low, the gravitational deceleration becomes more important and the chromospheric jets approach ballistic motion.« less

  6. Turbulent Heating and Wave Pressure in Solar Wind Acceleration Modeling: New Insights to Empirical Forecasting of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, L. N.; Cranmer, S. R.

    2013-12-01

    The study of solar wind acceleration has made several important advances recently due to improvements in modeling techniques. Existing code and simulations test the competing theories for coronal heating, which include reconnection/loop-opening (RLO) models and wave/turbulence-driven (WTD) models. In order to compare and contrast the validity of these theories, we need flexible tools that predict the emergent solar wind properties from a wide range of coronal magnetic field structures such as coronal holes, pseudostreamers, and helmet streamers. ZEPHYR (Cranmer et al. 2007) is a one-dimensional magnetohydrodynamics code that includes Alfven wave generation and reflection and the resulting turbulent heating to accelerate solar wind in open flux tubes. We present the ZEPHYR output for a wide range of magnetic field geometries to show the effect of the magnetic field profiles on wind properties. We also investigate the competing acceleration mechanisms found in ZEPHYR to determine the relative importance of increased gas pressure from turbulent heating and the separate pressure source from the Alfven waves. To do so, we developed a code that will become publicly available for solar wind prediction. This code, TEMPEST, provides an outflow solution based on only one input: the magnetic field strength as a function of height above the photosphere. It uses correlations found in ZEPHYR between the magnetic field strength at the source surface and the temperature profile of the outflow solution to compute the wind speed profile based on the increased gas pressure from turbulent heating. With this initial solution, TEMPEST then adds in the Alfven wave pressure term to the modified Parker equation and iterates to find a stable solution for the wind speed. This code, therefore, can make predictions of the wind speeds that will be observed at 1 AU based on extrapolations from magnetogram data, providing a useful tool for empirical forecasting of the sol! ar wind.

  7. Structure and Dynamics of Coronal Plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1997-01-01

    During the past year this grant has funded research in the interaction between magnetic fields and the hot plasma in the solar outer atmosphere. The following is a brief summary of the published papers, abstracts and talks which have been supported. The paper 'Coronal Structures Observed in X-rays and H-alpha Structures' was published in the Kofu Symposium proceedings. The study analyzes cool and hot behavior of two x-ray events, a small flare and a surge. We find that a large H-alpha surge appears in x-rays as a very weak event, while a weak H-alpha feature corresponds to the brightest x-ray emission on the disk at the time of the observation. Calculations of the heating necessary to produce these signatures, and implications for the driving and heating mechanisms of flares vs. surges are presented. A copy of the paper is appended to this report. The paper 'Differential Magnetic Field Shear in an Active Region' has been published in The Astrophysical Journal. We have compared the 3D extrapolation of magnetic fields with the observed coronal structure in an active region. Based on the fit between observed coronal structure throughout the volume of the region and the calculated magnetic field configurations, we propose a differential magnetic field shear model for this active region. The decreasing field shear in the outer portions of the AR may indicate a continual relaxation of the magnetic field with time, corresponding to a net transport of helicity outward. The paper 'Difficulties in Observing Coronal Structure' has been accepted for publication in the journal Solar Physics. In this paper we discuss the evidence that the temperature and density structure of the corona are far more complicated than had previously been thought. The discussion is based on five studies carried out by our group on coronal plasma properties, showing that any one x-ray instrument does see all of the plasma present in the corona, that hot and cool material may appear to be co-spatial at a given location in the corona, and that simple magnetic field extrapolations provide only a poor fit to the observed structure. A copy of the paper is appended to this report.

  8. Observations of decay-less low-amplitude kink oscillations of EUV coronal loops

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Nakariakov, Valery; Anfinogentov, Sergey

    The high spatial and temporal resolution observations at Extreme Ultra-Violet (EUV) wavelengths from the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) reveal new features in kink oscillations of coronal loops. We show that, in addition to the well-known rapidly decaying oscillations, a new type of kink waves is present, characterized by low-amplitude and undamped oscillations, that we define as decay-less. Typical periods range from 2.5 to 12 min in both regimes and are different for different loops, increasing with the loop length. Estimates of the loop lengths are supported by three dimensional reconstruction of the loop geometry. The amplitude for the decay-less regime is about 1 Mm, close to the spatial resolution of the AIA instruments. The oscillation phase, measured by the cross-correlation method, is found to be constant along each analysed loop, and the spatial structure of the phase of the oscillations corresponds to the fundamental standing kink mode. We show that the observed behaviours are consistent with the empirical model of a damped linear oscillator excited by a continuous low-amplitude harmonic driver, in addition to an eventual impulsive high-amplitude driver. The observed life-time of the oscillations is likely to be determined by the observational conditions rather than any physical damping. However, the balance between the driving and damping is a necessary ingredient of this model. The properties of this type of transverse oscillations make them interesting object of study in the framework of resonant absorption theory and coronal heating process.

  9. A CORONAL HOLE'S EFFECTS ON CORONAL MASS EJECTION SHOCK MORPHOLOGY IN THE INNER HELIOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, B. E.; Wu, C.-C.; Howard, R. A.

    2012-08-10

    We use STEREO imagery to study the morphology of a shock driven by a fast coronal mass ejection (CME) launched from the Sun on 2011 March 7. The source region of the CME is located just to the east of a coronal hole. The CME ejecta is deflected away from the hole, in contrast with the shock, which readily expands into the fast outflow from the coronal hole. The result is a CME with ejecta not well centered within the shock surrounding it. The shock shape inferred from the imaging is compared with in situ data at 1 AU, wheremore » the shock is observed near Earth by the Wind spacecraft, and at STEREO-A. Shock normals computed from the in situ data are consistent with the shock morphology inferred from imaging.« less

  10. Coronal Jets in Closed Magnetic Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Wyper, Peter Fraser; DeVore, C. R.

    2015-04-01

    Coronal jets are dynamic, collimated structures observed in solar EUV and X-ray emission. They appear predominantly in the open field of coronal holes, but are also observed in areas of closed field, especially active regions. A common feature of coronal jets is that they originate from the field above a parasitic polarity of opposite sign to the surrounding field. Some process - such as instability onset or flux emergence - induces explosive reconnection between the closed “anemone” field and the surrounding open field that generates the jet. The lesser number of coronal jets in closed-field regions suggests a possible stabilizing effect of the closed configuration with respect to coronal jet formation. If the scale of the jet region is small compared with the background loop length, as in for example type II spicules, the nearby magnetic field may be treated as locally open. As such, one would expect that if a stabilizing effect exists it becomes most apparent as the scale of the anemone region approaches that of the background coronal loops.To investigate if coronal jets are indeed suppressed along shorter coronal loops, we performed a number of simulations of jets driven by a rotation of the parasitic polarity (as in the previous open-jet calculations by Pariat et. al 2009, 2010, 2015) embedded in a large-scale closed bipolar field. The simulations were performed with the state of the art Adaptively Refined Magnetohydrodynamics Solver. We will report here how the magnetic configuration above the anemone region determines the nature of the jet, when it is triggered, and how much of the stored magnetic energy is released. We show that regions in which the background field and the parasitic polarity region are of comparable scale naturally suppress explosive energy release. We will also show how in the post-jet relaxation phase a combination of confined MHD waves and weak current layers are generated by the jet along the background coronal loops, both of which may have implications for coronal heating.This work was supported by an appointment to the NASA Postdoctoral Program (P.F.W.) and by NASA’s Living With a Star Targeted Research and Technology program (C.R.D.).

  11. Towards a Self-Consistent Simulation Capability of Catastrophic Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Sokolov, I.; Gombosi, T. I.; Bindi, V.; Borovikov, D.; Kota, J.; Giacalone, J.

    2016-12-01

    Space weather refers to variations in the space environment that can affect technologies or endanger human life and health. Solar energetic particle (SEP) events can affect communications and airline safety. Satellites are affected by radiation damage to electronics and to components that produce power and provide images. Sun and star sensors are blinded during large SEP events. Protons of ≳30 MeV penetrate spacesuits and spacecraft walls. Events, like that of August 4, 1972, would have been fatal to moon-walking astronauts. Catastrophic events typically are characterized by hard particle energy spectra potentially containing large fluxes of hundreds of MeV-GeV type particles. These super-energetic particles can penetrate even into the "safest" areas of spacecraft and produce induced radioactivity. We describe several technologies which are to be combined into a physics-based, self consistent model to understand and forecast the origin and evolution of SEP events: The Alfvén Wave Solar-wind Model (AWSoM) simulates the chromosphere-to-Earth system using separate electron and ion temperatures and separate parallel and perpendicular temperatures. It solves the energy equations including thermal conduction and coronal heating by Alfvén wave turbulence. It uses adaptive mesh refinement (AMR), which allows us to cover a broad range of spacial scales. The Eruptive Event Generator using the Gibson-Low flux-rope model (EEGGL) allows the user to select an active region on the sun, select the polarity inversion line where the eruption is observed, and insert a Gibson-Low flux-rope to produce eruption. The Multiple-Field-Lines-Advection Model for Particle Acceleration (M-FLAMPA) solves the particle transport equation along a multitude of interplanetary magnetic field lines originating from the Sun, using time-dependent parameters for the shock and magnetic field obtained from the MHD simulation. It includes a self-consistent coupling of Alfvén wave turbulence to the SEPs. M-FLAMPA takes into account the full dependence of the distribution function on the pitch-angle, as well as particle scattering by Alfvén wave turbulence. The M-FLAMPA model will be validated and constrained at high energies (125 MeV to many GeV) using the new Alpha Magnetic Spectrometer onboard the ISS.

  12. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    NASA Astrophysics Data System (ADS)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  13. Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients

    NASA Technical Reports Server (NTRS)

    Maxwell, A.; Dryer, M.

    1981-01-01

    An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.

  14. Static and Impulsive Models of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Klimchuk, James A.

    2008-01-01

    The physical modeling of active regions (ARs) and of the global coronal is receiving increasing interest lately. Recent attempts to model ARs using static equilibrium models were quite successful in reproducing AR images of hot soft X-ray (SXR) loops. They however failed to predict the bright EUV warm loops permeating ARs: the synthetic images were dominated by intense footpoint emission. We demonstrate that this failure is due to the very weak dependence of loop temperature on loop length which cannot simultaneously account for both hot and warm loops in the same AR. We then consider time-dependent AR models based on nanoflare heating. We demonstrate that such models can simultaneously reproduce EUV and SXR loops in ARs. Moreover, they predict radial intensity variations consistent with the localized core and extended emissions in SXR and EUV AR observations respectively. We finally show how the AR morphology can be used as a gauge of the properties (duration, energy, spatial dependence, repetition time) of the impulsive heating.

  15. The Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Tandberg-Hanssen, E. A. (Editor); Hudson, H. S. (Editor); Dabbs, J. R. (Editor); Baity, W. A. (Editor)

    1983-01-01

    Scientific objectives and requirements are discussed for solar X-ray observations, coronagraph observations, studies of coronal particle acceleration, and cosmic X-ray observations. Improved sensitivity and resolution can be provided for these studies using the pinhole/occulter facility which consists of a self-deployed boom of 50 m length separating an occulter plane from a detector plane. The X-ray detectors and coronagraphic optics mounted on the detector plane are analogous to the focal plane instrumentation of an ordinary telescope except that they use the occulter only for providing a shadow pattern. The occulter plane is passive and has no electrical interface with the rest of the facility.

  16. Coronal Mass Ejections and Dimmings: A Comparative Study using MHD Simulations and SDO Observations

    NASA Astrophysics Data System (ADS)

    Jin, M.; Cheung, C. M. M.; DeRosa, M. L.; Nitta, N.; Schrijver, K.

    2017-12-01

    Solar coronal dimmings have been observed extensively in the past two decades. Due to their close association with coronal mass ejections (CMEs), there is a critical need to improve our understanding of the physical processes that cause dimmings and determine their relationship with CMEs. In this study, we investigate coronal dimmings by combining simulation and observational efforts. By utilizing a data-driven global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we simulate coronal dimmings resulting from different CME energetics and flux rope configurations. We synthesize the emissions of different EUV spectral bands/lines and compare with SDO/AIA and EVE observations. A detailed analysis of simulation and observation data suggests that although the transient dimming / brightening patterns could relate to plasma heating processes (either by adiabatic compression or reconnection), the long-lasting "core" and "remote" (also known as "secondary") dimmings both originate from regions with open/quasi-open fields and are caused by mass loss process. The mass loss in the remote dimming region is induced by CME-driven shock. Using metrics such as dimming depth, dimming slope, and recovery time, we investigate the relationship between dimmings and CME properties (e.g., CME mass, CME speed) in the simulation. Our result suggests that coronal dimmings encode important information about CME energetics, CME-driven shock properties, and magnetic configuration of erupting flux ropes. We also discuss how our knowledge about solar coronal dimmings could be extended to the study of stellar CMEs, which may prove important for exoplanet atmospheres and habitability but which are currently not observable.

  17. Sparkling extreme-ultraviolet bright dots observed with Hi-C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Régnier, S.; Alexander, C. E.; Walsh, R. W.

    Observing the Sun at high time and spatial scales is a step toward understanding the finest and fundamental scales of heating events in the solar corona. The high-resolution coronal (Hi-C) instrument has provided the highest spatial and temporal resolution images of the solar corona in the EUV wavelength range to date. Hi-C observed an active region on 2012 July 11 that exhibits several interesting features in the EUV line at 193 Å. One of them is the existence of short, small brightenings 'sparkling' at the edge of the active region; we call these EUV bright dots (EBDs). Individual EBDs havemore » a characteristic duration of 25 s with a characteristic length of 680 km. These brightenings are not fully resolved by the SDO/AIA instrument at the same wavelength; however, they can be identified with respect to the Hi-C location of the EBDs. In addition, EBDs are seen in other chromospheric/coronal channels of SDO/AIA, which suggests a temperature between 0.5 and 1.5 MK. Based on their frequency in the Hi-C time series, we define four different categories of EBDs: single peak, double peak, long duration, and bursty. Based on a potential field extrapolation from an SDO/HMI magnetogram, the EBDs appear at the footpoints of large-scale, trans-equatorial coronal loops. The Hi-C observations provide the first evidence of small-scale EUV heating events at the base of these coronal loops, which have a free magnetic energy of the order of 10{sup 26} erg.« less

  18. Transition-Region/Coronal Signatures of Penumbral Microjets: Hi-C, SDO/AIA and Hinode (SOT/FG) Observations

    NASA Technical Reports Server (NTRS)

    Tiwari, Sanjiv K.; Alpert, Shane E.; Moore, Ronald L.; Winebarger, Amy R.

    2014-01-01

    Penumbral microjets are bright, transient features seen in the chromosphere of sunspot penumbrae. Katsuaka et al. (2007) noted their ubiquity and characterized them using the Ca II H-line filter on Hinode's Solar Optical Telescope (SOT). The jets are 1000{4000 km in length, 300{400 km in width, and last less than one minute. It was proposed that these penumbral microjets could contribute to the transition-region and coronal heating above sunspots. We examine whether these microjets appear in the transition-region (TR) and/or corona or are related{ temporally and spatially{ to similar brightenings in the TR and/or corona. First, we identify penumbral microjets with the SOT's Ca II H-line filter. The chosen sunspot is observed on July 11, 2012 from 18:50:00 UT to 20:00:00 UT at approx. 14 inches, -30 inches. We then examine the sunspot in the same field of view and at the same time in other wavelengths. We use the High Resolution Coronal Imager Telescope (Hi-C) at 193A and the 1600A, 304A, 171A, 193A, and 94A passbands of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamic Observatory. We include examples of these jets and where they should appear in the other passbands, but find no signifcant association, except for a few jets with longer lifetimes and bigger sizes seen at locations in the penumbra with repeated stronger brightenings. We conclude that the normal microjets are not heated to transition-region/coronal temperatures, but the larger jets are.

  19. Eclipse Science Results from the Airborne Infrared Spectrometer (AIR-Spec)

    NASA Astrophysics Data System (ADS)

    Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.; Judge, P. G.; Lussier, L.; Madsen, C. A.; Marquez, V.; Tomczyk, S.; Vira, A.

    2017-12-01

    We present the first science results from the commissioning flight of the Airborne Infrared Spectrometer (AIR-Spec), an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). During the eclipse, AIR-Spec will image five magnetically sensitive coronal emission lines between 1.4 and 4 microns to determine whether they may be useful probes of coronal magnetism. The instrument will measure emission line intensity, FWHM, and Doppler shift from an altitude of over 14 km, above local weather and most of the absorbing water vapor. Instrumentation includes an image stabilization system, feed telescope, grating spectrometer, infrared camera, and visible slit-jaw imager. Results from the 2017 eclipse are presented in the context of the mission's science goals. AIR-Spec will identify line strengths as a function of position in the solar corona and search for the high frequency waves that are candidates for heating and acceleration of the solar wind. The instrument will also identify large scale flows in the corona, particularly in polar coronal holes. Three of the five lines are expected to be strong in coronal hole plasmas because they are excited in part by scattered photospheric light. Line profile analysis will probe the origins of the fast and slow solar wind. Finally, the AIR-Spec measurements will complement ground based eclipse observations to provide detailed plasma diagnostics throughout the corona. AIR-Spec will measure infrared emission of ions observed in the visible from the ground, giving insight into plasma heating and acceleration at radial distances inaccessible to existing or planned spectrometers.

  20. Dynamics of Coronal Hole Boundaries

    NASA Technical Reports Server (NTRS)

    Higginson, A. K.; Antiochos, S. K.; DeVore, C. R.; Wyper, Peter F.; Zurbuchen, T. H.

    2017-01-01

    Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposesthat photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-holeboundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamicsimulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model coronawith a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximatephotospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer.The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open andclosed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with someflux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs allalong the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions thatwere not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun andheliosphere. We discuss the implications of our simulations for understanding the observed properties of the slowsolar wind, with particular focus on the global-scale consequences of interchange reconnection.

  1. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  2. Features of self-organized plasma physics in tokamaks

    NASA Astrophysics Data System (ADS)

    Razumova, K. A.

    2018-01-01

    The history of investigations the role of self-organization processes in tokamak plasma confinement is presented. It was experimentally shown that the normalized pressure profile is the same for different tokamaks. Instead of the conventional Fick equation, where the thermal flux is proportional to a pressure gradient, processes in the plasma are well described by the Dyabilanin’s energy balance equation, in which the heat flux is proportional to the difference of normalized gradients for self-consistent and real pressure profiles. The transport coefficient depends on the values of heat flux, which compensates distortion of the pressure profile with external impacts. Radiative cooling of the plasma edge decreases the heat flux and improves the confinement.

  3. Origin and Ion Charge State Evolution of Solar Wind Transients 4 - 7 August 2011

    NASA Astrophysics Data System (ADS)

    Rodkin, Denis; Goryaev, Farid; Pagano, Paolo; Gibb, Gordon; Slemzin, Vladimir; Shugay, Yulia; Veselovsky, Igor; Mackay, Duncan

    2017-04-01

    Identification of transients and their origins on the Sun is one of the most important problems of the space weather forecasting. In our work, we present a case study of the complex event consisting of several solar wind transients detected by ACE on 4 - 7 August 2011, that caused a geomagnetic storm with Dst= - 110 nT. The supposed coronal sources - three flares and coronal mass ejections (CMEs) occurred on 2 - 4 August 2011 in the active region AR 11261. To investigate the solar origins and formation of these transients, we studied kinematic and thermodynamic properties of expanding coronal structures using the SDO/AIA EUV images and the differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic field maps were used as the input data for the 3D numerical model to describe the flux rope ejection. We characterize the early phase of the flux rope ejection in the corona, where the usual three-component CME structure formed. The flux rope ejected with the speed about 200 km/s to the height of 0.25 Rsun. The kinematics of the modeled CME front well agrees with the STEREO EUV measurements. Using the results of the plasma diagnostics and MHD modeling, we calculated the ion charge ratios of carbon and oxygen as well as the mean charge state of iron ions of the 2 August 2011 CME taking into account the processes of heating, cooling, expansion, ionization and recombination of the moving plasma in the corona up to the freeze-in region. We estimated a probable heating rate of the CME plasma in the low corona by matching the calculated ion composition parameters of the CME with that measured in-situ parameters of the solar wind transients. We also consider the similarities and discrepancies between the results of the MHD simulation and the observation of the event. Our results show that analysis of the ion composition of CMEs enables to disclose a relationship between parameters of the solar wind transients and properties of their solar origins, which opens new possibilities to validate and improve the solar wind forecasting models.

  4. Numerical simulations of flares on M dwarf stars. I - Hydrodynamics and coronal X-ray emission

    NASA Technical Reports Server (NTRS)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1991-01-01

    Flare-loop models are utilized to simulate the time evolution and physical characteristics of stellar X-ray flares by varying the values of flare-energy input and loop parameters. The hydrodynamic evolution is studied in terms of changes in the parameters of the mass, energy, and momentum equations within an area bounded by the chromosphere and the corona. The zone supports a magnetically confined loop for which processes are described including the expansion of heated coronal gas, chromospheric evaporation, and plasma compression at loop footpoints. The intensities, time profiles, and average coronal temperatures of X-ray flares are derived from the simulations and compared to observational evidence. Because the amount of evaporated material does not vary linearly with flare-energy input, large loops are required to produce the energy measured from stellar flares.

