Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litvinenko, Yuri E.; Fichtner, Horst; Walter, Dominik
2017-05-20
We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatmentmore » of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.« less
NASA Technical Reports Server (NTRS)
Le Roux, J. A.; Ptuskin, V. S.
1995-01-01
Realistic models of the outer heliosphere should consider that the interstellar cosmic-ray pressure becomes comparable to pressures in the solar wind at distances more than 100 AU from the Sun. The cosmic-ray pressure dynamically affects solar wind flow through deceleration. This effect, which occurs over a scale length of the order of the effective diffusion length at large radial distances, has important implications for cosmic-ray modulation and acceleration. As a first step toward solution of this nonlinear problem, a steady state numerical model was developed for a relatively cold spherical solar wind flow which encounters the confining isotropic pressure of the surrounding Galactic medium. This pressure is assumed to be dominated by energetic particles (Galactic cosmic rays). The system of equations, which are solved self-consistently, includes the relevant hydrodynamical equations for the solar wind flow and the spherical cosmic-ray transport equation. To avoid the closure parameter problem of the two-fluid model, the latter equation is solved for the energy-dependent cosmic-ray distribution function.
Nuclear Physics in Space: What We Can Learn From Cosmic Rays
NASA Technical Reports Server (NTRS)
Moskalenko, Igor V.
2004-01-01
Studies and discoveries in cosmic-ray physics and generally in Astrophysics provide a fertile ground for research in many areas of Particle Physics and Cosmology, such as the search for dark matter, antimatter, new particles, and exotic physics, studies of the nucleosynthesis, origin of Galactic and extragalactic gamma-ray diffuse emission, formation of the large scale structure of the universe etc. In several years new missions are planned for cosmic-ray experiments, which will tremendously increase the quality and accuracy of cosmic-ray data. On the other hand, direct measurements of cosmic rays are possible in only one location on the outskirts of the Milky Way galaxy and present only a snapshot of very dynamic processes. It has been recently realized that direct information about the fluxes and spectra of cosmic rays in distant locations is provided by the Galactic diffuse gamma-rays, therefore, complementing the local cosmic-ray studies. A wealth of information is also contained in the isotopic abundances of cosmic rays, therefore, accurate evaluation of the isotopic production cross sections is of primary importance for Astrophysics of cosmic rays, studies of the galactic chemical evolution, and Cosmology. In this talk, I will show new results obtained with GALPROP, the most advanced numerical model for cosmic-ray propagation, which includes in a self-consistent way all cosmic-ray species (stable and long-lived radioactive isotopes from H to Ni, antiprotons, positrons and electrons, gamma rays and synchrotron radiation), and all relevant processes and reactions.
The basis for cosmic ray feedback: Written on the wind
Zweibel, Ellen G.
2017-01-01
Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed. PMID:28579734
The basis for cosmic ray feedback: Written on the wind
NASA Astrophysics Data System (ADS)
Zweibel, Ellen G.
2017-05-01
Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.
The basis for cosmic ray feedback: Written on the wind.
Zweibel, Ellen G
2017-05-01
Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback . Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.
Consistency of cosmic-ray source abudances with explosive nucleosynthesis
NASA Technical Reports Server (NTRS)
Kozlovsky, B.; Ramaty, R.
1973-01-01
A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.
NASA Astrophysics Data System (ADS)
Joshi, Jagdish C.; Razzaque, Soebur
2017-09-01
The cosmic-ray positron flux calculated using the cosmic-ray nuclei interactions in our Galaxy cannot explain observed data above 10 GeV. An excess in the measured positron flux is therefore open to interpretation. Nearby pulsars, located within sub-kiloparsec range of the Solar system, are often invoked as plausible sources contributing to the excess. We show that an additional, sub-dominant population of sources together with the contributions from a few nearby pulsars can explain the latest positron excess data from the Alpha Magnetic Spectrometer (AMS). We simultaneously model, using the DRAGON code, propagation of cosmic-ray proton, Helium, electron and positron and fit their respective flux data. Our fit to the Boron to Carbon ratio data gives a diffusion spectral index of 0.45, which is close to the Kraichnan turbulent spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Jagdish C.; Razzaque, Soebur, E-mail: jjagdish@uj.ac.za, E-mail: srazzaque@uj.ac.za
The cosmic-ray positron flux calculated using the cosmic-ray nuclei interactions in our Galaxy cannot explain observed data above 10 GeV. An excess in the measured positron flux is therefore open to interpretation. Nearby pulsars, located within sub-kiloparsec range of the Solar system, are often invoked as plausible sources contributing to the excess. We show that an additional, sub-dominant population of sources together with the contributions from a few nearby pulsars can explain the latest positron excess data from the Alpha Magnetic Spectrometer (AMS). We simultaneously model, using the DRAGON code, propagation of cosmic-ray proton, Helium, electron and positron and fitmore » their respective flux data. Our fit to the Boron to Carbon ratio data gives a diffusion spectral index of 0.45, which is close to the Kraichnan turbulent spectrum.« less
Very high-energy gamma-ray signature of ultrahigh-energy cosmic-ray acceleration in Centaurus A
NASA Astrophysics Data System (ADS)
Joshi, Jagdish C.; Miranda, Luis Salvador; Razzaque, Soebur; Yang, Lili
2018-04-01
The association of at least a dozen ultrahigh-energy cosmic-ray (UHECR) events with energy ≳ 55 EeV detected by the Pierre Auger Observatory (PAO) from the direction of Centaurus-A, the nearest radio galaxy, supports the scenario of UHECR acceleration in the jets of radio galaxies. In this work, we model radio to very high energy (VHE,≳ 100 GeV) γ-ray emission from Cen A, including GeV hardness detected by Fermi-LAT and TeV emission detected by HESS. We consider two scenarios: (i) Two zone synchrotron self-Compton (SSC) and external-Compton (EC) models, (ii) Two zone SSC, EC and photo-hadronic emission from cosmic ray interactions. The GeV hardness observed by Fermi-LAT can be explained using these two scenarios, where zone 2 EC emission is very important. Hadronic emission in scenario (ii) can explain VHE data with the same spectral slope as obtained through fitting UHECRs from Cen A. The peak luminosity in cosmic ray proton at 1 TeV, to explain the VHE γ-ray data is ≈2.5 × 1046 erg/s. The bolometric luminosity in cosmic ray protons is consistent with the luminosity required to explain the origin of 13 UHECR signal events that are correlated with Cen A.
Very high-energy gamma-ray signature of ultrahigh-energy cosmic ray acceleration in Centaurus A
NASA Astrophysics Data System (ADS)
Joshi, Jagdish C.; Miranda, Luis Salvador; Razzaque, Soebur; Yang, Lili
2018-07-01
The association of at least a dozen ultrahigh-energy cosmic ray (UHECR) events with energy ≳ 55 EeV detected by the Pierre Auger Observatory from the direction of Centaurus-A, the nearest radio galaxy, supports the scenario of UHECR acceleration in the jets of radio galaxies. In this work, we model radio to very high energy (VHE,≳ 100 GeV) γ-ray emission from Cen A, including GeV hardness detected by Fermi-LAT and TeV emission detected by the High Energy Stereoscopic System (HESS). We consider two scenarios: (i) two-zone synchrotron self-Compton (SSC) and external-Compton (EC) models, (ii) two-zone SSC, EC, and photohadronic emission from cosmic ray interactions. The GeV hardness observed by Fermi-LAT can be explained using these two scenarios, where zone 2 EC emission is very important. Hadronic emission in scenario (ii) can explain VHE data with the same spectral slope as obtained through fitting UHECRs from Cen A. The peak luminosity in cosmic ray proton at 1 TeV, to explain the VHE γ-ray data is ≈2.5 × 1046 erg s-1. The bolometric luminosity in cosmic ray protons is consistent with the luminosity required to explain the origin of 13 UHECR signal events that are correlated with Cen A.
MODELING THE GAMMA-RAY EMISSION IN THE GALACTIC CENTER WITH A FADING COSMIC-RAY ACCELERATOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ruo-Yu; Wang, Xiang-Yu; Prosekin, Anton
2016-12-20
Recent HESS observations of the ∼200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic center shows a cutoff at ∼10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single yet fading accelerator. In this model, gamma-rays frommore » the CMZ region are produced by protons injected in the past, while gamma-rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the CMZ region and HESS J1745-290 can be reproduced simultaneously. Meanwhile, we find that the cosmic-ray energy density profile in the CMZ region may also be reproduced in the fading accelerator model when appropriate combinations of the particle injection history and the diffusion coefficient of cosmic rays are adopted.« less
A cosmic-ray-mediated shock in the solar system
NASA Technical Reports Server (NTRS)
Eichler, D.
1981-01-01
It is pointed out that the flare-induced blast wave of Aug. 4, 1972, the most violent disturbance in the solar wind on record, produced cosmic rays with an efficiency of about 50%. Such a high efficiency is predicted by the self-regulating production model of cosmic-ray origin in shocks. Most interplanetary shocks, according to simple theoretical analysis, are not strong enough to produce cosmic rays efficiently. However, if shock strength is the key parameter governing efficiency, as present interplanetary data suggest, then shocks from supernova blasts, quasar outbursts, and other violent astrophysical phenomena should be extremely efficient sources of cosmic rays.
High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources.
Blasi, Pasquale; Amato, Elena; D'Angelo, Marta
2015-09-18
The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies E
Long term variability of the cosmic ray intensity
NASA Technical Reports Server (NTRS)
Bhat, C. L.; Houston, B. P.; Mayer, C. J.; Wolfendale, A. W.
1985-01-01
In a previous paper Bhat, et al., assess the evidence for the continuing acceleration of cosmic rays in the Loop I supernova remnant. The enhanced gamma-ray emission is found consistent with the Blandford and Cowie model for particle acceleration at the remnant shock wave. The contributions of other supernovae remnants to the galactic cosmic ray energy density are now considered, paying anisotropy of cosmic rays accelerated by local supernovae ( 100 pc). The results are compared with geophysical data on the fluctuations in the cosmic ray intensity over the previous one billion years.
Cosmic rays: a review for astrobiologists.
Ferrari, Franco; Szuszkiewicz, Ewa
2009-05-01
Cosmic rays represent one of the most fascinating research themes in modern astronomy and physics. Significant progress is being made toward an understanding of the astrophysics of the sources of cosmic rays and the physics of interactions in the ultrahigh-energy range. This is possible because several new experiments in these areas have been initiated. Cosmic rays may hold answers to a great number of fundamental questions, but they also shape our natural habitat and influence the radiation environment of our planet Earth. The importance of the study of cosmic rays has been acknowledged in many fields, including space weather science and astrobiology. Here, we concentrate on the astrobiological aspects of cosmic rays with regard to the enormous amount of new data available, some of which may, in fact, improve our knowledge about the radiation of cosmic origin on Earth. We focus on fluxes arriving at Earth and doses received, and will guide the reader through the wealth of scientific literature on cosmic rays. We have prepared a concise and self-contained source of data and recipes useful for performing interdisciplinary research in cosmic rays and their effects on life on Earth.
The isotopic composition of cosmic-ray calcium
NASA Technical Reports Server (NTRS)
Wiedenbeck, M. E.; George, J. S.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.;
2001-01-01
We find that the relative abundance of cosmic ray calcium isotopes in the cosmic-ray source are very similar to those found in solar-system material, in spite of the fact that different types of stars are thought to be responsible for producing these two isotopes. This observation is consistent with the view that cosmic rays are derived from a mixed sample of interstellar matter.
The Galactic Center: A Petaelectronvolt Cosmic-ray Acceleration Factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yi-Qing; Tian, Zhen; Wang, Zhen
2017-02-20
The multiteraelectronvolt γ -rays from the galactic center (GC) have a cutoff at tens of teraelectronvolts, whereas the diffuse emission has no such cutoff, which is regarded as an indication of petaelectronvolt proton acceleration by the HESS experiment. It is important to understand the inconsistency and study the possibility that petaelectronvolt cosmic-ray acceleration could account for the apparently contradictory point and diffuse γ -ray spectra. In this work, we propose that the cosmic rays are accelerated up to greater than petaelectronvolts in the GC. The interaction between cosmic rays and molecular clouds is responsible for the multiteraelectronvolt γ -ray emissionsmore » from both the point and diffuse sources today. Enhanced by the small volume filling factor (VFF) of the clumpy structure, the absorption of the γ -rays leads to a sharp cutoff spectrum at tens of teraelectronvolts produced in the GC. Away from the GC, the VFF grows, and the absorption enhancement becomes negligible. As a result, the spectra of γ -ray emissions for both point and diffuse sources can be successfully reproduced under such a self-consistent picture. In addition, a “surviving tail” at ∼100 TeV is expected from the point source, which can be observed by future projects CTA and LHAASO. Neutrinos are simultaneously produced during proton-proton (PP) collision. With 5–10 years of observations, the KM3Net experiment will be able to detect the petaelectronvolt source according to our calculation.« less
LFlGRB: Luminosity function of long gamma-ray bursts
NASA Astrophysics Data System (ADS)
Paul, Debdutta
2018-04-01
LFlGRB models the luminosity function (LF) of long Gamma Ray Bursts (lGRBs) by using a sample of Swift and Fermi lGRBs to re-derive the parameters of the Yonetoku correlation and self-consistently estimate pseudo-redshifts of all the bursts with unknown redshifts. The GRB formation rate is modeled as the product of the cosmic star formation rate and a GRB formation efficiency for a given stellar mass.
Cosmic Rays and Gamma-Rays in Large-Scale Structure
NASA Astrophysics Data System (ADS)
Inoue, Susumu; Nagashima, Masahiro; Suzuki, Takeru K.; Aoki, Wako
2004-12-01
During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of 6Li by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.
Cosmic ray and neutrino emission from gamma-ray bursts with a nuclear cascade
NASA Astrophysics Data System (ADS)
Biehl, D.; Boncioli, D.; Fedynitch, A.; Winter, W.
2018-04-01
Aim. We discuss neutrino and cosmic ray emission from gamma-ray bursts (GRBs) with the injection of nuclei, where we take into account that a nuclear cascade from photodisintegration can fully develop in the source. Our main objective is to test whether recent results from the IceCube and the Pierre Auger Observatory can be accommodated within the paradigm that GRBs are the sources of ultra-high-energy cosmic rays (UHECRs). Methods: We simulate this scenario in a combined source-propagation model. While our key results are obtained using an internal shock model of the source, we discuss how the secondary emission from a GRB shell can be interpreted in terms of other astrophysical models. Results: We demonstrate that the expected neutrino flux from GRBs weakly depends on the injection composition for the same injection spectra and luminosities, which implies that prompt neutrinos from GRBs can efficiently test the GRB-UHECR paradigm even if the UHECRs are nuclei. We show that the UHECR spectrum and composition, as measured by the Pierre Auger Observatory, can be self-consistently reproduced. In an attempt to describe the energy range including the ankle, we find tension with the IceCube bounds from the GRB stacking analyses. In an alternative scenario, where only the UHECRs beyond the ankle originate from GRBs, the requirement for a joint description of cosmic ray and neutrino observations favors lower luminosities, which does not correspond to the typical expectation from γ-ray observations.
Perspective on the Cosmic-ray Electron Spectrum above TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Kun; Wang, Bing-Bing; Bi, Xiao-Jun
2017-02-20
The AMS-02 has measured the cosmic-ray electron (plus positron) spectrum up to ∼TeV with unprecedented precision. The spectrum can be well described by a power law without any obvious features above 10 GeV. The satellite instrument Dark Matter Particle Explorer (DAMPE), which was launched a year ago, will measure the electron spectrum up to 10 TeV with high-energy resolution. The cosmic electrons beyond TeV may be attributed to few local cosmic-ray sources, such as supernova remnants. Therefore, spectral features, such as cut-off and bumps, can be expected at high energies. In this work, we provide a careful study on themore » perspective of the electron spectrum beyond TeV. We first examine our astrophysical source models on the latest leptonic data of AMS-02 to give a self-consistent picture. Then we focus on the discussion about the candidate sources, which could be electron contributors above TeV. Depending on the properties of the local sources (especially on the nature of Vela), DAMPE may detect interesting features in the electron spectrum above TeV in the future.« less
Transient cosmic ray increase associated with a geomagnetic storm
NASA Technical Reports Server (NTRS)
Kudo, S.; Wada, M.; Tanskanen, P.; Kodama, M.
1985-01-01
On the basis of worldwide network data of cosmic ray nucleonic components, the transient cosmic ray increase due to the depression of cosmic ray cutoff rigidity during a severe geomagnetic storm was investigated in terms of the longitudinal dependence. Multiple correlation analysis among isotropic and diurnal terms of cosmic ray intensity variations and Dst term of the geomagnetic field is applied to each of various station's data. It is shown that the amplitude of the transient cosmic ray increase associated with Dst depends on the local time of the station, and that its maximum phase is found in the evening sector. This fact is consistent with the theoretical estimation based on the azimuthally asymmetric ring current model for the magnetic DS field.
Diffuse gamma-ray emission from self-confined cosmic rays around Galactic sources
NASA Astrophysics Data System (ADS)
D'Angelo, Marta; Morlino, Giovanni; Amato, Elena; Blasi, Pasquale
2018-02-01
The propagation of particles accelerated at supernova remnant shocks and escaping the parent remnants is likely to proceed in a strongly non-linear regime, due to the efficient self-generation of Alfvén waves excited through streaming instability near the sources. Depending on the amount of neutral hydrogen present in the regions around the sites of supernova explosions, cosmic rays may accumulate an appreciable grammage in the same regions and get self-confined for non-negligible times, which in turn results in an enhanced rate of production of secondaries. Here we calculate the contribution to the diffuse gamma-ray background due to the overlap along lines of sight of several of these extended haloes as due to pion production induced by self-confined cosmic rays. We find that if the density of neutrals is low, the haloes can account for a substantial fraction of the diffuse emission observed by Fermi-Large Area Telescope (LAT), depending on the orientation of the line of sight with respect to the direction of the Galactic Centre.
Cosmic Rays - A Word-Wide Student Laboratory
NASA Astrophysics Data System (ADS)
Adams, Mark
2017-01-01
The QuarkNet program has distributed hundreds of cosmic ray detectors for use in high schools and research facilities throughout the world over the last decade. Data collected by those students has been uploaded to a central server where web-based analysis tools enable users to characterize and to analyze everyone's cosmic ray data. Since muons rain down on everyone in the world, all students can participate in this free, high energy particle environment. Through self-directed inquiry students have designed their own experiments: exploring cosmic ray rates and air shower structure; and using muons to measure their speed, time dilation, lifetime, and affects on biological systems. We also plan to expand our annual International Muon Week project to create a large student-led collaboration where similar cosmic ray measurements are performed simultaneously throughout the world.
NASA Astrophysics Data System (ADS)
Shell, Duane F.; Snow, Gregory R.; Claes, Daniel R.
2011-04-01
This paper reports results from evaluation of the Cosmic Ray Observatory Project (CROP), a student, teacher, scientist partnership to engage high-school students and teachers in school based cosmic ray research. Specifically, this study examined whether an intensive summer workshop experience could effectively prepare teacher—student teams to engage in cutting edge high-energy physics research. Results showed that teachers and students could acquire enough knowledge about cosmic ray physics and self-efficacy for conducting cosmic ray research during a summer workshop to be full participants in an SSP conducting research in their schools, and a capstone anchoring approach using an authentic research activity was effective for motivating student engagement in didactic classroom learning. CROP demonstrated "proof of concept" that setting up cosmic ray detector arrays in schools run by teachers and students was feasible, but found that set-up and operation in a high-school was technically difficult.
The isotopic composition of cosmic ray calcium
NASA Technical Reports Server (NTRS)
Krombel, K. E.; Wiedenbeck, M. E.
1985-01-01
Data from the high energy cosmic ray experiment on the international sun earth explorer 3 (ISEE-3) spacecraft have been used to study the isotopic composition of cosmic ray calcium at an energy of approx. 260 MeV/amu. The arriving calcium is found to consist of (32 + or - 6)%. A propagation model consistent with both the light and the subiron secondary element abundances was used for the interpretation of the observed calcium composition. The measured 42Ca+43Ca+44Ca abundance is consistent with the calculated secondary production, while the 40Ca abundance implies a source ratio of 40Ca/Fe = (7.0 + or - 1.7)%.
Super-alfvenic propagation of cosmic rays: The role of streaming modes
NASA Technical Reports Server (NTRS)
Morrison, P. J.; Scott, J. S.; Holman, G. D.; Ionson, J. A.
1980-01-01
Numerous cosmic ray propagation and acceleration problems require knowledge of the propagation speed of relativistic particles through an ambient plasma. Previous calculations indicated that self-generated turbulence scatters relativistic particles and reduces their bulk streaming velocity to the Alfven speed. This result was incorporated into all currently prominent theories of cosmic ray acceleration and propagation. It is demonstrated that super-Alfvenic propagation is indeed possible for a wide range of physical parameters. This fact dramatically affects the predictions of these models.
Ackermann, M.; Ajello, M.; Atwood, W. B.; ...
2012-04-09
The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Our observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. In ordermore » to assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. Here, we provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray sources, a larger cosmic-ray halo, or greater gas density than is usually assumed. Our results in the outer Galaxy are consistent with other Fermi-LAT studies of this region that used different analysis methods than employed in this paper.« less
NASA Astrophysics Data System (ADS)
Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gaggero, D.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grove, J. E.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Horan, D.; Hou, X.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Sadrozinski, H. F.-W.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.; Ziegler, M.; Zimmer, S.
2012-05-01
The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray sources, a larger cosmic-ray halo, or greater gas density than is usually assumed. Our results in the outer Galaxy are consistent with other Fermi-LAT studies of this region that used different analysis methods than employed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Bechtol, K.
The {gamma}-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse {gamma}-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertaintiesmore » associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X{sub CO} factor, the ratio between integrated CO-line intensity and H{sub 2} column density, the fluxes and spectra of the {gamma}-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as {gamma}-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray sources, a larger cosmic-ray halo, or greater gas density than is usually assumed. Our results in the outer Galaxy are consistent with other Fermi-LAT studies of this region that used different analysis methods than employed in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Atwood, W. B.
The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Our observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. In ordermore » to assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. Here, we provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray sources, a larger cosmic-ray halo, or greater gas density than is usually assumed. Our results in the outer Galaxy are consistent with other Fermi-LAT studies of this region that used different analysis methods than employed in this paper.« less
Cosmic Rays in Intermittent Magnetic Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukurov, Anvar; Seta, Amit; Bushby, Paul J.
The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particlemore » energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.« less
Cosmic ray antimatter and baryon symmetric cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.; Protheroe, R. J.; Kazanas, D.
1982-01-01
The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.
Measurement of the flux of ultra high energy cosmic rays by the stereo technique
NASA Astrophysics Data System (ADS)
High Resolution Fly'S Eye Collaboration; Abbasi, R. U.; Abu-Zayyad, T.; Al-Seady, M.; Allen, M.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Ivanov, D.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Loh, E. C.; Maestas, M. M.; Manago, N.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, M.; Schnetzer, S. R.; Scott, L. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Wiencke, L. R.; Zech, A.; Zhang, B. K.; Zhang, X.; Zhang, Y.; High Resolution Fly's Eye Collaboration
2009-08-01
The High Resolution Fly’s Eye (HiRes) experiment has measured the flux of ultrahigh energy cosmic rays using the stereoscopic air fluorescence technique. The HiRes experiment consists of two detectors that observe cosmic ray showers via the fluorescence light they emit. HiRes data can be analyzed in monocular mode, where each detector is treated separately, or in stereoscopic mode where they are considered together. Using the monocular mode the HiRes collaboration measured the cosmic ray spectrum and made the first observation of the Greisen-Zatsepin-Kuzmin cutoff. In this paper we present the cosmic ray spectrum measured by the stereoscopic technique. Good agreement is found with the monocular spectrum in all details.
High-energy cosmic-ray electrons - A new measurement using transition-radiation detectors
NASA Technical Reports Server (NTRS)
Hartmann, G.; Mueller, D.; Prince, T.
1977-01-01
A new detector for cosmic-ray electrons, consisting of a combination of a transition-radiation detector and a shower detector, has been constructed, calibrated at accelerator beams, and exposed in a balloon flight under 5 g/sq cm of atmosphere. The design of this instrument and the methods of data analysis are described. Preliminary results in the energy range 9-300 GeV are presented. The energy spectrum of electrons is found to be significantly steeper than that of protons, consistent with a long escape lifetime of cosmic rays in the galaxy.
NASA Astrophysics Data System (ADS)
Guo, Yi-Qing; Yuan, Qiang
2018-03-01
Recent direct measurements of Galactic cosmic ray spectra by balloon/space-borne detectors reveal spectral hardenings of all major nucleus species at rigidities of a few hundred GV. The all-sky diffuse γ -ray emissions measured by the Fermi Large Area Telescope also show spatial variations of the intensities and spectral indices of cosmic rays. These new observations challenge the traditional simple acceleration and/or propagation scenario of Galactic cosmic rays. In this work, we propose a spatially dependent diffusion scenario to explain all these phenomena. The diffusion coefficient is assumed to be anticorrelated with the source distribution, which is a natural expectation from the charged particle transportation in a turbulent magnetic field. The spatially dependent diffusion model also gives a lower level of anisotropies of cosmic rays, which are consistent with observations by underground muons and air shower experiments. The spectral variations of cosmic rays across the Galaxy can be properly reproduced by this model.
The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere.
Yang, Zhen; Chen, Bo; Zhuo, Weihai; Fan, Dunhuang; Zhao, Chao; Zhang, Yu
2015-12-01
For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of (137)Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmic rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account.
The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere
NASA Astrophysics Data System (ADS)
Yang, Zhen; Chen, Bo; Zhuo, Weihai; Fan, Dunhuang; Zhao, Chao; Zhang, Yu
2015-12-01
For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of 137Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmic rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account.
Energy spectra of cosmic-ray nuclei to above 100 GeV per nucleon
NASA Technical Reports Server (NTRS)
Simon, M.; Spiegelhauer, H.; Schmidt, W. K. H.; Siohan, F.; Ormes, J. F.; Balasubrahmanyan, V. K.; Arens, J. F.
1980-01-01
Energy spectra of cosmic-ray nuclei boron to iron have been measured from 2 GeV per nucleon to beyond 100 GeV per nucleon. The data were obtained using an ionization calorimeter flown on a balloon from Palestine, Texas. The 3450 kg payload floated at 7 g/sq cm for almost 24 hours. The results are in excellent agreement with those of other workers where overlaps exist. The spectra are not consistent with single power laws, and demonstrate the power of using a single technique sensitive over a large dynamic range. The data are consistent with the leaky box model of cosmic-ray propagation. The boron data indicate that the cosmic-ray escape length decreases with increasing energy as E to the -(0.4 + or - 0.1) up to 100 GeV per nucleon. Secondary nuclei from iron are also consistent with this dependence. Predicted changes in the energy dependence of the ratios of primary nuclei O/C and (Fe + Ni)/(C + O) are also observed.
Exploring the making of a galactic wind in the starbursting dwarf irregular galaxy IC 10 with LOFAR
NASA Astrophysics Data System (ADS)
Heesen, V.; Rafferty, D. A.; Horneffer, A.; Beck, R.; Basu, A.; Westcott, J.; Hindson, L.; Brinks, E.; ChyŻy, K. T.; Scaife, A. M. M.; Brüggen, M.; Heald, G.; Fletcher, A.; Horellou, C.; Tabatabaei, F. S.; Paladino, R.; Nikiel-Wroczyński, B.; Hoeft, M.; Dettmar, R.-J.
2018-05-01
Low-mass galaxies are subject to strong galactic outflows, in which cosmic rays may play an important role; they can be best traced with low-frequency radio continuum observations, which are less affected by spectral ageing. We present a study of the nearby starburst dwarf irregular galaxy IC 10 using observations at 140 MHz with the Low-Frequency Array (LOFAR), at 1580 MHz with the Very Large Array (VLA), and at 6200 MHz with the VLA and the 100-m Effelsberg telescope. We find that IC 10 has a low-frequency radio halo, which manifests itself as a second component (thick disc) in the minor axis profiles of the non-thermal radio continuum emission at 140 and 1580 MHz. These profiles are then fitted with 1D cosmic ray transport models for pure diffusion and advection. We find that a diffusion model fits best, with a diffusion coefficient of D = (0.4-0.8) × 1026(E/GeV)0.5 cm2 s-1, which is at least an order of magnitude smaller than estimates both from anisotropic diffusion and the diffusion length. In contrast, advection models, which cannot be ruled out due to the mild inclination, while providing poorer fits, result in advection speeds close to the escape velocity of ≈ 50 km s- 1, as expected for a cosmic ray-driven wind. Our favoured model with an accelerating wind provides a self-consistent solution, where the magnetic field is in energy equipartition with both the warm neutral and warm ionized medium with an important contribution from cosmic rays. Consequently, cosmic rays can play a vital role for the launching of galactic winds in the disc-halo interface.
Cosmic ray antimatter: Is it primary or secondary?
NASA Technical Reports Server (NTRS)
Stecker, F. W.; Protheroe, R. J.; Kazanas, D.
1981-01-01
The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic ray antiprotons, including the low energy measurement of Buffington, were examined. It is concluded that the cosmic ray antiproton data may be strong evidence for antimatter galaxies and baryon symmetric cosmology. The present antiproton data are consistent with a primary extragalactic component having antiproton/proton approximately equal to .0032 + or - 0.7.
Recent Results of the Telescope Array Experiment
NASA Astrophysics Data System (ADS)
Ivanov, Dmitri
2015-04-01
The Telescope Array (TA) is the largest cosmic ray experiment in the northern hemisphere and covers 10 PeV to 100 EeV range. TA is a hybrid detector that uses air fluorescence detectors combined with a ground array. TA consists of 507 plastic scintillation counters on a 1.2km square grid, overlooked by 3 fluorescence detector stations, and measures cosmic rays above 1 EeV. TA has collected 6.5 years of data. Results from the TA low energy extension (TALE), which sees cosmic rays down to 10 PeV, will also be shown. This contribution will consist of three parts. First, we will present the cosmic ray energy spectrum measured over 4 decades in energy. Next, we will discuss the latest results of the measurements of cosmic ray mass composition by the TA fluorescence detectors. Finally, we will show the latest results of the TA anisotropy measurements at the highest energies, where we have seen a concentration of events, called the ``hotspot,'' centered in the Ursa Major. For the Telescope Array Collaboration. Done...processed 1261 records...10:46:59 Beginning APS data extraction...10:47:48
Measurements of galactic hydrogen and helium isotopes from 1978 through 1983
NASA Technical Reports Server (NTRS)
Evenson, P.; Kroeger, R.; Meyer, P.; Miller, D.
1985-01-01
The differential flux of the hydrogen and helium isotopes was measured using an instrument on the ISEE-3 spacecraft during solar quiet time periods from August 1978 through December 1983. These measurements cover the energy range from 26 MeV/nucleon through 138 MeV/nucleon for both H-1 and He-4, from 24 to 89 MeV/nucleon for H-2, and from 43 to 146 solar activity varied from near minimum to maximum conditions causing the observed flux of galactic cosmic rays to modulate by an order of magnitude. To describe the propagation in the galaxy, it was found that the standard leaky box approximation with an escape path length of 6.7 g/sq cms forms a self consistent model for the light cosmic ray nuclei at the observed energies.
Global Anisotropies in TeV Cosmic Rays Related to the Sun's Local Galactic Environment from IBEX
NASA Technical Reports Server (NTRS)
Schwadron, N. A.; Adams, F. C.; Christian, E. R.; Desiati, P.; Frisch, P.; Funsten, H. O.; Jokipii, J. R.; McComas, D. J.; Moebius, E.; Zank, G. P.
2014-01-01
Observations with the Interstellar Boundary Explorer (IBEX) have shown enhanced energetic neutral atom (ENA) emission from a narrow, circular ribbon likely centered on the direction of the local interstellar medium (LISM) magnetic field. Here, we show that recent determinations of the local interstellar velocity, based on interstellar atom measurements with IBEX, are consistent with the interstellar modulation of high-energy (tera-electron volts, TeV) cosmic rays and diffusive propagation from supernova sources revealed in global anisotropy maps of ground-based high-energy cosmic-ray observatories (Milagro, Asg, and IceCube). Establishing a consistent local interstellar magnetic field direction using IBEX ENAs at hundreds to thousands of eV and galactic cosmic rays at tens of TeV has wide-ranging implications for the structure of our heliosphere and its interactions with the LISM, which is particularly important at the time when the Voyager spacecraft are leaving our heliosphere.
Global anisotropies in TeV cosmic rays related to the Sun's local galactic environment from IBEX.
Schwadron, N A; Adams, F C; Christian, E R; Desiati, P; Frisch, P; Funsten, H O; Jokipii, J R; McComas, D J; Moebius, E; Zank, G P
2014-02-28
Observations with the Interstellar Boundary Explorer (IBEX) have shown enhanced energetic neutral atom (ENA) emission from a narrow, circular ribbon likely centered on the direction of the local interstellar medium (LISM) magnetic field. Here, we show that recent determinations of the local interstellar velocity, based on interstellar atom measurements with IBEX, are consistent with the interstellar modulation of high-energy (tera-electron volts, TeV) cosmic rays and diffusive propagation from supernova sources revealed in global anisotropy maps of ground-based high-energy cosmic-ray observatories (Milagro, Asγ, and IceCube). Establishing a consistent local interstellar magnetic field direction using IBEX ENAs at hundreds to thousands of eV and galactic cosmic rays at tens of TeV has wide-ranging implications for the structure of our heliosphere and its interactions with the LISM, which is particularly important at the time when the Voyager spacecraft are leaving our heliosphere.
The Cosmic Ray Energy Spectrum and Related Measurements with the Pierre Auger Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, : J.; Abreu, P.; Aglietta, M.
2009-06-01
These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the cosmic ray energy spectrum above 10{sup 18} eV with the Pierre Auger Observatory; (2) The cosmic ray flux observed at zenith angles larger than 60 degrees with the Pierre Auger Observatory; (3) Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory; (4) Exposure of the Hybrid Detector of The Pierre Auger Observatory; and (5) Energy scale derived from Fluorescence Telescopes using Cherenkov Light and Shower Universality.
Implications of the experimental results on high energy cosmic rays with regard to their origin
NASA Technical Reports Server (NTRS)
Fichtel, C. E.; Linsley, J.
1985-01-01
It was shown in an earlier report that current cosmic ray evidence supports a change in the cosmic ray composition in the region between 10 to the 6th power and 10 to the 8th power GeV total energy in the direction of a smaller average value of A. Compared to normal celestial abundances, the heavy nuclei are much less abundant, and, in fact, the composition measurements above 10 to the 8th power GeV are consistent with there being only protons. Here, these results combined with those of the energy spectrum and anisotropy of the comsic rays and other astrophysical information will be examined to try to determine their implications for the origin of the cosmic rays. In this paper, consideration is given to the implications of one or more than one type of source in the galaxy to see which are consistent with the interpretation of current measurements. The nature of the source types that would be required are discussed.
The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhen; Chen, Bo, E-mail: bochenfys@fudan.edu.cn; Zhuo, Weihai
For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of {sup 137}Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmicmore » rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account.« less
UH cosmic rays and solar system material - The elements just beyond iron
NASA Technical Reports Server (NTRS)
Wefel, J. P.; Schramm, D. N.; Blake, J. B.
1977-01-01
The nucleosynthesis of cosmic-ray elements between the iron peak and the rare-earth region is examined, and compositional changes introduced by propagation in interstellar space are calculated. Theories on the origin of elements heavier than iron are reviewed, a supernova model of explosive nucleosynthesis is adopted for the ultraheavy (UH) cosmic rays, and computational results for different source distributions are compared with experimental data. It is shown that both the cosmic-ray data and the nucleosynthesis calculations are not yet of sufficient precision to pinpoint the processes occurring in cosmic-ray source regions, that the available data do provide boundary conditions for cosmic-ray nucleosynthesis, and that these limits may apply to the origin of elements in the solar system. Specifically, it is concluded that solar-system abundances appear to be consistent with a superposition of the massive-star core-helium-burning s-process plus explosive-carbon-burning synthesis for the elements from Cu to As and are explained adequately by the s- and r-processes for heavier elements.
Cosmic Ray Observation at Mount Chacaltaya for beyond the Knee Region
NASA Astrophysics Data System (ADS)
Tsunesada, Y.; Kakimoto, F.; Furuhata, F.; Matsumoto, H.; Sugawara, T.; Wakamatsu, H.; Gotoh, E.; Nakatani, H.; Nishi, K.; Tajima, N.; Yamada, Y.; Shimoda, S.; Yoshii, H.; Kaneko, T.; Ogio, S.; Matsubara, Y.; Kadota, K.; Tokuno, H.; Mizumoto, Y.; Shirasaki, Y.; Toyoda, Y.; Burgoa, O.; Flores, V.; Miranda, P.; Salinas, J.; Velarde, A.
We have installed a new air shower array at Mount Chacaltaya (5,200m above sea level) to observe primary cosmic rays with energies greater than 1015 eV. In our previous experiments, we measured energy spectrum and nuclear composition of primary cosmic rays around the knee region. Above all, we obtained the cosmic ray composition with three independent techniques, namely from the equi-intensity cuts, the arrival time distributions of Cherenkov lights associated with air showers, and the lateral distributions of Cherenkov photons around the shower axis. All the results from these experiments are in agreement and show that the average mass of cosmic ray nuclei increases with energies below and above the knee, and dominated by heavier nuclei as iron at 1016 eV. This result is consistent with the confinement and rigidity dependent acceleration models, and suggests that the cosmic ray origins are supernova remnants of massive population as Wolf-Rayet stars. It is of quite interest whether the mass of cosmic ray nuclei continues to increase with energies, or decreases by contributions of lighter components expected from the extra-galactic cosmic ray models. In this paper, we describe the characteristics of the new array and preliminary results from the first observation.
NASA Technical Reports Server (NTRS)
Tandberg-Hanssen, E. A. (Editor); Hudson, H. S. (Editor); Dabbs, J. R. (Editor); Baity, W. A. (Editor)
1983-01-01
Scientific objectives and requirements are discussed for solar X-ray observations, coronagraph observations, studies of coronal particle acceleration, and cosmic X-ray observations. Improved sensitivity and resolution can be provided for these studies using the pinhole/occulter facility which consists of a self-deployed boom of 50 m length separating an occulter plane from a detector plane. The X-ray detectors and coronagraphic optics mounted on the detector plane are analogous to the focal plane instrumentation of an ordinary telescope except that they use the occulter only for providing a shadow pattern. The occulter plane is passive and has no electrical interface with the rest of the facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieckmann, M.E.; Shukla, P.K.; Eliasson, B.
2006-06-15
The ever increasing performance of supercomputers is now enabling kinetic simulations of extreme astrophysical and laser produced plasmas. Three-dimensional particle-in-cell (PIC) simulations of relativistic shocks have revealed highly filamented spatial structures and their ability to accelerate particles to ultrarelativistic speeds. However, these PIC simulations have not yet revealed mechanisms that could produce particles with tera-electron volt energies and beyond. In this work, PIC simulations in one dimension (1D) of the foreshock region of an internal shock in a gamma ray burst are performed to address this issue. The large spatiotemporal range accessible to a 1D simulation enables the self-consistent evolutionmore » of proton phase space structures that can accelerate particles to giga-electron volt energies in the jet frame of reference, and to tens of tera-electron volt in the Earth's frame of reference. One potential source of ultrahigh energy cosmic rays may thus be the thermalization of relativistically moving plasma.« less
Investigation of Self Triggered Cosmic Ray Detectors using Silicon Photomultiplier
NASA Astrophysics Data System (ADS)
Knox, Adrian; Niduaza, Rommel; Hernandez, Victor; Ruiz, Daniel; Ramos, Daniel; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan
2015-04-01
The silicon photomultiplier (SiPM) is a highly sensitive light detector capable of measuring single photons. It costs a fraction of the photomultiplier tube and operates slightly above the breakdown voltage. At this conference we describe our investigation of SiPM, the multipixel photon counters (MPPC) from Hamamatsu as readout detectors for plastic scintillators working for detecting cosmic ray particles. Our setup consists of scintillator sheets embedded with blue to green wavelength shifting fibers optically coupled to MPPCs to detect scintillating light. Four detector assemblies would be constructed and arranged to work in self triggered mode. Using custom matching tee boxes, the amplified MPPC signals are fed to discriminators with threshold set to give a reasonable coincidence count rate. Moreover, the detector waveforms are digitized using a 5 Giga Samples per second waveform digitizer, the DRS4, and triggered with the coincidence logic to capture the MPPC waveforms. Offline analysis of the digitized waveforms is accomplished using the CERN package PAW and results of our experiments and the data analysis would also be discussed. US Department of Education Title V Grant Number PO31S090007.
Evidence for the Stochastic Acceleration of Secondary Antiprotons by Supernova Remnants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cholis, Ilias; Hooper, Dan; Linden, Tim
2017-01-16
The antiproton-to-proton ratio in the cosmic-ray spectrum is a sensitive probe of new physics. Using recent measurements of the cosmic-ray antiproton and proton fluxes in the energy range of 1-1000 GeV, we study the contribution to themore » $$\\bar{p}/p$$ ratio from secondary antiprotons that are produced and subsequently accelerated within individual supernova remnants. We consider several well-motivated models for cosmic-ray propagation in the interstellar medium and marginalize our results over the uncertainties related to the antiproton production cross section and the time-, charge-, and energy-dependent effects of solar modulation. We find that the increase in the $$\\bar{p}/p$$ ratio observed at rigidities above $$\\sim$$ 100 GV cannot be accounted for within the context of conventional cosmic-ray propagation models, but is consistent with scenarios in which cosmic-ray antiprotons are produced and subsequently accelerated by shocks within a given supernova remnant. In light of this, the acceleration of secondary cosmic rays in supernova remnants is predicted to substantially contribute to the cosmic-ray positron spectrum, accounting for a significant fraction of the observed positron excess.« less
NASA Technical Reports Server (NTRS)
Hughes, J. P.; Long, K. S.; Novick, R.
1983-01-01
Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.
NASA Technical Reports Server (NTRS)
Puget, J. L.; Stecker, F. W.
1974-01-01
Data from SAS-2 on the galactic gamma ray line flux as a function of longitude is examined. It is shown that the gamma ray emissivity varies with galactocentric distance and is about an order of magnitude higher than the local value in a toroidal region between 4 and 5 kpc from the galactic center. This enhancement is accounted for in part by first-order Fermi acceleration, compression, and trapping of cosmic rays consistent with present ideas of galactic dynamics and galactic structure theory. Calculations indicate that cosmic rays in the 4 to 5 kpc region are trapped and accelerated over a mean time of the order of a few million years or about 2 to 4 times the assumed trapping time in the solar region of the galaxy on the assumption that only an increased cosmic ray flux is responsible for the observed emission. Cosmic ray nucleons, cosmic ray electrons, and ionized hydrogen gas were found to have a strikingly similar distribution in the galaxy according to both the observational data and the theoretical model discussed.
The structure of cosmic ray shocks
NASA Astrophysics Data System (ADS)
Axford, W. I.; Leer, E.; McKenzie, J. F.
1982-07-01
The acceleration of cosmic rays by steady shock waves has been discussed in brief reports by Leer et al. (1976) and Axford et al. (1977). This paper presents a more extended version of this work. The energy transfer and the structure of the shock wave is discussed in detail, and it is shown that even for moderately strong shock waves most of the upstream energy flux in the background gas is transferred to the cosmic rays. This holds also when the upstream cosmic ray pressure is very small. For an intermediate Mach-number regime the overall shock structure is shown to consist of a smooth transition followed by a gas shock (cf. Drury and Voelk, 1980).
PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei.
Kalashev, Oleg E; Kusenko, Alexander; Essey, Warren
2013-07-26
The observed very high energy spectra of distant blazars are well described by secondary gamma rays produced in line-of-sight interactions of cosmic rays with background photons. In the absence of the cosmic-ray contribution, one would not expect to observe very hard spectra from distant sources, but the cosmic ray interactions generate very high energy gamma rays relatively close to the observer, and they are not attenuated significantly. The same interactions of cosmic rays are expected to produce a flux of neutrinos with energies peaked around 1 PeV. We show that the diffuse isotropic neutrino background from many distant sources can be consistent with the neutrino events recently detected by the IceCube experiment. We also find that the flux from any individual nearby source is insufficient to account for these events. The narrow spectrum around 1 PeV implies that some active galactic nuclei can accelerate protons to EeV energies.
New fermionic dark matters, extended Standard Model and cosmic rays
NASA Astrophysics Data System (ADS)
Hwang, Jae-Kwang
2017-08-01
Three generations of leptons and quarks correspond to the lepton charges (LCs) in this work. Then, the leptons have the electric charges (ECs) and LCs. The quarks have the ECs, LCs and color charges (CCs). Three heavy leptons and three heavy quarks are introduced to make the missing third flavor of EC. Then the three new particles which have the ECs are proposed as the bastons (dark matters) with the rest masses of 26.121 eV/c2, 42.7 GeV/c2 and 1.9 × 1015 eV/c2. These new particles are applied to explain the origins of the astrophysical observations like the ultra-high energy cosmic rays and supernova 1987A anti-neutrino data. It is concluded that the 3.5 keV X-ray peak observed from the cosmic X-ray background spectra is originated not from the pair annihilations of the dark matters but from the X-ray emission of the Q1 baryon atoms which are similar in the atomic structure to the hydrogen atom. The presence of the 3.5 keV cosmic X-ray supports the presence of the Q1 quark with the EC of -4/3. New particles can be indirectly seen from the astrophysical observations like the cosmic ray and cosmic gamma ray. In this work, the systematic quantized charges of EC, LC and CC for the elementary particles are used to consistently explain the decay and reaction schemes of the elementary particles. Also, the strong, weak and dark matter forces are consistently explained.
Measuring the radio emission of cosmic ray air showers with LOPES
NASA Astrophysics Data System (ADS)
Schröder, F. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Krömer, O.; Kuijpers, J.; Lafebre, S.; łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Sima, O.; Singh, K.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.
2010-05-01
When ultra high energy cosmic rays hit the atmosphere, they produce a shower of millions of secondary particles. Thereby the charged particles in the shower emit a radio pulse whilst deflected in the Earth's magnetic field. LOPES is a digital antenna array measuring these radio pulses in the frequency range from 40 to 80 MHz. It is located at the site of and triggered by the air shower experiment KASCADE-Grande at Karlsruhe Institute of Technology (KIT), Germany. In its present configuration, it consists of 15 east-west-polarized and 15 north-south-polarized, absolutely calibrated short dipole antennas, as well as 10 LPDAs (with two channels each). Furthermore, it serves as a test bench for technological developments, like new antenna types or a radio-based self-triggering ( LOPESSTAR). To achieve a good angular reconstruction and to digitally form a beam into the arrival direction of the shower, it has a precise time calibration.
Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, : J.; Abreu, P.; Aglietta, M.
2009-06-01
These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for siderealmore » modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.« less
Interplanetary flow systems associated with cosmic ray modulation in 1977-1980
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Mcdonald, F. B.; Ness, N. F.; Schwenn, R.; Lazarus, A. J.; Mariani, F.
1984-01-01
The hydromagnetic flow configurations associated with the cosmic ray modulation in 1977-1980 were determined using solar wind plasma and magnetic field data from Voyager 1 and 2 and Helios 1. The modulation was related to two types of large-scale systems of flows: one containing a number of transients such as shocks and postshock flows, the other consisting primarily of a series of quasi-stationary flows following interaction regions containing a stream interface and often bounded by a forward-reverse shock pair. Each of three major episodes of cosmic ray modulation was associated with the passage of a system of transient flows. Plateaus in the cosmic ray intensity-time profile were associated with the passage of systems of corotating streams.
Indications of proton-dominated cosmic-ray composition above 1.6 EeV.
Abbasi, R U; Abu-Zayyad, T; Al-Seady, M; Allen, M; Amman, J F; Anderson, R J; Archbold, G; Belov, K; Belz, J W; Bergman, D R; Blake, S A; Brusova, O A; Burt, G W; Cannon, C; Cao, Z; Deng, W; Fedorova, Y; Finley, C B; Gray, R C; Hanlon, W F; Hoffman, C M; Holzscheiter, M H; Ivanov, D; Hughes, G; Hüntemeyer, P; Ivanov, D; Jones, B F; Jui, C C H; Kim, K; Kirn, M A; Loh, E C; Liu, J; Lundquist, J P; Maestas, M M; Manago, N; Marek, L J; Martens, K; Matthews, J A J; Matthews, J N; Moore, S A; O'Neill, A; Painter, C A; Perera, L; Reil, K; Riehle, R; Roberts, M; Rodriguez, D; Sasaki, N; Schnetzer, S R; Scott, L M; Sinnis, G; Smith, J D; Sokolsky, P; Song, C; Springer, R W; Stokes, B T; Stratton, S; Thomas, S B; Thomas, J R; Thomson, G B; Tupa, D; Zech, A; Zhang, X
2010-04-23
We report studies of ultrahigh-energy cosmic-ray composition via analysis of depth of air shower maximum (X(max)), for air shower events collected by the High-Resolution Fly's Eye (HiRes) observatory. The HiRes data are consistent with a constant elongation rate d
NASA Astrophysics Data System (ADS)
Shapiro, M. M.
2001-08-01
Two models of cosmic-ray genesis are compared: (a) the author s red-dwarf hypothesis requiring the injection of seed particles from coronal mass ejections (CME) prior to shock acceleration, and (b) the direct acceleration of thermal ions and of grains in the ISM, proposed by Meyer, Drury and Ellison. Both models agree that shocks in the expanding envelopes of supernova remnants are principally responsible for acceleration to cosmic-ray energies. Both are designed to overcome the mismatch between the source composition of the Galactic cosmic rays (GCR) and the composition of the thermal ISM gas. Model (a) utilizes the prolific emissions of energetic particles from active dMe and dKe stars via their CME as the agents of seed-particle injection into the ISM. The composition of these seed particles is governed by the FIP (first-ionization potential) selection mechanism that operates for both Galactic cosmic rays and solar energetic particles. Hence it is consistent with the cosmic-ray source composition. Model (b) relies on the sputtering and acceleration of grains in the ISM (along with acceleration of thermal ions) to provide the known source composition. This model considers the FIP ordering of GCR abundances as purely coincidental, and it attributes the relative source abundances to selection according to volatility. Recent cosmic-ray observations in favor of each model are cited.
The Development of Atmospheric Cherenkov Detectors at Milagro to Measure Cosmic-Ray Composition
NASA Astrophysics Data System (ADS)
Atkins, Robert; Dingus, Brenda; Benbow, Wystan; Coyne, Don; Kelley, Linda; Williams, David; Goodman, Jordan; Haines, Todd; Hoffman, Cyrus; Samuelson, Frank; Sinnis, Gus; McEnery, Julie; Mohanty, Gora; Stephens, Tom; Stochaj, Steve; Tumer, Tumay; Yodh, Gaurang
2002-04-01
Cosmic-ray composition in the region of the knee is being measured with the array of wide angle Cherenkov telescopes (WACT). WACT consists of six atmospheric Cherenkov telescopes (ACTs) located around the Milagro experiment. WACT is at an atmospheric depth of 750 g/cm^2 and is located 40 miles west of Los Alamos National Lab. WACT measures composition by examining the lateral distribution of Cherenkov light produced by cosmic-ray induced extensive air showers. Simulation and preliminary data analysis from the winter 2001/2002 observing campaign will be presented.
