Sample records for self-consistent field methods

  1. Self-Consistent-Field Calculation on Lithium Hydride for Undergraduates.

    ERIC Educational Resources Information Center

    Rioux, Frank; Harriss, Donald K.

    1980-01-01

    Describes a self-consistent-field-linear combination of atomic orbitals-molecular orbital calculation on the valence electrons of lithium hydride using the method of Roothaan. This description is intended for undergraduate physics students.

  2. Examining the impact of harmonic correlation on vibrational frequencies calculated in localized coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson-Heine, Magnus W. D., E-mail: magnus.hansonheine@nottingham.ac.uk

    Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach ismore » found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.« less

  3. Periodic Pulay method for robust and efficient convergence acceleration of self-consistent field iterations

    DOE PAGES

    Banerjee, Amartya S.; Suryanarayana, Phanish; Pask, John E.

    2016-01-21

    Pulay's Direct Inversion in the Iterative Subspace (DIIS) method is one of the most widely used mixing schemes for accelerating the self-consistent solution of electronic structure problems. In this work, we propose a simple generalization of DIIS in which Pulay extrapolation is performed at periodic intervals rather than on every self-consistent field iteration, and linear mixing is performed on all other iterations. Lastly, we demonstrate through numerical tests on a wide variety of materials systems in the framework of density functional theory that the proposed generalization of Pulay's method significantly improves its robustness and efficiency.

  4. Vibrational multiconfiguration self-consistent field theory: implementation and test calculations.

    PubMed

    Heislbetz, Sandra; Rauhut, Guntram

    2010-03-28

    A state-specific vibrational multiconfiguration self-consistent field (VMCSCF) approach based on a multimode expansion of the potential energy surface is presented for the accurate calculation of anharmonic vibrational spectra. As a special case of this general approach vibrational complete active space self-consistent field calculations will be discussed. The latter method shows better convergence than the general VMCSCF approach and must be considered the preferred choice within the multiconfigurational framework. Benchmark calculations are provided for a small set of test molecules.

  5. Towards an automated and efficient calculation of resonating vibrational states based on state-averaged multiconfigurational approaches

    NASA Astrophysics Data System (ADS)

    Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian; Rauhut, Guntram

    2015-12-01

    Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.

  6. Towards an automated and efficient calculation of resonating vibrational states based on state-averaged multiconfigurational approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian

    Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.

  7. Testing strong-segregation theory against self-consistent-field theory for block copolymer melts

    NASA Astrophysics Data System (ADS)

    Matsen, M. W.

    2001-06-01

    We introduce a highly efficient self-consistent-field theory (SCFT) method for examining the cylindrical and spherical block copolymer morphologies using a standard unit cell approximation (UCA). The method is used to calculate the classical diblock copolymer phase boundaries deep into the strong-segregation regime, where they can be compared with recent improvements to strong-segregation theory (SST). The comparison suggests a significant discrepancy between the two theories indicating that our understanding of strongly stretched polymer brushes is still incomplete.

  8. Symplectic multiparticle tracking model for self-consistent space-charge simulation

    DOE PAGES

    Qiang, Ji

    2017-01-23

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  9. Symplectic multiparticle tracking model for self-consistent space-charge simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiang, Ji

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  10. Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations

    DOE PAGES

    Bjorgaard, J. A.; Kuzmenko, V.; Velizhanin, K. A.; ...

    2015-01-22

    In this study, we implement and examine three excited state solvent models in time-dependent self-consistent field methods using a consistent formalism which unambiguously shows their relationship. These are the linear response, state specific, and vertical excitation solvent models. Their effects on energies calculated with the equivalent of COSMO/CIS/AM1 are given for a set of test molecules with varying excited state charge transfer character. The resulting solvent effects are explained qualitatively using a dipole approximation. It is shown that the fundamental differences between these solvent models are reflected by the character of the calculated excitations.

  11. An overview of self-consistent methods for fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Gramoll, Kurt C.; Freed, Alan D.; Walker, Kevin P.

    1991-01-01

    The Walker et al. (1989) self-consistent method to predict both the elastic and the inelastic effective material properties of composites is examined and compared with the results of other self-consistent and elastically based solutions. The elastic part of their method is shown to be identical to other self-consistent methods for non-dilute reinforced composite materials; they are the Hill (1965), Budiansky (1965), and Nemat-Nasser et al. (1982) derivations. A simplified form of the non-dilute self-consistent method is also derived. The predicted, elastic, effective material properties for fiber reinforced material using the Walker method was found to deviate from the elasticity solution for the v sub 31, K sub 12, and mu sub 31 material properties (fiber is in the 3 direction) especially at the larger volume fractions. Also, the prediction for the transverse shear modulus, mu sub 12, exceeds one of the accepted Hashin bounds. Only the longitudinal elastic modulus E sub 33 agrees with the elasticity solution. The differences between the Walker and the elasticity solutions are primarily due to the assumption used in the derivation of the self-consistent method, i.e., the strain fields in the inclusions and the matrix are assumed to remain constant, which is not a correct assumption for a high concentration of inclusions.

  12. Theoretical studies of electronically excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besley, Nicholas A.

    2014-10-06

    Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.

  13. Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics

    DOE PAGES

    Yu, Yiqun; Jordanova, Vania Koleva; Ridley, Aaron J.; ...

    2017-05-10

    Here, we report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, andmore » the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a “tongue” of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.« less

  14. Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yiqun; Jordanova, Vania Koleva; Ridley, Aaron J.

    Here, we report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, andmore » the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a “tongue” of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.« less

  15. Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics

    NASA Astrophysics Data System (ADS)

    Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; Toth, Gabor; Heelis, Roderick

    2017-05-01

    We report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, and the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a "tongue" of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.

  16. Self-consistent theory of nanodomain formation on non-polar surfaces of ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozovska, Anna N.; Obukhovskii, Vyacheslav; Fomichov, Evhen

    2016-04-28

    We propose a self-consistent theoretical approach capable of describing the features of the anisotropic nanodomain formation induced by a strongly inhomogeneous electric field of a charged scanning probe microscopy tip on nonpolar cuts of ferroelectrics. We obtained that a threshold field, previously regarded as an isotropic parameter, is an anisotropic function that is specified from the polar properties and lattice pinning anisotropy of a given ferroelectric in a self-consistent way. The proposed method for the calculation of the anisotropic threshold field is not material specific, thus the field should be anisotropic in all ferroelectrics with the spontaneous polarization anisotropy alongmore » the main crystallographic directions. The most evident examples are uniaxial ferroelectrics, layered ferroelectric perovskites, and low-symmetry incommensurate ferroelectrics. Obtained results quantitatively describe the differences at several times in the nanodomain length experimentally observed on X and Y cuts of LiNbO3 and can give insight into the anisotropic dynamics of nanoscale polarization reversal in strongly inhomogeneous electric fields.« less

  17. Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients

    DOE PAGES

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2015-08-06

    This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performingmore » microcanonical excited state molecular dynamics with p-nitroaniline.« less

  18. Self-Consistent Chaotic Transport in a High-Dimensional Mean-Field Hamiltonian Map Model

    DOE PAGES

    Martínez-del-Río, D.; del-Castillo-Negrete, D.; Olvera, A.; ...

    2015-10-30

    We studied the self-consistent chaotic transport in a Hamiltonian mean-field model. This model provides a simplified description of transport in marginally stable systems including vorticity mixing in strong shear flows and electron dynamics in plasmas. Self-consistency is incorporated through a mean-field that couples all the degrees-of-freedom. The model is formulated as a large set of N coupled standard-like area-preserving twist maps in which the amplitude and phase of the perturbation, rather than being constant like in the standard map, are dynamical variables. Of particular interest is the study of the impact of periodic orbits on the chaotic transport and coherentmore » structures. Furthermore, numerical simulations show that self-consistency leads to the formation of a coherent macro-particle trapped around the elliptic fixed point of the system that appears together with an asymptotic periodic behavior of the mean field. To model this asymptotic state, we introduced a non-autonomous map that allows a detailed study of the onset of global transport. A turnstile-type transport mechanism that allows transport across instantaneous KAM invariant circles in non-autonomous systems is discussed. As a first step to understand transport, we study a special type of orbits referred to as sequential periodic orbits. Using symmetry properties we show that, through replication, high-dimensional sequential periodic orbits can be generated starting from low-dimensional periodic orbits. We show that sequential periodic orbits in the self-consistent map can be continued from trivial (uncoupled) periodic orbits of standard-like maps using numerical and asymptotic methods. Normal forms are used to describe these orbits and to find the values of the map parameters that guarantee their existence. Numerical simulations are used to verify the prediction from the asymptotic methods.« less

  19. Self-Consistent Chaotic Transport in a High-Dimensional Mean-Field Hamiltonian Map Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-del-Río, D.; del-Castillo-Negrete, D.; Olvera, A.

    We studied the self-consistent chaotic transport in a Hamiltonian mean-field model. This model provides a simplified description of transport in marginally stable systems including vorticity mixing in strong shear flows and electron dynamics in plasmas. Self-consistency is incorporated through a mean-field that couples all the degrees-of-freedom. The model is formulated as a large set of N coupled standard-like area-preserving twist maps in which the amplitude and phase of the perturbation, rather than being constant like in the standard map, are dynamical variables. Of particular interest is the study of the impact of periodic orbits on the chaotic transport and coherentmore » structures. Furthermore, numerical simulations show that self-consistency leads to the formation of a coherent macro-particle trapped around the elliptic fixed point of the system that appears together with an asymptotic periodic behavior of the mean field. To model this asymptotic state, we introduced a non-autonomous map that allows a detailed study of the onset of global transport. A turnstile-type transport mechanism that allows transport across instantaneous KAM invariant circles in non-autonomous systems is discussed. As a first step to understand transport, we study a special type of orbits referred to as sequential periodic orbits. Using symmetry properties we show that, through replication, high-dimensional sequential periodic orbits can be generated starting from low-dimensional periodic orbits. We show that sequential periodic orbits in the self-consistent map can be continued from trivial (uncoupled) periodic orbits of standard-like maps using numerical and asymptotic methods. Normal forms are used to describe these orbits and to find the values of the map parameters that guarantee their existence. Numerical simulations are used to verify the prediction from the asymptotic methods.« less

  20. Theoretical research program to study chemical reactions in AOTV bow shock tubes

    NASA Technical Reports Server (NTRS)

    Taylor, P.

    1986-01-01

    Progress in the development of computational methods for the characterization of chemical reactions in aerobraking orbit transfer vehicle (AOTV) propulsive flows is reported. Two main areas of code development were undertaken: (1) the implementation of CASSCF (complete active space self-consistent field) and SCF (self-consistent field) analytical first derivatives on the CRAY X-MP; and (2) the installation of the complete set of electronic structure codes on the CRAY 2. In the area of application calculations the main effort was devoted to performing full configuration-interaction calculations and using these results to benchmark other methods. Preprints describing some of the systems studied are included.

  1. Hybrid particle-field molecular dynamics simulation for polyelectrolyte systems.

    PubMed

    Zhu, You-Liang; Lu, Zhong-Yuan; Milano, Giuseppe; Shi, An-Chang; Sun, Zhao-Yan

    2016-04-14

    To achieve simulations on large spatial and temporal scales with high molecular chemical specificity, a hybrid particle-field method was proposed recently. This method is developed by combining molecular dynamics and self-consistent field theory (MD-SCF). The MD-SCF method has been validated by successfully predicting the experimentally observable properties of several systems. Here we propose an efficient scheme for the inclusion of electrostatic interactions in the MD-SCF framework. In this scheme, charged molecules are interacting with the external fields that are self-consistently determined from the charge densities. This method is validated by comparing the structural properties of polyelectrolytes in solution obtained from the MD-SCF and particle-based simulations. Moreover, taking PMMA-b-PEO and LiCF3SO3 as examples, the enhancement of immiscibility between the ion-dissolving block and the inert block by doping lithium salts into the copolymer is examined by using the MD-SCF method. By employing GPU-acceleration, the high performance of the MD-SCF method with explicit treatment of electrostatics facilitates the simulation study of many problems involving polyelectrolytes.

  2. Accuracy of the Generalized Self-Consistent Method in Modelling the Elastic Behaviour of Periodic Composites

    NASA Technical Reports Server (NTRS)

    Walker, Kevin P.; Freed, Alan D.; Jordan, Eric H.

    1993-01-01

    Local stress and strain fields in the unit cell of an infinite, two-dimensional, periodic fibrous lattice have been determined by an integral equation approach. The effect of the fibres is assimilated to an infinite two-dimensional array of fictitious body forces in the matrix constituent phase of the unit cell. By subtracting a volume averaged strain polarization term from the integral equation we effectively embed a finite number of unit cells in a homogenized medium in which the overall stress and strain correspond to the volume averaged stress and strain of the constrained unit cell. This paper demonstrates that the zeroth term in the governing integral equation expansion, which embeds one unit cell in the homogenized medium, corresponds to the generalized self-consistent approximation. By comparing the zeroth term approximation with higher order approximations to the integral equation summation, both the accuracy of the generalized self-consistent composite model and the rate of convergence of the integral summation can be assessed. Two example composites are studied. For a tungsten/copper elastic fibrous composite the generalized self-consistent model is shown to provide accurate, effective, elastic moduli and local field representations. The local elastic transverse stress field within the representative volume element of the generalized self-consistent method is shown to be in error by much larger amounts for a composite with periodically distributed voids, but homogenization leads to a cancelling of errors, and the effective transverse Young's modulus of the voided composite is shown to be in error by only 23% at a void volume fraction of 75%.

  3. Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST.

    PubMed

    Xu, X Q

    2008-07-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (psi,theta,micro) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.

  4. Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2008-07-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (ψ,θ,γ,μ) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.

  5. A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme

    NASA Astrophysics Data System (ADS)

    Ochsenfeld, Christian; Head-Gordon, Martin

    1997-05-01

    To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.

  6. Fourier transform-based scattering-rate method for self-consistent simulations of carrier transport in semiconductor heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrottke, L., E-mail: lutz@pdi-berlin.de; Lü, X.; Grahn, H. T.

    We present a self-consistent model for carrier transport in periodic semiconductor heterostructures completely formulated in the Fourier domain. In addition to the Hamiltonian for the layer system, all expressions for the scattering rates, the applied electric field, and the carrier distribution are treated in reciprocal space. In particular, for slowly converging cases of the self-consistent solution of the Schrödinger and Poisson equations, numerous transformations between real and reciprocal space during the iterations can be avoided by using the presented method, which results in a significant reduction of computation time. Therefore, it is a promising tool for the simulation and efficientmore » design of complex heterostructures such as terahertz quantum-cascade lasers.« less

  7. Self-Consistent Superthermal Electron Effects on Plasmaspheric Refilling

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.; Moore, T. E.; Guiter, S. M.

    1997-01-01

    The effects of self-consistently including superthermal electrons in the definition of the ambipolar electric field are investigated for the case of plasmaspheric refilling after a geomagnetic storm. By using the total electron population in the hydrodynamic equations, a method for incorporating superthermal electron parameters in the electric field and electron temperature calculation is developed. Also, the ambipolar electric field is included in the kinetic equation for the superthermal electrons through a change of variables using the total energy and the first adiabatic invariant. Calculations based on these changes are performed by coupling time-dependent models of the thermal plasma and superthermal electrons. Results from this treatment of the electric field and the self-consistent development of the solution are discussed in detail. Specifically, there is a decreased thermal electron density in the plasmasphere during the first few minutes of refilling, a slightly accelerated proton shock front, and a decreased superthermal electron flux due to the deceleration by the electric field. The timescales of plasmaspheric refilling are discussed and determined to be somewhat shorter than previously calculated for the thermal plasma and superthermal electron population due to the effects of the field-aligned potential.

  8. Self-consistent-field KKR-CPA calculations in the atomic-sphere approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, P.P. Gonis, A.; de Fontaine, D.

    1991-12-03

    We present a formulation of the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) for the treatment of substitutionally disordered alloys within the KKR atomic-sphere approximations (ASA). This KKR-ASA-CPA represents the first step toward the implementation of a full cell potential CPA, and combines the accuracy of the KKR-CPA method with the flexibility of treating complex crystal structures. The accuracy of this approach has been tested by comparing the self-consistent-field (SCF) KKR-ASA-CPA calculations of Cu-Pd alloys with experimental results and previous SCF-KKR-CPA calculations.

  9. Self-consistent-field perturbation theory for the Schröautdinger equation

    NASA Astrophysics Data System (ADS)

    Goodson, David Z.

    1997-06-01

    A method is developed for using large-order perturbation theory to solve the systems of coupled differential equations that result from the variational solution of the Schröautdinger equation with wave functions of product form. This is a noniterative, computationally efficient way to solve self-consistent-field (SCF) equations. Possible applications include electronic structure calculations using products of functions of collective coordinates that include electron correlation, vibrational SCF calculations for coupled anharmonic oscillators with selective coupling of normal modes, and ab initio calculations of molecular vibration spectra without the Born-Oppenheimer approximation.

  10. Coarse-Graining Polymer Field Theory for Fast and Accurate Simulations of Directed Self-Assembly

    NASA Astrophysics Data System (ADS)

    Liu, Jimmy; Delaney, Kris; Fredrickson, Glenn

    To design effective manufacturing processes using polymer directed self-assembly (DSA), the semiconductor industry benefits greatly from having a complete picture of stable and defective polymer configurations. Field-theoretic simulations are an effective way to study these configurations and predict defect populations. Self-consistent field theory (SCFT) is a particularly successful theory for studies of DSA. Although other models exist that are faster to simulate, these models are phenomenological or derived through asymptotic approximations, often leading to a loss of accuracy relative to SCFT. In this study, we employ our recently-developed method to produce an accurate coarse-grained field theory for diblock copolymers. The method uses a force- and stress-matching strategy to map output from SCFT simulations into parameters for an optimized phase field model. This optimized phase field model is just as fast as existing phenomenological phase field models, but makes more accurate predictions of polymer self-assembly, both in bulk and in confined systems. We study the performance of this model under various conditions, including its predictions of domain spacing, morphology and defect formation energies. Samsung Electronics.

  11. Self-force via m-mode regularization and 2+1D evolution. II. Scalar-field implementation on Kerr spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, Sam R.; Barack, Leor; Wardell, Barry

    2011-10-15

    This is the second in a series of papers aimed at developing a practical time-domain method for self-force calculations in Kerr spacetime. The key elements of the method are (i) removal of a singular part of the perturbation field with a suitable analytic 'puncture' based on the Detweiler-Whiting decomposition, (ii) decomposition of the perturbation equations in azimuthal (m-)modes, taking advantage of the axial symmetry of the Kerr background, (iii) numerical evolution of the individual m-modes in 2+1 dimensions with a finite-difference scheme, and (iv) reconstruction of the physical self-force from the mode sum. Here we report an implementation of themore » method to compute the scalar-field self-force along circular equatorial geodesic orbits around a Kerr black hole. This constitutes a first time-domain computation of the self-force in Kerr geometry. Our time-domain code reproduces the results of a recent frequency-domain calculation by Warburton and Barack, but has the added advantage of being readily adaptable to include the backreaction from the self-force in a self-consistent manner. In a forthcoming paper--the third in the series--we apply our method to the gravitational self-force (in the Lorenz gauge).« less

  12. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  13. Numerical simulation of bubble deformation in magnetic fluids by finite volume method

    NASA Astrophysics Data System (ADS)

    Yamasaki, Haruhiko; Yamaguchi, Hiroshi

    2017-06-01

    Bubble deformation in magnetic fluids under magnetic field is investigated numerically by an interface capturing method. The numerical method consists of a coupled level-set and VOF (Volume of Fluid) method, combined with conservation CIP (Constrained Interpolation Profile) method with the self-correcting procedure. In the present study considering actual physical properties of magnetic fluid, bubble deformation under given uniform magnetic field is analyzed for internal magnetic field passing through a magnetic gaseous and liquid phase interface. The numerical results explain the mechanism of bubble deformation under presence of given magnetic field.