  5. Expansion of chromospheric matter in the gradual phase of solar flares

    NASA Technical Reports Server (NTRS)

    Ohki, K.

    1975-01-01

    Interferometric observations at 17 GHz of several small X-ray flares are presented along with soft X-ray observations of preflare active regions to show that a large mass increase accompanies the formation of an X-ray hot region in the corona. The total amount of energy contained in a hot coronal region is estimated, and a model is proposed in which a significant amount of the hot matter is supplied to the corona from the chromosphere during each flare. According to this model, energy produced by some coronal instability is transported by thermal conduction to the chromosphere, where dense gas is heated and subsequently expands into the corona. It is shown that impulsive heating of the chromosphere by nonthermal electrons cannot be the energy source of this model because the total energy supplied to the hot region during the gradual phase must be much greater than that supplied during the impulsive phase.

  6. Turbulent Density Fluctuations and Proton Heating Rate in the Solar Wind from 9-20 R ⊙

    NASA Astrophysics Data System (ADS)

    Sasikumar Raja, K.; Subramanian, Prasad; Ramesh, R.; Vourlidas, Angelos; Ingale, Madhusudan

    2017-12-01

    We obtain scatter-broadened images of the Crab Nebula at 80 MHz as it transits through the inner solar wind in 2017 and 2016 June. These images are anisotropic, with the major axis oriented perpendicular to the radially outward coronal magnetic field. Using these data, we deduce that the density modulation index (δ {N}e/{N}e) caused by turbulent density fluctuations in the solar wind ranges from 1.9× {10}-3 to 7.7× {10}-3 between 9 and 20 R ⊙. We also find that the heating rate of solar wind protons at these distances ranges from 2.2× {10}-13 to 1.0× {10}-11 {erg} {{cm}}-3 {{{s}}}-1. On two occasions, the line of sight intercepted a coronal streamer. We find that the presence of the streamer approximately doubles the thickness of the scattering screen.

  7. KINETIC EVOLUTION OF CORONAL HOLE PROTONS BY IMBALANCED ION-CYCLOTRON WAVES: IMPLICATIONS FOR MEASUREMENTS BY SOLAR PROBE PLUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isenberg, Philip A.; Vasquez, Bernard J.

    We extend the kinetic guiding-center model of collisionless coronal hole protons presented in Isenberg and Vasquez to consider driving by imbalanced spectra of obliquely propagating ion-cyclotron waves. These waves are assumed to be a small by-product of the imbalanced turbulent cascade to high perpendicular wavenumber, and their total intensity is taken to be 1% of the total fluctuation energy. We also extend the kinetic solutions for the proton distribution function in the resulting fast solar wind to heliocentric distances of 20 solar radii, which will be attainable by the Solar Probe Plus spacecraft. We consider three ratios of outward-propagating tomore » inward-propagating resonant intensities: 1, 4, and 9. The self-consistent bulk flow speed reaches fast solar wind values in all cases, and these speeds are basically independent of the intensity ratio. The steady-state proton distribution is highly organized into nested constant-density shells by the resonant wave-particle interaction. The radial evolution of this kinetic distribution as the coronal hole plasma flows outward is understood as a competition between the inward- and outward-directed large-scale forces, causing an effective circulation of particles through the (v{sub ∥}, v{sub ⊥}) phase space and a characteristic asymmetric shape to the distribution. These asymmetries are substantial and persist to the outer limit of the model computation, where they should be observable by the Solar Probe Plus instruments.« less

  8. Spectroscopic diagnostics of extended corona and solar wind with UVCS/Spartan

    NASA Technical Reports Server (NTRS)

    Strachan, L.; Gardner, L. D.; Kohl, J. L.

    1995-01-01

    The primary goal of the Ultraviolet Coronal Spectrometer on Spartan 201 (UVCS/Spartan) is to make spectroscopic diagnostic measurements that can be used to derive plasma parameters in the extended solar corona where it is believed that significant heating of the corona and acceleration of the solar wind take place. Direct and indirect measurements of particle velocity distribution, thermal and non-thermal temperatures, and bulk outflow velocities are crucial to aid in the identification of physical processes that may be responsible for coronal heating and solar wind acceleration. UVCS/Spartan has made two flights in April 1993 and September 1994, the latter coinciding with the South Polar Passage of the Ulysses spacecraft. Observations were made of the large-scale structures and sub-structures of coronal holes and streamers at heliocentric heights between 1.5 solar radii and 3.5 solar radii. Measurements were made of H I Lyman-alpha intensities and profiles, and line intensities of minor ions like O(5+) and Fe(11+). We will present results from the flights and discuss how these measurements are used to constrain values for the proton thermal and non-thermal kinetic temperatures, proton bulk outflow velocities, and minor ion temperatures and bulk outflow velocities. Plans for the upcoming flight in July 1995 will also be discussed.

  9. Active Region Moss: Doppler Shifts from Hinode/EIS Observations

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-01-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec- 2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young, O Dwyer and Mason (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. Further observational constraints are needed to distinguish between these two heating scenarios.

  10. Initiation of Coronal Mass Ejections by Tether-Cutting Reconnection

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present and interpret examples of the eruptive motion and flare brightening observed in the onset of magnetic explosions that produce coronal mass ejections. The observations are photospheric magnetograms and sequences of coronal and/or chromospheric images. In our examples, the explosion is apparently driven by the ejective eruption of a sigmoidal sheared-field flux rope from the core of an initially closed bipole. This eruption is initiated (triggered and unleashed) by reconnection located either (1) internally, low in the sheared core field, or (2) externally, at a magnetic null above the closed bipole. The internal reconnection is commonly called 'tether-cutting" reconnection, and the external reconnection is commonly called "break-out' reconnection. We point out that break-out reconnection amounts to external tether cutting. In one example, the eruptive motion of the sheared core field starts several minutes prior to any detectable brightening in the coronal images. We suggest that in this case the eruption is triggered by internal tether-cutting reconnection that at first is too slow and/or too localized to produce detectable heating in the coronal images. This work is supported by NASA's Office of Space Science through its Solar & Heliospheric Physics Supporting Research & Technology program and its Sun-Earth Connection Guest Investigator program.

  11. Evidence from IRIS that Sunspot Large Penumbral Jets Spin

    NASA Technical Reports Server (NTRS)

    Tiwari, Sanjiv K.; Moore, Ronald L.; De Pontieu, Bart; Tarbell, Theodore D.; Panesar, Navdeep K.; Winebarger, Amy R.; Sterling, Alphonse C.

    2017-01-01

    Recent observations from Hinode (SOT/FG) revealed the presence of large penumbral jets (widths = 500 km, larger than normal penumbral microjets, which have widths < 400 km) repeatedly occurring at the same locations in a sunspot penumbra, at the tail of a filament or where the tails of several penumbral filaments apparently converge (Tiwari et al. 2016, ApJ). These locations were observed to have mixed-polarity flux in Stokes-V images from SOT/FG. Large penumbral jets displayed direct signatures in AIA 1600, 304, 171, and 193 channels; thus they were heated to at least transition region temperatures. Because large jets could not be detected in AIA 94 Å, whether they had any coronal-temperature plasma remains unclear. In the present work, for another sunspot, we use IRIS Mg II k 2796 Å slit jaw images and spectra and magnetograms from Hinode SOT/FG and SOT/SP to examine: whether penumbral jets spin, similar to spicules and coronal jets in the quiet Sun and coronal holes; whether they stem from mixed-polarity flux; and whether they produce discernible coronal emission, especially in AIA 94 Å images. The few large penumbral jets for which we have IRIS spectra show evidence of spin. If these have mixed-polarity at their base, then they might be driven the same way as coronal jets and CMEs.

  12. Coronal Bright Points Associated with Minifilament Eruptions

    NASA Astrophysics Data System (ADS)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Li, Haidong; Yang, Bo; Yang, Dan

    2014-12-01

    Coronal bright points (CBPs) are small-scale, long-lived coronal brightenings that always correspond to photospheric network magnetic features of opposite polarity. In this paper, we subjectively adopt 30 CBPs in a coronal hole to study their eruptive behavior using data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. About one-quarter to one-third of the CBPs in the coronal hole go through one or more minifilament eruption(s) (MFE(s)) throughout their lifetimes. The MFEs occur in temporal association with the brightness maxima of CBPs and possibly result from the convergence and cancellation of underlying magnetic dipoles. Two examples of CBPs with MFEs are analyzed in detail, where minifilaments appear as dark features of a cool channel that divide the CBPs along the neutral lines of the dipoles beneath. The MFEs show the typical rising movements of filaments and mass ejections with brightenings at CBPs, similar to large-scale filament eruptions. Via differential emission measure analysis, it is found that CBPs are heated dramatically by their MFEs and the ejected plasmas in the MFEs have average temperatures close to the pre-eruption BP plasmas and electron densities typically near 109 cm-3. These new observational results indicate that CBPs are more complex in dynamical evolution and magnetic structure than previously thought.

  13. Effect of Self-Adhesive and Separate Etch Adhesive Dual Cure Resin Cements on the Bond Strength of Fiber Post to Dentin at Different Parts of the Root.

    PubMed

    Amiri, Ehsan Mohamadian; Balouch, Fariba; Atri, Faezeh

    2017-05-01

    Bonding of fiber posts to intracanal dentin is challenging in the clinical setting. This study aimed to compare the effect of self-adhesive and separate etch adhesive dual cure resin cements on the bond strength of fiber post to dentin at different parts of the root. This in-vitro experimental study was conducted on 20 single-rooted premolars. The teeth were decoronated at 1mm coronal to the cementoenamel junction (CEJ), and the roots underwent root canal treatment. Post space was prepared in the roots. Afterwards, the samples were randomly divided into two groups. In group 1, the fiber posts were cemented using Rely X Unicem cement, while in group 2, the fiber posts were cemented using Duo-Link cement, according to the manufacturer's instructions. The intracanal post in each root was sectioned into three segments of coronal, middle, and apical, and each cross-section was subjected to push-out bond strength test at a crosshead speed of 1mm/minute until failure. Push-out bond strength data were analyzed using independent t-test and repeated measures ANOVA. The bond strength at the middle and coronal segments in separate etch adhesive cement group was higher than that in self-adhesive cement group. However, the bond strength at the apical segment was higher in self-adhesive cement group compared to that in the other group. Overall, the bond strength in separate etch adhesive cement group was significantly higher than that in self-adhesive cement group (P<0.001). Bond strength of fiber post to intracanal dentin is higher after the use of separate etch adhesive cement compared to self-adhesive cement.

  14. FORWARD MODELING OF STANDING KINK MODES IN CORONAL LOOPS. I. SYNTHETIC VIEWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ding; Doorsselaere, Tom Van, E-mail: DYuan2@uclan.ac.uk

    2016-04-15

    Kink magnetohydrodynamic (MHD) waves are frequently observed in various magnetic structures of the solar atmosphere. They may contribute significantly to coronal heating and could be used as a tool to diagnose the solar plasma. In this study, we synthesize the Fe ix λ171.073 Å emission of a coronal loop supporting a standing kink MHD mode. The kink MHD wave solution of a plasma cylinder is mapped into a semi-torus structure to simulate a curved coronal loop. We decompose the solution into a quasi-rigid kink motion and a quadrupole term, which dominate the plasma inside and outside of the flux tube, respectively.more » At the loop edges, the line of sight integrates relatively more ambient plasma, and the background emission becomes significant. The plasma motion associated with the quadrupole term causes spectral line broadening and emission suppression. The periodic intensity suppression will modulate the integrated intensity and the effective loop width, which both exhibit oscillatory variations at half of the kink period. The quadrupole term can be directly observed as a pendular motion at the front view.« less

  15. Characterizing the True Background Corona with SDO/AIA

    NASA Technical Reports Server (NTRS)

    Napier, Kate; Winebarger, Amy; Alexander, Caroline

    2014-01-01

    Characterizing the nature of the solar coronal background would enable scientists to more accurately determine plasma parameters, and may lead to a better understanding of the coronal heating problem. Because scientists study the 3D structure of the Sun in 2D, any line of sight includes both foreground and background material, and thus, the issue of background subtraction arises. By investigating the intensity values in and around an active region, using multiple wavelengths collected from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) over an eight-hour period, this project aims to characterize the background as smooth or structured. Different methods were employed to measure the true coronal background and create minimum intensity images. These were then investigated for the presence of structure. The background images created were found to contain long-lived structures, including coronal loops, that were still present in all of the wavelengths, 193 Angstroms,171 Angstroms,131 Angstroms, and 211 Angstroms. The intensity profiles across the active region indicate that the background is much more structured than previously thought.

  16. Ionospheric Plasma Outflow in Response to Transverse Ion Heating: Self-Consistent Macroscopic Treatment

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1995-01-01

    During the grant period starting July 1, 1994, our major effort has been on the following two problems: (1) Temporal behavior of heavy Oxygen ion outflow in response to a transverse heating event; and (2) Continued effort on ion heating by lower hybrid waves. We briefly describe here the research performed under these topics.

  17. Magnetic heating of stellar chromospheres and coronae

    NASA Astrophysics Data System (ADS)

    van Ballegooijen, A. A.

    The theoretical discussion of magnetic heating focuses on heating by dissipation of field-aligned electric currents. Several mechanisms are set forth to account for the very high current densities needed to generate the heat, but observed radiative losses do not justify the resultant Ohmic heating rate. Tearing modes, 'turbulent resistivity', and 'hyper-resistivity' are considered to resolve the implied inefficiency of coronal heating. Because the mechanisms are not readily applicable to the sun, transverse magnetic energy flows and magnetic flare release are considered to account for the magnitude of observed radiative loss. High-resolution observations of the sun are concluded to be an efficient way to examine the issues of magnetic heating in spite of the very small spatial scales of the heating processes.

  18. Mass and energy supply of a cool coronal loop near its apex

    NASA Astrophysics Data System (ADS)

    Yan, Limei; Peter, Hardi; He, Jiansen; Xia, Lidong; Wang, Linghua

    2018-03-01

    Context. Different models for the heating of solar corona assume or predict different locations of the energy input: concentrated at the footpoints, at the apex, or uniformly distributed. The brightening of a loop could be due to the increase in electron density ne, the temperature T, or a mixture of both. Aim. We investigate possible reasons for the brightening of a cool loop at transition region temperatures through imaging and spectral observation. Methods: We observed a loop with the Interface Region Imaging Spectrograph (IRIS) and used the slit-jaw images together with spectra taken at a fixed slit position to study the evolution of plasma properties in and below the loop. We used spectra of Si IV, which forms at around 80 000 K in equilibrium, to identify plasma motions and derive electron densities from the ratio of inter-combination lines of O IV. Additional observations from the Solar Dynamics Observatory (SDO) were employed to study the response at coronal temperatures (Atmospheric Imaging Assembly, AIA) and to investigate the surface magnetic field below the loop (Helioseismic and Magnetic Imager, HMI). Results: The loop first appears at transition region temperatures and later also at coronal temperatures, indicating a heating of the plasma in the loop. The appearance of hot plasma in the loop coincides with a possible accelerating upflow seen in Si IV, with the Doppler velocity shifting continuously from -70 km s-1 to -265 km s-1. The 3D magnetic field lines extrapolated from the HMI magnetogram indicate possible magnetic reconnection between small-scale magnetic flux tubes below or near the loop apex. At the same time, an additional intensity enhancement near the loop apex is visible in the IRIS slit-jaw images at 1400 Å. These observations suggest that the loop is probably heated by the interaction between the loop and the upflows, which are accelerated by the magnetic reconnection between small-scale magnetic flux tubes at lower altitudes. Before and after the possible heating phase, the intensity changes in the optically thin (Si IV) and optical thick line (C II) are mainly contributed by the density variation without significant heating. Conclusions: We therefore provide evidence for the heating of an envelope loop that is affected by accelerating upflows, which are probably launched by magnetic reconnection between small-scale magnetic flux tubes underneath the envelope loop. This study emphasizes that in the complex upper atmosphere of the Sun, the dynamics of the 3D coupled magnetic field and flow field plays a key role in thermalizing 1D structures such as coronal loops. An animation associated to Fig. 1 is available at http://https://www.aanda.org

  19. Solar Magnetic Carpet III: Coronal Modelling of Synthetic Magnetograms

    NASA Astrophysics Data System (ADS)

    Meyer, K. A.; Mackay, D. H.; van Ballegooijen, A. A.; Parnell, C. E.

    2013-09-01

    This article is the third in a series working towards the construction of a realistic, evolving, non-linear force-free coronal-field model for the solar magnetic carpet. Here, we present preliminary results of 3D time-dependent simulations of the small-scale coronal field of the magnetic carpet. Four simulations are considered, each with the same evolving photospheric boundary condition: a 48-hour time series of synthetic magnetograms produced from the model of Meyer et al. ( Solar Phys. 272, 29, 2011). Three simulations include a uniform, overlying coronal magnetic field of differing strength, the fourth simulation includes no overlying field. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. In particular, we study their dependence upon the evolution of the photospheric magnetic field and the strength of the overlying coronal field. We also consider where energy is stored and dissipated within the coronal field. The free magnetic energy built up is found to be more than sufficient to power small-scale, transient phenomena such as nanoflares and X-ray bright points, with the bulk of the free energy found to be stored low down, between 0.5 - 0.8 Mm. The energy dissipated is currently found to be too small to account for the heating of the entire quiet-Sun corona. However, the form and location of energy-dissipation regions qualitatively agree with what is observed on small scales on the Sun. Future MHD modelling using the same synthetic magnetograms may lead to a higher energy release.

  20. Energy Input Flux in the Global Quiet-Sun Corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mac Cormack, Cecilia; Vásquez, Alberto M.; López Fuentes, Marcelo

    We present first results of a novel technique that provides, for the first time, constraints on the energy input flux at the coronal base ( r ∼ 1.025 R {sub ⊙}) of the quiet Sun at a global scale. By combining differential emission measure tomography of EUV images, with global models of the coronal magnetic field, we estimate the energy input flux at the coronal base that is required to maintain thermodynamically stable structures. The technique is described in detail and first applied to data provided by the Extreme Ultraviolet Imager instrument, on board the Solar TErrestrial RElations Observatory mission,more » and the Atmospheric Imaging Assembly instrument, on board the Solar Dynamics Observatory mission, for two solar rotations with different levels of activity. Our analysis indicates that the typical energy input flux at the coronal base of magnetic loops in the quiet Sun is in the range ∼0.5–2.0 × 10{sup 5} (erg s{sup −1} cm{sup −2}), depending on the structure size and level of activity. A large fraction of this energy input, or even its totality, could be accounted for by Alfvén waves, as shown by recent independent observational estimates derived from determinations of the non-thermal broadening of spectral lines in the coronal base of quiet-Sun regions. This new tomography product will be useful for the validation of coronal heating models in magnetohydrodinamic simulations of the global corona.« less

  1. Magnetic field extrapolation with MHD relaxation using AWSoM

    NASA Astrophysics Data System (ADS)

    Shi, T.; Manchester, W.; Landi, E.

    2017-12-01

    Coronal mass ejections are known to be the major source of disturbances in the solar wind capable of affecting geomagnetic environments. In order for accurate predictions of such space weather events, a data-driven simulation is needed. The first step towards such a simulation is to extrapolate the magnetic field from the observed field that is only at the solar surface. Here we present results of a new code of magnetic field extrapolation with direct magnetohydrodynamics (MHD) relaxation using the Alfvén Wave Solar Model (AWSoM) in the Space Weather Modeling Framework. The obtained field is self-consistent with our model and can be used later in time-dependent simulations without modifications of the equations. We use the Low and Lou analytical solution to test our results and they reach a good agreement. We also extrapolate the magnetic field from the observed data. We then specify the active region corona field with this extrapolation result in the AWSoM model and self-consistently calculate the temperature of the active region loops with Alfvén wave dissipation. Multi-wavelength images are also synthesized.

  2. Varying self-inductance and energy storage in a sheared force-free arcade. [of coronal loops

    NASA Technical Reports Server (NTRS)

    Zuccarello, F.; Burm, H.; Kuperus, M.; Raadu, M.; Spicer, D. S.

    1987-01-01

    An electric circuit analogy is used to model the build-up and storage of magnetic energy in the coronal loops known to exist in the atmosphere of the sun. The present parameterization of magnetic energy storage in an electric circuit analog uses a bulk current I flowing in the circuit and a self-inductance L. Because the self-inductance is determined by the geometry of the magnetic configuration any change in its dimensions will change L. If L is increased, the amount of magnetic energy stored and the rate at which magnetic energy is stored are both increased. One way of increasing L is to shear the magnetic field lines and increase their effective geometrical length. Using the force-free field approximation for a magnetic arcade whose field lines are sheared by photospheric motions, it is demonstrated that the increase of magnetic energy is initially due to the increase of the current intensity I and later mainly due to the increase of the self-inductance.