Linking high-energy cosmic particles by black-hole jets embedded in large-scale structures
NASA Astrophysics Data System (ADS)
Fang, Ke; Murase, Kohta
2018-04-01
The origin of ultrahigh-energy cosmic rays (UHECRs) is a half-century-old enigma1. The mystery has been deepened by an intriguing coincidence: over ten orders of magnitude in energy, the energy generation rates of UHECRs, PeV neutrinos and isotropic sub-TeV γ-rays are comparable, which hints at a grand unified picture2. Here we report that powerful black hole jets in aggregates of galaxies can supply the common origin for all of these phenomena. Once accelerated by a jet, low-energy cosmic rays confined in the radio lobe are adiabatically cooled; higher-energy cosmic rays leaving the source interact with the magnetized cluster environment and produce neutrinos and γ-rays; the highest-energy particles escape from the host cluster and contribute to the observed cosmic rays above 100 PeV. The model is consistent with the spectrum, composition and isotropy of the observed UHECRs, and also explains the IceCube neutrinos and the non-blazar component of the Fermi γ-ray background, assuming a reasonable energy output from black hole jets in clusters.
NASA Astrophysics Data System (ADS)
Abreu, P.; Acounis, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anti&cbreve; i'c, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenir, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Charrier, D.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fox, B.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garçon, T.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Messina, S.; Meurer, C.; Meyhandan, R.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rivière, C.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulz, J.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stassi, P.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyj, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.
2012-11-01
We describe the experimental setup and the results of RAuger, a small radio-antenna array, consisting of three fully autonomous and self-triggered radio-detection stations, installed close to the center of the Surface Detector (SD) of the Pierre Auger Observatory in Argentina. The setup has been designed for the detection of the electric field strength of air showers initiated by ultra-high energy cosmic rays, without using an auxiliary trigger from another detection system. Installed in December 2006, RAuger was terminated in May 2010 after 65 registered coincidences with the SD. The sky map in local angular coordinates (i.e., zenith and azimuth angles) of these events reveals a strong azimuthal asymmetry which is in agreement with a mechanism dominated by a geomagnetic emission process. The correlation between the electric field and the energy of the primary cosmic ray is presented for the first time, in an energy range covering two orders of magnitude between 0.1 EeV and 10 EeV. It is demonstrated that this setup is relatively more sensitive to inclined showers, with respect to the SD. In addition to these results, which underline the potential of the radio-detection technique, important information about the general behavior of self-triggering radio-detection systems has been obtained. In particular, we will discuss radio self-triggering under varying local electric-field conditions.
NASA Technical Reports Server (NTRS)
Puget, J. L.; Stecker, F. W.
1974-01-01
Recent data from SAS-2 on the galactic gamma ray line flux as a function of longitude reveal a broad maximum in the gamma ray intensity in the region absolute value of l approximately smaller than 30 deg. These data imply that the low energy galactic cosmic ray flux varies with galactocentric distance and is about an order of magnitude higher than the local value in a toroidal region between 4 and 5 kpc from the galactic center. This enhancement can be plausibly accounted for by first order Fermi acceleration, compression and trapping of cosmic rays consistent with present ideas of galactic dynamics and galactic structure theory. Calculations indicate that cosmic rays in the 4 to 5 kpc region are trapped and accelerated over a mean time of the order of a few million years or about 2 to 4 times the assumed trapping time in the solar region of the galaxy.
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Dembinski, H.; Denkiewicz, A.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gascon, A.; Gelmini, G.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hórandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karhan, P.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Mičanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou c, V.; Payet, K.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tapia, A.; Tarutina, T.; Taşcǎu, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto a, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.
2011-01-01
Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.
Measurement of cosmic ray positron and negatron spectra between 50 and 800 MeV. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Daugherty, J. K.
1974-01-01
A balloon-borne magnetic spectrometer was used to measure the spectra of cosmic ray positrons and negatrons at energies between 50 and 800 MeV. Comparisons of the separate positron and negatron spectra observed near the earth with their expected intensities in interstellar space can be used to investigate the complex (and variable) interaction of galactic cosmic rays with the expanding solar wind. The present measurements, which have established finite values or upper limits for the positron and negatron spectral between 50 and 800 MeV, have confirmed earlier evidence for the existence of a dominant component of negatrons from primary sources in the galaxy. The present results are shown to be consistent with the hypothesis that the positron component is in fact mainly attributable to collisions between cosmic ray nuclei and the interstellar gas. The estimate of the absolute intensities confirm the indications from neutron monitors that in 1972 the interplanetary cosmic ray intensities were already recovering toward their high levels observed in 1965.
Application of cosmic-ray shock theories to the Cygnus Loop - an alternative model
NASA Astrophysics Data System (ADS)
Boulares, Ahmed; Cox, Donald P.
1988-10-01
Steady state cosmic-ray shock models are investigated in light of observations of the Cygnus Loop supernova remnant. In this work the authors find that the model of Völk, Drury, and McKenzie, in which the plasma waves are generated by the streaming instability of the cosmic rays and are dissipated into the gas, can be made consistent with some observed characteristics of Cygnus Loop shocks. The waves heat the gas substantially in the cosmic-ray precursor, in addition to the usual heating in the (possibly weak) gas shock. The model is used to deduce upstream densities and shock velocities using known quantities for Cygnus Loop shocks. Compared to the usual pure gas shock interpretation, it is found that lower densities and approximately 3 times higher velocities are required. If the cosmic-ray models are valid, this could significantly alter our understanding of the Cygnus Loop's distance and age and of the energy released during the initial explosion.
The Energetic Trans-Iron Cosmic-ray Experiment (ENTICE)
NASA Technical Reports Server (NTRS)
Binns, W. R.; Adams. J. H.; Barghouty, A. F.; Christian, E. R.; Cummings, A. C.; Hams, T.; Israel, M. H.; Labrador, A. W.; Leske, R. A.; Link, J. T.;
2009-01-01
The ENTICE experiment is one of two instruments that comprise the "Orbiting Astrophysical Spectrometer in Space (OASIS)", which is presently undergoing a NASA "Astrophysics Strategic Mission Concept Study". ENTICE is designed to make high precision measurements of the abundances of individual elements from neon through the actinides and, in addition, will search for possible superheavy nuclei in the galactic cosmic rays. The ENTICE instrument utilizes silicon detectors, aerogel and acrylic Cherenkov counters, and a scintillating optical fiber hodoscope to measure the charge and energy of these ultra-heavy nuclei for energies greater than 0.5 GeV/nucleon. It is a large instrument consisting of four modules with a total effective geometrical factor of approx.20 sq m sr. Measurements made in space for a period of three years with ENTICE will enable us to determine if cosmic rays include a component of recently synthesized transuranic elements (Pu-94 and Cm-96), to measure the age of that component, and to test the model of the OB association origin of galactic cosmic rays. Additionally, these observations will enable us to study how diffusive shock acceleration of cosmic rays operates differently on interstellar grains and gas. Keywords: cosmic rays Galaxy:abundances
Th/U/Pu/Cm dating of galactic cosmic rays with the extremely heavy cosmic ray composition observer
NASA Astrophysics Data System (ADS)
Westphal, Andrew J.; Weaver, Benjamin A.; Tarlé, Gregory
The principal goal of ECCO, the Extremely-heavy Cosmic-ray Composition Observer, is the measurement of the age of heavy galactic cosmic-ray nuclei using the extremely rare actinides (Th, U, Pu, Cm) as clocks. ECCO is one of two cosmic-ray instruments comprising the Heavy Nuclei Explorer (HNX), which was recently selected as one of several missions for Phase A study under NASA's Small class Explorer (SMEX) program. ECCO is based on the flight heritage of Trek, an array of barium-phosphate glass tracketch detectors deployed on the Russian space station Mir from 1991-1995. Using Trek, we measured the abundances of elements with Z > 70 in the galactic cosmic rays (GCRs). Trek consisted of a 1 m 2 array of stacks of individually polished thin BP-1 glass detectors. ECCO will be a much larger instrument, but will achieve both excellent resolution and low cost through use of a novel detector configuration. Here we report the results of recent accelerator tests of the ECCO detectors that verify detector performance. We also show the expected charge and energy resolution of ECCO as a function of energy.
Ackermann, M; Ajello, M; Allafort, A; Atwood, W B; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; do Couto E Silva, E; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Gustafsson, M; Hadasch, D; Harding, A K; Hayashida, M; Hughes, R E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Llena Garde, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Madejski, G M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Roth, M; Sadrozinski, H F-W; Sbarra, C; Schalk, T L; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thayer, J B; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S
2012-01-06
We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting Earth's shadow, which is offset in opposite directions for opposite charges due to Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 and 200 GeV. We confirm that the fraction rises with energy in the 20-100 GeV range. The three new spectral points between 100 and 200 GeV are consistent with a fraction that is continuing to rise with energy.
Indications of Proton-Dominated Cosmic-Ray Composition above 1.6 EeV
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Al-Seady, M.; Allen, M.; Amman, J. F.; Anderson, R. J.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Loh, E. C.; Liu, J.; Lundquist, J. P.; Maestas, M. M.; Manago, N.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M.; Rodriguez, D.; Sasaki, N.; Schnetzer, S. R.; Scott, L. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Stratton, S.; Thomas, S. B.; Thomas, J. R.; Thomson, G. B.; Tupa, D.; Zech, A.; Zhang, X.
2010-04-01
We report studies of ultrahigh-energy cosmic-ray composition via analysis of depth of air shower maximum (Xmax), for air shower events collected by the High-Resolution Fly’s Eye (HiRes) observatory. The HiRes data are consistent with a constant elongation rate d⟨Xmax⟩/d[log(E)] of 47.9±6.0(stat)±3.2(syst)g/cm2/decade for energies between 1.6 and 63 EeV, and are consistent with a predominantly protonic composition of cosmic rays when interpreted via the QGSJET01 and QGSJET-II high-energy hadronic interaction models. These measurements constrain models in which the galactic-to-extragalactic transition is the cause of the energy spectrum ankle at 4×1018eV.
Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope
NASA Technical Reports Server (NTRS)
Ferrara, E. C.; Harding, A. K.; McEnery, J. E.; Moiseev, A. A.; Ackemann, M.
2012-01-01
We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting Earth's shadow, which, is offset in opposite directions for opposite charges due to Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 and 200 Ge V. We confirm that the fraction rises with energy in the 20-100 Ge V range. The three new spectral points between 100 and 200 GeV are consistent with a fraction that is continuing to rise with energy.
Observation of the large scale cosmic-ray anisotropy at TeV energies with the Milagro detector
NASA Astrophysics Data System (ADS)
Kolterman, Brian E.
Cosmic-rays with energies in the range of 1-100 TeV are nearly isotropic in their arrival directions due to interactions with randomly scattered inhomogeneities in the Galactic magnetic field. Observation of the large scale anisotropy in the arrival direction of these cosmic-rays is therefore a useful tool in constraining theoretical models of cosmic-ray propagation, probing the magnetic field structure in our interstellar neighborhood, as well as providing information about the distribution of sources. In this work results are presented of a harmonic analysis of the large scale cosmic-ray anisotropy as observed by the Milagro observatory. A two- dimensional display of the anisotropy projections in right ascension is generated by the fitting of three harmonics to 18 separate declination bands. Milagro is a water Cherenkov detector located at an elevation of 2630m in the Jemez mountains outside of Los Alamos, NM. With a live time > 90 and a large field-of-view (~2 sr), Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven year data sample consisting of more than 95 billion events. A sidereal anisotropy is observed with a magnitude around 0.1% for cosmic-rays with a median energy of 6 TeV. The dominant feature in this data set is a deficit region of depth (-2.85±0.06 stat. ±0.08 syst.)×10 -3 in the direction of the Galactic North Pole with a range in declination of - 10 to 45 degrees and 150 to 225 degrees in right ascension. The anisotropy also shows evidence of a time dependence, with a steady increase in the magnitude of the signal in this region over the course of seven years. An analysis of the energy dependence of the anisotropy in this region is also presented showing possible deviation of the spectral index of the anisotropy signal from that of the nominal cosmic-ray background. The anisotropy of cosmic-rays in universal time is analyzed showing a dipole structure at the level of 3×10 -4 , consistent with the Compton-Getting effect expected due to the Earth's motion around the Sun through the cosmic-ray ether.
Penetration of Cosmic Rays into Dense Molecular Clouds: Role of Diffuse Envelopes
NASA Astrophysics Data System (ADS)
Ivlev, A. V.; Dogiel, V. A.; Chernyshov, D. O.; Caselli, P.; Ko, C.-M.; Cheng, K. S.
2018-03-01
A flux of cosmic rays (CRs) propagating through a diffuse ionized gas can excite MHD waves, thus generating magnetic disturbances. We propose a generic model of CR penetration into molecular clouds through their diffuse envelopes, and identify the leading physical processes controlling their transport on the way from a highly ionized interstellar medium to the dense interior of the cloud. The model allows us to describe a transition between a free streaming of CRs and their diffusive propagation, determined by the scattering on the self-generated disturbances. A self-consistent set of equations, governing the diffusive transport regime in an envelope and the MHD turbulence generated by the modulated CR flux, is characterized by two dimensionless numbers. We demonstrate a remarkable mutual complementarity of different mechanisms leading to the onset of the diffusive regime, which results in a universal energy spectrum of the modulated CRs. In conclusion, we briefly discuss implications of our results for several fundamental astrophysical problems, such as the spatial distribution of CRs in the Galaxy as well as the ionization, heating, and chemistry in dense molecular clouds. This paper is dedicated to the memory of Prof. Vadim Tsytovich.
A New Measurement of the Cosmic-Ray Proton and Helium Spectra
NASA Astrophysics Data System (ADS)
Mocchiutti, E.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Boezio, M.; Bonicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Finetti, N.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Mocchiutti, E.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.; WIZARD/CAPRICE Collaboration
2001-08-01
A new measurement of the primary cosmic ray spectra was performed during the balloon-borne CAPRICE experiment in 1998. This apparatus consists of a magnet spectrometer, with a superconducting magnet and a driftchamber tracking device, a time of flight scintillator system, a silicon-tungsten imaging calorimeter and a gas ring imaging Cherenkov detector. This combination of state-of-the-art detectors provides excellent particle discrimination capabilities, such that detailed investigations of the antiproton, electron/positron, muon and primary components of cosmic rays have been performed. The analysis of the primary proton component is illustrated in this paper.
The acceleration rate of cosmic rays at cosmic ray modified shocks
NASA Astrophysics Data System (ADS)
Saito, Tatsuhiko; Hoshino, Masahiro; Amano, Takanobu
It is a still controversial matter whether the production efficiency of cosmic rays (CRs) is relatively efficient or inefficient (e.g. Helder et al. 2009; Hughes et al. 2000; Fukui 2013). In upstream region of SNR shocks (the interstellar medium), the energy density of CRs is comparable to a substantial fraction of that of the thermal plasma (e.g. Ferriere 2001). In such a situation, CRs can possibly exert a back-reaction to the shocks and modify the global shock structure. These shocks are called cosmic ray modified shocks (CRMSs). In CRMSs, as a result of the nonlinear feedback, there are almost always up to three steady-state solutions for given upstream parameters, which are characterized by CR production efficiencies (efficient, intermediate and inefficient branch). We evaluate qualitatively the efficiency of the CR production in SNR shocks by considering the stability of CRMS, under the effects of i) magnetic fields and ii) injection, which play significant roles in efficiency of acceleration. By adopting two-fluid model (Drury & Voelk, 1981), we investigate the stability of CRMSs by means of time-dependent numerical simulations. As a result, we show explicitly the bi-stable feature of these multiple solutions, i.e., the efficient and inefficient branches are stable and the intermediate branch is unstable, and the intermediate branch transit to the inefficient one. This feature is independent of the effects of i) shock angles and ii) injection. Furthermore, we investigate the evolution from a hydrodynamic shock to CRMS in a self-consistent manner. From the results, we suggest qualitatively that the CR production efficiency at SNR shocks may be the least efficient.
NASA Technical Reports Server (NTRS)
Marti, K.; Lavielle, B.; Regnier, S.
1984-01-01
While previous calculations of potassium ages assumed a constant cosmic ray flux and a single stage (no change in size) exposure of iron meteorites, present calculations relaxed these constancy assumptions and the results reveal multistage irradiations for some 25% of the meteorites studied, implying multiple breakup in space. The distribution of exposure ages suggests several major collisions (based on chemical composition and structure), although the calibration of age scales is not yet complete. It is concluded that shielding-corrected (corrections which depend on size and position of sample) production rates are consistent for the age bracket of 300 to 900 years. These production rates differ in a systematic way from those calculated for present day fluxes of cosmic rays (such as obtained for the last few million years).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abreu, P.; /Lisbon, LIFEP /Lisbon, IST; Aglietta, M.
2011-01-01
Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation withmore » neutron monitor data is found.« less
Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope
Ackermann, M.
2012-01-05
We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting the Earth’s shadow, which is offset in opposite directions for opposite charges due to the Earth’s magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 GeV and 200 GeV. We confirm that the fraction rises with energy in the 20–100 GeV range. The three new spectral pointsmore » between 100 and 200 GeV are consistent with a fraction that is continuing to rise with energy.« less
The MIDAS telescope for microwave detection of ultra-high energy cosmic rays
NASA Astrophysics Data System (ADS)
Alvarez-Muñiz, J.; Amaral Soares, E.; Berlin, A.; Bogdan, M.; Boháčová, M.; Bonifazi, C.; Carvalho, W. R.; de Mello Neto, J. R. T.; Facal San Luis, P.; Genat, J. F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P.; Ramos de Castro, A.; Reyes, L. C.; Richardson, M.; Rouille d'Orfeuil, B.; Santos, E. M.; Wayne, S.; Williams, C.; Zas, E.; Zhou, J.
2013-08-01
We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4-4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope - to validate the telescope design, and to demonstrate a large detector duty cycle - were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory.
Galactic cosmic-ray model in the light of AMS-02 nuclei data
NASA Astrophysics Data System (ADS)
Niu, Jia-Shu; Li, Tianjun
2018-01-01
Cosmic ray (CR) physics has entered a precision-driven era. With the latest AMS-02 nuclei data (boron-to-carbon ratio, proton flux, helium flux, and antiproton-to-proton ratio), we perform a global fitting and constrain the primary source and propagation parameters of cosmic rays in the Milky Way by considering 3 schemes with different data sets (with and without p ¯ /p data) and different propagation models (diffusion-reacceleration and diffusion-reacceleration-convection models). We find that the data set with p ¯/p data can remove the degeneracy between the propagation parameters effectively and it favors the model with a very small value of convection (or disfavors the model with convection). The separated injection spectrum parameters are used for proton and other nucleus species, which reveal the different breaks and slopes among them. Moreover, the helium abundance, antiproton production cross sections, and solar modulation are parametrized in our global fitting. Benefited from the self-consistence of the new data set, the fitting results show a little bias, and thus the disadvantages and limitations of the existed propagation models appear. Comparing to the best fit results for the local interstellar spectra (ϕ =0 ) with the VOYAGER-1 data, we find that the primary sources or propagation mechanisms should be different between proton and helium (or other heavier nucleus species). Thus, how to explain these results properly is an interesting and challenging question.
Insights into the Galactic Cosmic-ray Source from the TIGER Experiment
NASA Technical Reports Server (NTRS)
Link, Jason T.; Barbier, L. M.; Binns, W. R.; Christian, E. R.; Cummings, J. R.; Geier, S.; Israel, M. H.; Lodders, K.; Mewaldt,R. A.; Mitchell, J. W.;
2009-01-01
We report results from 50 days of data accumulated in two Antarctic flights of the Trans-Iron Galactic Element Recorder (TIGER). With a detector system composed of scintillators, Cherenkov detectors, and scintillating optical fibers, TIGER has a geometrical acceptance of 1.7 sq m sr and a charge resolution of 0.23 cu at Iron. TIGER has obtained abundance measurements of some of the rare galactic cosmic rays heavier than iron, including Zn, Ga, Ge, Se, and Sr, as well as the more abundant lighter elements (down to Si). The heavy elements have long been recognized as important probes of the nature of the galactic cosmic-ray source and accelerator. After accounting for fragmentation of cosmic-ray nuclei as they propagate through the Galaxy and the atmosphere above the detector system, the TIGER source abundances are consistent with a source that is a mixture of about 20% ejecta from massive stars and 80% interstellar medium with solar system composition. This result supports a model of cosmic-ray origin in OB associations previously inferred from ACE-CRIS data of more abundant lighter elements. These TIGER data also support a cosmic-ray acceleration model in which elements present in interstellar grains are accelerated preferentially compared with those found in interstellar gas.
Estimates of galactic cosmic ray shielding requirements during solar minimum
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Nealy, John E.; Wilson, John W.; Simonsen, Lisa C.
1990-01-01
Estimates of radiation risk from galactic cosmic rays are presented for manned interplanetary missions. The calculations use the Naval Research Laboratory cosmic ray spectrum model as input into the Langley Research Center galactic cosmic ray transport code. This transport code, which transports both heavy ions and nucleons, can be used with any number of layers of target material, consisting of up to five different arbitrary constituents per layer. Calculated galactic cosmic ray fluxes, dose and dose equivalents behind various thicknesses of aluminum, water and liquid hydrogen shielding are presented for the solar minimum period. Estimates of risk to the skin and the blood-forming organs (BFO) are made using 0-cm and 5-cm depth dose/dose equivalent values, respectively, for water. These results indicate that at least 3.5 g/sq cm (3.5 cm) of water, or 6.5 g/sq cm (2.4 cm) of aluminum, or 1.0 g/sq cm (14 cm) of liquid hydrogen shielding is required to reduce the annual exposure below the currently recommended BFO limit of 0.5 Sv. Because of large uncertainties in fragmentation parameters and the input cosmic ray spectrum, these exposure estimates may be uncertain by as much as a factor of 2 or more. The effects of these potential exposure uncertainties or shield thickness requirements are analyzed.
First cosmic-ray images of bone and soft tissue
NASA Astrophysics Data System (ADS)
Mrdja, Dusan; Bikit, Istvan; Bikit, Kristina; Slivka, Jaroslav; Hansman, Jan; Oláh, László; Varga, Dezső
2016-11-01
More than 120 years after Roentgen's first X-ray image, the first cosmic-ray muon images of bone and soft tissue are created. The pictures, shown in the present paper, represent the first radiographies of structures of organic origin ever recorded by cosmic rays. This result is achieved by a uniquely designed, simple and versatile cosmic-ray muon-imaging system, which consists of four plastic scintillation detectors and a muon tracker. This system does not use scattering or absorption of muons in order to deduct image information, but takes advantage of the production rate of secondaries in the target materials, detected in coincidence with muons. The 2D image slices of cow femur bone are obtained at several depths along the bone axis, together with the corresponding 3D image. Real organic soft tissue, polymethyl methacrylate and water, never seen before by any other muon imaging techniques, are also registered in the images. Thus, similar imaging systems, placed around structures of organic or inorganic origin, can be used for tomographic imaging using only the omnipresent cosmic radiation.
Preliminary Results From the First Flight of ATIC: The Silicon Matrix
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Ahn, H. S.; Bashindzhagyan, G.; Ampe, J.; Case, G.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Advanced Thin Ionization Calorimeter (ATIC) uses a silicon matrix detector in conjunction with a scintillator hodoscope to determine the incident cosmic ray's charge. Cosmic rays that interact in a carbon target have their energy determined from the shower that develops within a fully active calorimeter composed of a stack of scintillating BGO crystals. The silicon matrix consists of 4480 individual silicon pads, each capable of measuring the signal from cosmic rays with atomic numbers from I to 26. Preliminary results will be presented describing the performance of the silicon matrix during the 16-day maiden flight of ATIC around Antarctica.
Observation of Air Shower in Uijeongbu Area using the COREA Prototype Detector System
NASA Astrophysics Data System (ADS)
Cho, Wooram; Shin, Jae-ik; Kwon, Youngjoon; Yang, Jongmann; Nam, Shinwoo; Park, Il H.; Cheon, ByungGu; Kim, Hang Bae; Bhang, Hyoung Chan; Park, Cheolyoung; Kim, Gyhyuk; Choi, Wooseok; Hwang, MyungJin; Shin, Gwangsik
2018-06-01
We report the study of high energy cosmic rays in Uijeongbu area using a cosmic-ray detector array system. The array consists of three detector stations, each of which contains a set of three scintillators and PMTs, a GPS antenna along with data acquisition system. To identify air shower signals originating from a single cosmic ray, time coincidence information is used. We devised a method for estimating the energy range of air shower data detected by an array of only three detectors, using air shower simulation and citing already known energy spectrum. Also, Fast Fourier Transform(FFT) was applied to study isotropy.
Found: A Galaxy's Missing Gamma Rays
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-04-01
Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016]Peng and collaborators argue that this emission is due solely to cosmic-ray interactions with interstellar gas. This picture is supported by the lack of variability in the emission, and the fact that Arp 220s gamma-ray luminosity is consistent with the scaling relation between gamma-ray and infrared luminosity for star-forming galaxies. The authors also argue that, due to Arp 220s high gas density, all cosmic rays will interact with the gas before escaping.Under these two assumptions, Peng and collaborators use the gamma-ray luminosity and the known supernova rate in Arp 220 to estimate how efficiently cosmic rays are acceleratedby supernova remnants in the galaxy. They determine that 4.2 2.6% of the supernova remnants kinetic energy is used to accelerate cosmic rays above 1 GeV.This is the first time such a rate has been measured directly from gamma-ray emission, but its consistent with estimates of 3-10% efficiency in the Milky Way. Future analysis of other ultraluminous infrared galaxies like Arp 220 with Fermi (and Pass 8!) will hopefully reveal more about these recent-merger, starburst environments.CitationFang-Kun Peng et al 2016 ApJ 821 L20. doi:10.3847/2041-8205/821/2/L20
A deep learning-based reconstruction of cosmic ray-induced air showers
NASA Astrophysics Data System (ADS)
Erdmann, M.; Glombitza, J.; Walz, D.
2018-01-01
We describe a method of reconstructing air showers induced by cosmic rays using deep learning techniques. We simulate an observatory consisting of ground-based particle detectors with fixed locations on a regular grid. The detector's responses to traversing shower particles are signal amplitudes as a function of time, which provide information on transverse and longitudinal shower properties. In order to take advantage of convolutional network techniques specialized in local pattern recognition, we convert all information to the image-like grid of the detectors. In this way, multiple features, such as arrival times of the first particles and optimized characterizations of time traces, are processed by the network. The reconstruction quality of the cosmic ray arrival direction turns out to be competitive with an analytic reconstruction algorithm. The reconstructed shower direction, energy and shower depth show the expected improvement in resolution for higher cosmic ray energy.
Trek and ECCO: Abundance measurements of ultraheavy galactic cosmic rays
NASA Astrophysics Data System (ADS)
Westphal, Andrew J.
2000-06-01
Using the Trek detector, we have measured the abundances of the heaviest elements (with Z>70) in the galactic cosmic rays with sufficient charge resolution to resolve the even-Z elements. We find that the abundance of Pb compared to Pt is ~3 times lower than the value expected from the most widely-held class of models of the origin of galactic cosmic ray nuclei, that is, origination in a partially ionized medium with solar-like composition. The low abundance of Pb is, however, consistent with the interstellar gas and dust model of Meyer, Drury and Ellison, and with a source enriched in r-process material, proposed by Binns et al. A high-resolution, high-statistics measurement of the abundances of the individual actinides would distinguish between these models. This is the goal of ECCO, the Extremely Heavy Cosmic-ray Composition Observer, which we plan to deploy on the International Space Station. .
Application of cosmic-ray shock theories to the Cygnus Loop - An alternative model
NASA Technical Reports Server (NTRS)
Boulares, Ahmed; Cox, Donald P.
1988-01-01
Steady state cosmic-ray shock models are investigated here in the light of observations of the Cygnus Loop supernova remnant. The predicted downstream temperature is derived for each model. The Cygnus Loop data and the application of the models to them, including wave dissipation, are presented. Heating rate and ionization fraction structures are provided along with an estimate of the cosmic-ray diffusion coefficient. It is found that the model of Voelk, Drury, and McKenzie (1984), in which the plasma waves are generated by the streaming instability of the cosmic rays and are dissipated into the gas, can be made consistent with some observed characteristics of the Cygnus Loop shocks. The model is used to deduce upstream densities and shock velocities and, compared to the usual pure gas shock interpretation, it is found that lower densities and approximately three times higher velocities are required.
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; BenZvi, S.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; HIRES Collaboration
2004-08-01
The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6d and is sensitive to cosmic rays with energies above 1018 eV. The HiRes cosmic-ray detector is thus an excellent instrument for the study of the arrival directions of ultra-high-energy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (<5°) and at the highest energies (>1019 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 1019 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions.
Constraints on Galactic Cosmic-Ray Origins from Elemental and Isotopic Composition Measurements
NASA Technical Reports Server (NTRS)
Binns, W. R.; Christian, E. R.; Cummings, A. C.; deNolfo, G. A.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A,; Stone, E. C.; vonRosevinge, T. T.; Wiedenbeck, M. E.
2013-01-01
The most recent measurements by the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE) satellite of ultra-heavy cosmic ray isotopic and elemental abundances will be presented. A range of isotope and element ratios, most importantly Ne-22/Ne-20, Fe-58/Fe-56, and Ga-31/Ge -32 show that the composition is consistent with source material that is a mix of approx 80% ISM (with Solar System abundances) and 20% outflow/ejecta from massive stars. In addition, our data show that the ordering of refractory and volatile elements with atomic mass is greatly improved when compared to an approx 80%/20% mix rather than pure ISM, that the refractory and volatile elements have similar slopes, and that refractory elements are preferentially accelerated by a factor of approx 4. We conclude that these data are consistent with an OB association origin of GCRs.
Cosmic Rays: "A Thin Rain of Charged Particles."
ERIC Educational Resources Information Center
Friedlander, Michael
1990-01-01
Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)
The Status and Recent Results of the Telescope Array Experiment
NASA Astrophysics Data System (ADS)
Yamazaki, Katsuya
The Telescope Array (TA) is a cosmic ray observatory of the largest aperture in the northern hemisphere, located in a desert in the western part of Utah, U.S.A., to explore the origin of ultrahigh energy cosmic rays, photons, and neutrinos. The TA employs two types of detectors to observe air showers generated by cosmic rays in the atmosphere: the first is a "surface detector (SD)" of scintillation counters to measure shower particles on the ground, and the second is a "fluorescence detector (FD)" of telescopes installed in three stations to observe fluorescence light, caused by air shower particles, from the atmosphere above the SD array. The TA detectors have been in routine operation since May 2008. We measured the energy spectrum of cosmic rays with energy greater than 1018 eV from our first 4-year data. We found a clear suppression of comic ray intensity above 5 × 1019 eV. This feature is consistent with a theoretical prediction that cosmic rays lose energies due to interaction with cosmic microwave background photons during propagation in the intergalactic space. In this talk, We will present the status of the TA experiment and the recent results, including the energy spectrum, study of the primary mass composition, and searches for anisotropies in the arrival directions. We also briefly describe plans for further extensions.
NASA Technical Reports Server (NTRS)
Harding, A. K.; Stecker, F. W.
1984-01-01
The radial distribution of gamma ray emissivity in the Galaxy was derived from flux longitude profiles, using both the final SAS-2 results and the recently corrected COS-B results and analyzing the northern and southern galactic regions separately. The recent CO surveys of the Southern Hemisphere, were used in conjunction with the Northern Hemisphere data, to derive the radial distribution of cosmic rays on both sides of the galactic plane. In addition to the 5 kpc ring, there is evidence from the radial asymmetry for spiral features which are consistent with those derived from the distribution of bright HII regions. Positive evidence was also found for a strong increase in the cosmic ray flux in the inner Galaxy, particularly in the 5 kpc region in both halves of the plane.
NASA Astrophysics Data System (ADS)
Vícha, Jakub; Trávníček, Petr; Nosek, Dalibor; Ebr, Jan
2015-09-01
We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.
NASA Astrophysics Data System (ADS)
High-Resolution Fly'S Eye Collaboration; Abbai, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; Benzvi, S.; Bergman, D. R.; Blake, S. A.; Cao, Z.; Connolly, B. M.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Loh, E. C.; Maestas, M. M.; Manago, N.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Rodriguez, D.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Scott, L. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; Zhang, X.
2007-07-01
We report the results of a search for point-like deviations from isotropy in the arrival directions of ultra-high energy cosmic rays in the northern hemisphere. In the monocular data set collected by the High-Resolution Fly’s Eye, consisting of 1525 events with energy exceeding 1018.5 eV, we find no evidence for point-like excesses. We place a 90% c.l. upper limit of 0.8 hadronic cosmic rays/km2 yr on the flux from such sources for the northern hemisphere and place tighter limits as a function of position in the sky.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroman, Thomas; Pohl, Martin; Niemiec, Jacek
2012-02-10
There is an observational correlation between astrophysical shocks and nonthermal particle distributions extending to high energies. As a first step toward investigating the possible feedback of these particles on the shock at the microscopic level, we perform particle-in-cell (PIC) simulations of a simplified environment consisting of uniform, interpenetrating plasmas, both with and without an additional population of cosmic rays. We vary the relative density of the counterstreaming plasmas, the strength of a homogeneous parallel magnetic field, and the energy density in cosmic rays. We compare the early development of the unstable spectrum for selected configurations without cosmic rays to themore » growth rates predicted from linear theory, for assurance that the system is well represented by the PIC technique. Within the parameter space explored, we do not detect an unambiguous signature of any cosmic-ray-induced effects on the microscopic instabilities that govern the formation of a shock. We demonstrate that an overly coarse distribution of energetic particles can artificially alter the statistical noise that produces the perturbative seeds of instabilities, and that such effects can be mitigated by increasing the density of computational particles.« less
Mishev, A L
2016-03-01
A numerical model for assessment of the effective dose due to secondary cosmic ray particles of galactic origin at high mountain altitude of about 3000 m above the sea level is presented. The model is based on a newly numerically computed effective dose yield function considering realistic propagation of cosmic rays in the Earth magnetosphere and atmosphere. The yield function is computed using a full Monte Carlo simulation of the atmospheric cascade induced by primary protons and α- particles and subsequent conversion of secondary particle fluence (neutrons, protons, gammas, electrons, positrons, muons and charged pions) to effective dose. A lookup table of the newly computed effective dose yield function is provided. The model is compared with several measurements. The comparison of model simulations with measured spectral energy distributions of secondary cosmic ray neutrons at high mountain altitude shows good consistency. Results from measurements of radiation environment at high mountain station--Basic Environmental Observatory Moussala (42.11 N, 23.35 E, 2925 m a.s.l.) are also shown, specifically the contribution of secondary cosmic ray neutrons. A good agreement with the model is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Discovery of Localized Regions of Excess 10-TeV Cosmic Rays
NASA Astrophysics Data System (ADS)
Abdo, A. A.; Allen, B.; Aune, T.; Berley, D.; Blaufuss, E.; Casanova, S.; Chen, C.; Dingus, B. L.; Ellsworth, R. W.; Fleysher, L.; Fleysher, R.; Gonzalez, M. M.; Goodman, J. A.; Hoffman, C. M.; Hüntemeyer, P. H.; Kolterman, B. E.; Lansdell, C. P.; Linnemann, J. T.; McEnery, J. E.; Mincer, A. I.; Nemethy, P.; Noyes, D.; Pretz, J.; Ryan, J. M.; Parkinson, P. M. Saz; Shoup, A.; Sinnis, G.; Smith, A. J.; Sullivan, G. W.; Vasileiou, V.; Walker, G. P.; Williams, D. A.; Yodh, G. B.
2008-11-01
The 7 year data set of the Milagro TeV observatory contains 2.2×1011 events of which most are due to hadronic cosmic rays. These data are searched for evidence of intermediate scale structure. Excess emission on angular scales of ˜10° has been found in two localized regions of unknown origin with greater than 12σ significance. Both regions are inconsistent with pure gamma-ray emission with high confidence. One of the regions has a different energy spectrum than the isotropic cosmic-ray flux at a level of 4.6σ, and it is consistent with hard spectrum protons with an exponential cutoff, with the most significant excess at ˜10TeV. Potential causes of these excesses are explored, but no compelling explanations are found.
Discovery of localized regions of excess 10-TeV cosmic rays.
Abdo, A A; Allen, B; Aune, T; Berley, D; Blaufuss, E; Casanova, S; Chen, C; Dingus, B L; Ellsworth, R W; Fleysher, L; Fleysher, R; Gonzalez, M M; Goodman, J A; Hoffman, C M; Hüntemeyer, P H; Kolterman, B E; Lansdell, C P; Linnemann, J T; McEnery, J E; Mincer, A I; Nemethy, P; Noyes, D; Pretz, J; Ryan, J M; Parkinson, P M Saz; Shoup, A; Sinnis, G; Smith, A J; Sullivan, G W; Vasileiou, V; Walker, G P; Williams, D A; Yodh, G B
2008-11-28
The 7 year data set of the Milagro TeV observatory contains 2.2 x 10(11) events of which most are due to hadronic cosmic rays. These data are searched for evidence of intermediate scale structure. Excess emission on angular scales of approximately 10 degrees has been found in two localized regions of unknown origin with greater than 12sigma significance. Both regions are inconsistent with pure gamma-ray emission with high confidence. One of the regions has a different energy spectrum than the isotropic cosmic-ray flux at a level of 4.6sigma, and it is consistent with hard spectrum protons with an exponential cutoff, with the most significant excess at approximately 10 TeV. Potential causes of these excesses are explored, but no compelling explanations are found.
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Bellido, J. A.; Belov, K.; Belz, J. W.; Bergman, D. R.; Cao, Z.; Clay, R. W.; Cooper, M. D.; Dai, H.; Dawson, B. R.; Everett, A. A.; Fedorova, Yu. A.; Girard, J. H.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hüntemeyer, P.; Jones, B. F.; Jui, C. C.; Kieda, D. B.; Kim, K.; Kirn, M. A.; Loh, E. C.; Manago, N.; Marek, L. J.; Martens, K.; Martin, G.; Matthews, J. A.; Matthews, J. N.; Meyer, J. R.; Moore, S. A.; Morrison, P.; Moosman, A. N.; Mumford, J. R.; Munro, M. W.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M.; Sarracino, J. S.; Sasaki, M.; Schnetzer, S. R.; Shen, P.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Taylor, S. F.; Thomas, S. B.; Thompson, T. N.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Vanderveen, T. D.; Zech, A.; Zhang, X.
2004-04-01
We have measured the cosmic ray spectrum above 1017.2 eV using the two air-fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, phototube, and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extragalactic sources.
On the Age of Cosmic Rays as Derived from the Abundance of Be-10. Ph.D. Thesis - Maryland Univ.
NASA Technical Reports Server (NTRS)
Hagen, F. A.
1976-01-01
The isotopic composition of cosmic ray Be, B, C, and N was studied using a new range versus total light technique. Special emphasis was placed on the Be isotopes and in particular, on the radioactive isotope Be-10 due to its mean lifetime against decay. The experiment consisted of a thin trigger scintillator, an acrylic plastic Cerenkov detector and a spark chamber, followed by a totally active stack of 14 scintillation detectors. This stack of scintillators made possible the measurement of range, and also permitted the removal of interacting events by continuously monitoring their identities along their trajectories. The experiment was carried by balloon to atmospheric depths ranging from 3.5 to 5.0 g sq cm residual atmosphere for a total exposure time of 23 hr. Results indicate the survival of ( 55 + or -21) % of the Be-10 in the arriving cosmic rays; the data were interpreted using the leaky box model of cosmic ray propagation.
Indications of negative evolution for the sources of the highest energy cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan
2015-09-14
Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically.more » In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.« less
NASA Astrophysics Data System (ADS)
Mishev, A. L.; Velinov, P. I. Y.
2014-12-01
In the last few years an essential progress in development of physical models for cosmic ray induced ionization in the atmosphere is achieved. The majority of these models are full target, i.e. based on Monte Carlo simulation of an electromagnetic-muon-nucleon cascade in the atmosphere. Basically, the contribution of proton nuclei is highlighted, i.e. the contribution of primary cosmic ray α-particles and heavy nuclei to the atmospheric ionization is neglected or scaled to protons. The development of cosmic ray induced atmospheric cascade is sensitive to the energy and mass of the primary cosmic ray particle. The largest uncertainties in Monte Carlo simulations of a cascade in the Earth atmosphere are due to assumed hadron interaction models, the so-called hadron generators. In the work presented here we compare the ionization yield functions Y for primary cosmic ray nuclei, such as α-particles, Oxygen and Iron nuclei, assuming different hadron interaction models. The computations are fulfilled with the CORSIKA 6.9 code using GHEISHA 2002, FLUKA 2011, UrQMD hadron generators for energy below 80 GeV/nucleon and QGSJET II for energy above 80 GeV/nucleon. The observed difference between hadron generators is widely discussed. The influence of different atmospheric parametrizations, namely US standard atmosphere, US standard atmosphere winter and summer profiles on ion production rate is studied. Assuming realistic primary cosmic ray mass composition, the ion production rate is obtained at several rigidity cut-offs - from 1 GV (high latitudes) to 15 GV (equatorial latitudes) using various hadron generators. The computations are compared with experimental data. A conclusion concerning the consistency of the hadron generators is stated.
NASA Astrophysics Data System (ADS)
Tzanavaris, Panayiotis
Fluorescent Fe K emission from neutral matter in AGN spectracan arise in the accretion disk around the centralsupermassive black hole [SMBH] ("broad" line) and/or in distant matter ("narrow"line). If it is broad, it provides a unique windowto the strong gravity SMBH regime, including information on SMBH spin;if it is narrow, it probesthe distant reprocessor, likely a clumpy torus. We will use broadband X-ray data from four NASA X-ray missionsfor 45 nearby AGNs, and 1. Assess whether any known "broad" relativistic lines can be modeledas "narrow"instead, by means of self-consistent modeling of fluorescence,direct, and scattered continua; 2. Measure absorbing column densities both in and out of the line of sight; 3. Bootstrap measures of intrinsic bolometric AGN luminosity, with X-ray and optical data. This work will provide updated results on a) black hole spin, with implications on AGN jet power and accretion history; b) the census of highly-obscured (Compton thick) vs. Compton thin AGNs, with implications on models of the Cosmic X-ray Background; c) calibrations of Fe K line, X-ray intrinsic continuum, [OIII] and [OIV] luminosities as measures of intrinsc bolometric AGN luminosity, with implications on AGN feedback and galaxy evolution. Key in our approach is a physically based, self-consistent modeling of the narrow line, with finite column density in and out of the line of sight, and the latest relativistic modeling of the broad line.
Status of the Top and Bottom Counting Detectors for the ISS-CREAM Experiment
NASA Astrophysics Data System (ADS)
Park, J. M.; ISS-CREAM Collaboration
2017-11-01
It is important to measure the cosmic ray spectra to study the origin, acceleration and propagation mechanisms of high-energy cosmic rays. A payload of the Cosmic Ray Energetics And Mass experiment is scheduled to be launched in 2017 to the International Space Station for measuring cosmic ray elemental spectra at energies beyond the reach of balloon instruments. Top Counting Detector and Bottom Counting Detector (T/BCD) as a two-dimensional detector are to separate electrons from protons for electron/gamma-ray physics. The T/BCD each consists of a plastic scintillator read out by 20 by 20 photodiodes and is placed before and after the Calorimeter, respectively. Energy and hit information of the T/BCD can distinguish shower profiles of electrons and protons, which show narrower and shorter showers from electrons at a given energy. The T/BCD performance has been studied with the Silicon Charge Detector and the calorimeter by using a GEANT3 + FLUKA 3.21 simulation package. By comparing the number of hits and shower width distributions between electrons and protons, we have studied optimal parameters for the e/p separation.
Structure of the X-ray source in the Virgo cluster of galaxies
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Fabricant, D.; Topka, K.; Tucker, W.; Harnden, F. R., Jr.
1977-01-01
High-angular-resolution observations in the 0.15-1.5-keV band with an imaging X-ray telescope shows the extended X-ray source in the Virgo cluster of galaxies to be a diffuse halo of about 15 arcmin core radius surrounding M87. The angular structure of the surface brightness is marginally consistent with either of two simple models: (1) an isothermal (or adiabatic or hydrostatic) sphere plus a point source at M87 accounting for 12% of the total 0.5-1.5-keV intensity or (2) a power-law function without a discrete point source. No evidence for a point source is seen in the 0.15-0.28-keV band, which is consistent with self-absorption by about 10 to the 21st power per sq cm of matter having a cosmic abundance. The power-law models are motivated by the idea that radiation losses regulate the accretion of matter onto M87 and can account for the observed difference in the size of the X-ray source as seen in the present measurements and at higher energies.
Testing Lorentz Invariance with Neutrinos from Ultrahigh Energy Cosmic Ray Interactions
NASA Technical Reports Server (NTRS)
Scully, Sean T.; Stecker, Floyd W.
2010-01-01
We have previously shown that a very small amount of Lorentz invariance violation (UV), which suppresses photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with cosmic background radiation (CBR) photons, can produce a spectrum of cosmic rays that is consistent with that currently observed by the Pierre Auger Observatory (PAO) and HiRes experiments. Here, we calculate the corresponding flux of high energy neutrinos generated by the propagation of UHECR protons through the CBR in the presence of UV. We find that UV produces a reduction in the flux of the highest energy neutrinos and a reduction in the energy of the peak of the neutrino energy flux spectrum, both depending on the strength of the UV. Thus, observations of the UHE neutrino spectrum provide a clear test for the existence and amount of UV at the highest energies. We further discuss the ability of current and future proposed detectors make such observations.
The Outer Heliosphere: Solar Wind, Cosmic Ray and VLF Radio Emission Variations
NASA Technical Reports Server (NTRS)
McNutt, Ralph L., Jr.
1995-01-01
The Voyager 1 and 2 spacecraft now 45 astronomical units (AU) from Earth continue to monitor the outer heliosphere field and particles environment on a daily basis during their journey to the termination shock of the solar wind. Strong transient shocks continue to be detected in the solar wind plasma. The largest of these are associated with Global Merged Interaction Regions (GMIR's) which, in turn, block cosmic ray entry into the inner heliosphere and are apparently responsible for triggering the two major episodes of VLF radio emissions now thought to come from the heliopause. Distance estimates to the termination shock are consistent with those determined from observations of anomalous cosmic rays. Current observations and implications for heliospheric structure are discussed.
Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.;
2011-01-01
We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting the Earth's shadow, which is offset in opposite directions for opposite charges due to the Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 GeV and 200 GeV, We confirm that the fraction rises with energy in the 20-100 GeV range and determine for the first time that it continues to rise between 100 and 200 GeV,
Energy spectra of cosmic gamma-ray bursts
NASA Technical Reports Server (NTRS)
Cline, T. L.; Desai, U. D.; Klebesadel, R. W.; Strong, I. B.
1973-01-01
Spectral measurements of six cosmic gamma-ray bursts in the energy region of 0.1 to 1.2 MeV, made using a semi-omnidirectional X-ray detector on IMP-6 are reported. These measurements confirm the hard X-ray or gamma-ray nature of the bursts, as inferred from the original observations by Klebesadel et al., (1973), and show that their maximum energy release is in this several hundred keV region. Each burst consists of several 1 or 2-second pulses each with the characteristic spectrum of approximately 150-keV exponential, followed by a softer decay. There is no evidence of line structure in this energy region, or for a marked change in the energy spectrum within a given pulse. Event size spectra are estimated for galactic and extragalactic models; the total emission is consistent with present measurements of the diffuse background, and unlikely to account for any spectral feature in the few-MeV region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardo, Giuseppe Di; Evoli, Carmelo; Gaggero, Daniele
2013-03-01
A multichannel analysis of cosmic ray electron and positron spectra and of the diffuse synchrotron emission of the Galaxy is performed by using the DRAGON code. This study is aimed at probing the interstellar electron source spectrum down to E ∼< 1GeV and at constraining several propagation parameters. We find that above 4GeV the e{sup −} source spectrum is compatible with a power-law of index ∼ 2.5. Below 4GeV instead it must be significantly suppressed and the total lepton spectrum is dominated by secondary particles. The positron spectrum and fraction measured below a few GeV are consistently reproduced only withinmore » low reacceleration models. We also constrain the scale-height z{sub t} of the cosmic-ray distribution using three independent (and, in two cases, original) arguments, showing that values of z{sub t} ∼< 2kpc are excluded. This result may have strong implications for particle dark matter searches.« less
Telescope Array Results on UHE Cosmic Rays and the Plan
NASA Astrophysics Data System (ADS)
Sagawa, Hiroyuki
The Telescope Array (TA) is the largest experiment in the Northern Hemisphere studying the origin and nature of ultra-high-energy cosmic rays. The TA detector consists of a surface array of 507 scintillation counters covering approximately 700 km2, and 38 fluorescence telescopes located at three sites looking over the surface array. Here, recent TA results using the first five years of data and our ongoing and near-future plans are presented.
Abbasi, R U; Abu-Zayyad, T; Amann, J F; Archbold, G; Bellido, J A; Belov, K; Belz, J W; Bergman, D R; Cao, Z; Clay, R W; Cooper, M D; Dai, H; Dawson, B R; Everett, A A; Fedorova, Yu A; Girard, J H V; Gray, R C; Hanlon, W F; Hoffman, C M; Holzscheiter, M H; Hüntemeyer, P; Jones, B F; Jui, C C H; Kieda, D B; Kim, K; Kirn, M A; Loh, E C; Manago, N; Marek, L J; Martens, K; Martin, G; Matthews, J A J; Matthews, J N; Meyer, J R; Moore, S A; Morrison, P; Moosman, A N; Mumford, J R; Munro, M W; Painter, C A; Perera, L; Reil, K; Riehle, R; Roberts, M; Sarracino, J S; Sasaki, M; Schnetzer, S R; Shen, P; Simpson, K M; Sinnis, G; Smith, J D; Sokolsky, P; Song, C; Springer, R W; Stokes, B T; Taylor, S F; Thomas, S B; Thompson, T N; Thomson, G B; Tupa, D; Westerhoff, S; Wiencke, L R; VanderVeen, T D; Zech, A; Zhang, X
2004-04-16
We have measured the cosmic ray spectrum above 10(17.2) eV using the two air-fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, phototube, and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extragalactic sources.
Impact of Cosmic-Ray Transport on Galactic Winds
NASA Astrophysics Data System (ADS)
Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.
2018-04-01
The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.
Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes
Sato, Tatsuhiko
2016-01-01
A new model called “PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0” was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth’s atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model’s applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS). PMID:27490175
Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes.
Sato, Tatsuhiko
2016-01-01
A new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0" was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth's atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model's applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS).
STUDIES OF COSMIC-RAY MUONS AND NEUTRONS IN A FIVE-STORY CONCRETE BUILDING.
Chen, Wei-Lin; Sheu, Rong-Jiun
2018-05-01
This study thoroughly determined the flux and dose rate distributions of cosmic-ray muons and neutrons in a five-story concrete building by comparing measurements with Monte Carlo simulations of cosmic-ray showers. An angular-energy-dependent surface source comprising secondary muons and neutrons at a height of 200 m above ground level was established and verified, which was used to concatenate the shower development in the upper atmosphere with subsequent simulations of radiation transport down to ground level, including the effect of the terrain and studied building. A Berkeley Lab cosmic-ray detector and a highly sensitive Bonner cylinder were used to perform muon and neutron measurements on each building floor. After careful calibration and correction, the measured responses of the two detectors were discovered to be reasonably consistent with the theoretical predictions, thus confirming the validity of the two-step calculation model employed in this study. The annual effective doses from cosmic-ray muons and neutrons on the open roof of the building were estimated to be 115.2 and 35.2 μSv, respectively. Muons and neutrons were attenuated floor-by-floor with different attenuation factors of 0.97 and 0.78, and their resultant dose rates on the first floor of the building were 97.8 and 9.9 μSv, respectively.