  14. On the extension of the MCSCF/CI method

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C., Jr.; Nelin, C. J.; Komornicki, A.

    1984-01-01

    Research conducted during this period was focused on two main areas: (1) bonding in transition metal oxides; and (2) adsorption of CO on Al and Ni. In both of these theoretical studies a major interest was to obtain a better understanding of the nature of the bonding in transition metal containing systems. The studies used self consistent field (SCF), multi-configuration self cosistent field (MCSCF) and configuration interaction (CI) methods in the treatment of the transition metal oxides and only the SCF method in the adsorption studies. The reports of three principle investigators who contributed to this work during the tenure of the project are presented along with associated published papers.

  15. A Redshift Survey of IRAS Galaxies. II. Methods for Determining Self-consistent Velocity and Density Fields: Erratum

    NASA Astrophysics Data System (ADS)

    Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.

    1991-11-01

    In the paper, "A Redshift Survey of IRAS Galaxies. II. Methods for Determining Self-consistent Velocity and Density Fields" by Amos Yahil, Michael A. Strauss, Marc Davis, and John P. Huchra (ApJ, 372,380 [1991]), Figures 14 and 15 were presented out of order, with their legends reversed. Thus, the figure at the bottom of page 391 is Figure 15, and should have the legend: "Fig. 15.-As in Fig. 13, for the method 3 results." The figure at the top of page 392 is Figure 14, and should have the legend: "Fig. 14.-Plot in Galactic coordinates of the quantity V_diff_ for galaxies within 3000 km s^-1^ of the LG. The symbol size is proportional to V_diff_ - 400 km s^-1^, which measures the deviation of the redshift- distance relation along the line of sight to that galaxy from pure Hubble flow."

  16. Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.

    PubMed

    Frank, Scott D; Odom, Robert I; Collis, Jon M

    2013-03-01

    Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor.

  17. Quasiparticle self-consistent GW method for the spectral properties of complex materials.

    PubMed

    Bruneval, Fabien; Gatti, Matteo

    2014-01-01

    The GW approximation to the formally exact many-body perturbation theory has been applied successfully to materials for several decades. Since the practical calculations are extremely cumbersome, the GW self-energy is most commonly evaluated using a first-order perturbative approach: This is the so-called G 0 W 0 scheme. However, the G 0 W 0 approximation depends heavily on the mean-field theory that is employed as a basis for the perturbation theory. Recently, a procedure to reach a kind of self-consistency within the GW framework has been proposed. The quasiparticle self-consistent GW (QSGW) approximation retains some positive aspects of a self-consistent approach, but circumvents the intricacies of the complete GW theory, which is inconveniently based on a non-Hermitian and dynamical self-energy. This new scheme allows one to surmount most of the flaws of the usual G 0 W 0 at a moderate calculation cost and at a reasonable implementation burden. In particular, the issues of small band gap semiconductors, of large band gap insulators, and of some transition metal oxides are then cured. The QSGW method broadens the range of materials for which the spectral properties can be predicted with confidence.

  18. A New Self-Consistent Field Model of Polymer/Nanoparticle Mixture

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Li, Hui-Shu; Zhang, Bo-Kai; Li, Jian; Tian, Wen-De

    2016-02-01

    Field-theoretical method is efficient in predicting assembling structures of polymeric systems. However, it’s challenging to generalize this method to study the polymer/nanoparticle mixture due to its multi-scale nature. Here, we develop a new field-based model which unifies the nanoparticle description with the polymer field within the self-consistent field theory. Instead of being “ensemble-averaged” continuous distribution, the particle density in the final morphology can represent individual particles located at preferred positions. The discreteness of particle density allows our model to properly address the polymer-particle interface and the excluded-volume interaction. We use this model to study the simplest system of nanoparticles immersed in the dense homopolymer solution. The flexibility of tuning the interfacial details allows our model to capture the rich phenomena such as bridging aggregation and depletion attraction. Insights are obtained on the enthalpic and/or entropic origin of the structural variation due to the competition between depletion and interfacial interaction. This approach is readily extendable to the study of more complex polymer-based nanocomposites or biology-related systems, such as dendrimer/drug encapsulation and membrane/particle assembly.

  19. Effects of Dzyaloshinsky-Moriya interaction on magnetism in nanodisks from a self-consistent approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhaosen; Ian, Hou

    2016-01-01

    We give a theoretical study on the magnetic properties of monolayer nanodisks with both Heisenberg exchange and Dzyaloshinsky-Moriya (DM) interactions. In particular, we survey the magnetic effects caused by anisotropy, external magnetic field, and disk size when DM interaction is present by means of a new quantum simulation method facilitated by a self-consistent algorithm based on mean field theory. This computational approach finds that uniaxial anisotropy and transversal magnetic field enhance the net magnetization as well as increase the transition temperature of the vortical phase while preserving the chiralities of the swirly magnetic structures, whereas when the strength of DM interaction is sufficiently strong for a given disk size, magnetic domains appear within the circularly bounded region, which vanish and give in to a single vortex when a transversal magnetic field is applied. The latter confirms the magnetic skyrmions induced by the magnetic field as observed in the experiments.

  20. Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X Q

    We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. Withmore » our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.« less

  1. An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Chan, C. T.

    2018-02-01

    Plasmonics has attracted much attention not only because it has useful properties such as strong field enhancement, but also because it reveals the quantum nature of matter. To handle quantum plasmonics effects, ab initio packages or empirical Feibelman d-parameters have been used to explore the quantum correction of plasmonic resonances. However, most of these methods are formulated within the quasi-static framework. The self-consistent hydrodynamics model offers a reliable approach to study quantum plasmonics because it can incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent manner. Instead of the standard scattering method, we formulate the self-consistent hydrodynamics method as an eigenvalue problem to study quantum plasmonics with electrons and photons treated on the same footing. We find that the eigenvalue approach must involve a global operator, which originates from the energy functional of the electron gas. This manifests the intrinsic nonlocality of the response of quantum plasmonic resonances. Our model gives the analytical forms of quantum corrections to plasmonic modes, incorporating quantum electron spill-out effects and electrodynamical retardation. We apply our method to study the quantum surface plasmon polariton for a single flat interface.

  2. Self-consistent modeling of laminar electrohydrodynamic plumes from ultra-sharp needles in cyclohexane

    NASA Astrophysics Data System (ADS)

    Becerra, Marley; Frid, Henrik; Vázquez, Pedro A.

    2017-12-01

    This paper presents a self-consistent model of electrohydrodynamic (EHD) laminar plumes produced by electron injection from ultra-sharp needle tips in cyclohexane. Since the density of electrons injected into the liquid is well described by the Fowler-Nordheim field emission theory, the injection law is not assumed. Furthermore, the generation of electrons in cyclohexane and their conversion into negative ions is included in the analysis. Detailed steady-state characteristics of EHD plumes under weak injection and space-charge limited injection are studied. It is found that the plume characteristics far from both electrodes and under weak injection can be accurately described with an asymptotic simplified solution proposed by Vazquez et al. ["Dynamics of electrohydrodynamic laminar plumes: Scaling analysis and integral model," Phys. Fluids 12, 2809 (2000)] when the correct longitudinal electric field distribution and liquid velocity radial profile are used as input. However, this asymptotic solution deviates from the self-consistently calculated plume parameters under space-charge limited injection since it neglects the radial variations of the electric field produced by a high-density charged core. In addition, no significant differences in the model estimates of the plume are found when the simulations are obtained either with the finite element method or with a diffusion-free particle method. It is shown that the model also enables the calculation of the current-voltage characteristic of EHD laminar plumes produced by electron field emission, with good agreement with measured values reported in the literature.

  3. Short-ranged interaction effects on Z2 topological phase transitions: The perturbative mean-field method

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Hua; Hung, Hsiang-Hsuan

    2015-02-01

    Time-reversal symmetric topological insulator (TI) is a novel state of matter that a bulk-insulating state carries dissipationless spin transport along the surfaces, embedded by the Z2 topological invariant. In the noninteracting limit, this exotic state has been intensively studied and explored with realistic systems, such as HgTe/(Hg, Cd)Te quantum wells. On the other hand, electronic correlation plays a significant role in many solid-state systems, which further influences topological properties and triggers topological phase transitions. Yet an interacting TI is still an elusive subject and most related analyses rely on the mean-field approximation and numerical simulations. Among the approaches, the mean-field approximation fails to predict the topological phase transition, in particular at intermediate interaction strength without spontaneously breaking symmetry. In this paper, we develop an analytical approach based on a combined perturbative and self-consistent mean-field treatment of interactions that is capable of capturing topological phase transitions beyond either method when used independently. As an illustration of the method, we study the effects of short-ranged interactions on the Z2 TI phase, also known as the quantum spin Hall (QSH) phase, in three generalized versions of the Kane-Mele (KM) model at half-filling on the honeycomb lattice. The results are in excellent agreement with quantum Monte Carlo (QMC) calculations on the same model and cannot be reproduced by either a perturbative treatment or a self-consistent mean-field treatment of the interactions. Our analytical approach helps to clarify how the symmetries of the one-body terms of the Hamiltonian determine whether interactions tend to stabilize or destabilize a topological phase. Moreover, our method should be applicable to a wide class of models where topological transitions due to interactions are in principle possible, but are not correctly predicted by either perturbative or self-consistent treatments.

  4. Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-09-01

    Harmonic pumping tests consist in stimulating an aquifer by the means of hydraulic stimulations at some discrete frequencies. The inverse problem consisting in retrieving the hydraulic properties is inherently ill posed and is usually underdetermined when considering the number of well head data available in field conditions. To better constrain this inverse problem, we add self-potential data recorded at the ground surface to the head data. The self-potential method is a passive geophysical method. Its signals are generated by the groundwater flow through an electrokinetic coupling. We showed using a 3-D saturated unconfined synthetic aquifer that the self-potential method significantly improves the results of the harmonic hydraulic tomography. The hydroelectric forward problem is obtained by solving first the Richards equation, describing the groundwater flow, and then using the result in an electrical Poisson equation describing the self-potential problem. The joint inversion problem is solved using a reduction model based on the principal component geostatistical approach. In this method, the large prior covariance matrix is truncated and replaced by its low-rank approximation, allowing thus for notable computational time and storage savings. Three test cases are studied, to assess the validity of our approach. In the first test, we show that when the number of harmonic stimulations is low, combining the harmonic hydraulic and self-potential data does not improve the inversion results. In the second test where enough harmonic stimulations are performed, a significant improvement of the hydraulic parameters is observed. In the last synthetic test, we show that the electrical conductivity field required to invert the self-potential data can be determined with enough accuracy using an electrical resistivity tomography survey using the same electrodes configuration as used for the self-potential investigation.

  5. Study of the extra-ionic electron distributions in semi-metallic structures by nuclear quadrupole resonance techniques

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1976-01-01

    A straightforward self-consistent method was developed to estimate solid state electrostatic potentials, fields and field gradients in ionic solids. The method is a direct practical application of basic electrostatics to solid state and also helps in the understanding of the principles of crystal structure. The necessary mathematical equations, derived from first principles, were presented and the systematic computational procedure developed to arrive at the solid state electrostatic field gradients values was given.

  6. A pseudoinverse deformation vector field generator and its applications

    PubMed Central

    Yan, C.; Zhong, H.; Murphy, M.; Weiss, E.; Siebers, J. V.

    2010-01-01

    Purpose: To present, implement, and test a self-consistent pseudoinverse displacement vector field (PIDVF) generator, which preserves the location of information mapped back-and-forth between image sets. Methods: The algorithm is an iterative scheme based on nearest neighbor interpolation and a subsequent iterative search. Performance of the algorithm is benchmarked using a lung 4DCT data set with six CT images from different breathing phases and eight CT images for a single prostrate patient acquired on different days. A diffeomorphic deformable image registration is used to validate our PIDVFs. Additionally, the PIDVF is used to measure the self-consistency of two nondiffeomorphic algorithms which do not use a self-consistency constraint: The ITK Demons algorithm for the lung patient images and an in-house B-Spline algorithm for the prostate patient images. Both Demons and B-Spline have been QAed through contour comparison. Self-consistency is determined by using a DIR to generate a displacement vector field (DVF) between reference image R and study image S (DVFR–S). The same DIR is used to generate DVFS–R. Additionally, our PIDVF generator is used to create PIDVFS–R. Back-and-forth mapping of a set of points (used as surrogates of contours) using DVFR–S and DVFS–R is compared to back-and-forth mapping performed with DVFR–S and PIDVFS–R. The Euclidean distances between the original unmapped points and the mapped points are used as a self-consistency measure. Results: Test results demonstrate that the consistency error observed in back-and-forth mappings can be reduced two to nine times in point mapping and 1.5 to three times in dose mapping when the PIDVF is used in place of the B-Spline algorithm. These self-consistency improvements are not affected by the exchanging of R and S. It is also demonstrated that differences between DVFS–R and PIDVFS–R can be used as a criteria to check the quality of the DVF. Conclusions: Use of DVF and its PIDVF will improve the self-consistency of points, contour, and dose mappings in image guided adaptive therapy. PMID:20384247

  7. A mean field approach to the Ising chain in a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Osácar, C.; Pacheco, A. F.

    2017-07-01

    We evaluate a mean field method to describe the properties of the ground state of the Ising chain in a transverse magnetic field. Specifically, a method of the Bethe-Peierls type is used by solving spin blocks with a self-consistency condition at the borders. The computations include the critical point for the phase transition, exponent of magnetisation and energy density. All results are obtained using basic quantum mechanics at an undergraduate level. The advantages and the limitations of the approach are emphasised.

  8. Self-consistent treatment of the local dielectric permittivity and electrostatic potential in solution for polarizable macromolecular force fields.

    PubMed

    Hassan, Sergio A

    2012-08-21

    A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.

  9. Self-consistent treatment of the local dielectric permittivity and electrostatic potential in solution for polarizable macromolecular force fields

    NASA Astrophysics Data System (ADS)

    Hassan, Sergio A.

    2012-08-01

    A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.

  10. Self-consistent treatment of the local dielectric permittivity and electrostatic potential in solution for polarizable macromolecular force fields

    PubMed Central

    Hassan, Sergio A.

    2012-01-01

    A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response. PMID:22920098

  11. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong, E-mail: cao33jin@aliyun.com

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process ofmore » positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.« less

  12. Turbulent MHD transport coefficients - An attempt at self-consistency

    NASA Technical Reports Server (NTRS)

    Chen, H.; Montgomery, D.

    1987-01-01

    In this paper, some multiple scale perturbation calculations of turbulent MHD transport coefficients begun in earlier papers are first completed. These generalize 'alpha effect' calculations by treating the velocity field and magnetic field on the same footing. Then the problem of rendering such calculations self-consistent is addressed, generalizing an eddy-viscosity hypothesis similar to that of Heisenberg for the Navier-Stokes case. The method also borrows from Kraichnan's direct interaction approximation. The output is a set of integral equations relating the spectra and the turbulent transport coefficients. Previous 'alpha effect' and 'beta effect' coefficients emerge as limiting cases. A treatment of the inertial range can also be given, consistent with a -5/3 energy spectrum power law. In the Navier-Stokes limit, a value of 1.72 is extracted for the Kolmogorov constant. Further applications to MHD are possible.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Kun; Zhao Hongmei; Wang Caixia

    Bromoiodomethane photodissociation in the low-lying excited states has been characterized using unrestricted Hartree-Fock, configuration-interaction-singles, and complete active space self-consistent field calculations with the SDB-aug-cc-pVTZ, aug-cc-pVTZ, and 3-21g** basis sets. According to the results of the vertical excited energies and oscillator strengths of these low-lying excited states, bond selectivity is predicted. Subsequently, the minimum energy paths of the first excited singlet state and the third excited state for the dissociation reactions were calculated using the complete active space self-consistent field method with 3-21g** basis set. Good agreement is found between the calculations and experimental data. The relationships of excitations, the electronicmore » structures at Franck-Condon points, and bond selectivity are discussed.« less

  14. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp; Institute of Transformative Bio-Molecules

    2016-09-07

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

  15. Adapting Poisson-Boltzmann to the self-consistent mean field theory: Application to protein side-chain modeling

    NASA Astrophysics Data System (ADS)

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2011-08-01

    We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.

  16. Doubly self-consistent field theory of grafted polymers under simple shear in steady state.

    PubMed

    Suo, Tongchuan; Whitmore, Mark D

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.

  17. A Least-Squares Commutator in the Iterative Subspace Method for Accelerating Self-Consistent Field Convergence.

    PubMed

    Li, Haichen; Yaron, David J

    2016-11-08

    A least-squares commutator in the iterative subspace (LCIIS) approach is explored for accelerating self-consistent field (SCF) calculations. LCIIS is similar to direct inversion of the iterative subspace (DIIS) methods in that the next iterate of the density matrix is obtained as a linear combination of past iterates. However, whereas DIIS methods find the linear combination by minimizing a sum of error vectors, LCIIS minimizes the Frobenius norm of the commutator between the density matrix and the Fock matrix. This minimization leads to a quartic problem that can be solved iteratively through a constrained Newton's method. The relationship between LCIIS and DIIS is discussed. Numerical experiments suggest that LCIIS leads to faster convergence than other SCF convergence accelerating methods in a statistically significant sense, and in a number of cases LCIIS leads to stable SCF solutions that are not found by other methods. The computational cost involved in solving the quartic minimization problem is small compared to the typical cost of SCF iterations and the approach is easily integrated into existing codes. LCIIS can therefore serve as a powerful addition to SCF convergence accelerating methods in computational quantum chemistry packages.

  18. Electron acceleration in combined intense laser fields and self-consistent quasistatic fields in plasma

    NASA Astrophysics Data System (ADS)

    Qiao, Bin; He, X. T.; Zhu, Shao-ping; Zheng, C. Y.

    2005-08-01

    The acceleration of plasma electron in intense laser-plasma interaction is investigated analytically and numerically, where the conjunct effect of laser fields and self-consistent spontaneous fields (including quasistatic electric field Esl, azimuthal quasistatic magnetic field Bsθ and the axial one Bsz) is completely considered for the first time. An analytical relativistic electron fluid model using test-particle method has been developed to give an explicit analysis about the effects of each quasistatic fields. The ponderomotive accelerating and scattering effects on electrons are partly offset by Esl, furthermore, Bsθ pinches and Bsz collimates electrons along the laser axis. The dependences of energy gain and scattering angle of electron on its initial radial position, plasma density, and laser intensity are, respectively, studied. The qualities of the relativistic electron beam (REB), such as energy spread, beam divergence, and emitting (scattering) angle, generated by both circularly polarized (CP) and linearly polarized (LP) lasers are studied. Results show CP laser is of clear advantage comparing to LP laser for it can generate a better REB in collimation and stabilization.