  3. Particle Acceleration and Plasma Heating in the Chromosphere

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Stepanov, A. V.

    2015-12-01

    We propose a new mechanism of electron acceleration and plasma heating in the solar chromosphere, based on the magnetic Rayleigh-Taylor instability. The instability develops at the chromospheric footpoints of a flare loop and deforms the local magnetic field. As a result, the electric current in the loop varies, and a resulting inductive electric field appears. A pulse of the induced electric field, together with the pulse of the electric current, propagates along the loop with the Alfvén velocity and begins to accelerate electrons up to an energy of about 1 MeV. Accelerated particles are thermalized in the dense layers of the chromosphere with the plasma density n ≈10^{14} - 10^{15} cm^{-3}, heating them to a temperature of about several million degrees. Joule dissipation of the electric current pulse heats the chromosphere at heights that correspond to densities n ≤10^{11} - 10^{13} cm^{-3}. Observations with the New Solar Telescope at Big Bear Solar Observatory indicate that chromospheric footpoints of coronal loops might be heated to coronal temperatures and that hot plasma might be injected upwards, which brightens ultra-fine loops from the photosphere to the base of the corona. Thereby, recent observations of the Sun and the model we propose stimulate a déjà vu - they are reminiscent of the concept of the chromospheric flare.

  4. Rayleigh-Taylor Instability as the Reason for the Particle Acceleration and Plasma Heating in Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Zaitsev, Valerii

    New mechanism of electron acceleration in the solar chromosphere and chromospheric plasma heating is proposed. The main role in acceleration and heating belongs to the Rayleigh-Tailor instability. Ballooning mode of the instability develops at the chromospheric footpoints of a flare loop and deforms here the magnetic field. Thus the electric current flowing in the loop changes and an inductive electric field appears. This electric field is the reason for the acceleration of 300-500 keV electrons which do not escape from the chromosphere, providing the excitation of plasma waves and the heating of chromospheric plasma in situ. Observations with New Solar Telescope at Big Bear Solar Observatory (Ji et al. ApJ 750, L25, 2012) give us good evidences on the heating of chromospheric footpoints of coronal loops to the coronal temperatures as well as upward injection of hot plasma that excite the fine loops from the photosphere to the base of the corona. We discuss also other consequences of the Rayleigh-Taylor instability: non-thermal plasma emission at 212 and 405 GHz from the ionized chromosphere with the electron density as high as 10 (15) cm (-3) (Zaitsev et al. Astron.Lett. 39, 650, 2013), and the model of sub-second pulsations at THz observed by Kaufmann et al. (ApJ 697, 420, 2009).

  5. Topics in High-Energy Astrophysics: X-ray Time Lags and Gamma-ray Flares

    NASA Astrophysics Data System (ADS)

    Kroon, John J.

    2016-03-01

    The Universe is host to a wide variety of high-energy processes that convert gravitational potential energy or rest-mass energy into non-thermal radiation such as bremsstrahlung and synchrotron. Prevailing models of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously fit the quiescent X-ray spectrum and the transients which result in the phenomenon known as X-ray time lags. And similarly, classical models of diffusive shock acceleration in pulsar wind nebulae fail to explain the extreme particle acceleration in very short timescales as is inferred from recent gamma-ray flares from the Crab nebula. In this dissertation, I develop new exact analytic models to shed light on these intriguing processes. I take a fresh look at the formation of X-ray time lags in compact sources using a new mathematical approach in which I obtain the exact Green's function solution. The resulting Green's function allows one to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. I obtain the exact solution for the dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model can successfully reproduce both the observed time lags and the quiescent X-ray spectrum using a single set of coronal parameters. I show that the implied coronal radii in the new model are significantly smaller than those obtained in the Monte Carlo simulations, hence greatly reducing the coronal heating problem. Recent bright gamma-ray flares from the Crab nebula observed by AGILE and Fermi reaching GeV energies and lasting several days challenge the contemporary model for particle acceleration in pulsar wind nebulae, specifically the diffusive shock acceleration model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must be accelerated up to PeV energies in the presence of ambient magnetic fields with strength B ~100 microG. No comprehensive model has been presented that simultaneously and self-consistently explains the energetic and temporal properties of the observed flares. In this component of my dissertation research, I revisit the problem based on an analytical approach using a transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, synchrotron losses, and particle escape. I obtain an exact solution and use it to compute the resulting gamma-ray synchrotron spectrum. I find that the spectra of all the Fermi-LAT flares from the Crab nebula can be reproduced with this model using magnetic fields that are in agreement with multi-wavelength observations.

  6. Diagnosing the Magnetic Field Structure of a Coronal Cavity Observed during the 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Chen, Yajie; Tian, Hui; Su, Yingna; Qu, Zhongquan; Deng, Linhua; Jibben, Patricia R.; Yang, Zihao; Zhang, Jingwen; Samanta, Tanmoy; He, Jiansen; Wang, Linghua; Zhu, Yingjie; Zhong, Yue; Liang, Yu

    2018-03-01

    We present an investigation of a coronal cavity observed above the western limb in the coronal red line Fe X 6374 Å using a telescope of Peking University and in the green line Fe XIV 5303 Å using a telescope of Yunnan Observatories, Chinese Academy of Sciences, during the total solar eclipse on 2017 August 21. A series of magnetic field models is constructed based on the magnetograms taken by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) one week before the eclipse. The model field lines are then compared with coronal structures seen in images taken by the Atmospheric Imaging Assembly on board SDO and in our coronal red line images. The best-fit model consists of a flux rope with a twist angle of 3.1π, which is consistent with the most probable value of the total twist angle of interplanetary flux ropes observed at 1 au. Linear polarization of the Fe XIII 10747 Å line calculated from this model shows a “lagomorphic” signature that is also observed by the Coronal Multichannel Polarimeter of the High Altitude Observatory. We also find a ring-shaped structure in the line-of-sight velocity of Fe XIII 10747 Å, which implies hot plasma flows along a helical magnetic field structure, in the cavity. These results suggest that the magnetic structure of the cavity is a highly twisted flux rope, which may erupt eventually. The temperature structure of the cavity has also been investigated using the intensity ratio of Fe XIII 10747 Å and Fe X 6374 Å.

  7. Magnetic Untwisting in Jets that Go into the Outer Solar Corona in Polar Coronal Holes

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David

    2014-06-01

    We present results from a study of 14 jets that were observed in SDO/AIA EUV movies to erupt in the Sun’s polar coronal holes. These jets were similar to the many other jets that erupt in coronal holes, but reached higher than the vast majority, high enough to be observed in the outer corona beyond 2 solar radii from Sun center by the SOHO/LASCO/C2 coronagraph. We illustrate the characteristic structure and motion of these high-reaching jets by showing observations of two representative jets. We find that (1) the speed of the jet front from the base of the corona out to 2-3 solar radii is typically several times the sound speed in jets in coronal holes, (2) each high-reaching jet displays unusually large rotation about its axis (spin) as it erupts, and (3) in the outer corona, many jets display lateral swaying and bending of the jet axis with an amplitude of a few degrees and a period of order 1 hour. From these observations we infer that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is basically a large-amplitude (non-linear) torsional Alfven wave that is put into the open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate that the magnetic-untwisting wave loses most of its energy before reaching the outer corona. These observations of high-reaching coronal jets suggest that the torsional magnetic waves observed in Type-II spicules can similarly dissipate in the corona and thereby power much of the coronal heating in coronal holes and quiet regions. This work is funded by the NASA/SMD Heliophysics Division’s Living With a Star Targeted Research & Technology Program.

  8. First 2017-total-eclipse results from the Williams College team

    NASA Astrophysics Data System (ADS)

    Pasachoff, J.; Dantowitz, R.; Rusin, V.; Seiradakis, J. H.; Voulgaris, A.; Seaton, D. B.; Davis, A. B.; Lu, M.; Sliski, D.; Ladd, E. F.; Economou, T.; Peñaloza-Murillo, M. A.; Nagle-McNaughton, T.

    2017-12-01

    We report on a wide range of observations we carried out during the total solar eclipse of August 21, 2017. Our main site was on the campus of Willamette University, Salem, Oregon, at which we had a variety of telescopes, spectrographs, cameras, a grism, and terrestrial-atmospheric measuring devices. Our goals included differentiating between models of coronal heating through measuring power-spectra of coronal loops in the [Fe XIV] and [Fe X] emission lines at multi-Hertz cadence with a frame-transfer CCD and otherwise; following coronal structure over the solar-activity cycle; comparing the results of a full-MHD prediction with actual coronal streamers; studying the dynamics of coronal plumes given the minimum phase of the solar-activity cycle; measuring the variation of the corona over the solar-activity cycle from our continuing measurements of the green-line/red-line intensity ratio; studying a variety of additional coronal emisson lines; high-resolution coronal imaging compared with overlapping images from space coronagraphs aboard SoHO and STEREO; comparing with AIA/SDO, HMO/SDO, SUVI/GOES-16, and SWAP/PROBA2 space images; and more. Our research has been supported in large part by grants from the Committee for Research and Exploration of the National Geographic Society and from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation, with additional support from Sigma Xi. Additional support for undergraduate participation came from the NSF, the NASA Massachusetts Space Grant Consortium, and the Clare Booth Luce Foundation, with travel support from the Freeman Foote Fund, the Rob Spring Fund, the Brandi Fund, and other sources at Williams College.

  9. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; hide

    2016-01-01

    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

  10. Simultaneous observations of changes in coronal bright point emission at the 20 cm radio and He Lambda 10830 wavelengths

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.; Harvey, Karen L.

    1986-01-01

    Preliminary results of observations of solar coronal bright points acquired simultaneously from ground based observatories at the radio wavelength of 20 cm and in the He I wavelength 10830 line on September 8, 1985, are reported. The impetus for obtaining simultaneous radio and optical data is to identify correlations, if any, in changes of the low transition-coronal signatures of bright points with the evolution of the magnetic field, and to distinguish between intermittent heating and changes in the magnetic field topology. Although simultaneous observations of H alpha emission and the photospheric magnetic field at Big Bear were also made, as well as radio observations from Owen Valley Radio Interferometer and Solar Maximum Mission (SSM) (O VIII line), only the comparison between He 10830 and the Very Large Array (VLA) radio data are presented.

  11. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  12. SOLAR X-RAY JETS, TYPE-II SPICULES, GRANULE-SIZE EMERGING BIPOLES, AND THE GENESIS OF THE HELIOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Ronald L.; Sterling, Alphonse C.; Cirtain, Jonathan W.

    2011-04-10

    From Hinode observations of solar X-ray jets, Type-II spicules, and granule-size emerging bipolar magnetic fields in quiet regions and coronal holes, we advocate a scenario for powering coronal heating and the solar wind. In this scenario, Type-II spicules and Alfven waves are generated by the granule-size emerging bipoles (EBs) in the manner of the generation of X-ray jets by larger magnetic bipoles. From observations and this scenario, we estimate that Type-II spicules and their co-generated Alfven waves carry into the corona an area-average flux of mechanical energy of {approx}7 x 10{sup 5} erg cm{sup -2} s{sup -1}. This is enoughmore » to power the corona and solar wind in quiet regions and coronal holes, and therefore indicates that the granule-size EBs are the main engines that generate and sustain the entire heliosphere.« less

  13. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramar, M.; Lin, H.; Tomczyk, S., E-mail: kramar@cua.edu, E-mail: lin@ifa.hawaii.edu, E-mail: tomczyk@ucar.edu

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, wemore » compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.« less

  14. Structure and Dynamics of Coronal Plasma

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1998-01-01

    Brief summaries of the four published papers produced within the present performance period of NASA Grant NAGW-4081 are presented. The full text of the papers are appended to the report. The first paper titled "Coronal Structures Observed in X-rays and H-alpa Structures" was published in the Kofu Symposium proceedings. The study analyzes cool and hot behavior of two x-ray events, a small flare and a surge. It was found that a large H-alpha surge appears in x-rays as a very weak event, while a weak H-alpha feature corresponds to the brightest x-ray emission on the disk at the time of the observation. Calculations of the heating necessary to produce these signatures, and implications for the driving and heating mechanisms of flares vs. surges are presented. The second paper "Differential Magnetic Field Shear in an Active Region" has been published in The Astrophysical Journal. The study compared the three dimensional extrapolation of magnetic fields with the observed coronal structure in an active region. Based on the fit between observed coronal structure throughout the volume of the region and the calculated magnetic field configurations, the authors propose a differential magnetic field shear model for this active region. The decreasing field shear in the outer portions of the AR may indicate a continual relaxation of the magnetic field with time, corresponding to a net transport of helicity outward. The third paper "Difficulties in Observing Coronal Structure" has been published in the journal Solar Physics. This paper discusses the evidence that the temperature and density structure of the corona are far more complicated than had previously been thought. The discussion is based on five studies carried out by the group on coronal plasma properties, showing that any one x-ray instrument does see all of the plasma present in the corona, that hot and cool material may appear to be co-spatial at a given location in the corona, and that simple magnetic field extrapolations provide only a poor fit to the observed structure. The fourth paper "Analysis and Comparison of Loop Structures Imaged with NIXT and Yohkoh/SXT" has been published in Astronomy and Astrophysics. This paper analyzes and compares a variety of coronal loops, deriving loop pressure and emission measure from loop models. They are able to determine the volume filling factor in the corona, which is found to be in the range 0.001 to 0.01 for compact loops, and of order 1 for large structures. The small values suggest highly filamented structures, especially at lower temperatures.

  15. Comparison of Vital Statistics Definitions of Suicide against a Coroner Reference Standard: A Population-Based Linkage Study.

    PubMed

    Gatov, Evgenia; Kurdyak, Paul; Sinyor, Mark; Holder, Laura; Schaffer, Ayal

    2018-03-01

    We sought to determine the utility of health administrative databases for population-based suicide surveillance, as these data are generally more accessible and more integrated with other data sources compared to coroners' records. In this retrospective validation study, we identified all coroner-confirmed suicides between 2003 and 2012 in Ontario residents aged 21 and over and linked this information to Statistics Canada's vital statistics data set. We examined the overlap between the underlying cause of death field and secondary causes of death using ICD-9 and ICD-10 codes for deliberate self-harm (i.e., suicide) and examined the sociodemographic and clinical characteristics of misclassified records. Among 10,153 linked deaths, there was a very high degree of overlap between records coded as deliberate self-harm in the vital statistics data set and coroner-confirmed suicides using both ICD-9 and ICD-10 definitions (96.88% and 96.84% sensitivity, respectively). This alignment steadily increased throughout the study period (from 95.9% to 98.8%). Other vital statistics diagnoses in primary fields included uncategorised signs and symptoms. Vital statistics records that were misclassified did not differ from valid records in terms of sociodemographic characteristics but were more likely to have had an unspecified place of injury on the death certificate ( P < 0.001), more likely to have died at a health care facility ( P < 0.001), to have had an autopsy ( P = 0.002), and to have been admitted to a psychiatric hospital in the year preceding death ( P = 0.03). A high degree of concordance between vital statistics and coroner classification of suicide deaths suggests that health administrative data can reliably be used to identify suicide deaths.

  16. Dynamics of Coronal Hole Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, A. K.; Zurbuchen, T. H.; Antiochos, S. K.

    Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used tomore » approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.« less

  17. Soho Ultraviolet Coronograph Spectrometer (UVCS) Mission Operations and Data Analysis

    NASA Technical Reports Server (NTRS)

    Kohl, John L.; Gurman, Joseph (Technical Monitor)

    2002-01-01

    The scientific goal of UVCS is to obtain detailed empirical descriptions of the extended solar corona as it evolves over the solar cycle and to use these descriptions to identify and understand the physical processes responsible for coronal heating, solar wind acceleration, coronal mass ejections (CMEs), and the phenomena that establish the plasma properties of the solar wind as measured by 'in situ' solar wind instruments. This report covers the period from 01 December 2000 to 31 January 2002. During that time, UVCS observations have consisted of three types: (1) standard synoptic observations comprising, primarily, the H I Ly(alpha) line profile and the O VI 103.2 and 103.7 nm intensity over a range of heights from 1.5 to about 3.0 solar radii and covering 360 degrees about the sun; (2) sit and stare watches for CMEs; and (3) special observations designed by the UVCS Lead Observer of the Week for a specific scientific purpose. The special observations are often coordinated with those of other space-based and ground-based instruments and they often are part of SOHO joint observation programs and campaigns. Lead observers have included UVCS Co-Investigators, scientists from the solar physics community and several graduate and undergraduate level students.

  18. Coronal Loops: Observations and Modeling of Confined Plasma.

    PubMed

    Reale, Fabio

    Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered and, therefore, topics such as loop oscillations and flaring loops (except for non-solar ones, which provide information on stellar loops) are not specifically addressed here. The observational section discusses the classification, populations, and the morphology of coronal loops, its relationship with the magnetic field, and the loop stranded structure. The section continues with the thermal properties and diagnostics of the loop plasma, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics, hot and cool flows, and waves are illustrated. In the modeling section, some basics of loop physics are provided, supplying fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are divided into those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. More specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC) and impulsive (DC) heating. Large-scale models including atmosphere boxes and the magnetic field are also discussed. Finally, a brief discussion about stellar coronal loops is followed by highlights and open questions.

  19. Coronal loop seismology using damping of standing kink oscillations by mode coupling. II. additional physical effects and Bayesian analysis

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Anfinogentov, S.; Nisticò, G.; Goddard, C. R.; Nakariakov, V. M.

    2017-04-01

    Context. The strong damping of kink oscillations of coronal loops can be explained by mode coupling. The damping envelope depends on the transverse density profile of the loop. Observational measurements of the damping envelope have been used to determine the transverse loop structure which is important for understanding other physical processes such as heating. Aims: The general damping envelope describing the mode coupling of kink waves consists of a Gaussian damping regime followed by an exponential damping regime. Recent observational detection of these damping regimes has been employed as a seismological tool. We extend the description of the damping behaviour to account for additional physical effects, namely a time-dependent period of oscillation, the presence of additional longitudinal harmonics, and the decayless regime of standing kink oscillations. Methods: We examine four examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We use forward modelling of the loop position and investigate the dependence on the model parameters using Bayesian inference and Markov chain Monte Carlo (MCMC) sampling. Results: Our improvements to the physical model combined with the use of Bayesian inference and MCMC produce improved estimates of model parameters and their uncertainties. Calculation of the Bayes factor also allows us to compare the suitability of different physical models. We also use a new method based on spline interpolation of the zeroes of the oscillation to accurately describe the background trend of the oscillating loop. Conclusions: This powerful and robust method allows for accurate seismology of coronal loops, in particular the transverse density profile, and potentially reveals additional physical effects.

  20. Evidence for the Magnetic Breakout Model in AN Equatorial Coronal-Hole Jet

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Karpen, J.; Antiochos, S. K.; Wyper, P. F.; DeVore, C. R.; DeForest, C. E.

    2017-12-01

    We analyzed an equatorial coronal-hole jet observed by Solar Dynamic Observatory (SDO)/AtmosphericImaging Assembly (AIA). The source-region magnetic field structure is consistent withthe embedded-bipole topology that we identified and modeled previously as a source of coronal jets. Theinitial brightening was observed below a sigmoid structure about 25 min before the onset of an untwisting jet.A circular magnetic flux rope with a mini-filament rose slowly at the speed of ˜15 km/s , then accelerated(˜126 km/s) during the onset of explosive breakout reconnection. Multiple plasmoids, propagating upward(˜135 km/s) and downward (˜55 km/s ), were detected behind the rising flux rope shortly before andduring explosive breakout reconnection. The jet was triggered when the rising flux rope interacted with theoverlying magnetic structures near the outer spine. This event shows a clear evidence of reconnection not onlybelow the flux rope but also a breakout reconnection above the flux rope. During the breakout reconnection,we observed heating of the flux rope, deflection of loops near the spine, and formation of multiple ribbons.The explosive breakout reconnection destroyed the flux rope that produced an untwisting jet with a speed of˜380 km/s . HMI magnetograms reveal the shear motion at theeruption site, but do not show any significant flux emergence or cancellation during or 2 hours before theeruption. Therefore, the free energy powering this jet most likely originated in magnetic shear concentratedat the polarity inversion line within the embedded bipole-a mini-filament channel-possibly created by helicitycondensation. The result of of a statistical study of multiple jets will also be discussed.

  1. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Smith, D. M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Harrison, F. A.; Grefenstette, B. W.; Stern, D.