NASA Technical Reports Server (NTRS)
Howell, L. W.
2001-01-01
A simple power law model consisting of a single spectral index alpha-1 is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV. Two procedures for estimating alpha-1 the method of moments and maximum likelihood (ML), are developed and their statistical performance compared. It is concluded that the ML procedure attains the most desirable statistical properties and is hence the recommended statistical estimation procedure for estimating alpha-1. The ML procedure is then generalized for application to a set of real cosmic-ray data and thereby makes this approach applicable to existing cosmic-ray data sets. Several other important results, such as the relationship between collecting power and detector energy resolution, as well as inclusion of a non-Gaussian detector response function, are presented. These results have many practical benefits in the design phase of a cosmic-ray detector as they permit instrument developers to make important trade studies in design parameters as a function of one of the science objectives. This is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.
On the Energy Spectra of GeV/TeV Cosmic Ray Leptons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stawarz, Lukasz; /KIPAC, Menlo Park /Jagiellonian U., Astron. Observ.; Petrosian, Vahe
2011-08-19
Recent observations of cosmic ray electrons from several instruments have revealed various degrees of deviation in the measured electron energy distribution from a simple power-law, in a form of an excess around 0.1 to 1 TeV energies. An even more prominent deviation and excess has been observed in the fraction of cosmic ray positrons around 10 and 100 GeV energies. These observations have received considerable attention and many theoretical models have been proposed to explain them. The models rely on either dark matter annihilation/decay or specific nearby astrophysical sources, and involve several additional assumptions regarding the dark matter distribution ormore » particle acceleration. In this paper we show that the observed excesses in the electron spectrum may be easily reproduced without invoking any unusual sources other than the general diffuse Galactic components of cosmic rays. The model presented here assumes a power-law injection of electrons (and protons) by supernova remnants, and evaluates their expected energy spectrum based on a simple kinetic equation describing the propagation of charged particles in the interstellar medium. The primary physical effect involved is the Klein-Nishina suppression of the electron cooling rate around TeV energies. With a very reasonable choice of the model parameters characterizing the local interstellar medium, we can reproduce the most recent observations by Fermi and HESS experiments. Interestingly, in our model the injection spectral index of cosmic ray electrons becomes comparable to, or even equal to that of cosmic ray protons. The Klein-Nishina effect may also affect the propagation of the secondary e{sup {+-}} pairs, and therefore modify the cosmic ray positron-to-electron ratio. We have explored this possibility by considering two mechanisms for production of e{sup {+-}} pairs within the Galaxy. The first is due to the decay of {pi}{sup {+-}}'s produced by interaction of cosmic ray nuclei with ambient protons. The second source discussed here is due to the annihilation of the diffuse Galactic {gamma}-rays on the stellar photon field. We find that high positron fraction increasing with energy, as claimed by the PAMELA experiment, cannot be explained in our model with the conservative set of the model parameters. We are able, however, to reproduce the PAMELA (as well as Fermi and HESS) results assuming high values of the starlight and interstellar gas densities, which would be more appropriate for vicinities of supernova remnants. A possible solution to this problem may be that cosmic rays undergo most of their interactions near their sources due to the efficient trapping in the far upstream of supernova shocks by self-generated, cosmic ray-driven turbulence.« less
The Diffuse Gamma-Ray Background from Type Ia Supernovae
NASA Technical Reports Server (NTRS)
Lien, Amy; Fields, Brian D.
2012-01-01
The origin of the diffuse extragalactic gamma-ray background (EGB) has been intensively studied but remains unsettled. Current popular source candidates include unresolved star-forming galaxies, starburst galaxies, and blazars. In this paper we calculate the EGB contribution from the interactions of cosmic rays accelerated by Type Ia supernovae, extending earlier work which only included core-collapse supernovae. We consider Type Ia events in star-forming galaxies, but also in quiescent galaxies that lack star formation. In the case of star-forming galaxies, consistently including Type Ia events makes little change to the star-forming EGB prediction, so long as both supernova types have the same cosmic-ray acceleration efficiencies in star-forming galaxies. Thus our updated EGB estimate continues to show that star-forming galaxies can represent a substantial portion of the signal measured by Fermi. In the case of quiescent galaxies, conversely, we find a wide range of possibilities for the EGB contribution. The dominant uncertainty we investigated comes from the mass in hot gas in these objects, which provides targets for cosmic rays: total gas masses are as yet poorly known, particularly at larger radii. Additionally, the EGB estimation is very sensitive to the cosmic-ray acceleration efficiency and confinement, especially in quiescent galaxies. In the most optimistic allowed scenarios, quiescent galaxies can be an important source of the EGB. In this case, star-forming galaxies and quiescent galaxies together will dominate the EGB and leave little room for other contributions. If other sources, such as blazars, are found to have important contributions to the EGB, then either the gas mass or cosmic-ray content of quiescent galaxies must be significantly lower than in their star-forming counterparts. In any case, improved Fermi EGB measurements will provide important constraints on hot gas and cosmic rays in quiescent galaxies.
Energy and flux measurements of ultra-high energy cosmic rays observed during the first ANITA flight
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoorlemmer, H.; Belov, K.; Romero-Wolf, A.
The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. The dominant contribution to the radiation comes from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. For 14 of these events, this radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of ~36 km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-raymore » sample is 2.9 × 1018 eV, which is significantly lower than the previous estimate. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations and find agreement with measurements performed at other observatories. In addition, we find that the ANITA data set is consistent with Monte Carlo simulations for the total number of observed events and with the properties of those events.« less
GALACTIC COSMIC RAYS IN THE LOCAL INTERSTELLAR MEDIUM: VOYAGER 1 OBSERVATIONS AND MODEL RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummings, A. C.; Stone, E. C.; Heikkila, B. C.
Since 2012 August Voyager 1 has been observing the local interstellar energy spectra of Galactic cosmic-ray nuclei down to 3 MeV nuc{sup -1} and electrons down to 2.7 MeV. The H and He spectra have the same energy dependence between 3 and 346 MeV nuc{sup -1}, with a broad maximum in the 10–50 MeV nuc{sup -1} range and a H/He ratio of 12.2 ± 0.9. The peak H intensity is ∼15 times that observed at 1 AU, and the observed local interstellar gradient of 3–346 MeV H is -0.009 ± 0.055% AU{sup -1}, consistent with models having no local interstellarmore » gradient. The energy spectrum of electrons ( e {sup -} + e {sup +}) with 2.7–74 MeV is consistent with E {sup -1.30±0.05} and exceeds the H intensity at energies below ∼50 MeV. Propagation model fits to the observed spectra indicate that the energy density of cosmic-ray nuclei with >3 MeV nuc{sup -1} and electrons with >3 MeV is 0.83–1.02 eV cm{sup -3} and the ionization rate of atomic H is in the range of 1.51–1.64 × 10{sup -17} s{sup -1}. This rate is a factor >10 lower than the ionization rate in diffuse interstellar clouds, suggesting significant spatial inhomogeneity in low-energy cosmic rays or the presence of a suprathermal tail on the energy spectrum at much lower energies. The propagation model fits also provide improved estimates of the elemental abundances in the source of Galactic cosmic rays.« less
All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV
NASA Astrophysics Data System (ADS)
Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dichiara, S.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Enriquez-Rivera, O.; Fiorino, D. W.; Fleischhack, H.; Fraija, N.; García-González, J. A.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez-Almada, A.; Hinton, J.; Hueyotl-Zahuantitla, F.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Lara, A.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis Raya, G.; Luna-García, R.; López-Cámara, D.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Zepeda, A.; Zhou, H.; HAWC Collaboration
2017-12-01
We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground-based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken over 234 days between June 2016 and February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of -2.49 ±0.01 prior to a break at (45.7 ±0.1 ) TeV , followed by an index of -2.71 ±0.01 . The spectrum also represents a single measurement that spans the energy range between direct detection and ground-based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Thomas; Girichidis, Philipp; Gatto, Andrea
2015-11-10
The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less
Composition of primary cosmic rays near the knee
NASA Technical Reports Server (NTRS)
Acharya, B. S.; Rao, M. V. S.; Sivaprasad, K.; Sreekantan, B. V.
1985-01-01
The size dependence of high energy muons and the size spectrum obtained in the air shower experiment suggest that the mean mass of cosmic rays remains nearly constant at approx 15 up to 5 x 1000,000 GeV and becomes one beyond. The composition model in which nuclei are removed spectrum steepens at 6.7 x 10 power GeV due to leakage from the galaxy, which explains the data which are consistent with data from other experiments.
Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array
NASA Astrophysics Data System (ADS)
Schröder, Frank G.; Pierre Auger Collaboration
2016-07-01
The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about 17km2, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of different detection techniques. For the direction and energy of air showers, the precision achieved by AERA is already competitive; for the type of primary particle, several methods are tested and optimized. By combining AERA with the particle detectors we aim for a better understanding of cosmic rays in the energy range from approximately 0.3 to 10 EeV, i.e., significantly higher energies than preceding radio arrays.
Calculation of Cosmic Ray Induced Single Event Upsets: Program CRUP, Cosmic Ray Upset Program
1983-09-14
1.., 0 .j ~ u M ~ t R A’- ~~ ’ .~ ; I .: ’ 1 J., ) ’- CALCULATION OF COSMIC RAY INDUCED SINGLE EVEI’o"T UPSETS: PROGRAM CRUP , COSMIC RAY UPSET...neceuety end Identity by blo..;k number) 0Thls report documents PROGR.Al\\1 CRUP , COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic...34. » » •-, " 1 » V »1T"~ Calculation of Cosmic Ray Induced Single Event Upsets: PROGRAM CRUP , COSMIC RAY UPSET PROGRAM I. INTRODUCTION Since the
The PAMELA experiment in space
NASA Astrophysics Data System (ADS)
Bonvicini, V.; Barbiellini, G.; Boezio, M.; Mocchiutti, E.; Schiavon, P.; Scian, G.; Vacchi, A.; Zampa, G.; Zampa, N.; Bergström, D.; Carlson, P.; Francke, T.; Lund, J.; Pearce, M.; Hof, M.; Menn, W.; Simon, M.; Stephens, S. A.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Spinelli, P.; Adriani, O.; Boscherini, M.; D'Alessandro, R.; Finetti, N.; Grandi, M.; Papini, P.; Perego, A.; Piccardi, S.; Spillantini, P.; Vannuccini, E.; Bartalucci, S.; Marino, L.; Ricci, M.; Spataro, B.; Bidoli, V.; Casolino, M.; De Pascale, M. P.; Furano, G.; Morselli, A.; Picozza, P.; Sparvoli, R.; Barbier, L. M.; Christian, E. R.; Krizmanic, J. F.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.; Bertazzoni, S.; Salsano, A.; Bazilevskaja, G.; Grigorjeva, A.; Mukhametshin, R.; Stozhokov, Y.; Bogomolv, E.; Krutkov, S.; Vasiljev, G.; Galper, A. M.; Koldashov, S. V.; Korotkov, M. G.; Mikhailov, V. V.; Moissev, A. A.; Ozerov, J. V.; Voronov, S. A.; Yurkin, Y.; Castellini, G.; Gabbanini, A.; Taccetti, F.; Tesi, M.; Vignoli, V.
2001-04-01
We provide in this paper a status report of the space experiment PAMELA. PAMELA aims primarily to measure the flux of antiparticles, namely antiprotons and positrons, in cosmic rays with unprecedented statistics over a large energy range. In addition, it will measure the light nuclear components of cosmic rays, investigate phenomena connected to Solar and Earth physics and it will search for cosmic ray antinuclei with sensitivity better than 10-7 in the He/He ratio. PAMELA consists of a magnet spectrometer, a transition radiation detector, an imaging calorimeter, a time of flight system and an anticoincidence detector. The apparatus will be installed on board of the Russian satellite of the Resurs type in a polar orbit at about 680km of altitude. The launch is foreseen for late 2002/early 2003.
Observations of the Li, Be, and B Isotopes and Constraints on Cosmic-ray Propagation
NASA Technical Reports Server (NTRS)
deNolfo, G. A.; Moskalenko, I. V.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink, P. L.; Israel, M. H.; Leske, R. A.;
2007-01-01
The abundance of Li, Be, and B isotopes in galactic cosmic rays (GCR) between E=50-200 MeV/nucleon has been observed by the Cosmic Ray Isotope Spectrometer (CRIS) on NASA's ACE mission since 1997 with high statistical accuracy. Precise observations of Li, Be, B can be used to constrain GCR propagation models. We find that a diffusive reacceleration model with parameters that best match CRIS results (e.g. B/C, Li/C, etc) are also consistent with other GCR observations. A approx. 15-20% overproduction of Li and Be in the model predictions is attributed to uncertainties in the production cross-section data. The latter becomes a significant limitation to the study of rare GCR species that are generated predominantly via spallation.
A model for the origin of high-energy cosmic rays
NASA Technical Reports Server (NTRS)
Jokipii, J. R.; Morfill, G. E.
1985-01-01
It is suggested that cosmic rays, up to the highest energies observed, originate in the Galaxy and are accelerated in astrophysical shock waves. If there is a galactic wind, in analogy with the solar wind, a hierarchy of shocks ranging from supernova shocks to the galactic wind termination shock is expected. This leads to a consistent model in which most cosmic rays, up to perhaps 10 to the 14th eV energy, are accelerated by supernova shocks, but that particles with energies of 10 to the 15th eV and higher are accelerated at the termination shock of the galactic wind. Intermediate energies may be accelerated by intermediate-scale shocks, and there may be larger scale shocks associated with the Local Group of galaxies.
The microphysics and macrophysics of cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweibel, Ellen G.
2013-05-15
This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmicmore » rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.« less
Calculation of cosmic ray induced single event upsets: Program CRUP (Cosmic Ray Upset Program)
NASA Astrophysics Data System (ADS)
Shapiro, P.
1983-09-01
This report documents PROGRAM CRUP, COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic ray induced single-event error rates in microelectronic circuits exposed to several representative cosmic-ray environments.
NASA Technical Reports Server (NTRS)
Eichler, D.
1986-01-01
Data related to the development of cosmic rays are discussed. The relationship between cosmic ray production and the steady-state Boltzmann equation is analyzed. The importance of the power-law spectrum, the scattering rate, the theory of shock acceleration, anisotropic instabilities, and cosmic ray diffusion in the formation of cosmic rays is described. It is noted that spacecraft observations at the earth's bow shock are useful for studying cosmic rays and that the data support the collisionless shock-wave theory of cosmic ray origin.
The CosmicWatch Desktop Muon Detector: a self-contained, pocket sized particle detector
NASA Astrophysics Data System (ADS)
Axani, S. N.; Frankiewicz, K.; Conrad, J. M.
2018-03-01
The CosmicWatch Desktop Muon Detector is a self-contained, hand-held cosmic ray muon detector that is valuable for astro/particle physics research applications and outreach. The material cost of each detector is under 100 and it takes a novice student approximately four hours to build their first detector. The detectors are powered via a USB connection and the data can either be recorded directly to a computer or to a microSD card. Arduino- and Python-based software is provided to operate the detector and an online application to plot the data in real-time. In this paper, we describe the various design features, evaluate the performance, and illustrate the detectors capabilities by providing several example measurements.
NASA Astrophysics Data System (ADS)
Prohira, Steven; TARA Collaboration; Telescope Array Collaboration
2016-03-01
The TARA (Telescope Array Radar) cosmic ray detector has been in operation since May 2013. It is the most ambitious effort to date to test an idea that originated in the 1940's: that ionization produced by cosmic ray extensive air showers should reflect electromagnetic radiation. The observation of this effect would open the possibility that remote-sensing radar technology could be used to detect and reconstruct extensive air showers, thus increasing the aperture available for the study of the highest-energy cosmic rays. TARA employs a bi-static radar configuration, consisting of a 25 kW, 5 MW ERP transmitter at 54.1 MHz broadcasting across the Telescope Array surface detector. 40 km distant, a set of log-periodic receiver antennas are read out by two independent data acquisition systems employing different techniques to select signals of the form expected for radar targets moving at close to the speed of light. In this talk, we describe the TARA detector and present the first quantitative limits on the radar cross-section of extensive air showers.
Gradients and anisotropies of high energy cosmic rays in the outer heliosphere
NASA Technical Reports Server (NTRS)
Fillius, W.; Roelof, E. C.; Smith, E. J.; Wood, D.; Ip, W. H.
1985-01-01
Two cosmic rays which pass through the same point going in opposite directions will, in the absence of scattering and inhomogeneities in the magnetic field, trace helices about adjacent flux tubes, whose centerlines are separated by one gyrodiameter. A directional anisotropy at the point suggests a difference in the number of cosmic rays loading the two flux tubes; that is, a density gradient over the baseline of a gyrodiameter. Previous studies at lower energies have shown that the cosmic ray density gradients vary in time and space. It is suggested that the radial gradient associated with solar cycle modulation is supported largely by narrow barriers which encircle the sun and propagate outward with the solar wind. If so, the anisotropy is a desirable way to detect spatial gradients, because it can be associated with the local solar wind and magnetic field conditions. Anisotropic measurements made by Cerenkov detectors on Pioneers 10 and 11 were studied. It was found that local anisotropy varies greatly, but that the long term average is consistent with the global radial gradient measured between two spacecraft over a baseline of many AU.
The Energetic Trans-Iron Nuclei Experiment (ENTICE)
NASA Technical Reports Server (NTRS)
Binns, W. R.; Israel, M. H.; Cummings, A. C.; Labrador, A. W.; Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Denolfo, G. A.;
2009-01-01
The ENTICE experiment is one of two instruments that comprise the "Orbiting Astrophysical Spectrometer in Space (OASIS)" which is presently undergoing a NASA "Astrophysics Strategic Mission Concept Study". ENTICE is designed to make high precision measurements of the abundances of individual elements from neon through the actinides and, in addition, will search for possible superheavy nuclei in the galactic cosmic rays. The ENTICE instrument utilizes silicon detectors, aerogel and acrylic Cherenkov counters, and a scintillating optical fiber hodoscope to measure the charge and energy of these ultra-heavy nuclei for energies greater than 0.3 GeV/nucleon. It is a large instrument consisting of four modules with a total effective geometrical factor of 20 m2sr. Measurements made in space for a period of 3 years with ENTICE will enable us to determine if cosmic rays include a component of recently synthesized heavy elements (Pu and Cm), what the age of that component is, and test the model of the OB association origin of galactic cosmic rays. Additionally, it will enable us to study how diffusive shock acceleration of cosmic rays operates differently on interstellar grains and gas.
Relativistic heavy cosmic rays
NASA Technical Reports Server (NTRS)
Mewaldt, R. A.; Fernandez, J. I.; Israel, M. H.; Klarmann, J.; Binns, W. R.
1972-01-01
During three balloon flights of a 1 sq m sr ionization chamber/Cerenkov counter detector system, measurements were made of the atmospheric attenuation, flux, and charge composition of cosmic ray nuclei with 16 is less than or = Z is less than or = 30 and rigidity greater than 4.5 GV. The attenuation mean free path in air of VH (20 less than or = Z less than or = 30) nuclei is found to be 19.7 + or - 1.6 g/sq cm, a value somewhat greater than the best previous measurement. The attenuation mean free path of iron is found to be 15.6 + or - 2.2 g/sq cm, consistent with predictions of geometric cross-section formulae. An absolute flux of VH nuclei 10 to 20% higher than earlier experiments at similar geomagnetic cutoff and level of solar activity was measured. The relative abundances of even-charged nuclei are found to be in good agreement with results of other recent high resolution counter experiments. The observed cosmic ray chemical composition implies relative abundances at the cosmic ray source of Ca/Fe = 0.12 + or - 0.04 and S/Fe = 0.14 + or - 0.05.
GLOBAL SIMULATIONS OF GALACTIC WINDS INCLUDING COSMIC-RAY STREAMING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruszkowski, Mateusz; Yang, H.-Y. Karen; Zweibel, Ellen, E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: zweibel@astro.wisc.edu
2017-01-10
Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magnetohydrodynamical simulations of an isolated Milky Way-size starburst galaxy. We focus on the dynamical role of cosmic rays (CRs) injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of CRs along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching andmore » mass loading factors, depending on the details of the plasma physics. Due to the CR streaming instability, CRs propagating in the interstellar medium scatter on self-excited Alfvén waves and couple to the gas. When the wave growth due to the streaming instability is inhibited by some damping process, such as turbulent damping, the coupling of CRs to the gas is weaker and their effective propagation speed faster than the Alfvén speed. Alternatively, CRs could scatter from “extrinsic turbulence” that is driven by another mechanism. We demonstrate that the presence of moderately super-Alfvénic CR streaming enhances the efficiency of galactic wind driving. Cosmic rays stream away from denser regions near the galactic disk along partially ordered magnetic fields and in the process accelerate more tenuous gas away from the galaxy. For CR acceleration efficiencies broadly consistent with the observational constraints, CRs reduce the galactic star formation rates and significantly aid in launching galactic winds.« less
The UCSD high energy X-ray timing experiment cosmic ray particle anticoincidence detector
NASA Technical Reports Server (NTRS)
Hink, P. L.; Rothschild, R. E.; Pelling, M. R.; Macdonald, D. R.; Gruber, D. E.
1991-01-01
The HEXTE, part of the X-Ray Timing Explorer (XTE), is designed to make high sensitivity temporal and spectral measurements of X-rays with energies between 15 and 250 keV using NaI/CsI phoswich scintillation counters. To achieve the required sensitivity it is necessary to provide anticoincidence of charged cosmic ray particles incident upon the instrument, some of which interact to produce background X-rays. The proposed cosmic ray particle anticoincidence shield detector for HEXTE uses a novel design based on plastic scintillators and wavelength-shifter bars. It consists of five segments, each with a 7 mm thick plastic scintillator, roughly 50 cm x 50 cm in size, coupled to two wavelength-shifter bars viewed by 1/2 inch photomultiplier tubes. These segments are configured into a five-sided, box-like structure around the main detector system. Results of laboratory testing of a model segment, and calculations of the expected performance of the flight segments and particle anticoincidence detector system are presented to demonstrate that the above anticoincidence detector system satisfies its scientific requirements.
Compton thick active galactic nuclei in Chandra surveys
NASA Astrophysics Data System (ADS)
Brightman, Murray; Nandra, Kirpal; Salvato, Mara; Hsu, Li-Ting; Aird, James; Rangel, Cyprian
2014-09-01
We present the results from an X-ray spectral analysis of active galactic nuclei (AGN) in the ChandraDeep Field-South, All-wavelength Extended Groth-strip International Survey (AEGIS)-Deep X-ray survey (XD) and Chandra-Cosmic Evolution Surveys (COSMOS), focusing on the identification and characterization of the most heavily obscured, Compton thick (CT, NH > 1024 cm-2) sources. Our sample is comprised of 3184 X-ray selected extragalactic sources, which has a high rate of redshift completeness (96.6 per cent), and includes additional spectroscopic redshifts and improved photometric redshifts over previous studies. We use spectral models designed for heavily obscured AGN which self-consistently include all major spectral signatures of heavy absorption. We validate our spectral fitting method through simulations, identify CT sources not selected through this method using X-ray colours and take considerations for the constraints on NH given the low count nature of many of our sources. After these considerations, we identify a total of 100 CT AGN with best-fitting NH > 1024 cm-2 and NH constrained to be above 1023.5 cm-2 at 90 per cent confidence. These sources cover an intrinsic 2-10 keV X-ray luminosity range of 1042-3 × 1045 erg s-1 and a redshift range of z = 0.1-4. This sample will enable characterization of these heavily obscured AGN across cosmic time and to ascertain their cosmological significance. These survey fields are sites of extensive multiwavelength coverage, including near-infrared Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data and far-infrared Herschel data, enabling forthcoming investigations into the host properties of CT AGN. Furthermore, by using the torus models to test different covering factor scenarios, and by investigating the inclusion of the soft scattered emission, we find evidence that the covering factor of the obscuring material decreases with LX for all redshifts, consistent with the receding torus model, and that this factor increases with redshift, consistent with an increase in the obscured fraction towards higher redshifts. The strong relationship between the parameters of obscuration and LX points towards an origin intrinsic to the AGN; however, the increase of the covering factor with redshift may point towards contributions to the obscuration by the host galaxy. We make NH, Γ (with uncertainties), observed X-ray fluxes and intrinsic 2-10 keV luminosities for all sources analysed in this work publicly available in an online catalogue.
NASA Astrophysics Data System (ADS)
Sutherland, Michael Stephen
2010-12-01
The Galactic magnetic field is poorly understood. Essentially the only reliable measurements of its properties are the local orientation and field strength. Its behavior at galactic scales is unknown. Historically, magnetic field measurements have been performed using radio astronomy techniques which are sensitive to certain regions of the Galaxy and rely upon models of the distribution of gas and dust within the disk. However, the deflection of trajectories of ultra high energy cosmic rays arriving from extragalactic sources depends only on the properties of the magnetic field. In this work, a method is developed for determining acceptable global models of the Galactic magnetic field by backtracking cosmic rays through the field model. This method constrains the parameter space of magnetic field models by comparing a test statistic between backtracked cosmic rays and isotropic expectations for assumed cosmic ray source and composition hypotheses. Constraints on Galactic magnetic field models are established using data from the southern site of the Pierre Auger Observatory under various source distribution and cosmic ray composition hypotheses. Field models possessing structure similar to the stellar spiral arms are found to be inconsistent with hypotheses of an iron cosmic ray composition and sources selected from catalogs tracing the local matter distribution in the universe. These field models are consistent with hypothesis combinations of proton composition and sources tracing the local matter distribution. In particular, strong constraints are found on the parameter space of bisymmetric magnetic field models scanned under hypotheses of proton composition and sources selected from the 2MRS-VS, Swift 39-month, and VCV catalogs. Assuming that the Galactic magnetic field is well-described by a bisymmetric model under these hypotheses, the magnetic field strength near the Sun is less than 3-4 muG and magnetic pitch angle is less than -8°. These results comprise the first measurements of the Galactic magnetic field using ultra-high energy cosmic rays and supplement existing radio astronomical measurements of the Galactic magnetic field.
Measurement of the cosmic-ray iron spectrum between 60 and 200 GeV per nucleon
NASA Technical Reports Server (NTRS)
Esposito, Joseph A.; Streitmatter, Robert E.; Balasubrahmanyan, V. K.; Ormes, Jonathan F.
1990-01-01
A measurement of the spectral index of Galactic cosmic-ray (GCR) iron has been made using a high-energy gas Cerenkov spectrometer. The spectral index of GCR iron is found to be 2.56 + or - 0.11 in the energy range 57-200 GeV/ nucleon. This result indicates that the source spectrum of GCR iron is similar to that of other primary GCR nuclei and is consistent with the simplest models of GCR propagation.
Cosmic Radiation Detection and Observations
NASA Astrophysics Data System (ADS)
Ramirez Chavez, Juan; Troncoso, Maria
Cosmic rays consist of high-energy particles accelerated from remote supernova remnant explosions and travel vast distances throughout the universe. Upon arriving at earth, the majority of these particles ionize gases in the upper atmosphere, while others interact with gas molecules in the troposphere and producing secondary cosmic rays, which are the main focus of this research. To observe these secondary cosmic rays, a detector telescope was designed and equipped with two silicon photomultipliers (SiPMs). Each SiPM is coupled to a bundle of 4 wavelength shifting optical fibers that are embedded inside a plastic scintillator sheet. The SiPM signals were amplified using a fast preamplifier with coincidence between detectors established using a binary logic gate. The coincidence events were recorded with two devices; a digital counter and an Arduino micro-controller. For detailed analysis of the SiPM waveforms, a DRS4 sensory digitizer captured the waveforms for offline analysis with the CERN software package Physics Analysis Workstation in a Linux environment. Results from our experiments would be presented. Hartnell College STEM Internship Program.
Lead, platinum and other heavy elements in the primary cosmic radiation: HEAO-3 results
NASA Technical Reports Server (NTRS)
Waddington, C. J.; Binns, W. R.; Brewster, N. R.; Fixsen, D. J.; Garrard, T. L.; Israel, M. H.; Klarmann, J.; Newport, B. J.; Stone, E. C.
1986-01-01
An observation of the abundances of cosmic-ray lead and platinum-group nuclei using data from the HEAO-3 Heavy Nuclei Experiment (HNE) which consisted of ion chambers mounted on both sides of a plastic Cherenkov counter (Binns et al., 1981) is reported. Further analysis with more stringent selections, inclusion of additional data, and a calibration at the LBL Bevalac, have allowed the determination of the abundance ratio of lead and the platinum group of elements for particles that had a cutoff rigidity R(c) 5 GV. The observed ratio for Pb/Pt is distinctly lower than that predicted by any of the standard models for cosmic ray sources. It is possible that the difference is not an indication that the cosmic ray source composition is greatly different from that of the solar system, but rather that there is less Pb in the solar system and in the r-process than is assumed in the standard models.
Intensity of primary cosmic-ray electrons of energy exceeding 8 GeV
NASA Technical Reports Server (NTRS)
Freier, P.; Gilman, C.; Waddington, C. J.
1977-01-01
Results are reported for measurement of the intensity and energy spectrum of primary cosmic-ray electrons with a spark-chamber-counter-emulsion detector flown at a mean altitude of 3 g/sq cm residual atmosphere. A least-squares fit to the flight data yields an electron spectrum from 8 to 80 GeV of approximately 93E to the -2.91 power electrons/sq m/sec per sr/GeV. The results are compared with those of previous experiments as well as with the spectrum obtained for galactic nonthermal radiation. It is concluded that a 'clumpy' magnetic field proportional to the square root of matter density is consistent with measurements of high-energy electrons and synchrotron radiation toward the center of the Galaxy, that a gradual steepening of the electron spectrum relative to the proton spectrum is consistent with an electron lifetime of 1 million years, and that the density of cosmic-ray nucleons and electrons should be essentially uniform throughout the Galaxy if the nucleons have the same lifetime as the electrons and if they traversed 4 to 5 g/sq cm in that lifetime.
NASA Technical Reports Server (NTRS)
Zumberge, J. F.
1981-01-01
The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen were measured at energies near 300 MeV amu, using a balloon-borne instrument at an atmospheric depth of approximately 5 g/sq cm. The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approximately 0.3 amu at boron to approximately 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. Corrected for detector interactions and the effects of the residual atmosphere the results are B-10/B=0.33 (+0.17, -0.11), C-13/C=0.06 (+0.13, -0.11), and N-15/N=0.42 (+0.19, -0.17). A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near Earth consistent with the measurements.
NASA Technical Reports Server (NTRS)
1974-01-01
An X-ray observation of the Norma-Lupus region, charge and isotope measurements of heavy cosmic ray nuclei and their role in the determination of cosmic ray age, and the possibility of a contribution to primary cosmic ray spectra from pulsars are among the topics covered in papers concerned with some of the results of recent cosmic ray research. Other topics covered include multiple scattering of charged particles in magnetic fields, absorption of primary cosmic rays in the atmosphere, and phase lag effects on cosmic ray modulation during a recent solar cycle. Individual items are announced in this issue.
Research in cosmic and gamma ray astrophysics
NASA Technical Reports Server (NTRS)
Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.
1992-01-01
Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.
Acoustic instability driven by cosmic-ray streaming
NASA Technical Reports Server (NTRS)
Begelman, Mitchell C.; Zweibel, Ellen G.
1994-01-01
We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic-ray pressure are separated by either laminar or turbulent jumps in which the thermal gas is subject to intense heating.
High-energy particles associated with solar flares
NASA Technical Reports Server (NTRS)
Sakurai, K.; Klimas, A. J.
1974-01-01
High-energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial varation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ke; Fujii, Toshihiro; Linden, Tim
2014-10-20
The Telescope Array (TA) has observed a statistically significant excess in cosmic rays with energies above 57 EeV in a region of approximately 1150 deg{sup 2} centered on coordinates R.A. = 146.7, decl. = 43.2. We note that the location of this excess correlates with 2 of the 28 extraterrestrial neutrinos recently observed by IceCube. The overlap between the two IceCube neutrinos and the TA excess is statistically significant at the 2σ level. Furthermore, the spectrum and intensity of the IceCube neutrinos is consistent with a single source which would also produce the TA excess. Finally, we discuss possible sourcemore » classes with the correct characteristics to explain the cosmic-ray and neutrino fluxes with a single source.« less
Determination and study of the cosmic-ray composition above 100 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinnis, G.; Haines, T.J.; Hoffman, C.M.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new technique using ground-based measurements to determine the cosmic-ray composition at energies around 10{sup 15} eV (the knee in the cosmic-ray spectrum). Cosmic rays are high-energy nuclei that continuously bombard the earth. Though cosmic rays were first detected in the 1870s it wasn`t until 1915 that their cosmic origin was established. At present, the authors still do not know the source of cosmic rays. At energies above 50 TeVmore » (1 TeV = 1 trillion electron-volts) they do not know the composition of the cosmic rays. At about 5 PeV (1PeV = 10{sup 15} eV) the cosmic ray spectrum steepens. Knowledge of the composition above and below this point can help determine the origin of cosmic rays.« less
NASA Technical Reports Server (NTRS)
Krivonos, Roman A.; Tomsick, John A.; Bauer, Franz E.; Baganoff, Frederick K.; Barriere, Nicolas M.; Bodaghee, Arash; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Grefenstette, Brian W.;
2014-01-01
The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe K(alpha) line emission at 6.4 keV from material that is neutral or in a low ionization state can be produced either by X-ray photoionization or by cosmic-ray particle bombardment or both. In this paper, we report on the first detection of the extended emission around the Arches cluster above 10 keV with the NuSTAR mission, and present results on its morphology and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenario. Key words: cosmic rays - Galaxy: center - ISM: general - X-rays: individual (Arches cluster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiengarten, T.; Fichtner, H.; Kleimann, J.
2016-12-10
We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results frommore » the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.« less
Cosmic gamma-rays and cosmic nuclei above 1 TeV
NASA Technical Reports Server (NTRS)
Watson, A. A.
1986-01-01
Work on cosmic gamma rays and cosmic nuclei above I TeV is described and evaluated. The prospect that gamma ray astronomy above I TeV will give new insights into high energy cosmic ray origin within our galaxy is particularly bright.
NASA Technical Reports Server (NTRS)
Takahashi, Yoshiyuki; Gregory, John C.; Tominaga, Taka; Dong, Bei Lei
1997-01-01
The research developed the fundamental techniques of the emulsion chamber methods that permit measurements of the composition and energy spectra of cosmic rays at energies ranging from 1 GeV/n to over 1,000 TeV/n. The research program consisted of exploring new principles and techniques in measuring very high energy cosmic nuclei with large-area emulsion chambers for high statistics experiments. These tasks have been accomplished and their use was essential in successful analysis of the balloon-borne emulsion chamber experiments up to 10(exp 14) eV. It also provided the fundamental technologies for designing large-area detectors that are aimed at measuring the composition at above 1015 eV region. The latter is now partially succeeded by a NASA Mission Concept, Advanced Cosmic Composition Experiments on the Space Station (ACCESS). The cosmic ray group at the University of Alabama in Huntsville has performed technological R & D as well as contributing to the Japanese-American-Emulsion-Chamber-Experiments (JACEE) Collaboration with the regular data analysis. While primary research support for other institutions' efforts in the JACEE experiments came from NSF and DOE, primary support for the University of Alabama in Huntsville was this contract. Supplemental tasks to standardize the data base and hardware upgrades (automatized microscope) had this institutions cooperation. Investigation of new techniques in this program consisted of development of a fast calorimetry, magnetic/scattering selection of high momentum tracks for a pairmeter, and high statistics momentum measurements for low energy nuclei (E < 1 TeV/n). The highest energy calorimetry and a pairmeter have been considered as strawman instruments by the GOAL (Galactic Origin and Acceleration Limit) proposal of the NASA Cosmic Ray Working Group for long- duration balloon flights. We accomplished the objectives of the GOAL program with three circumpolar, Antarctic JACEE balloon flights during 1992 - 1994.
High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?
NASA Technical Reports Server (NTRS)
Moiseev, Alexander
2011-01-01
This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,
A Simplified Model for the Acceleration of Cosmic Ray Particles
ERIC Educational Resources Information Center
Gron, Oyvind
2010-01-01
Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…
In Search of Cosmic Rays: A Student Physics Project Aimed at Finding the Origin of Cosmic Rays.
ERIC Educational Resources Information Center
Antonelli, Jamie; Mahoney, Sean; Streich, Derek; Liebl, Michael
2001-01-01
Describes an ongoing project, the Cosmic Ray Observatory Project (CROP), being conducted by the University of Nebraska in partnership with several high schools. Each school group has installed cosmic ray detectors, and initial activities have included calibrating equipment, gathering preliminary data, and learning about cosmic ray showers. Aims to…
Cosmic ray propagation and containment
NASA Technical Reports Server (NTRS)
Parker, E. N.
1976-01-01
The cosmic rays, an active gaseous component of the disk of the galaxy, are considered along with their propagation and containment as a part of the general dynamics of the disk. The sources of cosmic rays are a matter of speculation. The disk is inflated by the cosmic ray gas pressure comparable to the magnetic pressure, but the rate of inflation is unknown. The time spent by the individual cosmic ray particles in the disk is inversely proportional to the cosmic ray production rate. It is evident from the decay of Be(1c) that the cosmic rays circulate through a volume of space perhaps ten times the thickness of the gaseous disk, suggesting a magnetic halo extending out approximately 1 kpc from either face of the disk. The cosmic rays may be responsible for the halo by inflating the magnetic fields of the disk. Extension of the fields to 1 kpc would imply a high production rate and short life of cosmic rays in the dense gaseous disk of the galaxy.
[Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The
A cosmic and solar X-ray and gamma-ray instrument for a scout launch
NASA Technical Reports Server (NTRS)
Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.
1988-01-01
An overview is presented for a set of simple and robust X-ray and gamma ray instruments which have both cosmic and solar objectives. The primary solar scientific objective is the study of the beaming of energetic electrons and ions in solar flares. The instrument will measure spectra and polarization of flare emissions up to 10 MeV. At X-ray energies both the directly emitted flux and the reflected albedo flux will be measured with a complement of six X-ray sensors. Each of these detectors will have a different high Z filter selected to optimize both the energy resolution and high rate capabilities in the energy band 10 to 300 keV. At energies greater than 100 keV seven 7.6 x 7.6 cm NaI and a set of 30 concentric plastic scattering detectors will record the spectra and polarization of electron bremsstrahlung and nuclear gamma rays. All of the components of the instrument are in existence and have passed flight tests for earlier space missions. The instrument will use a spinning solar oriented Scout spacecraft. The NaI detectors will act as a self-modulating gamma ray detector for cosmic sources in a broad angular band which lies at 90 degrees to the Sun-Earth vector and hence will scan the entire sky in 6 months.
A new measurement of the flux of the light cosmic-ray nuclei at high energies
NASA Technical Reports Server (NTRS)
Buckley, J.; Dwyer, J.; Mueller, D.; Swordy, S.; Tang, K. K.
1994-01-01
A new cosmic-ray detector utilizing a ring-imaging Cerenkov counter to determine the energy of light cosmic-ray nuclei was flown on high-altitude balloon from Fort Sumner, NM, in 1991 September. We describe the design and performance of this instrument and discuss the data analysis procedures. The measurement provides a new determination of the absolute flux and differential energy spectrum of the primary cosmic-ray species helium between 40 and 320 GeV/nucleon. The experiment also yields the spectra of carbon and oxygen and some information on the intensities of the secondary nuclei Li, Be, and B. A comparison between our results and previous measurements of heavier nuclei (Z greater than or equal to 4) from HEAO 3 and Spacelab 2 indicates good consistency between these measurements. The data set is compared with the results of a leaky box propagation model. We find good agreement with this model if the abundance of helium relative to oxygen at the source is taken to be 25 +/- 6 and if the source spectrum is given by a power law in energy proportional to E(exp -2.15).
NASA Technical Reports Server (NTRS)
Derrickson, J. H.; Wu, J.; Christl, M. J.; Fountain, W. F.; Parnell, T. A.
1999-01-01
The "all-particle" cosmic ray energy spectrum appears to be exhibiting a significant change in the spectral index just above approximately 3000 TeV. This could indicate (1) a change in the propagation of the cosmic rays in the galactic medium, and/or (2) the upper limit of the supernova shock wave acceleration mechanism, and/or (3) a new source of high-energy cosmic rays. Air shower and JACEE data indicate the spectral change is associated with a composition change to a heavier element mixture whereas DICE does not indicate this. A detector concept will be presented that utilizes the energy dependence of the production of direct Coulomb electron-positron pairs by energetic heavy ions. Monte Carlo simulations of a direct electron pair detector consisting of Pb target foils interleaved with planes of 1-mm square scintillating optical fibers will be discussed. The goal is to design a large area, non-saturating instrument to measure the energy spectrum of the individual cosmic ray elements in the "VH-group" for energies greater than 10 TeV/nucleon.
Observation of Cosmic-Ray Anisotropy with the IceTop Air Shower Array
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clark, K.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Goodman, J. A.; Góra, D.; Grant, D.; Gross, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Sheremata, C.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zilles, A.; Zoll, M.; IceCube Collaboration
2013-03-01
We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10-3 level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30° and an amplitude of (- 1.58 ± 0.46stat ± 0.52sys) × 10-3 at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (- 3.11 ± 0.38stat ± 0.96sys) × 10-3.
Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory
NASA Technical Reports Server (NTRS)
Birmingham, T. J.; Jones, F. C.
1975-01-01
A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory.
NASA Astrophysics Data System (ADS)
Ginzburg, Vitalii L.
1988-06-01
(Invited talk at the 20th International Cosmic Ray Conference, Moscow, 2-15 August 1987) The basic topics discussed here are the primary cosmic rays near the earth, cosmic rays in the universe, the origin of cosmic rays, a galactic model with a halo, and some prospects for future research.
The Parker Instability with Cosmic-Ray Streaming
NASA Astrophysics Data System (ADS)
Heintz, Evan; Zweibel, Ellen G.
2018-06-01
Recent studies have found that cosmic-ray transport plays an important role in feedback processes such as star formation and the launching of galactic winds. Although cosmic-ray buoyancy is widely held to be a destabilizing force in galactic disks, the effect of cosmic-ray transport on the stability of stratified systems has yet to be analyzed. We perform a stability analysis of a stratified layer for three different cosmic-ray transport models: decoupled (Classic Parker), coupled with γ c = 4/3 but not streaming (Modified Parker), and finally coupled with streaming at the Alfvén speed. When the compressibility of the cosmic rays is decreased the system becomes much more stable, but the addition of cosmic-ray streaming to the Parker instability severely destabilizes it. Through comparison of these three cases and analysis of the work contributions for the perturbed quantities of each system, we demonstrate that cosmic-ray heating of the gas is responsible for the destabilization of the system. We find that a 3D system is unstable over a larger range of wavelengths than the 2D system. Therefore, the Parker instability with cosmic-ray streaming may play an important role in cosmic-ray feedback.
Inverse Flux versus Pressure of Muons from Cosmic Rays
NASA Astrophysics Data System (ADS)
Buitrago, D.; Armendariz, R.
2017-12-01
When an incoming cosmic ray proton or atom collides with particles in earth's atmosphere a shower of secondary muons is created. Cosmic ray muon flux was measured at the Queensborough Community College using a QuarkNet detector consisting of three stacked scintillator muon counters and a three-fold coincidence trigger. Data was recorded during a three-day period during a severe weather storm that occurred from March 13-17, 2017. A computer program was created in Python to read the muon flux rate and atmospheric pressure sensor readings from the detector's data acquisition board. The program converts the data from hexadecimal to decimal, re-bins the data in a more suitable format, creates and overlays plots of muon flux with atmospheric pressure. Results thus far show a strong correlation between muon flux and atmospheric pressure. More data analysis will be done to verify the above conclusion.
Measurement of Cosmic-Ray TeV Electrons
NASA Astrophysics Data System (ADS)
Schubnell, Michael; Anderson, T.; Bower, C.; Coutu, S.; Gennaro, J.; Geske, M.; Mueller, D.; Musser, J.; Nutter, S.; Park, N.; Tarle, G.; Wakely, S.
2011-09-01
The Cosmic Ray Electron Synchrotron Telescope (CREST) high-altitude balloon experiment is a pathfinding effort to detect for the first time multi-TeV cosmic-ray electrons. At these energies distant sources will not contribute to the local electron spectrum due to the strong energy losses of the electrons and thus TeV observations will reflect the distribution and abundance of nearby acceleration sites. CREST will detect electrons indirectly by measuring the characteristic synchrotron photons generated in the Earth's magnetic field. The instrument consist of an array of 1024 BaF2 crystals viewed by photomultiplier tubes surrounded by a hermetic scintillator shield. Since the primary electron itself need not traverse the payload, an effective detection area is achieved that is several times the nominal 6.4 m2 instrument. CREST is scheduled to fly in a long duration circumpolar orbit over Antarctica during the 2011-12 season.
Monte Carlo Study of Cosmic-Ray Propagation in the Galaxy and Diffuse Gamma-Ray Production
NASA Astrophysics Data System (ADS)
Huang, C.-Y.; Pohl, M.
This talk present preliminary results for the time-dependent cosmic-ray propagation in the Galaxy by a fully 3-dimensional Monte Carlo simulation. The distribution of cosmic-rays (both protons and helium nuclei) in the Galaxy is studied on various spatial scales for both constant and variable cosmic-ray sources. The continuous diffuse gamma-ray emission produced by cosmic-rays during the propagation is evaluated. The results will be compared with calculations made with other propagation models.
Explaining TeV cosmic-ray anisotropies with non-diffusive cosmic-ray propagation
Harding, James Patrick; Fryer, Chris Lee; Mendel, Susan Marie
2016-05-11
Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the detailsmore » of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. Furthermore, the features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.« less
EXPLAINING TEV COSMIC-RAY ANISOTROPIES WITH NON-DIFFUSIVE COSMIC-RAY PROPAGATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, J. Patrick; Fryer, Chris L.; Mendel, Susan, E-mail: jpharding@lanl.gov, E-mail: fryer@lanl.gov, E-mail: smendel@lanl.gov
2016-05-10
Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the detailsmore » of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. The features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.« less
NASA Technical Reports Server (NTRS)
Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.
1985-01-01
A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.
Mass entrainment and turbulence-driven acceleration of ultra-high energy cosmic rays in Centaurus A
NASA Astrophysics Data System (ADS)
Wykes, Sarka; Croston, Judith H.; Hardcastle, Martin J.; Eilek, Jean A.; Biermann, Peter L.; Achterberg, Abraham; Bray, Justin D.; Lazarian, Alex; Haverkorn, Marijke; Protheroe, Ray J.; Bromberg, Omer
2013-10-01
Observations of the FR I radio galaxy Centaurus A in radio, X-ray, and gamma-ray bands provide evidence for lepton acceleration up to several TeV and clues about hadron acceleration to tens of EeV. Synthesising the available observational constraints on the physical conditions and particle content in the jets, inner lobes and giant lobes of Centaurus A, we aim to evaluate its feasibility as an ultra-high-energy cosmic-ray source. We apply several methods of determining jet power and affirm the consistency of various power estimates of ~1 × 1043 erg s-1. Employing scaling relations based on previous results for 3C 31, we estimate particle number densities in the jets, encompassing available radio through X-ray observations. Our model is compatible with the jets ingesting ~3 × 1021 g s-1 of matter via external entrainment from hot gas and ~7 × 1022 g s-1 via internal entrainment from jet-contained stars. This leads to an imbalance between the internal lobe pressure available from radiating particles and magnetic field, and our derived external pressure. Based on knowledge of the external environments of other FR I sources, we estimate the thermal pressure in the giant lobes as 1.5 × 10-12 dyn cm-2, from which we deduce a lower limit to the temperature of ~1.6 × 108 K. Using dynamical and buoyancy arguments, we infer ~440-645 Myr and ~560 Myr as the sound-crossing and buoyancy ages of the giant lobes respectively, inconsistent with their spectral ages. We re-investigate the feasibility of particle acceleration via stochastic processes in the lobes, placing new constraints on the energetics and on turbulent input to the lobes. The same "very hot" temperatures that allow self-consistency between the entrainment calculations and the missing pressure also allow stochastic UHECR acceleration models to work.
Galactic cosmic ray composition and energy spectra
NASA Technical Reports Server (NTRS)
Mewaldt, R. A.
1994-01-01
Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.
NASA Technical Reports Server (NTRS)
Cheung, T.; Mackeown, P. K.
1985-01-01
Estimation of the relative intensities of protons and heavy nuclei in primary cosmic rays in the energy region 10 to the 15th power approx. 10 to the 17th power eV, was done by a systematic comparison between all available observed data on various parameters of extensive air showers (EAS) and the results of simulation. The interaction model used is an extrapolation of scaling violation indicated by recent pp collider results. A composition consisting of various percentages of Fe in an otherwise pure proton beam was assumed. Greatest overall consistency between the data and the simulation is found when the Fe fraction is in the region of 25%.
Cosmic-ray propagation and containment
NASA Technical Reports Server (NTRS)
Parker, E. N.
1977-01-01
The cosmic rays are an active gaseous component of the disk of the galaxy, and their propagation and containment is a part of the general dynamics of the disk. The sources of cosmic rays are a matter of speculation. The disk is inflated by the cosmic-ray gas pressure, P, comparable to the magnetic pressure B super 2/ 8 pi, but the rate of inflation is unknown. The time spent by the individual cosmic-ray particles in the disk is inversely proportional to the cosmic-ray production rate and may be anything from 100,000 to more than 10 million years. It is evident from the decay of Be(10) that the cosmic rays circulate through a volume of space perhaps ten times the thickness of the gaseous disk, suggesting a magnetic halo extending out approximately 1 kpc from either face of the disk. The cosmic rays may be responsible for the halo by inflating the magnetic fields of the disk. Extension of the fields to 1 kpc would imply a high production rate and short life of cosmic rays in the dense gaseous disk of the galaxy.
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antici'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Bohácová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.
2012-04-01
Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Véron-Cetty Véron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20,30,...,110 highest energy events with a corresponding minimum energy threshold of about 49.3 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abreu, P.
2012-01-01
Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energymore » resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ..., 110 highest energy events with a corresponding minimum energy threshold of about 51 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.« less
Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope
NASA Technical Reports Server (NTRS)
Thompson, David J.; Baldini, L.; Uchiyama, Y.
2012-01-01
The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TeV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.
Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Baldini, L.; Uchiyama, Y.
2011-01-01
The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of Galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TcV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a Galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.
Cosmic Ray Induced Neutron Irradiation
NASA Astrophysics Data System (ADS)
Overholt, Andrew
2011-11-01
After cancer studies performed on flight crews during the 1970s, it was found that cosmic rays produce a signficant flux of thermal neutrons at airplane altitudes. In the case of high energy cosmic rays these biologically threatening neutrons are increased at ground level. Our work models the flux of neutrons produced by high energy cosmic rays, exploring the possibility of biological impact due to extended periods of increase high energy cosmic ray flux.
Cosmic ray experimental observations
NASA Technical Reports Server (NTRS)
Balasubrahmanyan, V. K.; Mcdonald, F. B.
1974-01-01
The current experimental situation in cosmic ray studies is discussed, with special emphasis on the development of new detector systems. Topics covered are the techniques for particle identification, energy measurements, gas Cerenkov counters, magnet spectrometers, ionization spectrometers, track detectors, nuclear emulsions, multiparameter analysis using arrays of detectors, the Goddard ionization spectrometer, charge spectra, relative abundances, isotope composition, antinuclei in cosmic rays, electrons, the measurement of cosmic ray arrival directions, and the prehistory of cosmic rays.