  19. Finite-element 3D simulation tools for high-current relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley; Ekdahl, Carl

    2002-08-01

    The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.

  20. On the Role of Global Magnetic Field Configuration in Affecting Ring Current Dynamics

    NASA Technical Reports Server (NTRS)

    Zheng, Y.; Zaharia, S. G.; Fok, M. H.

    2010-01-01

    Plasma and field interaction is one important aspect of inner magnetospheric physics. The magnetic field controls particle motion through gradient, curvature drifts and E cross B drift. In this presentation, we show how the global magnetic field affects dynamics of the ring current through simulations of two moderate geomagnetic storms (20 November 2007 and 8-9 March 2008). Preliminary results of coupling the Comprehensive Ring Current Model (CRCM) with a three-dimensional plasma force balance code (to achieve self-consistency in both E and B fields) indicate that inclusion of self-consistency in B tends to mitigate the intensification of the ring current as other similar coupling efforts have shown. In our approach, self-consistency in the electric field is already an existing capability of the CRCM. The magnetic self-consistency is achieved by computing the three-dimensional magnetic field in force balance with anisotropic ring current ion distributions. We discuss the coupling methodology and its further improvement. In addition, comparative studies by using various magnetic field models will be shown. Simulation results will be put into a global context by analyzing the morphology of the ring current, its anisotropy and characteristics ofthe interconnected region 2 field-aligned currents.

  1. The self-consistent calculation of pseudo-molecule energy levels, construction of energy level correlation diagrams and an automated computation system for SCF-X(Alpha)-SW calculations

    NASA Technical Reports Server (NTRS)

    Schlosser, H.

    1981-01-01

    The self consistent calculation of the electronic energy levels of noble gas pseudomolecules formed when a metal surface is bombarded by noble gas ions is discussed along with the construction of energy level correlation diagrams as a function of interatomic spacing. The self consistent field x alpha scattered wave (SCF-Xalpha-SW) method is utilized. Preliminary results on the Ne-Mg system are given. An interactive x alpha programming system, implemented on the LeRC IBM 370 computer, is described in detail. This automated system makes use of special PROCDEFS (procedure definitions) to minimize the data to be entered manually at a remote terminal. Listings of the special PROCDEFS and of typical input data are given.

  2. The trust-region self-consistent field method in Kohn-Sham density-functional theory.

    PubMed

    Thøgersen, Lea; Olsen, Jeppe; Köhn, Andreas; Jørgensen, Poul; Sałek, Paweł; Helgaker, Trygve

    2005-08-15

    The trust-region self-consistent field (TRSCF) method is extended to the optimization of the Kohn-Sham energy. In the TRSCF method, both the Roothaan-Hall step and the density-subspace minimization step are replaced by trust-region optimizations of local approximations to the Kohn-Sham energy, leading to a controlled, monotonic convergence towards the optimized energy. Previously the TRSCF method has been developed for optimization of the Hartree-Fock energy, which is a simple quadratic function in the density matrix. However, since the Kohn-Sham energy is a nonquadratic function of the density matrix, the local energy functions must be generalized for use with the Kohn-Sham model. Such a generalization, which contains the Hartree-Fock model as a special case, is presented here. For comparison, a rederivation of the popular direct inversion in the iterative subspace (DIIS) algorithm is performed, demonstrating that the DIIS method may be viewed as a quasi-Newton method, explaining its fast local convergence. In the global region the convergence behavior of DIIS is less predictable. The related energy DIIS technique is also discussed and shown to be inappropriate for the optimization of the Kohn-Sham energy.

  3. Self-consistent Green's function embedding for advanced electronic structure methods based on a dynamical mean-field concept

    NASA Astrophysics Data System (ADS)

    Chibani, Wael; Ren, Xinguo; Scheffler, Matthias; Rinke, Patrick

    2016-04-01

    We present an embedding scheme for periodic systems that facilitates the treatment of the physically important part (here a unit cell or a supercell) with advanced electronic structure methods, that are computationally too expensive for periodic systems. The rest of the periodic system is treated with computationally less demanding approaches, e.g., Kohn-Sham density-functional theory, in a self-consistent manner. Our scheme is based on the concept of dynamical mean-field theory formulated in terms of Green's functions. Our real-space dynamical mean-field embedding scheme features two nested Dyson equations, one for the embedded cluster and another for the periodic surrounding. The total energy is computed from the resulting Green's functions. The performance of our scheme is demonstrated by treating the embedded region with hybrid functionals and many-body perturbation theory in the GW approach for simple bulk systems. The total energy and the density of states converge rapidly with respect to the computational parameters and approach their bulk limit with increasing cluster (i.e., computational supercell) size.

  4. Implementation of the infinite-range exterior complex scaling to the time-dependent complete-active-space self-consistent-field method

    NASA Astrophysics Data System (ADS)

    Orimo, Yuki; Sato, Takeshi; Scrinzi, Armin; Ishikawa, Kenichi L.

    2018-02-01

    We present a numerical implementation of the infinite-range exterior complex scaling [Scrinzi, Phys. Rev. A 81, 053845 (2010), 10.1103/PhysRevA.81.053845] as an efficient absorbing boundary to the time-dependent complete-active-space self-consistent field method [Sato, Ishikawa, Březinová, Lackner, Nagele, and Burgdörfer, Phys. Rev. A 94, 023405 (2016), 10.1103/PhysRevA.94.023405] for multielectron atoms subject to an intense laser pulse. We introduce Gauss-Laguerre-Radau quadrature points to construct discrete variable representation basis functions in the last radial finite element extending to infinity. This implementation is applied to strong-field ionization and high-harmonic generation in He, Be, and Ne atoms. It efficiently prevents unphysical reflection of photoelectron wave packets at the simulation boundary, enabling accurate simulations with substantially reduced computational cost, even under significant (≈50 % ) double ionization. For the case of a simulation of high-harmonic generation from Ne, for example, 80% cost reduction is achieved, compared to a mask-function absorption boundary.

  5. Electrostatics of proteins in dielectric solvent continua. II. Hamiltonian reaction field dynamics

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Tavan, Paul; Mathias, Gerald

    2014-03-01

    In Paper I of this work [S. Bauer, G. Mathias, and P. Tavan, J. Chem. Phys. 140, 104102 (2014)] we have presented a reaction field (RF) method, which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of polarizable molecular mechanics (MM) force fields. Building upon these results, here we suggest a method for linearly scaling Hamiltonian RF/MM molecular dynamics (MD) simulations, which we call "Hamiltonian dielectric solvent" (HADES). First, we derive analytical expressions for the RF forces acting on the solute atoms. These forces properly account for all those conditions, which have to be self-consistently fulfilled by RF quantities introduced in Paper I. Next we provide details on the implementation, i.e., we show how our RF approach is combined with a fast multipole method and how the self-consistency iterations are accelerated by the use of the so-called direct inversion in the iterative subspace. Finally we demonstrate that the method and its implementation enable Hamiltonian, i.e., energy and momentum conserving HADES-MD, and compare in a sample application on Ac-Ala-NHMe the HADES-MD free energy landscape at 300 K with that obtained in Paper I by scanning of configurations and with one obtained from an explicit solvent simulation.

  6. Doubly self-consistent field theory of grafted polymers under simple shear in steady state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo, Tongchuan; Whitmore, Mark D., E-mail: mark-whitmore@umanitoba.ca

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkmanmore » equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.« less

  7. Computation of the bluff-body sound generation by a self-consistent mean flow formulation

    NASA Astrophysics Data System (ADS)

    Fani, A.; Citro, V.; Giannetti, F.; Auteri, F.

    2018-03-01

    The sound generated by the flow around a circular cylinder is numerically investigated by using a finite-element method. In particular, we study the acoustic emissions generated by the flow past the bluff body at low Mach and Reynolds numbers. We perform a global stability analysis by using the compressible linearized Navier-Stokes equations. The resulting direct global mode provides detailed information related to the underlying hydrodynamic instability and data on the acoustic field generated. In order to recover the intensity of the produced sound, we apply the self-consistent model for non-linear saturation proposed by Mantič-Lugo, Arratia, and Gallaire ["Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake," Phys. Rev. Lett. 113, 084501 (2014)]. The application of this model allows us to compute the amplitude of the resulting linear mode and the effects of saturation on the mode structure and acoustic field. Our results show excellent agreement with those obtained by a full compressible simulation direct numerical simulation and those derived by the application of classical acoustic analogy formulations.

  8. A theoretical study of bond selective photochemistry in CH2BrI

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Zhao, Hongmei; Wang, Caixia; Zhang, Aihua; Ma, Siyu; Li, Zonghe

    2005-01-01

    Bromoiodomethane photodissociation in the low-lying excited states has been characterized using unrestricted Hartree-Fock, configuration-interaction-singles, and complete active space self-consistent field calculations with the SDB-aug-cc-pVTZ, aug-cc-pVTZ, and 3-21g** basis sets. According to the results of the vertical excited energies and oscillator strengths of these low-lying excited states, bond selectivity is predicted. Subsequently, the minimum energy paths of the first excited singlet state and the third excited state for the dissociation reactions were calculated using the complete active space self-consistent field method with 3-21g** basis set. Good agreement is found between the calculations and experimental data. The relationships of excitations, the electronic structures at Franck-Condon points, and bond selectivity are discussed.

  9. Integral processing in beyond-Hartree-Fock calculations

    NASA Technical Reports Server (NTRS)

    Taylor, P. R.

    1986-01-01

    The increasing rate at which improvements in processing capacity outstrip improvements in input/output performance of large computers has led to recent attempts to bypass generation of a disk-based integral file. The direct self-consistent field (SCF) method of Almlof and co-workers represents a very successful implementation of this approach. This paper is concerned with the extension of this general approach to configuration interaction (CI) and multiconfiguration-self-consistent field (MCSCF) calculations. After a discussion of the particular types of molecular orbital (MO) integrals for which -- at least for most current generation machines -- disk-based storage seems unavoidable, it is shown how all the necessary integrals can be obtained as matrix elements of Coulomb and exchange operators that can be calculated using a direct approach. Computational implementations of such a scheme are discussed.

  10. Transition energy and potential energy curves for ionized inner-shell states of CO, O2 and N 2 calculated by several inner-shell multiconfigurational approaches.

    PubMed

    Moura, Carlos E V de; Oliveira, Ricardo R; Rocha, Alexandre B

    2013-05-01

    Potential energy curves and inner-shell ionization energies of carbon monoxide, oxygen and nitrogen molecules were calculated using several forms of the inner-shell multiconfigurational self-consistent field (IS-MCSCF) method-a recently proposed protocol to obtain specifically converged inner-shell states at this level. The particular forms of the IS-MCSCF method designated IS-GVB-PP, IS-FVBL and IS-CASSCF stand for perfect pairing generalized valence bond, full valence bond-like MCSCF and complete active space self consistent field, respectively. A comparison of these different versions of the IS-MCSCF method was carried out for the first time. The results indicate that inner-shell states are described accurately even for the simplest version of the method (IS-GVB-PP). Dynamic correlation was recovered by multireference configuration interaction or multireference perturbation theory. For molecules not having equivalent atoms, all methods led to comparable and accurate transition energies. For molecules with equivalent atoms, the most accurate results were obtained by multireference perturbation theory. Scalar relativistic effects were accounted for using the Douglas-Kroll-Hess Hamiltonian.

  11. Self-consistent chaos in a mean-field Hamiltonian model of fluids and plasmas

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, D.; Firpo, Marie-Christine

    2002-11-01

    We present a mean-field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas. In plasmas, the model describes the self-consistent evolution of electron holes and clumps in phase space. In fluids, the model describes the dynamics of vortices with negative and positive circulation in shear flows. The mean-field nature of the system makes it a tractable model to study the dynamics of large degrees-of-freedom, coupled Hamiltonian systems. Here we focus in the role of self-consistent chaos in the formation and destruction of phase space coherent structures. Numerical simulations in the finite N and in the Narrow kinetic limit (where N is the number of particles) show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles, and show that the N = 2 limit has a family of rotating integrable solutions described by a one degree-of-freedom nontwist Hamiltonian. The coherence of the dipole is explained in terms of a parametric resonance between the rotation frequency of the macroparticles and the oscillation frequency of the self-consistent mean field. For a class of initial conditions, the mean field exhibits a self-consistent, elliptic-hyperbolic bifurcation that leads to the destruction of the dipole and violent mixing of the phase space.

  12. Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

    NASA Astrophysics Data System (ADS)

    Taranu, D. S.; Obreschkow, D.; Dubinski, J. J.; Fogarty, L. M. R.; van de Sande, J.; Catinella, B.; Cortese, L.; Moffett, A.; Robotham, A. S. G.; Allen, J. T.; Bland-Hawthorn, J.; Bryant, J. J.; Colless, M.; Croom, S. M.; D'Eugenio, F.; Davies, R. L.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Mould, J. R.; Owers, M. S.; Power, C.; Richards, S. N.; Tonini, C.

    2017-11-01

    We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

  13. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    PubMed

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  14. Self-consistent electrostatic potential due to trapped plasma in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Miller, Ronald H.; Khazanov, George V.

    1993-01-01

    A steady state solution for the self-consistent electrostatic potential due to a plasma confined in a magnetic flux tube is considered. A steady state distribution function is constructed for the trapped particles from the constants of the motion, in the absence of waves and collisions. Using Liouville's theorem, the particle density along the geomagnetic field is determined and found to depend on the local magnetic field, self-consistent electric potential, and the equatorial plasma distribution function. A hot anisotropic magnetospheric plasma in steady state is modeled by a bi-Maxwellian at the equator. The self-consistent electric potential along the magnetic field is calculated assuming quasineutrality, and the potential drop is found to be approximately equal to the average kinetic energy of the equatorially trapped plasma. The potential is compared with that obtained by Alfven and Faelthammar (1963).

  15. Implementation of the diagonalization-free algorithm in the self-consistent field procedure within the four-component relativistic scheme.

    PubMed

    Hrdá, Marcela; Kulich, Tomáš; Repiský, Michal; Noga, Jozef; Malkina, Olga L; Malkin, Vladimir G

    2014-09-05

    A recently developed Thouless-expansion-based diagonalization-free approach for improving the efficiency of self-consistent field (SCF) methods (Noga and Šimunek, J. Chem. Theory Comput. 2010, 6, 2706) has been adapted to the four-component relativistic scheme and implemented within the program package ReSpect. In addition to the implementation, the method has been thoroughly analyzed, particularly with respect to cases for which it is difficult or computationally expensive to find a good initial guess. Based on this analysis, several modifications of the original algorithm, refining its stability and efficiency, are proposed. To demonstrate the robustness and efficiency of the improved algorithm, we present the results of four-component diagonalization-free SCF calculations on several heavy-metal complexes, the largest of which contains more than 80 atoms (about 6000 4-spinor basis functions). The diagonalization-free procedure is about twice as fast as the corresponding diagonalization. Copyright © 2014 Wiley Periodicals, Inc.

  16. The ideas behind self-consistent expansion

    NASA Astrophysics Data System (ADS)

    Schwartz, Moshe; Katzav, Eytan

    2008-04-01

    In recent years we have witnessed a growing interest in various non-equilibrium systems described in terms of stochastic nonlinear field theories. In some of those systems, like KPZ and related models, the interesting behavior is in the strong coupling regime, which is inaccessible by traditional perturbative treatments such as dynamical renormalization group (DRG). A useful tool in the study of such systems is the self-consistent expansion (SCE), which might be said to generate its own 'small parameter'. The self-consistent expansion (SCE) has the advantage that its structure is just that of a regular expansion, the only difference is that the simple system around which the expansion is performed is adjustable. The purpose of this paper is to present the method in a simple and understandable way that hopefully will make it accessible to a wider public working on non-equilibrium statistical physics.

  17. Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer.

    PubMed

    Kurashige, Yuki; Yanai, Takeshi

    2011-09-07

    We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics

  18. Communication: Smoothing out excited-state dynamics: Analytical gradients for dynamically weighted complete active space self-consistent field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, W. J., E-mail: williamjglover@gmail.com

    2014-11-07

    State averaged complete active space self-consistent field (SA-CASSCF) is a workhorse for determining the excited-state electronic structure of molecules, particularly for states with multireference character; however, the method suffers from known issues that have prevented its wider adoption. One issue is the presence of discontinuities in potential energy surfaces when a state that is not included in the state averaging crosses with one that is. In this communication I introduce a new dynamical weight with spline (DWS) scheme that mimics SA-CASSCF while removing energy discontinuities due to unweighted state crossings. In addition, analytical gradients for DWS-CASSCF (and other dynamically weightedmore » schemes) are derived for the first time, enabling energy-conserving excited-state ab initio molecular dynamics in instances where SA-CASSCF fails.« less

  19. Vapor–Liquid Equilibrium and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-Spring versus Dipole Self-Consistent Field Approaches to Induced Polarization

    DOE PAGES

    Chialvo, Ariel A.; Moucka, Filip; Vlcek, Lukas; ...

    2015-03-24

    Here we implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. Moreover, for that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We also assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve againstmore » the corresponding quantities from the actual GCP water model.« less

  20. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    PubMed

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.

  1. Self-consistent computation of the electric field near ICRH antennas. Application to the Tore Supra antenna

    NASA Astrophysics Data System (ADS)

    Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.; Bécoulet, A.; Colas, L.

    1999-09-01

    Self-consistent calculations of the 3D electric field patterns between the screen and the plasma have been made with the ICANT code for realistic antennas. Here we explain how the ICRH antennas of the Tore Supra tokamak are modelled.

  2. Self-consistent computation of the electric field near ICRH antennas. Application to the Tore Supra antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecoul, S.; Heuraux, S.; Koch, R.

    1999-09-20

    Self-consistent calculations of the 3D electric field patterns between the screen and the plasma have been made with the ICANT code for realistic antennas. Here we explain how the ICRH antennas of the Tore Supra tokamak are modelled.

  3. Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L.

    2018-02-01

    Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.

  4. Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics.

    PubMed

    Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L

    2018-02-07

    Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.

  5. Self-consistent hybrid functionals for solids: a fully-automated implementation

    NASA Astrophysics Data System (ADS)

    Erba, A.

    2017-08-01

    A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.

  6. Numerical modeling of the coupling of an ICRH antenna with a plasma with self-consistent antenna currents

    NASA Astrophysics Data System (ADS)

    Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.

    2002-07-01

    A realistic modeling of ICRH antennas requires the knowledge of the antenna currents. The code ICANT determines self-consistently these currents and, as a byproduct, the electrical characteristics of the antenna (radiated power, propagation constants on straps, frequency response, … ). The formalism allows for the description of three-dimensional antenna elements (for instance, finite size thick screen blades). The results obtained for various cases where analytical results are available are discussed. The resonances appearing in the spectrum and the occurrence of unphysical resonant modes are discussed. The capability of this self-consistent method is illustrated by a number of examples, e.g., fully conducting thin or thick screen bars leading to magnetic shielding effects, frequency response and resonances of an end-tuned antenna, field distributions in front of a Tore-Supra type antenna with tilted screen blades.