    2012-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. Around the time of this meeting, the Nuclear Spectroscopic Telescope ARray (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. Three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux; 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating; 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum; 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes; 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched; 6) Study of particles at the coronal reconnection site when flare footpoints and loops are occulted; 7) Search for weak high-temperature coronal plasmas in active regions that are not flaring; and 8) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  2. TIME-DEPENDENT TURBULENT HEATING OF OPEN FLUX TUBES IN THE CHROMOSPHERE, CORONA, AND SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolsey, L. N.; Cranmer, S. R., E-mail: lwoolsey@cfa.harvard.edu

    We investigate several key questions of plasma heating in open-field regions of the corona that connect to the solar wind. We present results for a model of Alfvén-wave-driven turbulence for three typical open magnetic field structures: a polar coronal hole, an open flux tube neighboring an equatorial streamer, and an open flux tube near a strong-field active region. We compare time-steady, one-dimensional turbulent heating models against fully time-dependent three-dimensional reduced-magnetohydrodynamic modeling of BRAID. We find that the time-steady results agree well with time-averaged results from BRAID. The time dependence allows us to investigate the variability of the magnetic fluctuations andmore » of the heating in the corona. The high-frequency tail of the power spectrum of fluctuations forms a power law whose exponent varies with height, and we discuss the possible physical explanation for this behavior. The variability in the heating rate is bursty and nanoflare-like in nature, and we analyze the amount of energy lost via dissipative heating in transient events throughout the simulation. The average energy in these events is 10{sup 21.91} erg, within the “picoflare” range, and many events reach classical “nanoflare” energies. We also estimated the multithermal distribution of temperatures that would result from the heating-rate variability, and found good agreement with observed widths of coronal differential emission measure distributions. The results of the modeling presented in this paper provide compelling evidence that turbulent heating in the solar atmosphere by Alfvén waves accelerates the solar wind in open flux tubes.« less

  3. Using coronal seismology to estimate the magnetic field strength in a realistic coronal model

    NASA Astrophysics Data System (ADS)

    Chen, F.; Peter, H.

    2015-09-01

    Aims: Coronal seismology is used extensively to estimate properties of the corona, e.g. the coronal magnetic field strength is derived from oscillations observed in coronal loops. We present a three-dimensional coronal simulation, including a realistic energy balance in which we observe oscillations of a loop in synthesised coronal emission. We use these results to test the inversions based on coronal seismology. Methods: From the simulation of the corona above an active region, we synthesise extreme ultraviolet emission from the model corona. From this, we derive maps of line intensity and Doppler shift providing synthetic data in the same format as obtained from observations. We fit the (Doppler) oscillation of the loop in the same fashion as done for observations to derive the oscillation period and damping time. Results: The loop oscillation seen in our model is similar to imaging and spectroscopic observations of the Sun. The velocity disturbance of the kink oscillation shows an oscillation period of 52.5 s and a damping time of 125 s, which are both consistent with the ranges of periods and damping times found in observations. Using standard coronal seismology techniques, we find an average magnetic field strength of Bkink = 79 G for our loop in the simulation, while in the loop the field strength drops from roughly 300 G at the coronal base to 50 G at the apex. Using the data from our simulation, we can infer what the average magnetic field derived from coronal seismology actually means. It is close to the magnetic field strength in a constant cross-section flux tube, which would give the same wave travel time through the loop. Conclusions: Our model produced a realistic looking loop-dominated corona, and provides realistic information on the oscillation properties that can be used to calibrate and better understand the result from coronal seismology. A movie associated with Fig. 1 is available in electronic form at http://www.aanda.org

  4. Phase-field simulation of microstructure formation in technical castings - A self-consistent homoenthalpic approach to the micro-macro problem

    NASA Astrophysics Data System (ADS)

    Böttger, B.; Eiken, J.; Apel, M.

    2009-10-01

    Performing microstructure simulation of technical casting processes suffers from the strong interdependency between latent heat release due to local microstructure formation and heat diffusion on the macroscopic scale: local microstructure formation depends on the macroscopic heat fluxes and, in turn, the macroscopic temperature solution depends on the latent heat release, and therefore on the microstructure formation, in all parts of the casting. A self-consistent homoenthalpic approximation to this micro-macro problem is proposed, based on the assumption of a common enthalpy-temperature relation for the whole casting which is used for the description of latent heat production on the macroscale. This enthalpy-temperature relation is iteratively obtained by phase-field simulations on the microscale, thus taking into account the specific morphological impact on the latent heat production. This new approach is discussed and compared to other approximations for the coupling of the macroscopic heat flux to complex microstructure models. Simulations are performed for the binary alloy Al-3at%Cu, using a multiphase-field solidification model which is coupled to a thermodynamic database. Microstructure formation is simulated for several positions in a simple model plate casting, using a one-dimensional macroscopic temperature solver which can be directly coupled to the microscopic phase-field simulation tool.

  5. DATA-CONSTRAINED CORONAL MASS EJECTIONS IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, M.; Manchester, W. B.; Van der Holst, B.

    We present a first-principles-based coronal mass ejection (CME) model suitable for both scientific and operational purposes by combining a global magnetohydrodynamics (MHD) solar wind model with a flux-rope-driven CME model. Realistic CME events are simulated self-consistently with high fidelity and forecasting capability by constraining initial flux rope parameters with observational data from GONG, SOHO /LASCO, and STEREO /COR. We automate this process so that minimum manual intervention is required in specifying the CME initial state. With the newly developed data-driven Eruptive Event Generator using Gibson–Low configuration, we present a method to derive Gibson–Low flux rope parameters through a handful ofmore » observational quantities so that the modeled CMEs can propagate with the desired CME speeds near the Sun. A test result with CMEs launched with different Carrington rotation magnetograms is shown. Our study shows a promising result for using the first-principles-based MHD global model as a forecasting tool, which is capable of predicting the CME direction of propagation, arrival time, and ICME magnetic field at 1 au (see the companion paper by Jin et al. 2016a).« less

  6. Data evaluation, analysis, and scientific study

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1991-01-01

    Extensive work was performed in data analysis and modeling of solar active phenomena. The work consisted in the study of UV data from the Ultraviolet Spectrometer and Polarimeter (UVSP) instrument on board the Solar Maximum Mission satellite. These data were studied in conjunction with X-rays from the Hard X-ray Imaging Spectrometer (HXIS) instrument, and with H-alpha and magnetographic data from ground-based observatories. The processes we studied are the active phenomena which result from the interaction of the solar magnetic fields with the plasma in the outer regions of the solar atmosphere. These processes include some very dynamic processes such as the prominence eruptions and the 'microflares'. Our research aimed at characterizing the following: the observed phenomena, the possible physical models, and the relevance to the chromospheric and coronal heating.

  7. STEREO OBSERVATIONS OF FAST MAGNETOSONIC WAVES IN THE EXTENDED SOLAR CORONA ASSOCIATED WITH EIT/EUV WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Ryun-Young; Ofman, Leon; Kramar, Maxim

    2013-03-20

    We report white-light observations of a fast magnetosonic wave associated with a coronal mass ejection observed by STEREO/SECCHI/COR1 inner coronagraphs on 2011 August 4. The wave front is observed in the form of density compression passing through various coronal regions such as quiet/active corona, coronal holes, and streamers. Together with measured electron densities determined with STEREO COR1 and Extreme UltraViolet Imager (EUVI) data, we use our kinematic measurements of the wave front to calculate coronal magnetic fields and find that the measured speeds are consistent with characteristic fast magnetosonic speeds in the corona. In addition, the wave front turns outmore » to be the upper coronal counterpart of the EIT wave observed by STEREO EUVI traveling against the solar coronal disk; moreover, stationary fronts of the EIT wave are found to be located at the footpoints of deflected streamers and boundaries of coronal holes, after the wave front in the upper solar corona passes through open magnetic field lines in the streamers. Our findings suggest that the observed EIT wave should be in fact a fast magnetosonic shock/wave traveling in the inhomogeneous solar corona, as part of the fast magnetosonic wave propagating in the extended solar corona.« less

  8. Compression of auditory space during forward self-motion.

    PubMed

    Teramoto, Wataru; Sakamoto, Shuichi; Furune, Fumimasa; Gyoba, Jiro; Suzuki, Yôiti

    2012-01-01

    Spatial inputs from the auditory periphery can be changed with movements of the head or whole body relative to the sound source. Nevertheless, humans can perceive a stable auditory environment and appropriately react to a sound source. This suggests that the inputs are reinterpreted in the brain, while being integrated with information on the movements. Little is known, however, about how these movements modulate auditory perceptual processing. Here, we investigate the effect of the linear acceleration on auditory space representation. Participants were passively transported forward/backward at constant accelerations using a robotic wheelchair. An array of loudspeakers was aligned parallel to the motion direction along a wall to the right of the listener. A short noise burst was presented during the self-motion from one of the loudspeakers when the listener's physical coronal plane reached the location of one of the speakers (null point). In Experiments 1 and 2, the participants indicated which direction the sound was presented, forward or backward relative to their subjective coronal plane. The results showed that the sound position aligned with the subjective coronal plane was displaced ahead of the null point only during forward self-motion and that the magnitude of the displacement increased with increasing the acceleration. Experiment 3 investigated the structure of the auditory space in the traveling direction during forward self-motion. The sounds were presented at various distances from the null point. The participants indicated the perceived sound location by pointing a rod. All the sounds that were actually located in the traveling direction were perceived as being biased towards the null point. These results suggest a distortion of the auditory space in the direction of movement during forward self-motion. The underlying mechanism might involve anticipatory spatial shifts in the auditory receptive field locations driven by afferent signals from vestibular system.

  9. Coronal bright points associated with minifilament eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan

    2014-12-01

    Coronal bright points (CBPs) are small-scale, long-lived coronal brightenings that always correspond to photospheric network magnetic features of opposite polarity. In this paper, we subjectively adopt 30 CBPs in a coronal hole to study their eruptive behavior using data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. About one-quarter to one-third of the CBPs in the coronal hole go through one or more minifilament eruption(s) (MFE(s)) throughout their lifetimes. The MFEs occur in temporal association with the brightness maxima of CBPs and possibly result from the convergence and cancellationmore » of underlying magnetic dipoles. Two examples of CBPs with MFEs are analyzed in detail, where minifilaments appear as dark features of a cool channel that divide the CBPs along the neutral lines of the dipoles beneath. The MFEs show the typical rising movements of filaments and mass ejections with brightenings at CBPs, similar to large-scale filament eruptions. Via differential emission measure analysis, it is found that CBPs are heated dramatically by their MFEs and the ejected plasmas in the MFEs have average temperatures close to the pre-eruption BP plasmas and electron densities typically near 10{sup 9} cm{sup –3}. These new observational results indicate that CBPs are more complex in dynamical evolution and magnetic structure than previously thought.« less

  10. Report on New Mission Concept Study: Stereo X-Ray Corona Imager Mission

    NASA Technical Reports Server (NTRS)

    Liewer, Paulett C.; Davis, John M.; DeJong, E. M.; Gary, G. Allen; Klimchuk, James A.; Reinert, R. P.

    1998-01-01

    Studies of the three-dimensional structure and dynamics of the solar corona have been severely limited by the constraint of single viewpoint observations. The Stereo X-Ray Coronal Imager (SXCI) mission will send a single instrument, an X-ray telescope, into deep space expressly to record stereoscopic images of the solar corona. The SXCI spacecraft will be inserted into a approximately 1 AU heliocentric orbit leading Earth by approximately 25 deg at the end of nine months. The SXCI X-ray telescope forms one element of a stereo pair, the second element being an identical X-ray telescope in Earth orbit placed there as part of the NOAA GOES program. X-ray emission is a powerful diagnostic of the corona and its magnetic fields, and three dimensional information on the coronal magnetic structure would be obtained by combining the data from the two X-ray telescopes. This information can be used to address the major solar physics questions of (1) what causes explosive coronal events such as coronal mass ejections (CMEs), eruptive flares and prominence eruptions and (2) what causes the transient heating of coronal loops. Stereoscopic views of the optically thin corona will resolve some ambiguities inherent in single line-of-sight observations. Triangulation gives 3D solar coordinates of features which can be seen in the simultaneous images from both telescopes. As part of this study, tools were developed for determining the 3D geometry of coronal features using triangulation. Advanced technologies for visualization and analysis of stereo images were tested. Results of mission and spacecraft studies are also reported.

  11. Identification of coronal heating events in 3D simulations

    NASA Astrophysics Data System (ADS)

    Kanella, Charalambos; Gudiksen, Boris V.

    2017-07-01

    Context. The solar coronal heating problem has been an open question in the science community since 1939. One of the proposed models for the transport and release of mechanical energy generated in the sub-photospheric layers and photosphere is the magnetic reconnection model that incorporates Ohmic heating, which releases a part of the energy stored in the magnetic field. In this model many unresolved flaring events occur in the solar corona, releasing enough energy to heat the corona. Aims: The problem with the verification and quantification of this model is that we cannot resolve small scale events due to limitations of the current observational instrumentation. Flaring events have scaling behavior extending from large X-class flares down to the so far unobserved nanoflares. Histograms of observable characteristics of flares show powerlaw behavior for energy release rate, size, and total energy. Depending on the powerlaw index of the energy release, nanoflares might be an important candidate for coronal heating; we seek to find that index. Methods: In this paper we employ a numerical three-dimensional (3D)-magnetohydrodynamic (MHD) simulation produced by the numerical code Bifrost, which enables us to look into smaller structures, and a new technique to identify the 3D heating events at a specific instant. The quantity we explore is the Joule heating, a term calculated directly by the code, which is explicitly correlated with the magnetic reconnection because it depends on the curl of the magnetic field. Results: We are able to identify 4136 events in a volume 24 × 24 × 9.5 Mm3 (I.e., 768 × 786 × 331 grid cells) of a specific snapshot. We find a powerlaw slope of the released energy per second equal to αP = 1.5 ± 0.02, and two powerlaw slopes of the identified volume equal to αV = 1.53 ± 0.03 and αV = 2.53 ± 0.22. The identified energy events do not represent all the released energy, but of the identified events, the total energy of the largest events dominate the energy release. Most of the energy release happens in the lower corona, while heating drops with height. We find that with a specific identification method large events can be resolved into smaller ones, but at the expense of the total identified energy releases. The energy release that cannot be identified as an event favors a low energy release mechanism. Conclusions: This is the first step to quantitatively identify magnetic reconnection sites and measure the energy released by current sheet formation.

  12. 3D MHD MODELING OF TWISTED CORONAL LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reale, F.; Peres, G.; Orlando, S.

    We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube in the solar atmosphere extending from the high- β chromosphere to the low- β corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ∼30 km.more » We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (∼3 MK) after ∼2/3 hr. Upflows from the chromosphere up to ∼100 km s{sup −1} fill the core of the flux tube to densities above 10{sup 9} cm{sup −3}. More heating is released in the low corona than the high corona and is finely structured both in space and time.« less

  13. LOOPREF: A Fluid Code for the Simulation of Coronal Loops

    NASA Technical Reports Server (NTRS)

    deFainchtein, Rosalinda; Antiochos, Spiro; Spicer, Daniel

    1998-01-01

    This report documents the code LOOPREF. LOOPREF is a semi-one dimensional finite element code that is especially well suited to simulate coronal-loop phenomena. It has a full implementation of adaptive mesh refinement (AMR), which is crucial for this type of simulation. The AMR routines are an improved version of AMR1D. LOOPREF's versatility makes is suitable to simulate a wide variety of problems. In addition to efficiently providing very high resolution in rapidly changing regions of the domain, it is equipped to treat loops of variable cross section, any non-linear form of heat conduction, shocks, gravitational effects, and radiative loss.

  14. Physical properties of erupting plasma associated with coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Lee, J.; Raymond, J. C.; Reeves, K. K.; Moon, Y.; Kim, K.

    2013-12-01

    We investigate the physical properties (temperature, density, and mass) of erupting plasma observed in X-rays and EUV, which are all associated with coronal mass ejections observed by SOHO/LASCO. The erupting plasmas are observed as absorption or emission features in the low corona. The absorption feature provides a lower limit to the cold mass while the emission feature provides an upper limit to the mass of observed plasma in X-ray and EUV. We compare the mass constraints for each temperature response and find that the mass estimates in EUV and XRT are smaller than the total mass in the coronagraph. Several events were observed by a few passbands in the X-rays, which allows us to determine the temperature of the eruptive plasma using a filter ratio method. The temperature of one event is estimated at about 8.6 MK near the top of the erupting plasma. This measurement is possibly an average temperature for higher temperature plasma because the XRT is more sensitive at higher temperatures. In addition, a few events show that the absorption features of a prominence or a loop change to emission features with the beginning of their eruptions in all EUV wavelengths of SDO/AIA, which indicates the heating of the plasma. By estimating the physical properties of the erupting plasmas, we discuss the heating of the plasmas associated with coronal mass ejections in the low corona.

  15. Magnetic coronae and circumstellar disks - new insights from the Coordinated Synoptic Investigation of NGC2264 (CSI-NGC2264)

    NASA Astrophysics Data System (ADS)

    Flaccomio, E.

    2014-07-01

    Proto-planetary disks are affected by radiative and magnetic interactions with the central object. X-ray/UV coronal and accretion-shock emission may drive gas ionization and heating and, consequently, photo-evaporation and disk dispersal. The magnetosphere connecting the star and inner disk mediates mass and angular momentum exchanges and modifies the disk structure. These interconnected processes are highly dynamic and involve material emitting in different bands: the inner disk dust (mIR), the stellar photosphere (optical), accretion shocks (UV/X-rays), and coronae (X-rays). I will present selected results form the Coordinated Synoptic Investigation of NGC2264 (CSI-NGC2264), an unprecedented multi-wavelength month-long observing campaign of the NGC2264 region. Three space telescopes (Spitzer, CoRoT, and Chandra) simultaneously monitored a rich sample of ~3Myr old stars in the mIR, optical, and X-ray bands, providing new insights on the dynamics of the respective emitting regions and their interactions. First, I will discuss magnetic flares: for the first time we observe the heating phase (in the optical), the decay (in X-rays), and, possibly, the disk response to the flare (in the mIR). I will then focus on the longer time-scale relation between X-ray (coronal) and optical (photospheric)/mIR(disk) emission, with particular reference to the obscuration of coronal plasma by temporally varying disk structures.

  16. A tenuous X-ray corona enveloping AE Aquarii

    NASA Astrophysics Data System (ADS)

    Venter, L. A.; Meintjes, P. J.

    2007-06-01

    In this paper we propose that the observed unpulsed X-ray emission in AE Aquarii is the result of a very tenuous hot corona associated with the secondary star, which is pumped magnetohydrodynamically by the propeller action of the fast rotating white dwarf. It is shown that the closed coronal field of the secondary star envelops a substantial portion of the binary system, including the fast rotating magnetized white dwarf. This implies that the propeller outflow of material in AE Aquarii is initiated inside an enveloping magnetic cavity. The outflow crossing the secondary dead-zone field constitutes a βgen = (8πρv2esc/B2) >> 1 plasma, acting as a magnetohydrodynamic generator resulting in the induction of field-aligned currents in these closed magnetospheric circuits where βcir = (8πnkT/B2) << 1. The Ohmic heating of the coronal circuit can readily account for a Tx >= 107 K plasma in the coronal flux tubes connecting the generator and the stellar surface. Further, the bremsstrahlung losses of the thermal electrons in the coronal circuit can readily drive the observed unpulsed X-ray luminosity of Lx ~ 1031 ergs -1, which correlates with the luminosity and relatively large source implied by recent XMM-Newton observations.

  17. Understanding Coronal Dimming and its Relation to Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Mason, J. P.; Woods, T. N.; Caspi, A.; Hock, R. A.

    2013-12-01

    When extreme ultraviolet (EUV) emitting material in the corona is lost during a coronal mass ejection (CME), the solar spectral irradiance is impacted and these effects are observed in data from the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) and Atmospheric Imaging Assembly (AIA). This process is one of the physical mechanisms that can lead to the observation of 'coronal dimming,' a phenomenon lasting eight hours on average and rarely persisting longer than one day. Other mechanisms that can cause observed dimming include obscuration of bright material (e.g., flare arcade) by dark material (e.g., filament), temperature evolution (e.g., cool plasma being heated causing transient decreases in characteristic emission lines), and propagation of global waves. Each of these processes has a unique spectral signature, which will be explained and exemplified. In particular, the 7 August 2010 M1.0 flare with associated ~870 km/s CME will be analyzed in detail using both AIA and EVE to demonstrate new techniques for isolating dimming due to the CME ('core dimming'). Further analysis will estimate CME mass and velocity using only parameterization of core dimming and compare these estimates to traditionally calculated CME kinetics.