A balloon measurement of the isotopic composition of galactic cosmic ray iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grove, J.E.
1989-01-01
The isotopic composition of galactic cosmic ray iron in the energy interval of approximately 1550 to 2200 MeV/nucleon was measured using a balloon-borne mass spectrometer. The instrument was flown from Palestine, Texas, in May 1984 for greater than 35 hours at an atmospheric depth of approximately 6 g/sq cm. Masses were derived by the Cerenkov-Energy technique. The Cerenkov counter employed a silica aerogel radiator with an index of refraction n = 1.1. Particle energies were measured in a stack of NaI(Tl) scintillators, which also provided particle trajectories. A detailed discussion of the sources of mass uncertainty is presented, including anmore » analytic model of the contribution from fluctuations in the Cerenkov yield from knock-on electrons. The achieved mass resolution is approximately 0.65 amu, which is consistent with the theoretical estimate. An Fe-54/Fe-56 abundance ratio of 0.14(sup +0.18)(sub -0.11) and an 84 percent confidence upper limit of Fe-58/Fe-56 is less than or = to 0.07 at the top of the atmosphere is reported. Combining the data with those of precious measurements of the composition of iron at lower energies, and using a model of the galactic propagation, cosmic-ray source abundance ratios of Fe-54/Fe-56 = 0.064(sup +0.032)(sub -0.027) and Fe-58/F3-56 is less than or = to 0.062 were derived. These values are consistent with the composition of solar system iron and place restrictions on the conditions under which cosmic-ray iron is synthesized.« less
Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications
NASA Technical Reports Server (NTRS)
Barghouty, A. F.
2009-01-01
This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.
Connecting blazars with ultrahigh-energy cosmic rays and astrophysical neutrinos
NASA Astrophysics Data System (ADS)
Resconi, E.; Coenders, S.; Padovani, P.; Giommi, P.; Caccianiga, L.
2017-06-01
We present a strong hint of a connection between high-energy γ-ray emitting blazars, very high energy neutrinos, and ultrahigh-energy cosmic rays. We first identify potential hadronic sources by filtering γ-ray emitters in spatial coincidence with the high-energy neutrinos detected by IceCube. The neutrino filtered γ-ray emitters are then correlated with the ultrahigh-energy cosmic rays from the Pierre Auger Observatory and the Telescope Array by scanning in γ-ray flux (Fγ) and angular separation (θ) between sources and cosmic rays. A maximal excess of 80 cosmic rays (42.5 expected) is found at θ ≤ 10° from the neutrino-filtered γ-ray emitters selected from the second hard Fermi-LAT catalogue (2FHL) and for Fγ(>50 GeV) ≥ 1.8 × 10-11 ph cm-2 s-1. The probability for this to happen is 2.4 × 10-5, which translates to ˜2.4 × 10-3 after compensation for all the considered trials. No excess of cosmic rays is instead observed for the complement sample of γ-ray emitters (I.e. not in spatial connection with IceCube neutrinos). A likelihood ratio test comparing the connection between the neutrino-filtered and the complement source samples with the cosmic rays favours a connection between neutrino-filtered emitters and cosmic rays with a probability of ˜1.8 × 10-3 (2.9σ) after compensation for all the considered trials. The neutrino-filtered γ-ray sources that make up the cosmic rays excess are blazars of the high synchrotron peak type. More statistics is needed to further investigate these sources as candidate cosmic ray and neutrino emitters.
A Shifting Shield Provides Protection Against Cosmic Rays
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
The Sun plays an important role in protecting us from cosmic rays, energetic particles that pelt us from outside our solar system. But can we predict when and how it will provide the most protection, and use this to minimize the damage to both pilotedand roboticspace missions?The Challenge of Cosmic RaysSpacecraft outside of Earths atmosphere and magnetic field are at risk of damage from cosmic rays. [ESA]Galactic cosmic rays are high-energy, charged particles that originate from astrophysical processes like supernovae or even distant active galactic nuclei outside of our solar system.One reason to care about the cosmic rays arriving near Earth is because these particles can provide a significant challenge for space missions traveling above Earths protective atmosphere and magnetic field. Since impacts from cosmic rays can damage human DNA, this risk poses a major barrier to plans for interplanetary travel by crewed spacecraft. And roboticmissions arent safe either: cosmic rays can flip bits, wreaking havoc on spacecraft electronics as well.The magnetic field carried by the solar wind provides a protective shield, deflecting galactic cosmic rays from our solar system. [Walt Feimer/NASA GSFCs Conceptual Image Lab]Shielded by the SunConveniently, we do have some broader protection against galactic cosmic rays: a built-in shield provided by the Sun. The interplanetary magnetic field, which is embedded in the solar wind, deflects low-energy cosmic rays from us at the outer reaches of our solar system, decreasing the flux of these cosmic rays that reach us at Earth.This shield, however, isnt stationary; instead, it moves and changes as the strength and direction of the solar wind moves and changes. This results in a much lower cosmic-ray flux at Earth when solar activity is high i.e., at the peak of the 11-year solar cycle than when solar activity is low. This visible change in local cosmic-ray flux with solar activity is known as solar modulation of the cosmic ray flux at Earth.In a new study, a team of scientists led by Nicola Tomassetti (University of Perugia, Italy) has modeled this solar modulation to better understand the process by which the Suns changing activity influences the cosmic ray flux that reaches us at Earth.Modeling a LagTomassetti and collaborators model uses two solar-activity observables as inputs: the number of sunspots and the tilt angle of the heliospheric current sheet. By modeling basic transport processes in the heliosphere, the authors then track the impact that the changing solar properties have on incoming galactic cosmic rays. In particular, the team explores the time lag between when solar activity changes and when we see the responding change in the cosmic-ray flux.Cosmic-ray flux observations are best fit by the authors model when an 8-month lag is included (red bold line). A comparison model with no lag (black dashed line) is included. [Tomassetti et al. 2017]By comparing their model outputs to the large collection of time-dependent observations of cosmic-ray fluxes, Tomassetti and collaborators show that the best fit to data occurs with an 8-month lag between changing solar activity and local cosmic-ray flux modulation.This is an important outcome for studying the processes that affect the cosmic-ray flux that reaches Earth. But theres an additional intriguing consequence of this result: knowledge of the current solar activity could allow us to predict the modulation that will occur for cosmic rays near Earth an entire 8 months from now! If this model is correct, it brings us one step closer to being able to plan safer space missions for the future.CitationNicola Tomassetti et al 2017 ApJL 849 L32. doi:10.3847/2041-8213/aa9373
NASA Astrophysics Data System (ADS)
Olinto, Angela V.
2014-03-01
Recent activities of the Cosmic Ray Science Interest Group (CosmicSIG) of the Physics of the Cosmos PAG will be reviewed. CosmicSIG was formed to provide an assessment to NASA HQ and the PCOS program office of the status of current and future missions in the area of cosmic-ray astrophysics. CosmicSIG also strives to act as a focal point and forum for the cosmic ray community.
Primary gamma rays. [resulting from cosmic ray interaction with interstellar matter
NASA Technical Reports Server (NTRS)
Fichtel, C. E.
1974-01-01
Within this galaxy, cosmic rays reveal their presence in interstellar space and probably in source regions by their interactions with interstellar matter which lead to gamma rays with a very characteristic energy spectrum. From the study of the intensity of the high energy gamma radiation as a function of galactic longitude, it is already clear that cosmic rays are almost certainly not uniformly distributed in the galaxy and are not concentrated in the center of the galaxy. The galactic cosmic rays appear to be tied to galactic structural features, presumably by the galactic magnetic fields which are in turn held by the matter in the arm segments and the clouds. On the extragalactic scale, it is now possible to say that cosmic rays are not universal at the density seen near the earth. The diffuse celestial gamma ray spectrum that is observed presents the interesting possibility of cosmological studies and possible evidence for a residual universal cosmic ray density, which is much lower than the present galactic cosmic ray density.
Ackermann, M.
2012-02-01
Context. The Cygnus region hosts a giant molecular-cloud complex that actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at γ-ray energies. Several γ-ray pulsars and other energetic sources are seen in this direction. Aims. In this paper we analyze the γ-ray emission measured by the Fermi Large Area Telescope in the energy range from 100 MeV to 100 GeV in order to probe the gas and cosmic-ray content on the scale of the whole Cygnus complex. The γ-ray emission on the scale of the central massive stellar clusters and from individualmore » sources is addressed elsewhere. Methods. The signal from bright pulsars is greatly reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse γ-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data. A general model of the region, including other pulsars and γ-ray sources, is sought. Results. The integral Hi emissivity above 100 MeV averaged over the whole Cygnus complex amounts to [2.06 ± 0.11 (stat.) +0.15 -0.84 (syst.)] × 10 -26 photons s -1 sr -1 H-atom -1, where the systematic error is dominated by the uncertainty on the Hi opacity to calculate its column densities. The integral emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The average XCO = N(H2)/WCO ratio is found to be [1.68 ± 0.05 (stat.) +0.87 -0.10 (Hi opacity)] × 1020 molecules cm -2 (K km s -1) -1, consistent with other LAT measurements in the Local Arm. We detect significant γ-ray emission from dark neutral gas for a mass corresponding to ~ 40% of what is traced by CO. The total interstellar mass in the Cygnus complex inferred from its γ-ray emission amounts to 8 +5 -1 × 106M⊙ at a distance of 1.4 kpc. Conclusions. Despite the conspicuous star formation activity and high masses of the interstellar clouds, the cosmic-ray population in the Cygnus complex averaged over a few hundred parsecs is similar to that of the local interstellar space.« less
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Berenji, B.;
2011-01-01
Context. The Cygnus region hosts a giant molecular-cloud complex which actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at y-ray energies. Several gamma-ray pulsars and other energetic sources are seen in this direction. Aims. In this paper we analyse the gamma-ray emission measured by the Fermi Large Area Telescope in the energy range from 100 Me V to 100 Ge V in order to probe the gas and cosmic-ray content over the scale of the whole Cygnus complex. The gamma-ray emission on the scale of the central massive stellar clusters and from individual sources is addressed elsewhere. Methods. The signal from bright pulsars is largely reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse gamma-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data. and a global model of the region, including other pulsars and gamma-ray sources, is sought. Results. The integral H I emissivity above 100 MeV averaged over the whole Cygnus complex amounts to 12.06 +/- 0.11 (stat.) (+0.15 -0.84) (syst.J] x 10(exp -26) photons /s / sr / H-atom, where the systematic error is dominated by the uncertainty on the H I opacity to calculate its column densities. The integral emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The average X(sub co) N(H2)/W(sub co) ratio is found to be [1.68 +/- 0.05 (stat.) (H I opacity)] x 1020 molecules cm-2 (K km/s /r, consistent with other LAT measurements in the Local Arm. We detect significant gamma-ray emission from dark neutral gas for a mass corresponding to approx 40% of that traced by CO. The total interstellar mass in the Cygnus complex inferred from its gamma-ray emission amounts to 8(+5 -1) x 10(exp 6) Solar M at a distance of 1.4 kpc. Conclusions. Despite the conspicuous star formation activity and large masses of the interstellar clouds, the cosmic-ray population in the Cygnus complex averaged over a few hundred parsecs is similar to that of the local interstellar space.
Neronov, Andrii
2017-11-10
Cosmic rays could be produced via shock acceleration powered by supernovae. The supernova hypothesis implies that each supernova injects, on average, some 10^{50} erg in cosmic rays, while the shock acceleration model predicts a power law cosmic ray spectrum with the slope close to 2. Verification of these predictions requires measurement of the spectrum and power of cosmic ray injection from supernova population(s). Here, we obtain such measurements based on γ-ray observation of the Constellation III region of the Large Magellanic Cloud. We show that γ-ray emission from this young star formation region originates from cosmic rays injected by approximately two thousand supernovae, rather than by a massive star wind powered by a superbubble predating supernova activity. Cosmic ray injection power is found to be (1.1_{-0.2}^{+0.5})×10^{50} erg/supernova (for the estimated interstellar medium density 0.3 cm^{-3}). The spectrum is a power law with slope 2.09_{-0.07}^{+0.06}. This agrees with the model of particle acceleration at supernova shocks and provides a direct proof of the supernova origin of cosmic rays.
Supernova Remnant Kes 17: An Efficient Cosmic Ray Accelerator inside a Molecular Cloud
NASA Astrophysics Data System (ADS)
Gelfand, Joseph; Slane, Patrick; Hughes, John; Temim, Tea; Castro, Daniel; Rakowski, Cara
Supernova remnant are believed to be the dominant source of cosmic rays protons below the "knee" in the energy spectrum. However, relatively few supernova remnants have been identified as efficient producers of cosmic ray protons. In this talk, I will present evidence that the production of cosmic ray protons is required to explain the broadband non-thermal spectrum of supernova remnant Kes 17 (SNR G304.6+0.1). Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 and similar sources are important for understanding how cosmic rays are accelerated in supernova remnants.
Cosmic Ray Helium Intensities over the Solar Cycle from ACE
NASA Technical Reports Server (NTRS)
DeNolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink. P. L.; Israel, M. H.; Lave, K.;
2007-01-01
Observations of cosmic-ray helium energy spectra provide important constraints on cosmic ray origin and propagation. However, helium intensities measured at Earth are affected by solar modulation, especially below several GeV/nucleon. Observations of helium intensities over a solar cycle are important for understanding how solar modulation affects galactic cosmic ray intensities and for separating the contributions of anomalous and galactic cosmic rays. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring cosmic ray isotopes, including helium, since 1997 with high statistical precision. We present helium elemental intensities between approx. 10 to approx. 100 MeV/nucleon from the Solar Isotope Spectrometer (SIS) and CRIS observations over a solar cycle and compare these results with the observations from other satellite and balloon-borne instruments, and with GCR transport and solar modulation models.
Cosmic ray knee and new physics at the TeV scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barceló, Roberto; Masip, Manuel; Mastromatteo, Iacopo, E-mail: rbarcelo@ugr.es, E-mail: masip@ugr.es, E-mail: mastroma@sissa.it
2009-06-01
We analyze the possibility that the cosmic ray knee appears at an energy threshold where the proton-dark matter cross section becomes large due to new TeV physics. It has been shown that such interactions could break the proton and produce a diffuse gamma ray flux consistent with MILAGRO observations. We argue that this hypothesis implies knees that scale with the atomic mass for the different nuclei, as KASKADE data seem to indicate. We find that to explain the change in the spectral index in the flux from E{sup −2.7} to E{sup −3.1} the cross section must grow like E{sup 0.4+β}more » above the knee, where β = 0.3–0.6 parametrizes the energy dependence of the age (τ∝E{sup −β}) of the cosmic rays reaching the Earth. The hypothesis also requires mbarn cross sections (that could be modelled with TeV gravity) and large densities of dark matter (that could be clumped around the sources of cosmic rays). We argue that neutrinos would also exhibit a threshold at E = (m{sub χ}/m{sub p}) E{sub knee} ≈ 10{sup 8} GeV where their interaction with a nucleon becomes strong. Therefore, the observation at ICECUBE or ANITA of standard neutrino events above this threshold would disprove the scenario.« less
High-Energy Cosmic-Ray Antiprotons with the CAPRICE98 experiment
NASA Astrophysics Data System (ADS)
Boezio, M.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Finetti, N.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Mocchitti, E.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.; WIZARD/CAPRICE Collaboration
2001-08-01
Observations of cosmic-ray antiprotons were performed by the balloon-borne experiment CAPRICE98 that was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA. The experiment used the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov detector, a time-of-flight system, a tracking device consisting of drift chambers and a superconducting magnet and a silicon-tungsten calorimeter. We report on the absolute-antiproton-energy spectrum determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV.
Energy spectrum and arrival direction of primary cosmic rays of energy above 10 to the 18th power eV
NASA Technical Reports Server (NTRS)
Teshima, M.; Nagano, M.; Hayashida, N.; He, C. X.; Honda, M.; Ishikawa, F.; Kamata, K.; Matsubara, Y.; Mori, M.; Ohoka, H.
1985-01-01
The observation of ultra high energy cosmic rays with 20 sq km array has started at Akeno. The preliminary results on energy spectrum and arrival direction of energies above 10 to the 18th eV are prsented with data accumulated for four years with the 1 sq km array, for two years with the 4 sq km array and for a half year with the new array. The energy spectrum is consistent with the previous experiments showing the flattening above 10 to the 18.5 eV.
Cosmic-Ray Lithium Production at the Nova Eruptions Followed by a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Kawanaka, Norita; Yanagita, Shohei
2018-01-01
Recent measurements of cosmic-ray (CR) light nuclei by AMS-02 have shown that there is an unexpected component of CR lithium whose spectral index is harder than that expected from the secondary production scenario. We propose the nearby type Ia supernova following a nova eruption as the origin of lithium nuclei in the CRs. By fitting the data of CR protons, helium, and lithium fluxes provided by AMS-02 with our theoretical model we show that this scenario is consistent with the observations. The observational tests that can check our hypothesis are briefly discussed.
NASA Technical Reports Server (NTRS)
Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.;
2011-01-01
The energy spectrum of cosmic-ray antiprotons (p(raised bar)'s) collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The p(raised bar) spectrum measured by BESS-Polar II shows good consistency with secondary p(raised bar) calculations. Cosmologically primary p(raised bar)'s have been searched for by comparing the observed and calculated p(raised bar) spectra. The BESSPolar II result shows no evidence of primary p(raised bar)'s originating from the evaporation of PBH.
NASA Technical Reports Server (NTRS)
Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.;
2012-01-01
The energy spectrum of cosmic-ray antiprotons (p-bar's) from 0.17 to 3.5 GeV has been measured using 7886 p-bar's detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p-bar calculations. Cosmologically primary p-bar's have been investigated by comparing measured and calculated p-bar spectra. BESS-Polar II data.show no evidence of primary p-bar's from the evaporation of primordial black holes.
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; Ben-Zvi, S. Y.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Farrar, G. R.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.
2005-04-01
We present the results of a search for cosmic-ray point sources at energies in excess of 4.0×1019 eV in the combined data sets recorded by the Akeno Giant Air Shower Array and High Resolution Fly's Eye stereo experiments. The analysis is based on a maximum likelihood ratio test using the probability density function for each event rather than requiring an a priori choice of a fixed angular bin size. No statistically significant clustering of events consistent with a point source is found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, Seungwon; Ko, P.; Park, Wan-Il
2014-06-01
We investigate the indirect signatures of the Higgs portal U(1){sub X} vector dark matter (VDM) X{sub μ} from both its pair annihilation and decay. The VDM is stable at renormalizable level by Z{sub 2} symmetry, and thermalized by Higgs-portal interactions. It can also decay by some nonrenormalizable operators with very long lifetime at cosmological time scale. If dim-6 operators for VDM decays are suppressed by 10{sup 16} GeV scale, the lifetime of VDM with mass ∼ 2 TeV is just right for explaining the positron excess in cosmic ray observed by PAMELA and AMS02 Collaborations. The VDM decaying into μ{supmore » +}μ{sup −} can fit the data, evading various constraints on cosmic rays. We give one UV-complete model as an example. This scenario for Higgs portal decaying VDM with mass around ∼ 2 TeV can be tested by DM direct search at XENON1T, and also at the future colliders by measuring the Higgs self-couplings.« less
Difference between even and odd 11-year cycles in cosmic ray intensity
NASA Technical Reports Server (NTRS)
Otaola, J. A.; Perez-Enriquez, R.; Valdes-Galicia, J. F.
1985-01-01
Cosmic ray data for the period 1946-1984 are used to determine the run of the cosmic ray intensity over three complete solar cycles. The analysis shows a tendency towards a regular alternation of cosmic ray intensity cycles with double and single maxima. Whereas a saddle-like shape is characteristic of even cycles, odd cycles are characterized by a peak-like shape. The importance of this behavior is discussed in terms of different processes influencing cosmic ray transport in the heliosphere.
Recent high energy gamma-ray results from SAS-2
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Ogelman, H. B.; Ozel, M. E.; Tumer, T.; Lamb, R. C.
1977-01-01
Recent developments in gamma-ray astronomy due to the results from SAS-2 have focused on two areas. First, the emission from the plane of the Galaxy is the dominant feature in the gamma-ray sky. The galactic latitude and longitude distributions are consistent with the concept that the high-energy radiation originates from cosmic rays interacting with interstellar matter, and the measurements support a galactic origin for cosmic rays. Second, searches of the SAS-2 data for emission from localized sources have shown three strong discrete gamma-ray sources: the Crab nebula and PSR 0531 + 21, the Vela supernova remnant and PSR 0833-45, and a source near galactic coordinates 193 deg longitude, +3 deg latitude, which does not appear to be associated with other known celestial objects. Evidence has also been found for pulsed gamma-ray emission from two other radio pulsars, PSR 1818-04 and PSR 1747-46. A localized source near longitudes 76-80 deg may be associated with the X-ray source Cyg X-3.
Testing spatial uniformity of the CR spectrum in the local ISM with γ-ray observations
NASA Astrophysics Data System (ADS)
Prokhorov, D. A.; Colafrancesco, S.
2018-05-01
Gamma-ray observations of nearby radio-line-emitting gas structures in the interstellar medium allow us to probe the spectrum of cosmic rays (CRs). In this paper, we analysed Fermi Large Area Telescope (LAT) γ-ray observations of three such structures located near each other to check if their CR spectra are compatible with that of the CR background or might provide evidence for a population of "fresh" CRs. We found that the shape of the γ-ray spectrum in the Aquarius HI shell is consistent with the previously published stacked γ-ray spectrum of the Gould Belt molecular clouds. We also found that assumptions on the diffuse Galactic γ-ray background affect the spectral shapes of CRs derived in the R Coronae Australis and ρ Ophiuchi molecular clouds in which spectral deviations had previously been suggested. These two facts provide evidence to support the hypothesis of uniformity of the shapes of cosmic ray spectra in the local Galaxy environment.
The Silicon Matrix as a Charge Detector in the ATIC Experiment
NASA Technical Reports Server (NTRS)
Zatsepin, V. I.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.
2004-01-01
The Advanced Thin Ionization Calorimeter (ATIC) was built for series of long- duration balloon flights in Antarctica. Its main goal is to measure energy spectra of cosmic ray nuclei from protons up to iron nuclei over a wide energy range from 30 GeV up to 100 TeV. The ATIC balloon experiment had its first, test flight that lasted for 16 days from 28 Dec 2000 to 13 Jan 2OO1 around the continent. The ATIC spectrometer consists of a fully active BGO calorimeter, scintillator hodoscopes and a silicon matrix. The silicon matrix, consisting of 4480 pixels, was used as a charge detector in the experiment. About 25 million cosmic ray events were detected during the flight. In the paper, the charge spectrum obtained with the silicon matrix is analyzed.
The primary cosmic ray electron spectrum from 10 GeV to about 200 GeV
NASA Technical Reports Server (NTRS)
Silverberg, R. F.; Ormes, J. F.; Balasubrahmanyan, V. K.; Ryan, M. J.
1971-01-01
An ionization spectrometer consisting of 10.8 radiation lengths of tungsten and 35 radiation lengths of iron has been used to determine the energy spectrum of cosmic ray electrons above 10 GeV. The spectrometer was calibrated with electrons from 5.4 to 18 GeV and then flown at an altitude of 6 gm-cm/2 for 16 hours. Separation of electron initiated events from proton events was achieved by utilizing starting point distributions, the shower development in tungsten, and the energy deposited in the large thickness of iron absorber. The exponent of the differential energy spectrum of the electrons is -3.1 + or - 0.2 while the exponent of the background is consistent with the proton exponent of -2.7 + or -0.2.
Blasi, Pasquale
2017-12-22
Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the âendâ of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform âcosmic ray astronomyâ, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.
NASA Technical Reports Server (NTRS)
Curtis, Stanley B.
1993-01-01
The possible health risks posed by Galactic cosmic rays, especially the possible heightened cancer risk, are examined. The results of the Biostack studies of the biological effects of high-energy cosmic rays are discussed. The biological mechanisms involved in possible harm due to cosmic rays are considered.
NASA Technical Reports Server (NTRS)
Lal, D.
1986-01-01
Temporal variations in cosmic ray intensity have been deduced from observations of products of interactions of cosmic ray particles in the Moon, meteorites, and the Earth. Of particular interest is a comparison between the information based on Earth and that based on other samples. Differences are expected at least due to: (1) differences in the extent of cosmic ray modulation, and (2) changes in the geomagnetic dipole field. Any information on the global changes in the terrestrial cosmic ray intensity is therefore of importance. In this paper a possible technique for detecting changes in cosmic ray intensity is presented. The method involves human intervention and is applicable for the past 10,000 yrs. Studies of changes over longer periods of time are possible if supplementary data on age and history of the sample are available using other methods. Also discussed are the possibilities of studying certain geophysical processes, e.g., erosion, weathering, tectonic events based on studies of certain cosmic ray-produced isotopes for the past several million years.
Aguilar, M; Ali Cavasonza, L; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeğmez-du Pree, S; Battarbee, M; Battiston, R; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindel, K F; Bindi, V; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Burger, W J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Creus, W; Crispoltoni, M; Cui, Z; Dadzie, K; Dai, Y M; Datta, A; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guo, K H; Haino, S; Han, K C; He, Z H; Heil, M; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jia, Yi; Jinchi, H; Kang, S C; Kanishev, K; Khiali, B; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Kulemzin, A; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, Q; Li, T X; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lordello, V D; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lyu, S S; Machate, F; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mikuni, V M; Mo, D C; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Oliva, A; Orcinha, M; Palermo, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Perrina, C; Phan, H D; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Tacconi, M; Tang, X W; Tang, Z C; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wu, H; Wu, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zannoni, M; Zeissler, S; Zhang, C; Zhang, F; Zhang, J; Zhang, J H; Zhang, S W; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P
2018-01-12
We report on the observation of new properties of secondary cosmic rays Li, Be, and B measured in the rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total of 5.4×10^{6} nuclei collected by AMS during the first five years of operation aboard the International Space Station. The Li and B fluxes have an identical rigidity dependence above 7 GV and all three fluxes have an identical rigidity dependence above 30 GV with the Li/Be flux ratio of 2.0±0.1. The three fluxes deviate from a single power law above 200 GV in an identical way. This behavior of secondary cosmic rays has also been observed in the AMS measurement of primary cosmic rays He, C, and O but the rigidity dependences of primary cosmic rays and of secondary cosmic rays are distinctly different. In particular, above 200 GV, the secondary cosmic rays harden more than the primary cosmic rays.
NASA Astrophysics Data System (ADS)
Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindel, K. F.; Bindi, V.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Burger, W. J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dadzie, K.; Dai, Y. M.; Datta, A.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guo, K. H.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jia, Yi; Jinchi, H.; Kang, S. C.; Kanishev, K.; Khiali, B.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Kulemzin, A.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, Q.; Li, T. X.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lordello, V. D.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lyu, S. S.; Machate, F.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mikuni, V. M.; Mo, D. C.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Oliva, A.; Orcinha, M.; Palermo, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Perrina, C.; Phan, H. D.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wu, H.; Wu, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zannoni, M.; Zeissler, S.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, J. H.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration
2018-01-01
We report on the observation of new properties of secondary cosmic rays Li, Be, and B measured in the rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total of 5.4 ×106 nuclei collected by AMS during the first five years of operation aboard the International Space Station. The Li and B fluxes have an identical rigidity dependence above 7 GV and all three fluxes have an identical rigidity dependence above 30 GV with the Li /Be flux ratio of 2.0 ±0.1 . The three fluxes deviate from a single power law above 200 GV in an identical way. This behavior of secondary cosmic rays has also been observed in the AMS measurement of primary cosmic rays He, C, and O but the rigidity dependences of primary cosmic rays and of secondary cosmic rays are distinctly different. In particular, above 200 GV, the secondary cosmic rays harden more than the primary cosmic rays.
NASA Astrophysics Data System (ADS)
Akahori, Takuya; Kato, Yuichi; Nakazawa, Kazuhiro; Ozawa, Takeaki; Gu, Liyi; Takizawa, Motokazu; Fujita, Yutaka; Nakanishi, Hiroyuki; Okabe, Nobuhiro; Makishima, Kazuo
2018-06-01
We report the Australia Telescope Compact Array 16 cm observation of CIZA J1358.9-4750. Recent X-ray studies imply that this galaxy cluster is composed of merging, binary clusters. Using the EW367 configuration, we found no significant diffuse radio emission in and around the cluster. An upper limit of the total radio power at 1.4 GHz is ˜1.1 × 1022 W Hz-1 in 30 square arcminutes, which is a typical size for radio relics. It is known that an empirical relation holds between the total radio power and X-ray luminosity of the host cluster. The upper limit is about one order of magnitude lower than the power expected from the relation. Very young (˜70 Myr) shocks with low Mach numbers (˜1.3), which are often seen at an early stage of merger simulations, are suggested by the previous X-ray observation. The shocks may generate cosmic-ray electrons with a steep energy spectrum, which is consistent with non-detection of bright (>1023 W Hz-1) relic in this 16 cm band observation. Based on the assumption of energy equipartition, the upper limit gives a magnetic field strength of below 0.68f(Dlos/1 Mpc)-1(γmin/200)-1 μG, where f is the cosmic-ray total energy density over the cosmic-ray electron energy density, Dlos is the depth of the shock wave along the sightline, and γmin is the lower cutoff Lorentz factor of the cosmic-ray electron energy spectrum.
Baryons at the edge of the X-ray-brightest galaxy cluster.
Simionescu, Aurora; Allen, Steven W; Mantz, Adam; Werner, Norbert; Takei, Yoh; Morris, R Glenn; Fabian, Andrew C; Sanders, Jeremy S; Nulsen, Paul E J; George, Matthew R; Taylor, Gregory B
2011-03-25
Studies of the diffuse x-ray-emitting gas in galaxy clusters have provided powerful constraints on cosmological parameters and insights into plasma astrophysics. However, measurements of the faint cluster outskirts have become possible only recently. Using data from the Suzaku x-ray telescope, we determined an accurate, spatially resolved census of the gas, metals, and dark matter out to the edge of the Perseus Cluster. Contrary to previous results, our measurements of the cluster baryon fraction are consistent with the expected universal value at half of the virial radius. The apparent baryon fraction exceeds the cosmic mean at larger radii, suggesting a clumpy distribution of the gas, which is important for understanding the ongoing growth of clusters from the surrounding cosmic web.
NASA Technical Reports Server (NTRS)
Jones, F. C. (Compiler)
1986-01-01
Invited talks, rapporteur talks, and highlight talks are included. Topics of the invited and highlight talks include astrophysical jets, gamma-ray line astronomy, cosmic rays and gamma rays in astrophysics, the early universe, elementary particle physics, solar flares and acceleration of energetic particles, cosmogenic nuclei, extragalactic astronomy, composition of solar flare particles, very high energy gamma ray sources, gamma-ray bursts, shock acceleration in the solar wind, cosmic rays in deep underground detectors, spectrum of cosmic rays at 10 to the 19th power eV, and nucleus-nucleus interactions.
NASA Technical Reports Server (NTRS)
Mitchell, J. W.; Abe, K.; Anraku, K.; Asaoka, Y.; Fujikawa, M.; Fuke, H.; Haino, S.; Hams, T.; Ikeda, N.; Imori, M.
2002-01-01
The Balloon Borne Experiment with a Superconducting Spectrometer (BESS) has measured the energy spectrum of cosmic-ray antiprotons between 0.18 and 4.20 GeV in eight flights between 1993 and 2002. Above about 1 GeV, models in which antiprotons are secondary products of the interactions of primary cosmic rays with the interstellar gas agree with the BESS antiproton spectrum. Below 1 GeV, the data show a possible excess antiproton flux compared to secondary model predictions, suggesting the presence of an additional source of antiprotons. The antiproton/proton ratios measured between 1993 and 1999, during the Sun's positive-polarity phase, are consistent with simple models of solar modulation. However, results from the 2000 flight, following the solar magnetic field reversal, show a sudden increase in the antiproton/proton ratio and tend to favor a charge-sign-dependent drift model. To extend BESS measurements to lower energies, an evolutionary instrument, BESS-Polar, is under construction for polar flight in 2004.
The PAMELA experiment on satellite and its capability in cosmic rays measurements
NASA Astrophysics Data System (ADS)
Adriani, O.; Ambriola, M.; Barbarino, G.; Barbier, L. M.; Bartalucci, S.; Bazilevskaja, G.; Bellotti, R.; Bertazzoni, S.; Bidoli, V.; Boezio, M.; Bogomolov, E.; Bonechi, L.; Bonvicini, V.; Boscherini, M.; Bravar, U.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellano, M.; Castellini, G.; Christian, E. R.; Ciacio, F.; Circella, M.; D'Alessandro, R.; De Marzo, C. N.; De Pascale, M. P.; Finetti, N.; Furano, G.; Gabbanini, A.; Galper, A. M.; Giglietto, N.; Grandi, M.; Grigorjeva, A.; Guarino, F.; Hof, M.; Koldashov, S. V.; Korotkov, M. G.; Krizmanic, J. F.; Krutkov, S.; Lund, J.; Marangelli, B.; Marino, L.; Menn, W.; Mikhailov, V. V.; Mirizzi, N.; Mitchell, J. W.; Mocchiutti, E.; Moiseev, A. A.; Morselli, A.; Mukhametshin, R.; Ormes, J. F.; Osteria, G.; Ozerov, J. V.; Papini, P.; Pearce, M.; Perego, A.; Piccardi, S.; Picozza, P.; Ricci, M.; Salsano, A.; Schiavon, P.; Scian, G.; Simon, M.; Sparvoli, R.; Spataro, B.; Spillantini, P.; Spinelli, P.; Stephens, S. A.; Stochaj, S. J.; Stozhkov, Y.; Straulino, S.; Streitmatter, R. E.; Taccetti, F.; Tesi, M.; Vacchi, A.; Vannuccini, E.; Vasiljev, G.; Vignoli, V.; Voronov, S. A.; Yurkin, Y.; Zampa, G.; Zampa, N.
2002-02-01
The PAMELA& equipment will be assembled in 2001 and installed on board the Russian satellite Resurs. PAMELA is conceived mainly to study the antiproton and positron fluxes in cosmic rays up to high energy (190GeV for p¯ and 270GeV for e+) and to search antinuclei, up to 30GeV/n, with a sensitivity of 10-7 in the He/He ratio. The PAMELA telescope consists of: a magnetic spectrometer made up of a permanent magnet system equipped with double sided microstrip silicon detectors; a transition radiation detector made up of active layers of proportional straw tubes interleaved with carbon fibre radiators; and a silicon-tungsten imaging calorimeter made up of layers of tungsten absorbers and silicon detector planes. A time-of-flight system and anti-coincidence counters complete the PAMELA equipment. In the past years, tests have been done on each subdetector of PAMELA; the main results are presented and their implications on the anti-particles identification capability in cosmic rays are discussed here.
NASA Technical Reports Server (NTRS)
Howell, L. W.
2001-01-01
A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy (E(sub k)) to a steeper spectral index alpha-2 > alpha-1 above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.
Study of Primary Cosmic Ray Electrons In Energy Range 10^11 - 10^13 Ev By Pamela Instrument.
NASA Astrophysics Data System (ADS)
Voronov, S.; Pamela Collaboration
The main goal of the magnetic spectrometer PAMELA is the study of antiparticle fluxes with energy up to 300 GeV in cosmic rays on board satellite. A modification of instrument was done by introducing of neutron detector. This device was placed under imaging calorimeter and bottom scintillator counter. It consists of two layers of 36 3He gas counters enveloped by a polyethylene moderator. The neutron detector gives additional possibility to identify the antiprotons going in aperture of spectrome- ter and generating the nuclear cascade in tungsten plates of calorimeter. This shower is followed by big number of neutrons in contrast to electromagnetic one caused by elec- tron or positron. From other side the combination of the imaging calorimeter, bottom scintillator and neutron detector constitute the independent instrument with large field of view which gives the possibility to measure the electron-positron cosmic ray com- ponent in energy range 1011-1013 eV with a rejection factor of order 10-4 regarding to nuclear one.
Astroparticle Physics: Detectors for Cosmic Rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salazar, Humberto; Villasenor, Luis
2006-09-25
We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the measurement of the muon lifetime and the ratio of positive to negative muons in the natural background of cosmic ray muons at 2000 m.a.s.l. Next we describe the detection of decaying and crossing muons in a water Cherenkov detector as well as a technique to separate isolated particles. We also describe the detection of isolated muons and electrons in a liquid scintillator detector and their separation. Next we describe the detection ofmore » extensive air showers (EAS) with a hybrid detector array consisting of water Cherenkov and liquid scintillator detectors, located at the campus of the University of Puebla. Finally we describe work in progress to detect EAS at 4600 m.a.s.l. with a water Cherenkov detector array and a fluorescence telescope at the Sierra Negra mountain.« less
New measurements of cosmic ray air showers with the digital radio interferometer LOPES
NASA Astrophysics Data System (ADS)
Schröder, F. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.
2011-08-01
LOPES is a digital radio interferometer which measures the radio emission of extensive cosmic ray air showers. It mainly consists of 30 dipole antennas installed in co-location with KASCADE-Grande at the Karlsruhe Institute of Technology (KIT) in Germany. KASCADE-Grande measures the secondary air shower particles at ground. Whenever KASCADE-Grande detects a high-energy cosmic ray event (≳1016 eV), it triggers LOPES which then digitally records the radio signal in the frequency band from 40 to 80 MHz. Using interferometric methods, LOPES is able to successfully detect air shower induced radio pulses, even in the noisy environment at the KIT. In the present studies, a considerable progress in understanding the radio emission mechanism is shown: The latest version of the "radio emission in air shower" simulation program, REAS3, seems to be the first Monte Carlo tool which is able to reproduce the magnitude and slope of most of the measured lateral distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arlen, T.; Aune, T.; Bouvier, A.
2012-10-01
Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E > 100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99% confidence level were measured to be on themore » order of (2-5) Multiplication-Sign 10{sup -8} photons m {sup -2} s {sup -1} (VERITAS, >220 GeV) and {approx}2 Multiplication-Sign 10{sup -6} photons m {sup -2} s {sup -1} (Fermi, 1-3 GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be <16% from VERITAS data and <1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be <50%. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of {approx}(2-5.5) {mu}G, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark matter (DM) dominated, the VERITAS upper limits have been used to place constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the DM particles, ({sigma}v).« less
NASA Technical Reports Server (NTRS)
Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.;
2012-01-01
Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E greater than100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99 confidence level were measured to be on the order of (2-5) x 10(sup -8) photons m(sup -2) s(sup -1) (VERITAS,greater than 220 GeV) and approximately 2 x 10(sup -6) photons m(sup -2) s(sup -1) (Fermi, 1-3 GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be less than 16% from VERITAS data and less than 1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be 50. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of approximately (2-5.5)microG, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark matter (DM) dominated, the VERITAS upper limits have been used to place constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the DM particles, (sigma upsilon)
Cosmic Ray investigations on peak Musala in Bulgaria: A memoir
NASA Astrophysics Data System (ADS)
Kavlakov, S.
2009-11-01
A very brief historical description of the Bulgarian Cosmic Ray investigations, in the Cosmic Ray Station on peak Musala (2925 m.a.s.l.) is presented. Difficulties of the high mountain measurements that time are mentioned, together with the hard emotional and successful work done by a small staff of young Bulgarian cosmic ray scientists.
Anisotropy and corotation of galactic cosmic rays.
Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X
2006-10-20
The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.
Results from the energetic gamma-ray experiment telescope (EGRET) on the Compton Observatory
NASA Technical Reports Server (NTRS)
Fichtel, C. E.; Bertsch, D. L.; Dingus, B.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.
1993-01-01
The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) covers the high energy gamma ray energy range, approximately 30 MeV to 30 GeV, with a sensitivity considerably greater than earlier high energy gamma-ray satellites. Thus far, 4 pulsars have been detected and their properties measured, including in 3 cases the energy spectrum as a function of phase. The details of the galactic plane are being mapped and a spectra of the center region has been obtained in good agreement with that expected from cosmic ray interactions. The Magellanic clouds have been examined with the Large Magellanic Cloud (LMC) having been detected at a level consistent with it having a cosmic ray density compatible with quasi-stable equilibrium. Sixteen Active Galactic Nuclei (AGN's) have been seen thus far with a high degree of certainty including 12 quasars and 4 BL Lac objects, but no Seyferts. Time variation has been detected in some of these AGN's
Lorentz Invariance Violation and the Observed Spectrum of Ultrahigh Energy Cosmic Rays
NASA Technical Reports Server (NTRS)
Scully, S. T.; Stecker, F. W.
2009-01-01
There has been much interest in possible violations of Lorentz invariance, particularly motivated by quantum gravity theories. It has been suggested that a small amount of Lorentz invariance violation (LIV) could turn of photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with photons of the cosmic background radiation and thereby eliminate the resulting sharp steepening in the spectrum of the highest energy CRs predicted by Greisen Zatsepin and Kuzmin (GZK). Recent measurements of the UHECR spectrum reported by the HiRes and Auger collaborations, however, indicate the presence of the GZK effect. We present the results of a detailed calculation of the modification of the UHECR spectrum caused by LIV using the formalism of Coleman and Glashow. We then compare these results with the experimental UHECR data from Auger and HiRes. Based on these data, we find a best fit amount of LIV of 4.5+1:5 ..4:5 x 10(exp -23),consistent with an upper limit of 6 x 10(exp -23). This possible amount of LIV can lead to a recovery of the cosmic ray spectrum at higher energies than presently observed. Such an LIV recovery effect can be tested observationally using future detectors.
NASA Astrophysics Data System (ADS)
Bogena, H. R.; Metzen, D.; Baatz, R.; Hendricks Franssen, H.; Huisman, J. A.; Montzka, C.; Vereecken, H.
2011-12-01
Measurements of low-energy secondary neutron intensity above the soil surface by cosmic-ray soil moisture probes (CRP) can be used to estimate soil moisture content. CRPs utilise the fact that high-energy neutrons initiated by cosmic rays are moderated (slowed to lower energies) most effectively by collisions with hydrogen atoms contained in water molecules in the soil. The conversion of neutron intensity to soil moisture content can potentially be complicated because neutrons are also moderated by aboveground water storage (e.g. vegetation water content, canopy storage of interception). Recently, it was demonstrated experimentally that soil moisture content derived from CRP measurements agrees well with average moisture content from gravimetric soil samples taken within the footprint of the cosmic ray probe, which is proposed to be up to several hundred meters in size [1]. However, the exact extension and shape of the CRP integration footprint is still an open question and it is also unclear how CRP measurements are affected by the soil moisture distribution within the footprint both in horizontal and vertical directions. In this paper, we will take advantage of an extensive wireless soil moisture sensor network covering most of the estimated footprint of the CRP. The network consists of 150 nodes and 900 soil moisture sensors which were installed in the small forested Wüstebach catchment (~27 ha) in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories) [2]. This unique soil moisture data set provides a consistent picture of the hydrological status of the catchment in a high spatial and temporal resolution and thus the opportunity to evaluate the CRP measurements in a rigorous way. We will present first results of the comparison with a specific focus on the sensitivity of the CRP measurements to soil moisture variation in both the horizontal and vertical direction. Furthermore, the influence of forest biomass and shallow groundwater table fluctuations on the attenuation of cosmic-ray neutrons will be considered.
Ultra high energy gamma rays, cosmic rays and neutrinos from accreting degenerate stars
NASA Technical Reports Server (NTRS)
Brecher, K.; Chanmugam, G.
1985-01-01
Super-Eddington accretion for a recently proposed unipolar induction model of cosmic ray acceleration in accreting binary star systems containing magnetic white dwarfs or neutron stars is considered. For sufficiently high accretion rates and low magnetic fields, the model can account for: (1) acceleration of cosmic ray nuclei up to energies of 10 to the 19th power eV; (2) production of more or less normal solar cosmic ray composition; (3) the bulk of cosmic rays observed with energies above 1 TeV, and probably even down to somewhat lower energies as well; and (4) possibly the observed antiproton cosmic ray flux. It can also account for the high ultra high energy (UHE) gamma ray flux observed from several accreting binary systems (including Cygnus X-3), while allowing the possibility of an even higher neutrino flux from these sources, with L sub nu/L sub gamma is approximately 100.
NASA Astrophysics Data System (ADS)
Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chervenak, James A.; Chiao, Meng P.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; Kelly, Daniel; Leutenegger, Maurice A.; McCammon, Dan; Scott Porter, F.; Szymkowiak, Andrew E.; Watanabe, Tomomi; Zhao, Jun
2018-01-01
The calorimeter array of the JAXA Astro-H (renamed Hitomi) soft x-ray spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS had a square array of 36 x-ray calorimeters at the focal plane. These calorimeters consisted of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector was located behind the calorimeter array and served to reject events due to cosmic rays. We will briefly describe this anticoincidence detector and its performance.
Lightning Initiation and Propagation
2009-08-22
ray (gamma ray ) and multiple-station (>24) cosmic - ray - muon detection network (TERA) pl:esently in place. Upgrade TERA with LaBr3 detectors to...DATES COVERED 4. TITLE AND SUBTITLE Lightning Initistion and Propagation Including the Role of X- Rays , Gamma Rays , and Cosmic Rays 5a... rays , gamma rays , and cosmic rays in the initiation and propagation of lightning and in the phenomenology of thunderclouds. The experimental
Measurement of natural radionuclides in phosphgypsum using an anti-cosmic gamma-ray spectrometer.
Ferreux, Laurent; Moutard, Gérard; Branger, Thierry
2009-05-01
Gamma-ray spectrometry measurements have been carried out to determine the activity of natural radionuclides in a phosphogypsum sample included in a specific tight container. The gamma spectrometer includes an N-type coaxial high-purity germanium (HPGe) detector equipped with an anti-cosmic system. This measurement required the determination of linear attenuation coefficients of phosphogypsum to calculate self-absorption correction between efficiency calibration conditions and measurement ones. The results are given for the three natural chains and for (40)K, in term of specific activity/g of dry material, ranging from a few Bq kg(-1) to a few hundreds Bq kg(-1). The equilibrium within the different families and the (235)U/(238)U ratio are discussed.
Cosmic ray transport in astrophysical plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlickeiser, R.
2015-09-15
Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, themore » heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.« less
Role of Turbulent Damping in Cosmic Ray Galactic Winds
NASA Astrophysics Data System (ADS)
Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen
2018-06-01
Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).
Magnetospheric and solar physics observations with the PAMELA experiment
NASA Astrophysics Data System (ADS)
Casolino, M.; Adriani, O.; Ambriola, M.; Barbarino, G. C.; Basili, A.; Bazilevskaja, G. A.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Castellini, G.; de Marzo, C.; de Pascale, M. P.; de Rosa, G.; de Simone, N.; di Felice, V.; Fedele, D.; Galper, A. M.; Hofverberg, P.; Koldashov, S. V.; Krutkov, S. Yu.; Kvashnin, A. N.; Lundquist, J.; Maksumov, O.; Malvezzi, V.; Marcelli, L.; Menn, W.; Mikhailov, V. V.; Minori, M.; Misin, S.; Mocchiutti, E.; Morselli, A.; Nikonov, N. N.; Orsi, S.; Osteria, G.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Runtso, M. F.; Russo, S.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu. I.; Taddei, E.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Zverev, V. G.
2008-04-01
PAMELA is a satellite-borne experiment designed to make long duration measurements of the cosmic radiation in Low Earth Orbit. It is devoted to the detection of the cosmic-ray spectra in the 100 MeV 300 GeV range with primary scientific goal the measurement of antiproton and positron spectra over the largest energy range ever achieved. Other tasks include the search for antinuclei with unprecedented sensitivity and the measurement of the light nuclear component of cosmic rays. In addition, PAMELA can investigate phenomena connected with solar and Earth physics. The apparatus consists of: a Time of Flight system, a magnetic spectrometer, an electromagnetic imaging calorimeter, a shower tail catcher scintillator, a neutron detector and an anticoincidence system. In this work we present some measurements of galactic, secondary and trapped particles performed in the first months of operation.
Cosmic Rays in the Heliosphere: Requirements for Future Observations
NASA Astrophysics Data System (ADS)
Mewaldt, R. A.
2013-06-01
Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008-2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.
Re-evaluation of cosmic ray cutoff terminology
NASA Technical Reports Server (NTRS)
Cooke, D. J.; Humble, J. E.; Shea, M. A.; Smart, D. F.; Lund, N.; Rasmussen, I. L.; Byrnak, B.; Goret, P.; Petrou, N.
1985-01-01
The study of cosmic ray access to locations inside the geomagnetic field has evolved in a manner that has led to some misunderstanding and misapplication of the terminology originally developed to describe particle access. This paper presents what is believed to be a useful set of definitions for cosmic ray cutoff terminology for use in theoretical and experimental cosmic ray studies.
A Demonstration Device for Cosmic Rays Telescopes
ERIC Educational Resources Information Center
Esposito, Salvatore
2018-01-01
We describe a hands-on accurate demonstrator for cosmic rays realized by six high school students. The main aim is to show the relevance and the functioning of the principal parts of a cosmic ray telescope (muon detector), with the help of two large sized wooden artefacts. The first one points out how cosmic rays can be tracked in a muon…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekrasov, Anatoly K.; Shadmehri, Mohsen, E-mail: anekrasov@ifz.ru, E-mail: nekrasov.anatoly@gmail.com, E-mail: m.shadmehri@gu.ac.ir
2014-06-10
Using a multifluid approach, we investigate streaming and thermal instabilities of the electron-ion plasma with homogeneous cold cosmic rays propagating perpendicular to the background magnetic field. Perturbations are also considered to be across the magnetic field. The backreaction of cosmic rays resulting in strong streaming instabilities is taken into account. It is shown that, for sufficiently short wavelength perturbations, the growth rates can exceed the growth rate of cosmic-ray streaming instability along the magnetic field, found by Nekrasov and Shadmehri, which is in turn considerably larger than the growth rate of the Bell instability. The thermal instability is shown notmore » to be subject to the action of cosmic rays in the model under consideration. The dispersion relation for the thermal instability has been derived, which includes sound velocities of plasma and cosmic rays and Alfvén and cosmic-ray streaming velocities. The relation between these parameters determines the kind of thermal instability ranging from the Parker to the Field instabilities. The results obtained can be useful for a more detailed investigation of electron-ion astrophysical objects, such as supernova remnant shocks, galaxy clusters, and others, including the dynamics of streaming cosmic rays.« less
Results from Two Low Mass Cosmic Ray Experiments Flown on the HASP Platform
NASA Astrophysics Data System (ADS)
Fontenot, R. S.; Hollerman, W. A.; Tittsworth, M.; Fountain, W.; Christl, M.; Thibodaux, C.; Broussard, B. M.
2009-03-01
The High Altitude Student Payload (HASP) program is designed to carry twelve student experiments to an altitude of about 123,000 feet (˜37 km). In 2006, students participated in the first HASP launch to measure cosmic ray intensities using traditional film and absorbers. This 10 kg payload flew from Fort Sumner, New Mexico in early September 2006 and was a great success. In 2007, students participated in the second HASP flight to measure the cosmic ray intensity and flux using a traditional film and absorber stack with five layers of optically stimulated luminescent (OSL) dosimeters. Results from both payloads showed that the cosmic ray flux decreases as a function of payload depth. As the cosmic rays go through the stack, they deposit their energy in the payload material. Determining cosmic ray flux is a tedious task. It involves digitizing the film and determining the real cosmic ray density. For the first HASP payload, students used a program known as GlobalLab to count particles. For the second payload, the students decided to use a combination of the GREYCStoration image regularization algorithm, an embossing filter, and a depth-merging filter to reconstruct the paths of the cosmic rays.