  7. Anharmonic vibrational spectra and mode-mode couplings analysis of 2-aminopyridine

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Bhat, Sheeraz Ahmad; Ahmad, Shabbir

    2018-01-01

    Vibrational spectra of 2-aminopyridine (2AP) have been analyzed using the vibrational self-consistence field theory (VSCF), correlated corrected vibrational self-consistence field theory (CC-VSCF) and vibrational perturbation theory (VPT2) at B3LYP/6-311G(d,p) framework. The mode-mode couplings affect the vibrational frequencies and intensities. The coupling integrals between pairs of normal modes have been obtained on the basis of quartic force field (2MR-QFF) approximation. The overtone and combination bands are also assigned in the FTIR spectrum with the help of anharmonic calculation at VPT2 method. A statistical analysis of deviations shows that estimated anharmonic frequencies are closer to the experiment over harmonic approximation. Furthermore, the anharmonic correction has also been carried out for the dimeric structure of 2AP. The fundamental vibration bands have been assigned on the basis of potential energy distribution (PED) and visual look over the animated modes. Other important molecular properties such as frontier molecular orbitals and molecular electrostatics potential mapping have also been analyzed.

  8. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    NASA Astrophysics Data System (ADS)

    Wu, Xufen; Wang, Yougang; Feix, Martin; Zhao, HongSheng

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N-body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.

  9. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xufen; Wang, Yougang; Feix, Martin

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbitsmore » with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.« less

  10. Particle-In-Cell simulations of electron beam microbunching instability in three dimensions

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Zeng, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.; Kwan, T. J. T.

    2013-10-01

    Microbunching instability due to Coherent Synchrotron Radiation (CSR) in a magnetic chicane is one of the major effects that can degrade the electron beam quality in an X-ray Free Electron Laser. Self-consistent simulation using the Particle-In-Cell (PIC) method for the CSR fields of the beam and their effects on beam dynamics have been elusive due to the excessive dispersion error on the grid. We have implemented a high-order finite-volume PIC scheme that models the propagation of the CSR fields accurately. This new scheme is characterized and optimized through a detailed dispersion analysis. The CSR fields from our improved PIC calculation are compared to the extended CSR numerical model based on the Lienard-Wiechert formula in 2D/3D. We also conduct beam dynamics simulation of the microbunching instability using our new PIC capability. Detailed self-consistent PIC simulations of the CSR fields and beam dynamics will be presented and discussed. Work supported by the U.S. Department of Energy through the LDRD program at Los Alamos National Laboratory.

  11. Effective charges of ionic liquid determined self-consistently through combination of molecular dynamics simulation and density-functional theory.

    PubMed

    Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2017-11-15

    A self-consistent scheme combining the molecular dynamics (MD) simulation and density functional theory (DFT) was recently proposed to incorporate the effects of the charge transfer and polarization of ions into non-poralizable force fields of ionic liquids for improved description of energetics and dynamics. The purpose of the present work is to analyze the detailed setups of the MD/DFT scheme by focusing on how the basis set, exchange-correlation (XC) functional, charge-fitting method or force field for the intramolecular and Lennard-Jones interactions affects the MD/DFT results of 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ( [C1mim][NTf2]) and 1-ethyl-3-methylimidazolium glycinate ( [C2mim][Gly]). It was found that the double-zeta valence polarized or larger size of basis set is required for the convergence of the effective charge of the ion. The choice of the XC functional was further not influential as far as the generalized gradient approximation is used. The charge-fitting method and force field govern the accuracy of the MD/DFT scheme, on the other hand. We examined the charge-fitting methods of Blöchl, the iterative Hirshfeld (Hirshfeld-I), and REPEAT in combination with Lopes et al.'s force field and general AMBER force field. There is no single combination of charge fitting and force field that provides good agreements with the experiments, while the MD/DFT scheme reduces the effective charges of the ions and leads to better description of energetics and dynamics compared to the original force field with unit charges. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. MCSCF wave functions for excited states of polar molecules - Application to BeO. [Multi-Configuration Self-Consistent Field

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Yarkony, D. R.

    1980-01-01

    A previously reported multi-configuration self-consistent field (MCSCF) algorithm based on the generalized Brillouin theorem is extended in order to treat the excited states of polar molecules. In particular, the algorithm takes into account the proper treatment of nonorthogonality in the space of single excitations and invokes, when necessary, a constrained optimization procedure to prevent the variational collapse of excited states. In addition, a configuration selection scheme (suitable for use in conjunction with extended configuration interaction methods) is proposed for the MCSCF procedure. The algorithm is used to study the low-lying singlet states of BeO, a system which has not previously been studied using an MCSCF procedure. MCSCF wave functions are obtained for three 1 Sigma + and two 1 Pi states. The 1 Sigma + results are juxtaposed with comparable results for MgO in order to assess the generality of the description presented here.

  13. Complex polarization propagator approach in the restricted open-shell, self-consistent field approximation: the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine.

    PubMed

    Linares, Mathieu; Stafström, Sven; Rinkevicius, Zilvinas; Ågren, Hans; Norman, Patrick

    2011-05-12

    A presentation of the complex polarization propagator in the restricted open-shell self-consistent field approximation is given. It rests on a formulation of a resonant-convergent, first-order polarization propagator approach that makes it possible to directly calculate the X-ray absorption cross section at a particular frequency without explicitly addressing the excited states. The quality of the predicted X-ray spectra relates only to the type of density functional applied without any separate treatment of dynamical relaxation effects. The method is applied to the calculation of the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine. Comparison is made between the spectra of the radicals and those of the corresponding cations and anions to assess the effect of the increase of electron charge in the frontier orbital. The method offers the possibility for unique assignment of symmetry-independent atoms. The overall excellent spectral agreement motivates the application of the method as a routine precise tool for analyzing X-ray absorption of large systems of technological interest.

  14. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.

    PubMed

    Coriani, Sonia; Høst, Stinne; Jansík, Branislav; Thøgersen, Lea; Olsen, Jeppe; Jørgensen, Poul; Reine, Simen; Pawłowski, Filip; Helgaker, Trygve; Sałek, Paweł

    2007-04-21

    A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for the calculation of frequency-dependent molecular response properties and excitation energies is presented, based on a nonredundant exponential parametrization of the one-electron density matrix in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory. Important features of the subspace method are the use of paired trial vectors (to preserve the algebraic structure of the response equations), a nondiagonal preconditioner (for rapid convergence), and the generation of good initial guesses (for robust solution). As a result, the performance of the iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides containing up to 1400 atoms.

  15. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Han, Shu-Jen; Tulevski, George S.

    2014-09-01

    One key challenge of realizing practical high-performance electronic devices based on single-walled carbon nanotubes is to produce electronically pure nanotube arrays with both a minuscule and uniform inter-tube pitch for sufficient device-packing density and homogeneity. Here we develop a method in which the alternating voltage-fringing electric field formed between surface microelectrodes and the substrate is utilized to assemble semiconducting nanotubes into well-aligned, ultrahigh-density and submonolayered arrays, with a consistent pitch as small as 21±6 nm determined by a self-limiting mechanism, based on the unique field focusing and screening effects of the fringing field. Field-effect transistors based on such nanotube arrays exhibit record high device transconductance (>50 μS μm-1) and decent on current per nanotube (~1 μA per tube) together with high on/off ratios at a drain bias of -1 V.

  16. Approximate solution of the mode-mode coupling integral: Application to cytosine and its deuterated derivative.

    PubMed

    Rasheed, Tabish; Ahmad, Shabbir

    2010-10-01

    Ab initio Hartree-Fock (HF), density functional theory (DFT) and second-order Møller-Plesset (MP2) methods were used to perform harmonic and anharmonic calculations for the biomolecule cytosine and its deuterated derivative. The anharmonic vibrational spectra were computed using the vibrational self-consistent field (VSCF) and correlation-corrected vibrational self-consistent field (CC-VSCF) methods. Calculated anharmonic frequencies have been compared with the argon matrix spectra reported in literature. The results were analyzed with focus on the properties of anharmonic couplings between pair of modes. A simple and easy to use formula for calculation of mode-mode coupling magnitudes has been derived. The key element in present approach is the approximation that only interactions between pairs of normal modes have been taken into account, while interactions of triples or more are neglected. FTIR and Raman spectra of solid state cytosine have been recorded in the regions 400-4000 cm(-1) and 60-4000 cm(-1), respectively. Vibrational analysis and assignments are based on calculated potential energy distribution (PED) values. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Self-Consistent Model of Magnetospheric Electric Field, Ring Current, Plasmasphere, and Electromagnetic Ion Cyclotron Waves: Initial Results

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.

    2009-01-01

    Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.

  18. Pragmatic mode-sum regularization method for semiclassical black-hole spacetimes

    NASA Astrophysics Data System (ADS)

    Levi, Adam; Ori, Amos

    2015-05-01

    Computation of the renormalized stress-energy tensor is the most serious obstacle in studying the dynamical, self-consistent, semiclassical evaporation of a black hole in 4D. The difficulty arises from the delicate regularization procedure for the stress-energy tensor, combined with the fact that in practice the modes of the field need to be computed numerically. We have developed a new method for numerical implementation of the point-splitting regularization in 4D, applicable to the renormalized stress-energy tensor as well as to ⟨ϕ2⟩ren , namely the renormalized ⟨ϕ2⟩. So far we have formulated two variants of this method: t -splitting (aimed for stationary backgrounds) and angular splitting (for spherically symmetric backgrounds). In this paper we introduce our basic approach, and then focus on the t -splitting variant, which is the simplest of the two (deferring the angular-splitting variant to a forthcoming paper). We then use this variant, as a first stage, to calculate ⟨ϕ2⟩ren in Schwarzschild spacetime, for a massless scalar field in the Boulware state. We compare our results to previous ones, obtained by a different method, and find full agreement. We discuss how this approach can be applied (using the angular-splitting variant) to analyze the dynamical self-consistent evaporation of black holes.

  19. Self-consistent molecular dynamics formulation for electric-field-mediated electrolyte transport through nanochannels

    NASA Astrophysics Data System (ADS)

    Raghunathan, A. V.; Aluru, N. R.

    2007-07-01

    A self-consistent molecular dynamics (SCMD) formulation is presented for electric-field-mediated transport of water and ions through a nanochannel connected to reservoirs or baths. The SCMD formulation is compared with a uniform field MD approach, where the applied electric field is assumed to be uniform, for 2nm and 3.5nm wide nanochannels immersed in a 0.5M KCl solution. Reservoir ionic concentrations are maintained using the dual-control-volume grand canonical molecular dynamics technique. Simulation results with varying channel height indicate that the SCMD approach calculates the electrostatic potential in the simulation domain more accurately compared to the uniform field approach, with the deviation in results increasing with the channel height. The translocation times and ionic fluxes predicted by uniform field MD can be substantially different from those predicted by the SCMD approach. Our results also indicate that during a 2ns simulation time K+ ions can permeate through a 1nm channel when the applied electric field is computed self-consistently, while the permeation is not observed when the electric field is assumed to be uniform.

  20. Vacuum birefringence in strong magnetic fields: (II) Complex refractive index from the lowest Landau level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Koichi, E-mail: khattori@yonsei.ac.kr; Itakura, Kazunori, E-mail: kazunori.itakura@kek.jp; Department of Particle and Nuclear Studies, Graduate University for Advanced Studies

    2013-07-15

    We compute the refractive indices of a photon propagating in strong magnetic fields on the basis of the analytic representation of the vacuum polarization tensor obtained in our previous paper. When the external magnetic field is strong enough for the fermion one-loop diagram of the polarization tensor to be approximated by the lowest Landau level, the propagating mode in parallel to the magnetic field is subject to modification: The refractive index deviates from unity and can be very large, and when the photon energy is large enough, the refractive index acquires an imaginary part indicating decay of a photon intomore » a fermion–antifermion pair. We study dependences of the refractive index on the propagating angle and the magnetic-field strength. It is also emphasized that a self-consistent treatment of the equation which defines the refractive index is indispensable for accurate description of the refractive index. This self-consistent treatment physically corresponds to consistently including the effects of back reactions of the distorted Dirac sea in response to the incident photon. -- Highlights: •Vacuum birefringence and photon decay are described by the complex refractive index. •Resummed photon vacuum polarization tensor in the lowest Landau level is used. •Back reactions from the distorted Dirac sea are self-consistently taken into account. •Self-consistent treatment drastically changes structure in photon energy dependence. •Dependences on photon propagation angle and magnetic-field strength are presented.« less

  1. Self-Consistent Field Lattice Model for Polymer Networks.

    PubMed

    Tito, Nicholas B; Storm, Cornelis; Ellenbroek, Wouter G

    2017-12-26

    A lattice model based on polymer self-consistent field theory is developed to predict the equilibrium statistics of arbitrary polymer networks. For a given network topology, our approach uses moment propagators on a lattice to self-consistently construct the ensemble of polymer conformations and cross-link spatial probability distributions. Remarkably, the calculation can be performed "in the dark", without any prior knowledge on preferred chain conformations or cross-link positions. Numerical results from the model for a test network exhibit close agreement with molecular dynamics simulations, including when the network is strongly sheared. Our model captures nonaffine deformation, mean-field monomer interactions, cross-link fluctuations, and finite extensibility of chains, yielding predictions that differ markedly from classical rubber elasticity theory for polymer networks. By examining polymer networks with different degrees of interconnectivity, we gain insight into cross-link entropy, an important quantity in the macroscopic behavior of gels and self-healing materials as they are deformed.

  2. Semiclassical theory of the self-consistent vibration-rotation fields and its application to the bending-rotation interaction in the H{sub 2}O molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalozub, A.S.; Tsaune, A.Ya.

    1994-12-01

    A new approach for analyzing the highly excited vibration-rotation (VR) states of nonrigid molecules is suggested. It is based on the separation of the vibrational and rotational terms in the molecular VR Hamiltonian by introducing periodic auxiliary fields. These fields transfer different interactions within a molecule and are treated in terms of the mean-field approximation. As a result, the solution of the stationary Schroedinger equation with the VR Hamiltonian amounts to a quantization of the Berry phase in a problem of the molecular angular-momentum motion in a certain periodic VR field (rotational problem). The quantization procedure takes into account themore » motion of the collective vibrational variables in the appropriate VR potentials (vibrational problem). The quantization rules, the mean-field configurations of auxiliary interactions, and the solutions to the Schrodinger equations for the vibrational and rotational problems are self-consistently connected with one another. The potentialities of the theory are demonstrated by the bending-rotation interaction modeled by the Bunker-Landsberg potential function in the H{sub 2} molecule. The calculations are compared with both the results of the exact computations and those of other approximate methods. 32 refs., 4 tabs.« less

  3. Functional level-set derivative for a polymer self consistent field theory Hamiltonian

    NASA Astrophysics Data System (ADS)

    Ouaknin, Gaddiel; Laachi, Nabil; Bochkov, Daniil; Delaney, Kris; Fredrickson, Glenn H.; Gibou, Frederic

    2017-09-01

    We derive functional level-set derivatives for the Hamiltonian arising in self-consistent field theory, which are required to solve free boundary problems in the self-assembly of polymeric systems such as block copolymer melts. In particular, we consider Dirichlet, Neumann and Robin boundary conditions. We provide numerical examples that illustrate how these shape derivatives can be used to find equilibrium and metastable structures of block copolymer melts with a free surface in both two and three spatial dimensions.

  4. Managing lifelike behavior in a dynamic self-assembled system

    NASA Astrophysics Data System (ADS)

    Ropp, Chad; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang

    Self-organization can arise outside of thermodynamic equilibrium in a process of dynamic self-assembly. This is observed in nature, for example in flocking birds, but can also be created artificially with non-living entities. Such dynamic systems often display lifelike properties, including the ability to self-heal and adapt to environmental changes, which arise due to the collective and often complex interactions between the many individual elements. Such interactions are inherently difficult to predict and control, and limit the development of artificial systems. Here, we report a fundamentally new method to manage dynamic self-assembly through the direct external control of collective phenomena. Our system consists of a waveguide filled with mobile scattering particles. These particles spontaneously self-organize when driven by a coherent field, self-heal when mechanically perturbed, and adapt to changes in the drive wavelength. This behavior is governed by particle interactions that are completely mediated by coherent wave scattering. Compared to hydrodynamic interactions which lead to compact ordered structures, our system displays sinusoidal degeneracy and many different steady-state geometries that can be adjusted using the external field.

  5. Dielectric function and plasmons in graphene: A self-consistent-field calculation within a Markovian master equation formalism

    DOE PAGES

    Karimi, F.; Davoody, A. H.; Knezevic, I.

    2016-05-12

    We introduce a method for calculating the dielectric function of nanostructures with an arbitrary band dispersion and Bloch wave functions. The linear response of a dissipative electronic system to an external electromagnetic field is calculated by a self-consistent-field approach within a Markovian master equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations. The SCF-MMEF accurately accounts for several concurrent scattering mechanisms. The method captures interband electron-hole-pair generation, as well as the interband and intraband electron scattering with phonons and impurities. We employ the SCF-MMEF to calculate the dielectric function, complex conductivity, and loss function for supported graphene. From the loss-function maximum,more » we obtain plasmon dispersion and propagation length for different substrate types [nonpolar diamondlike carbon (DLC) and polar SiO 2 and hBN], impurity densities, carrier densities, and temperatures. Plasmons on the two polar substrates are suppressed below the highest surface phonon energy, while the spectrum is broad on the nonpolar DLC. Plasmon propagation lengths are comparable on polar and nonpolar substrates and are on the order of tens of nanometers, considerably shorter than previously reported. As a result, they improve with fewer impurities, at lower temperatures, and at higher carrier densities.« less

  6. Self-consistent simulation of radio frequency multipactor on micro-grooved dielectric surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Libing; Wang, Jianguo, E-mail: wanguiuc@mail.xjtu.edu.cn; Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024

    2015-02-07

    The multipactor plays a key role in the surface breakdown on the feed dielectric window irradiated by high power microwave. To study the suppression of multipactor, a 2D electrostatic PIC-MCC simulation code was developed. The space charge field, including surface deposited charge and multipactor electron charge field, is obtained by solving 2D Poisson's equation in time. Therefore, the simulation is self-consistent and does not require presetting a fixed space charge field. By using this code, the self-consistent simulation of the RF multipactor on the periodic micro-grooved dielectric surface is realized. The 2D space distributions of the multipactor electrons and spacemore » charge field are presented. From the simulation results, it can be found that only half slopes have multipactor discharge when the slope angle exceeds a certain value, and the groove presents a pronounced suppression effect on the multipactor.« less

  7. Self-rolling up micro 3D structures using temperature-responsive hydrogel sheet

    NASA Astrophysics Data System (ADS)

    Iwata, Y.; Miyashita, S.; Iwase, E.