  18. Inflow Generated X-ray Corona Around Supermassive Black Holes and Unified Model for X-ray Emission

    NASA Astrophysics Data System (ADS)

    Wang, Lile; Cen, Renyue

    2016-01-01

    Three-dimensional hydrodynamic simulations, covering the spatial domain from hundreds of Schwarzschild radii to 2 pc around the central supermassive black hole of mass 108 M⊙, with detailed radiative cooling processes, are performed. Generically found is the existence of a significant amount of shock heated, high temperature (≥108 K) coronal gas in the inner (≤104 rsch) region. It is shown that the composite bremsstrahlung emission spectrum due to coronal gas of various temperatures are in reasonable agreement with the overall ensemble spectrum of AGNs and hard X-ray background. Taking into account inverse Compton processes, in the context of the simulation-produced coronal gas, our model can readily account for the wide variety of AGN spectral shape, which can now be understood physically. The distinguishing feature of our model is that X-ray coronal gas is, for the first time, an integral part of the inflow gas and its observable characteristics are physically coupled to the concomitant inflow gas. One natural prediction of our model is the anti-correlation between accretion disk luminosity and spectral hardness: as the luminosity of SMBH accretion disk decreases, the hard X-ray luminosity increases relative to the UV/optical luminosity.

  19. A Long Look at MCG-5-23-16 with NuSTAR . I. Relativistic Reflection and Coronal Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoghbi, Abderahmen; Miller, J. M.; Matt, G.

    MCG-5-23-16 was targeted in early 2015 with a half mega-second observing campaign using NuSTAR . Here we present the spectral analysis of these data sets along with an earlier observation and study the relativistic reflection and the primary coronal source. The data show strong reflection features in the form of both narrow and broad iron lines plus a Compton reflection hump. A cutoff energy is significantly detected in all exposures. The shape of the reflection spectrum does not change in the two years spanned by the observations, suggesting a stable geometry. A strong positive correlation is found between the cutoffmore » energy and both the hard X-ray flux and spectral index. The measurements imply that the coronal plasma is not at the runaway electron–positron pair limit, and instead contains mostly electrons. The observed variability in the coronal properties is driven by a variable optical depth. A constant heating-to-cooling ratio is measured, implying that there is a feedback mechanism in which a significant fraction of the photons cooling the corona are due to reprocessed hard X-rays.« less

  20. A Long Look at MCG-5-23-16 with NuSTAR. I. Relativistic Reflection and Coronal Properties

    NASA Technical Reports Server (NTRS)

    Zoghbi, Abderahmen; Matt, G.; Miller, J. M.; Lohfink, A. M.; Walton, D. J.; Ballantyne, D. R.; Garcia, J. A.; Stern, D.; Koss, M. J.; Farrah, D.; hide

    2017-01-01

    MCG-5-23-16 was targeted in early 2015 with a half mega-second observing campaign using NuSTAR. Here we present the spectral analysis of these data sets along with an earlier observation and study the relativistic reflection and the primary coronal source. The data show strong reflection features in the form of both narrow and broad iron lines plus a Compton reflection hump. A cutoff energy is significantly detected in all exposures. The shape of the reflection spectrum does not change in the two years spanned by the observations, suggesting a stable geometry. A strong positive correlation is found between the cutoff energy and both the hard X-ray flux and spectral index. The measurements imply that the coronal plasma is not at the runaway electron-positron pair limit, and instead contains mostly electrons. The observed variability in the coronal properties is driven by a variable optical depth. A constant heating-to-cooling ratio is measured, implying that there is a feedback mechanism in which a significant fraction of the photons cooling the corona are due to reprocessed hard X-rays.

  1. The Level of Self-Esteem and Sexual Functioning in Women with Idiopathic Scoliosis: A Preliminary Study.

    PubMed

    Durmała, Jacek; Blicharska, Irmina; Drosdzol-Cop, Agnieszka; Skrzypulec-Plinta, Violetta

    2015-08-12

    A person's image, which is determined through physical appearance, considerably affects self-esteem developed from early childhood. Scoliosis causes multiple trunk deformations that can affect a person's perception of the body. The aim of the study was to analyze the impact of scoliosis dimension and the degree of trunk deformation on the level of self-esteem and sexual functioning in women with idiopathic scoliosis. Thirty-six women diagnosed with idiopathic scoliosis were recruited to a prospective, double-blind, randomized controlled trial. The subjects were divided into two groups depending on the value of the Cobb angle. The level of self-esteem was determined by means of the Rosenberg Self-Esteem Scale (SES), whereas the sexual functioning was assessed via the Female Sexual Function Index (FSFI). The trunk deformations were specified with the Posterior Trunk Symmetry Index (POTSI). A statistically significant correlation was proved between the amount of points received in the Rosenberg scale evaluation and the POTSI index in Group A (R = -0.56, p = 0.04). Subjects with smaller deformations within the coronal plane had a higher level of self-confidence. The trunk asymmetries in the coronal plane may have a negative effect on women with scoliosis and their self-appraisal.

  2. HOT PLASMA FROM SOLAR ACTIVE REGION CORES: A TEST OF AC AND DC CORONAL HEATING MODELS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmelz, J. T.; Christian, G. M.; Dhaliwal, R. S.

    2015-06-20

    Direct current (DC) models of solar coronal heating invoke magnetic reconnection to convert magnetic free energy into heat, whereas alternating current (AC) models invoke wave dissipation. In both cases the energy is supplied by photospheric footpoint motions. For a given footpoint velocity amplitude, DC models predict lower average heating rates but greater temperature variability when compared to AC models. Therefore, evidence of hot plasma (T > 5 MK) in the cores of active regions could be one of the ways for current observations to distinguish between AC and DC models. We have analyzed data from the X-Ray Telescope (XRT) andmore » the Atmospheric Imaging Assembly for 12 quiescent active region cores, all of which were observed in the XRT Be-thick channel. We did Differential Emission Measure (DEM) analysis and achieved good fits for each data set. We then artificially truncated the hot plasma of the DEM model at 5 MK and examined the resulting fits to the data. For some regions in our sample, the XRT intensities continued to be well-matched by the DEM predictions, even without the hot plasma. This truncation, however, resulted in unacceptable fits for the other regions. This result indicates that the hot plasma is present in these regions, even if the precise DEM distribution cannot be determined with the data available. We conclude that reconnection may be heating the hot plasma component of these active regions.« less

  3. Alfvén Wave Reflection and Turbulent Heating in the Solar Wind from 1 Solar Radius to 1 AU: An Analytical Treatment

    NASA Astrophysics Data System (ADS)

    Chandran, Benjamin D. G.; Hollweg, Joseph V.

    2009-12-01

    We study the propagation, reflection, and turbulent dissipation of Alfvén waves in coronal holes and the solar wind. We start with the Heinemann-Olbert equations, which describe non-compressive magnetohydrodynamic fluctuations in an inhomogeneous medium with a background flow parallel to the background magnetic field. Following the approach of Dmitruk et al., we model the nonlinear terms in these equations using a simple phenomenology for the cascade and dissipation of wave energy and assume that there is much more energy in waves propagating away from the Sun than waves propagating toward the Sun. We then solve the equations analytically for waves with periods of hours and longer to obtain expressions for the wave amplitudes and turbulent heating rate as a function of heliocentric distance. We also develop a second approximate model that includes waves with periods of roughly one minute to one hour, which undergo less reflection than the longer-period waves, and compare our models to observations. Our models generalize the phenomenological model of Dmitruk et al. by accounting for the solar wind velocity, so that the turbulent heating rate can be evaluated from the coronal base out past the Alfvén critical point—that is, throughout the region in which most of the heating and acceleration occurs. The simple analytical expressions that we obtain can be used to incorporate Alfvén-wave reflection and turbulent heating into fluid models of the solar wind.

  4. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  5. A parameter study of the two-fluid solar wind

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil; Holzer, Thomas E.

    1992-01-01

    A two-fluid model of the solar wind was introduced by Sturrock and Hartle (1966) and Hartle and Sturrock (1968). In these studies the proton energy equation was integrated neglecting the heat conductive term. Later several authors solved the equations for the two-fluid solar wind model keeping the proton heat conductive term. Methods where the equations are integrated simultaneously outward and inward from the critical point were used. The equations were also integrated inward from a large heliocentric distance. These methods have been applied to cases with low coronal base electron densities and high base temperatures. In this paper we present a method of integrating the two-fluid solar wind equations using an iteration procedure where the equations are integrated separately and the proton flux is kept constant during the integrations. The technique is applicable for a wide range of coronal base densities and temperatures. The method is used to carry out a parameter study of the two-fluid solar wind.

  6. Extreme-ultraviolet observations of global coronal wave rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attrill, G. D. R.; Long, D. M.; Green, L. M.

    2014-11-20

    We present evidence of global coronal wave rotation in EUV data from SOHO/EIT, STEREO/EUVI, and SDO/AIA. The sense of rotation is found to be consistent with the helicity of the source region (clockwise for positive helicity, anticlockwise for negative helicity), with the source regions hosting sigmoidal structures. We also study two coronal wave events observed by SDO/AIA where no clear rotation (or sigmoid) is observed. The selected events show supporting evidence that they all originate with flux rope eruptions. We make comparisons across this set of observations (both with and without clear sigmoidal structures). On examining the magnetic configuration ofmore » the source regions, we find that the nonrotation events possess a quadrupolar magnetic configuration. The coronal waves that do show a rotation originate from bipolar source regions.« less

  7. Interpretation of 'Unnatural death' in coronial law: A review of the English legal process of decision making, statutory interpretation, and case law: The implications for medical cases and coronial consistency.

    PubMed

    Harris, Andrew; Walker, Andrew

    2018-04-23

    The article examines the decision-making process for medical reporting of deaths to a coroner and the statutory basis for coronial decisions whether to investigate. It analyses what is published about the consistency of decision making of coroners and discusses what should be the legal basis for determining whether a particular death is natural or unnatural in English law. There is a review of English case law, including the significance of Touche and Benton and the development of 'unnatural' as a term of art, which informs what the courts have held to be an unnatural death. What case law indicates about multiple causes and the significance of the wording in the Coroners & Justice Act 2009 that triggers an investigation are considered. It highlights the importance of considering the medical cause of death and to what extent information other than the initial death report is required, before making the decision that the coroner's duty to open an investigation is triggered. The article concludes that a two-stage test is required. Firstly, is the cause of death medically unnatural? Secondly, whether the circumstances themselves are unnatural or such as to make a medically natural cause of death unnatural. If the coroner has reason to suspect the medical cause of death is unnatural per se the statutory duty to investigate will be engaged, regardless of the circumstances.

  8. Self-Organization by Stochastic Reconnection: The Mechanism Underlying CMEs/Flares

    NASA Astrophysics Data System (ADS)

    Antiochos, S. K.; Knizhnik, K. J.; DeVore, C. R.

    2017-12-01

    The largest explosions in the solar system are the giant CMEs/flares that produce the most dangerous space weather at Earth, yet may also have been essential for the origin of life. The root cause of CMEs/flares is that the lowest-lying magnetic field lines in the Sun's corona undergo the continual buildup of stress and free energy that can be released only through explosive ejection. We perform the first MHD simulations of a coronal-photospheric magnetic system that is driven by random photospheric convective flows and has a realistic geometry for the coronal field. Furthermore, our simulations accurately preserve the key constraint of magnetic helicity. We find that even though small-scale stress is injected randomly throughout the corona, the net result of "stochastic" coronal reconnection is a coherent stretching of the lowest-lying field lines. This highly counter-intuitive demonstration of self-organization - magnetic stress builds up locally rather than spreading out to a minimum energy state - is the fundamental mechanism responsible for the Sun's magnetic explosions and is likely to be a mechanism that is ubiquitous throughout space and laboratory plasmas. This work was supported in part by the NASA LWS and SR Programs.

  9. Mechanical heating in the transition region

    NASA Technical Reports Server (NTRS)

    Withbroe, G.

    1981-01-01

    Attention is focused on the energy balance in the transition region and the role that mechanical heating plays in determining the temperature density structure of this region in a stellar atmosphere. Because of its role as the interface layer through which mass and energy flow between the chromospheres and corona, direct deposition of mechanical energy is a relatively unimportant factor in the overall energy balance in the transition region, except in the uppermost layers where the temperature approaches coronal values.

  10. MASC: Magnetic Activity of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and orientation is primarily based on extrapolations from photospheric observations, not from direct measurements. These extrapolations require strong assumptions on critical but unobserved quantities and thus fail to accurately reproduce the complex topologies inferred from remote-sensing observations of coronal structures in white light, EUV, and X-rays. Direct measurements of the coronal magnetic field are also clearly identified by the international heliophysics community as a key element susceptible to lead to major breakthroughs in the understanding of our star. MASC is thus designed to answer the following top-level scientific questions: 1. What is the global magnetic field configuration in the corona? 2. What is the role of the magnetic field in the triggering of flares and CMEs? 3. What is the role of the magnetic field in the acceleration mechanisms of the solar winds? 4. What is the energy spectrum and in particular what are the highest energies to which charged particles can be accelerated in the solar corona? MASC will address these fundamental questions with a suite of instruments composed of an X-ray spectrometer, a UV / EUV imager, and a coronagraph working in the visible and at Lyman alpha. The spectrometer will provide information on the energetics of solar flares, in particular at very high energies of accelerated particles. The UV / EUV imager will provide constraints on the temperature of the flaring and non-flaring corona. The coronagraph will provide the number density of free electrons in the corona, maps of the outflow velocity of neutral hydrogen, and measurements of the coronal magnetic field, via the Hanle effect. These measurements will be performed at all steps of the flare-CME processes, thus providing a detailed picture of the solar coronal dynamics in the quiet and eruptive periods.

  11. An observationally-driven kinetic approach to coronal heating

    NASA Astrophysics Data System (ADS)

    Moraitis, K.; Toutountzi, A.; Isliker, H.; Georgoulis, M.; Vlahos, L.; Chintzoglou, G.

    2016-11-01

    Aims: Coronal heating through the explosive release of magnetic energy remains an open problem in solar physics. Recent hydrodynamical models attempt an investigation by placing swarms of "nanoflares" at random sites and times in modeled one-dimensional coronal loops. We investigate the problem in three dimensions, using extrapolated coronal magnetic fields of observed solar active regions. Methods: We applied a nonlinear force-free field extrapolation above an observed photospheric magnetogram of NOAA active region (AR) 11 158. We then determined the locations, energy contents, and volumes of "unstable" areas, namely areas prone to releasing magnetic energy due to locally accumulated electric current density. Statistical distributions of these volumes and their fractal dimension are inferred, investigating also their dependence on spatial resolution. Further adopting a simple resistivity model, we inferred the properties of the fractally distributed electric fields in these volumes. Next, we monitored the evolution of 105 particles (electrons and ions) obeying an initial Maxwellian distribution with a temperature of 10 eV, by following their trajectories and energization when subjected to the resulting electric fields. For computational convenience, the length element of the magnetic-field extrapolation is 1 arcsec, or 725 km, much coarser than the particles' collisional mean free path in the low corona (0.1-1 km). Results: The presence of collisions traps the bulk of the plasma around the unstable volumes, or current sheets (UCS), with only a tail of the distribution gaining substantial energy. Assuming that the distance between UCS is similar to the collisional mean free path we find that the low active-region corona is heated to 100-200 eV, corresponding to temperatures exceeding 2 MK, within tens of seconds for electrons and thousands of seconds for ions. Conclusions: Fractally distributed, nanoflare-triggening fragmented UCS in the active-region corona can heat electrons and ions with minor enhancements of the local resistivity. This statistical result is independent from the nature of the extrapolation and the spatial resolution of the modeled active-region corona. This finding should be coupled with a complete plasma treatment to determine whether a quasi-steady temperature similar to that of the ambient corona can be maintained, either via a kinetic or via a hybrid, kinetic and fluid, plasma treatment. The finding can also be extended to the quiet solar corona, provided that the currently undetected nanoflares are frequent enough to account for the lower (compared to active regions) energy losses in this case.

  12. Plasma Heating and Ultrafast Semiconductor Laser Modulation Through a Terahertz Heating Field

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Ning, C. Z.

    2000-01-01

    Electron-hole plasma heating and ultrafast modulation in a semiconductor laser under a terahertz electrical field are investigated using a set of hydrodynamic equations derived from the semiconductor Bloch equations. The self-consistent treatment of lasing and heating processes leads to the prediction of a strong saturation and degradation of modulation depth even at moderate terahertz field intensity. This saturation places a severe limit to bandwidth achievable with such scheme in ultrafast modulation. Strategies for increasing modulation depth are discussed.

  13. A heating mechanism for the chromospheres of M dwarf stars

    NASA Technical Reports Server (NTRS)

    Giampapa, M. S.; Golub, L.; Rosner, R.; Vaiana, G.; Linsky, J. L.; Worden, S. P.

    1981-01-01

    The atmospheric structure of the dwarf M-stars which is especially important to the general field of stellar chromospheres and coronae was investigated. The M-dwarf stars constitute a class of objects for which the discrepancy between the predictions of the acoustic wave chromospheric/coronal heating hypothesis and the observations is most vivid. It is assumed that they represent a class of stars where alternative atmospheric heating mechanisms, presumably magnetically related, are most clearly manifested. Ascertainment of the validity of a hypothesis to account for the origin of the chromospheric and transition region line emission in M-dwarf stars is proposed.

  14. Determination of Coronal Magnetic Fields from Vector Magnetograms

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1997-01-01

    During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that magnetic nonequilibrium can disrupt sheared coronal arcades, and that helmet streamers can disrupt, leading to coronal mass ejections. Our model has significantly extended the realism with which the coronal magnetic field can be inferred from actual observations. In a subsequent contract awarded by NASA, we have continued to apply and improve the evolutionary technique, to study the physical properties of active regions, and to develop theoretical models of magnetic fields.

  15. The structure of high-temperature solar flare plasma in non-thermal flare models

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1985-01-01

    Analytic differential emission measure distributions have been derived for coronal plasma in flare loops heated both by collisions of high-energy suprathermal electrons with background plasma, and by ohmic heating by the beam-normalizing return current. For low densities, reverse current heating predominates, while for higher densities collisional heating predominates. There is thus a minimum peak temperature in an electron-heated loop. In contrast to previous approximate analyses, it is found that a stable reverse current can dominate the heating rate in a flare loop, especially in the low corona. Two 'scaling laws' are found which relate the peak temperature in the loop to the suprathermal electron flux. These laws are testable observationally and constitute a new diagnostic procedure for examining modes of energy transport in flaring loops.

  16. Numerical analysis of high-power broad-area laser diode with improved heat sinking structure using epitaxial liftoff technique

    NASA Astrophysics Data System (ADS)

    Kim, Younghyun; Sung, Yunsu; Yang, Jung-Tack; Choi, Woo-Young

    2018-02-01

    The characteristics of high-power broad-area laser diodes with the improved heat sinking structure are numerically analyzed by a technology computer-aided design based self-consistent electro-thermal-optical simulation. The high-power laser diodes consist of a separate confinement heterostructure of a compressively strained InGaAsP quantum well and GaInP optical cavity layers, and a 100-μm-wide rib and a 2000-μm long cavity. In order to overcome the performance deteriorations of high-power laser diodes caused by self-heating such as thermal rollover and thermal blooming, we propose the high-power broad-area laser diode with improved heat-sinking structure, which another effective heat-sinking path toward the substrate side is added by removing a bulk substrate. It is possible to obtain by removing a 400-μm-thick GaAs substrate with an AlAs sacrificial layer utilizing well-known epitaxial liftoff techniques. In this study, we present the performance improvement of the high-power laser diode with the heat-sinking structure by suppressing thermal effects. It is found that the lateral far-field angle as well as quantum well temperature is expected to be improved by the proposed heat-sinking structure which is required for high beam quality and optical output power, respectively.

  17. Understanding Coronal Heating through Time-Series Analysis and Nanoflare Modeling

    NASA Astrophysics Data System (ADS)

    Romich, Kristine; Viall, Nicholeen

    2018-01-01

    Periodic intensity fluctuations in coronal loops, a signature of temperature evolution, have been observed using the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) spacecraft. We examine the proposal that nanoflares, or impulsive bursts of energy release in the solar atmosphere, are responsible for the intensity fluctuations as well as the megakelvin-scale temperatures observed in the corona. Drawing on the work of Cargill (2014) and Bradshaw & Viall (2016), we develop a computer model of the energy released by a sequence of nanoflare events in a single magnetic flux tube. We then use EBTEL (Enthalpy-Based Thermal Evolution of Loops), a hydrodynamic model of plasma response to energy input, to simulate intensity as a function of time across the coronal AIA channels. We test the EBTEL output for periodicities using a spectral code based on Mann and Lees’ (1996) multitaper method and present preliminary results here. Our ultimate goal is to establish whether quasi-continuous or impulsive energy bursts better approximate the original SDO data.

  18. Three-Dimensional MHD Modeling of The Solar Corona and Solar Wind: Comparison with The Wang-Sheeley Model

    NASA Technical Reports Server (NTRS)

    Usmanov, A. V.; Goldstein, M. L.