Ultra-heavy cosmic rays: Theoretical implications of recent observations
NASA Technical Reports Server (NTRS)
Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.
1977-01-01
Extreme ultraheavy cosmic ray observations (Z greater or equal 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar system abundances is used also. There is the continued strong indication of an r-process dominance in the extreme ultra-heavy cosmic rays. However it is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fit with the same r-process calculation which also fits the solar system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. As estimate also is made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.
Performance of the Anti-Coincidence Detector on the GLAST Large Area Telescope
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Charles, E.; Hartman, R. C.; Moiseev, A. A.; Ormes, J. F.
2007-01-01
The Anti-Coincidence Detector (ACD), the outermost detector layer in the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT), is designed to detect and veto incident cosmic ray charged particles, which outnumber cosmic gamma rays by 3-4 orders of magnitude. The challenge in ACD design is that it must have high (0.9997) detection efficiency for singly-charged relativistic particles, but must also have a low probability for self-veto of high-energy gammas by backplash radiation from interactions in the LAT calorimeter. Simulations and tests demonstrate that the ACD meete its design requirements. The performance of the ACD has remained stable thrugh stand-alone environmental testing, shipment across the U.S. installation onto the LAT, shipment back across the U.S., LAT environmental testing, and shipment to Arizona. As part of the fully-assembled GLAST observatory, the ACD is being readied for final testing before launch.
NASA Technical Reports Server (NTRS)
Forman, M. A.; Jokipii, J. R.
1978-01-01
The distribution function of cosmic rays streaming perpendicular to the mean magnetic field in a turbulent medium is reexamined. Urch's (1977) discovery that in quasi-linear theory, the flux is due to particles at 90 deg pitch angle is discussed and shown to be consistent with previous formulations of the theory. It is pointed out that this flux of particles at 90 deg cannot be arbitrarily set equal to zero, and hence the alternative theory which proceeds from this premise is dismissed. A further, basic inconsistency in Urch's transport equation is demonstrated, and the connection between quasi-linear theory and compound diffusion is discussed.
Preliminary Results from the First Flight of ATIC: The Silicon Matrix
NASA Technical Reports Server (NTRS)
Adams, J. H., Jr.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Advanced Thin Ionization Calorimeter (ATIC) uses a silicon matrix detector to determine charge in conjunction with a scintillator hodoscope that measures charge and trajectory. Cosmic rays that interact in a carbon target have their energy determined from the shower that develops within a fully active calorimeter composed of a stack of scintillating BGO crystals. The silicon matrix consists of 4480 individual silicon pads, each capable of measuring the signal from cosmic rays with atomic numbers from 1 to 26. Preliminary results will be presented describing the performance of the silicon matrix during the 16-day maiden flight of ATIC around Antarctica.
Status of the Tunka Advanced Instrument for Cosmic Ray Physics and Gamma Astronomy (TAIGA)
NASA Astrophysics Data System (ADS)
Tkachev, L.; Astapov, I.; Bezyazeekov, P.; Borodin, A.; Brueckner, M.; Budnev, N.; Chiavassa, A.; Gress, O.; Gress, T.; Grishin, O.; Dyachok, A.; Fedorov, O.; Gafarov, A.; Grebenyuk, V.; Grinyuk, A.; Ivanova, A.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kiryuhin, S.; Kokoulin, R.; Kompaniets, K.; Korosteleva, E.; Kozhin, V.; Kravchenko, E.; Kunnas, M.; Kuzmichev, L.; Lemeshev, Yu.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoya, R.; Monkhoev, R.; Nachtigall, R.; Osipova, E.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Poleschuk, V.; Popesku, M.; Popova, E.; Porelli, A.; Postnikov, E.; Prosin, V.; Ptuskin, V.; Rjabov, E.; Rubtsov, G.; Pushnin, A.; Sabirov, B.; Sagan, Y.; Samoliga, V.; Semeney, Yu.; Silaev, A.; Silaev, A.; Sidorenkov, A.; Skurikhin, A.; Slunecka, V.; Sokolov, A.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tarashansky, B.; Tkachenko, A.; Tluczykont, M.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.; Zhurov, D.
The new TAIGA project is proposed to solve a number of fundamental problems of high- energy gamma astronomy, cosmic-ray and particle physics. The array will be located in the Tunka valley at the site of the Tunka-133 array. TAIGA will consist of wide-angle (FOV 0.6 sr) non-imaging Cherenkov optical detectors (TAIGA-HiSCORE) covering an area of up to 5 km2, and up to 16 IACTs (Imaging Atmospheric Cherenkov Telescopes) (FOV 10 × 10°) based on 9 m2 mirrors and muon detectors with a total sensitive area of 2000 m2. The current TAIGA status is presented.
NASA Technical Reports Server (NTRS)
Atallah, K.; Modlinger, A.; Schmidt, W. K. H.; Cleghorn, T. F.
1975-01-01
A balloon experiment which was used to determine the chemical composition of very high-energy cosmic rays up to and beyond 100 GeV/nucleon is described. The detector had a geometric factor of 1 sq m sr and a total weight on the balloon of 2100 kg. The apparatus consisted of an ionization spectrometer, spark chambers, and plastic scintillation and Cherenkov counters. It was calibrated at CERN up to 24 GeV/c protons and at DESY up to 7 GeV/c electrons. In October 1972 it was flown successfully on a stratospheric balloon.
High Energy Cosmic Ray Electron Spectra measured from the ATIC Balloon Experiment
NASA Technical Reports Server (NTRS)
Chang, J.; Schmidt, W. K. H.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G.; Batkov, K. E.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.
2003-01-01
The Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) is specifically designed for high energy cosmic ray ion detection. From simulation and a CERN beam test exposure we find that the design consisting of a graphite target and an energy detection device, a totally active calorimeter of BGO scintillator, gives us sufficient information to distinguish electrons from protons up to the TeV energy range. Balloon observations were successfully carried out over Antarctica in both 2000/2001 and 2002/2003 for a total of more than 35 days. This paper presents preliminary results on the spectrum of high energy electrons observed in the first ATIC flight.
Experience of Application of Silicon Matrix as a Charge Detector in the ATIC Experiment
NASA Technical Reports Server (NTRS)
Zatsepin, V. I.; Adams, J. H.; Christl, M. J.
2003-01-01
The Advanced Thin Ionization Calorimeter (ATIC) was built for series of long-duration balloon flights in Antarctica. Its main goal is to measure energy spectra of cosmic ray nuclei from protons up to iron nuclei in the wide range of their energy from 30 GeV up to 100 TeV. The ATIC balloon experiment had its first, test flight that lasted for 16 days from 28 Dec 2000 to 13 Jan 2001 around the South Pole. The ATIC spectrometer consists of a fully active BGO calorimeter, scintillator hodoscopes and a silicon matrix. The silicon matrix consisted of 4480 pixels was used as a charge detector in the experiment. About 25 million cosmic ray events were detected during the flight. In the paper, the charge spectrum obtained with the silicon matrix is analyzed.
Diffuse Galactic gamma rays from shock-accelerated cosmic rays.
Dermer, Charles D
2012-08-31
A shock-accelerated particle flux is proportional to p(-s), where p is the particle momentum, follows from simple theoretical considerations of cosmic-ray acceleration at nonrelativistic shocks followed by rigidity-dependent escape into the Galactic halo. A flux of shock-accelerated cosmic-ray protons with s≈2.8 provides an adequate fit to the Fermi Large Area Telescope γ-ray emission spectra of high-latitude and molecular cloud gas when uncertainties in nuclear production models are considered. A break in the spectrum of cosmic-ray protons claimed by Neronov, Semikoz, and Taylor [Phys. Rev. Lett. 108, 051105 (2012)] when fitting the γ-ray spectra of high-latitude molecular clouds is a consequence of using a cosmic-ray proton flux described by a power law in kinetic energy.
Evaluation of Galactic Cosmic Ray Models
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher
2009-01-01
Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.
Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma
NASA Technical Reports Server (NTRS)
Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.
1984-01-01
Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.
An RXTE Study of M87 and the Core of the Virgo Cluster
NASA Technical Reports Server (NTRS)
Reynolds, Christopher S.; Heinz, Sebastian; Fabian, Andrew C.; Begelman, Mitchell C.
1998-01-01
We present hard X-ray observations of the nearby radio galaxy M87 and the core of the Virgo cluster using the Rossi X-ray Timing Explorer. These are the first hard X-ray observations of M87 not affected by contamination from the nearby Seyfert 2 galaxy NGC 4388. Thermal emission from Virgo's intracluster medium is clearly detected and has a spectrum indicative of kT approx. = 2.5 keV plasma with approximately 25% cosmic abundances. No non-thermal (power-law) emission from M87 is detected in the hard X-ray band, with fluctuations in the Cosmic X-ray Background being the limiting factor. Combining with ROSAT data, we infer that the X-ray spectrum of the M87 core and jet must be steep (Gamma(sub core) greater than 1.90 and Gamma(sub jet) greater than 1.75), and we discuss the implications of this result. In particular, these results are consistent with M87 being a mis-aligned BL-Lac object.
An RXTE Study of M87 and the Core of the Virgo Cluster
NASA Technical Reports Server (NTRS)
Reynolds, Christopher S.; Heinz, Sebastian; Fabian, Andrew C.; Begelman, Mitchell C.
1998-01-01
We present hard X-ray observations of the nearby radio galaxy M87 and the core of the Virgo cluster using the Rossi X-ray 7Tming Explorer. These are the first hard X-ray observations of M87 not affected by contamination from the nearby Seyfert 2 galaxy NGC 4388. Thermal emission from Virgo's intracluster medium is clearly detected and has a spectrum indicative of kT is approximately equal to 2.5 keV plasma with approximately 25% cosmic abundances. No non-thermal (power-law) emission from M87 is detected in the hard X-ray band, with fluctuations in the Cosmic X-ray Background being the limiting factor. Combining with ROSAT data, we infer that the X-ray spectrum of the M87 core and jet must be steep (Gamma (sub core) > 1.90 and Gamma (sub jet) > 1.75), and we discuss the implications of this result. In particular, these results are consistent with M87 being a mis-aligned BL-Lac object.
COSMOS: COsmic-ray Soil Moisture Observing System planned for the United States
NASA Astrophysics Data System (ADS)
Zweck, C.; Zreda, M.; Shuttleworth, J.; Zeng, X.
2008-12-01
Because soil water exerts a critical control on weather, climate, ecosystem, and water cycle, understanding soil moisture changes in time and space is crucial for many fields within natural sciences. A serious handicap in soil moisture measurements is the mismatch between limited point measurements using contact methods and remote sensing estimates over large areas. We present a novel method to measure soil moisture non- invasively at an intermediate spatial scale that will alleviate this problem. The method takes advantage of the dependence of cosmic-ray neutron intensity on the hydrogen content of soils (Zreda et al., Geophysical Research Letters, accepted). Low-energy cosmic-ray neutrons are produced and moderated in the soil, transported from the soil into the atmosphere where they are measured with a cosmic-ray neutron probe to provide integrated soil moisture content over a footprint of several hundred meters and a depth of a few decimeters. The method and the instrument are intended for deployment in the continental-scale COSMOS network that is designed to cover the contiguous region of the USA. Fully deployed, the COSMOS network will consist of up to 500 probes, and will provide continuous soil moisture content (together with atmospheric pressure, temperature and relative humidity) measured and reported hourly. These data will be used for initialization and assimilation of soil moisture conditions in weather and short-term (seasonal) climate forecasting, and for other land-surface applications.
Observation of the thunderstorm-related ground cosmic ray flux variations by ARGO-YBJ
NASA Astrophysics Data System (ADS)
Bartoli, B.; Bernardini, P.; Bi, X. J.; Cao, Z.; Catalanotti, S.; Chen, S. Z.; Chen, T. L.; Cui, S. W.; Dai, B. Z.; D'Amone, A.; Danzengluobu; De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Gao, W.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Iacovacci, M.; Iuppa, R.; Jia, H. Y.; Labaciren; Li, H. J.; Liu, C.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, L. L.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Mastroianni, S.; Montini, P.; Ning, C. C.; Perrone, L.; Pistilli, P.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xue, L.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhao, J.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; D'Alessandro, F.; ARGO-YBJ Collaboration
2018-02-01
A correlation between the secondary cosmic ray flux and the near-earth electric field intensity, measured during thunderstorms, has been found by analyzing the data of the ARGO-YBJ experiment, a full coverage air shower array located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China). The counting rates of showers with different particle multiplicities (m =1 , 2, 3, and ≥4 ) have been found to be strongly dependent upon the intensity and polarity of the electric field measured during the course of 15 thunderstorms. In negative electric fields (i.e., accelerating negative charges downwards), the counting rates increase with increasing electric field strength. In positive fields, the rates decrease with field intensity until a certain value of the field EFmin (whose value depends on the event multiplicity), above which the rates begin increasing. By using Monte Carlo simulations, we found that this peculiar behavior can be well described by the presence of an electric field in a layer of thickness of a few hundred meters in the atmosphere above the detector, which accelerates/decelerates the secondary shower particles of opposite charge, modifying the number of particles with energy exceeding the detector threshold. These results, for the first time to our knowledge, give a consistent explanation for the origin of the variation of the electron/positron flux observed for decades by high altitude cosmic ray detectors during thunderstorms.
KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2013-07-01
The KASCADE-Grande air shower experiment [1] consists of, among others, a large scintillator array for measurements of charged particles, N, and of an array of shielded scintillation counters used for muon counting, Nμ. KASCADE-Grande is optimized for cosmic ray measurements in the energy range 10 PeV to about 2000 PeV, where exploring the composition is of fundamental importance for understanding the transition from galactic to extragalactic origin of cosmic rays. Following earlier studies of the all-particle and the elemental spectra reconstructed in the knee energy range from KASCADE data [2], we have now extended these measurements to beyond 200 PeV. By analysing the two-dimensional shower size spectrum N vs. Nμ for nearly vertical events, we reconstruct the energy spectra of different mass groups by means of unfolding methods over an energy range where the detector is fully efficient. The procedure and its results, which are derived based on the hadronic interaction model QGSJET-II-02 and which yield a strong indication for a dominance of heavy mass groups in the covered energy range and for a knee-like structure in the iron spectrum at around 80 PeV, are presented. This confirms and further refines the results obtained by other analyses of KASCADE-Grande data, which already gave evidence for a knee-like structure in the heavy component of cosmic rays at about 80 PeV [3].
Global Survey Method for the World Network of Neutron Monitors
NASA Astrophysics Data System (ADS)
Belov, A. V.; Eroshenko, E. A.; Yanke, V. G.; Oleneva, V. A.; Abunina, M. A.; Abunin, A. A.
2018-05-01
One of the variants of the global survey method developed and used for many years at the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences is described. Data from the world network of neutron monitors for every hour from July 1957 to the present has been processed by this method. A consistent continuous series of hourly characteristics of variation of the density and vector anisotropy of cosmic rays with a rigidity of 10 GV is obtained. A database of Forbush decreases in galactic cosmic rays caused by large-scale disturbances of the interplanetary medium for more than half a century has been created based on this series. The capabilities of the database make it possible to perform a correlation analysis of various parameters of the space environment (characteristics of the Sun, solar wind, and interplanetary magnetic field) with the parameters of cosmic rays and to study their interrelationships in the solar-terrestrial space. The features of reception coefficients for different stations are considered, which allows the transition from variations according to ground measurements to variations of primary cosmic rays. The advantages and disadvantages of this variant of the global survey method and the opportunities for its development and improvement are assessed. The developed method makes it possible to minimize the problems of the network of neutron monitors and to make significant use of its advantages.
Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos, A.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemmerich, N.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, R. A.; Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.
2017-09-01
Cosmic rays are high-energy particles arriving from space; some have energies far beyond those that human-made particle accelerators can achieve. The sources of higher-energy cosmic rays remain under debate, although we know that lower-energy cosmic rays come from the solar wind. The Pierre Auger Collaboration reports the observation of thousands of cosmic rays with ultrahigh energies of several exa–electron volts (about a Joule per particle), arriving in a slightly dipolar distribution (see the Perspective by Gallagher and Halzen). The direction of the rays indicates that the particles originated in other galaxies and not from nearby sources within our own Milky Way Galaxy.
Cosmic Ray Propagation through the Magnetic Fields of the Galaxy with Extended Halo
NASA Technical Reports Server (NTRS)
Zhang, Ming
2005-01-01
In this project we perform theoretical studies of 3-dimensional cosmic ray propagation in magnetic field configurations of the Galaxy with an extended halo. We employ our newly developed Markov stochastic process methods to solve the diffusive cosmic ray transport equation. We seek to understand observations of cosmic ray spectra, composition under the constraints of the observations of diffuse gamma ray and radio emission from the Galaxy. The model parameters are directly are related to properties of our Galaxy, such as the size of the Galactic halo, particle transport in Galactic magnetic fields, distribution of interstellar gas, primary cosmic ray source distribution and their confinement in the Galaxy. The core of this investigation is the development of software for cosmic ray propagation models with the Markov stochastic process approach. Values of important model parameters for the halo diffusion model are examined in comparison with observations of cosmic ray spectra, composition and the diffuse gamma-ray background. This report summarizes our achievement in the grant period at the Florida Institute of Technology. Work at the co-investigator's institution, the University of New Hampshire, under a companion grant, will be covered in detail by a separate report.
NASA Astrophysics Data System (ADS)
Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.
2016-04-01
Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.
Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones.
Griessmeier, J-M; Stadelmann, A; Motschmann, U; Belisheva, N K; Lammer, H; Biernat, H K
2005-10-01
Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.
On the origin of cosmic rays. [gamma rays and supernova remnants
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1975-01-01
Using Recent surveys of molecular clouds and gamma rays in the galaxy, it is possible to determine the distribution of 1 to 10 GeV cosmic-ray nucleons in the galaxy. This distribution appears to be identical to the supernova remnant distribution to within experimental error and provides strong support for the hypothesis that supernovae produce most of the observed cosmic rays. This distribution resembles that of OB associations of average age approximately 30 million years suggesting that cosmic rays are produced by population objects about 30 million years after their birth.
Nineteenth International Cosmic Ray Conference. OG Sessions, Volume 3
NASA Technical Reports Server (NTRS)
Jones, F. C. (Compiler)
1985-01-01
Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume addresses cosmic ray sources and acceleration, interstellar propagation and nuclear interactions, and detection techniques and instrumentation.
Cosmic ray interactions with lunar materials - Nature and composition of species formed
NASA Technical Reports Server (NTRS)
Mukherjee, N. R.
1976-01-01
The paper discusses the effect of cosmic-ray proton interactions with lunar material, the nature and composition of the species resulting from these interactions, and the contribution of these species to the lunar atmosphere. It is shown that hydrogen atoms resulting from cosmic-ray proton neutralization escape into the atmosphere mostly as H2, that only a small fraction of the very small amount of OH and H2O produced by cosmic-ray protons escapes into the atmosphere, and that cosmic-ray protons play a very minor role, as compared with solar-wind protons, in producing lunar atmospheric hydrogen and hydrogenated species. It is concluded that the atmospheric contributions of H2, H, OH, and H2O produced by cosmic-ray protons are about three orders of magnitude less than those due to solar-wind protons.
Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays.
Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter
2017-07-07
The determination of the injection composition of cosmic ray nuclei within astrophysical sources requires sufficiently accurate descriptions of the source physics and the propagation - apart from controlling astrophysical uncertainties. We therefore study the implications of nuclear data and models for cosmic ray astrophysics, which involves the photo-disintegration of nuclei up to iron in astrophysical environments. We demonstrate that the impact of nuclear model uncertainties is potentially larger in environments with non-thermal radiation fields than in the cosmic microwave background. We also study the impact of nuclear models on the nuclear cascade in a gamma-ray burst radiation field, simulated at a level of complexity comparable to the most precise cosmic ray propagation code. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions in cosmic ray sources and propagation.
THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, O.; Drake, J. J.; Kota, J.
2012-11-20
We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to themore » shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.« less
NASA Technical Reports Server (NTRS)
Kniffen, D. A.; Fichtel, C. E.; Thompson, D. J.
1976-01-01
Theoretical considerations and analysis of the results of gamma ray astronomy suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density should be enhanced where the matter density is greatest on the scale of galactic arms. This concept has been explored in a galactic model using recent 21 cm radio observations of the neutral hydrogen and 2.6 mm observations of carbon monoxide, which is considered to be a tracer of molecular hydrogen. The model assumes: (1) cosmic rays are galactic and not universal; (2) on the scale of galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3) the cosmic ray scale height is significantly larger than the scale height of the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of about 3:1.
A local recent supernova - Evidence from X-rays, Al-26 radioactivity and cosmic rays
NASA Technical Reports Server (NTRS)
Clayton, Donald D.; Cox, Donald P.; Michel, Curtis F.
1986-01-01
Possible ways in which cosmic rays could have been contaminated by a local recent supernova are discussed, and ways in which this contamination may be affecting interpretation of Al-26 gamma radiation and locally observed cosmic rays as samples of the average Galactic distribution are considered. Mass spectra of cosmic rays are examined to see whether there is enrichment by a population arising from supernova preacceleration. The reinterpretation of the anomalous component in terms of a local supernova model is addressed.
Long-Term Solar and Cosmic Radiation Data Bases
1991-01-01
determine the magnitude of the variations in the cosmic ray intensity caused by solar activity. Neutron monitors, with their much lower energy threshold...expression that neutron monitors are sensors on spacecraft EARTH. Here we will consider cosmic ray detectors to measure two components of cosmic ...A comparison with the solar cycle as illustrated by the sunspot number in Fig. 1. shows that the maximum cosmic ray intensity occurs near sunspot
Underground measurements on secondary cosmic rays
NASA Technical Reports Server (NTRS)
Wilson, C. W.; Fenton, A. G.; Fenton, K. B.
1985-01-01
Measurements made at the Poatina cosmic ray station (41.8 S 149.9 E, 347 m.w.e.) from August 1983 to July 1984 are summarized. The cosmic ray primary particles responsible for events detected at the station have a median primary energy of 1.2 TeV. The motivation for part of this work came from the reported detection of narrow angle anisotropies in the arrival direction of cosmic rays.
Cosmic ray interactions in starbursting galaxies
NASA Astrophysics Data System (ADS)
Yoast-Hull, Tova M.
High quality gamma-ray and radio observations of nearby galaxies offer an unprecedented opportunity to quantitatively study the properties of their cosmic ray populations. Accounting for various interactions and energy losses, I developed a multi-component, single-zone model of the cosmic ray populations in the central molecular zones of star-forming galaxies. Using observational knowledge of the interstellar medium and star formation, I successfully predicted the radio, gamma-ray, and neutrino spectra for nearby starbursts. Using chi-squared tests to compare the models with observational radio and gamma-ray data, I placed constraints on magnetic field strengths, cosmic ray energy densities, and galactic wind (advection) speeds. The initial models were applied to and tested on the prototypical starburst galaxy M82. To further test the model and to explore the differences in environment between starbursts and active galactic nuclei, I studied NGC 253 and NGC 1068, both nearby giant spiral galaxies which have been detected in gamma-rays. Additionally, I demonstrated that the excess GeV energy gamma-ray emission in the Galactic Center is likely not diffuse emission from an additional population of cosmic rays accelerated in supernova remnants. Lastly, I investigated cosmic ray populations in the starburst nuclei of Arp 220, a nearby ultraluminous infrared galaxy which displays a high-intensity mode of star formation more common in young galaxies, and I showed that the nuclei are efficient cosmic-ray proton calorimeters.
Testing cosmic ray acceleration with radio relics: a high-resolution study using MHD and tracers
NASA Astrophysics Data System (ADS)
Wittor, D.; Vazza, F.; Brüggen, M.
2017-02-01
Weak shocks in the intracluster medium may accelerate cosmic-ray protons and cosmic-ray electrons differently depending on the angle between the upstream magnetic field and the shock normal. In this work, we investigate how shock obliquity affects the production of cosmic rays in high-resolution simulations of galaxy clusters. For this purpose, we performed a magnetohydrodynamical simulation of a galaxy cluster using the mesh refinement code ENZO. We use Lagrangian tracers to follow the properties of the thermal gas, the cosmic rays and the magnetic fields over time. We tested a number of different acceleration scenarios by varying the obliquity-dependent acceleration efficiencies of protons and electrons, and by examining the resulting hadronic γ-ray and radio emission. We find that the radio emission does not change significantly if only quasi-perpendicular shocks are able to accelerate cosmic-ray electrons. Our analysis suggests that radio-emitting electrons found in relics have been typically shocked many times before z = 0. On the other hand, the hadronic γ-ray emission from clusters is found to decrease significantly if only quasi-parallel shocks are allowed to accelerate cosmic ray protons. This might reduce the tension with the low upper limits on γ-ray emission from clusters set by the Fermi satellite.
Study of cosmic rays reveals secrets of solar-terrestrial science
NASA Astrophysics Data System (ADS)
Jokipii, J. R.
For many years cosmic rays provided the most important source of energetic particles for studies of subatomic physics. Today, cosmic rays are being studied as a natural phenomenon that can tell us much about both the Earth's environment in space and distant astrophysical processes. Cosmic rays are naturally occurring energetic particles—mainly ions—with kinetic energies extending from just above thermal energies to more than 1020 electron volts (eV). They constantly bombard the Earth from all directions, with more than 1018 particles having energies >1 MeV striking the top of the Earth's atmosphere each second. Figure 1 illustrates the continuous cosmic ray energy spectrum.
The influence of cosmic rays on the stability and large-scale dynamics of the interstellar medium
NASA Astrophysics Data System (ADS)
Kuznetsov, V. D.
1986-06-01
The diffusion-convection formulation is used to study the influence of galactic cosmic rays on the stability and dynamics of the interstellar medium which is supposedly kept in equilibrium by the gravitational field of stars. It is shown that the influence of cosmic rays on the growth rate of MHD instability depends largely on a dimensionless parameter expressing the ratio of the characteristic acoustic time scale to the cosmic-ray diffusion time. If this parameter is small, the cosmic rays will decelerate the build-up of instabilities, thereby stabilizing the system; in contrast, if the parameter is large, the system will be destabilized.
Propagation of cosmic rays in the galaxy
NASA Technical Reports Server (NTRS)
Daniel, R. R.; Stephens, S. A.
1974-01-01
The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.
NASA Technical Reports Server (NTRS)
Wu, S. T.
2000-01-01
The cosmic ray division participation in the cooperative agreement was activated in the second year. The scientific goals will be analysis of cosmic ray data from the Japanese-American Cooperative Emulsion Experiments (JACEE). Measurements of primary cosmic rays in the JACEE emulsion chambers will be made to derive for each detected particle the deposited energy in the chamber and the primary charge (atomic number). The data will be corrected to the primary flux above the atmosphere, and the composition and energy spectra will be derived. The spectra of the individual elements will be interpreted in context with the supernova shock and other models of cosmic ray acceleration. Additional information is contained in the original extended abstract.
The GeV Gamma-Ray Emission Detected by Fermi-LAT Adjacent to SNR Kesteven 41
NASA Astrophysics Data System (ADS)
Liu, Bing; Chen, Yang; Zhang, Xiao; Zhang, Gao-Yuan; Xing, Yi; Pannuti, Thomas G.
2017-02-01
Gamma-ray observations for Supernova remnant (SNR)-molecular cloud (MC) association systems play an important role in the research on the acceleration and propagation of cosmic-ray protons. Through the analysis of 5.6 years of Fermi-Large Area Telescope observation data, here we report on the detection of a gamma-ray emission source near the SNR Kesteven 41 with a significance of 24σ in 0.2-300 GeV. The best-fit location of the gamma-ray source is consistent with the MC with which the SNR interacts. Several hypotheses including both leptonic and hadronic scenarios are considered to investigate the origin of these gamma-rays. The gamma-ray emission can be naturally explained by the decay of neutral pions produced via the collision between high energy protons accelerated by the shock of Kesteven 41 and the adjacent MC. The electron energy budget would be too high for the SNR if the gamma-rays were produced via inverse Compton (IC) scattering off the Cosmic Microwave Background (CMB) photons.
A high-resolution study of ultra-heavy cosmic-ray nuclei (A0178)
NASA Technical Reports Server (NTRS)
Osullivan, D.; Thompson, A.; Oceallaigh, C.; Domingo, V.; Wenzel, K. P.
1984-01-01
The main objective of the experiment is a detailed study of the charge spectra of ultraheavy cosmic-ray nuclei from zinc (Z = 30) to uranium (Z = 92) and beyond using solid-state track detectors. Special emphasis will be placed on the relative abundances in the region Z or - 65, which is thought to be dominated by r-process nucleosynthesis. Subsidiary objectives include the study of the cosmic-ray transiron spectrum a search for the postulated long-lived superheavy (SH) nuclei (Z or = 110), such as (110) SH294, in the contemporary cosmic radiation. The motivation behind the search for super-heavy nuclei is based on predicted half-lives that are short compared to the age of the Earth but long compared to the age of cosmic rays. The detection of such nuclei would have far-reaching consequences for nuclear structure theory. The sample of ultraheavy nuclei obtained in this experiment will provide unique opportunities for many tests concerning element nucleosynthesis, cosmic-ray acceleration, and cosmic-ray propagation.
Probing dark matter annihilation in the Galaxy with antiprotons and gamma rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuoco, Alessandro; Heisig, Jan; Korsmeier, Michael
2017-10-01
A possible hint of dark matter annihilation has been found in Cuoco, Korsmeier and Krämer (2017) from an analysis of recent cosmic-ray antiproton data from AMS-02 and taking into account cosmic-ray propagation uncertainties by fitting at the same time dark matter and propagation parameters. Here, we extend this analysis to a wider class of annihilation channels. We find consistent hints of a dark matter signal with an annihilation cross-section close to the thermal value and with masses in range between 40 and 130 GeV depending on the annihilation channel. Furthermore, we investigate in how far the possible signal is compatiblemore » with the Galactic center gamma-ray excess and recent observation of dwarf satellite galaxies by performing a joint global fit including uncertainties in the dark matter density profile. As an example, we interpret our results in the framework of the Higgs portal model.« less
Multi-spectra Cosmic Ray Flux Measurement
NASA Astrophysics Data System (ADS)
He, Xiaochun; Dayananda, Mathes
2010-02-01
The Earth's upper atmosphere is constantly bombarded by rain of charged particles known as primary cosmic rays. These primary cosmic rays will collide with the atmospheric molecules and create extensive secondary particles which shower downward to the surface of the Earth. In recent years, a few studies have been done regarding to the applications of the cosmic ray measurements and the correlations between the Earth's climate conditions and the cosmic ray fluxes [1,2,3]. Most of the particles, which reach to the surface of the Earth, are muons together with a small percentage of electrons, gammas, neutrons, etc. At Georgia State University, multiple cosmic ray particle detectors have been constructed to measure the fluxes and energy distributions of the secondary cosmic ray particles. In this presentation, we will briefly describe these prototype detectors and show the preliminary test results. Reference: [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, Nature, Vol.422, 277 (2003). [2] L.V. Egorova, V. Ya Vovk, O.A. Troshichev, Journal of Atmospheric and Terrestrial Physics 62, 955-966 (2000). [3] Henrik Svensmark, Phy. Rev. Lett. 81, 5027 (1998). )
Cosmic-ray anisotropy studies with IceCube
NASA Astrophysics Data System (ADS)
McNally, Frank
2014-03-01
The IceCube neutrino observatory detects tens of billions of energetic muons per year produced by cosmic-ray interactions with the atmosphere. The size of this sample has allowed IceCube to observe a significant anisotropy in arrival direction for cosmic rays with median energies between 20 and 400 TeV. This anisotropy is characterized by a large scale structure of per-mille amplitude accompanied by structures with smaller amplitudes and with typical angular sizes between 10° and 20°. IceTop, the surface component of IceCube, has observed a similar anisotropy in the arrival direction distribution of cosmic rays, extending the study to PeV energies. The better energy resolution of IceTop allows for additional studies of the anisotropy, for example a comparison of the energy spectrum in regions of a cosmic-ray excess or deficit to the rest of the sky. We present an update on the cosmic-ray anisotropy observed with IceCube and IceTop and the results of first studies of the energy spectrum at locations of cosmic-ray excess or deficit.
SPECTRAL INTENSITIES OF ANTIPROTONS AND THE NESTED LEAKY-BOX MODEL FOR COSMIC RAYS IN THE GALAXY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowsik, R.; Madziwa-Nussinov, T., E-mail: cowsik@physics.wustl.edu
2016-08-20
In this paper we note that the spectral intensities of antiprotons observed in Galactic cosmic rays in the energy range ∼1–300 GeV by BESS, PAMELA, and AMS instruments display nearly the same spectral shape as that generated by primary cosmic rays through their interaction with matter in the interstellar medium, without any significant modifications. More importantly, a constant residence time of ∼2.3 ± 0.7 million years in the Galactic volume, independent of the energy of cosmic rays, matches the observed intensities. A small additional component of secondary antiprotons in the energy range below 10 GeV, generated in cocoon-like regions surroundingmore » the cosmic-ray sources, seems to be present. We discuss this result in the context of observations of other secondary components such as positrons and boron, and the bounds on anisotropy of cosmic rays. In the nested leaky-box model the spectral intensities of antiprotons and positrons can be interpreted as secondary products of cosmic-ray interactions.« less
A predictive analytic model for the solar modulation of cosmic rays
Cholis, Ilias; Hooper, Dan; Linden, Tim
2016-02-23
An important factor limiting our ability to understand the production and propagation of cosmic rays pertains to the effects of heliospheric forces, commonly known as solar modulation. The solar wind is capable of generating time- and charge-dependent effects on the spectrum and intensity of low-energy (≲10 GeV) cosmic rays reaching Earth. Previous analytic treatments of solar modulation have utilized the force-field approximation, in which a simple potential is adopted whose amplitude is selected to best fit the cosmic-ray data taken over a given period of time. Making use of recently available cosmic-ray data from the Voyager 1 spacecraft, along withmore » measurements of the heliospheric magnetic field and solar wind, we construct a time-, charge- and rigidity-dependent model of solar modulation that can be directly compared to data from a variety of cosmic-ray experiments. Here, we provide a simple analytic formula that can be easily utilized in a variety of applications, allowing us to better predict the effects of solar modulation and reduce the number of free parameters involved in cosmic-ray propagation models.« less
Constraining the p¯/p ratio in TeV cosmic rays with observations of the Moon shadow by HAWC
NASA Astrophysics Data System (ADS)
Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Belmont-Moreno, E.; BenZvi, S. Y.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dichiara, S.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Engel, K.; Enríquez-Rivera, O.; Fleischhack, H.; Fraija, N.; Galván-Gámez, A.; García-González, J. A.; González Muñoz, A.; González, M. M.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hona, B.; Hueyotl-Zahuantitla, F.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Lara, A.; Lee, W. H.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis-Raya, G.; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Seglar Arroyo, M.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Torres, I.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Yodh, G. B.; Zepeda, A.; Zhou, H.; HAWC Collaboration
2018-05-01
An indirect measurement of the antiproton flux in cosmic rays is possible as the particles undergo deflection by the geomagnetic field. This effect can be measured by studying the deficit in the flux, or shadow, created by the Moon as it absorbs cosmic rays that are headed toward the Earth. The shadow is displaced from the actual position of the Moon due to geomagnetic deflection, which is a function of the energy and charge of the cosmic rays. The displacement provides a natural tool for momentum/charge discrimination that can be used to study the composition of cosmic rays. Using 33 months of data comprising more than 80 billion cosmic rays measured by the High Altitude Water Cherenkov observatory, we have analyzed the Moon shadow to search for TeV antiprotons in cosmic rays. We present our first upper limits on the p ¯/p fraction, which in the absence of any direct measurements provide the tightest available constraints of ˜1 % on the antiproton fraction for energies between 1 and 10 TeV.
Linear growth of the Kelvin-Helmholtz instability with an adiabatic cosmic-ray gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Akihiro; Takahashi, Hiroyuki R.; Kudoh, Takahiro
2014-06-01
We investigate effects of cosmic rays on the linear growth of the Kelvin-Helmholtz instability. Cosmic rays are treated as an adiabatic gas and allowed to diffuse along magnetic field lines. We calculated the dispersion relation of the instability for various sets of two free parameters, the ratio of the cosmic-ray pressure to the thermal gas pressure, and the diffusion coefficient. Including cosmic-ray effects, a shear layer is more destabilized and the growth rates can be enhanced in comparison with the ideal magnetohydrodynamical case. Whether the growth rate is effectively enhanced or not depends on the diffusion coefficient of cosmic rays.more » We obtain the criterion for effective enhancement by comparing the growing timescale of the instability with the diffusion timescale of cosmic rays. These results can be applied to various astrophysical phenomena where a velocity shear is present, such as outflows from star-forming galaxies, active galactic nucleus jet, channel flows resulting from the nonlinear development of the magnetorotational instability, and galactic disks.« less
Developing a Modern Low Cost Apparatus to Measure Muon Flux vs. Angle at Muhlenberg College
NASA Astrophysics Data System (ADS)
Kasle, Lucas; Bene, Charles; Crawford, Travis; Morash, Richard; Tornetta, Kelly
2017-09-01
Experiments using cosmic ray muons have been a staple of the undergraduate lab for decades. Muhlenberg seeks to modernize one of these experiments, and implement it inexpensively. Cognizant of the widespread use of Silicon Photomultipliers (SiPMs) in the research environment, our detector employs SiPMs instead of PMTs. Furthermore, a simulation activity has been developed to accompany the laboratory experiment. Our detector design consists of two small plastic scintillators arranged so that coincidence measurements select cosmic ray muons of particular angles with respect to the zenith. Each scintillator is attached to an SiPM and electronics to process the signal. A crude prototype was constructed last summer that produced results consistent with the well established dependence of flux on polar angle, and a simulation was created that also produced consistent results. Progress in the development of the electronics for the SiPMs, the overall design of the apparatus, and the accompanying computer simulation will be reported. NSF Grant 1507841.
Energy spectra of cosmic rays above 1 TeV per nucleon
NASA Technical Reports Server (NTRS)
Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.
1990-01-01
Direct measurements of cosmic-ray nuclei above 1 TeV/nucleon have been performed in a series of balloon-borne experiments with emulsion chambers. The observed all-particle spectrum above 20 TeV is consistent with the results of the Proton satellite and many air shower experiments. The proton spectrum is consistent with a power law having an index of 2.76 + or - 0.09 up to at least 100 TeV, but an overabundance of helium by a factor of 2 above 2 TeV per nucleon is found when compared with the extrapolation from the low energies. For heavy elements (C through Fe), the intensities around 1 TeV/nucleon are consistent, within the statistical errors, with the extrapolation from lower energy data using the Spacelab 2 spectral indices. An enhancement for the medium-heavy components (C through Ca) above 200 TeV is indicated. The mean mass above 50 TeV indicates slightly higher values than the results of the air shower experiments.
NASA Technical Reports Server (NTRS)
Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chiao, Meng P.; Chervenak, James A.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.;
2016-01-01
The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.
Extrapolating cosmic ray variations and impacts on life: Morlet wavelet analysis
NASA Astrophysics Data System (ADS)
Zarrouk, N.; Bennaceur, R.
2009-07-01
Exposure to cosmic rays may have both a direct and indirect effect on Earth's organisms. The radiation may lead to higher rates of genetic mutations in organisms, or interfere with their ability to repair DNA damage, potentially leading to diseases such as cancer. Increased cloud cover, which may cool the planet by blocking out more of the Sun's rays, is also associated with cosmic rays. They also interact with molecules in the atmosphere to create nitrogen oxide, a gas that eats away at our planet's ozone layer, which protects us from the Sun's harmful ultraviolet rays. On the ground, humans are protected from cosmic particles by the planet's atmosphere. In this paper we give estimated results of wavelet analysis from solar modulation and cosmic ray data incorporated in time-dependent cosmic ray variation. Since solar activity can be described as a non-linear chaotic dynamic system, methods such as neural networks and wavelet methods should be very suitable analytical tools. Thus we have computed our results using Morlet wavelets. Many have used wavelet techniques for studying solar activity. Here we have analysed and reconstructed cosmic ray variation, and we have better depicted periods or harmonics other than the 11-year solar modulation cycles.
X-ray Observations of Cosmic Ray Acceleration
NASA Technical Reports Server (NTRS)
Petre, Robert
2012-01-01
Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.
Yusef-Zadeh, F; Wardle, M; Lis, D; Viti, S; Brogan, C; Chambers, E; Pound, M; Rickert, M
2013-10-03
We present 74 MHz radio continuum observations of the Galactic center region. These measurements show nonthermal radio emission arising from molecular clouds that is unaffected by free–free absorption along the line of sight. We focus on one cloud, G0.13-0.13, representative of the population of molecular clouds that are spatially correlated with steep spectrum (α(327MHz)(74MHz) = 1.3 ± 0.3) nonthermal emission from the Galactic center region. This cloud lies adjacent to the nonthermal radio filaments of the Arc near l 0.2° and is a strong source of 74 MHz continuum, SiO (2-1), and Fe I Kα 6.4 keV line emission. This three-way correlation provides the most compelling evidence yet that relativistic electrons, here traced by 74 MHz emission, are physically associated with the G0.13-0.13 molecular cloud and that low-energy cosmic ray electrons are responsible for the Fe I Kα line emission. The high cosmic ray ionization rate 10(–1)3 s(–1) H(–1) is responsible for heating the molecular gas to high temperatures and allows the disturbed gas to maintain a high-velocity dispersion. Large velocity gradient (LVG) modeling of multitransition SiO observations of this cloud implies H2 densities 10(4–5) cm(–3) and high temperatures. The lower limit to the temperature of G0.13-0.13 is 100 K, whereas the upper limit is as high as 1000 K. Lastly, we used a time-dependent chemical model in which cosmic rays drive the chemistry of the gas to investigate for molecular line diagnostics of cosmic ray heating. When the cloud reaches chemical equilibrium, the abundance ratios of HCN/HNC and N2H+/HCO+ are consistent with measured values. In addition, significant abundance of SiO is predicted in the cosmic ray dominated region of the Galactic center. We discuss different possibilities to account for the origin of widespread SiO emission detected from Galactic center molecular clouds.
Cosmic-Ray Source Composition Determined from ACE
NASA Technical Reports Server (NTRS)
Wiedenbeck, M.
2000-01-01
The cosmic rays arriving at Earth comprise a mix of material produced by stellar sources and ejected into the interstellar medium (primary cosmic rays) and particles produced by fragmentation of heavier nuclei during transport through the Galaxy.
Compact cosmic ray detector for unattended atmospheric ionization monitoring
NASA Astrophysics Data System (ADS)
Aplin, K. L.; Harrison, R. G.
2010-12-01
Two vertical cosmic ray telescopes for atmospheric cosmic ray ionization event detection are compared. Counter A, designed for low power remote use, was deployed in the Welsh mountains; its event rate increased with altitude as expected from atmospheric cosmic ray absorption. Independently, Counter B's event rate was found to vary with incoming particle acceptance angle. Simultaneous co-located comparison of both telescopes exposed to atmospheric ionization showed a linear relationship between their event rates.
NASA Astrophysics Data System (ADS)
Grigoryev, V. G.; Starodubtsev, S. A.; Potapova, V. D.
2013-02-01
In our previous works we have created the method of determination of parameters of cosmic ray daily anisotropy in the interplanetary environment based on the data provided by only single station - cosmic ray spectrograph named after A.I.Kuzmin. This method allows to predict the ingress of the Earth into large-scale solar wind disturbances with a probability of more than 70% and in advance time of about from several hours up to 2 days. Now it became possible to use the data of the neutron monitor networks, which can be seen in the neutron monitor database (NMDB) in real time. In this case the well-known method of global survey is applied for determination of cosmic ray anisotropy. Usage of the data of the cosmic ray station network allows to determine parameters of daily cosmic ray anisotropy with a greater accuracy.
Muon and neutron observations in connection with the corotating interaction regions
NASA Astrophysics Data System (ADS)
da Silva, M. R.; Dal Lago, A.; Echer, E.; de Lucas, A.; Gonzalez, W. D.; Schuch, N. J.; Munakata, K.; Vieira, L. E. A.; Guarnieri, F. L.
Ground cosmic ray observations are used for studying several kinds of interplanetary structures. The cosmic ray data has different responses to each kind of interplanetary structure. This article has as objective to study cosmic ray muon and neutron signatures due to the passage of corotating interaction region (CIR) in the interplanetary medium, and identify the signatures in the cosmic ray data due to these events. The cosmic ray muon data used in this work are recorded by the multidirectional muon detector installed at INPE’s Observatório Espacial do Sul OES/CRSPE/INPE-MCT, in São Martinho da Serra, RS (Brazil) and the neutron data was recorded by the neutron monitor installed in Newark (USA). The CIR events were selected in the period from 2001 to 2004. CIRs clearly affect cosmic ray density in the interplanetary medium in the Earth’s vicinity, where the magnetic field plays an important role.
THE COSMIC RAY EQUATOR AND THE GEOMAGNETISM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakurai, K.
1960-01-01
It was formerly thought that the disagreement of the position of geomagnetic dipole equator with that of the cosmic ray equator was caused by 45 deg westward shifting of the latter. Referring to the theory of geomagnetic effect on cosmic rays, it was determined whether such westward shifting could be existent or not. It was found that the deviation of the cosmic ray equator from the geomagnetic dipole equator is negligible even if the magnetic cavity is present around the earth's outer atmosphere. Taking into account such results, the origin of the cosmic ray equator was investigated. It was foundmore » that this equater could be produced by the higher harmonic components combined with the dipole component of geomagnetism. The relation of the origin of the cosmic ray equater to the eccentric dipoles, near the outer pant of the earth's core, contributing to the secular variation of geomagnetism was considered. (auth)« less
Progress in high-energy cosmic ray physics
NASA Astrophysics Data System (ADS)
Mollerach, S.; Roulet, E.
2018-01-01
We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.
Expectations for high energy diffuse galactic neutrinos for different cosmic ray distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagliaroli, Giulia; Evoli, Carmelo; Villante, Francesco Lorenzo, E-mail: giulia.pagliaroli@gssi.infn.it, E-mail: carmelo.evoli@gssi.infn.it, E-mail: francesco.villante@lngs.infn.it
2016-11-01
The interaction of cosmic rays with the gas contained in our Galaxy is a guaranteed source of diffuse high energy neutrinos. We provide expectations for this component by considering different assumptions for the cosmic ray distribution in the Galaxy which are intended to cover the large uncertainty in cosmic ray propagation models. We calculate the angular dependence of the diffuse galactic neutrino flux and the corresponding rate of High Energy Starting Events in IceCube by including the effect of detector angular resolution. Moreover we discuss the possibility to discriminate the galactic component from an isotropic astrophysical flux. We show thatmore » a statistically significant excess of events from the galactic plane in present IceCube data would disfavour models in which the cosmic ray density is uniform , thus bringing relevant information on the cosmic ray radial distribution.« less
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-09-08
Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse γ-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200° to 260° and latitude |b| from 22° to 60°) are reported in this paper. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of γ-ray point sources and inverse Compton scattering are estimated and subtracted. The residual γ-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. Themore » measured integrated γ-ray emissivity is (1.63 ± 0.05) × 10 –26 photons s –1sr –1 H-atom –1 and (0.66 ± 0.02) × 10 –26 photons s –1sr –1 H-atom –1 above 100 MeV and above 300 MeV, respectively, with an additional systematic error of ~10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. Finally, the results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within ~10%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.
Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV.more » The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.« less
FPGA Based Wavelet Trigger in Radio Detection of Cosmic Rays
NASA Astrophysics Data System (ADS)
Szadkowski, Zbigniew; Szadkowska, Anna
2014-12-01
Experiments which show coherent radio emission from extensive air showers induced by ultra-high-energy cosmic rays are designed for a detailed study of the development of the electromagnetic part of air showers. Radio detectors can operate with 100 % up time as, e.g., surface detectors based on water-Cherenkov tanks. They are being developed for ground-based experiments (e.g., the Pierre Auger Observatory) as another type of air-shower detector in addition to fluorescence detectors, which operate with only ˜10 % of duty on dark nights. The radio signals from air showers are caused by coherent emission from geomagnetic radiation and charge-excess processes. The self-triggers in radio detectors currently in use often generate a dense stream of data, which is analyzed afterwards. Huge amounts of registered data require significant manpower for off-line analysis. Improvement of trigger efficiency is a relevant factor. The wavelet trigger, which investigates on-line the power of radio signals (˜ V2/ R), is promising; however, it requires some improvements with respect to current designs. In this work, Morlet wavelets with various scaling factors were used for an analysis of real data from the Auger Engineering Radio Array and for optimization of the utilization of the resources in an FPGA. The wavelet analysis showed that the power of events is concentrated mostly in a limited range of the frequency spectrum (consistent with a range imposed by the input analog band-pass filter). However, we found several events with suspicious spectral characteristics, where the signal power is spread over the full band-width sampled by a 200 MHz digitizer with significant contribution of very high and very low frequencies. These events may not originate from cosmic ray showers but could be the result of human contamination. The engine of the wavelet analysis can be implemented in the modern powerful FPGAs and can remove suspicious events on-line to reduce the trigger rate.
Space-atmospheric interactions of energetic cosmic rays
NASA Astrophysics Data System (ADS)
Isar, Paula Gina
2015-02-01
Ultra-high energy cosmic rays are the most energetic particles in the Universe of which origin still remain a mystery since a century from their descovery. They are unique messengers coming from far beyond our Milky Way Galaxy, which provides insights into the fundamental matter, energy, space and time. As subatomic particles flying through space to nearly light speed, the ultra-high energy cosmic rays are so rare that they strike the Earth's atmosphere at a rate of up to only one particle per square kilometer per year or century. While the atmosphere is used as a giant calorimeter where cosmic rays induced air showers are initiated and the medium through which Cherenkov or fluorescence light or radio waves propagate, all cosmic ray measurements (performed either from space or ground) rely on an accurate atmospheric monitoring and understanding of atmospheric effects. The interdisciplinary link between Astroparticle Physics and Atmospheric Environment through the ultra-high energy comic rays space - atmospheric interactions, based on the present ground- and future space-based cosmic ray observatories, will be presented.
Supernova Remnant Kes 17: An Efficient Cosmic Ray Accelerator inside a Molecular Cloud
NASA Astrophysics Data System (ADS)
Gelfand, Joseph D.; Castro, Daniel; Slane, Patrick O.; Temim, Tea; Hughes, John P.; Rakowski, Cara
2013-11-01
The supernova remnant Kes 17 (SNR G304.6+0.1) is one of a few but growing number of remnants detected across the electromagnetic spectrum. In this paper, we analyze recent radio, X-ray, and γ-ray observations of this object, determining that efficient cosmic ray acceleration is required to explain its broadband non-thermal spectrum. These observations also suggest that Kes 17 is expanding inside a molecular cloud, though our determination of its age depends on whether thermal conduction or clump evaporation is primarily responsible for its center-filled thermal X-ray morphology. Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 is important for understanding how cosmic rays are accelerated in supernova remnants.
An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülβ, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Piegsa, A.; Pieloth, D.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rizzo, A.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, M. W. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration
2012-04-01
Very energetic astrophysical events are required to accelerate cosmic rays to above 1018electronvolts. GRBs (γ-ray bursts) have been proposed as possible candidate sources. In the GRB `fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and γ-rays. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 1018electronvolts or that the efficiency of neutrino production is much lower than has been predicted.