    2017-12-01

    This paper proposes a micro self-folding using a self-rolling up deformation. In the fabrication method at micro scale, self-folding is an especially useful method of easily fabricating complex three-dimensional (3D) structures from engineered two-dimensional (2D) sheets. However, most self-folded structures are limited to 3D structures with a hollow region. Therefore, we made 3D structures with a small hollow region by self-rolling up a 2D sheet consisting of SU-8 and a temperature-responsive hybrid hydrogel of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc). The temperature-responsive hydrogel can provide repetitive deformation, which is a good feature for micro soft robots or actuators, using hydrogel shrinking and swelling. Our micro self-rolling up method is a self-folding method for a 3D structure performed by rolling up a 2D flat sheet, like making a croissant, through continuous self-folding. We used our method to fabricate 3D structures with a small hollow region, such as cylindrical, conical, and croissant-like ellipsoidal structures, and 3D structures with a hollow region, such as spiral shapes. All the structures showed repetitive deformation, forward rolling up in 20 °C cold water and backward rolling up in 40 °C hot water. The results demonstrate that self-rolling up deformation can be useful in the field of micro soft devices.

  8. Dynamical self-arrest in symmetric and asymmetric diblock copolymer melts using a replica approach within a local theory.

    PubMed

    Wu, Sangwook

    2009-03-01

    We investigate dynamical self-arrest in a diblock copolymer melt using a replica approach within a self-consistent local method based on dynamical mean-field theory (DMFT). The local replica approach effectively predicts (chiN)_{A} for dynamical self-arrest in a block copolymer melt for symmetric and asymmetric cases. We discuss the competition of the cubic and quartic interactions in the Landau free energy for a block copolymer melt in stabilizing a glassy state depending on the chain length. Our local replica theory provides a universal value for the dynamical self-arrest in block copolymer melts with (chiN)_{A} approximately 10.5+64N;{-3/10} for the symmetric case.

  9. STEADY GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC INFLOW/OUTFLOW SOLUTION ALONG LARGE-SCALE MAGNETIC FIELDS THAT THREAD A ROTATING BLACK HOLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Nakamura, Masanori; Hirotani, Kouichi

    2015-03-01

    General relativistic magnetohydrodynamic (GRMHD) flows along magnetic fields threading a black hole can be divided into inflow and outflow parts, according to the result of the competition between the black hole gravity and magneto-centrifugal forces along the field line. Here we present the first self-consistent, semi-analytical solution for a cold, Poynting flux–dominated (PFD) GRMHD flow, which passes all four critical (inner and outer, Alfvén, and fast magnetosonic) points along a parabolic streamline. By assuming that the dominating (electromagnetic) component of the energy flux per flux tube is conserved at the surface where the inflow and outflow are separated, the outflowmore » part of the solution can be constrained by the inflow part. The semi-analytical method can provide fiducial and complementary solutions for GRMHD simulations around the rotating black hole, given that the black hole spin, global streamline, and magnetizaion (i.e., a mass loading at the inflow/outflow separation) are prescribed. For reference, we demonstrate a self-consistent result with the work by McKinney in a quantitative level.« less

  10. On the `simple' form of the gravitational action and the self-interacting graviton

    NASA Astrophysics Data System (ADS)

    Tomboulis, E. T.

    2017-09-01

    The so-called ΓΓ-form of the gravitational Lagrangian, long known to provide its most compact expression as well as the most efficient generation of the graviton vertices, is taken as the starting point for discussing General Relativity as a theory of the self-interacting graviton. A straightforward but general method of converting to a covariant formulation by the introduction of a reference metric is given. It is used to recast the Einstein field equation as the equation of motion of a spin-2 particle interacting with the canonical energy-momentum tensor symmetrized by the standard Belinfante method applicable to any field carrying nonzero spin. This represents the graviton field equation in a form complying with the precepts of standard field theory. It is then shown how representations based on other, at face value completely unrelated definitions of energy-momentum (pseudo)tensors are all related by the addition of appropriate superpotential terms. Specifically, the superpotentials are explicitly constructed which connect to: i) the common definition consisting simply of the nonlinear part of the Einstein tensor; ii) the Landau-Lifshitz definition.

  11. The closure approximation in the hierarchy equations.

    NASA Technical Reports Server (NTRS)

    Adomian, G.

    1971-01-01

    The expectation of the solution process in a stochastic operator equation can be obtained from averaged equations only under very special circumstances. Conditions for validity are given and the significance and validity of the approximation in widely used hierarchy methods and the ?self-consistent field' approximation in nonequilibrium statistical mechanics are clarified. The error at any level of the hierarchy can be given and can be avoided by the use of the iterative method.

  12. Tearing relaxation and the globalization of transport in field-reversed configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhauer, Loren; Barnes, D. C.

    2009-09-15

    Tearing instability of field-reversed configurations (FRC) is investigated using the method of neighboring equilibria. It is shown that the conducting wall position in experiment lies very close to the location needed for tearing stability. This strongly suggests that vigorous but benign tearing modes, acting globally, are the engine of continual self-organization in FRCs, i.e., tearing relaxation. It also explains the ''profile consistency'' and anomalous loss rate of magnetic flux. In effect, tearing globalizes the effect of edge-driven transport.

  13. Cavity-induced artificial gauge field in a Bose-Hubbard ladder

    NASA Astrophysics Data System (ADS)

    Halati, Catalin-Mihai; Sheikhan, Ameneh; Kollath, Corinna

    2017-12-01

    We consider theoretically ultracold interacting bosonic atoms confined to quasi-one-dimensional ladder structures formed by optical lattices and coupled to the field of an optical cavity. The atoms can collect a spatial phase imprint during a cavity-assisted tunneling along a rung via Raman transitions employing a cavity mode and a transverse running wave pump beam. By adiabatic elimination of the cavity field we obtain an effective Hamiltonian for the bosonic atoms, with a self-consistency condition. Using the numerical density-matrix renormalization-group method, we obtain a rich steady-state diagram of self-organized steady states. Transitions between superfluid to Mott-insulating states occur, on top of which we can have Meissner, vortex liquid, and vortex lattice phases. Also a state that explicitly breaks the symmetry between the two legs of the ladder, namely, the biased-ladder phase, is dynamically stabilized. We investigate the influence that a trapping potential has on the stability of the self-organized phases.

  14. On the Convenience of Using the Complete Linearization Method in Modelling the BLR of AGN

    NASA Astrophysics Data System (ADS)

    Patriarchi, P.; Perinotto, M.

    The Complete Linearization Method (Mihalas, 1978) consists in the determination of the radiation field (at a set of frequency points), atomic level populations, temperature, electron density etc., by resolving the system of radiative transfer, thermal equilibrium, statistical equilibrium equations simultaneously and self-consistently. Since the system is not linear, it must be solved by iteration after linearization, using a perturbative method, starting from an initial guess solution. Of course the Complete Linearization Method is more time consuming than the previous one. But how great can this disadvantage be in the age of supercomputers? It is possible to approximately evaluate the CPU time needed to run a model by computing the number of multiplications necessary to solve the system.

  15. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation.

    PubMed

    Ferenczy, György G

    2013-04-05

    The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.

  16. On the equivalence of LIST and DIIS methods for convergence acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Alejandro J.; Scuseria, Gustavo E.

    2015-04-28

    Self-consistent field extrapolation methods play a pivotal role in quantum chemistry and electronic structure theory. We, here, demonstrate the mathematical equivalence between the recently proposed family of LIST methods [Wang et al., J. Chem. Phys. 134, 241103 (2011); Y. K. Chen and Y. A. Wang, J. Chem. Theory Comput. 7, 3045 (2011)] and the general form of Pulay’s DIIS [Chem. Phys. Lett. 73, 393 (1980); J. Comput. Chem. 3, 556 (1982)] with specific error vectors. Our results also explain the differences in performance among the various LIST methods.

  17. Plasma Diffusion in Self-Consistent Fluctuations

    NASA Technical Reports Server (NTRS)

    Smets, R.; Belmont, G.; Aunai, N.

    2012-01-01

    The problem of particle diffusion in position space, as a consequence ofeleclromagnetic fluctuations is addressed. Numerical results obtained with a self-consistent hybrid code are presented, and a method to calculate diffusion coefficient in the direction perpendicular to the mean magnetic field is proposed. The diffusion is estimated for two different types of fluctuations. The first type (resuiting from an agyrotropic in itiai setting)is stationary, wide band white noise, and associated to Gaussian probability distribution function for the magnetic fluctuations. The second type (result ing from a Kelvin-Helmholtz instability) is non-stationary, with a power-law spectrum, and a non-Gaussian probabi lity distribution function. The results of the study allow revisiting the question of loading particles of solar wind origin in the Earth magnetosphere.

  18. Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT).

    PubMed

    Maurer, Reinhard J; Reuter, Karsten

    2013-07-07

    Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.

  19. Tunable terahertz optical properties of graphene in dc electric fields

    NASA Astrophysics Data System (ADS)

    Dong, H. M.; Huang, F.; Xu, W.

    2018-03-01

    We develop a simple theoretical approach to investigate terahertz (THz) optical properties of monolayer graphene in the presence of an external dc electric field. The analytical results for optical coefficients such as the absorptance and reflectivity are obtained self-consistently on the basis of a diagrammatic self-consistent field theory and a Boltzmann equilibrium equation. It is found that the optical refractive index, reflectivity and conductivity can be effectively tuned by not only a gate voltage but also a driving dc electric field. This study is relevant to the applications of graphene as advanced THz optoelectronic devices.

  20. The Third General Scientific Assembly of the International Association of Geomagnetism and Aeronomy - Special sessions of auroral processes

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1978-01-01

    Methods of timing magnetic substorms, the rapid fluctuations of aurorae, electromagnetic and electrostatic instabilities observed on the field lines of aurorae, the auroral microstructure, and the relationship of currents, electric field and particle precipitation to auroral form are discussed. Attention is given to such topics as D-perturbations as an indicator of substorm onset, the role of the magnetotail in substorms, spectral information derived from imaging data on aurorae, terrestrial kilometric radiation, and the importance of the mirror force in self-consistent models of particle fluxes, currents and potentials on auroral field lines.

  1. Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.

    2011-01-01

    We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.

  2. REVIEWS OF TOPICAL PROBLEMS: Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods)

    NASA Astrophysics Data System (ADS)

    Bykov, Andrei M.; Toptygin, Igor'N.

    1993-11-01

    This review presents methods available for calculating transport coefficients for impurity particles in plasmas with strong long-wave MHD-type velocity and magnetic-field fluctuations, and random ensembles of strong shock fronts. The renormalization of the coefficients of the mean-field equation of turbulent dynamo theory is also considered. Particular attention is devoted to the renormalization method developed by the authors in which the renormalized transport coefficients are calculated from a nonlinear transcendental equation (or a set of such equations) and are expressed in the form of explicit functions of pair correlation tensors describing turbulence. Numerical calculations are reproduced for different turbulence spectra. Spatial transport in a magnetic field and particle acceleration by strong turbulence are investigated. The theory can be used in a wide range of practical problems in plasma physics, atmospheric physics, ocean physics, astrophysics, cosmic-ray physics, and so on.

  3. Higher order alchemical derivatives from coupled perturbed self-consistent field theory.

    PubMed

    Lesiuk, Michał; Balawender, Robert; Zachara, Janusz

    2012-01-21

    We present an analytical approach to treat higher order derivatives of Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory energy in the Born-Oppenheimer approximation with respect to the nuclear charge distribution (so-called alchemical derivatives). Modified coupled perturbed self-consistent field theory is used to calculate molecular systems response to the applied perturbation. Working equations for the second and the third derivatives of HF/KS energy are derived. Similarly, analytical forms of the first and second derivatives of orbital energies are reported. The second derivative of Kohn-Sham energy and up to the third derivative of Hartree-Fock energy with respect to the nuclear charge distribution were calculated. Some issues of practical calculations, in particular the dependence of the basis set and Becke weighting functions on the perturbation, are considered. For selected series of isoelectronic molecules values of available alchemical derivatives were computed and Taylor series expansion was used to predict energies of the "surrounding" molecules. Predicted values of energies are in unexpectedly good agreement with the ones computed using HF/KS methods. Presented method allows one to predict orbital energies with the error less than 1% or even smaller for valence orbitals. © 2012 American Institute of Physics

  4. First and second energy derivative analyses for open-shell self-consistent field wavefunctions

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yukio; Schaefer, Henry F., III; Frenking, Gernot

    A study of first and second derivatives of the orbital, electronic, nuclear and total energies for the self-consistent field (SCF) wavefunction has been applied to general open-shell SCF systems. The diagonal elements of the Lagrangian matrix for the general open-shell SCF wavefunction are adapted as the 'oŕbital' energies. The first and second derivatives of the orbital energies in terms of the normal coordinates are determined via the finite difference method, while those of the electronic, nuclear and total energies are obtained by analytical techniques. Using three low lying states of the CH2 and H2CO molecules as examples, it is demonstrated that the derivatives of the SCF energetic quantities with respect to the normal coordinates provide useful chemical information concerning the respective molecular structures and reactivities. The conventional concept of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) has been extended to the molecular vibrational motion, and the terminology of vibrationally active MOs (va-MOs), va-HOMO and va-LUMO has been introduced for each normal coordinate. The energy derivative analysis method may be used as a powerful semi-quantitative modelin understanding and interpreting various chemical phenomena.

  5. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular Ornstein-Zernike self-consistent field approach

    NASA Astrophysics Data System (ADS)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-01

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl- + CH3Cl → ClCH3 + Cl-) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  6. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: multi-center molecular Ornstein-Zernike self-consistent field approach.

    PubMed

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-07

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl(-) + CH3Cl → ClCH3 + Cl(-)) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  7. Electronic structure of metals and semiconductors: bulk, surface, and interface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, S.G.S.

    1976-09-01

    A theoretical study of the electronic structure of various metals and semiconductors is presented with the emphasis on understanding the properties of these materials when they are subjected to extreme conditions and in various different configurations. Among the bulk systems studied, the properties of cesium under high pressure are discussed in terms of the electronic structure calculated at various cell volumes using the pseudopotential method. Local fields or umklapp processes in semiconductors are studied within the random phase approximation (RPA). Specifically the dielectric response matrix epsilon/sub GG'/ (q = 0,omega) is evaluated numerically to determine the effects of local-field correctionsmore » in the optical spectrum of Si. Also, some comments on the excitonic mechanism of superconductivity are presented and the role of local fields is discussed. The pseudo-potential method is next extended to calculate the electronic structure of a transition metal Nb. The calculation is performed self-consistently with the use of a non-local ionic potential determined from atomic spectra. Finally the theory of the superconducting transition temperature T/sub c/ is discussed in the strong-coupling formulation of the BCS theory. The Eliashberg equations in the Matsubara representation are solved analytically and a general T/sub c/ equation is obtained. A new method is developed using pseudopotentials in a self-consistent manner to describe non-periodic systems. The method is applicable to localized configurations such as molecules, surfaces, impurities, vacancies, finite chains of atoms, adsorbates, and solid interfaces. Specific applications to surfaces, metal-semiconductor interfaces and vacancies are presented.« less

  8. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri

    Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can bemore » rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.« less

  9. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory

    DOE PAGES

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; ...

    2017-03-03

    Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can bemore » rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.« less

  10. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory.

    PubMed

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S; Shirley, Eric L; Prendergast, David

    2017-03-03

    Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.

  11. Improved Electrostatic Embedding for Fragment-Based Chemical Shift Calculations in Molecular Crystals.

    PubMed

    Hartman, Joshua D; Balaji, Ashwin; Beran, Gregory J O

    2017-12-12

    Fragment-based methods predict nuclear magnetic resonance (NMR) chemical shielding tensors in molecular crystals with high accuracy and computational efficiency. Such methods typically employ electrostatic embedding to mimic the crystalline environment, and the quality of the results can be sensitive to the embedding treatment. To improve the quality of this embedding environment for fragment-based molecular crystal property calculations, we borrow ideas from the embedded ion method to incorporate self-consistently polarized Madelung field effects. The self-consistent reproduction of the Madelung potential (SCRMP) model developed here constructs an array of point charges that incorporates self-consistent lattice polarization and which reproduces the Madelung potential at all atomic sites involved in the quantum mechanical region of the system. The performance of fragment- and cluster-based 1 H, 13 C, 14 N, and 17 O chemical shift predictions using SCRMP and density functionals like PBE and PBE0 are assessed. The improved embedding model results in substantial improvements in the predicted 17 O chemical shifts and modest improvements in the 15 N ones. Finally, the performance of the model is demonstrated by examining the assignment of the two oxygen chemical shifts in the challenging γ-polymorph of glycine. Overall, the SCRMP-embedded NMR chemical shift predictions are on par with or more accurate than those obtained with the widely used gauge-including projector augmented wave (GIPAW) model.

  12. Magnetic field dependence of spin torque switching in nanoscale magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Rowlands, Graham; Katine, Jordan; Langer, Juergen; Krivorotov, Ilya

    2012-02-01

    Magnetic random access memory based on spin transfer torque effect in nanoscale magnetic tunnel junctions (STT-RAM) is emerging as a promising candidate for embedded and stand-alone computer memory. An important performance parameter of STT-RAM is stability of its free magnetic layer against thermal fluctuations. Measurements of the free layer switching probability as a function of sub-critical voltage at zero effective magnetic field (read disturb rate or RDR measurements) have been proposed as a method for quantitative evaluation of the free layer thermal stability at zero voltage. In this presentation, we report RDR measurement as a function of external magnetic field, which provide a test of the RDR method self-consistency and reliability.

  13. Cauchy problem in spacetimes with closed timelike curves

    NASA Astrophysics Data System (ADS)

    Friedman, John; Morris, Michael S.; Novikov, Igor D.; Echeverria, Fernando; Klinkhammer, Gunnar; Thorne, Kip S.; Yurtsever, Ulvi

    1990-09-01

    The laws of physics might permit the existence, in the real Universe, of closed timelike curves (CTC's). Macroscopic CTC's might be a semiclassical consequence of Planck-scale, quantum gravitational, Lorentzian foam, if such foam exists. If CTC's are permitted, then the semiclassical laws of physics (the laws with gravity classical and other fields quantized or classical) should be augmented by a principle of self-consistency, which states that a local solution to the equations of physics can occur in the real Universe only if it can be extended to be part of a global solution, one which is well defined throughout the (nonsingular regions of) classical spacetime. The consequences of this principle are explored for the Cauchy problem of the evolution of a classical, massless scalar field Φ (satisfying □Φ=0) in several model spacetimes with CTC's. In general, self-consistency constrains the initial data for the field Φ. For a family of spacetimes with traversible wormholes, which initially possess no CTC's and then evolve them to the future of a stable Cauchy horizon scrH, self-consistency seems to place no constraints on initial data for Φ that are posed on past null infinity, and none on data posed on spacelike slices which precede scrH. By contrast, initial data posed in the future of scrH, where the CTC's reside, are constrained; but the constraints appear to be mild in the sense that in some neighborhood of every event one is free to specify initial data arbitrarily, with the initial data elsewhere being adjusted to guarantee self-consistent evolution. A spacetime whose self-consistency constraints have this property is defined to be ``benign with respect to the scalar field Φ.'' The question is posed as to whether benign spacetimes in some sense form a generic subset of all spacetimes with CTC's. It is shown that in the set of flat, spatially and temporally closed, 2-dimensional spacetimes the benign ones are not generic. However, it seems likely that every 4-dimensional, asymptotically flat space-time that is stable and has a topology of the form R×(S-one point), where S is a closed 3-manifold, is benign. Wormhole spacetimes are of this type, with S=S1×S2. We suspect that these types of self-consistency behavior of the scalar field Φ are typical for noninteracting (linearly superposing), classical fields. However, interacting classical systems can behave quite differently, as is demonstrated by a study of the motion of a hard-sphere billiard ball in a wormhole spacetime with closed timelike curves: If the ball is classical, then some choices of initial data (some values of the ball's initial position and velocity) give rise to unique, self-consistent motions of the ball; other choices produce two different self-consistent motions; and others might (but we are not yet sure) produce no self-consistent motions whatsoever. By contrast, in a path-integral formulation of the nonrelativistic quantum mechanics of such a billiard ball, there appears to be a unique, self-consistent set of probabilities for the outcomes of all measurements. This paper's conclusion, that CTC's may not be as nasty as people have assumed, is reinforced by the fact that they do not affect Gauss's theorem and thus do not affect the derivation of global conservation laws from differential ones. The standard conservation laws remain valid globally, and in asymptotically flat, wormhole spacetimes they retain a natural, quasilocal interpretation.