    2003-01-01

    We present simulation results from a tilted-dipole steady-state MHD model of the solar corona and solar wind and compare the output from our model with the Wang-Sheeley model which relates the divergence rate of magnetic flux tubes near the Sun (inferred from solar magnetograms) to the solar wind speed observed near Earth and at Ulysses. The boundary conditions in our model specified at the coronal base and our simulation region extends out to 10 AU. We assumed that a flux of Alfven waves with amplitude of 35 km per second emanates from the Sun and provides additional heating and acceleration for the coronal outflow in the open field regions. The waves are treated in the WKB approximation. The incorporation of wave acceleration allows us to reproduce the fast wind measurements obtained by Ulysses, while preserving reasonable agreement with plasma densities typically found at the coronal base. We find that our simulation results agree well with Wang and Sheeley's empirical model.

  19. INFERRING THE CORONAL DENSITY IRREGULARITY FROM EUV SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, M.; Savin, D. W., E-mail: mhahn@astro.columbia.edu

    2016-09-20

    Understanding the density structure of the solar corona is important for modeling both coronal heating and the solar wind. Direct measurements are difficult because of line-of-sight integration and possible unresolved structures. We present a new method for quantifying such structures using density-sensitive extreme ultraviolet line intensities to derive a density irregularity parameter, a relative measure of the amount of structure along the line of sight. We also present a simple model to relate the inferred irregularities to physical quantities, such as the filling factor and density contrast. For quiet-Sun regions and interplume regions of coronal holes, we find a densitymore » contrast of at least a factor of 3–10 and corresponding filling factors of about 10%–20%. Our results are in rough agreement with other estimates of the density structures in these regions. The irregularity diagnostic provides a useful relative measure of unresolved structure in various regions of the corona.« less

  20. Temporal evolution of solar wind ion composition and their source coronal holes during the declining phase of cycle 23. I. Low-latitude extension of polar coronal holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Yuan-Kuen; Wang, Yi-Ming; Muglach, Karin

    2014-06-01

    We analyzed 27 solar wind (SW) intervals during the declining phase of cycle 23, whose source coronal holes (CHs) can be unambiguously identified and are associated with one of the polar CHs. We found that the SW ions have a temporal trend of decreasing ionization state, and such a trend is different between the slow and fast SW. The photospheric magnetic field, both inside and at the outside boundary of the CH, also exhibits a trend of decrease with time. However, EUV line emissions from different layers of the atmosphere exhibit different temporal trends. The coronal emission inside the CHmore » generally increases toward the CH boundary as the underlying field increases in strength and becomes less unipolar. In contrast, this relationship is not seen in the coronal emission averaged over the entire CH. For C and O SW ions that freeze-in at lower altitude, stronger correlation between their ionization states and field strength (both signed and unsigned) appears in the slow SW, while for Fe ions that freeze-in at higher altitude, stronger correlation appears in the fast SW. Such correlations are seen both inside the CH and at its boundary region. On the other hand, the coronal electron temperature correlates well with the SW ion composition only in the boundary region. Our analyses, although not able to determine the likely footpoint locations of the SW of different speeds, raise many outstanding questions for how the SW is heated and accelerated in response to the long-term evolution of the solar magnetic field.« less

  1. The Triggering Mechanism of Quiet-Region Coronal Jet Eruptions: Flux Cancelation

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2017-01-01

    Coronal jets are frequent transient features on the Sun, observed in EUV and X-ray emissions. They occur in active regions, quiet Sun and coronal holes, and appear as a bright spire with base brightenings. Recent studies show that many coronal jets are driven by the eruption of a minifilament. Here we investigate the magnetic cause of jet-driving minifilament eruptions. We study ten randomly-found on-disk quiet-region coronal jets using SDO/AIA intensity images and SDO/HMI magnetograms. For all ten events, we track the evolution of photospheric magnetic flux in the jet-base region in EUV images and find that (a) a cool (transition-region temperature) minifilament is present prior to each jet eruption; (b) the pre-eruption minifilament resides above the polarity-inversion line between majority-polarity and minority-polarity magnetic flux patches; (c) the opposite-polarity flux patches converge and cancel with each other; (d) the cancelation between the majority-polarity and minority-polarity flux patches eventually destabilizes the field holding the minifilament to erupt outwards; (e) the envelope of the erupting field barges into ambient oppositely-directed far-reaching field and undergoes external reconnection (interchange reconnection); (f) the external reconnection opens the envelope field and the minifilament field inside, allowing reconnected-heated hot material and cool minifilament material to escape along the far-reaching field, producing the jet spire. In summary, we found that each of our ten jets resulted from a minifilament eruption following flux cancelation at the magnetic neutral line under the pre-eruption minifilament. These observations show that flux cancelation is usually the trigger of quiet-region coronal jet eruptions.

  2. Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thalmann, J. K.; Tiwari, S. K.; Wiegelmann, T., E-mail: julia.thalmann@uni-graz.at

    2014-01-01

    The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated withmore » a braided coronal structure. Our model results suggest (∼100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.« less

  3. Observations of the birth of a small coronal hole

    NASA Technical Reports Server (NTRS)

    Solodyna, C. V.; Krieger, A. S.; Nolte, J. T.

    1977-01-01

    Using soft X-ray data from the S-054 X-ray spectrographic telescope aboard Skylab, we observed temporal changes in the emission structure of the X-ray corona associated with the birth of a small coronal hole. Designated as CH6, this coronal hole was born near the equator in a time interval less than 9-1/2 hr. By constructing a light curve for a point near the center of CH6, we observed a sudden 40% decrease in X-ray emission associated with the birth of this coronal hole. On a time scale of hours, the growth of CH6 in area proceeded faster than the average rate predicted by the diffusion of solar fields. The short term decay of CH6 followed the diffusive rate to within experimental uncertainty. On a time scale of one rotation, the subsequent development of CH6 was not consistent with steady growth at the average rate predicted by diffusion.

  4. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Smith, David M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Stern, D.; Grefenstette, B. W.; Harrison, F. A.

    2011-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. In 2012, the Nuclear Spectroscopic Telescope Array (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. NuSTAR is capable of solar pointing, and three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes, and comparison of these events with observations of 3He and other particles in interplanetary space 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched 6) Study of particles at the coronal reconnection site when flare footpoints are occulted; and 7) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  5. Brightness and magnetic evolution of solar coronal bright points

    NASA Astrophysics Data System (ADS)

    Ugarte Urra, Ignacio

    This thesis presents a study of the brightness and magnetic evolution of several Extreme ultraviolet (EUV) coronal bright points (hereafter BPs). The study was carried out using several instruments on board the Solar and Heliospheric Observatory, supported by the high resolution imaging from the Transition Region And Coronal Explorer. The results confirm that, down to 1" resolution, BPs are made of small loops with lengths of [approximate]6 Mm and cross-sections of ≈2 Mm. The loops are very dynamic, evolving in time scales as short as 1 - 2 minutes. This is reflected in a highly variable EUV response with fluctuations highly correlated in spectral lines at transition region temperatures, but not always at coronal temperatures. A wavelet analysis of the intensity variations reveals the existence of quasi-periodic oscillations with periods ranging 400--1000s, in the range of periods characteristic of the chromospheric network. The link between BPs and network bright points is discussed, as well as the interpretation of the oscillations in terms of global acoustic modes of closed magnetic structures. A comparison of the magnetic flux evolution of the magnetic polarities to the EUV flux changes is also presented. Throughout their lifetime, the intrinsic EUV emission of BPs is found to be dependent on the total magnetic flux of the polarities. In short time scales, co-spatial and co-temporal coronal images and magnetograms, reveal the signature of heating events that produce sudden EUV brightenings simultaneous to magnetic flux cancellations. This is interpreted in terms of magnetic reconnection events. Finally, a electron density study of six coronal bright points produces values of ≈1.6×10 9 cm -3 , closer to active region plasma than to quiet Sun. The analysis of a large coronal loop (half length of 72 Mm) introduces the discussion on the prospects of future plasma diagnostics of BPs with forthcoming solar missions.

  6. Statistical evidence for the existence of Alfvénic turbulence in solar coronal loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiajia; McIntosh, Scott W.; Bethge, Christian

    2014-12-10

    Recent observations have demonstrated that waves capable of carrying large amounts of energy are ubiquitous throughout the solar corona. However, the question of how this wave energy is dissipated (on which timescales and length scales) and released into the plasma remains largely unanswered. Both analytic and numerical models have previously shown that Alfvénic turbulence may play a key role not only in the generation of the fast solar wind, but in the heating of coronal loops. In an effort to bridge the gap between theory and observations, we expand on a recent study by analyzing 37 clearly isolated coronal loopsmore » using data from the Coronal Multi-channel Polarimeter instrument. We observe Alfvénic perturbations with phase speeds which range from 250 to 750 km s{sup –1} and periods from 140 to 270 s for the chosen loops. While excesses of high-frequency wave power are observed near the apex of some loops (tentatively supporting the onset of Alfvénic turbulence), we show that this excess depends on loop length and the wavelength of the observed oscillations. In deriving a proportional relationship between the loop length/wavelength ratio and the enhanced wave power at the loop apex, and from the analysis of the line widths associated with these loops, our findings are supportive of the existence of Alfvénic turbulence in coronal loops.« less

  7. SDO/AIA Observations of Quasi-periodic Fast (~1000 km/s) Propagating (QFP) Waves as Evidence of Fast-mode Magnetosonic Waves in the Low Corona: Statistics and Implications

    NASA Astrophysics Data System (ADS)

    Liu, W.; Ofman, L.; Title, A. M.; Zhao, J.; Aschwanden, M. J.

    2011-12-01

    Recent EUV imaging observations from SDO/AIA led to the discovery of quasi-periodic fast (~2000 km/s) propagating (QFP) waves in active regions (Liu et al. 2011). They were interpreted as fast-mode magnetosonic waves and reproduced in 3D MHD simulations (Ofman et al. 2011). Since then, we have extended our study to a sample of more than a dozen such waves observed during the SDO mission (2010/04-now). We will present the statistical properties of these waves including: (1) Their projected speeds measured in the plane of the sky are about 400-2200 km/s, which, as the lower limits of their true speeds in 3D space, fall in the expected range of coronal Alfven or fast-mode speeds. (2) They usually originate near flare kernels, often in the wake of a coronal mass ejection, and propagate in narrow funnels of coronal loops that serve as waveguides. (3) These waves are launched repeatedly with quasi-periodicities in the 30-200 seconds range, often lasting for more than one hour; some frequencies coincide with those of the quasi-periodic pulsations (QPPs) in the accompanying flare, suggestive a common excitation mechanism. We obtained the k-omega diagrams and dispersion relations of these waves using Fourier analysis. We estimate their energy fluxes and discuss their contribution to coronal heating as well as their diagnostic potential for coronal seismology.

  8. The Coronal Abundance Anomalies of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.; Laming, J. Martin; Karovska, Margarita

    2012-07-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an "inverse FIP effect" is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  9. Determination of the structure and heating mechanisms of coronal loops from soft X-ray observations with the solar probe. [grazing incidence telescope

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Krieger, A. S.

    1978-01-01

    High resolution soft X-ray imaging from the solar probe is justified in terms of the expected scientific returns which include the determination of the temperature and density structure of a coronal loop. The advantages of the grazing incidence telescope over the multiple pinhole camera are discussed. An instrument package is described which includes a grazing incidence mirror, a thermal prefilter, a three position filter wheel and a focal plane detector baselined as an 800 by 800 back-illuminated charge coupled device. The structural assembly together with the data processing equipment would draw heavily on the designs being developed for the Solar Polar Mission.

  10. An evolving trio of hybrid stars: C111

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Dupree, Andrea K.

    2005-01-01

    Hybrid stars are a class of cool, luminous single stars originally identified based on the appearance of their ultraviolet IUE spectra. C IV emission is present (signifying temperatures of at least lo5 K), and asymmetric emission cores of Mg I1 are found, accompanied by absorption features at low and high velocities, indicating a massive stellar wind and circumstellar material. Many members of this class have been identified and X-rays have been detected from most hybrids. They represent the critical evolutionary state between coronal-like objects and the Alpha Ori-like objects and assume a pivotal role in the definition of coronal evolution, atmospheric heating processes, and mechanisms to drive winds of cool stars.

  11. Generation of coronal electric currents due to convective motions on the photosphere

    NASA Astrophysics Data System (ADS)

    Sakurai, T.; Levine, R. H.

    1981-09-01

    Generation of electric currents in a magnetized plasma overlying a dense convective layer is studied, assuming that the magnetic field perturbation is small and satisfies the force-free equation. Currents are produced by rotational motions on the boundary in the case of a uniform equilibrium field. In a simple two-dimensional bipolar configuration, however, both irrotational and incompressible motions give rise to currents, and the current density has a peak at the magnetic neutral line. Scaling laws for the current density as well as for the stored magnetic energy are derived, and the possibility of heating the solar corona through the dissipation of coronal currents generated in this way is discussed.

  12. Generation of coronal electric currents due to convective motions on the photosphere

    NASA Technical Reports Server (NTRS)

    Sakurai, T.; Levine, R. H.

    1981-01-01

    Generation of electric currents in a magnetized plasma overlying a dense convective layer is studied, assuming that the magnetic field perturbation is small and satisfies the force-free equation. Currents are produced by rotational motions on the boundary in the case of a uniform equilibrium field. In a simple two-dimensional bipolar configuration, however, both irrotational and incompressible motions give rise to currents, and the current density has a peak at the magnetic neutral line. Scaling laws for the current density as well as for the stored magnetic energy are derived, and the possibility of heating the solar corona through the dissipation of coronal currents generated in this way is discussed.

  13. NUMERICAL STUDY ON IN SITU PROMINENCE FORMATION BY RADIATIVE CONDENSATION IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, T.; Yokoyama, T., E-mail: kaneko@eps.s.u-tokyo.ac.jp

    2015-06-10

    We propose an in situ formation model for inverse-polarity solar prominences and demonstrate it using self-consistent 2.5 dimensional MHD simulations, including thermal conduction along magnetic fields and optically thin radiative cooling. The model enables us to form cool dense plasma clouds inside a flux rope by radiative condensation, which is regarded as an inverse-polarity prominence. Radiative condensation is triggered by changes in the magnetic topology, i.e., formation of the flux rope from the sheared arcade field, and by thermal imbalance due to the dense plasma trapped inside the flux rope. The flux rope is created by imposing converging and shearingmore » motion on the arcade field. Either when the footpoint motion is in the anti-shearing direction or when heating is proportional to local density, the thermal state inside the flux rope becomes cooling-dominant, leading to radiative condensation. By controlling the temperature of condensation, we investigate the relationship between the temperature and density of prominences and derive a scaling formula for this relationship. This formula suggests that the proposed model reproduces the observed density of prominences, which is 10–100 times larger than the coronal density. Moreover, the time evolution of the extreme ultraviolet emission synthesized by combining our simulation results with the response function of the Solar Dynamics Observatory Atmospheric Imaging Assembly filters agrees with the observed temporal and spatial intensity shift among multi-wavelength extreme ultraviolet emission during in situ condensation.« less

  14. Combined metopic and unilateral coronal synostoses: a phenotypic conundrum.

    PubMed

    Sauerhammer, Tina M; Patel, Kamlesh; Oh, Albert K; Proctor, Mark R; Mulliken, John B; Rogers, Gary F

    2014-03-01

    Most types of craniosynostosis cause predictable changes in cranial shape. However, the phenotype of combined metopic and unilateral coronal synostoses is anomalous. The purpose of this observational study was to better clarify the clinical and radiographic features of this rare entity. A retrospective review of a craniofacial database was performed. Patients with combined metopic and unilateral coronal synostoses were included in this study. Data collected included demographic information, physical and radiographic findings, genetic evaluation, treatment, and operative outcomes. Of 687 patients treated between 1989 and 2010, only 3 patients had combined metopic and unilateral coronal synostoses. All patients were diagnosed through computed tomography on the first day of life. Phenotypic features included the following: (1) narrowed forehead with a prominent midline ridge, (2) severe bilateral brow retrusion with an acute indentation on the side of the patient coronal suture, (3) facial and nasal angulation similar to isolated unilateral coronal synostosis, and (4) anterior displacement of the ear on the fused side. In addition, the cranial vertex was deviated toward the side of the open coronal suture. Two patients had a head circumference below the 25th percentile; 2 of the 3 had a TWIST gene mutation consistent with Saethre-Chotzen syndrome. One patient was managed through fronto-orbital advancement and required a revision. The other 2 patients had early endoscopic release, followed by postoperative helmet therapy; one improved but still required open cranial remodeling. The other has near-normal phenotype, and no further surgery is planned. Combined metopic and unilateral coronal synostoses present a rare and unusual phenotype. Although early intervention improves the deformity, revisional procedures are usually required.

  15. Physics of the inner heliosphere 1-10R sub O plasma diagnostics and models

    NASA Technical Reports Server (NTRS)

    Withbroe, G. L.

    1984-01-01

    The physics of solar wind flow in the acceleration region and impulsive phenomena in the solar corona is studied. The study of magnetohydrodynamic wave propagation in the corona and the solutions for steady state and time dependent solar wind equations gives insights concerning the physics of the solar wind acceleration region, plasma heating and plasma acceleration processes and the formation of shocks. Also studied is the development of techniques for placing constraints on the mechanisms responsible for coronal heating.

  16. Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating

    NASA Astrophysics Data System (ADS)

    Ugarte-Urra, Ignacio; Warren, Harry P.; Upton, Lisa A.; Young, Peter R.

    2017-09-01

    We present new measurements of the dependence of the extreme ultraviolet (EUV) radiance on the total magnetic flux in active regions as obtained from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Using observations of nine active regions tracked along different stages of evolution, we extend the known radiance—magnetic flux power-law relationship (I\\propto {{{Φ }}}α ) to the AIA 335 Å passband, and the Fe xviii 93.93 Å spectral line in the 94 Å passband. We find that the total unsigned magnetic flux divided by the polarity separation ({{Φ }}/D) is a better indicator of radiance for the Fe xviii line with a slope of α =3.22+/- 0.03. We then use these results to test our current understanding of magnetic flux evolution and coronal heating. We use magnetograms from the simulated decay of these active regions produced by the Advective Flux Transport model as boundary conditions for potential extrapolations of the magnetic field in the corona. We then model the hydrodynamics of each individual field line with the Enthalpy-based Thermal Evolution of Loops model with steady heating scaled as the ratio of the average field strength and the length (\\bar{B}/L) and render the Fe xviii and 335 Å emission. We find that steady heating is able to partially reproduce the magnitudes and slopes of the EUV radiance—magnetic flux relationships and discuss how impulsive heating can help reconcile the discrepancies. This study demonstrates that combined models of magnetic flux transport, magnetic topology, and heating can yield realistic estimates for the decay of active region radiances with time.

  17. Iron Charge Distribution as an Identifier of Interplanetary Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Richardson, I. G.; Cane, H. V.; Gloeckler, G.

    2001-01-01

    We present solar wind Fe charge state data measured on the Advanced Composition Explorer (ACE) from early 1998 to the middle of 2000. Average Fe charge states in the solar wind are typically around 9 to 11. However, deviations from these average charge states occur, including intervals with a large fraction of Fe(sup greater or = 16+) which are consistently associated with interplanetary coronal mass ejections (ICMEs). By studying the Fe charge state distribution we are able to extract coronal electron temperatures often exceeding 2 x 10(exp 6) kelvins. We also discuss the temporal trends of these events, indicating the more frequent appearance of periods with high Fe charge states as solar activity increases.

  18. Formation and evolution of coronal rain observed by SDO/AIA on February 22, 2012

    NASA Astrophysics Data System (ADS)

    Vashalomidze, Z.; Kukhianidze, V.; Zaqarashvili, T. V.; Oliver, R.; Shergelashvili, B.; Ramishvili, G.; Poedts, S.; De Causmaecker, P.

    2015-05-01

    Context. The formation and dynamics of coronal rain are currently not fully understood. Coronal rain is the fall of cool and dense blobs formed by thermal instability in the solar corona towards the solar surface with acceleration smaller than gravitational free fall. Aims: We aim to study the observational evidence of the formation of coronal rain and to trace the detailed dynamics of individual blobs. Methods: We used time series of the 171 Å and 304 Å spectral lines obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) above active region AR 11420 on February 22, 2012. Results: Observations show that a coronal loop disappeared in the 171 Å channel and appeared in the 304 Å line more than one hour later, which indicates a rapid cooling of the coronal loop from 1 MK to 0.05 MK. An energy estimation shows that the radiation is higher than the heat input, which indicates so-called catastrophic cooling. The cooling was accompanied by the formation of coronal rain in the form of falling cold plasma. We studied two different sequences of falling blobs. The first sequence includes three different blobs. The mean velocities of the blobs were estimated to be 50 km s-1, 60 km s-1 and 40 km s-1. A polynomial fit shows the different values of the acceleration for different blobs, which are lower than free-fall in the solar corona. The first and second blob move along the same path, but with and without acceleration, respectively. We performed simple numerical simulations for two consecutive blobs, which show that the second blob moves in a medium that is modified by the passage of the first blob. Therefore, the second blob has a relatively high speed and no acceleration, as is shown by observations. The second sequence includes two different blobs with mean velocities of 100 km s-1 and 90 km s-1, respectively. Conclusions: The formation of coronal rain blobs is connected with the process of catastrophic cooling. The different acceleration of different coronal rain blobs might be due to the different values in the density ratio of blob to corona. All blobs leave trails, which might be a result of continuous cooling in their tails. Two movies attached to Fig. 1 are available in electronic form at http://www.aanda.org

  19. Relating Alfvén Wave Heating Model to Observations of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Yoritomo, J. Y.; Van Ballegooijen, A. A.