Charge 4/3 leptons in cosmic rays
NASA Technical Reports Server (NTRS)
Wada, T.; Yamashita, Y.; Imaeda, K.; Yamamoto, I.
1985-01-01
A cosmic ray counter telescope has been operated at zenith angles of 0, 40, 44, and 60 degs in order to look for charge 4/3 particles. A few million clean single cosmic rays of each zenith angle are analyzed.
Propagation of Galactic cosmic rays: the influence of anisotropic diffusion
NASA Astrophysics Data System (ADS)
AL-Zetoun, A.; Achterberg, A.
2018-06-01
We consider the anisotropic diffusion of cosmic rays in the large-scale Galactic magnetic field, where diffusion along the field and diffusion across the field proceeds at different rates. To calculate this diffusion, we use stochastic differential equations to describe the cosmic ray propagation, solving these numerically. The Galactic magnetic field is described using the Jansson-Farrar model for the Galactic magnetic field. In this paper, we study the influence of perpendicular diffusion on the residence time of cosmic rays in the Galaxy. This provides an estimate for the influence of anisotropic diffusion on the residence time and the amount of matter (grammage) that a typical cosmic ray traverses during its residence in the Galaxy.
A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays
NASA Astrophysics Data System (ADS)
Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo
We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.
Cosmic-ray elemental abundances from 1 to 10 GeV per amu for boron through nickel
NASA Technical Reports Server (NTRS)
Dwyer, Robert; Meyer, Peter
1987-01-01
The relative abundances of cosmic-ray nuclei in the charge range boron through nickel over the energy range 1-10 GeV per amu were measured with a balloon-borne detector. The instrument consists of a scintillation and Cerenkov counter telescope with a multiwire proportional chamber hodoscope and has been flown in four high-altitude balloon flights. Good charge resolution (sigma = 0.2 charge units at iron) and high statistical accuracy have been achieved. These data are used to derive the energy dependence of the leakage path length using the leaky box model of propagation and confinement in the galaxy. This energy dependence is found to be best fit by lambda = E(tot) exp -n, where n = 0.49 + or - 0.06 over 1-10 GeV per amu. Relative abundances at the source are consistent with an energy-independent composition.
An instrument to measure the spectrum of cosmic ray iron and other nuclei to above 100 GeV-nucleon
NASA Technical Reports Server (NTRS)
Arens, J. F.; Balasubrahmanyan, V. K.; Ormes, J. F.; Siohan, F.; Schmidt, W. K. H.; Simon, M.; Spiegelhauer, H.
1978-01-01
A balloon-borne detector system for extending the study of cosmic ray composition to the energy region beyond 100 GeV/nucleon is described. The instrument incorporates an ionization calorimeter and a gas Cherenkov counter filled with freon for the determination of energies, and a charge module, consisting of scintillation and a lucite Cherenkov counter, for determining the charge of the incoming particle. The scintillators were utilized to determine the position of the incoming particle in addition to its charge. The characteristics of these detectors with respect to resolution, and the methods employed in laboratory calibration, cross-checks with flight data and actual performance in the flights are described in detail. Monte Carlo simulation of the ionization calorimeter and comparison of the response of the calorimeter and gas Cherenkov counter for complex nuclei was used to convert the observed calorimeter signal to absolute energy in a consistent manner.
Spectrum measurement with the Telescope Array Low Energy Extension (TALE) fluorescence detector
NASA Astrophysics Data System (ADS)
Zundel, Zachary James
The Telescope Array (TA) experiment is the largest Ultra High Energy cosmic ray observatory in the northern hemisphere and is designed to be sensitive to cosmic ray air showers above 1018eV. Despite the substantial measurements made by TA and AUGER (the largest cosmic ray observatory in the southern hemisphere), there remains uncertainty about whether the highest energy cosmic rays are galactic or extragalactic in origin. Locating features in the cosmic ray energy spectrum below 1018eV that indicate a transition from galactic to extragalactic sources would clarify the interpretation of measurements made at the highest energies. The Telescope Array Low Energy Extension (TALE) is designed to extend the energy threshold of the TA observatory down to 1016.5eV in order to make such measurements. This dissertation details the construction, calibration, and operation of the TALE flu- orescence detector. A measurement of the flux of cosmic rays in the energy range of 1016.5 -- 1018.5eV is made using the monocular data set taken between September 2013 and January 2014. The TALE fluorescence detector observes evidence for a softening of the cosmic spectrum at 1017.25+/-0.5eV. The evidence of a change in the spectrum motivates continued study of 1016.5 -- 1018.5eV cosmic rays.
On noise treatment in radio measurements of cosmic ray air showers
NASA Astrophysics Data System (ADS)
Schröder, F. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.
2012-01-01
Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transferred to other experiments in radio and acoustic detection of cosmic rays and neutrinos.
Calibration of photo sensors for the space-based cosmic ray telescope JEM-EUSO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karus, Michael
2015-02-24
In order to unveil the mystery of ultra-high energy cosmic rays (UHECRs), the planned fluorescence telescope JEM-EUSO (Extreme Universe Space Observatory on-board Japanese Experiment Module) will observe extensive air showers induced by UHECRs from the International Space Station (ISS) orbit with a huge acceptance. The JEM-EUSO instrument consists of Fresnel optics and a focal surface detector with 5000 multi-anode photomultiplier tubes (MAPMTs), 300000 channels in total. For fluorescence detection of cosmic rays it is essential to calibrate the detector pre-flight with utmost precision and to monitor the performance of the detector throughout the whole mission time. For that purpose amore » calibration stand on-ground was built to measure precisely the performance of Hamamatsu 64 pixel MAPMTs that are planned to be used for JEM-EUSO. To investigate the suitability of alternative detector devices, further research is done with state-of-the-art silicon photomultipliers (SiPMs), namely Hamamatsu multi-pixel photon counters (MPPCs). These will also be tested in the calibration stand and their performance can be compared to conventional photomultiplier tubes.« less
NASA Astrophysics Data System (ADS)
Murphy, Ryan; Supertiger Collaboration
2017-01-01
We report Galactic Cosmic Ray (GCR) abundances of elements from 26Fe to 40Zr measured by the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument during 55 days of exposure on a long-duration balloon flight over Antarctica. SuperTIGER measures charge (Z) and energy (E) using a combination of three scintillator and two Cherenkov detectors, and employs a scintillating fiber hodoscope for event trajectory determination. These observations resolve elemental abundances in this charge range with single-element resolution and good statistics. We also derived GCR source abundances, which support a model of cosmic-ray origin in which the source material consists of a mixture of 19-6+ 11 % material from massive stars and 81% normal interstellar medium (ISM) material with solar system abundances. The results also show a preferential acceleration, ordered by atomic mass (A), of refractory elements over volatile elements by a factor of 4. Both the refractory and volatile elements show a mass-dependent enhancement with similar mass dependence. (now AIP Congressional Science Fellow).
NASA Astrophysics Data System (ADS)
Arteaga-Velázquez, J. C.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2015-08-01
KASCADE-Grande was an air-shower experiment designed to study cosmic rays between 1016 and 1018 eV. The instrument was located at the site of the Karlsruhe Institute of Technology, Germany at an altitude of 110 m a.s.l. and covered an area of 0.5 km2. KASCADE-Grande consisted of several detector systems dedicated to measure different components of the EAS generated by the primary cosmic rays, i.e., the muon and the electron contents of the air-shower. With such a number of EAS observables and the precision of the measurements, the KASCADE-Grande data can be used to not only study in detail the properties of cosmic rays but also to test the predictions of hadronic-interaction models. In this work, in particular, the attenuation lengths of the muon number and the charged number of particles of EAS in the atmosphere were extracted from the KASCADE-Grande data and the results were compared with the predictions of the new EPOS-LHC hadronic-interaction model.
The stopping rate of negative cosmic-ray muons near sea level
NASA Technical Reports Server (NTRS)
Spannagel, G.; Fireman, E. L.
1971-01-01
A production rate of 0.065 + or - 0.003 Ar-37 atom/kg min of K-39 at 2-mwe depth below sea level was measured by sweeping argon from potassium solutions. This rate is unaffected by surrounding the solution by paraffin and is attributed to negative muon captures and the electromagnetic interaction of fast muons, and not to nucleonic cosmic ray component. The Ar-37 yield from K-39 by the stopping of negative muons in a muon beam of a synchrocyclotron was measured to be 8.5 + or - 1.7%. The stopping rate of negative cosmic ray muons at 2-mwe depth below sea level from these measurements and an estimated 17% electromagnetic production is 0.63 + or - 0.13 muon(-)/kg min. Previous measurements on the muon stopping rate vary by a factor of 5. Our value is slightly higher but is consistent with two previous high values. The sensitivity of the Ar-37 radiochemical method for the detection of muons is considerably higher than that of the previous radiochemical methods and could be used to measure the negative muon capture rates at greater depths.
Toward a descriptive model of galactic cosmic rays in the heliosphere
NASA Technical Reports Server (NTRS)
Mewaldt, R. A.; Cummings, A. C.; Adams, James H., Jr.; Evenson, Paul; Fillius, W.; Jokipii, J. R.; Mckibben, R. B.; Robinson, Paul A., Jr.
1988-01-01
Researchers review the elements that enter into phenomenological models of the composition, energy spectra, and the spatial and temporal variations of galactic cosmic rays, including the so-called anomalous cosmic ray component. Starting from an existing model, designed to describe the behavior of cosmic rays in the near-Earth environment, researchers suggest possible updates and improvements to this model, and then propose a quantitative approach for extending such a model into other regions of the heliosphere.
Feasibility of Cosmic-Ray Muon Intensity Measurements for Tunnel Detection
1990-06-01
BUR-’TR-3110 TECHNICAL REPORT BRL-TR-3110 mBRL I• FEASIBILITY OF COSMIC - RAY MUON INTENSITY MEASUREMENTS FOR TUNNEL DETECTION AIVARS CELIN. , JUNE...Feasibility of Cosmic - Ray Muon Intensity Measurements f or Tunnel Detection 612786H20001 4.AUTNOR(S) Aivars Celmins 7. PERORMING ORGANIZATION NAMe(S) AND... cosmic - ray muon intensity depends on the amount, of material above the point of reference and is therefore influenced by anomalies in rock density
A measurement of the cosmic ray spectrum and composition at the knee
NASA Astrophysics Data System (ADS)
Fowler, J. W.; Fortson, L. F.; Jui, C. C. H.; Kieda, D. B.; Ong, R. A.; Pryke, C. L.; Sommers, P.
2001-03-01
The energy spectrum and primary composition of cosmic rays with energy between 3×10 14 and 3×10 16 eV have been studied using the CASA-BLANCA detector. CASA consisted of 957 surface scintillation stations; BLANCA consisted of 144 angle-integrating Cherenkov light detectors located at the same site. CASA measured the charged particle distribution of air showers, while BLANCA measured the lateral distribution of Cherenkov light. The data are interpreted using the predictions of the CORSIKA air shower simulation coupled with four different hadronic interaction codes. The differential flux of cosmic rays measured by BLANCA exhibits a knee in the range of 2-3 PeV with a width of approximately 0.5 decades in primary energy. The power law indices of the differential flux below and above the knee are -2.72±0.02 and -2.95±0.02, respectively. We present our data both as a mean depth of shower maximum and as a mean nuclear mass. A multi-component fit using four elemental species suggests the same composition trends exhibited by the mean quantities, and also indicates that QGSJET and VENUS are the preferred hadronic interaction models. We find that an initially mixed composition turns lighter between 1 and 3 PeV, and then becomes heavier with increasing energies above 3 PeV.
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bezyazeekov, P. A.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Budnev, N. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fedorov, O.; Fuchs, B.; Gemmeke, H.; Gress, O. A.; Grupen, C.; Haungs, A.; Heck, D.; Hiller, R.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kazarina, Y.; Kleifges, M.; Korosteleva, E. E.; Kostunin, D.; Krömer, O.; Kuijpers, J.; Kuzmichev, L. A.; Link, K.; Lubsandorzhiev, N.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Mirgazov, R. R.; Monkhoev, R.; Morello, C.; Oehlschläger, J.; Osipova, E. A.; Pakhorukov, A.; Palmieri, N.; Pankov, L.; Pierog, T.; Prosin, V. V.; Rautenberg, J.; Rebel, H.; Roth, M.; Rubtsov, G. I.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wischnewski, R.; Wochele, J.; Zabierowski, J.; Zagorodnikov, A.; Zensus, J. A.; Tunka-Rex; Lopes Collaborations
2016-12-01
The radio technique is a promising method for detection of cosmic-ray air showers of energies around 100PeV and higher with an array of radio antennas. Since the amplitude of the radio signal can be measured absolutely and increases with the shower energy, radio measurements can be used to determine the air-shower energy on an absolute scale. We show that calibrated measurements of radio detectors operated in coincidence with host experiments measuring air showers based on other techniques can be used for comparing the energy scales of these host experiments. Using two approaches, first via direct amplitude measurements, and second via comparison of measurements with air shower simulations, we compare the energy scales of the air-shower experiments Tunka-133 and KASCADE-Grande, using their radio extensions, Tunka-Rex and LOPES, respectively. Due to the consistent amplitude calibration for Tunka-Rex and LOPES achieved by using the same reference source, this comparison reaches an accuracy of approximately 10% - limited by some shortcomings of LOPES, which was a prototype experiment for the digital radio technique for air showers. In particular we show that the energy scales of cosmic-ray measurements by the independently calibrated experiments KASCADE-Grande and Tunka-133 are consistent with each other on this level.
Ultrahigh Energy Cosmic Rays: Old Physics or New Physics?
NASA Technical Reports Server (NTRS)
Stecker, F. W.
2004-01-01
We consider the advantages of and the problems associated with hypotheses to explain the origin of ultrahigh energy cosmic rays (UHECR: E greater than 10 EeV) and the "trans-GZK" cosmic rays (TGZK: E greater than 100 EeV) both through "old physics" (acceleration in cosmic sources) and "new physics" (new particles, topological defects, fat neutrino cross sections, Lorentz invariance violation).
MacArthur, D.W.; Allander, K.S.; Bounds, J.A.
1994-01-25
A detector for atmospheric radon using a long range alpha detector as its sensing element is described. An electrostatic filter removes ions from ambient air, while allowing radon atoms to pass into a decay cavity. Here, radon atoms are allowed to decay, creating air ions. These air ions are drawn by a fan through a second electrostatic filter which can be activated or deactivated, and into the long range alpha detector. With the second electrostatic filter activated, no air ions are allowed to pass, and the signal output from the long range alpha detector consists of only the electronic background. With the second electrostatic filter deactivated, air ions and cosmic rays will be detected. The cosmic ray contribution can be minimized by shielding. 3 figures.
MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.
1994-01-01
A detector for atmospheric radon using a long range alpha detector as its sensing element. An electrostatic filter removes ions from ambient air, while allowing radon atoms to pass into a decay cavity. Here, radon atoms are allowed to decay, creating air ions. These air ions are drawn by a fan through a second electrostatic filter which can be activated or deactivated, and into the long range alpha detector. With the second electrostatic filter activated, no air ions are allowed to pass, and the signal output from the long range alpha detector consists of only the electronic background. With the second electrostatic filter deactivated, air ions and cosmic rays will be detected. The cosmic ray contribution can be minimized by shielding.
Drift and observations in cosmic-ray modulation, 1
NASA Technical Reports Server (NTRS)
Potgieter, M. S.
1985-01-01
It is illustrated that a relative simple drift model can, in contrast with no drift models, simultaneously fit proton and electron spectra observed in 1965-66 and 1977, using a single set of modulation parameters except for a change in the IMF polarity. This result is interpreted together with the observation of Evenson and Meyer that electrons are recovering more rapidly than protons after 1980, in contrast with what Burger and Swanenburg observed in 1968-72, as a charge sign dependent effect due to the occurrence of drift in cosmic ray modulation. The same set of parameters produces a shift in the phase and amplitude of the diurnal anisotropy vector, consistent with observations in 1969-71 and 1980-81.
NASA Astrophysics Data System (ADS)
Samui, Saumyadip; Subramanian, Kandaswamy; Srianand, Raghunathan
2018-05-01
We present semi-analytical models of galactic outflows in high-redshift galaxies driven by both hot thermal gas and non-thermal cosmic rays. Thermal pressure alone may not sustain a large-scale outflow in low-mass galaxies (i.e. M ˜ 108 M⊙), in the presence of supernovae feedback with large mass loading. We show that inclusion of cosmic ray pressure allows outflow solutions even in these galaxies. In massive galaxies for the same energy efficiency, cosmic ray-driven winds can propagate to larger distances compared to pure thermally driven winds. On an average gas in the cosmic ray-driven winds has a lower temperature which could aid detecting it through absorption lines in the spectra of background sources. Using our constrained semi-analytical models of galaxy formation (that explains the observed ultraviolet luminosity functions of galaxies), we study the influence of cosmic ray-driven winds on the properties of the intergalactic medium (IGM) at different redshifts. In particular, we study the volume filling factor, average metallicity, cosmic ray and magnetic field energy densities for models invoking atomic cooled and molecular cooled haloes. We show that the cosmic rays in the IGM could have enough energy that can be transferred to the thermal gas in presence of magnetic fields to influence the thermal history of the IGM. The significant volume filling and resulting strength of IGM magnetic fields can also account for recent γ-ray observations of blazars.
Cosmology and astrophysics from relaxed galaxy clusters - II. Cosmological constraints
NASA Astrophysics Data System (ADS)
Mantz, A. B.; Allen, S. W.; Morris, R. G.; Rapetti, D. A.; Applegate, D. E.; Kelly, P. L.; von der Linden, A.; Schmidt, R. W.
2014-05-01
This is the second in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. The data set employed here consists of Chandra observations of 40 such clusters, identified in a comprehensive search of the Chandra archive for hot (kT ≳ 5 keV), massive, morphologically relaxed systems, as well as high-quality weak gravitational lensing data for a subset of these clusters. Here we present cosmological constraints from measurements of the gas mass fraction, fgas, for this cluster sample. By incorporating a robust gravitational lensing calibration of the X-ray mass estimates, and restricting our measurements to the most self-similar and accurately measured regions of clusters, we significantly reduce systematic uncertainties compared to previous work. Our data for the first time constrain the intrinsic scatter in fgas, 7.4 ± 2.3 per cent in a spherical shell at radii 0.8-1.2 r2500 (˜1/4 of the virial radius), consistent with the expected level of variation in gas depletion and non-thermal pressure for relaxed clusters. From the lowest redshift data in our sample, five clusters at z < 0.16, we obtain a constraint on a combination of the Hubble parameter and cosmic baryon fraction, h3/2 Ωb/Ωm = 0.089 ± 0.012, that is insensitive to the nature of dark energy. Combining this with standard priors on h and Ωbh2 provides a tight constraint on the cosmic matter density, Ωm = 0.27 ± 0.04, which is similarly insensitive to dark energy. Using the entire cluster sample, extending to z > 1, we obtain consistent results for Ωm and interesting constraints on dark energy: Ω _{{Λ }}=0.65^{+0.17}_{-0.22}> for non-flat ΛCDM (cosmological constant) models, and w = -0.98 ± 0.26 for flat models with a constant dark energy equation of state. Our results are both competitive and consistent with those from recent cosmic microwave background, Type Ia supernova and baryon acoustic oscillation data. We present constraints on more complex models of evolving dark energy from the combination of fgas data with these external data sets, and comment on the possibilities for improved fgas constraints using current and next-generation X-ray observatories and lensing data.
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene, N.; Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos Cerutti, A. C.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D’Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D’Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaïor, R.; García, B.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Keilhauer, B.; Kemmerich, N.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd, D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Morlino, G.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, R. A.; Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedeński, M.; Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; The Pierre Auger Collaboration
2018-02-01
A new analysis of the data set from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 {EeV} with zenith angles up to 80° recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects, and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0σ, the highest value of the test statistic being for energies above 39 {EeV}. The three alternative models are favored against isotropy with 2.7σ–3.2σ significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed. Any correspondence should be addressed to .
Aab, A.; Abreu, P.; Aglietta, M.; ...
2018-02-02
A new analysis of the dataset from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 deg recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include allmore » types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0 sigma, the highest value of the test statistic being for energies above 39 EeV. The three alternative models are favored against isotropy with 2.7-3.2 sigma significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aab, A.; Abreu, P.; Aglietta, M.
A new analysis of the dataset from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 deg recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include allmore » types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0 sigma, the highest value of the test statistic being for energies above 39 EeV. The three alternative models are favored against isotropy with 2.7-3.2 sigma significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed.« less
Centaurus A /NGC 5128/ at 2 keV-2.3 MeV - HEAO 1 observations and implications
NASA Technical Reports Server (NTRS)
Baity, W. A.; Rothschild, R. E.; Lingenfelter, R. E.; Stein, W. A.; Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Peterson, L. E.; Mushotzky, R. F.
1981-01-01
The active-nucleus galaxy Centaurus A has been studied at 2 keV-2.3 MeV using data from the UCSD/MIT hard X-ray and low-energy gamma-ray instrument and the GSFC/CIT cosmic X-ray experiment on HEAO-1. It is found that an E exp -1.60 + or - 0.03 power law spectrum breaking to E exp -2.0 + or - 0.2 at 140 keV best describes the January and July 1978 data. The average intensity was 50% higher during the January observations. Upper limits to unresolved lines at 511 keV and 1.6 MeV were found to be 6.5 x 10 to the -4th photons/sq cm-s and 2.2 x 10 to the -4th photons/sq cm-s, respectively, at the 90% confidence level. The present data are consistent with the detailed calculations of the synchrotron self-Compton mechanism; they may also agree, marginally, with the predictions of emission from spherical accretion onto black holes.
Solution of Heliospheric Propagation: Unveiling the Local Interstellar Spectra of Cosmic-ray Species
NASA Astrophysics Data System (ADS)
Boschini, M. J.; Della Torre, S.; Gervasi, M.; Grandi, D.; Jóhannesson, G.; Kachelriess, M.; La Vacca, G.; Masi, N.; Moskalenko, I. V.; Orlando, E.; Ostapchenko, S. S.; Pensotti, S.; Porter, T. A.; Quadrani, L.; Rancoita, P. G.; Rozza, D.; Tacconi, M.
2017-05-01
Local interstellar spectra (LIS) for protons, helium, and antiprotons are built using the most recent experimental results combined with state-of-the-art models for propagation in the Galaxy and heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of cosmic-ray (CR) species at different modulation levels and at both polarities of the solar magnetic field. To do so in a self-consistent way, an iterative procedure was developed, where the GALPROP LIS output is fed into HelMod, providing modulated spectra for specific time periods of selected experiments to compare with the data; the HelMod parameter optimization is performed at this stage and looped back to adjust the LIS using the new GALPROP run. The parameters were tuned with the maximum likelihood procedure using an extensive data set of proton spectra from 1997 to 2015. The proposed LIS accommodate both the low-energy interstellar CR spectra measured by Voyager 1 and the high-energy observations by BESS, Pamela, AMS-01, and AMS-02 made from the balloons and near-Earth payloads; it also accounts for Ulysses counting rate features measured out of the ecliptic plane. The found solution is in a good agreement with proton, helium, and antiproton data by AMS-02, BESS, and PAMELA in the whole energy range.
VizieR Online Data Catalog: Local interstellar spectra of cosmic-ray species (Boschini+, 2017)
NASA Astrophysics Data System (ADS)
Boschini, M. J.; Torre, S. D.; Gervasi, M.; Grandi, D.; Johannesson, G.; Kachelriess, M.; La Vacca, G.; Masi, N.; Moskalenko, I. V.; Orlando, E.; Ostapchenko, S. S.; Pensotti, S.; Porter, T. A.; Quadrani, L.; Rancoita, P. G.; Rozza, D.; Tacconi, M.
2017-11-01
Local interstellar spectra (LIS) for protons, helium, and antiprotons are built using the most recent experimental results combined with state-of-the-art models for propagation in the Galaxy and heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of cosmic-ray (CR) species at different modulation levels and at both polarities of the solar magnetic field. To do so in a self-consistent way, an iterative procedure was developed, where the GALPROP LIS output is fed into HelMod, providing modulated spectra for specific time periods of selected experiments to compare with the data; the HelMod parameter optimization is performed at this stage and looped back to adjust the LIS using the new GALPROP run. The parameters were tuned with the maximum likelihood procedure using an extensive data set of proton spectra from 1997 to 2015. The proposed LIS accommodate both the low-energy interstellar CR spectra measured by Voyager 1 and the high-energy observations by BESS, Pamela, AMS-01, and AMS-02 made from the balloons and near-Earth payloads; it also accounts for Ulysses counting rate features measured out of the ecliptic plane. The found solution is in a good agreement with proton, helium, and antiproton data by AMS-02, BESS, and PAMELA in the whole energy range. (3 data files).
Solution of Heliospheric Propagation: Unveiling the Local Interstellar Spectra of Cosmic-ray Species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boschini, M. J.; Torre, S. Della; Gervasi, M.
2017-05-10
Local interstellar spectra (LIS) for protons, helium, and antiprotons are built using the most recent experimental results combined with state-of-the-art models for propagation in the Galaxy and heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of cosmic-ray (CR) species at different modulation levels and at both polarities of the solar magnetic field. To do so in a self-consistent way, an iterative procedure was developed, where the GALPROP LIS output is fed into HelMod, providing modulated spectra for specific time periods of selected experiments to compare with themore » data; the HelMod parameter optimization is performed at this stage and looped back to adjust the LIS using the new GALPROP run. The parameters were tuned with the maximum likelihood procedure using an extensive data set of proton spectra from 1997 to 2015. The proposed LIS accommodate both the low-energy interstellar CR spectra measured by Voyager 1 and the high-energy observations by BESS, Pamela, AMS-01, and AMS-02 made from the balloons and near-Earth payloads; it also accounts for Ulysses counting rate features measured out of the ecliptic plane. The found solution is in a good agreement with proton, helium, and antiproton data by AMS-02, BESS, and PAMELA in the whole energy range.« less
Time-dependent evolution of cosmic-ray-modified shock structure: Transition to steady state
NASA Astrophysics Data System (ADS)
Donohue, D. J.; Zank, G. P.; Webb, G. M.
1994-03-01
Steady state solutions to the two-fluid equations of cosmic-ray-modified shock structure were investigated first by Drury and Volk (1981). Their analysis revealed, among other properties, that there exist regions of upstream parameter space where the equations possess three different downstream solutions for a given upstream state. In this paper we investigate whether or not all these solutions can occur as time-asymptotic states in a physically realistic evolution. To do this, we investigate the time-dependent evolution of the two-fluid cosmic-ray equations in going from a specified initial condition to a steady state. Our results indicate that the time-asymptotic solution is strictly single-valued, and it undergoes a transition from weakly to strongly cosmic-ray-modified at a critical value of the upstream cosmic ray energy density. The expansion of supernova remnant shocks is considered as an example, and it is shown that the strong to weak transition is in fact more likely. The third intermediate solution is shown to influence the time-dependent evolution of the shock, but it is not found to be a stable time-asymptotic state. Timescales for convergence to these states and their implications for the efficiency of shock acceleration are considered. We also investigate the effects of a recently introduced model for the injection of seed particles into the shock accelerated cosmic-ray population. The injection is found to result in a more strongly cosmic-ray-dominated shock, which supports our conclusion that for most classes of intermediate and strong cosmic-ray-modified shocks, the downstream cosmic-ray pressure component is at least as large as the thermal gas pressure, independent of the upstream state. As a result, cosmic rays almost always play a significant role in determining the shock structure and dissipation and they cannot be regarded as test particles.
Time-dependent evolution of cosmic-ray-modified shock structure: Transition to steady state
NASA Technical Reports Server (NTRS)
Donohue, D. J.; Zank, G. P.; Webb, G. M.
1994-01-01
Steady state solutions to the two-fluid equations of cosmic-ray-modified shock structure were investigated first by Drury and Volk (1981). Their analysis revealed, among other properties, that there exist regions of upstream parameter space where the equations possess three different downstream solutions for a given upstream state. In this paper we investigate whether or not all these solutions can occur as time-asymptotic states in a physically realistic evolution. To do this, we investigate the time-dependent evolution of the two-fluid cosmic-ray equations in going from a specified initial condition to a steady state. Our results indicate that the time-asymptotic solution is strictly single-valued, and it undergoes a transition from weakly to strongly cosmic-ray-modified at a critical value of the upstream cosmic ray energy density. The expansion of supernova remnant shocks is considered as an example, and it is shown that the strong to weak transition is in fact more likely. The third intermediate solution is shown to influence the time-dependent evolution of the shock, but it is not found to be a stable time-asymptotic state. Timescales for convergence to these states and their implications for the efficiency of shock acceleration are considered. We also investigate the effects of a recently introduced model for the injection of seed particles into the shock accelerated cosmic-ray population. The injection is found to result in a more strongly cosmic-ray-dominated shock, which supports our conclusion that for most classes of intermediate and strong cosmic-ray-modified shocks, the downstream cosmic-ray pressure component is at least as large as the thermal gas pressure, independent of the upstream state. As a result, cosmic rays almost always play a significant role in determining the shock structure and dissipation and they cannot be regarded as test particles.
NASA Technical Reports Server (NTRS)
Pinsky, L. S.
1972-01-01
The detection and measurement of the cosmic ray charge spectrum for nuclei heavier than iron (Fe, Z = 26) are discussed. These trans-iron nuclei are of great interest for several reasons. They promise to be one of the more sensitive clocks for use in determining the age of cosmic rays. The discovery of radioactive nuclides and their decay products in the primary flux, will allow an estimation of the elapsed time since these cosmic rays were synthesized. In addition, the relatively short interaction length of the very heavy trans-iron particles makes their relative abundance a source of information regarding the amount of interstellar matter that they had to traverse to reach the earth. A study of the trans-iron cosmic rays may provide clues as to the very processes of nucleosyntheses by which the bulk of the trans-iron nuclei in the universe are produced. This in turn may shed light on the mechanics of the supernova, which is postulated to be the major source of all cosmic rays. Finally, trans-iron cosmic ray experiments may demonstrate the existence of the recently postulated super-heavy nuclei.
Constraints on cosmic ray and PeV neutrino production in blazars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, B. Theodore; Li, Zhuo, E-mail: zhangbing91@pku.edu.cn, E-mail: zhuo.li@pku.edu.cn
2017-03-01
IceCube has detected a cumulative flux of PeV neutrinos, which origin is unknown. Blazars, active galactic nuclei with relativistic jets pointing to us, are long and widely expected to be one of the strong candidates of high energy neutrino sources. The neutrino production depends strongly on the cosmic ray power of blazar jets, which is largely unknown. The recent null results in stacking searches of neutrinos for several blazar samples by IceCube put upper limits on the neutrino fluxes from these blazars. Here we compute the cosmic ray power and PeV neutrino flux of Fermi-LAT blazars, and find that themore » upper limits for known blazar sources give stringent constraint on the cosmic ray loading factor of blazar jets (i.e., the ratio of the cosmic ray to bolometric radiation luminosity of blazar jets), ξ{sub cr} ∼< (2–10)ζ{sup −1} (with ζ ∼< 1 the remained fraction of cosmic ray energy when propagate into the blazar broad line region) for flat cosmic ray spectrum, and that the cumulative PeV neutrino flux contributed by all-sky blazars is a fraction ∼< (10–50)% of the IceCube detected flux.« less
Galactic Cosmic Rays: From Earth to Sources
NASA Technical Reports Server (NTRS)
Brandt, Theresa J.
2012-01-01
For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.
Blazar Jet Physics in the Age of Fermi
2010-11-23
in colliding shells, and whether blazars are sources of ultra-high energy cosmic rays . Keywords. galaxies: jets, gamma rays : observations, gamma rays ...colliding shells ejected from the central supermassive black hole are made. The likelihood that blazars accelerate ultra-high energy cosmic rays is...colliding shells, and whether blazars are sources of ultra-high energy cosmic rays . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Research in cosmic and gamma ray astrophysics
NASA Technical Reports Server (NTRS)
Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.
1989-01-01
Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.
Cosmic-ray detectors on the Moon
NASA Technical Reports Server (NTRS)
Linsley, John
1988-01-01
The state of cosmic ray physics is reviewed. It is concluded that the nonexistent lunar magnetic field, the low lunar radiation background, and the lack of an atmosphere on the Moon provide an excellent environment for the study of high energy primary cosmic rays.
Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)
NASA Technical Reports Server (NTRS)
Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.
1984-01-01
Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.
Nineteenth International Cosmic Ray Conference. SH Sessions, Volume 5
NASA Technical Reports Server (NTRS)
Jones, F. C. (Compiler)
1985-01-01
Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume contains papers addressing cosmic ray gradients in the heliosphere; siderial, diurnal, and long term modulations; geomagnetic and atmospheric effects; cosmogenic nuclides; solar neutrinos; and detection techniques.
Ninteenth International Cosmic Ray Conference. OG Sessions, Volume 2
NASA Technical Reports Server (NTRS)
Jones, F. C. (Compiler)
1985-01-01
Contributed papers addressing cosmic ray origin and galactic phenomena are compiled. Topic areas include the composition, spectra, and anisotropy of cosmic ray nuclei with energies and 1 TeV, isotopes, antiprotons and related subjects, and electrons, positrons, and measurements of synchrotron radiation.
Signatures of cosmic-ray interactions on the solar surface
NASA Technical Reports Server (NTRS)
Seckel, D.; Stanev, Todor; Gaisser, T. K.
1991-01-01
The fluxes of neutrinos, gamma rays, antiprotons, neutrons, and antineutrons that result from collisions of high-energy Galactic cosmic rays with the solar atmosphere are estimated. The results are sensitive to assumptions about cosmic-ray transport in the magnetic fields of the inner solar system. The high-energy photon flux should be observable by the Gamma Ray Observatory. The neutrino flux should produce less than one event per year in the next generation of neutrino telescopes. The antiproton flux is unobservable against the Galactic background. The neutron and antineutron fluxes are detectable only if neutrons produced in terrestrial cosmic-ray events may be discriminated against.
A connection between star formation activity and cosmic rays in the starburst galaxy M82.
2009-12-10
Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse gamma-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of gamma-ray emission. Here we report the detection of >700-GeV gamma-rays from M82. From these data we determine a cosmic-ray density of 250 eV cm(-3) in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.
Steady state and dynamical structure of a cosmic-ray-modified termination shock
NASA Technical Reports Server (NTRS)
Donohue, D. J.; Zank, G. P.
1993-01-01
A hydrodynamic model is developed for the structure of a cosmic-ray-modified termination shock. The model is based on the two-fluid equations of diffuse shock acceleration (Drury and Volk, 1981). Both the steady state structure of the shock and its interaction with outer heliospheric disturbances are considered. Under the assumption that the solar wind is decelerated by diffusing interstellar cosmic rates, it is shown that the natural state of the termination shock is a gradual deceleration and compression, followed by a discontinuous jump to a downstream state which is dominated by the pressure contribution of the cosmic rays. A representative model is calculated for the steady state which incorporates both interstellar cosmic ray mediation and diffusively accelerated anomalous ions through a proposed thermal leakage mechanism. The interaction of large-scale disturbances with the equilibrium termination shock model is shown to result in some unusual downstream structure, including transmitted shocks and cosmic-ray-modified contact discontinuities. The structure observed may be connected to the 2-kHz outer heliospheric radio emission (Cairns et al., 1992a, b). The time-dependent simulations also demonstrate that interaction with solar wind compressible turbulence (e.g., traveling interplanetary shocks, etc.) could induce the termination shock to continually fluctuate between cosmic-ray-dominated and gas-dynamic states. This fluctuation may represent a partial explanation of the galactic cosmic ray modulation effect and illustrates that the Pioneer and Voyager satellites will encounter an evolving shock whose structure and dynamic properties are strongly influence by the mediation of interstellar and anomalous cosmic rays.
Steady state and dynamical structure of a cosmic-ray-modified termination shock
NASA Astrophysics Data System (ADS)
Donohue, D. J.; Zank, G. P.
1993-11-01
A hydrodynamic model is developed for the structure of a cosmic-ray-modified termination shock. The model is based on the two-fluid equations of diffuse shock acceleration (Drury and Volk, 1981). Both the steady state structure of the shock and its interaction with outer heliospheric disturbances are considered. Under the assumption that the solar wind is decelerated by diffusing interstellar cosmic rates, it is shown that the natural state of the termination shock is a gradual deceleration and compression, followed by a discontinuous jump to a downstream state which is dominated by the pressure contribution of the cosmic rays. A representative model is calculated for the steady state which incorporates both interstellar cosmic ray mediation and diffusively accelerated anomalous ions through a proposed thermal leakage mechanism. The interaction of large-scale disturbances with the equilibrium termination shock model is shown to result in some unusual downstream structure, including transmitted shocks and cosmic-ray-modified contact discontinuities. The structure observed may be connected to the 2-kHz outer heliospheric radio emission (Cairns et al., 1992a, b). The time-dependent simulations also demonstrate that interaction with solar wind compressible turbulence (e.g., traveling interplanetary shocks, etc.) could induce the termination shock to continually fluctuate between cosmic-ray-dominated and gas-dynamic states. This fluctuation may represent a partial explanation of the galactic cosmic ray modulation effect and illustrates that the Pioneer and Voyager satellites will encounter an evolving shock whose structure and dynamic properties are strongly influence by the mediation of interstellar and anomalous cosmic rays.
Heliospheric influence on the anisotropy of TeV cosmic rays
Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai
2014-06-26
This article provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy.more » When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. Lastly, the heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.« less
Heliospheric influence on the anisotropy of TeV cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai, E-mail: mzhang@fit.edu
2014-07-20
This paper provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy.more » When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. The heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.« less
NASA Astrophysics Data System (ADS)
Sagawa, Hiroyuki
How cosmic rays obtain energies of about 1020 eV and where they come from are big mysteries in physics. The Telescope Array (TA) is comprised of Surface Detectors (SDs) and Fluorescence Detectors (FDs) located in Utah, U.S.A., and aims to explore the origin of highest-energy cosmic rays. The SD array consists of 507 scintillation detectors arranged on a square grid of 1.2-km spacing, covering approximately 700 km2. The FD telescopes, located at three sites, look over the surface array. Using the first five years of data collected by the surface detectors, we found a cluster of cosmic rays with energies greater than 5.7 × 1019 eV that we call the hot spot. With enhanced statistics, we expect to observe the structure of that hot spot along with other possible excesses, and point sources along with the correlations with extreme phenomena in the nearby universe. We plan to make the area of the TA SD array four times larger to approximately 3,000 km2, by adding 500 SDs on a square grid of 2.08-km spacing. Two FD stations will be built viewing the new SD array. This TA extension that we call TA×4 will greatly accelerate the speed at which we will reach the goals mentioned above, and will enhance cosmic-ray energy spectrum measurement and composition study at the highest energies by TA. At this conference, we present our plan for TA×4.
Apollo-Soyuz pamphlet no. 6: Cosmic ray dosage. [experimental designiradiation hazards and dosage
NASA Technical Reports Server (NTRS)
Page, L. W.; From, T. P.
1977-01-01
The radiation hazard inside spacecraft is discussed with emphasis on its effects on the crew, biological specimens, and spacecraft instruments. The problem of light flash sensations in the eyes of astronauts is addressed and experiment MA-106 is described. In this experiment, light flashes seen by blindfolded astronauts were counted and high energy cosmic ray intensity in the command module cabin were measured. The damage caused by cosmic ray hits on small living organisms was investigated in the Biostack 3 experiment (MA-107). Individual cosmic rays were tracked through layers of bacterial spores, small seeds, and eggs interleaved with layers of AgCl-crystal wafers, special plastic, and special photographic film that registered each cosmic ray particle passed.
The STScI STIS Pipeline V: Cosmic Ray Rejection
NASA Astrophysics Data System (ADS)
Baum, Stefi; Hsu, J. C.; Hodge, Phil; Ferguson, Harry
1996-07-01
In this ISR we describe calstis-2, the calstis calibration module which combines CRSPLIT exposures to produce a single cosmic ray rejected image. Cosmic ray rejection in the STIS pipeline will follow the same basic philosophy as does the STSDAS task crrej - a series of separate CRSPLIT exposures are combined to produce a single summed image, where discrepant (different by some number of sigma from the guess value) are discarded in forming the output image. The calstis pipeline is able to perform this cosmic ray rejection because the individually commanded exposures are associated together into a single dataset by TRANS and generic conversion. The crrej will also exist as a task in STSDAS to allow users to reperform the cosmic ray rejection, altering the input parameters.
Elemental composition and energy spectra of galactic cosmic rays
NASA Technical Reports Server (NTRS)
Mewaldt, R. A.
1988-01-01
A brief review is presented of the major features of the elemental composition and energy spectra of galactic cosmic rays. The requirements for phenomenological models of cosmic ray composition and energy spectra are discussed, and possible improvements to an existing model are suggested.
NASA Technical Reports Server (NTRS)
Wiedenbeck, M. E.
1977-01-01
An instrument, the Caltech High Energy Isotope Spectrometer Telescope was developed to measure isotopic abundances of cosmic ray nuclei by employing an energy loss - residual energy technique. A detailed analysis was made of the mass resolution capabilities of this instrument. A formalism, based on the leaky box model of cosmic ray propagation, was developed for obtaining isotopic abundance ratios at the cosmic ray sources from abundances measured in local interstellar space for elements having three or more stable isotopes, one of which is believed to be absent at the cosmic ray sources. It was shown that the dominant sources of uncertainty in the derived source ratios are uncorrelated errors in the fragmentation cross sections and statistical uncertainties in measuring local interstellar abundances. These results were applied to estimate the extent to which uncertainties must be reduced in order to distinguish between cosmic ray production in a solar-like environment and in various environments with greater neutron enrichments.
The Need for Direct High-Energy Cosmic-Ray Measurements
NASA Technical Reports Server (NTRS)
Jones, Frank C.; Streitmatter, Robert
2004-01-01
Measuring the chemical composition of the cosmic rays in the energy region of greater than or equal to 10(exp 12)eV would be highly useful in settling several nagging questions concerning the propagation of cosmic rays in the galaxy. In particular an accurate measurement of secondary to primary ratios such as Boron to Carbon would gibe clear evidence as to whether the propagation of cosmic rays is determined by a diffusion coefficient that varies with the particle's energy as E(sup 0.5) or E(sup 0.3). This would go a long ways in helping us to understand the anistropy (or lack thereof) of the highest energy cosmic rays and the power requirements for producing those particles at approximately equal to 10(exp 18) eV which are believed to be highest energy particles produced in the Galaxy. This would be only one of the benefits of a mission such as ACCESS to perform direct particle measurements on very high energy cosmic rays.
Relative distribution of cosmic rays and magnetic fields
NASA Astrophysics Data System (ADS)
Seta, Amit; Shukurov, Anvar; Wood, Toby S.; Bushby, Paul J.; Snodin, Andrew P.
2018-02-01
Synchrotron radiation from cosmic rays is a key observational probe of the galactic magnetic field. Interpreting synchrotron emission data requires knowledge of the cosmic ray number density, which is often assumed to be in energy equipartition (or otherwise tightly correlated) with the magnetic field energy. However, there is no compelling observational or theoretical reason to expect such a tight correlation to hold across all scales. We use test particle simulations, tracing the propagation of charged particles (protons) through a random magnetic field, to study the cosmic ray distribution at scales comparable to the correlation scale of the turbulent flow in the interstellar medium (≃100 pc in spiral galaxies). In these simulations, we find that there is no spatial correlation between the cosmic ray number density and the magnetic field energy density. In fact, their distributions are approximately statistically independent. We find that low-energy cosmic rays can become trapped between magnetic mirrors, whose location depends more on the structure of the field lines than on the field strength.
Experimental Summary: Very High Energy Cosmic Rays and their Interactions
NASA Astrophysics Data System (ADS)
Kampert, Karl-Heinz
2013-06-01
The XVII International Symposium on Very High Energy Cosmic Ray Interactions, held in August of 2012 in Berlin, was the first one in the history of the Symposium,where a plethora of high precision LHC data with relevance for cosmic ray physics was presented. This report aims at giving a brief summary of those measurements andit discusses their relevance for observations of high energy cosmic rays. Enormous progress has been made also in air shower observations and in direct measurements of cosmic rays, exhibiting many more structure in the cosmic ray energy spectrum than just a simple power law with a knee and an ankle. At the highest energy, the flux suppression may not be dominated by the GZK-effect but by the limiting energy of a nearby source or source population. New projects and application of new technologies promise further advances also in the near future. We shall discuss the experimental and theoretical progress in the field and its prospects for coming years.
A demonstration device for cosmic rays telescopes
NASA Astrophysics Data System (ADS)
Esposito, Salvatore
2018-01-01
We describe a hands-on accurate demonstrator for cosmic rays realized by six high school students. The main aim is to show the relevance and the functioning of the principal parts of a cosmic ray telescope (muon detector), with the help of two large sized wooden artefacts. The first one points out how cosmic rays can be tracked in a muon telescope, while the other one shows the key avalanche process of electronic ionization that effectively allows muon detection through a photomultiplier. Incoming cosmic rays are visualized in terms of laser beams, whose 3D trajectory is highlighted by turning on LEDs on two orthogonal matrices. Instead the avalanche ionization process is demonstrated through the avalanche falling off glass marbles on an inclined plane, finally turning on a LED. A pictured poster accompanying the demonstrator is as effective in assisting cosmic ray demonstration and its detection. The success of the demonstrator has been fully proven by the general public during a science festival, in which the corresponding project won the Honorable Mention in a dedicated competition.
The KASCADE-Grande observatory and the composition of very high-energy cosmic rays
NASA Astrophysics Data System (ADS)
Arteaga-Velázquez, J. C.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2015-11-01
KASCADE-Grande is an air-shower observatory devoted to the detection of cosmic rays with energies in the range of 1016 to 1018 eV. This energy region is of particular interest for the cosmic ray astrophysics, since it is the place where some models predict the existence of a transition from galactic to extragalactic origin of cosmic rays and the presence of a break in the flux of its heavy component. The detection of these features requires detailed and simultaneous measurements of the energy and composition of cosmic rays with sufficient statistics. These kinds of studies are possible for the first time in KASCADE-Grande due to the accurate measurements of several air-shower observables, i.e., the number of charged particles, electrons and muons in the shower, using the different detector systems of the observatory. In this contribution, a detailed look into the composition of 1016 — 1018 eV cosmic rays with KASCADE-Grande is presented.
NASA Astrophysics Data System (ADS)
IceCube Collaboration; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Silva, A. H. Cruz; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; de los Heros, C. Pérez; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Saba, S. M.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van Eijndhoven, N.; van der Drift, D.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zilles, A.; Zoll, M.
2013-02-01
The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ˜1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.
NASA Technical Reports Server (NTRS)
Derrickson, J. H.; Parnell, T. A.; Watts, J. W.; Gregory, J. C.
1985-01-01
The study of the cosmic ray abundances beyond 20 GeV/n provides additional information on the propagation and containment of the cosmic rays in the galaxy. Since the average amount of interstellar material traversed by cosmic rays decreases as its energy increases, the source composition undergoes less distortion in this higher energy region. However, data over a wide energy range is necessary to study propagation parameters. Some measurements of some of the primary cosmic ray abundance ratios at both low (near 2 GeV/n) and high (above 20 GeV/n) energy are given and compared to the predictions of the leaky box mode. In particular, the integrated values (above 23.7 GeV/n) for the more abundant cosmic ray elements in the interval C through Fe and the differential flux for carbon, oxygen, and the Ne, Mg, Si group are presented. Limited statistics prevented the inclusion of the odd Z elements.
Lateral distribution of muons in IceCube cosmic ray events
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zilles, A.; Zoll, M.
2013-01-01
In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (>2GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations.
An estimation of Canadian population exposure to cosmic rays.
Chen, Jing; Timmins, Rachel; Verdecchia, Kyle; Sato, Tatsuhiko
2009-08-01
The worldwide average exposure to cosmic rays contributes to about 16% of the annual effective dose from natural radiation sources. At ground level, doses from cosmic ray exposure depend strongly on altitude, and weakly on geographical location and solar activity. With the analytical model PARMA developed by the Japan Atomic Energy Agency, annual effective doses due to cosmic ray exposure at ground level were calculated for more than 1,500 communities across Canada which cover more than 85% of the Canadian population. The annual effective doses from cosmic ray exposure in the year 2000 during solar maximum ranged from 0.27 to 0.72 mSv with the population-weighted national average of 0.30 mSv. For the year 2006 during solar minimum, the doses varied between 0.30 and 0.84 mSv, and the population-weighted national average was 0.33 mSv. Averaged over solar activity, the Canadian population-weighted average annual effective dose due to cosmic ray exposure at ground level is estimated to be 0.31 mSv.
High energy physics in cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Lawrence W.
2013-02-07
In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic raymore » program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.« less
Ninteenth International Cosmic Ray Conference. OG Sessions, Volume 1
NASA Technical Reports Server (NTRS)
Jones, F. C. (Compiler)
1985-01-01
Contributed papers addressing cosmic ray origin and galactic phenomena are compiled. The topic areas covered in this volume include gamma ray bursts, gamma rays from point sources, and diffuse gamma ray emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Nayantara, E-mail: nayan@phy.iitb.ac.in
2008-06-15
Centaurus A, the cosmic ray accelerator a few Mpc away from us, is possibly one of the nearest sources of extremely high energy cosmic rays. We investigate whether the gamma ray data currently available from Centaurus A in the GeV-TeV energy band can be explained with only proton-proton interactions. We show that for a single power law proton spectrum, mechanisms of {gamma}-ray production other than proton-proton interactions are needed inside this radio-galaxy to explain the gamma ray flux observed by EGRET, upper limits from HESS/CANGAROO-III and the correlated extremely energetic cosmic ray events observed by the Pierre Auger experiment. Inmore » future, with better {gamma}-ray data, and simultaneous observation with {gamma}-ray and cosmic ray detectors, it will be possible to carry out such studies on different sources in more detail.« less
NASA Astrophysics Data System (ADS)
Hare, B. M.; Dwyer, J. R.; Winner, L. H.; Uman, M. A.; Jordan, D. M.; Kotovsky, D. A.; Caicedo, J. A.; Wilkes, R. A.; Carvalho, F. L.; Pilkey, J. T.; Ngin, T. K.; Gamerota, W. R.; Rassoul, H. K.
2017-08-01
It has been argued in the technical literature, and widely reported in the popular press, that cosmic ray air showers (CRASs) can initiate lightning via a mechanism known as relativistic runaway electron avalanche (RREA), where large numbers of high-energy and low-energy electrons can, somehow, cause the local atmosphere in a thundercloud to transition to a conducting state. In response to this claim, other researchers have published simulations showing that the electron density produced by RREA is far too small to be able to affect the conductivity in the cloud sufficiently to initiate lightning. In this paper, we compare 74 days of cosmic ray air shower data collected in north central Florida during 2013-2015, the recorded CRASs having primary energies on the order of 1016 eV to 1018 eV and zenith angles less than 38°, with Lightning Mapping Array (LMA) data, and we show that there is no evidence that the detected cosmic ray air showers initiated lightning. Furthermore, we show that the average probability of any of our detected cosmic ray air showers to initiate a lightning flash can be no more than 5%. If all lightning flashes were initiated by cosmic ray air showers, then about 1.6% of detected CRASs would initiate lightning; therefore, we do not have enough data to exclude the possibility that lightning flashes could be initiated by cosmic ray air showers.
Numerical Model for Cosmic Rays Species Production and Propagation in the Galaxy
NASA Technical Reports Server (NTRS)
Farahat, Ashraf; Zhang, Ming; Rassoul, Hamid; Connell, J. J.