  14. The Awareness of Knowledge and Skill of Self-Defined Instructional Technologists in the Corporate Environment: An Interpretive Study

    ERIC Educational Resources Information Center

    Hutson, Patricia Evonne

    2013-01-01

    The description of the self-defined expert instructional technologist is unclear. Technologists in the field are identified in various ways. To determine the characteristics and competencies of self-defined expert instructional technologists, an interpretive field study consisting of interviews was conducted. The results revealed three core…

  15. Communication: A difference density picture for the self-consistent field ansatz.

    PubMed

    Parrish, Robert M; Liu, Fang; Martínez, Todd J

    2016-04-07

    We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this "difference self-consistent field (dSCF)" picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TeraChem SCF implementation.

  16. Communication: A difference density picture for the self-consistent field ansatz

    NASA Astrophysics Data System (ADS)

    Parrish, Robert M.; Liu, Fang; Martínez, Todd J.

    2016-04-01

    We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this "difference self-consistent field (dSCF)" picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TeraChem SCF implementation.

  17. TINKTEP: A fully self-consistent, mutually polarizable QM/MM approach based on the AMOEBA force field

    NASA Astrophysics Data System (ADS)

    Dziedzic, Jacek; Mao, Yuezhi; Shao, Yihan; Ponder, Jay; Head-Gordon, Teresa; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-09-01

    We present a novel quantum mechanical/molecular mechanics (QM/MM) approach in which a quantum subsystem is coupled to a classical subsystem described by the AMOEBA polarizable force field. Our approach permits mutual polarization between the QM and MM subsystems, effected through multipolar electrostatics. Self-consistency is achieved for both the QM and MM subsystems through a total energy minimization scheme. We provide an expression for the Hamiltonian of the coupled QM/MM system, which we minimize using gradient methods. The QM subsystem is described by the onetep linear-scaling DFT approach, which makes use of strictly localized orbitals expressed in a set of periodic sinc basis functions equivalent to plane waves. The MM subsystem is described by the multipolar, polarizable force field AMOEBA, as implemented in tinker. Distributed multipole analysis is used to obtain, on the fly, a classical representation of the QM subsystem in terms of atom-centered multipoles. This auxiliary representation is used for all polarization interactions between QM and MM, allowing us to treat them on the same footing as in AMOEBA. We validate our method in tests of solute-solvent interaction energies, for neutral and charged molecules, demonstrating the simultaneous optimization of the quantum and classical degrees of freedom. Encouragingly, we find that the inclusion of explicit polarization in the MM part of QM/MM improves the agreement with fully QM calculations.

  18. Bayesian power spectrum inference with foreground and target contamination treatment

    NASA Astrophysics Data System (ADS)

    Jasche, J.; Lavaux, G.

    2017-10-01

    This work presents a joint and self-consistent Bayesian treatment of various foreground and target contaminations when inferring cosmological power spectra and three-dimensional density fields from galaxy redshift surveys. This is achieved by introducing additional block-sampling procedures for unknown coefficients of foreground and target contamination templates to the previously presented ARES framework for Bayesian large-scale structure analyses. As a result, the method infers jointly and fully self-consistently three-dimensional density fields, cosmological power spectra, luminosity-dependent galaxy biases, noise levels of the respective galaxy distributions, and coefficients for a set of a priori specified foreground templates. In addition, this fully Bayesian approach permits detailed quantification of correlated uncertainties amongst all inferred quantities and correctly marginalizes over observational systematic effects. We demonstrate the validity and efficiency of our approach in obtaining unbiased estimates of power spectra via applications to realistic mock galaxy observations that are subject to stellar contamination and dust extinction. While simultaneously accounting for galaxy biases and unknown noise levels, our method reliably and robustly infers three-dimensional density fields and corresponding cosmological power spectra from deep galaxy surveys. Furthermore, our approach correctly accounts for joint and correlated uncertainties between unknown coefficients of foreground templates and the amplitudes of the power spectrum. This effect amounts to correlations and anti-correlations of up to 10 per cent across wide ranges in Fourier space.

  19. Cyclic Solvent Vapor Annealing for Rapid, Robust Vertical Orientation of Features in BCP Thin Films

    NASA Astrophysics Data System (ADS)

    Paradiso, Sean; Delaney, Kris; Fredrickson, Glenn

    2015-03-01

    Methods for reliably controlling block copolymer self assembly have seen much attention over the past decade as new applications for nanostructured thin films emerge in the fields of nanopatterning and lithography. While solvent assisted annealing techniques are established as flexible and simple methods for achieving long range order, solvent annealing alone exhibits a very weak thermodynamic driving force for vertically orienting domains with respect to the free surface. To address the desire for oriented features, we have investigated a cyclic solvent vapor annealing (CSVA) approach that combines the mobility benefits of solvent annealing with selective stress experienced by structures oriented parallel to the free surface as the film is repeatedly swollen with solvent and dried. Using dynamical self-consistent field theory (DSCFT) calculations, we establish the conditions under which the method significantly outperforms both static and cyclic thermal annealing and implicate the orientation selection as a consequence of the swelling/deswelling process. Our results suggest that CSVA may prove to be a potent method for the rapid formation of highly ordered, vertically oriented features in block copolymer thin films.

  20. A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Self-consistent Zonal Flows

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce; Umansky, Maxim; Joseph, Ilon

    2015-11-01

    Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).

  1. Pressure calculation in hybrid particle-field simulations

    NASA Astrophysics Data System (ADS)

    Milano, Giuseppe; Kawakatsu, Toshihiro

    2010-12-01

    In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials.

  2. Self-consistent field for fragmented quantum mechanical model of large molecular systems.

    PubMed

    Jin, Yingdi; Su, Neil Qiang; Xu, Xin; Hu, Hao

    2016-01-30

    Fragment-based linear scaling quantum chemistry methods are a promising tool for the accurate simulation of chemical and biomolecular systems. Because of the coupled inter-fragment electrostatic interactions, a dual-layer iterative scheme is often employed to compute the fragment electronic structure and the total energy. In the dual-layer scheme, the self-consistent field (SCF) of the electronic structure of a fragment must be solved first, then followed by the updating of the inter-fragment electrostatic interactions. The two steps are sequentially carried out and repeated; as such a significant total number of fragment SCF iterations is required to converge the total energy and becomes the computational bottleneck in many fragment quantum chemistry methods. To reduce the number of fragment SCF iterations and speed up the convergence of the total energy, we develop here a new SCF scheme in which the inter-fragment interactions can be updated concurrently without converging the fragment electronic structure. By constructing the global, block-wise Fock matrix and density matrix, we prove that the commutation between the two global matrices guarantees the commutation of the corresponding matrices in each fragment. Therefore, many highly efficient numerical techniques such as the direct inversion of the iterative subspace method can be employed to converge simultaneously the electronic structure of all fragments, reducing significantly the computational cost. Numerical examples for water clusters of different sizes suggest that the method shall be very useful in improving the scalability of fragment quantum chemistry methods. © 2015 Wiley Periodicals, Inc.

  3. Ring current Atmosphere interactions Model with Self-Consistent Magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordanova, Vania; Jeffery, Christopher; Welling, Daniel

    The Ring current Atmosphere interactions Model with Self-Consistent magnetic field (B) is a unique code that combines a kinetic model of ring current plasma with a three dimensional force-balanced model of the terrestrial magnetic field. The kinetic portion, RAM, solves the kinetic equation to yield the bounce-averaged distribution function as a function of azimuth, radial distance, energy and pitch angle for three ion species (H+, He+, and O+) and, optionally, electrons. The domain is a circle in the Solar-Magnetic (SM) equatorial plane with a radial span of 2 to 6.5 RE. It has an energy range of approximately 100 eVmore » to 500 KeV. The 3-D force balanced magnetic field model, SCB, balances the JxB force with the divergence of the general pressure tensor to calculate the magnetic field configuration within its domain. The domain ranges from near the Earth’s surface, where the field is assumed dipolar, to the shell created by field lines passing through the SM equatorial plane at a radial distance of 6.5 RE. The two codes work in tandem, with RAM providing anisotropic pressure to SCB and SCB returning the self-consistent magnetic field through which RAM plasma is advected.« less

  4. Visual Field Asymmetries in Attention Vary with Self-Reported Attention Deficits

    ERIC Educational Resources Information Center

    Poynter, William; Ingram, Paul; Minor, Scott

    2010-01-01

    The purpose of this study was to determine whether an index of self-reported attention deficits predicts the pattern of visual field asymmetries observed in behavioral measures of attention. Studies of "normal" subjects do not present a consistent pattern of asymmetry in attention functions, with some studies showing better left visual field (LVF)…

  5. Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks

    DOE PAGES

    Park, Jong-Kyu; Logan, Nikolas C.

    2017-03-01

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly formore » each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.« less

  6. Towards a fully self-consistent inversion combining historical and paleomagnetic data for geomagnetic field reconstructions

    NASA Astrophysics Data System (ADS)

    Arneitz, P.; Leonhardt, R.; Fabian, K.; Egli, R.

    2017-12-01

    Historical and paleomagnetic data are the two main sources of information about the long-term geomagnetic field evolution. Historical observations extend to the late Middle Ages, and prior to the 19th century, they consisted mainly of pure declination measurements from navigation and orientation logs. Field reconstructions going back further in time rely solely on magnetization acquired by rocks, sediments, and archaeological artefacts. The combined dataset is characterized by a strongly inhomogeneous spatio-temporal distribution and highly variable data reliability and quality. Therefore, an adequate weighting of the data that correctly accounts for data density, type, and realistic error estimates represents the major challenge for an inversion approach. Until now, there has not been a fully self-consistent geomagnetic model that correctly recovers the variation of the geomagnetic dipole together with the higher-order spherical harmonics. Here we present a new geomagnetic field model for the last 4 kyrs based on historical, archeomagnetic and volcanic records. The iterative Bayesian inversion approach targets the implementation of reliable error treatment, which allows different record types to be combined in a fully self-consistent way. Modelling results will be presented along with a thorough analysis of model limitations, validity and sensitivity.

  7. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Yin, Zhixiang; Chen, Minggong; Hong, Lingli; Xia, Guangqing; Hu, Yelin; Huang, Yourui; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-01

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  8. Electric Field Reconstruction in the Image Plane of a High-Contrast Coronagraph Using a Set of Pinholes around the Lyot Plane

    NASA Technical Reports Server (NTRS)

    Giveona, Amir; Shaklan, Stuart; Kern, Brian; Noecker, Charley; Kendrick, Steve; Wallace, Kent

    2012-01-01

    In a setup similar to the self coherent camera, we have added a set of pinholes in the diffraction ring of the Lyot plane in a high-contrast stellar Lyot coronagraph. We describe a novel complex electric field reconstruction from image plane intensity measurements consisting of light in the coronagraph's dark hole interfering with light from the pinholes. The image plane field is modified by letting light through one pinhole at a time. In addition to estimation of the field at the science camera, this method allows for self-calibration of the probes by letting light through the pinholes in various permutations while blocking the main Lyot opening. We present results of estimation and calibration from the High Contrast Imaging Testbed along with a comparison to the pair-wise deformable mirror diversity based estimation technique. Tests are carried out in narrow-band light and over a composite 10% bandpass.

  9. Electric-Field-Induced Energy Tuning of On-Demand Entangled-Photon Emission from Self-Assembled Quantum Dots.

    PubMed

    Zhang, Jiaxiang; Zallo, Eugenio; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G

    2017-01-11

    We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned. This feature allows experimental realization of a triggered source of energy-tunable entangled-photon emission. Our demonstration represents an important step toward realization of a solid-state quantum repeater using indistinguishable entangled photons in Bell state measurements.

  10. Quantum confined stark effect on the binding energy of exciton in type II quantum heterostructure

    NASA Astrophysics Data System (ADS)

    Suseel, Rahul K.; Mathew, Vincent

    2018-05-01

    In this work, we have investigated the effect of external electric field on the strongly confined excitonic properties of CdTe/CdSe/CdTe/CdSe type-II quantum dot heterostructures. Within the effective mass approximation, we solved the Poisson-Schrodinger equations of the exciton in nanostructure using relaxation method in a self-consistent iterative manner. We changed both the external electric field and core radius of the quantum dot, to study the behavior of binding energy of exciton. Our studies show that the external electric field destroys the positional flipped state of exciton by modifying the confining potentials of electron and hole.

  11. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: Application to solvatochromic shift calculations

    NASA Astrophysics Data System (ADS)

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-01

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  12. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: application to solvatochromic shift calculations.

    PubMed

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-07

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  13. Self-consistent mean-field approach to the statistical level density in spherical nuclei

    NASA Astrophysics Data System (ADS)

    Kolomietz, V. M.; Sanzhur, A. I.; Shlomo, S.

    2018-06-01

    A self-consistent mean-field approach within the extended Thomas-Fermi approximation with Skyrme forces is applied to the calculations of the statistical level density in spherical nuclei. Landau's concept of quasiparticles with the nucleon effective mass and the correct description of the continuum states for the finite-depth potentials are taken into consideration. The A dependence and the temperature dependence of the statistical inverse level-density parameter K is obtained in a good agreement with experimental data.

  14. Dynamics and Self-consistent Chaos in a Mean Field Hamiltonian Model

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, Diego

    We study a mean field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas in the finite N and N-> infty kinetic limit (where N is the number of particles). The linear stability of equilibria in the kinetic model is studied as well as the initial value problem including Landau damping . Numerical simulations show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles and show that the N=2 limit has a family of rotating integrable solutions that provide an accurate description of the dynamics. We discuss the role of self-consistent Hamiltonian chaos in the formation of coherent structures, and discuss a mechanism of "violent" mixing caused by a self-consistent elliptic-hyperbolic bifurcation in phase space.

  15. Optical forces, torques, and force densities calculated at a microscopic level using a self-consistent hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Chan, C. T.

    2018-04-01

    The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.

  16. Self-consistent molecular dynamics calculation of diffusion in higher n-alkanes.

    PubMed

    Kondratyuk, Nikolay D; Norman, Genri E; Stegailov, Vladimir V

    2016-11-28

    Diffusion is one of the key subjects of molecular modeling and simulation studies. However, there is an unresolved lack of consistency between Einstein-Smoluchowski (E-S) and Green-Kubo (G-K) methods for diffusion coefficient calculations in systems of complex molecules. In this paper, we analyze this problem for the case of liquid n-triacontane. The non-conventional long-time tails of the velocity autocorrelation function (VACF) are found for this system. Temperature dependence of the VACF tail decay exponent is defined. The proper inclusion of the long-time tail contributions to the diffusion coefficient calculation results in the consistency between G-K and E-S methods. Having considered the major factors influencing the precision of the diffusion rate calculations in comparison with experimental data (system size effects and force field parameters), we point to hydrogen nuclear quantum effects as, presumably, the last obstacle to fully consistent n-alkane description.

  17. A self-consistent field method for galactic dynamics

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Ostriker, Jeremiah P.

    1992-01-01

    The present study describes an algorithm for evolving collisionless stellar systems in order to investigate the evolution of systems with density profiles like the R exp 1/4 law, using only a few terms in the expansions. A good fit is obtained for a truncated isothermal distribution, which renders the method appropriate for galaxies with flat rotation curves. Calculations employing N of about 10 exp 6-7 are straightforward on existing supercomputers, making possible simulations having significantly smoother fields than with direct methods such as tree-codes. Orbits are found in a given static or time-dependent gravitational field; the potential, phi(r, t) is revised from the resultant density, rho(r, t). Possible scientific uses of this technique are discussed, including tidal perturbations of dwarf galaxies, the adiabatic growth of central masses in spheroidal galaxies, instabilities in realistic galaxy models, and secular processes in galactic evolution.

  18. Plastometry for the Self-Compacting Concrete Mixes

    NASA Astrophysics Data System (ADS)

    Lapsa, V. Ā.; Krasnikovs, A.; Lusis, V.; Lukasenoks, A.

    2015-11-01

    Operative determination of consistence of self-compacting concrete mixes at plant or in construction conditions is an important problem in building practice. The Abram's cone, the Vebe's device, the U-box siphon, L-box or funnel tests are used in solving this problem. However, these field methods are targeted at determination of some indirect parameters of such very complicated paste-like material like concrete mix. They are not physical characteristics suitable for the rheological calculations of the coherence between the stress and strains, flow characteristics and the reaction of the concrete mix in different technological processes. A conical plastometer having higher precision and less sensitive to the inaccuracy of the tests in construction condition has been elaborated at the Concrete Mechanics Laboratory of RTU. In addition, a new method was elaborated for the calculation of plasticity limit τ0 taking into account the buoyancy force of the liquid or non-liquid concrete mix. In the present investigation rheological test of the concrete mix by use the plastometer and the method mentioned earlier was conducted for different self-compacting and not self-compacting concrete mixes.

  19. σ-SCF: A direct energy-targeting method to mean-field excited states

    NASA Astrophysics Data System (ADS)

    Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D.; Van Voorhis, Troy

    2017-12-01

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry—a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states—ground or excited—are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.

  20. σ-SCF: A direct energy-targeting method to mean-field excited states.

    PubMed

    Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D; Van Voorhis, Troy

    2017-12-07

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry-a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states-ground or excited-are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H 2 , HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.

  1. Combining the Complete Active Space Self-Consistent Field Method and the Full Configuration Interaction Quantum Monte Carlo within a Super-CI Framework, with Application to Challenging Metal-Porphyrins.

    PubMed

    Li Manni, Giovanni; Smart, Simon D; Alavi, Ali

    2016-03-08

    A novel stochastic Complete Active Space Self-Consistent Field (CASSCF) method has been developed and implemented in the Molcas software package. A two-step procedure is used, in which the CAS configuration interaction secular equations are solved stochastically with the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) approach, while orbital rotations are performed using an approximated form of the Super-CI method. This new method does not suffer from the strong combinatorial limitations of standard MCSCF implementations using direct schemes and can handle active spaces well in excess of those accessible to traditional CASSCF approaches. The density matrix formulation of the Super-CI method makes this step independent of the size of the CI expansion, depending exclusively on one- and two-body density matrices with indices restricted to the relatively small number of active orbitals. No sigma vectors need to be stored in memory for the FCIQMC eigensolver--a substantial gain in comparison to implementations using the Davidson method, which require three or more vectors of the size of the CI expansion. Further, no orbital Hessian is computed, circumventing limitations on basis set expansions. Like the parent FCIQMC method, the present technique is scalable on massively parallel architectures. We present in this report the method and its application to the free-base porphyrin, Mg(II) porphyrin, and Fe(II) porphyrin. In the present study, active spaces up to 32 electrons and 29 orbitals in orbital expansions containing up to 916 contracted functions are treated with modest computational resources. Results are quite promising even without accounting for the correlation outside the active space. The systems here presented clearly demonstrate that large CASSCF calculations are possible via FCIQMC-CASSCF without limitations on basis set size.