    2012-12-01

    We compared images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) with simulations of propagating and dissipating Alfvén waves from a three-dimensional magnetohydrodynamic (MHD) model (van Ballegooijen et. al 2011; Asgari-Targhi & van Ballegooijen 2012). The goal was to search for observational evidence of Alfvén waves in the solar corona and understand their role in coronal heating. We looked at one particular active region on the 5th of May 2012. Certain distinct loops in the SDO/AIA observations were selected and expanded. Movies were created from these selections in an attempt to discover transverse motions that may be Alfvén waves. Using a magnetogram of that day and the corresponding synoptic map, a potential field model was created for the active region. Three-dimensional MHD models for several loops in different locations in the active region were created. Each model specifies the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We find that the heating is intermittent in the loops and reflection occurs at the transition region. For loops at larger and larger height, a point is reached where thermal non-equilibrium occurs. In the center this critical height is much higher than in the periphery of the active region. Lastly, we find that the average heating rate and coronal pressure decrease with increasing height in the corona. This research was supported by an NSF grant for the Smithsonian Astrophysical Observatory (SAO) Solar REU program and a SDO/AIA grant for the Smithsonian Astrophysical Observatory.

  20. Inflow Generated X-Ray Corona around Supermassive Black Holes and a Unified Model for X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Wang, Lile; Cen, Renyue

    2016-02-01

    Three-dimensional hydrodynamic simulations are performed, which cover the spatial domain from hundreds of Schwarzschild radii to 2 pc around the central supermassive black hole of mass {10}8{M}⊙ , with detailed radiative cooling processes. The existence of a significant amount of shock heated, high temperature (≥slant {10}8 {{K}}) coronal gas in the inner (≤slant {10}4{r}{sch}) region is generally found. It is shown that the composite bremsstrahlung emission spectrum due to coronal gas of various temperatures is in reasonable agreement with the overall ensemble spectrum of active galactic nuclei (AGNs) and hard X-ray background. Taking into account inverse Compton processes, in the context of the simulation-produced coronal gas, our model can readily account for the wide variety of AGN spectral shapes, which can now be understood physically. The distinguishing feature of our model is that X-ray coronal gas is, for the first time, an integral part of the inflow gas and its observable characteristics are physically coupled to the concomitant inflow gas. One natural prediction of our model is the anti-correlation between accretion disk luminosity and spectral hardness: as the luminosity of SMBH accretion disk decreases, the hard X-ray luminosity increases relative to the UV/optical luminosity.

  1. Coronal heating by the resonant absorption of Alfven waves - Importance of the global mode and scaling laws

    NASA Technical Reports Server (NTRS)

    Steinolfson, Richard S.; Davila, Joseph M.

    1993-01-01

    Numerical simulations of the MHD equations for a fully compressible, low-beta, resistive plasma are used to study the resonance absorption process for the heating of coronal active region loops. Comparisons with more approximate analytic models show that the major predictions of the analytic theories are, to a large extent, confirmed by the numerical computations. The simulations demonstrate that the dissipation occurs primarily in a thin resonance layer. Some of the analytically predicted features verified by the simulations are (a) the position of the resonance layer within the initial inhomogeneity; (b) the importance of the global mode for a large range of loop densities; (c) the dependence of the resonance layer thickness and the steady-state heating rate on the dissipation coefficient; and (d) the time required for the resonance layer to form. In contrast with some previous analytic and simulation results, the time for the loop to reach a steady state is found to be the phase-mixing time rather than a dissipation time. This disagreement is shown to result from neglect of the existence of the global mode in some of the earlier analyses. The resonant absorption process is also shown to behave similar to a classical driven harmonic oscillator.

  2. The Sun-Earth connect 2: Modelling patterns of a fractal Sun in time and space using the fine structure constant

    NASA Astrophysics Data System (ADS)

    Baker, Robert G. V.

    2017-02-01

    Self-similar matrices of the fine structure constant of solar electromagnetic force and its inverse, multiplied by the Carrington synodic rotation, have been previously shown to account for at least 98% of the top one hundred significant frequencies and periodicities observed in the ACRIM composite irradiance satellite measurement and the terrestrial 10.7cm Penticton Adjusted Daily Flux data sets. This self-similarity allows for the development of a time-space differential equation (DE) where the solutions define a solar model for transmissions through the core, radiative, tachocline, convective and coronal zones with some encouraging empirical and theoretical results. The DE assumes a fundamental complex oscillation in the solar core and that time at the tachocline is smeared with real and imaginary constructs. The resulting solutions simulate for tachocline transmission, the solar cycle where time-line trajectories either 'loop' as Hermite polynomials for an active Sun or 'tail' as complementary error functions for a passive Sun. Further, a mechanism that allows for the stable energy transmission through the tachocline is explored and the model predicts the initial exponential coronal heating from nanoflare supercharging. The twisting of the field at the tachocline is then described as a quaternion within which neutrinos can oscillate. The resulting fractal bubbles are simulated as a Julia Set which can then aggregate from nanoflares into solar flares and prominences. Empirical examples demonstrate that time and space fractals are important constructs in understanding the behaviour of the Sun, from the impact on climate and biological histories on Earth, to the fractal influence on the spatial distributions of the solar system. The research suggests that there is a fractal clock underpinning solar frequencies in packages defined by the fine structure constant, where magnetic flipping and irradiance fluctuations at phase changes, have periodically impacted on the Earth and the rest of the solar system since time immemorial.

  3. Assessment of Superstructure Ice Protection as Applied to Offshore Oil Operations Safety: Problems, Hazards, Needs, and Potential Transfer Technologies

    DTIC Science & Technology

    2008-09-01

    thermostats, or materials such as carbon layers, which vary in thickness with location and are self - healing and self - regulating. Ships commonly use heating...aircraft today. Pneumatic deicing systems consist of rubber or other elastomeric boots placed on the leading edge of an aircraft wing or on any surface...by Kenney, two as- semblies consisting of neoprene rubber and urethane-coated Dacron fabric were hung from bulkheads where icing would occur. A timer

  4. Effects of heat treatment on microstructure and mechanical properties of Ni60/h-BN self-lubricating anti-wear composite coatings on 304 stainless steel by laser cladding

    NASA Astrophysics Data System (ADS)

    Lu, Xiao-Long; Liu, Xiu-Bo; Yu, Peng-Cheng; Zhai, Yong-Jie; Qiao, Shi-Jie; Wang, Ming-Di; Wang, Yong-Guang; Chen, Yao

    2015-11-01

    Laser clad Ni60/h-BN self-lubricating anti-wear composite coating on 304 stainless steel were heat treated at 600 °C (stress relief annealing) for 1 h and 2 h, respectively. Effects of the phase compositions, microstructure, microhardness, nano-indentation and tribological properties of the composite coatings with and without heat treatment had been investigated systemically. Results indicated that three coatings mainly consist of the matrix γ-(Ni, Fe) solid solution, the CrB ceramic phases and the h-BN lubricating phases. The maximum microhardness of the coatings was first increased from 667.7 HV0.5 to 765.0 HV0.5 after heat treatment for 1 h, and then decreased to 698.3 HV0.5 after heat treatment for 2 h. The hardness of γ-(Ni, Fe) solid solution without heat treatment and after heat treatment 1 h and 2 h were 5.09 GPa, 7.20 GPa and 3.77 GPa, respectively. Compared with the coating without heat treatment, the friction coefficients of the coating after heat treatment were decreased obviously. Effects of the heat treatment time on friction coefficient were negligible, but were significant on wear volume loss. Comparatively speaking, the laser clad self-lubricating anti-wear composite coating after heat treatment for 1 h presented the best anti-wear and friction reduction properties.

  5. CONSTRAINING SOLAR FLARE DIFFERENTIAL EMISSION MEASURES WITH EVE AND RHESSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caspi, Amir; McTiernan, James M.; Warren, Harry P.

    2014-06-20

    Deriving a well-constrained differential emission measure (DEM) distribution for solar flares has historically been difficult, primarily because no single instrument is sensitive to the full range of coronal temperatures observed in flares, from ≲2 to ≳50 MK. We present a new technique, combining extreme ultraviolet (EUV) spectra from the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory with X-ray spectra from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), to derive, for the first time, a self-consistent, well-constrained DEM for jointly observed solar flares. EVE is sensitive to ∼2-25 MK thermal plasma emission, and RHESSI to ≳10 MK; together, the twomore » instruments cover the full range of flare coronal plasma temperatures. We have validated the new technique on artificial test data, and apply it to two X-class flares from solar cycle 24 to determine the flare DEM and its temporal evolution; the constraints on the thermal emission derived from the EVE data also constrain the low energy cutoff of the non-thermal electrons, a crucial parameter for flare energetics. The DEM analysis can also be used to predict the soft X-ray flux in the poorly observed ∼0.4-5 nm range, with important applications for geospace science.« less

  6. Wave Modeling of the Solar Wind.

    PubMed

    Ofman, Leon

    The acceleration and heating of the solar wind have been studied for decades using satellite observations and models. However, the exact mechanism that leads to solar wind heating and acceleration is poorly understood. In order to improve the understanding of the physical mechanisms that are involved in these processes a combination of modeling and observational analysis is required. Recent models constrained by satellite observations show that wave heating in the low-frequency (MHD), and high-frequency (ion-cyclotron) range may provide the necessary momentum and heat input to coronal plasma and produce the solar wind. This review is focused on the results of several recent solar modeling studies that include waves explicitly in the MHD and the kinetic regime. The current status of the understanding of the solar wind acceleration and heating by waves is reviewed.

  7. Effect of two fiber post types and two luting cement systems on regional post retention using the push-out test.

    PubMed

    Wang, Vivian J-J; Chen, Ya-Ming; Yip, Kevin H-K; Smales, Roger J; Meng, Qing-Fei; Chen, Lijuan

    2008-03-01

    To investigate regional root canal push-out bond strengths for two fiber-reinforced post types using two adhesive systems. The crowns of 24 recently extracted sound maxillary central incisors were sectioned transversely 2 mm coronal to the labial cemento-enamel junction, and the roots treated endodontically. Following standardized post space preparations, fiber-reinforced posts (C-POST; AESTHETI-PLUS) were placed using two adhesive systems (acid-etch ONE-STEP PLUS/C&B CEMENT; self-adhesive RelyX Unicem), in four equal groups. Push-out bond strength tests were performed at four sites in each root. Results were analyzed using split-plot ANOVA, with a=0.05 for statistical significance. AESTHETI-PLUS quartz fiber-reinforced posts showed significantly higher push-out strengths than C-POST carbon fiber-reinforced posts (P<0.0001). The separate acid-etch adhesive system resulted in significantly higher bond strengths than the self-etch self-adhesive system (P<0.0001). Bond strengths decreased significantly from coronal to apical root canal regions (P<0.0001). The quartz fiber-reinforced post placed using the separate acid-etch adhesive system provided significantly better post retention than the carbon fiber-reinforced post placed using the self-etch self-adhesive system.

  8. Coronal "wave": Magnetic Footprint Of A Cme?

    NASA Astrophysics Data System (ADS)

    Attrill, Gemma; Harra, L. K.; van Driel-Gesztelyi, L.; Demoulin, P.; Wuelser, J.

    2007-05-01

    We propose a new mechanism for the generation of "EUV coronal waves". This work is based on new analysis of data from SOHO/EIT, SOHO/MDI & STEREO/EUVI. Although first observed in 1997, the interpretation of coronal waves as flare-induced or CME-driven remains a debated topic. We investigate the properties of two "classical" SOHO/EIT coronal waves in detail. The source regions of the associated CMEs possess opposite helicities & the coronal waves display rotations in opposite senses. We observe deep dimmings near the flare site & also widespread diffuse dimming, accompanying the expansion of the EIT wave. We report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions & simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behaviour is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME & quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings & widespread diffuse dimming are identified as innate characteristics of this process. In addition we present some of the first analysis of a STEREO/EUVI limb coronal wave. We show how the evolution of the diffuse bright front & dimmings can be understood in terms of the model described above. We show that an apparently stationary part of the bright front can be understood in terms of magnetic interchange reconnections between the expanding CME & the "open" magnetic field of a low-latitude coronal hole. We use both the SOHO/EIT & STEREO/EUVI events to demonstrate that through successive reconnections, this new model provides a natural mechanism via which CMEs can become large-scale in the lower corona.

  9. Space- and Ground-based Coronal Spectro-Polarimetry

    NASA Astrophysics Data System (ADS)

    Fineschi, Silvano; Bemporad, Alessandro; Rybak, Jan; Capobianco, Gerardo

    This presentation gives an overview of the near-future perspectives of ultraviolet and visible-light spectro-polarimetric instrumentation for probing coronal magnetism from space-based and ground-based observatories. Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter - has been recently installed on the Lomnicky Peak Observatory 20cm Zeiss coronagraph. The preliminary results from CorMag will be presented. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include the capability of imaging polarimetry of the HI Lyman-alpha, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. This presentation will describe how in future re-flights SCORE could observe the expected Hanle effect in corona with a HI Lyman-alpha polarimeter.

  10. The Onset of Magnetic Reconnection: Tearing Instability in Current Sheets with a Guide Field

    NASA Astrophysics Data System (ADS)

    Daldorff, L. K. S.; Klimchuk, J. A.; Knizhnik, K. J.

    2016-12-01

    Magnetic reconnection is fundamental to many solar phenomena, ranging from coronal heating, to jets, to flares and CMEs. A poorly understood yet crucial aspect of reconnection is that it does not occur until magnetic stresses have built to sufficiently high levels for significant energy release. If reconnection were to happen too soon, coronal heating would be weak and flares would be small. As part of our program to study the onset conditions for magnetic reconnection, we have investigated the instability of current sheets to tearing. Surprisingly little work has been done on this problem for sheets that include a guide field, i.e., for which the field rotates by less than 180 degrees. This is the most common situation on the Sun. We present numerical 3D resistive MHD simulations of several sheets and show how the behaviour depends on the shear angle (rotation). We compare our results to the predictions of linear theory and discuss the nonlinear evolution in terms of plasmoid formation and the interaction of different oblique tearing modes. The relevance to the Sun is explained.

  11. Particle propagation, wave growth and energy dissipation in a flaring flux tube

    NASA Technical Reports Server (NTRS)

    White, S. M.; Melrose, D. B.; Dulk, G. A.

    1986-01-01

    Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.

  12. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibrationmore » based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.« less

  13. Collisionless absorption of intense laser radiation in nanoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaretsky, D F; Korneev, Philipp A; Popruzhenko, Sergei V

    The rate of linear collisionless absorption of an electromagnetic radiation in a nanoplasma - classical electron gas localised in a heated ionised nanosystem (thin film or cluster) irradiated by an intense femtosecond laser pulse - is calculated. The absorption is caused by the inelastic electron scattering from the self-consistent potential of the system in the presence of a laser field. The effect proves to be appreciable because of a small size of the systems. General expressions are obtained for the absorption rate as a function of the parameters of the single-particle self-consistent potential and electron distribution function in the regimemore » linear in field. For the simplest cases, where the self-consistent field is created by an infinitely deep well or an infinite charged plane, closed analytic expressions are obtained for the absorption rate. Estimates presented in the paper demonstrate that, over a wide range of the parameters of laser pulses and nanostructures, the collisionless mechanism of heating electron subsystem can be dominant. The possibility of experimental observation of the collisionless absorption of intense laser radiation in nanoplasma is also discussed. (interaction of laser radiation with matter)« less

  14. Hard X-Ray Constraints on Small-Scale Coronal Heating Events

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Smith, David M.; Glesener, Lindsay; Klimchuk, James A.; Bradshaw, Stephen; Hannah, Iain; Vievering, Juliana; Ishikawa, Shin-Nosuke; Krucker, Sam; Christe, Steven

    2017-08-01

    A large body of evidence suggests that the solar corona is heated impulsively. Small-scale heating events known as nanoflares may be ubiquitous in quiet and active regions of the Sun. Hard X-ray (HXR) observations with unprecedented sensitivity >3 keV have recently been enabled through the use of focusing optics. We analyze active region spectra from the FOXSI-2 sounding rocket and the NuSTAR satellite to constrain the physical properties of nanoflares simulated with the EBTEL field-line-averaged hydrodynamics code. We model a wide range of X-ray spectra by varying the nanoflare heating amplitude, duration, delay time, and filling factor. Additional constraints on the nanoflare parameter space are determined from energy constraints and EUV/SXR data.

  15. ON A CORONAL BLOWOUT JET: THE FIRST OBSERVATION OF A SIMULTANEOUSLY PRODUCED BUBBLE-LIKE CME AND A JET-LIKE CME IN A SOLAR EVENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Yuandeng; Liu Yu; Su Jiangtao

    2012-02-01

    The coronal blowout jet is a peculiar category among various jet phenomena, in which the sheared base arch, often carrying a small filament, experiences a miniature version of blowout eruption that produces large-scale coronal mass ejection (CME). In this paper, we report such a coronal blowout jet with high-resolution multi-wavelength and multi-angle observations taken from Solar Dynamics Observatory, Solar Terrestrial Relations Observatory, and Big Bear Solar Observatory. For the first time, we find that simultaneous bubble-like and jet-like CMEs were dynamically related to the blowout jet that showed cool and hot components next to each other. Our observational results indicatemore » that (1) the cool component resulted from the eruption of the filament contained within the jet's base arch, and it further caused the bubble-like CME; (2) the jet-like CME was associated with the hot component, which was the outward moving heated plasma generated by the reconnection of the base arch and its ambient open field lines. On the other hand, bifurcation of the jet's cool component was also observed, which resulted from the uncoupling of the erupting filament's two legs that were highly twisted at the very beginning. Based on these results, we propose a model to interpret the coronal blowout jet, in which the external reconnection not only produces the jet-like CME, but also leads to the rising of the filament. Subsequently, internal reconnection starts underneath the rising filament and thereby causes the bubble-like CME.« less

  16. Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2014-01-01

    We present results from 14 exceptionally high-reaching large solar jets observed in the polar coronal holes. EUV movies from SDO/AIA show that each jet is similar to many other similar-size and smaller jets that erupt in coronal holes, but each is exceptional in that it goes higher than most other jets, so high that it is observed in the outer corona beyond 2.2 R(sub Sun) in images from the SOHO/LASCO/C2 coronagraph. For these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 R(sub Sun) at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most jets display oscillatory swaying having an amplitude of a few degrees and a period of order 1 hour. We conclude that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is grossly a large-amplitude (i.e., nonlinear) torsional Alfven wave that is put into the reconnected open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate from the measured spinning and swaying that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 R(sub Sun). From these results for these big jets, we reason that the torsional magnetic waves observed in Type-II spicules should dissipate in the corona in the same way and could thereby power much of the coronal heating in coronal holes.

  17. CLASP/SJ Observations of Rapid Time Variations in the Ly α Emission in a Solar Active Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Shin-nosuke; Kubo, Masahito; Katsukawa, Yukio

    The Chromospheric Ly α SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on 2015 September 3 to investigate the solar chromosphere and transition region. The slit-jaw (SJ) optical system captured Ly α images with a high time cadence of 0.6 s. From the CLASP/SJ observations, many variations in the solar chromosphere and transition region emission with a timescale of <1 minute were discovered. In this paper, we focus on the active region within the SJ field of view and investigate the relationship between short (<30 s) temporal variations in the Ly α emission and the coronal structures observed by Solarmore » Dynamics Observatory/Atmospheric Imaging Assembly (AIA). We compare the Ly α temporal variations at the coronal loop footpoints observed in the AIA 211 Å (≈2 MK) and AIA 171 Å (≈0.6 MK) channels with those in the regions with bright Ly α features without a clear association with the coronal loop footpoints. We find more short (<30 s) temporal variations in the Ly α intensity in the footpoint regions. Those variations did not depend on the temperature of the coronal loops. Therefore, the temporal variations in the Ly α intensity at this timescale range could be related to the heating of the coronal structures up to temperatures around the sensitivity peak of 171 Å. No signature was found to support the scenario that these Ly α intensity variations were related to the nanoflares. Waves or jets from the lower layers (lower chromosphere or photosphere) are possible causes for this phenomenon.« less

  18. Direct Observations of Magnetic Flux Rope Formation during a Solar Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Song, H. Q.; Zhang, J.; Chen, Y.; Cheng, X.

    2014-09-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (~10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME).

  19. Direct Observations of Magnetic Flux Rope Formation during a Solar Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Song, H.; Zhang, J.; Chen, Y.; Cheng, X.