2005-01-01
In recent years, considerable progress has been made in studying the propagation and origin of cosmic rays, as new and more accurate data have become available. Many models have been developed to study cosmic ray interactions and propagation showed flexibility in resembling various astrophysical conditions and good agreement with observational data. However, some astrophysical problems cannot be addressed using these models, such as the stochastic nature of the cosmic rays source, small-scale structures and inhomogeneities in the interstellar gas that can affect radioactive secondary abundance in cosmic rays. We have developed a new model and a corresponding computer code that can address some of these limitations. The model depends on the expansion of the backward stochastic solution of the general diffusion transport equation (Zhang 1999) starting from an observer position to solve a group of diffusion transport equations each of which represents a particular element or isotope of cosmic ray nuclei. In this paper we are focusing on key abundance ratios such as B/C, sub-Fe/Fe, (10)Be/(9)Be, (26)Al/(27)Al, (36)Cl/(37)Cl and (54)Mn/(55)Mn, which all have well established cross sections, to evaluate our model. The effect of inhomogeneity in the interstellar medium is investigated. The contribution of certain cosmic ray nuclei to the production of other nuclei is addressed. The contribution of various galactic locations to the production of cosmic ray nuclei observed at solar system is also investigated.
Modulation of Cosmic Ray Precipitation Related to Climate
NASA Technical Reports Server (NTRS)
Feynman, J.; Ruzmaikin, A.
1998-01-01
High energy cosmic rays may influence the formation of clouds, and thus can have an impact on weather and climate. Cosmic rays in the solar wind are incident on the magnetosphere boundary and are then transmitted through the magnetosphere and atmosphere to reach the upper troposphere.
Investigation of the properties of galactic cosmic rays with the KASCADE-Grande experiment
NASA Astrophysics Data System (ADS)
Hörandel, J. R.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2011-02-01
The properties of galactic cosmic rays are investigated with the KASCADE-Grande experiment in the energy range between 1014 and 1018 eV. Recent results are discussed. They concern mainly the all-particle energy spectrum and the elemental composition of cosmic rays.
Low Cost Balloon programme of Indian Centre for Space Physics
NASA Astrophysics Data System (ADS)
Chakrabarti, Sandip Kumar
2016-07-01
Indian Centre for Space Physics has launched 89 Missions to near space using single or multiple weather balloons or very light plastic balloons. Basic goal was to capitalize miniaturization of equipments in modern ages. Our typical payload of less than 4kg weight consists of GPS, video camera, cosmic ray detectors, Attitude measurement unit, sunsensor and most importantly a 50-100sqcm X-ray/Gamma-ray detector (usually a scintillator type). The main purpose of the latter is to study spectra of secondary cosmic ray spectra (till our ceiling altitude of 36-42km) over the years and their seasonal variation or variation with solar cycle. We also study solar X-ray spectra, especially of solar flares. We have detected a Gamma Ray Burst (GRB) and pulsars. Our observation of black hole candidates did not yield satisfactory result yet mainly because of poor collimation (~ 10 deg x 10 deg) by lead collimator which introduces strong background also. Our effort with multiple balloon flights enabled us to have long duration flights. We believe that our procedure is very futuristic and yet at an affordable cost.
Significance of medium energy gamma ray astronomy in the study of cosmic rays
NASA Technical Reports Server (NTRS)
Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.
1975-01-01
Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.
Search for 1/3e and 2/3e charged quarks in the cosmic radiation at 2750-m altitude.
NASA Technical Reports Server (NTRS)
Cox, A. J.; Beauchamp, W. T.; Bowen, T.; Kalbach, R. M.
1972-01-01
A scintillation counter telescope consisting of eight liquid scintillation counters and four wide-gap spark chambers was used to search for particles with electric charge 1/3e and 2/3e in cosmic rays at 2750 m above sea level. No such particles were detected during the 1500-hr experimental run. Upper limits on the vertical fluxes are established, and estimates of the corresponding sea-level fluxes are made for comparison with previous results.
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2014-01-01
Slightly modifying the standard big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach’s principle, governed by Einstein’s general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, cosmic microwave background radiation, and acceleration of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates the emissions of dynamic black holes according to the black hole universe model and provides a self-consistent explanation for the observations of gamma ray bursts (GRBs), X-ray flares, and quasars as emissions of dynamic star-like, massive, and supermassive black holes. It is shown that a black hole, when it accretes its ambient matter or merges with other black holes, becomes dynamic. Since the event horizon of a dynamic black hole is broken, the inside hot (or high-frequency) blackbody radiation leaks out. The leakage of the inside hot blackbody radiation leads to a GRB if it is a star-like black hole, an X-ray flare if it is a massive black hole like the one at the center of the Milky Way, or a quasar if it is a supermassive black hole like an active galactic nucleus (AGN). The energy spectra and amount of emissions produced by the dynamic star-like, massive, and supermassive black holes can be consistent with the measurements of GRBs, X-ray flares, and quasars.
NASA Technical Reports Server (NTRS)
1975-01-01
The galactic distribution of H2 was studied through gamma radiation and through X-ray, optical, and infrared absorption measurements from SAS-2 and other sources. A comparison of the latitude distribution of gamma-ray intensity with reddening data shows reddening data to give the best estimate of interstellar gas in the solar vicinity. The distribution of galactic cosmic ray nucleons was determined and appears to be identical to the supernova remnant distribution. Interactions between ultrahigh energy cosmic-ray nuclei and intergalactic photon radiation fields were calculated, using the Monte Carlo method.
Cosmic rays at the ankle: Composition studies using the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Younk, Patrick William
The ankle is a flattening of the cosmic ray energy spectrum at approximately 10 18.5 eV. Its origin is unknown. This thesis investigates the nature of cosmic rays with energy near 10 18.5 eV, and it evaluates two phenomenological models for the ankle feature. Data from the Pierre Auger Observatory is used. Two important calibration studies for the Pierre Auger Observatory are presented: (1) A measurement of the time offset between the surface detector and the fluorescence detector, and (2) A measurement of the fluorescence telescope alignment. The uncertainty on the time offset measurement is 20 ns and the uncertainty on the fluorescence telescope alignment is 0.14°; both uncertainties are within the design specifications of the observatory. Studies to determine the cosmic ray composition mixture near the ankle are presented. Measurements of the average depth of shower maximum suggest that the average particle mass is gradually decreasing between 10 17.8 and 10 18.4 eV and that the average particle mass is steady or slightly increasing between 10 18.5 and 10 19.0 eV. Measurements of the average depth of shower maximum also suggest that the fractional abundance of intermediate weight nuclei such as carbon steadily increases from 10 18 to 10 19 eV. Between 10 18.5 and 10 19.0 eV, the correlation between the depth of shower maximum and the ground level muon density is consistent with a significant fractional abundance of both protons and intermediate weight nuclei. Two popular phenomenological models for the ankle are compared with the above composition results. The first model is that the ankle marks the intersection between a soft galactic spectrum and a hard extragalactic spectrum. The second model is that the ankle is part of a dip in the cosmic ray spectrum (the pair production dip) caused by the attenuation of protons as they travel through intergalactic space. It is demonstrated that the experimental results favor the first model.
A SPDS Node to Support the Systematic Interpretation of Cosmic Ray Data
NASA Technical Reports Server (NTRS)
1997-01-01
The purpose of this project was to establish and maintain a Space Physics Data System (SPDS) node that supports the analysis and interpretation of current and future galactic cosmic ray (GCR) measurements by (1) providing on-line databases relevant to GCR propagation studies; (2) providing other on-line services, such as anonymous FTP access, mail list service and pointers to e-mail address books, to support the cosmic ray community; (3) providing a mechanism for those in the community who might wish to submit similar contributions for public access; (4) maintaining the node to assure that the databases remain current; and (5) investigating other possibilities, such as CD-ROM, for public dissemination of the data products. Shortly after the original grant to support these activities was established at Louisiana State University a detailed study of alternate choices for the node hardware was initiated. The chosen hardware was an Apple Workgroup Server 9150/120 consisting of a 120 MHz PowerPC 601 processor, 32 MB of memory, two I GB disks and one 2 GB disk. This hardware was ordered and installed and has been operating reliably ever since. A preliminary version of the database server was available during the first year effort and was used as part of the very successful SPDS demonstration during the Rome, Italy International Cosmic Ray Conference. For this server version we were able to establish the html and anonymous FTP server software, develop a Web page structure which can be easily modified to include new items, provide an on-line database of charge changing total cross sections, include the cross section prediction software of Silberberg & Tsao as well as Webber, Kish and Schrier for download access, and provide an on-line bibliography of the cross section measurement references by the Transport Collaboration. The preliminary version of this SPDS Cosmic Ray node was examined by members of the C&H SPDS committee and returned comments were used to refine the implementation.
Cosmic-Ray Moisture Probe on North Slope of Alaska Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desilets, Darin
2016-06-15
In September of 2014 a wide-area snow monitoring device was installed at the U.S. Department of Energy (DOE)’s Barrow, Alaska Atmospheric Radiation Measurement (ARM) Climate Research Facility site. The device is special in that it uses measurements of cosmic-ray neutrons as a proxy for snow water equivalent (SWE) depth. A unique characteristic of the technology is that it integrates over a wide area (as much as 40 ha), in contrast to conventional ground-based technologies, which essentially give point samples. Conventional point-scale technologies are problematic in the Arctic, both because extreme weather conditions are taxing on equipment, and because point measurementsmore » can fail to accurately characterize the average SWE over a larger area, even when excellent precision is obtained. The sensor installed in Barrow is, by far, the northernmost of a constellation of sites that makeup the U.S. COsmic ray Soil Moisture Observing System (COSMOS). The sensor is used for SWE measurements in winter and soil moisture measurements in summer. The ability of this type of sensor to operate in the Arctic had not been verified until now. The cosmic-ray sensor was installed on a tripod located approximately 150 m south of the ARM User Facility (Figure 1), and within boundaries of land managed by the ARM Facility. The sensor consists of both “bare” and “moderated” channels, where the moderated channel is the primary output used to calculate SWE. A QDL2100 data logger with pressure sensor was located inside of the User Facility, and a Campbell CS215 temperature and humidity sensor was attached to a rail on the upper deck of the User Facility, to enable near-real-time absolute humidity corrections to the data. The cosmic-ray sensors are connected to the data logger using an armored Cat5e cable that lies on top of the tundra. Data are retrieved hourly via Iridium satellite link.« less
Contributions to the 19th International Cosmic Ray Conference
NASA Technical Reports Server (NTRS)
1985-01-01
Various aspects of cosmic radiation, its measurements and their patterns are presented. Measurement techniques and variations in solar cosmic ray patterns and calculations of elemental abundances are reviewed.
Ninteenth International Cosmic Ray Conference. SH Sessions, Volume 4
NASA Technical Reports Server (NTRS)
Jones, F. C. (Compiler)
1985-01-01
Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume covers solar and heliospheric phenomena, specifically, particle acceleration; cosmic ray compsotion, spectra, and anisotropy; propagation of solar and interplanetary energetic particles; solar-cycle modulation; and propagation of galactic particles in the heliosphere.
Cosmic ray modulation by high-speed solar wind fluxes
NASA Technical Reports Server (NTRS)
Dorman, L. I.; Kaminer, N. S.; Kuzmicheva, A. E.; Mymrina, N. V.
1985-01-01
Cosmic ray intensity variations connected with recurrent high-speed fluxes (HSF) of solar wind are investigated. The increase of intensity before the Earth gets into a HSF, north-south anisotropy and diurnal variation of cosmic rays inside a HSF as well as the characteristics of Forbush decreases are considered.
Elemental composition, isotopes, electrons and positrons in cosmic rays
NASA Technical Reports Server (NTRS)
Balasubrahmanyan, V. K.
1979-01-01
Papers presented at the 16th International Cosmic Ray Conference, Kyoto, Japan, dealing with the composition of cosmic rays are reviewed. Particular interest is given to data having bearing on nucleosynthesis sites, supernovae, gamma-process, comparison with solar system composition, multiplicity of sources, and the energy dependence of composition.
NASA Technical Reports Server (NTRS)
ONeill, P. M.
2007-01-01
Advanced Composition Explorer (ACE) satellite measurements of the galactic cosmic ray flux and correlation with the Climax Neutron Monitor count over Solar Cycle 23 are used to update the Badhwar O'Neill Galactic Cosmic Ray (GCR) model.
Testing Galactic Cosmic Ray Models
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.
2009-01-01
Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.
Testing Galactic Cosmic Ray Models
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.
2010-01-01
Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.
Rossi and high-energy astronomy
NASA Astrophysics Data System (ADS)
Clark, George W.
2012-03-01
The contributions of Bruno Rossi to high-energy astronomy began in Italy in the 1930s with investigations concerning the nature of cosmic rays in theory and in hands-on experiments at the universities of Florence and Padua. Recent discoveries had cast doubt on Robert Millikan's idea that the primary cosmic rays are gamma rays created in the production of the elements by fusion of hydrogen atoms in interstellar space. Rossi entered the field with a prediction published in 1930 of a difference between the intensity of cosmic rays from the east and the west that would occur if the primary cosmic rays were charged particles of one sign. In the same year he invented the first practical electronic coincidence circuit, which he used in a series of fundamental particle experiments and in an unsuccessful attempt to detect an east-west effect at Florence. Expecting by theory that the effect would be greater at high altitude near the equator, he took his experiment to Eritrea in 1934 where his measurements demonstrated that the primary cosmic rays are predominantly positive particles. In the report of his expedition he also described his discovery of extensive cosmic-ray air showers. After WWII and his work at Los Alamos, Rossi resumed his cosmic-ray research, now at MIT, in a new style best described in his own words: ``Now I had the responsibility of an entire group, and what mattered was no longer my own work, but the work of the group.'' He suggested the new methods of ``density sampling'' and ``fast timing'' for air shower studies, and promoted their application in numerous experiments on the nature and origins of the highest energy cosmic rays. In 1959 he initiated and participated as a consultant in the work of Riccardo Giacconi that led to the discovery of the first x-ray star, Sco X-1, and the development of the first imaging x-ray telescopes. At MIT, members of the Rossi Cosmic Ray Group took the early steps in gamma-ray astronomy, first with balloon experiments that set lower and lower limits on the intensity of primary gamma rays, and then with the satellite experiments led by William Kraushaar that discovered the galactic and extra-galactic components of cosmic gamma rays. After Sco X-1, Rossi focused his efforts on exploring the solar wind and the interplanetary plasma while leaving his younger colleagues to pursue the new field of extra-solar x-ray astronomy with balloon, rocket, and satellite experiments.
Cosmic-ray electrons and galactic radio emission - A conflict
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Daniel, R. R.; Stephens, S. A.
1977-01-01
An analysis which takes into account the observed energy spectrum of cosmic-ray electrons above 5 GeV and calculated mean magnetic field data shows that the observed spectral index of the radio continuum in the Galaxy is in conflict with some of the cosmic-ray electron measurements. It is found that the absolute intensities of cosmic-ray electrons measured by some of the experimenters are so low that they cannot be reconciled either with the interstellar magnetic field limits or with the extent of the galactic disk toward the anticenter.
11- and 22-year variations of the cosmic ray density and of the solar wind speed
NASA Technical Reports Server (NTRS)
Chirkov, N. P.
1985-01-01
Cosmic ray density variations for 17-21 solar activity cycles and the solar wind speed for 20-21 events are investigated. The 22-year solar wind speed recurrence was found in even and odd cycles. The 22-year variations of cosmic ray density were found to be opposite that of solar wind speed and solar activity. The account of solar wind speed in 11-year variations significantly decreases the modulation region of cosmic rays when E = 10-20 GeV.
Cosmic rays in the heliosphere
NASA Technical Reports Server (NTRS)
Webber, William R.
1987-01-01
The different types of cosmic ray particles and their role in the heliosphere are briefly described. The rates of various energetic particles were examined as a function of time and used to derive various differential energy gradients. The Pioneer and Voyager cosmic ray observations throughout the heliosphere are indeed giving a perspective on the three-dimensional character and size of the heliosphere. Most clearly the observations are emphasizing the role that transient variations in the outer heliosphere, and most likely the heliospheric boundary shock, play in the 11 year solar cycle modulation of cosmic rays.
NASA Technical Reports Server (NTRS)
Alania, M. V.; Aslamazashvili, R. G.; Bochorishvili, T.; Djapiashvili, T. V.; Tkemaladze, V. S.
1985-01-01
Results of the numerical solution of the anistoropic diffusion equation are presented. The modulation depth of galactic cosmic rays is defined by the degree of curvature of the neutral current sheet in the heliosphere. The effect of the regular interplanetary magnetic field (IMF) on cosmic ray anisotropy in the period of solar activity minimum (in 1976) is analyzed by the data of the neutron super-monitors of the world network, and the heliolatitudinal gradient and cosmic ray diffusion coefficient are defined.
Viscosity and inertia in cosmic-ray transport - Effects of an average magnetic field
NASA Technical Reports Server (NTRS)
Williams, L. L.; Jokipii, J. R.
1991-01-01
A generalized transport equation is introduced which describes the transport and propagation of cosmic rays in a magnetized, collisionless medium. The equation is valid if the cosmic-ray distribution function is nearly isotropic in momentum, if the ratio of fluid speed to fluid-flow particle speed is small, and if the ratio of collision time to time for change in the macroscopic flow is small. Five independent cosmic-ray viscosity coefficients are found, and the ralationship of this viscosity to particle orbits in a magnetic field is presented.
Cosmic ray spectrum, composition, and anisotropy measured with IceCube
NASA Astrophysics Data System (ADS)
Tamburro, Alessio
2014-04-01
Analysis of cosmic ray surface data collected with the IceTop array of Cherenkov detectors at the South Pole provides an accurate measurement of the cosmic ray spectrum and its features in the "knee" region up to energies of about 1 EeV. IceTop is part of the IceCube Observatory that includes a deep-ice cubic kilometer detector that registers signals of penetrating muons and other particles. Surface and in-ice signals detected in coincidence provide clear insights into the nuclear composition of cosmic rays. IceCube already measured an increase of the average primary mass as a function of energy. We present preliminary results on both IceTop-only and coincident events analysis. Furthermore, we review the recent measurement of the cosmic ray anisotropy with IceCube.
Cosmic Rays and Their Radiative Processes in Numerical Cosmology
NASA Technical Reports Server (NTRS)
Ryu, Dongsu; Miniati, Francesco; Jones, Tom W.; Kang, Hyesung
2000-01-01
A cosmological hydrodynamic code is described, which includes a routine to compute cosmic ray acceleration and transport in a simplified way. The routine was designed to follow explicitly diffusive, acceleration at shocks, and second-order Fermi acceleration and adiabatic loss in smooth flows. Synchrotron cooling of the electron population can also be followed. The updated code is intended to be used to study the properties of nonthermal synchrotron emission and inverse Compton scattering from electron cosmic rays in clusters of galaxies, in addition to the properties of thermal bremsstrahlung emission from hot gas. The results of a test simulation using a grid of 128 (exp 3) cells are presented, where cosmic rays and magnetic field have been treated passively and synchrotron cooling of cosmic ray electrons has not been included.
Cosmic Rays and Their Radiative Processes in Numerical Cosmology
NASA Astrophysics Data System (ADS)
Ryu, D.; Miniati, F.; Jones, T. W.; Kang, H.
2000-05-01
A cosmological hydrodynamic code is described, which includes a routine to compute cosmic ray acceleration and transport in a simplified way. The routine was designed to follow explicitly diffusive acceleration at shocks, and second-order Fermi acceleration and adiabatic loss in smooth flows. Synchrotron cooling of the electron population can also be followed. The updated code is intended to be used to study the properties of nonthermal synchrotron emission and inverse Compton scattering from electron cosmic rays in clusters of galaxies, in addition to the properties of thermal bremsstrahlung emission from hot gas. The results of a test simulation using a grid of 1283 cells are presented, where cosmic rays and magnetic field have been treated passively and synchrotron cooling of cosmic ray electrons has not been included.
The shape of the extragalactic cosmic ray spectrum from galaxy clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harari, Diego; Mollerach, Silvia; Roulet, Esteban, E-mail: harari@cab.cnea.gov.ar, E-mail: mollerach@cab.cnea.gov.ar, E-mail: roulet@cab.cnea.gov.ar
2016-08-01
We study the diffusive escape of cosmic rays from a central source inside a galaxy cluster to obtain the suppression in the outgoing flux appearing when the confinement times get comparable or larger than the age of the sources. We also discuss the attenuation of the flux due to the interactions of the cosmic rays with the cluster medium, which can be sizeable for heavy nuclei. The overall suppression in the total cosmic ray flux expected on Earth is important to understand the shape of the extragalactic contribution to the cosmic ray spectrum for E / Z < 1 EeVmore » . This suppression can also be relevant to interpret the results of fits to composition-sensitive observables measured at ultra-high energies.« less
Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25
NASA Astrophysics Data System (ADS)
Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko
2017-04-01
Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.
Spaced-based Cosmic Ray Astrophysics
NASA Astrophysics Data System (ADS)
Seo, Eun-Suk
2016-03-01
The bulk of cosmic ray data has been obtained with great success by balloon-borne instruments, particularly with NASA's long duration flights over Antarctica. More recently, PAMELA on a Russian Satellite and AMS-02 on the International Space Station (ISS) started providing exciting measurements of particles and anti-particles with unprecedented precision upto TeV energies. In order to address open questions in cosmic ray astrophysics, future missions require spaceflight exposures for rare species, such as isotopes, ultra-heavy elements, and high (the ``knee'' and above) energies. Isotopic composition measurements up to about 10 GeV/nucleon that are critical for understanding interstellar propagation and origin of the elements are still to be accomplished. The cosmic ray composition in the knee (PeV) region holds a key to understanding the origin of cosmic rays. Just last year, the JAXA-led CALET ISS mission, and the DAMPE Chinese Satellite were launched. NASA's ISS-CREAM completed its final verification at GSFC, and was delivered to KSC to await launch on SpaceX. In addition, a EUSO-like mission for ultrahigh energy cosmic rays and an HNX-like mission for ultraheavy nuclei could accomplish a vision for a cosmic ray observatory in space. Strong support of NASA's Explorer Program category of payloads would be needed for completion of these missions over the next decade.
Cosmic-Ray Extremely Distributed Observatory: a global cosmic ray detection framework
NASA Astrophysics Data System (ADS)
Sushchov, O.; Homola, P.; Dhital, N.; Bratek, Ł.; Poznański, P.; Wibig, T.; Zamora-Saa, J.; Almeida Cheminant, K.; Alvarez Castillo, D.; Góra, D.; Jagoda, P.; Jałocha, J.; Jarvis, J. F.; Kasztelan, M.; Kopański, K.; Krupiński, M.; Michałek, M.; Nazari, V.; Smelcerz, K.; Smolek, K.; Stasielak, J.; Sułek, M.
2017-12-01
The main objective of the Cosmic-Ray Extremely Distributed Observatory (CREDO) is the detection and analysis of extended cosmic ray phenomena, so-called super-preshowers (SPS), using existing as well as new infrastructure (cosmic-ray observatories, educational detectors, single detectors etc.). The search for ensembles of cosmic ray events initiated by SPS is yet an untouched ground, in contrast to the current state-of-the-art analysis, which is focused on the detection of single cosmic ray events. Theoretical explanation of SPS could be given either within classical (e.g., photon-photon interaction) or exotic (e.g., Super Heavy Dark Matter decay or annihilation) scenarios, thus detection of SPS would provide a better understanding of particle physics, high energy astrophysics and cosmology. The ensembles of cosmic rays can be classified based on the spatial and temporal extent of particles constituting the ensemble. Some classes of SPS are predicted to have huge spatial distribution, a unique signature detectable only with a facility of the global size. Since development and commissioning of a completely new facility with such requirements is economically unwarranted and time-consuming, the global analysis goals are achievable when all types of existing detectors are merged into a worldwide network. The idea to use the instruments in operation is based on a novel trigger algorithm: in parallel to looking for neighbour surface detectors receiving the signal simultaneously, one should also look for spatially isolated stations clustered in a small time window. On the other hand, CREDO strategy is also aimed at an active engagement of a large number of participants, who will contribute to the project by using common electronic devices (e.g., smartphones), capable of detecting cosmic rays. It will help not only in expanding the geographical spread of CREDO, but also in managing a large manpower necessary for a more efficient crowd-sourced pattern recognition scheme to identify and classify SPS. A worldwide network of cosmic-ray detectors could not only become a unique tool to study fundamental physics, it will also provide a number of other opportunities, including space-weather or geophysics studies. Among the latter one has to list the potential to predict earthquakes by monitoring the rate of low energy cosmic-ray events. The diversity of goals motivates us to advertise this concept across the astroparticle physics community.
Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument
NASA Technical Reports Server (NTRS)
Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Isaacman, R. B.; Mather, J. C.; Meyer, S. S.; Noerdlinger, P. D.; Shafer, R. A.; Weiss, R.
1994-01-01
The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.
High Energy Astronomy Observatory (HEAO)
1970-01-01
This schematic details the third High Energy Astronomy Observatory (HEAO)-3. The HEAO-3's mission was to survey and map the celestial sphere for gamma-ray flux and make detailed measurements of cosmic-ray particles. It carried three scientific experiments: a gamma-ray spectrometer, a cosmic-ray isotope experiment, and a heavy cosmic-ray nuclei experiment. The HEAO-3 was originally identified as HEAO-C but the designation was changed once the spacecraft achieved orbit.
Aab, Alexander
2015-05-01
We analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80°, thus covering from -90° to +45° in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Véron-Cetty and Véron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes, self-clustering of event directions at angular scales up to 30°, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. As a result, the strongest departures from isotropy (post-trial probabilitymore » $$\\sim 1.4$$%) are obtained for cosmic rays with $$E\\gt 58$$ EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 10 44 erg s -1 (18° radius), and around the direction of Cen A (15° radius).« less
NASA Astrophysics Data System (ADS)
McCracken, K. G.; McDonald, F. B.; Beer, J.
2009-12-01
The cosmogenic radionuclide data from the past 10,000 years, and the instrumental cosmic ray data since 1936 provide detailed information on the possible consequences of the present long and deep solar minimum. Furthermore, the cosmic ray transport equation has been used to estimate the strength of the interplanetary magnetic field (IMF) throughout the past 10,000 years. This paper presents a series of figures that document the behavior of both the cosmic radiation and the IMF at Earth in the past. In particular, the 11-year cycles in both quantities for the past 600 years are displayed; and estimates given of the cosmic ray spectrum at Earth for situations that history tells us may occur in the near future. Over the longer term, a minimum of the Hallstatt cycle (2200 yr periodicity) of solar activity occurred ~500 years ago and the Sun is now on a steadily rising plane of activity. The historic record shows that the cosmic ray intensity has decreased extremely rapidly after earlier prolonged deep minima and this suggests rapid and large changes in the heliospheric conditions that we may see replicated. The paper will also display data from the deep, isolated solar minimum of 1956 that exhibited unusual low energy cosmic ray fluxes, and a highly anomalous cosmic ray gradient in the inner heliosphere. Paleo-cosmic ray evidence will also be displayed of an episode of intense solar energetic particle (SEP) events in the interval of reduced solar activity, 1892-1900, that may possibly be repeated. If the present long, deep solar minimum is a precursor to a “Grand Minimum” such as the Dalton minimum, it will provide a much improved insight into the spectrum of the cosmic radiation in interstellar space, and to the cosmic ray modulation process in the heliosphere. With this in mind, the paper suggests key measurements, and speculates on experimental conditions that may be markedly different from those encountered in the instrumental era.
Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.;
2012-01-01
We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e- produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.
Influence of Sun and Other Cosmic Factors on Environment of the Earth
2010-01-07
of the secondary cosmic rays (mostly muons , electrons, neutrons and gammas) can provide highly cost-effective information on the key characteristics...Coronal mass ejection (CME) from the Sun the impact on the Galactic Cosmic rays (GCR) will be observed. Particle detector is vital for measuring the...modulation effects the sun poses on the ambient population of the Galactic Cosmic Rays (GCR). The known agents of these modulation effects are Solar Flares
NASA Technical Reports Server (NTRS)
Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.
1990-01-01
The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.
The Heavy Nuclei eXplorer (HNX) Mission
NASA Astrophysics Data System (ADS)
Krizmanic, John; Mitchell, John; Binns, W. Robert; Hams, Thomas; Israel, Martin; Link, Jason; Rauch, Brian; Sakai, Kenichi; Sasaki, Makoto; Westphal, Andrew; Wiedenbeck, Mark; Heavy Nuclei eXplorer Collaboration
2016-03-01
The Heavy Nuclei eXplorer (HNX) will use two large high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-ray Trans-Iron Galactic Element Recorder (CosmicTIGER), designed to fly in a SpaceX DragonLab Capsule, to measure the cosmic-ray abundance of every individual element in the periodic table from carbon through curium, providing the first measurement of many of these elements. These measurements provide an investigation on the nature of the source material of cosmic rays, the processes that inject them into cosmic accelerators, and the acceleration mechanisms. HNX will measure several thousand ultra-heavy galactic cosmic ray (UHGCR) nuclei with Z >= 30 , including about 50 actinides (Z >= 79). These data allow for a measurement of the mix of new and old material that is accelerated to GCRs, determine their age, measure the mix of nucleosynthesis processes responsible for the UHGCRs, determine how UHGCR elements are selected for acceleration, and measure the mean integrated pathlength traversed by UHGCRs before observation. The scientific motivation and instrumentation of HNX will be discussed as well as recent beam test results.
NASA Technical Reports Server (NTRS)
Binns, W. R.; Fernandez, J. I.; Israel, M. H.; Klarmann, J.; Maehl, R. C.; Mewaldt, R. A.
1974-01-01
Results are presented on the chemical composition of VVH cosmic rays from a series of six high-altitude balloon flights of a large-area, high-resolution electronic detector. The charge composition in the 32 less than or equal to Z less than or equal to 45 interval is found to be inconsistent with S-process nucleosynthesis. The energy spectrum of particles with Z greater than or equal to 32 between 600 and 1500 MeV/N at the top of the atmosphere is measured and is found to be consistent with the 25 less than or equal to Z less than or equal to 27 group within experimental error.
Restoration of HST images with missing data
NASA Technical Reports Server (NTRS)
Adorf, Hans-Martin
1992-01-01
Missing data are a fairly common problem when restoring Hubble Space Telescope observations of extended sources. On Wide Field and Planetary Camera images cosmic ray hits and CCD hot spots are the prevalent causes of data losses, whereas on Faint Object Camera images data are lossed due to reseaux marks, blemishes, areas of saturation and the omnipresent frame edges. This contribution discusses a technique for 'filling in' missing data by statistical inference using information from the surrounding pixels. The major gain consists in minimizing adverse spill-over effects to the restoration in areas neighboring those where data are missing. When the mask delineating the support of 'missing data' is made dynamic, cosmic ray hits, etc. can be detected on the fly during restoration.
Amenomori, M; Ayabe, S; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, J Y; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mori, S; Mu, J; Munakata, K; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Sakata, M; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Utsugi, T; Wang, B S; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhaxisangzhu; Zhou, X X
2004-08-06
We report on the solar diurnal variation of the galactic cosmic-ray intensity observed by the Tibet III air shower array during the period from 1999 to 2003. In the higher-energy event samples (12 and 6.2 TeV), the variations are fairly consistent with the Compton-Getting anisotropy due to the terrestrial orbital motion around the Sun, while the variation in the lower-energy event sample (4.0 TeV) is inconsistent with this anisotropy. This suggests an additional anisotropy superposed at the multi-TeV energies, e.g., the solar modulation effect. This is the highest-precision measurement of the Compton-Getting anisotropy ever made.
A Multi-Variate Fit to the Chemical Composition of the Cosmic-Ray Spectrum
NASA Astrophysics Data System (ADS)
Eisch, Jonathan
Since the discovery of cosmic rays over a century ago, evidence of their origins has remained elusive. Deflected by galactic magnetic fields, the only direct evidence of their origin and propagation remain encoded in their energy distribution and chemical composition. Current models of galactic cosmic rays predict variations of the energy distribution of individual elements in an energy region around 3x1015 eV known as the knee. This work presents a method to measure the energy distribution of individual elemental groups in the knee region and its application to a year of data from the IceCube detector. The method uses cosmic rays detected by both IceTop, the surface-array component, and the deep-ice component of IceCube during the 2009-2010 operation of the IC-59 detector. IceTop is used to measure the energy and the relative likelihood of the mass composition using the signal from the cosmic-ray induced extensive air shower reaching the surface. IceCube, 1.5 km below the surface, measures the energy of the high-energy bundle of muons created in the very first interactions after the cosmic ray enters the atmosphere. These event distributions are fit by a constrained model derived from detailed simulations of cosmic rays representing five chemical elements. The results of this analysis are evaluated in terms of the theoretical uncertainties in cosmic-ray interactions and seasonal variations in the atmosphere. The improvements in high-energy cosmic ray hadronic-interaction models informed by this analysis, combined with increased data from subsequent operation of the IceCube detector, could provide crucial limits on the origin of cosmic rays and their propagation through the galaxy. In the course of developing this method, a number of analysis and statistical techniques were developed to deal with the difficulties inherent in this type of measurement. These include a composition-sensitive air shower reconstruction technique, a method to model simulated event distributions with limited statistics, and a method to optimize and estimate the error on a regularized fit.
NASA Astrophysics Data System (ADS)
Andreasen, M.; Looms, M. C.; Bogena, H. R.; Desilets, D.; Zreda, M. G.; Sonnenborg, T. O.; Jensen, K. H.
2014-12-01
The water stored in the various compartments of the terrestrial ecosystem (in snow, canopy interception, soil and litter) controls the exchange of the water and energy between the land surface and the atmosphere. Therefore, measurements of the water stored within these pools are critical for the prediction of e.g. evapotranspiration and groundwater recharge. The detection of cosmic-ray neutron intensity is a novel non-invasive method for the quantification of continuous intermediate-scale soil moisture. The footprint of the cosmic-ray neutron probe is a hemisphere of a few hectometers and subsurface depths of 10-70 cm depending on wetness. The cosmic-ray neutron method offers measurements at a scale between the point-scale measurements and large-scale satellite retrievals. The cosmic-ray neutron intensity is inversely correlated to the hydrogen stored within the footprint. Overall soil moisture represents the largest pool of hydrogen and changes in the soil moisture clearly affect the cosmic-ray neutron signal. However, the neutron intensity is also sensitive to variations of hydrogen in snow, canopy interception and biomass offering the potential to determine water content in such pools from the signal. In this study we tested the potential of determining canopy interception and biomass using cosmic-ray neutron intensity measurements within the framework of the Danish Hydrologic Observatory (HOBE) and the Terrestrial Environmental Observatories (TERENO). Continuous measurements at the ground and the canopy level, along with profile measurements were conducted at towers at forest field sites. Field experiments, including shielding the cosmic-ray neutron probes with cadmium foil (to remove lower-energy neutrons) and measuring reference intensity rates at complete water saturated conditions (on the sea close to the HOBE site), were further conducted to obtain an increased understanding of the physics controlling the cosmic-ray neutron transport and the equipment used. Additionally, neutron transport modeling, using the extended version of the Monte Carlo N-Particle Transport Code, was conducted. The responses of the reference condition, different amounts of biomass, soil moisture and canopy interception on the cosmic-ray neutron intensity were simulated and compared to the measurements.
NASA Technical Reports Server (NTRS)
Gronoff, G.; Mertens, C.; Lilensten, J.; Desorgher, L.; Fluckiger, E.; Velinov, P.
2011-01-01
Context. The Cassini-Huygens mission has revealed the importance of particle precipitation in the atmosphere of Titan thanks to in-situ measurements. These ionizing particles (electrons, protons, and cosmic rays) have a strong impact on the chemistry, hence must be modeled. Aims. We revisit our computation of ionization in the atmosphere of Titan by cosmic rays. The high-energy high-mass ions are taken into account to improve the precision of the calculation of the ion production profile. Methods. The Badhwahr and O Neill model for cosmic ray spectrum was adapted for the Titan model. We used the TransTitan model coupled with the Planetocosmics model to compute the ion production by cosmic rays. We compared the results with the NAIRAS/HZETRN ionization model used for the first time for a body that differs from the Earth. Results. The cosmic ray ionization is computed for five groups of cosmic rays, depending on their charge and mass: protons, alpha, Z = 8 (oxygen), Z = 14 (silicon), and Z = 26 (iron) nucleus. Protons and alpha particles ionize mainly at 65 km altitude, while the higher mass nucleons ionize at higher altitudes. Nevertheless, the ionization at higher altitude is insufficient to obscure the impact of Saturn s magnetosphere protons at a 500 km altitude. The ionization rate at the peak (altitude: 65 km, for all the different conditions) lies between 30 and 40/cu cm/s. Conclusions. These new computations show for the first time the importance of high Z cosmic rays on the ionization of the Titan atmosphere. The updated full ionization profile shape does not differ significantly from that found in our previous calculations (Paper I: Gronoff et al. 2009, 506, 955) but undergoes a strong increase in intensity below an altitude of 400 km, especially between 200 and 400 km altitude where alpha and heavier particles (in the cosmic ray spectrum) are responsible for 40% of the ionization. The comparison of several models of ionization and cosmic ray spectra (in intensity and composition) reassures us about the stability of the altitude of the ionization peak (65 km altitude) with respect to the solar activity.
NASA Technical Reports Server (NTRS)
Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.
1991-01-01
The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krakau, S.; Schlickeiser, R., E-mail: steffen.krakau@rub.de, E-mail: rsch@tp4.rub.de
2016-02-20
The linear instability of an ultrarelativistic hadron beam in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of parallel electrostatic and electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays from their distant sources to Earth. As opposed to the previous paper, we calculate the minimum instability growth time for Lorentz-distributed cosmic rays which traverse the hot IGM. The growth times are orders of magnitude higher than the cosmic-ray propagation time in the IGM. Since the backreaction of the generated plasma fluctuations (plateauing) lasts longer than the propagation time, the cosmic-raymore » hadron beam can propagate to the Earth without losing a significant amount of energy to electrostatic turbulence.« less
Cosmic ray albedo gamma rays from the quiet sun
NASA Technical Reports Server (NTRS)
Seckel, D.; Stanev, T.; Gaisser, T. K.
1992-01-01
We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).
Cosmological simulations of dwarf galaxies with cosmic ray feedback
NASA Astrophysics Data System (ADS)
Chen, Jingjing; Bryan, Greg L.; Salem, Munier
2016-08-01
We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic rays (CRs) generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain CR parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8 to 30 × 1010 M⊙. We find that including CR feedback (with diffusion) consistently leads to disc-dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.
Radiocarbon Production by Thunderstorms
NASA Astrophysics Data System (ADS)
Babich, L. P.
2017-11-01
In view of the neutron flux enhancements observed in thunderstorms, a contribution of thunderstorm neutrons to atmospheric radiocarbon (isotope 614C) production is analyzed in connection with the archaeometry. Herein, estimates of neutron fluence per lightning electromagnetic pulse in regions with severe thunderstorm activity, at which a local rate of the 614C production is comparable to the observed rates, are shown to be consistent with the measured magnitudes of thunderstorm neutron fluence. At present, available observations of atmospheric neutron and parent gamma ray flashes correlated with thunderstorms do not allow making final conclusions about thunderstorm contributions to 614C production. For this, numerous studies of high-energy phenomena in thunderstorms are required, especially in the tropical belt where the thunderstorm activity is especially severe and where the 614C production by galactic cosmic rays is almost independent of the solar activity disturbing the Earth's magnetic field shielding the Earth from cosmic rays.
Maximum Energies of Shock-Accelerated Electrons in Young Shell Supernova Remnants
NASA Technical Reports Server (NTRS)
Reynolds, Stephen P.; Keohane, Jonathan W.; White, Nicholas E. (Technical Monitor)
1999-01-01
Young supernova remnants (SNRs) are often assumed to be the source of cosmic rays up to energies approaching the slight steepening in the cosmic ray spectrum at around 1000 TeV, known as the "knee." We show that the observed X-ray emission of 14 radio-bright shell remnants, including all five historical shells, can be used to put limits on E(sub max), the energy at which the electron energy distribution must steepen from its slope at radio-emitting energies. Most of the remnants show thermal spectra, so any synchrotron component must fall below the observed X-ray fluxes. We obtain upper limits on E(sub max) by considering the most rapid physically plausible cutoff in the relativistic electron distribution, an exponential, which is as sharp or sharper than found in any more elaborate models. This maximally curved model then gives us the highest possible E(sub max) consistent with not exceeding observed X-rays. Our results are thus independent of particular models for the electron spectrum in SNRs. Assuming homogeneous emitting volumes with a constant magnetic field strength of 10 uG, no object could reach 1000 TeV, and only one, Kes 73, has an upper limit on E(sub max), above 100 TeV. All the other remnants have limits at or below 80 TeV. E(sub max) is probably set by the finite remnant lifetime rather than by synchrotron losses for remnants younger than a few thousand years, so that an observed electron steepening should be accompanied by steepening at the same energy for protons. More complicated, inhomogeneous models could allow higher values of E(sub max) in parts of the remnant, but the emission-weighted average value, that characteristic of typical electrons, should obey these limits. The young remnants are not expected to improve much over their remaining lives at producing the highest energy Galactic cosmic rays; if they cannot, this picture of cosmic-ray origin may need major alteration.
NASA Astrophysics Data System (ADS)
Banik, Prabir; Bhadra, Arunava
2017-06-01
It is widely believed that Galactic cosmic rays are originated in supernova remnants (SNRs), where they are accelerated by a diffusive shock acceleration (DSA) process in supernova blast waves driven by expanding SNRs. In recent theoretical developments of the DSA theory in SNRs, protons are expected to accelerate in SNRs at least up to the knee energy. If SNRs are the true generators of cosmic rays, they should accelerate not only protons but also heavier nuclei with the right proportions, and the maximum energy of the heavier nuclei should be the atomic number (Z ) times the mass of the proton. In this work, we investigate the implications of the acceleration of heavier nuclei in SNRs on energetic gamma rays produced in the hadronic interaction of cosmic rays with ambient matter. Our findings suggest that the energy conversion efficiency has to be nearly double for the mixed cosmic ray composition compared to that of pure protons to explain observations. In addition, the gamma-ray flux above a few tens of TeV would be significantly higher if cosmic ray particles could attain energies Z times the knee energy in lieu of 200 TeV, as suggested earlier for nonamplified magnetic fields. The two stated maximum energy paradigms will be discriminated in the future by upcoming gamma-ray experiments like the Cherenkov telescope array (CTA).
Implications of HEAO-3 data for the acceleration and propagation of galactic cosmic rays
NASA Technical Reports Server (NTRS)
Ormes, J. F.; Protheroe, R. J.
1983-01-01
The energy dependence of the mean escape length of cosmic rays from the galaxy in the light of recent measurements of cosmic ray abundances from the Danish-French experiment on HEAO-3 is re-examined. The energy dependence is found to be steeper than previously thought.
Early history of cosmic rays at Chicago
NASA Astrophysics Data System (ADS)
Yodh, Gaurang B.
2013-02-01
Cosmic ray studies at the University of Chicago were started by Arthur Compton during the late 1920s. The high points of cosmic ray studies at Chicago under Compton and Marcel Schein are the focus of this report, which summarizes the research done at Chicago up to the end of World War II.
Cosmic ray modulation and turbulent interaction regions near 11 AU
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Mcdonald, F. B.; Goldstein, M. L.; Lazarus, A. J.
1985-01-01
When Voyager 2 was near 11 AU, the counting rate of nuclei approx 75 MeV/nucleon decreased during the interval from July, 1982 to November, 1982, and it increased thereafter until August, 1983. A decrease in cosmic ray flux was generally associated with the passage of an interaction region in which the magnetic field strength B was higher than that predicted by the spiral field model, B sub p. Several large enhancements in B/B sup p were associated with merged interaction regions which probably resulted from the interaction of two or more distinct flows. During the passage of interaction regions the cosmic ray intensity decreased at a rate proportional to (B/B sup p -1), and during the passage of rarefaction regions (where B/B sup p 1) the cosmic ray intensity increased at a constant rate. The general form of the cosmic ray intensity profile during this approx 13 month minicycle can be described by integrating these relations using the observed B(t). Latitudinal variations of the interaction regions and of the short-term cosmic ray variations were identified.
COMPARISON OF COSMIC-RAY ENVIRONMENTS ON EARTH, MOON, MARS AND IN SPACECARFT USING PHITS.
Sato, Tatsuhiko; Nagamatsu, Aiko; Ueno, Haruka; Kataoka, Ryuho; Miyake, Shoko; Takeda, Kazuo; Niita, Koji
2017-09-29
Estimation of cosmic-ray doses is of great importance not only in aircrew and astronaut dosimetry but also in evaluation of background radiation exposure to public. We therefore calculated the cosmic-ray doses on Earth, Moon and Mars as well as inside spacecraft, using Particle and Heavy Ion Transport code System PHITS. The same cosmic-ray models and dose conversion coefficients were employed in the calculation to properly compare between the simulation results for different environments. It is quantitatively confirmed that the thickness of physical shielding including the atmosphere and soil of the planets is the most important parameter to determine the cosmic-ray doses and their dominant contributors. The comparison also suggests that higher solar activity significantly reduces the astronaut doses particularly for the interplanetary missions. The information obtained from this study is useful in the designs of the future space missions as well as accelerator-based experiments dedicated to cosmic-ray research. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Observation of Anisotropy in the Galactic Cosmic-Ray Arrival Directions at 400 TeV with IceCube
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, C. C.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration
2012-02-01
In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic-ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic-ray-induced muons recorded by the partially deployed IceCube observatory between 2009 May and 2010 May. The data include a total of 33 × 109 muon events with a median angular resolution of ~3°. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic-ray median energies of 20 and 400 TeV. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high-energy sky map shows a different anisotropy structure including a deficit with a post-trial significance of -6.3σ. This anisotropy reveals a new feature of the Galactic cosmic-ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.
Model structure of a cosmic-ray mediated stellar or solar wind
NASA Technical Reports Server (NTRS)
Lee, M. A.; Axford, W. I.
1988-01-01
An idealized hydrodynamic model is presented for the mediation of a free-streaming stellar wind by galactic cosmic rays or energetic particles accelerated at the stellar wind termination shock. The spherically-symmetric stellar wind is taken to be cold; the only body force is the cosmic ray pressure gradient. The cosmic rays are treated as a massless fluid with an effective mean diffusion coefficient k proportional to radial distance r. The structure of the governing equations is investigated both analytically and numerically. Solutions for a range of values of k are presented which describe the deceleration of the stellar wind and a transition to nearly incompressible flow and constant cosmic ray pressure at large r. In the limit of small k the transition steepens to a strong stellar wind termination shock. For large k the stellar wind is decelerated gradually with no shock transition. It is argued that the solutions provide a simple model for the mediation of the solar wind by interstellar ions as both pickup ions and the cosmic ray anomalous component which together dominate the pressure of the solar wind at large r.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, H.-Q.; Schlickeiser, R., E-mail: hqhe@mail.iggcas.ac.cn, E-mail: rsch@tp4.rub.de
The cosmic ray mean free path in a large-scale nonuniform guide magnetic field with superposed magnetostatic turbulence is calculated to clarify some conflicting results in the literature. A new, exact integro-differential equation for the cosmic-ray anisotropy is derived from the Fokker-Planck transport equation. A perturbation analysis of this integro-differential equation leads to an analytical expression for the cosmic ray anisotropy and the focused transport equation for the isotropic part of the cosmic ray distribution function. The derived parallel spatial diffusion coefficient and the associated cosmic ray mean free path include the effect of adiabatic focusing and reduce to the standardmore » forms in the limit of a uniform guide magnetic field. For the illustrative case of isotropic pitch angle scattering, the derived mean free path agrees with the earlier expressions of Beeck and Wibberenz, Bieber and Burger, Kota, and Litvinenko, but disagrees with the result of Shalchi. The disagreement with the expression of Shalchi is particularly strong in the limit of strong adiabatic focusing.« less
Enhancements of energetic particles near the heliospheric termination shock.
McDonald, Frank B; Stone, Edward C; Cummings, Alan C; Heikkila, Bryant; Lal, Nand; Webber, William R
2003-11-06
The spacecraft Voyager 1 is at a distance greater than 85 au from the Sun, in the vicinity of the termination shock that marks the abrupt slowing of the supersonic solar wind and the beginning of the extended and unexplored distant heliosphere. This shock is expected to accelerate 'anomalous cosmic rays', as well as to re-accelerate Galactic cosmic rays and low-energy particles from the inner Solar System. Here we report a significant increase in the numbers of energetic ions and electrons that persisted for seven months beginning in mid-2002. This increase differs from any previously observed in that there was a simultaneous increase in Galactic cosmic ray ions and electrons, anomalous cosmic rays and low-energy ions. The low-intensity level and spectral energy distribution of the anomalous cosmic rays, however, indicates that Voyager 1 still has not reached the termination shock. Rather, the observed increase is an expected precursor event. We argue that the radial anisotropy of the cosmic rays is expected to be small in the foreshock region, as is observed.
Observation of Anisotropy in the Galactic Cosmic Ray Arrival Directions at 400 TEV With IceCube
NASA Technical Reports Server (NTRS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.;
2011-01-01
In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic ray induced muons recorded by the partially deployed IceCube observatory between May 2009 and May 2010. The data include a total of 33x l0(epx 9) muon events with a median angular resolution of approx 3 degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic ray median energies of 20 and 400 Te V. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high energy skymap shows a different anisotropy structure including a deficit with a post-trial significance of -6.30 sigma. This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.
Observation of an Anisotropy in the Galactic Cosmic Ray Arrival Direction at 400 TeV with IceCube
NASA Technical Reports Server (NTRS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.;
2012-01-01
In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic ray induced muons recorded by the partially deployed IceCube observatory between May 2009 and May 2010. The data include a total of 33 x 10(exp 9) muon events with a median angular resolution of approx. 3 degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic ray median energies of 20 and 400 TeV. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high energy skymap shows a different anisotropy structure including a deficit with a post-trial significance of -6.3 sigma. This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.
Discovery of very-high-energy gamma-rays from the Galactic Centre ridge.
Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J M; Martineau-Huynh, O; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J
2006-02-09
The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 10(11) eV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way. The hardness of the gamma-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the gamma-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 10(4) years ago.
Tracking chamber made of 15-mm mylar drift tubes
NASA Astrophysics Data System (ADS)
Kozhin, A.; Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Plotnikov, I.
2017-05-01
We are presenting a drift chamber composed from three layers of mylar drift tubes with outer diameter 15 mm. The pipe is made of strip of mylar film 125 micrometers thick covered with aluminium from the both sides. A strip of mylar is wrapped around the mandrel. Pipe is created by ultrasonic welding. A single drift tube is self-supported structure withstanding 350 g wire tension without supports and internal overpressure. About 400 such tubes were assembled. Design, quality control procedures of the drift tubes are described. Seven chambers were glued from these tubes of 560 mm length. Each chamber consists of 3 layers, 16 tubes per layer. Several chambers were tested with cosmic rays. Results of the tests, counting rate plateau and coordinate resolution are presented.
NASA Technical Reports Server (NTRS)
Newkirk, G., Jr.; Asbridge, J.; Lockwood, J. A.; Garcia-Munoz, M.; Simpson, J. A.