  2. A state interaction spin-orbit coupling density matrix renormalization group method

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2016-06-01

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.

  3. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-01

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ɛ(r) is close to one everywhere inside the protein. The Gaussian widths σi of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σi. A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by comparison with so-called generalized Born methods. A follow-up paper describes how the method enables Hamiltonian, efficient, and accurate MM molecular dynamics simulations of proteins in dielectric solvent continua.

  4. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description.

    PubMed

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-14

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ(i) of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ(i). A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by comparison with so-called generalized Born methods. A follow-up paper describes how the method enables Hamiltonian, efficient, and accurate MM molecular dynamics simulations of proteins in dielectric solvent continua.

  5. Polarized atomic orbitals for self-consistent field electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Lee, Michael S.; Head-Gordon, Martin

    1997-12-01

    We present a new self-consistent field approach which, given a large "secondary" basis set of atomic orbitals, variationally optimizes molecular orbitals in terms of a small "primary" basis set of distorted atomic orbitals, which are simultaneously optimized. If the primary basis is taken as a minimal basis, the resulting functions are termed polarized atomic orbitals (PAO's) because they are valence (or core) atomic orbitals which have distorted or polarized in an optimal way for their molecular environment. The PAO's derive their flexibility from the fact that they are formed from atom-centered linear-combinations of the larger set of secondary atomic orbitals. The variational conditions satisfied by PAO's are defined, and an iterative method for performing a PAO-SCF calculation is introduced. We compare the PAO-SCF approach against full SCF calculations for the energies, dipoles, and molecular geometries of various molecules. The PAO's are potentially useful for studying large systems that are currently intractable with larger than minimal basis sets, as well as offering potential interpretative benefits relative to calculations in extended basis sets.

  6. Efficient algorithm for multiconfiguration pair-density functional theory with application to the heterolytic dissociation energy of ferrocene

    NASA Astrophysics Data System (ADS)

    Sand, Andrew M.; Truhlar, Donald G.; Gagliardi, Laura

    2017-01-01

    The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.

  7. Efficient algorithm for multiconfiguration pair-density functional theory with application to the heterolytic dissociation energy of ferrocene.

    PubMed

    Sand, Andrew M; Truhlar, Donald G; Gagliardi, Laura

    2017-01-21

    The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H 2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.

  8. Storm time plasma transport in a unified and inter-coupled global magnetosphere model

    NASA Astrophysics Data System (ADS)

    Ilie, R.; Liemohn, M. W.; Toth, G.

    2014-12-01

    We present results from the two-way self-consistent coupling between the kinetic Hot Electron and Ion Drift Integrator (HEIDI) model and the Space Weather Modeling Framework (SWMF). HEIDI solves the time dependent, gyration and bounced averaged kinetic equation for the phase space density of different ring current species and computes full pitch angle distributions for all local times and radial distances. During geomagnetic times the dipole approximation becomes unsuitable even in the inner magnetosphere. Therefore the HEIDI model was generalized to accommodate an arbitrary magnetic field and through the coupling with SWMF it obtains a magnetic field description throughout the HEIDI domain along with a plasma distribution at the model outer boundary from the Block Adaptive Tree Solar Wind Roe Upwind Scheme (BATS-R-US) magnetohydrodynamics (MHD) model within SWMF. Electric field self-consistency is assured by the passing of convection potentials from the Ridley Ionosphere Model (RIM) within SWMF. In this study we test the various levels of coupling between the 3 physics based models, highlighting the role that the magnetic field, plasma sheet conditions and the cross polar cap potential play in the formation and evolution of the ring current. We show that the dynamically changing geospace environment itself plays a key role in determining the geoeffectiveness of the driver. The results of the self-consistent coupling between HEIDI, BATS-R-US and RIM during disturbed conditions emphasize the importance of a kinetic self-consistent approach to the description of geospace.

  9. Microfabricated ommatidia using a laser induced self-writing process for high resolution artificial compound eye optical systems.

    PubMed

    Jung, Hyukjin; Jeong, Ki-Hun

    2009-08-17

    A microfabricated compound eye, comparable to a natural compound eye shows a spherical arrangement of integrated optical units called artificial ommatidia. Each consists of a self-aligned microlens and waveguide. The increase of waveguide length is imperative to obtain high resolution images through an artificial compound eye for wide field-of - view imaging as well as fast motion detection. This work presents an effective method for increasing the waveguide length of artificial ommatidium using a laser induced self-writing process in a photosensitive polymer resin. The numerical and experimental results show the uniform formation of waveguides and the increment of waveguide length over 850 microm. (c) 2009 Optical Society of America

  10. The role and behavior of spin in gravitational physics

    NASA Technical Reports Server (NTRS)

    Ray, John R.

    1987-01-01

    A self-consistent method of introducing spin into any Lagrangian based theory of gravitation was developed. The metric variation of the Lagrangian in the theory leads to an improved energy-momentum tensor which represents the source term in the gravitational field equations. The goal of the research is the construction of a theory general enough to be used to investigate spin effects in astrophysical objects and cosmology, and also to serve as a basis for discussion of the theoretical ideas tested by the NASA Gyroscope Experiment (aboard Gravity Probe B). Specific accomplishments in the following areas are summarized: the inclusion of electromagnetism into the variational principle for spinning matter, formulation of a self-consistent theory for the case of a fluid in which particle production processes occur, and the derivation of the Raychaudhuri equation in the case of spinning matter.

  11. Geometric integration in Born-Oppenheimer molecular dynamics.

    PubMed

    Odell, Anders; Delin, Anna; Johansson, Börje; Cawkwell, Marc J; Niklasson, Anders M N

    2011-12-14

    Geometric integration schemes for extended Lagrangian self-consistent Born-Oppenheimer molecular dynamics, including a weak dissipation to remove numerical noise, are developed and analyzed. The extended Lagrangian framework enables the geometric integration of both the nuclear and electronic degrees of freedom. This provides highly efficient simulations that are stable and energy conserving even under incomplete and approximate self-consistent field (SCF) convergence. We investigate three different geometric integration schemes: (1) regular time reversible Verlet, (2) second order optimal symplectic, and (3) third order optimal symplectic. We look at energy conservation, accuracy, and stability as a function of dissipation, integration time step, and SCF convergence. We find that the inclusion of dissipation in the symplectic integration methods gives an efficient damping of numerical noise or perturbations that otherwise may accumulate from finite arithmetics in a perfect reversible dynamics. © 2011 American Institute of Physics

  12. Elongation cutoff technique armed with quantum fast multipole method for linear scaling.

    PubMed

    Korchowiec, Jacek; Lewandowski, Jakub; Makowski, Marcin; Gu, Feng Long; Aoki, Yuriko

    2009-11-30

    A linear-scaling implementation of the elongation cutoff technique (ELG/C) that speeds up Hartree-Fock (HF) self-consistent field calculations is presented. The cutoff method avoids the known bottleneck of the conventional HF scheme, that is, diagonalization, because it operates within the low dimension subspace of the whole atomic orbital space. The efficiency of ELG/C is illustrated for two model systems. The obtained results indicate that the ELG/C is a very efficient sparse matrix algebra scheme. Copyright 2009 Wiley Periodicals, Inc.

  13. Petascale self-consistent electromagnetic computations using scalable and accurate algorithms for complex structures

    NASA Astrophysics Data System (ADS)

    Cary, John R.; Abell, D.; Amundson, J.; Bruhwiler, D. L.; Busby, R.; Carlsson, J. A.; Dimitrov, D. A.; Kashdan, E.; Messmer, P.; Nieter, C.; Smithe, D. N.; Spentzouris, P.; Stoltz, P.; Trines, R. M.; Wang, H.; Werner, G. R.

    2006-09-01

    As the size and cost of particle accelerators escalate, high-performance computing plays an increasingly important role; optimization through accurate, detailed computermodeling increases performance and reduces costs. But consequently, computer simulations face enormous challenges. Early approximation methods, such as expansions in distance from the design orbit, were unable to supply detailed accurate results, such as in the computation of wake fields in complex cavities. Since the advent of message-passing supercomputers with thousands of processors, earlier approximations are no longer necessary, and it is now possible to compute wake fields, the effects of dampers, and self-consistent dynamics in cavities accurately. In this environment, the focus has shifted towards the development and implementation of algorithms that scale to large numbers of processors. So-called charge-conserving algorithms evolve the electromagnetic fields without the need for any global solves (which are difficult to scale up to many processors). Using cut-cell (or embedded) boundaries, these algorithms can simulate the fields in complex accelerator cavities with curved walls. New implicit algorithms, which are stable for any time-step, conserve charge as well, allowing faster simulation of structures with details small compared to the characteristic wavelength. These algorithmic and computational advances have been implemented in the VORPAL7 Framework, a flexible, object-oriented, massively parallel computational application that allows run-time assembly of algorithms and objects, thus composing an application on the fly.

  14. Cosmic structure and dynamics of the local Universe

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Erdoǧdu, Pirin; Nuza, Sebastián. E.; Khalatyan, Arman; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan

    2012-11-01

    We present a cosmography analysis of the local Universe based on the recently released Two-Micron All-Sky Redshift Survey catalogue. Our method is based on a Bayesian Networks Machine Learning algorithm (the KIGEN-code) which self-consistently samples the initial density fluctuations compatible with the observed galaxy distribution and a structure formation model given by second-order Lagrangian perturbation theory (2LPT). From the initial conditions we obtain an ensemble of reconstructed density and peculiar velocity fields which characterize the local cosmic structure with high accuracy unveiling non-linear structures like filaments and voids in detail. Coherent redshift-space distortions are consistently corrected within 2LPT. From the ensemble of cross-correlations between the reconstructions and the galaxy field and the variance of the recovered density fields, we find that our method is extremely accurate up to k˜ 1 h Mpc-1 and still yields reliable results down to scales of about 3-4 h-1 Mpc. The motion of the Local Group we obtain within ˜80 h-1 Mpc (vLG = 522 ± 86 km s-1, lLG = 291° ± 16°, bLG = 34° ± 8°) is in good agreement with measurements derived from the cosmic microwave background and from direct observations of peculiar motions and is consistent with the predictions of ΛCDM.

  15. Novel Hamiltonian method for collective dynamics analysis of an intense charged particle beam propagating through a periodic focusing quadrupole lattice a)

    NASA Astrophysics Data System (ADS)

    Startsev, Edward A.; Davidson, Ronald C.

    2011-05-01

    Identifying regimes for quiescent propagation of intense beams over long distances has been a major challenge in accelerator research. In particular, the development of systematic theoretical approaches that are able to treat self-consistently the applied oscillating force and the nonlinear self-field force of the beam particles simultaneously has been a major challenge of modern beam physics. In this paper, the recently developed Hamiltonian averaging technique [E. A. Startsev, R. C. Davidson, and M. Dorf, Phys. Rev. ST Accel. Beams 13, 064402 (2010)] which incorporates both the applied periodic focusing force and the self-field force of the beam particles, is generalized to the case of time-dependent beam distributions. The new formulation allows not only a determination of quasi-equilibrium solutions of the non-linear Vlasov-Poison system of equations but also a detailed study of their stability properties. The corrections to the well-known "smooth-focusing" approximation are derived, and the results are applied to a matched beam with thermal equilibrium distribution function. It is shown that the corrections remain small even for moderate values of the vacuum phase advance συ. Nonetheless, because the corrections to the average self-field potential are non-axisymmetric, the stability properties of the different beam quasi-equilibria can change significantly.

  16. Electric dipole moment of diatomic molecules by configuration interaction. V - Two states of /2/Sigma/+/ symmetry in CN.

    NASA Technical Reports Server (NTRS)

    Green, S.

    1972-01-01

    Previous accurate dipole moment calculation techniques are modified to be applicable to higher excited states of symmetry. The self-consistent fields and configuration interactions are calculated for the X(2)Sigma(+) and B(2)Sigma(+) states of CN. Spin hyperfine constants and spin density at the nucleus are considered in the context of one-electron operator properties. The values of the self-consistent field and configuration interaction for the spin density are compared with experimental values for several diatomic molecules.

  17. Thermal transport through a spin-phonon interacting junction: A nonequilibrium Green's function method study

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-Quan; Lü, Jing-Tao

    2017-09-01

    Using the nonequilibrium Green's function method, we consider heat transport in an insulating ferromagnetic spin chain model with spin-phonon interaction under an external magnetic field. Employing the Holstein-Primakoff transformation to the spin system, we treat the resulted magnon-phonon interaction within the self-consistent Born approximation. We find the magnon-phonon coupling can change qualitatively the magnon thermal conductance in the high-temperature regime. At a spectral mismatched ferromagnetic-normal insulator interface, we also find thermal rectification and negative differential thermal conductance due to the magnon-phonon interaction. We show that these effects can be effectively tuned by the external applied magnetic field, a convenient advantage absent in anharmonic phonon and electron-phonon systems studied before.

  18. Second order Møller-Plesset and coupled cluster singles and doubles methods with complex basis functions for resonances in electron-molecule scattering

    DOE PAGES

    White, Alec F.; Epifanovsky, Evgeny; McCurdy, C. William; ...

    2017-06-21

    The method of complex basis functions is applied to molecular resonances at correlated levels of theory. Møller-Plesset perturbation theory at second order and equation-of-motion electron attachment coupled-cluster singles and doubles (EOM-EA-CCSD) methods based on a non-Hermitian self-consistent-field reference are used to compute accurate Siegert energies for shape resonances in small molecules including N 2 - , CO - , CO 2 - , and CH 2 O - . Analytic continuation of complex θ-trajectories is used to compute Siegert energies, and the θ-trajectories of energy differences are found to yield more consistent results than those of total energies.more » Furthermore, the ability of such methods to accurately compute complex potential energy surfaces is investigated, and the possibility of using EOM-EA-CCSD for Feshbach resonances is explored in the context of e-helium scattering.« less

  19. Second order Møller-Plesset and coupled cluster singles and doubles methods with complex basis functions for resonances in electron-molecule scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Alec F.; Epifanovsky, Evgeny; McCurdy, C. William

    The method of complex basis functions is applied to molecular resonances at correlated levels of theory. Møller-Plesset perturbation theory at second order and equation-of-motion electron attachment coupled-cluster singles and doubles (EOM-EA-CCSD) methods based on a non-Hermitian self-consistent-field reference are used to compute accurate Siegert energies for shape resonances in small molecules including N 2 - , CO - , CO 2 - , and CH 2 O - . Analytic continuation of complex θ-trajectories is used to compute Siegert energies, and the θ-trajectories of energy differences are found to yield more consistent results than those of total energies.more » Furthermore, the ability of such methods to accurately compute complex potential energy surfaces is investigated, and the possibility of using EOM-EA-CCSD for Feshbach resonances is explored in the context of e-helium scattering.« less

  20. On the Debye-Hückel effect of electric screening

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.; Lau, F. J. P.

    2014-07-01

    The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potential vanishes differs from the Debye-Hückel radius by a factor of √2 . The preceding (Secs. II-VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.

  1. On the Debye–Hückel effect of electric screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, L. M. B. C.; Lau, F. J. P.

    2014-07-15

    The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potentialmore » vanishes differs from the Debye-Hückel radius by a factor of √(2). The preceding (Secs. II–VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.« less

  2. The argon nuclear quadrupole moments

    NASA Astrophysics Data System (ADS)

    Sundholm, Dage; Pyykkö, Pekka

    2018-07-01

    New standard values -116(2) mb and 76(3) mb are suggested for the nuclear quadrupole moments (Q) of the 39Ar and 37Ar nuclei, respectively. The Q values were obtained by combining optical measurements of the quadrupole coupling constant (B or eqQ/h) of the 3s23p54s[3/2]2 (3Po) and 3s23p54p[5/2]3 (3De) states of argon with large scale numerical complete active space self-consistent field and restricted active space self-consistent field calculations of the electric field gradient at the nucleus (q) using the LUCAS code, which is a finite-element based multiconfiguration Hartree-Fock program for atomic structure calculations.

  3. The Thomas-Fermi model in the theory of systems of charged particles above the surface of liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Lytvtnenko, D. M.; Slyusarenko, Yu. V.; Kirdin, A. I.

    2012-10-01

    A consistent theory of equilibrium states of same sign charges above the surface of liquid dielectric film located on solid substrate in the presence of external attracting constant electric field is proposed. The approach to the development of the theory is based on the Thomas-Fermi model generalized to the systems under consideration and on the variational principle. The using of self-consistent field model allows formulating a theory containing no adjustable constants. In the framework of the variational principle we obtain the self-consistency equations for the parameters describing the system: the distribution function of charges above the liquid dielectric surface, the electrostatic field potentials in all regions of the system and the surface profile of the liquid dielectric. The self-consistency equations are used to describe the phase transition associated with the formation of spatially periodic structures in the system of charges on liquid dielectric surface. Assuming the non-degeneracy of the gas of charges above the surface of liquid dielectric film the solutions of the self-consistency equations near the critical point are obtained. In the case of the symmetric phase we obtain the expressions for the potentials and electric fields in all regions of the studied system. The distribution of the charges above the surface of liquid dielectric film for the symmetric phase is derived. The system parameters of the phase transition to nonsymmetric phase - the states with a spatially periodic ordering are obtained. We derive the expression determining the period of two-dimensional lattice as a function of physical parameters of the problem - the temperature, the external attractive electric field, the number of electrons per unit of the flat surface area of the liquid dielectric, the density of the dielectric, its surface tension and permittivity, and the permittivity of the solid substrate. The possibility of generalizing the developed theory in the case of degenerate gas of like-charged particles above the liquid dielectric surface is discussed.

  4. Integration of RAM-SCB into the Space Weather Modeling Framework

    DOE PAGES

    Welling, Daniel; Toth, Gabor; Jordanova, Vania Koleva; ...