    2014-12-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre existing MFR scenario. There is almost no reported observation about MFR formation during the eruption. In this presentation, we present an intriguing observation of a solar eruptive event with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows a detailed formation process of the MFR during the eruption. The process started with the expansion of a low lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly-formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved-in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (~ 10 MK), presumably a MFR, producing a CME. We suggest that two spatially-separated magnetic reconnections occurred in this event, responsible for producing the flare and the hot blob (CME), respectively.

  20. Accuracy and consistency of electronic root canal length determination with electrically isolating rubber stoppers.

    PubMed

    Kowollik, Susanne; Sonntag, David

    2018-03-23

    The aim of this study was to investigate the influence of an isolating silicone stopper on the measuring accuracy and display consistency of three electrometric apex locators. The length of the canal to the major foramen was determined electrometrically using an ISO size 10 file in 20 extracted teeth each with natural crowns (Group I), amalgam fillings (Group II) or base-metal crowns (Group III), The measurements were performed with isolating or conventional silicone stoppers using three different apex locators with a four-level scale consistency rating. The use of isolating stoppers resulted in a more consistent display than with conventional stoppers, independent of the presence or type of coronal restoration (P = 0.017). Across all coronal restorations, the position of the major foramen could be determined to within ± 0.5 mm without significant differences (P = 0.79) using conventional and isolating stoppers. The use of modified isolating stoppers provides a significant increase in display consistency. © 2018 Australian Society of Endodontology Inc.

  1. Thermal Non-equilibrium Revealed by Periodic Pulses of Random Amplitudes in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J.

    2016-08-01

    We recently detected variations in extreme ultraviolet intensity in coronal loops repeating with periods of several hours. Models of loops including stratified and quasi-steady heating predict the development of a state of thermal non-equilibrium (TNE): cycles of evaporative upflows at the footpoints followed by falling condensations at the apex. Based on Fourier and wavelet analysis, we demonstrate that the observed periodic signals are indeed not signatures of vibrational modes. Instead, superimposed on the power law expected from the stochastic background emission, the power spectra of the time series exhibit the discrete harmonics and continua expected from periodic trains of pulses of random amplitudes. These characteristics reinforce our earlier interpretation of these pulsations as being aborted TNE cycles.

  2. Thermal Non-Equilibrium Revealed by Periodic Pulses of Random Amplitudes in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J.

    2016-10-01

    We recently detected variations in extreme ultraviolet intensity in coronal loops repeating with periods of several hours. Models of loops including stratified and quasi-steady heating predict the development of a state of thermal non-equilibrium (TNE): cycles of evaporative upflows at the footpoints followed by falling condensations at the apex. Based on Fourier and wavelet analysis, we demonstrate that the observed periodic signals are indeed not signatures of vibrational modes. Instead, superimposed on the power law expected from the stochastic background emission, the power spectra of the time series exhibit the discrete harmonics and continua expected from periodic trains of pulses of random amplitudes. These characteristics reinforce our earlier interpretation of these pulsations as being aborted TNE cycles.

  3. A gigantic coronal jet ejected from a compact active region in a coronal hole

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Nitta, N.; Strong, K. T.; Matsumoto, R.; Yokoyama, T.; Hirayama, T.; Hudson, H.; Ogawara, Y.

    1994-01-01

    A gigantic coronal jet greater than 3 x 10(exp 5) km long (nearly half the solar radius) has been found with the soft X-ray telescope (SXT) on board the solar X-ray satellite, Yohkoh. The jet was ejected on 1992 January 11 from an 'anemone-type' active region (AR) appearing in a coronal hole and is one of the largest coronal X-ray jets observed so far by SXT. This gigantic jet is the best observed example of many other smaller X-ray jets, because the spatial structures of both the jet and the AR located at its base are more easily resolved. The range of apparent translational velocities of the bulk of the jet was between 90 and 240 km s(exp -1), with the corresponding kinetic energy estimated to be of order of 10(exp 28) ergs. A detailed analysis reveals that the jet was associated with a loop brightening (a small flare) that occurred in the active region. Several features of this observation suggest and are consistent with a magnetic reconnection mechanism for the production of such a 'jet-loop-brightening' event.

  4. Turbulence and Heating in the Flank and Wake Regions of a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Fan, Siteng; He, Jiansen; Yan, Limei; Tomczyk, Steven; Tian, Hui; Song, Hongqiang; Wang, Linghua; Zhang, Lei

    2018-01-01

    As a coronal mass ejection (CME) passes, the flank and wake regions are typically strongly disturbed. Various instruments, including the Large Angle and Spectroscopic Coronagraph (LASCO), the Atmospheric Imaging Assembly (AIA), and the Coronal Multi-channel Polarimeter (CoMP), observed a CME close to the east limb on 26 October 2013. A hot ({≈} 10 MK) rising blob was detected on the east limb, with an initial ejection flow speed of {≈} 330 km s^{-1}. The magnetic structures on both sides and in the wake of the CME were strongly distorted, showing initiation of turbulent motions with Doppler-shift oscillations enhanced from {≈} ± 3 km s^{-1} to {≈} ± 15 km s^{-1} and effective thermal velocities from {≈} 30 km s^{-1} to {≈} 60 km s^{-1}, according to the CoMP observations at the Fe xiii line. The CoMP Doppler-shift maps suggest that the turbulence behaved differently at various heights; it showed clear wave-like torsional oscillations at lower altitudes, which are interpreted as the antiphase oscillation of an alternating red/blue Doppler shift across the strands at the flank. The turbulence seems to appear differently in the channels of different temperatures. Its turnover time was {≈} 1000 seconds for the Fe 171 Å channel, while it was {≈} 500 seconds for the Fe 193 Å channel. Mainly horizontal swaying rotations were observed in the Fe 171 Å channel, while more vertical vortices were seen in the Fe 193 Å channel. The differential-emission-measure profiles in the flank and wake regions have two components that evolve differently: the cool component decreased over time, evidently indicating a drop-out of cool materials due to ejection, while the hot component increased dramatically, probably because of the heating process, which is suspected to be a result of magnetic reconnection and turbulence dissipation. These results suggest a new turbulence-heating scenario of the solar corona and solar wind.

  5. Image-based reconstruction of the Newtonian dynamics of solar coronal ejecta

    NASA Astrophysics Data System (ADS)

    Uritsky, Vadim M.; Thompson, Barbara J.

    2016-10-01

    We present a new methodology for analyzing rising and falling dynamics of unstable coronal material as represented by high-cadence SDO AIA images. The technique involves an adaptive spatiotemporal tracking of propagating intensity gradients and their characterization in terms of time-evolving areas swept out by the position vector originated from the Sun disk center. The measured values of the areal velocity and acceleration are used to obtain quantitative information on the angular momentum and acceleration along the paths of the rising and falling coronal plasma. In the absence of other forces, solar gravitation results in purely ballistic motions consistent with the Kepler's second law; non-central forces such as the Lorentz force introduce non-zero torques resulting in more complex motions. The developed algorithms enable direct evaluation of the line-of-sight component of the net torque applied to a unit mass of the ejected coronal material which is proportional to the image-plane projection of the observed areal acceleration. The current implementation of the method cannot reliably distinguish torque modulations caused by the coronal force field from those imposed by abrupt changes of plasma mass density and nontrivial projection effects. However, it can provide valid observational constraints on the evolution of large-scale unstable magnetic topologies driving major solar-coronal eruptions as demonstrated in the related talk by B. Thompson et al.

  6. Evidence for the Magnetic Breakout Model in an Equatorial Coronal-hole Jet

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Karpen, Judith T.; Antiochos, Spiro K.; Wyper, Peter F.; DeVore, C. Richard; DeForest, Craig E.

    2018-02-01

    Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by the Solar Dynamics Observatory (SDO)/AIA on 2014 January 9 in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hr before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.

  7. Evidence for the Magnetic Breakout Model in an Equatorial Coronal-Hole Jet

    NASA Technical Reports Server (NTRS)

    Kumar, Pankaj; Karpen, Judith T.; Antiochos, Spiro K.; Wyper, Peter F.; Devore, C. Richard; DeForest, Craig E.

    2018-01-01

    Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by the Solar Dynamics Observatory (SDO)/AIA (Atmospheric Imaging Assembly)) on 2014 January 9 in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI (Solar Dynamics Observatory/Helioseismic and Magnetic Imager) magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hours before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.

  8. Parametric Transformation Analysis

    NASA Technical Reports Server (NTRS)

    Gary, G. Allan

    2003-01-01

    Because twisted coronal features are important proxies for predicting solar eruptive events, and, yet not clearly understood, we present new results to resolve the complex, non-potential magnetic field configurations of active regions. This research uses free-form deformation mathematics to generate the associated coronal magnetic field. We use a parametric representation of the magnetic field lines such that the field lines can be manipulated to match the structure of EUV and SXR coronal loops. The objective is to derive sigmoidal magnetic field solutions which allows the beta greater than 1 regions to be included, aligned and non-aligned electric currents to be calculated, and the Lorentz force to be determined. The advantage of our technique is that the solution is independent of the unknown upper and side boundary conditions, allows non-vanishing magnetic forces, and provides a global magnetic field solution, which contains high- and low-beta regimes and is consistent with all the coronal images of the region. We show that the mathematical description is unique and physical.

  9. Forward Modeling of a Coronal Cavity

    NASA Technical Reports Server (NTRS)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    We apply a forward model of emission from a coronal cavity in an effort to determine the temperature and density distribution in the cavity. Coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and X-rays. When these structures erupt they form the cavity portions of CMEs The model consists of a coronal streamer model with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. Temperature and density can be varied as a function of altitude both in the cavity and streamer. We apply this model to a cavity observed in Aug. 2007 by a wide array of instruments including Hinode/EIS, STEREO/EUVI and SOHO/EIT. Studies such as these will ultimately help us understand the the original structures which erupt to become CMEs and ICMES, one of the prime Solar Orbiter objectives.

  10. An investigation of coronal active region loop structures using AS&E rocket X-ray images

    NASA Technical Reports Server (NTRS)

    Webb, D. F.

    1983-01-01

    Simultaneous high spatial resolution observations at 6 cm in soft X-rays, in photospheric magnetograms, and in optical filtergrams were used to compare the most intense sources of centimetric emission in two active regions to coronal loops, sunspots, chromospheric structures, and photospheric magnetic fields. Results show that the majority of the bright microwave components are not associated with sunspots or X-ray emission. A nonthermal mechanism appears necessary to explain the brightest microwave components, discrete regions of continuous particle acceleration may be common in active regions. Studies of the plasma parameters of selected loops imply that the radio emission is consistent with gyro-resonance absorption at the third and fourth harmonic, at least from part of each loop. Results are presented for: (1) X-ray and microwave observations of active regions; (2) comparison of coronal holes observed in soft X-rays and Hel 10830 A spectrosheliograms; and (3) the reappearance of polar coronal holes and the evolution of the solar magnetic field.

  11. A Proposal of New Reference System for the Standard Axial, Sagittal, Coronal Planes of Brain Based on the Serially-Sectioned Images

    PubMed Central

    Park, Jin Seo; Park, Hyo Seok; Shin, Dong Sun; Har, Dong-Hwan; Cho, Zang-Hee; Kim, Young-Bo; Han, Jae-Yong; Chi, Je-Geun

    2010-01-01

    Sectional anatomy of human brain is useful to examine the diseased brain as well as normal brain. However, intracerebral reference points for the axial, sagittal, and coronal planes of brain have not been standardized in anatomical sections or radiological images. We made 2,343 serially-sectioned images of a cadaver head with 0.1 mm intervals, 0.1 mm pixel size, and 48 bit color and obtained axial, sagittal, and coronal images based on the proposed reference system. This reference system consists of one principal reference point and two ancillary reference points. The two ancillary reference points are the anterior commissure and the posterior commissure. And the principal reference point is the midpoint of two ancillary reference points. It resides in the center of whole brain. From the principal reference point, Cartesian coordinate of x, y, z could be made to be the standard axial, sagittal, and coronal planes. PMID:20052359

  12. A microleakage study of gutta-percha/AH Plus and Resilon/Real self-etch systems after different irrigation protocols.

    PubMed

    Prado, Maíra; Simão, Renata Antoun; Gomes, Brenda Paula Figueiredo de Almeida

    2014-06-01

    The development and maintenance of the sealing of the root canal system is the key to the success of root canal treatment. The resin-based adhesive material has the potential to reduce the microleakage of the root canal because of its adhesive properties and penetration into dentinal walls. Moreover, the irrigation protocols may have an influence on the adhesiveness of resin-based sealers to root dentin. The objective of the present study was to evaluate the effect of different irrigant protocols on coronal bacterial microleakage of gutta-percha/AH Plus and Resilon/Real Seal Self-etch systems. One hundred ninety pre-molars were used. The teeth were divided into 18 experimental groups according to the irrigation protocols and filling materials used. The protocols used were: distilled water; sodium hypochlorite (NaOCl)+eDTA; NaOCl+H3PO4; NaOCl+eDTA+chlorhexidine (CHX); NaOCl+H3PO4+CHX; CHX+eDTA; CHX+ H3PO4; CHX+eDTA+CHX and CHX+H3PO4+CHX. Gutta-percha/AH Plus or Resilon/Real Seal Se were used as root-filling materials. The coronal microleakage was evaluated for 90 days against Enterococcus faecalis. Data were statistically analyzed using Kaplan-Meier survival test, Kruskal-Wallis and Mann-Whitney tests. No significant difference was verified in the groups using chlorhexidine or sodium hypochlorite during the chemo-mechanical preparation followed by eDTA or phosphoric acid for smear layer removal. The same results were found for filling materials. However, the statistical analyses revealed that a final flush with 2% chlorhexidine reduced significantly the coronal microleakage. A final flush with 2% chlorhexidine after smear layer removal reduces coronal microleakage of teeth filled with gutta-percha/AH Plus or Resilon/Real Seal SE.

  13. NON-POTENTIAL FIELDS IN THE QUIET SUN NETWORK: EXTREME-ULTRAVIOLET AND MAGNETIC FOOTPOINT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.

    The quiet Sun (QS) magnetic network is known to contain dynamics which are indicative of non-potential fields. Non-potential magnetic fields forming ''S-shaped'' loop arcades can lead to the breakdown of static activity and have only been observed in high temperature X-ray coronal structures—some of which show eruptive behavior. Thus, analysis of this type of atmospheric structuring has been restricted to large-scale coronal fields. Here we provide the first identification of non-potential loop arcades exclusive to the QS supergranulation network. High-resolution Atmospheric Imaging Assembly data from the Solar Dynamics Observatory have allowed for the first observations of fine-scale ''S-shaped'' loop arcadesmore » spanning the network. We have investigated the magnetic footpoint flux evolution of these arcades from Heliospheric and Magnetic Imager data and find evidence of evolving footpoint flux imbalances accompanying the formation of these non-potential fields. The existence of such non-potentiality confirms that magnetic field dynamics leading to the build up of helicity exist at small scales. QS non-potentiality also suggests a self-similar formation process between the QS network and high temperature corona and the existence of self-organized criticality (SOC) in the form of loop-pair reconnection and helicity dissipation. We argue that this type of behavior could lead to eruptive forms of SOC as seen in active region (AR) and X-ray sigmoids if sufficient free magnetic energy is available. QS magnetic network dynamics may be considered as a coronal proxy at supergranular scales, and events confined to the network can even mimic those in coronal ARs.« less

  14. Mass flows in a prominence spine as observed in EUV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucera, T. A.; Gilbert, H. R.; Karpen, J. T.

    2014-07-20

    We analyze a quiescent prominence observed by the Solar Dynamics Observatory's Atmospheric Imaging Assembly (AIA) with a focus on mass and energy flux in the spine, measured using Lyman continuum absorption. This is the first time this type of analysis has been applied with an emphasis on individual features and fluxes in a quiescent prominence. The prominence, observed on 2010 September 28, is detectable in most AIA wavebands in absorption and/or emission. Flows along the spine exhibit horizontal bands 5''-10'' wide and kinetic energy fluxes on the order of a few times 10{sup 5} erg s{sup –1}cm{sup –2}, consistent withmore » quiet sun coronal heating estimates. For a discrete moving feature we estimate a mass of a few times 10{sup 11} g. We discuss the implications of our derived properties for a model of prominence dynamics, the thermal non-equilibrium model.« less

  15. Modulation of dayside on and neutral distributions at Venus Evidence of direct and indirect solar energy inputs

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.; Mayr, H. G.; Grebowsky, J. M.; Niemann, H. B.; Hartle, R. E.; Cloutier, P. A.; Barnes, A.; Daniell, R. E., Jr.

    1982-01-01

    The details of solar variability and its coupled effects on the Venusian dayside are examined for evidence of short-term perturbations and associated energy inputs. Ion and neutral measurements obtained from the Orbiter Ion Mass Spectrometer and Orbital Neutral mass Spectrometer are used to show that the dayside concentrations of CO2(+) and the neutral gas temperature are smoothly modulated with a 28-day cycle reasonably matching that of the solar F(10.7) and EUV fluxes. Earlier measurements show less pronounced and more irregular modulations and more conspicuous short-term day-to-day fluctuations in the ions and neutrals, as well as relatively large enhancements in the solar wind, which appear consistent with differences in solar coronal behavior during the two periods. It is suggested that the solar wind variations cause fluctuations in joule heating, producing the observed short-term ion and neutral variations.

  16. Direct current sputtering of boron from boron/coron mixtures

    DOEpatents

    Timberlake, John R.; Manos, Dennis; Nartowitz, Ed

    1994-01-01

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod.

  17. Emission Measure Distribution and Heating of Two Active Region Cores

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2011-01-01

    Using data from the Extreme-ultraviolet Imaging Spectrometer aboard Hinode, we have studied the coronal plasma in the core of two active regions. Concentrating on the area between opposite polarity moss, we found emission measure distributions having an approximate power-law form EM/T(exp 2.4) from log T = 5.55 up to a peak at log T = 6.57. The observations are explained extremely well by a simple nanoflare model. However, in the absence of additional constraints, the observations could possibly also be explained by steady heating.

  18. Sclerosing lymphangitis of the penis associated with marked penile oedema and skin erosions.

    PubMed

    Karray, Mehdi; Litaiem, Noureddine; Jones, Mariem; Zeglaoui, Faten

    2017-07-27

    Sclerosing lymphangitis of the penis is a benign, under-reported condition consisting of a asymptomatic firm cord-like swelling around the coronal sulcus of the penis usually affecting men in the second or third decade of life. Penile oedema and erosions are rarely reported. Clinical signs may be remarkable contrasting with the self-limited character of the disease. We report a new case of sclerosing lymphangitis of the penis occurring in a 59-year-old patient marked by penile swelling and several overlying skin erosions, and discuss the clinical features and the pathogenesis aspects of the disease. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Observations of the Dynamics and Thermodynamics of the Corona during the 21 August 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Habbal, Shadia Rifai; Ding, Adalbert; Druckmuller, Miloslav; Solar Wind Sherpas

    2018-01-01

    The visible wavelength range, encompassing forbidden coronal emission lines, offers unique diagnostic tools for exploring the physics of the solar corona, such as its chemical composition and the dynamics of its major and minor constituents. These tools are best exploited during total solar eclipses, when the field of view spans several solar radii, starting from the solar surface. This spatial span is currently untenable from any observing platform. Imaging and spectroscopic eclipse observations, including the 2017 August 21 event, are shown to be the first to yield the temperature distribution in the corona as a function of solar cycle. They are also the first to lead to the discovery of cool prominence material at less than 10,000 to 50,000 K, within more than a radius above the solar surface, streaming away from the Sun, while maintaining its compositional identity. These data underscore the importance of capturing emission from coronal forbidden lines with the next generation space-based instrumentation to address the general problem of coronal heating.

  20. Impact of Type II Spicules in the Corona: Simulations and Synthetic Observables

    NASA Astrophysics Data System (ADS)

    Martínez-Sykora, Juan; De Pontieu, Bart; De Moortel, Ineke; Hansteen, Viggo H.; Carlsson, Mats

    2018-06-01

    The role of type II spicules in the corona has been a much debated topic in recent years. This paper aims to shed light on the impact of type II spicules in the corona using novel 2.5D radiative MHD simulations, including ion–neutral interaction effects with the Bifrost code. We find that the formation of simulated type II spicules, driven by the release of magnetic tension, impacts the corona in various manners. Associated with the formation of spicules, the corona exhibits (1) magneto-acoustic shocks and flows, which supply mass to coronal loops, and (2) transversal magnetic waves and electric currents that propagate at Alfvén speeds. The transversal waves and electric currents, generated by the spicule’s driver and lasting for many minutes, are dissipated and heat the associated loop. These complex interactions in the corona can be connected with blueshifted secondary components in coronal spectral lines (red–blue asymmetries) observed with Hinode/EIS and SOHO/SUMER, as well as the EUV counterpart of type II spicules and propagating coronal disturbances observed with the 171 Å and 193 Å SDO/AIA channels.

Top