1986-01-01
The role which empirical determinations of the latitudinal variation of cosmic rays with respect to the current sheet may have in illuminating the importance of the cross-field drift of particles in the large-scale heliospheric magnetic field is discussed. Using K coronameter observations and measured solar wind speeds, the latitudinal gradients have been determined with respect to the current sheet for cosmic rays in four rigidity ranges. Gradients vary between approximately -2 and -50 pct/AU. The rigidity dependence of the decrease of cosmic ray flux with distance from the current sheet lies between the -0.72 to -0.86 power of the rigidity, with the exact dependence being determined by the definition used for the median rigidity of each monitor.
The local time dependence of the anisotropic solar cosmic ray flux.
Smart, D F; Shea, M A
2003-01-01
The distribution of the solar cosmic radiation flux over the earth is not uniform, but the result of complex phenomena involving the interplanetary magnetic field, the geomagnetic field and latitude and longitude of locations on the earth. The latitude effect relates to the geomagnetic shield; the longitude effect relates to local time. For anisotropic solar cosmic ray events the maximum particle flux is always along the interplanetary magnetic field direction, sometimes called the Archimedean spiral path from the sun to the earth. During anisotropic solar cosmic ray event, the locations on the earth viewing "sunward" into the interplanetary magnetic field direction will observe the largest flux (when adjustments are made for the magnetic latitude effect). To relate this phenomena to aircraft routes, for anisotropic solar cosmic ray events that occur during "normal quiescent" conditions, the maximum solar cosmic ray flux (and corresponding solar particle radiation dose) will be observed in the dawn quadrant, ideally at about 06 hours local time. Published by Elsevier Ltd on behalf of COSPAR.
Radio-wave detection of ultra-high-energy neutrinos and cosmic rays
NASA Astrophysics Data System (ADS)
Huege, Tim; Besson, Dave
2017-12-01
Radio waves, perhaps because our terrestrial atmosphere and the cosmos beyond are uniquely transparent to them, or perhaps because they are macroscopic, so the basic instruments of detection (antennas) are easily constructible, arguably occupy a privileged position within the electromagnetic spectrum, and, correspondingly, receive disproportionate attention experimentally. Detection of radio-frequency radiation, at macroscopic wavelengths, has blossomed within the last decade as a competitive method for the measurement of cosmic particles, particularly charged cosmic rays and neutrinos. Cosmic-ray detection via radio emission from extensive air showers has been demonstrated to be a reliable technique that has reached a reconstruction quality of the cosmic-ray parameters competitive with more traditional approaches. Radio detection of neutrinos in dense media seems to be the most promising technique to achieve the gigantic detection volumes required to measure neutrinos at energies beyond the PeV-scale flux established by IceCube. In this article, we review radio detection both of cosmic rays in the atmosphere, as well as neutrinos in dense media.
What is your Cosmic Connection to the Elements?
NASA Technical Reports Server (NTRS)
White, Nicholas E. (Technical Monitor); Lochner, James; Rohrbach, Gail; Cochrane, Kim
2003-01-01
This information and activity booklet describes the roles of the Big Bang, types of stars, supernovae, cosmic ray interactions, and radioactive decay in the formation of the elements. The booklet includes instructions for the following classroom activities, intended for students in Grades 9-12: Grandma's Apple Pie; Cosmic Shuffle; Nickel-odeon; Kinesthetic Big Bang; Elemental Haiku; Cosmic Ray Collisions; Cosmic Abundances; and What's Out There.
[Results of the EGRET Detector Program
NASA Technical Reports Server (NTRS)
Carter-Lewis, D. A.
1998-01-01
This NASA grant has funded studies of cosmic objects observed by both the EGRET detector aboard the Compton Gamma-ray Observatory and Whipple Gamma-ray imaging telescope. The former has sensitivity up to a few GeV and latter has sensitivity starting at about 200 GeV extending up to beyond 10 TeV. Thus these instruments probe some of the most energetic phenomena in the universe. This program has been in place for several years and led to important results referred to below. The Whipple Observatory Imaging Cherenkov Telescope consists of a 10-meter reflector with a nanosecond photomultiplier-tube camera at the focal plane. During the time period covered by this grant, it had either 109 pixels or 151 pixels on a 1/4 degree hexagonal pattern. As a TeV gamma ray enters the atmosphere, it produces an electron/positron pair initiating an extensive air shower. Cherenkov light from the electrons and positrons in the shower form an image of the shower at the phototube camera. The shape and intensity of this image is used to distinguish gamma-ray initiated showers from cosmic-ray (largely proton and alpha-particle) background showers and to derive an energy estimate for the primary gamma-ray. The Whipple Observatory gamma-ray collaboration pioneered this imaging technique which normally rejects over 99 percent of the cosmic-ray background while keeping over 70 percent of the gamma-ray signal. One of its key features is 2 large collection area which can exceed 50,000 meters. This grant covered primarily correlated observations of Markarian 421 and observations of the Cygnus region. The former resulted in a multiwavelength campaign showing correlations in several wavebands. The TeV data showed dramatic variability with the emission characterized by day-scale flickering and with now well defined steady component.
On the Slow time Geomagnetic field Modulation of Cosmic Rays
NASA Astrophysics Data System (ADS)
Okpala, K. C.; Egbunu, F.
2016-12-01
Cosmic rays of galactic origin are modulated by both heliospheric and geomagnetic conditions. The mutual (and mutually exclusive) contribution of both heliospheric and geomagnetic conditions to galactic cosmic rays (GCR) modulation is still an open question. While the rapid-time association of the galactic cosmic ray variation with different heliophysical and geophysical phenomena has been well studied, not so much attention has been paid to slow-time variations especially with regards to local effects. In this work, we employed monthly means of cosmic ray count rates from two mid latitude (Hermanus and Rome), and two higher latitude (Inuvik and Oulu) neutron monitors (NM), and compared their variability with geomagnetic stations that are in close proximity to the NMs. The data spans 1966 to 2008 and covers four (4) solar cycles. The difference (CRdiff)between the mean count rate of all days and the mean of the five quietest days for each month was compared with the Dst-related disturbance (Hdiff) derived from the nearby geomagnetic stations. Zeroth- and First- correlation between the cosmic ray parameters and geomagnetic parameters was performed to ascertain statistical association and test for spurious association. Our results show that solar activity is generally strongly correlated (>0.75) with mean strength of GCR count rate and geomagnetic field during individual solar cycles. The correlation between mean strength of cosmic ray intensity and Geomagnetic field strength is spurious and is basically moderated by the solar activity. The signature of convection driven disturbances at high latitude geomagnetic stations was evident during the declining phase of the solar cycles close to the solar minimums. The absence of this feature in the slow-time varying cosmic ray count rates in all stations, and in the mid latitude geomagnetic stations suggest that the local geomagnetic disturbance do not play a significant role in modulating the cosmic ray flux.
NASA Astrophysics Data System (ADS)
Papailiou, M.; Mavromichalaki, H.; Vassilaki, A.; Kelesidis, K. M.; Mertzanos, G. A.; Petropoulos, B.
2009-02-01
There is an increasing amount of evidence linking biological effects to solar and geomagnetic disturbances. A series of studies is published referring to the changes in human physiological responses at different levels of geomagnetic activity. In this study, the possible relation between the daily variations of cosmic ray intensity, measured by the Neutron Monitor at the Cosmic Ray Station of the University of Athens (http://cosray.phys.uoa.gr) and the average daily and hourly heart rate variations of persons, with no symptoms or hospital admission, monitored by Holter electrocardiogram, is considered. This work refers to a group of persons admitted to the cardiological clinic of the KAT Hospital in Athens during the time period from 4th to 24th December 2006 that is characterized by extreme solar and geomagnetic activity. A series of Forbush decreases started on 6th December and lasted until the end of the month and a great solar proton event causing a Ground Level Enhancement (GLE) of the cosmic ray intensity on 13th December occurred. A sudden decrease of the cosmic ray intensity on 15th December, when a geomagnetic storm was registered, was also recorded in Athens Neutron Monitor station (cut-off rigidity 8.53 GV) with amplitude of 4%. It is noticed that during geomagnetically quiet days the heart rate and the cosmic ray intensity variations are positively correlated. When intense cosmic ray variations, like Forbush decreases and relativistic proton events produced by strong solar phenomena occur, cosmic ray intensity and heart rate get minimum values and their variations, also, coincide. During these events the correlation coefficient of these two parameters changes and follows the behavior of the cosmic ray intensity variations. This is only a small part of an extended investigation, which has begun using data from the year 2002 and is still in progress.
Buitink, S; Corstanje, A; Falcke, H; Hörandel, J R; Huege, T; Nelles, A; Rachen, J P; Rossetto, L; Schellart, P; Scholten, O; ter Veen, S; Thoudam, S; Trinh, T N G; Anderson, J; Asgekar, A; Avruch, I M; Bell, M E; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brouw, W N; Brüggen, M; Butcher, H R; Carbone, D; Ciardi, B; Conway, J E; de Gasperin, F; de Geus, E; Deller, A; Dettmar, R-J; van Diepen, G; Duscha, S; Eislöffel, J; Engels, D; Enriquez, J E; Fallows, R A; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; Grießmeier, J M; Gunst, A W; van Haarlem, M P; Hassall, T E; Heald, G; Hessels, J W T; Hoeft, M; Horneffer, A; Iacobelli, M; Intema, H; Juette, E; Karastergiou, A; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Kuper, G; van Leeuwen, J; Loose, G M; Maat, P; Mann, G; Markoff, S; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Mulcahy, D D; Munk, H; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pietka, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H J A; Scaife, A M M; Schwarz, D J; Serylak, M; Sluman, J; Smirnov, O; Stappers, B W; Steinmetz, M; Stewart, A; Swinbank, J; Tagger, M; Tang, Y; Tasse, C; Toribio, M C; Vermeulen, R; Vocks, C; Vogt, C; van Weeren, R J; Wijers, R A M J; Wijnholds, S J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P; Zensus, J A
2016-03-03
Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers--cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 10(17)-10(17.5) electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10(17.5) electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10(17)-10(17.5) electronvolt range.
Measurements of Amplified Magnetic Field and Cosmic-Ray Content in Supernova Remnants
NASA Astrophysics Data System (ADS)
Uchiyama, Yasunobu
Supernova explosions drive collisionless shocks in the interstellar (or circumstellar) medium. Such shocks are mediated by plasma waves, resulting in the shock transition on a scale much smaller than the collisional mean free path. Galactic cosmic rays are widely considered to be accelerated at collisionless shocks in supernova remnants via diffusive shock acceleration. New high-energy data coming from the X-ray and gamma-ray satellites and from imaging air Cerenkov telescopes are making possible to study physics of particle acceleration at supernova shocks, such as magnetic field amplification which is considered to be realized as part of shock acceleration process and the energy content of cosmic-ray particles in the supernova shell. In particular, GeV observations with the Fermi Gamma-ray Space Telescope offer the prime means to establish the origin of the gamma-rays, and to measure the cosmic-ray content. Moreover they provide a new opportunity to learn about how particle acceleration responds to environ-mental effects. I will present recent observational results from the Chandra and Suzaku X-ray satellites and new results from the LAT onboard Fermi, and discuss their implications to the origin of galactic cosmic rays.
Implications of the IRAS data for galactic gamma ray astronomy and EGRET
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
1990-01-01
Using the results of gamma-ray, millimeter wave and far surveys of the galaxy, logically consistent picture of the large scale distribution of galactic gas and cosmic rays was derived, tied to the overall processes of stellar birth and destruction on a galactic scale. Using the results of the IRAS far-infrared survey of te galaxy, the large scale radial distributions of galactic far-infrared emission independently was obtained for both the Northern and Southern Hemisphere sides of the Galaxy. The dominant feature in these distributions was found to be a broad peak coincident with the 5 kpc molecular gas cloud ring. Evidence was found for spiral arm features. Strong correlations are evident between the large scale galactic distributions of far-infrared emission, gamma-ray emission and total CO emission. There is particularly tight correlation between the distribution of warm molecular clouds and far-infrared emission on a galactic scale. The 5 kpc ring was evident in existing galactic gamma-ray data. The extent to which the more detailed spiral arm features are evident in the more resolved EGRET (Energetic Gamma-Ray Experimental Telescope) data will help to determine more precisely the propagation characteristics of cosmic rays.
Cosmic ray propagation in the local superbubble
NASA Technical Reports Server (NTRS)
Steitmatter, R. E.; Balasubrahmanyan, V. K.; Protheroe, R. J.; Ormes, J. F.
1984-01-01
It is suggested that a ring of HI gas lying in the galactic plane is part of a supershell which formed some 3 x to the 7th power years ago. The consequences of a closed magnetic supershell for cosmic ray propagation are examined and it is concluded that there is no evidence which precludes the production and trapping of cosmic rays in such a region. A consequence of superbubble confinement is that the mean age of cosmic rays would be independent of energy. This can be tested by high energy observations of the isotopic composition of Be.
High energy particles and quanta in astrophysics
NASA Technical Reports Server (NTRS)
Mcdonald, F. B. (Editor); Fichtel, C. E.
1974-01-01
The various subdisciplines of high-energy astrophysics are surveyed in a series of articles which attempt to give an overall view of the subject as a whole by emphasizing the basic physics common to all fields in which high-energy particles and quanta play a role. Successive chapters cover cosmic ray experimental observations, the abundances of nuclei in the cosmic radiation, cosmic electrons, solar modulation, solar particles (observation, relationship to the sun acceleration, interplanetary medium), radio astronomy, galactic X-ray sources, the cosmic X-ray background, and gamma ray astronomy. Individual items are announced in this issue.
Latest AMS Results on elementary particles in cosmic rays
NASA Astrophysics Data System (ADS)
Kounine, Andrei; AMS Collaboration
2017-01-01
AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of all elementary charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the elementary cosmic ray particles are presented. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of the AMS Collaboration.
The Galactic Magnetic Field and Ultra-High Energy Cosmic Rays
NASA Astrophysics Data System (ADS)
Urban, Federico R.
The Galactic Magnetic Field is a peeving and importune screen between Ultra-High Energy Cosmic Rays and us cosmologists, engaged in the combat to unveil their properties and origin, as it deviates their paths towards the Earth in unpredictable ways. I will, in this order: briefly review the available field models on the market; explain a little trick which allows one to obtain cosmic rays deflection variances without even knowing what the (random) GMF model is; and argue that there is a lack of anisotropy in the large scales cosmic rays signal, which the Galactic field can do nothing about.
Cosmic-ray antimatter - A primary origin hypothesis
NASA Technical Reports Server (NTRS)
Stecker, F. W.; Protheroe, R. J.; Kazanas, D.
1983-01-01
The present investigation is concerned with the possibility that the observed cosmic-ray protons are of primary extragalactic origin, taking into account the significance of the current antiproton data. Attention is given to questions regarding primary antiprotons, antihelium fluxes, and the propagation of extragalactic cosmic rays. It is concluded that the primary origin hypothesis should be considered as a serious alternative explanation for the cosmic-ray antiproton fluxes. Such extragalactic primary origin can be considered in the context of a baryon symmetric domain cosmology. The fluxes and propagation characteristics suggested are found to be in rough agreement with the present antiproton data.
Calculations of cosmic-ray helium transport in shielding materials
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
1993-01-01
The transport of galactic cosmic-ray helium nuclei and their secondaries through bulk shielding is considered using the straight-ahead approximation to the Boltzmann equation. A data base for nuclear interaction cross sections and secondary particle energy spectra for high-energy light-ion breakup is presented. The importance of the light ions H-2, H-3, and He-3 for cosmic-ray risk estimation is discussed, and the estimates of the fractional contribution to the neutron flux from helium interactions compared with other particle interactions are presented using a 1977 solar minimum cosmic-ray spectrum.
A lower bound on the number of cosmic ray events required to measure source catalogue correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolci, Marco; Romero-Wolf, Andrew; Wissel, Stephanie, E-mail: marco.dolci@polito.it, E-mail: Andrew.Romero-Wolf@jpl.nasa.gov, E-mail: swissel@calpoly.edu
2016-10-01
Recent analyses of cosmic ray arrival directions have resulted in evidence for a positive correlation with active galactic nuclei positions that has weak significance against an isotropic source distribution. In this paper, we explore the sample size needed to measure a highly statistically significant correlation to a parent source catalogue. We compare several scenarios for the directional scattering of ultra-high energy cosmic rays given our current knowledge of the galactic and intergalactic magnetic fields. We find significant correlations are possible for a sample of >1000 cosmic ray protons with energies above 60 EeV.
A new method for imaging nuclear threats using cosmic ray muons
NASA Astrophysics Data System (ADS)
Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim; Aberle, Derek; Green, J. Andrew; McDuff, George G.; Lukić, Zarija; Milner, Edward C.
2013-08-01
Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.
Alfven wave transport effects in the time evolution of parallel cosmic-ray modified shocks
NASA Technical Reports Server (NTRS)
Jones, T. W.
1993-01-01
Some of the issues associated with a more complete treatment of Alfven transport in cosmic ray shocks are explored qualitatively. The treatment is simplified in some important respects, but some new issues are examined and for the first time a nonlinear, time dependent study of plane cosmic ray mediated shocks with both the entropy producing effects of wave dissipation and effects due to the Alfven wave advection of the cosmic ray relative to the gas is included. Examination of the direct consequences of including the pressure and energy of the Alfven waves in the formalism began.
An estimation of Canadian population exposure to cosmic rays from air travel.
Chen, Jing; Newton, Dustin
2013-03-01
Based on air travel statistics in 1984, it was estimated that less than 4 % of the population dose from cosmic ray exposure would result from air travel. In the present study, cosmic ray doses were calculated for more than 3,000 flights departing from more than 200 Canadian airports using actual flight profiles. Based on currently available air travel statistics, the annual per capita effective dose from air transportation is estimated to be 32 μSv for Canadians, about 10 % of the average cosmic ray dose received at ground level (310 μSv per year).
A new method for imaging nuclear threats using cosmic ray muons
Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; ...
2013-08-29
Muon tomography is a technique that uses cosmic ray muons to generate three-dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study beyond the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Furthermore, we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.
Charge and energy dependence of the residence time of cosmic ray nuclei below 15 GeV/nucleon
NASA Technical Reports Server (NTRS)
Soutoul, A.; Engelmann, J. J.; Ferrando, P.; Koch-Miramond, L.; Masse, P.; Webber, W. R.
1985-01-01
The relative abundance of nuclear species measured in cosmic rays at Earth has often been interpreted with the simple leaky box model. For this model to be consistent an essential requirement is that the escape length does not depend on the nuclear species. The discrepancy between escape length values derived from iron secondaries and from the B/C ratio was identified by Garcia-Munoz and his co-workers using a large amount of experimental data. Ormes and Protheroe found a similar trend in the HEAO data although they questioned its significance against uncertainties. They also showed that the change in the B/C ratio values implies a decrease of the residence time of cosmic rays at low energies in conflict with the diffusive convective picture. These conclusions crucially depend on the partial cross section values and their uncertainties. Recently new accurate cross sections of key importance for propagation calculations have been measured. Their statistical uncertainties are often better than 4% and their values significantly different from those previously accepted. Here, these new cross sections are used to compare the observed B/C+O and (Sc to Cr)/Fe ratio to those predicted with the simple leaky box model.
NASA Astrophysics Data System (ADS)
Sáez-Cano, G.; Morales de los Ríos, J. A.; del Peral, L.; Neronov, A.; Wada, S.; Rodríguez Frías, M. D.
2015-03-01
The origin of cosmic rays have remained a mistery for more than a century. JEM-EUSO is a pioneer space-based telescope that will be located at the International Space Station (ISS) and its aim is to detect Ultra High Energy Cosmic Rays (UHECR) and Extremely High Energy Cosmic Rays (EHECR) by observing the atmosphere. Unlike ground-based telescopes, JEM-EUSO will observe from upwards, and therefore, for a properly UHECR reconstruction under cloudy conditions, a key element of JEM-EUSO is an Atmospheric Monitoring System (AMS). This AMS consists of a space qualified bi-spectral Infrared Camera, that will provide the cloud coverage and cloud top height in the JEM-EUSO Field of View (FoV) and a LIDAR, that will measure the atmospheric optical depth in the direction it has been shot. In this paper we will explain the effects of clouds for the determination of the UHECR arrival direction. Moreover, since the cloud top height retrieval is crucial to analyze the UHECR and EHECR events under cloudy conditions, the retrieval algorithm that fulfills the technical requierements of the Infrared Camera of JEM-EUSO to reconstruct the cloud top height is presently reported.
Anisotropy of low-energy Galactic cosmic rays in the outer heliosheath
NASA Astrophysics Data System (ADS)
Zhang, M.; Pogorelov, N.
2017-12-01
Since Voyager 1 crossed the heliopause into the local interstellar medium in August 2012, it has been observing nearly unmodulated low-energy Galactic cosmic rays for over 5 years and 18 AU beyond the heliopause. The angular distribution of these cosmic rays is not isotropic, showing a slight depletion at 90-degree pitch-angle to the magnetic field lines. The anisotropy was interrupted episodically by solar disturbances transmitting through the heliopause into the local interstellar medium of outer heliosheath. These observations indicate the heliosphere still affects cosmic rays in the local interstellar medium. The paper presents a theoretical analysis of the particle transport mechanisms responsible for the observed anisotropy. In order to explain the phenomenon, we argue that cosmic rays of near 90-degree pitch angles do not a quick access to the interstellar cosmic-ray source and in the meantime, they experience some loss in the outer heliosheath. Magnetic field barriers on the both sides of the observer may reduce the access to cosmic ray source, but it still requires that pitch scattering of these particles is very weak in the magnetic field of the outer heliosheath. A possible particle loss mechanism is diffusion into the heliospheric magnetic field where they get modulated by the solar wind plasma. Our model simulation will put constraints on the rates of particle scattering and cross-field diffusion in the interstellar magnetic field of the outer heliosheath.
Cosmic-Ray Propagation in Turbulent Spiral Magnetic Fields Associated with Young Stellar Objects
NASA Astrophysics Data System (ADS)
Fatuzzo, Marco; Adams, Fred C.
2018-04-01
External cosmic rays impinging upon circumstellar disks associated with young stellar objects provide an important source of ionization, and, as such, play an important role in disk evolution and planet formation. However, these incoming cosmic rays are affected by a variety of physical processes internal to stellar/disk systems, including modulation by turbulent magnetic fields. Globally, these fields naturally provide both a funneling effect, where cosmic rays from larger volumes are focused into the disk region, and a magnetic mirroring effect, where cosmic rays are repelled due to the increasing field strength. This paper considers cosmic-ray propagation in the presence of a turbulent spiral magnetic field, analogous to that produced by the solar wind. The interaction of this wind with the interstellar medium defines a transition radius, analogous to the heliopause, which provides the outer boundary to this problem. We construct a new coordinate system where one coordinate follows the spiral magnetic field lines and consider magnetic perturbations to the field in the perpendicular directions. The presence of magnetic turbulence replaces the mirroring points with a distribution of values and moves the mean location outward. Our results thus help quantify the degree to which cosmic-ray fluxes are reduced in circumstellar disks by the presence of magnetic field structures that are shaped by stellar winds. The new coordinate system constructed herein should also be useful in other astronomical applications.
Bütikofer, R; Flückiger, E O; Desorgher, L; Moser, M R
2008-03-01
In January 2005 toward the end of solar activity cycle 23 the Sun was very active. Between 15 and 20 January 2005, the solar active region NOAA AR 10720 produced five powerful solar flares. In association with this major solar activity several pronounced variations in the ground-level cosmic ray intensity were observed. The fifth of these flares (X7.1) produced energetic solar cosmic rays that caused a giant increase in the count rates of the ground-based cosmic ray detectors (neutron monitors). At southern polar neutron monitor stations the increase of the count rate reached several thousand percent. From the recordings of the worldwide network of neutron monitors, we determined the characteristics of the solar particle flux near Earth. In the initial phase of the event, the solar cosmic ray flux near Earth was extremely anisotropic. The energy spectrum of the solar cosmic rays was fairly soft during the main and the decay phase. We investigated also the flux of different secondary particle species in the atmosphere and the radiation dosage at flight altitude. Our analysis shows a maximum increment of the effective dose rate due to solar cosmic rays in the south polar region around 70 degrees S and 130 degrees E at flight altitude of almost three orders of magnitude.
High Energy Astronomy Observatory (HEAO)
1979-09-20
This Atlas/Centaur launch vehicle, carrying the High Energy Astronomy Observatory (HEAO)-3, lifted off on September 20, 1979. The HEAO-3's mission was to survey and map the celestial sphere for gamma-ray flux and make detailed measurements of cosmic-ray particles. It carried three scientific experiments: a gamma-ray spectrometer, a cosmic-ray isotope experiment, and a heavy cosmic-ray nuclei experiment. The HEAO-3 was originally identified as HEAO-C but the designation was changed once the spacecraft achieved orbit.
High-efficiency and low-background multi-segmented proportional gas counter for β-decay spectroscopy
NASA Astrophysics Data System (ADS)
Mukai, M.; Hirayama, Y.; Watanabe, Y. X.; Schury, P.; Jung, H. S.; Ahmed, M.; Haba, H.; Ishiyama, H.; Jeong, S. C.; Kakiguchi, Y.; Kimura, S.; Moon, J. Y.; Oyaizu, M.; Ozawa, A.; Park, J. H.; Ueno, H.; Wada, M.; Miyatake, H.
2018-03-01
A multi-segmented proportional gas counter (MSPGC) with high detection efficiency and low-background event rate has been developed for β-decay spectroscopy. The MSPGC consists of two cylindrically aligned layers of 16 counters (32 counters in total). Each counter has a long active length and small trapezoidal cross-section, and the total solid angle of the 32 counters is 80% of 4 π. β-rays are distinguished from the background events including cosmic-rays by analyzing the hit patterns of independent counters. The deduced intrinsic detection efficiency of each counter was almost 100%. The measured background event rate was 0.11 counts per second using the combination of veto counters for cosmic-rays and lead block shields for background γ-rays. The MSPGC was applied to measure the β-decay half-lives of 198Ir and 199mPt. The evaluated half-lives of T1/2 = 9 . 8(7) s and 12.4(7) s for 198Ir and 199mPt, respectively, were in agreement with previously reported values. The estimated absolute detection efficiency of the MSPGC from GEANT4 simulations was consistent with the evaluated efficiency from the analysis of the β- γ spectroscopy of 199Pt, saturating at approximately 60% for Qβ > 4 MeV.
The SWIFT AGN and Cluster Survey. I. Number Counts of AGNs and Galaxy Clusters
NASA Astrophysics Data System (ADS)
Dai, Xinyu; Griffin, Rhiannon D.; Kochanek, Christopher S.; Nugent, Jenna M.; Bregman, Joel N.
2015-05-01
The Swift active galactic nucleus (AGN) and Cluster Survey (SACS) uses 125 deg2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding γ-ray bursts to provide a medium depth (4× {{10}-15} erg cm-2 s-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present a catalog of 22,563 point sources and 442 extended sources and examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. We use Wide-field Infrared Survey Explorer mid-infrared (MIR) colors to classify the sources. For AGNs we can roughly separate the point sources into MIR-red and MIR-blue AGNs, finding roughly equal numbers of each type in the soft X-ray band (0.5-2 keV), but fewer MIR-blue sources in the hard X-ray band (2-8 keV). The cluster number counts, with 5% uncertainties from cosmic variance, are also consistent with previous surveys but span a much larger continuous flux range. Deep optical or IR follow-up observations of this cluster sample will significantly increase the number of higher-redshift (z\\gt 0.5) X-ray-selected clusters.
NASA Astrophysics Data System (ADS)
Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Kalousis, L. N.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Lange, G.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Pelkey, R.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; John, J. St.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2017-12-01
The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) × 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to be epsilondata=(97.1±0.1 (stat) ± 1.4 (sys))%, in good agreement with the Monte Carlo reconstruction efficiency epsilonMC = (97.4±0.1)%. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag ≈80% of the cosmic rays passing through the MicroBooNE detector.
Acciarri, R.; Adams, C.; An, R.; ...
2017-12-01
The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to bemore » $$\\epsilon_{\\mathrm{data}}=(97.1\\pm0.1~(\\mathrm{stat}) \\pm 1.4~(\\mathrm{sys}))\\%$$, in good agreement with the Monte Carlo reconstruction efficiency $$\\epsilon_{\\mathrm{MC}} = (97.4\\pm0.1)\\%$$. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag $$\\approx80\\%$$ of the cosmic rays passing through the MicroBooNE detector.« less
Acciarri, R.; Adams, C.; An, R.; ...
2017-12-20
The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. In this paper, we present a method of using an external 0.5 m (L) × 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersectingmore » different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to be ϵ data=(97.1±0.1 (stat) ± 1.4 (sys))%, in good agreement with the Monte Carlo reconstruction efficiency ϵ MC = (97.4±0.1)%. In conclusion, this analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag ≈80% of the cosmic rays passing through the MicroBooNE detector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; Adams, C.; An, R.
The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. In this paper, we present a method of using an external 0.5 m (L) × 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersectingmore » different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to be ϵ data=(97.1±0.1 (stat) ± 1.4 (sys))%, in good agreement with the Monte Carlo reconstruction efficiency ϵ MC = (97.4±0.1)%. In conclusion, this analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag ≈80% of the cosmic rays passing through the MicroBooNE detector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; et al.
2017-07-31
The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to bemore » $$\\epsilon_{\\mathrm{data}}=(97.1\\pm0.1~(\\mathrm{stat}) \\pm 1.4~(\\mathrm{sys}))\\%$$, in good agreement with the Monte Carlo reconstruction efficiency $$\\epsilon_{\\mathrm{MC}} = (97.4\\pm0.1)\\%$$. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag $$\\approx80\\%$$ of the cosmic rays passing through the MicroBooNE detector.« less
Constraints on the Galactic Halo Dark Matter From FERMI-LAT Diffuse Measurements
Ackermann, M.; Ajello, M.; Atwood, W. B.; ...
2012-11-28
For this study, we have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e +/e – produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limitsmore » is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. In conclusion, the resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.« less
Superbubbles and Local Cosmic Rays
NASA Technical Reports Server (NTRS)
Streitmatter, Robert E.; Jones, Frank C.
2005-01-01
We consider the possibility that distinctive features of the local cosmic ray spectra and composition are influenced by the Solar system being embedded within the cavity of an ancient superbubble. Shifts in the measured cosmic ray composition between 10(exp 11) and 10(exp 20) eV as well as the "knee" and "second knee" may be understood in this picture.
Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.
2016-01-01
NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux.
Macy High School We have a simple cosmic ray detector that can be built by high school teachers. This cosmic rays vary with elevation. In addition, it is a valuable tool to teach elementary measurement
Karam, P Andrew
2003-03-01
Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.
Astrophysical Li-7 as a product of big bang nucleosynthesis and galactic cosmic-ray spallation
NASA Technical Reports Server (NTRS)
Olive, Keith A.; Schramm, David N.
1992-01-01
The astrophysical Li-7 abundance is considered to be largely primordial, while the Be and B abundances are thought to be due to galactic cosmic ray (GCR) spallation reactions on top of a much smaller big bang component. But GCR spallation should also produce Li-7. As a consistency check on the combination of big bang nucleosynthesis and GCR spallation, the Be and B data from a sample of hot population II stars is used to subtract from the measured Li-7 abundance an estimate of the amount generated by GCR spallation for each star in the sample, and then to add to this baseline an estimate of the metallicity-dependent augmentation of Li-7 due to spallation. The singly reduced primordial Li-7 abundance is still consistent with big bang nucleosynthesis, and a single GCR spallation model can fit the Be, B, and corrected Li-7 abundances for all the stars in the sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Di; Dai, Zi-Gao; Mészáros, Peter, E-mail: dzg@nju.edu.cn
2017-07-01
High-energy neutrinos are expected to originate from different stages in a gamma-ray burst (GRB) event. In this work, we revisit the dissipative photospheric scenario, in which the GRB prompt emission is produced around the photospheric radius. Meanwhile, possible dissipation mechanisms (e.g., internal shocks or magnetic reconnection) could accelerate cosmic-rays (CRs) to ultra-high energies and then produce neutrinos via hadronuclear and photohadronic processes, which are referred to as prompt neutrinos . In this paper, we obtain the prompt neutrino spectrum of a single GRB within a self-consistent analytical framework, in which the jet-cocoon structure and possible collimation effects are included. Wemore » investigate a possible neutrino signal from the cocoon, which has been ignored in the previous studies. We show that if a GRB event happens at a distance of the order of Mpc, there is a great chance to observe the neutrino emission from the cocoon by IceCube, which is even more promising than jet neutrinos, as the opening angle of the cocoon is much larger. We also determine the diffuse neutrino flux of GRB cocoons and find that it could be comparable with that of the jets. Our results are consistent with the latest result reported by the IceCube collaboration that no significant correlation between neutrino events and observed GRBs is seen in the new data.« less
Cosmic-ray antiprotons as a probe of a photino-dominated universe
NASA Technical Reports Server (NTRS)
Silk, J.; Srednicki, M.
1984-01-01
Observational tests of the hypothesis that the universe is flat and dominated by dark matter in the form of massive photinos include the production of significant fluxes of cosmic rays and gamma rays in our galactic halo. Specification of the cosmological photino density and the masses of scalar quarks and leptons determines the present annihilation rate. The predicted number of low-energy cosmic-ray antiprotons is comparable to the observed flux.
Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Aramo, C; Aranda, V M; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Awal, N; Badescu, A M; Barber, K B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Bridgeman, A; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Curutiu, A; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; Almeida, R M de; Domenico, M De; Jong, S J de; Neto, J R T de Mello; Mitri, I De; Oliveira, J de; Souza, V de; Peral, L Del; Deligny, O; Dembinski, H; Dhital, N; Giulio, C Di; Matteo, A Di; Diaz, J C; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Hasankiadeh, Q Dorosti; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fernandes, M; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fox, B D; Fratu, O; Fröhlich, U; Fuchs, B; Fujii, T; Gaior, R; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gate, F; Gemmeke, H; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Glaser, C; Glass, H; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Grebe, S; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; Oliveira, M A Leigui de; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Malacari, M; Maldera, S; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Melissas, M; Melo, D; Menshikov, A; Messina, S; Meyhandan, R; Mićanović, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Münchmeyer, M; Mussa, R; Navarra, G; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Ochilo, L; Olinto, A; Oliveira, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Purrello, V; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rizi, V; Carvalho, W Rodrigues de; Cabo, I Rodriguez; Fernandez, G Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Ros, G; Rosado, J; Rossler, T; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Sánchez, F; Sanchez-Lucas, P; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, D; Schröder, F G; Scholten, O; Schoorlemmer, H; Schovánek, P; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; Kowski, A Śmiał; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Squartini, R; Srivastava, Y N; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Taborda, O A; Tapia, A; Tartare, M; Tepe, A; Theodoro, V M; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Aar, G van; Bodegom, P van; Berg, A M van den; Velzen, S van; Vliet, A van; Varela, E; Vargas Cárdenas, B; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Widom, A; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yamamoto, T; Yapici, T; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M; Zuccarello, F
Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with [Formula: see text] eV by analyzing cosmic rays with energies above [Formula: see text] eV arriving within an angular separation of approximately 15[Formula: see text]. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.
Lightning Discharges, Cosmic Rays and Climate
NASA Astrophysics Data System (ADS)
Kumar, Sanjay; Siingh, Devendraa; Singh, R. P.; Singh, A. K.; Kamra, A. K.
2018-03-01
The entirety of the Earth's climate system is continuously bombarded by cosmic rays and exhibits about 2000 thunderstorms active at any time of the day all over the globe. Any linkage among these vast systems should have global consequences. Numerous studies done in the past deal with partial links between some selected aspects of this grand linkage. Results of these studies vary from weakly to strongly significant and are not yet complete enough to justify the physical mechanism proposed to explain such links. This review is aimed at presenting the current understanding, based on the past studies on the link between cosmic ray, lightning and climate. The deficiencies in some proposed links are pointed out. Impacts of cosmic rays on engineering systems and the possible effects of cosmic rays on human health are also briefly discussed. Also enumerated are some problems for future work which may help in developing the grand linkage among these three vast systems.
Cosmic Ray Acceleration from Multiple Galactic Wind Shocks
NASA Astrophysics Data System (ADS)
Cotter, Cory; Bustard, Chad; Zweibel, Ellen
2018-01-01
Cosmic rays still have an unknown origin. Many mechanisms have been suggested for their acceleration including quasars, pulsars, magnetars, supernovae, supernova remnants, and galactic termination shocks. The source of acceleration may be a mixture of these and a different mixture in different energy regimes. Using numerical simulations, we investigate multiple shocks in galactic winds as potential cosmic rays sources. By having shocks closer to the parent galaxy, more particles may diffuse back to the disk instead of being blown out in the wind, as found in Bustard, Zweibel, and Cotter (2017, ApJ) and also Merten, Bustard, Zweibel, and Tjus (to be submitted to ApJ). Specifically, this flux of cosmic rays could contribute to the unexplained "shin" region between the well-known "knee" and "ankle" of the cosmic ray spectrum. We would like to acknowledge support from the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.
Cosmic ray physics in space: the role of Sergey Vernov's scientific school
NASA Astrophysics Data System (ADS)
Panasyuk, M. I.
2011-04-01
Cosmic rays were discovered almost 100 years ago. Since then the scientific world has learned a lot from their nature: the particles nascent in the Universe, both in our Galaxy and outside, the basic mechanisms of their acceleration, transfer in the interstellar environment and the interaction of the primary cosmic rays with the atmosphere surrounding the Earth. Before 1957, i.e., the beginning of the Space Era, researchers' capabilities were limited to experiments performed on the ground, underground and in near-ground atmosphere to flight altitudes of aerostats, airplanes and rockets, i.e., where only secondary radiation is in existence, this is the result of the interaction of cosmic rays with the Earth's atmosphere. The launching of spacecraft allowed the scientists to commence exploring the Universe's primordial matter itself outside the atmosphere, i.e., the primary cosmic rays. Sergey Vernov, the Russian scientist, was among them.
The evolution of cosmic-ray-mediated magnetohydrodynamic shocks: A two-fluid approach
NASA Astrophysics Data System (ADS)
Jun, Byung-Il; Clarke, David A.; Norman, Michael L.
1994-07-01
We study the shock structure and acceleration efficiency of cosmic-ray mediated Magnetohydrodynamic (MHD) shocks both analytically and numerically by using a two-fluid model. Our model includes the dynamical effect of magnetic fields and cosmic rays on a background thermal fluid. The steady state solution is derived by following the technique of Drury & Voelk (1981) and compared to numerical results. We explore the time evolution of plane-perpendicular, piston-driven shocks. From the results of analytical and numerical studies, we conclude that the mean magnetic field plays an important role in the structure and acceleration efficiency of cosmic-ray mediated MHD shocks. The acceleration of cosmic-ray particles becomes less efficient in the presence of strong magnetic pressure since the field makes the shock less compressive. This feature is more prominent at low Mach numbers than at high Mach numbers.
Cosmic Rays Variation Before Changes in Sun-Earth Environment
NASA Astrophysics Data System (ADS)
Mukherjee, S.
2011-12-01
Influence of cosmic rays variations on the Sun-Earth Environment has been observed before the changes in the atmospheric temperature, outbreak of influenza, cyclone, earthquake and tsunami. It has been recorded by Sun Observatory Heleospheric Observatory (SOHO) satellite data. Before the earthquake and tsunami the planetary indices (Kp) and Electron flux (E-flux) shows sudden changes followed by the atmospheric perturbations including very high temperature rise to sudden fall resulting snowfall in high altitude and rainfall in tropical areas. The active fault zones shows sudden faulting after the sudden drop in cosmic ray intensity and rise in Kp and E-flux. Besides the geo-environment the extraterrestrial influence on outbreak of H1N1 influenza has also been recorded based on the Mexico Cosmic ray data and its correlation with SOHO records. Distant stars have the potential to influence the heliophysical parameters by showering cosmic rays.
The evolution of cosmic-ray-mediated magnetohydrodynamic shocks: A two-fluid approach
NASA Technical Reports Server (NTRS)
Jun, Byung-Il; Clarke, David A.; Norman, Michael L.
1994-01-01
We study the shock structure and acceleration efficiency of cosmic-ray mediated Magnetohydrodynamic (MHD) shocks both analytically and numerically by using a two-fluid model. Our model includes the dynamical effect of magnetic fields and cosmic rays on a background thermal fluid. The steady state solution is derived by following the technique of Drury & Voelk (1981) and compared to numerical results. We explore the time evolution of plane-perpendicular, piston-driven shocks. From the results of analytical and numerical studies, we conclude that the mean magnetic field plays an important role in the structure and acceleration efficiency of cosmic-ray mediated MHD shocks. The acceleration of cosmic-ray particles becomes less efficient in the presence of strong magnetic pressure since the field makes the shock less compressive. This feature is more prominent at low Mach numbers than at high Mach numbers.
Aab, Alexander
2015-06-20
Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×10 19 eV by analyzing cosmic rays with energies above E ≥ 5×10 18 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis.more » As a result, the comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.« less
Neutrinos as a diagnostic of cosmic ray galactic-extragalactic transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlers, Markus; Ringwald, Andreas; Anchordoqui, Luis A.
2005-07-15
Motivated by a recent change in viewing the onset of the extragalactic component in the cosmic ray spectrum, we have fitted the observed data down to 10{sup 8.6} GeV and have obtained the corresponding power emissivity. This transition energy is well below the threshold for resonant p{gamma} absorption on the cosmic microwave background, and thus source evolution is an essential ingredient in the fitting procedure. Two-parameter fits in the spectral and redshift evolution indices show that a standard Fermi E{sub i}{sup -2} source spectrum is excluded at larger than 95% confidence level (CL). Armed with the primordial emissivity, we followmore » Waxman and Bahcall to derive the associated neutrino flux on the basis of optically thin sources. For pp interactions as the generating mechanism, the neutrino flux exceeds the AMANDA-B10 90% CL upper limits. In the case of p{gamma} dominance, the flux is consistent with AMANDA-B10 data. In the new scenario the source neutrino flux is considerably enhanced, especially below 10{sup 9} GeV. Should data from AMANDA-II prove consistent with the model, we show that IceCube can measure the characteristic power law of the neutrino spectrum, and thus provide a window on the source dynamics.« less
Cosmic ray models for early galactic lithium, beryllium, and boron production
NASA Technical Reports Server (NTRS)
Fields, Brian D.; Olive, Keith A.; Schramm, David N.
1994-01-01
To better understand the early galactic production of Li, Be, and B by cosmic ray spallation and fusion reactions, the dependence of these production rates on cosmic ray models and model parameters is examined. The sensitivity of elemental and isotropic production to the cosmic ray pathlength magnitude and energy dependence, source spectrum spallation kinematics, and cross section uncertainties is studied. Changes in these model features, particularly those features related to confinement, are shown to alter the Be- and B-versus-Fe slopes from a naive quadratic relation. The implications of our results for the diffuse gamma-ray background are examined, and the role of chemical evolution and its relation to our results is noted. It is also noted that the unmeasured high energy behavior of alpha + alpha fusion can lead to effects as large as a factor of 2 in the resultant yields. Future data should enable Population II Li, Be, and B abundances to constrain cosmic ray models for the early Galaxy.
Ultrahigh energy cosmic rays from nearby starburst galaxies
NASA Astrophysics Data System (ADS)
Attallah, Reda; Bouchachi, Dallel
2018-04-01
Ultrahigh energy cosmic rays are the most energetic of any subatomic particles ever observed in nature. The quest for their mysterious origin is currently a major scientific challenge. Here we explore the possibility that these particles originate from nearby starburst galaxies, a scenario that matches the recent observation by the Telescope Array experiment of a cosmic-ray hotspot above 57 EeV not far from the direction of the starburst galaxy M82. Specifically, we study the stochastic propagation in space of ultrahigh energy cosmic rays through the state-of-the-art simulation framework CRPropa 3, taking into account all relevant particle interactions as well as deflections by the intervening magnetic fields. To ensure a comprehensive understanding of this model, we consider the energy spectrum, the cosmogenic neutrinos and gamma rays, and the distribution of arrival directions. The starburst galaxy scenario reproduces well observations from both the Telescope Array and Pierre Auger Observatories, making it very attractive for explaining the origin of cosmic rays at the highest energies.
Ultrahigh energy cosmic rays from nearby starburst galaxies
NASA Astrophysics Data System (ADS)
Attallah, Reda; Bouchachi, Dallel
2018-07-01
Ultrahigh energy cosmic rays are the most energetic of any subatomic particles ever observed in nature. The quest for their mysterious origin is currently a major scientific challenge. Here we explore the possibility that these particles originate from nearby starburst galaxies, a scenario that matches the recent observation by the Telescope Array experiment of a cosmic ray hotspot above 57 EeV not far from the direction of the starburst galaxy M82. Specifically, we study the stochastic propagation in space of ultrahigh ENERGY cosmic rays through the state-of-the-art simulation framework CRPROPA 3, taking into account all relevant particle interactions as well as deflections by the intervening magnetic fields. To ensure a comprehensive understanding of this model, we consider the energy spectrum, the cosmogenic neutrinos and gamma rays, and the distribution of arrival directions. The starburst galaxy scenario reproduces well observations from both the Telescope Array and Pierre Auger Observatories, making it very attractive for explaining the origin of cosmic rays at the highest energies.
NASA Astrophysics Data System (ADS)
Mekhaldi, Florian; Muscheler, Raimund; Adolphi, Florian; Svensson, Anders; Aldahan, Ala; Possnert, Göran; McConnell, Joseph R.; Sigl, Michael; Welten, Kees C.; Woodruff, Thomas E.
2014-05-01
Miyake et al. (2012, 2013) discovered rapid increases of 14C content in tree rings dated to AD 774-5 and AD 993-4 which they have attributed to cosmic-ray events. These extreme particle events have no counterparts in the instrumental record and have been tentatively associated with solar proton events, supernovae and short gamma-ray bursts, which have very different energy spectra. Cosmogenic radionuclides such as 14C, 10Be and 36Cl arise from the interaction of cosmic rays with atmospheric nitrogen, oxygen and argon. These radio-isotopes are produced through different reaction pathways and vary with different energy dependencies of the production rate cross section. Owing to this, yield functions can be used to determine the energy level of incident particles. However, only 14C has been measured at high resolution to quantify the energy and thus the origin of the outbursts. We present an annually resolved record of 10Be from the NGRIP ice core for the two events. In addition, we also utilized the GRIP ice core 36Cl record in our analysis. Our results show that the differential production of cosmogenic 14C, 10Be and 36Cl is consistent with a solar energy spectrum. Considering the notable increase in radionuclides, the solar storms would have had to be substantially greater than the largest recorded geomagnetic storm, the so-called Carrington event. This challenges our understanding of the sun's dynamics. Furthermore, the events could possibly be of interest for the investigation of potential cosmic ray-cloud linkages (Svensmark & Friis-Christensen, 1997). Alternatively, such outbursts of energetic particles have the potential to deplete atmospheric ozone and alter atmospheric circulation. Ultimately, the magnitude of such particle events draws attention to the perhaps underestimated potential of the sun to cause great damage to modern technologies. References Miyake, F., Masuda, K. & Nakamura, T. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4:1748, DOI: 10.1038/ncomms2783 (2013). Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. A signature of cosmic-ray increase in AD 774-775 from tree rings in Japan. Nature 486, 240-242, DOI: 210.1038/nature11123 (2012). Svensmark, H., & Friis-Christensen, E. Variation of cosmic ray flux and global cloud coverage - A missing link in solar-climate relationships. J. Atmos. Sol., Terr. Phys., 59, 225-1232, DOI: 10.1029/1998JD200091 (1997).
Heliospheric current sheet and effects of its interaction with solar cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malova, H. V., E-mail: hmalova@yandex.ru; Popov, V. Yu.; Grigorenko, E. E.
2016-08-15
The effects of interaction of solar cosmic rays (SCRs) with the heliospheric current sheet (HCS) in the solar wind are analyzed. A self-consistent kinetic model of the HCS is developed in which ions with quasiadiabatic dynamics can present. The HCS is considered an equilibrium embedded current structure in which two main plasma species with different temperatures (the low-energy background plasma of the solar wind and the higher energy SCR component) contribute to the current. The obtained results are verified by comparing with the results of numerical simulations based on solving equations of motion by the particle tracing method in themore » given HCS magnetic field with allowance for SCR particles. It is shown that the HCS is a relatively thin multiscale current configuration embedded in a thicker plasma layer. In this case, as a rule, the shear (tangential to the sheet current) component of the magnetic field is present in the HCS. Taking into account high-energy SCR particles in the HCS can lead to a change of its configuration and the formation of a multiscale embedded structure. Parametric family of solutions is considered in which the current balance in the HCS is provided at different SCR temperatures and different densities of the high-energy plasma. The SCR densities are determined at which an appreciable (detectable by satellites) HCS thickening can occur. Possible applications of this modeling to explain experimental observations are discussed.« less
Soft X-ray excess in the Coma cluster from a Cosmic Axion Background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angus, Stephen; Conlon, Joseph P.; Marsh, M.C. David
2014-09-01
We show that the soft X-ray excess in the Coma cluster can be explained by a cosmic background of relativistic axion-like particles (ALPs) converting into photons in the cluster magnetic field. We provide a detailed self-contained review of the cluster soft X-ray excess, the proposed astrophysical explanations and the problems they face, and explain how a 0.1- 1 keV axion background naturally arises at reheating in many string theory models of the early universe. We study the morphology of the soft excess by numerically propagating axions through stochastic, multi-scale magnetic field models that are consistent with observations of Faraday rotation measuresmore » from Coma. By comparing to ROSAT observations of the 0.2- 0.4 keV soft excess, we find that the overall excess luminosity is easily reproduced for g{sub aγγ} ∼ 2 × 10{sup -13} Ge {sup -1}. The resulting morphology is highly sensitive to the magnetic field power spectrum. For Gaussian magnetic field models, the observed soft excess morphology prefers magnetic field spectra with most power in coherence lengths on O(3 kpc) scales over those with most power on O(12 kpc) scales. Within this scenario, we bound the mean energy of the axion background to 50 eV∼< ( E{sub a} ) ∼< 250 eV, the axion mass to m{sub a} ∼< 10{sup -12} eV, and derive a lower bound on the axion-photon coupling g{sub aγγ} ∼> √(0.5/Δ N{sub eff}) 1.4 × 10{sup -13} Ge {sup -1}.« less
Using the information of cosmic rays to predict influence epidemic
NASA Astrophysics Data System (ADS)
Yu, Z. D.
1985-08-01
A correlation between the incidence of influenza pandemics and increased cosmic ray activity is made. A correlation is also made between the occurrence of these pandemics and the appearance of bright novae, e.g., Nova Eta Car. Four indices based on increased cosmic ray activity and novae are proposed to predict future influenza pandemics and viral antigenic shifts.
Cross section parameterizations for cosmic ray nuclei. 1: Single nucleon removal
NASA Technical Reports Server (NTRS)
Norbury, John W.; Townsend, Lawrence W.
1992-01-01
Parameterizations of single nucleon removal from electromagnetic and strong interactions of cosmic rays with nuclei are presented. These parameterizations are based upon the most accurate theoretical calculations available to date. They should be very suitable for use in cosmic ray propagation through interstellar space, the Earth's atmosphere, lunar samples, meteorites, spacecraft walls and lunar and martian habitats.
Using the information of cosmic rays to predict influence epidemic
NASA Technical Reports Server (NTRS)
Yu, Z. D.
1985-01-01
A correlation between the incidence of influenza pandemics and increased cosmic ray activity is made. A correlation is also made between the occurrence of these pandemics and the appearance of bright novae, e.g., Nova Eta Car. Four indices based on increased cosmic ray activity and novae are proposed to predict future influenza pandemics and viral antigenic shifts.