    2018-02-07

    We present that numerical simulations of the ring current are a challenging endeavor. They require a large set of inputs, including electric and magnetic fields and plasma sheet fluxes. Because the ring current broadly affects the magnetosphere-ionosphere system, the input set is dependent on the ring current region itself. This makes obtaining a set of inputs that are self-consistent with the ring current difficult. To overcome this challenge, researchers have begun coupling ring current models to global models of the magnetosphere-ionosphere system. This paper describes the coupling between the Ring current Atmosphere interaction Model with Self-Consistent Magnetic field (RAM-SCB) tomore » the models within the Space Weather Modeling Framework. Full details on both previously introduced and new coupling mechanisms are defined. Finally, the impact of self-consistently including the ring current on the magnetosphere-ionosphere system is illustrated via a set of example simulations.« less

  5. Integration of RAM-SCB into the Space Weather Modeling Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welling, Daniel; Toth, Gabor; Jordanova, Vania Koleva

    We present that numerical simulations of the ring current are a challenging endeavor. They require a large set of inputs, including electric and magnetic fields and plasma sheet fluxes. Because the ring current broadly affects the magnetosphere-ionosphere system, the input set is dependent on the ring current region itself. This makes obtaining a set of inputs that are self-consistent with the ring current difficult. To overcome this challenge, researchers have begun coupling ring current models to global models of the magnetosphere-ionosphere system. This paper describes the coupling between the Ring current Atmosphere interaction Model with Self-Consistent Magnetic field (RAM-SCB) tomore » the models within the Space Weather Modeling Framework. Full details on both previously introduced and new coupling mechanisms are defined. Finally, the impact of self-consistently including the ring current on the magnetosphere-ionosphere system is illustrated via a set of example simulations.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharovsky, V. V., E-mail: vkochar@physics.tamu.edu; Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242; Kocharovsky, VI. V.

    Widespread use of a broken-power-law description of the spectra of synchrotron emission of various plasma objects requires an analysis of origin and a proper interpretation of spectral components. We show that, for a self-consistent magnetic configuration in a collisionless plasma, these components may be angle-dependent according to an anisotropic particle momentum distribution and may have no counterparts in a particle energy distribution. That has never been studied analytically and is in contrast to a usual model of synchrotron radiation, assuming an external magnetic field and a particle ensemble with isotropic momentum distribution. We demonstrate that for the wide intervals ofmore » observation angle the power-law spectra and, in particular, the positions and number of spectral breaks may be essentially different for the cases of the self-consistent and not-self-consistent magnetic fields in current structures responsible for the synchrotron radiation of the ensembles of relativistic particles with the multi-power-law energy distributions.« less

  7. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulshani, P., E-mail: matlap@bell.net

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy,more » cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.« less

  8. Interactions between Nanoparticles and Polymer Brushes: Molecular Dynamics Simulations and Self-consistent Field Theory Calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei

    2015-03-01

    Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.

  9. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: Charge-bond resonance in monomethine cyanines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Seth, E-mail: seth.olsen@uq.edu.au

    2015-01-28

    This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed (“microcanonical”) SA-CASSCF ensembles, self-consistency is invariant tomore » any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with “more diabatic than adiabatic” states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse “temperature,” unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space valence-bond (CASVB) analysis of the charge/bond resonance electronic structure of a monomethine cyanine: Michler’s hydrol blue. The diabatic CASVB representation is shown to vary weakly for “temperatures” corresponding to visible photon energies. Canonical-ensemble SA-CASSCF enables the resolution of energies and couplings for all covalent and ionic CASVB structures contributing to the SA-CASSCF ensemble. The CASVB solution describes resonance of charge- and bond-localized electronic structures interacting via bridge resonance superexchange. The resonance couplings can be separated into channels associated with either covalent charge delocalization or chemical bonding interactions, with the latter significantly stronger than the former.« less

  10. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: charge-bond resonance in monomethine cyanines.

    PubMed

    Olsen, Seth

    2015-01-28

    This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed ("microcanonical") SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with "more diabatic than adiabatic" states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse "temperature," unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space valence-bond (CASVB) analysis of the charge/bond resonance electronic structure of a monomethine cyanine: Michler's hydrol blue. The diabatic CASVB representation is shown to vary weakly for "temperatures" corresponding to visible photon energies. Canonical-ensemble SA-CASSCF enables the resolution of energies and couplings for all covalent and ionic CASVB structures contributing to the SA-CASSCF ensemble. The CASVB solution describes resonance of charge- and bond-localized electronic structures interacting via bridge resonance superexchange. The resonance couplings can be separated into channels associated with either covalent charge delocalization or chemical bonding interactions, with the latter significantly stronger than the former.

  11. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carretero, M.; Segura, A.

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  12. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice.

    PubMed

    Bonilla, L L; Carretero, M; Segura, A

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  13. Branch-Based Model for the Diameters of the Pulmonary Airways: Accounting for Departures From Self-Consistency and Registration Errors

    PubMed Central

    Neradilek, Moni B.; Polissar, Nayak L.; Einstein, Daniel R.; Glenny, Robb W.; Minard, Kevin R.; Carson, James P.; Jiao, Xiangmin; Jacob, Richard E.; Cox, Timothy C.; Postlethwait, Edward M.; Corley, Richard A.

    2017-01-01

    We examine a previously published branch-based approach for modeling airway diameters that is predicated on the assumption of self-consistency across all levels of the tree. We mathematically formulate this assumption, propose a method to test it and develop a more general model to be used when the assumption is violated. We discuss the effect of measurement error on the estimated models and propose methods that take account of error. The methods are illustrated on data from MRI and CT images of silicone casts of two rats, two normal monkeys, and one ozone-exposed monkey. Our results showed substantial departures from self-consistency in all five subjects. When departures from self-consistency exist, we do not recommend using the self-consistency model, even as an approximation, as we have shown that it may likely lead to an incorrect representation of the diameter geometry. The new variance model can be used instead. Measurement error has an important impact on the estimated morphometry models and needs to be addressed in the analysis. PMID:22528468

  14. The Hartree-Fock calculation of the magnetic properties of molecular solutes

    NASA Astrophysics Data System (ADS)

    Cammi, R.

    1998-08-01

    In this paper we set the formal bases for the calculation of the magnetic susceptibility and of the nuclear magnetic shielding tensors for molecular solutes described within the framework of the polarizable continuum model (PCM). The theory has been developed at self-consistent field (SCF) level and adapted to be used within the framework of some of the computational procedures of larger use, i.e., the gauge invariant atomic orbital method (GIAO) and the continuous set gauge transformation method (CSGT). The numerical results relative to the magnetizabilities and chemical shielding of acetonitrile and nitrometane in various solvents computed with the PCM-CSGT method are also presented.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleiziffer, Patrick, E-mail: patrick.bleiziffer@fau.de; Krug, Marcel; Görling, Andreas

    A self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem, employing the frequency-dependent exact exchange kernel f{sub x} is presented. The resulting SC-exact-exchange-only (EXX)-ACFD method leads to even more accurate correlation potentials than those obtained within the direct random phase approximation (dRPA). In contrast to dRPA methods, not only the Coulomb kernel but also the exact exchange kernel f{sub x} is taken into account in the EXX-ACFD correlation which results in a method that, unlike dRPA methods, is free of self-correlations, i.e., a method that treats exactly all one-electron systems, like, e.g., the hydrogen atom. The self-consistent evaluation ofmore » EXX-ACFD total energies improves the accuracy compared to EXX-ACFD total energies evaluated non-self-consistently with EXX or dRPA orbitals and eigenvalues. Reaction energies of a set of small molecules, for which highly accurate experimental reference data are available, are calculated and compared to quantum chemistry methods like Møller-Plesset perturbation theory of second order (MP2) or coupled cluster methods [CCSD, coupled cluster singles, doubles, and perturbative triples (CCSD(T))]. Moreover, we compare our methods to other ACFD variants like dRPA combined with perturbative corrections such as the second order screened exchange corrections or a renormalized singles correction. Similarly, the performance of our EXX-ACFD methods is investigated for the non-covalently bonded dimers of the S22 reference set and for potential energy curves of noble gas, water, and benzene dimers. The computational effort of the SC-EXX-ACFD method exhibits the same scaling of N{sup 5} with respect to the system size N as the non-self-consistent evaluation of only the EXX-ACFD correlation energy; however, the prefactor increases significantly. Reaction energies from the SC-EXX-ACFD method deviate quite little from EXX-ACFD energies obtained non-self-consistently with dRPA orbitals and eigenvalues, and the deviation reduces even further if the Coulomb kernel is scaled by a factor of 0.75 in the dRPA to reduce self-correlations in the dRPA correlation potential. For larger systems, such a non-self-consistent EXX-ACFD method is a competitive alternative to high-level wave-function-based methods, yielding higher accuracy than MP2 and CCSD methods while exhibiting a better scaling of the computational effort than CCSD or CCSD(T) methods. Moreover, EXX-ACFD methods were shown to be applicable in situation characterized by static correlation.« less

  16. SCF and CI calculations of the dipole moment function of ozone. [Self-Consistent Field and Configuration-Interaction

    NASA Technical Reports Server (NTRS)

    Curtiss, L. A.; Langhoff, S. R.; Carney, G. D.

    1979-01-01

    The constant and linear terms in a Taylor series expansion of the dipole moment function of the ground state of ozone are calculated with Cartesian Gaussian basis sets ranging in quality from minimal to double zeta plus polarization. Results are presented at both the self-consistent field and configuration-interaction levels. Although the algebraic signs of the linear dipole moment derivatives are all established to be positive, the absolute magnitudes of these quantities, as well as the infrared intensities calculated from them, vary considerably with the level of theory.

  17. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction.

    PubMed

    Granovsky, Alexander A

    2015-12-21

    We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.

  18. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granovsky, Alexander A., E-mail: alex.granovsky@gmail.com

    We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.

  19. Dielectric constant of ionic solutions: a field-theory approach.

    PubMed

    Levy, Amir; Andelman, David; Orland, Henri

    2012-06-01

    We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to the solution. Employing field-theoretical methods, we expand the Gibbs free energy to first order in a loop expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description of the hydration shell is found and is characterized by a single length scale. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles.

  20. Enhancing microscopic cascading contributions to higher-order nonlinear-optical responses through forced geometric constraints

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael

    2012-10-01

    We review a model that was developed to take into account all possible microscopic cascading schemes in a single species system out to the fifth order using a self-consistent field approach. This model was designed to study the effects of boundaries in mesoscopic systems with constrained boundaries. These geometric constraints on the macroscopic structure show how the higher-ordered susceptibilities are manipulated by increasing the surface to volume ratio, while the microscopic structure influences the local field from all other molecules in the system. In addition to the review, we discuss methods of modeling real systems of molecules, where efforts are currently underway.

  1. Toroidal Ampere-Faraday Equations Solved Consistently with the CQL3D Fokker-Planck Time-Evolution

    NASA Astrophysics Data System (ADS)

    Harvey, R. W.; Petrov, Yu. V.

    2013-10-01

    A self-consistent, time-dependent toroidal electric field calculation is a key feature of a complete 3D Fokker-Planck kinetic distribution radial transport code for f(v,theta,rho,t). In the present CQL3D finite-difference model, the electric field E(rho,t) is either prescribed, or iteratively adjusted to obtain prescribed toroidal or parallel currents. We discuss first results of an implementation of the Ampere-Faraday equation for the self-consistent toroidal electric field, as applied to the runaway electron production in tokamaks due to rapid reduction of the plasma temperature as occurs in a plasma disruption. Our previous results assuming a constant current density (Lenz' Law) model showed that prompt ``hot-tail runaways'' dominated ``knock-on'' and Dreicer ``drizzle'' runaways; we will examine modifications due to the more complete Ampere-Faraday solution. Work supported by US DOE under DE-FG02-ER54744.

  2. The problem of hole localization in inner-shell states of N2 and CO2 revisited with complete active space self-consistent field approach.

    PubMed

    Rocha, Alexandre B; de Moura, Carlos E V

    2011-12-14

    Potential energy curves for inner-shell states of nitrogen and carbon dioxide molecules are calculated by inner-shell complete active space self-consistent field (CASSCF) method, which is a protocol, recently proposed, to obtain specifically converged inner-shell states at multiconfigurational level. This is possible since the collapse of the wave function to a low-lying state is avoided by a sequence of constrained optimization in the orbital mixing step. The problem of localization of K-shell states is revisited by calculating their energies at CASSCF level based on both localized and delocalized orbitals. The localized basis presents the best results at this level of calculation. Transition energies are also calculated by perturbation theory, by taking the above mentioned MCSCF function as zeroth order wave function. Values for transition energy are in fairly good agreement with experimental ones. Bond dissociation energies for N(2) are considerably high, which means that these states are strongly bound. Potential curves along ground state normal modes of CO(2) indicate the occurrence of Renner-Teller effect in inner-shell states. © 2011 American Institute of Physics

  3. Directed self-organization of single DNA molecules in a nanoslit via embedded nanopit arrays

    PubMed Central

    Reisner, Walter; Larsen, Niels B.; Flyvbjerg, Henrik; Tegenfeldt, Jonas O.; Kristensen, Anders

    2009-01-01

    We show that arrays of nanopit structures etched in a nanoslit can control the positioning and conformation of single DNA molecules in nanofluidic devices. By adjusting the spacing, organization and placement of the nanopits it is possible to immobilize DNA at predetermined regions of a device without additional chemical modification and achieve a high degree of control over local DNA conformation. DNA can be extended between two nanopits and in closely spaced arrays will self-assemble into “connect-the-dots” conformations consisting of locally pinned segments joined by fluctuating linkers. These results have broad implications for nanotechnology fields that require methods for the nanoscale positioning and manipulation of DNA. PMID:19122138

  4. Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: Wave function and density functional approaches

    NASA Astrophysics Data System (ADS)

    Khan, Shehryar; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef; Odelius, Michael

    2015-01-01

    The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H2O)-, Gd(III)DTPA(H2O)2-, and Gd(III)(H2O)83+ in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.

  5. A state interaction spin-orbit coupling density matrix renormalization group method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe{submore » 2}S{sub 2}(SCH{sub 3}){sub 4}]{sup 3−}, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.« less

  6. Three-dimensional drift kinetic response of high- β plasmas in the DIII-D tokamak

    DOE PAGES

    Wang, Zhirui R.; Lanctot, Matthew J.; Liu, Y. Q.; ...

    2015-04-07

    A quantitative interpretation of the experimentally measured high pressure plasma response to externally applied three-dimensional (3D) magnetic field perturbations, across the no-wall Troyon limit, is achieved. The key to success is the self-consistent inclusion of the drift kinetic resonance effects in numerical modeling using the MARS-K code. This resolves an outstanding issue of ideal magneto-hydrodynamic model, which signi cantly over-predicts the plasma induced field ampli fication near the no-wall limit, as compared to experiments. The self-consistent drift kinetic model leads to quantitative agreement not only for the measured 3D field amplitude and toroidal phase, but also for the measured internalmore » 3D displacement of the plasma.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jong-Kyu; Logan, Nikolas C.

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly formore » each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.« less

  8. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    PubMed

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.

  9. Does the low hole transport mass in <110> and <111> Si nanowires lead to mobility enhancements at high field and stress: A self-consistent tight-binding study

    NASA Astrophysics Data System (ADS)

    Kotlyar, R.; Linton, T. D.; Rios, R.; Giles, M. D.; Cea, S. M.; Kuhn, K. J.; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard

    2012-06-01

    The hole surface roughness and phonon limited mobility in the silicon <100>, <110>, and <111> square nanowires under the technologically important conditions of applied gate bias and stress are studied with the self-consistent Poisson-sp3d5s*-SO tight-binding bandstructure method. Under an applied gate field, the hole carriers in a wire undergo a volume to surface inversion transition diminishing the positive effects of the high <110> and <111> valence band nonparabolicities, which are known to lead to the large gains of the phonon limited mobility at a zero field in narrow wires. Nonetheless, the hole mobility in the unstressed wires down to the 5 nm size remains competitive or shows an enhancement at high gate field over the large wire limit. Down to the studied 3 nm sizes, the hole mobility is degraded by strong surface roughness scattering in <100> and <110> wires. The <111> channels are shown to experience less surface scattering degradation. The physics of the surface roughness scattering dependence on wafer and channel orientations in a wire is discussed. The calculated uniaxial compressive channel stress gains of the hole mobility are found to reduce in the narrow wires and at the high field. This exacerbates the stressed mobility degradation with size. Nonetheless, stress gains of a factor of 2 are obtained for <110> wires down to 3 nm size at a 5×1012 cm-2 hole inversion density per gate area.

  10. Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Achim, C. V.; Ala-Nissila, T.

    2012-09-01

    Electrostatic correlation effects in inhomogeneous symmetric electrolytes are investigated within a previously developed electrostatic self-consistent theory [R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003)], 10.1140/epje/i2002-10159-0. To this aim, we introduce two computational approaches that allow to solve the self-consistent equations beyond the loop expansion. The first method is based on a perturbative Green's function technique, and the second one is an extension of a previously introduced semiclassical approximation for single dielectric interfaces to the case of slit nanopores. Both approaches can handle the case of dielectrically discontinuous boundaries where the one-loop theory is known to fail. By comparing the theoretical results obtained from these schemes with the results of the Monte Carlo simulations that we ran for ions at neutral single dielectric interfaces, we first show that the weak coupling Debye-Huckel theory remains quantitatively accurate up to the bulk ion density ρb ≃ 0.01 M, whereas the self-consistent theory exhibits a good quantitative accuracy up to ρb ≃ 0.2 M, thus improving the accuracy of the Debye-Huckel theory by one order of magnitude in ionic strength. Furthermore, we compare the predictions of the self-consistent theory with previous Monte Carlo simulation data for charged dielectric interfaces and show that the proposed approaches can also accurately handle the correlation effects induced by the surface charge in a parameter regime where the mean-field result significantly deviates from the Monte Carlo data. Then, we derive from the perturbative self-consistent scheme the one-loop theory of asymmetrically partitioned salt systems around a dielectrically homogeneous charged surface. It is shown that correlation effects originate in these systems from a competition between the salt screening loss at the interface driving the ions to the bulk region, and the interfacial counterion screening excess attracting them towards the surface. This competition can be quantified in terms of the characteristic surface charge σ _s^*=√{2ρ _b/(π ℓ _B)}, where ℓB = 7 Å is the Bjerrum length. In the case of weak surface charges σ _s≪ σ _s^* where counterions form a diffuse layer, the interfacial salt screening loss is the dominant effect. As a result, correlation effects decrease the mean-field density of both coions and counterions. With an increase of the surface charge towards σ _s^*, the surface-attractive counterion screening excess starts to dominate, and correlation effects amplify in this regime the mean-field density of both type of ions. However, in the regime σ _s>σ _s^*, the same counterion screening excess also results in a significant decrease of the electrostatic mean-field potential. This reduces in turn the mean-field counterion density far from the charged surface. We also show that for σ _s≫ σ _s^*, electrostatic correlations result in a charge inversion effect. However, the electrostatic coupling regime where this phenomenon takes place should be verified with Monte Carlo simulations since this parameter regime is located beyond the validity range of the one-loop theory.

  11. Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion.

    PubMed

    Buyukdagli, Sahin; Achim, C V; Ala-Nissila, T

    2012-09-14

    Electrostatic correlation effects in inhomogeneous symmetric electrolytes are investigated within a previously developed electrostatic self-consistent theory [R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003)]. To this aim, we introduce two computational approaches that allow to solve the self-consistent equations beyond the loop expansion. The first method is based on a perturbative Green's function technique, and the second one is an extension of a previously introduced semiclassical approximation for single dielectric interfaces to the case of slit nanopores. Both approaches can handle the case of dielectrically discontinuous boundaries where the one-loop theory is known to fail. By comparing the theoretical results obtained from these schemes with the results of the Monte Carlo simulations that we ran for ions at neutral single dielectric interfaces, we first show that the weak coupling Debye-Huckel theory remains quantitatively accurate up to the bulk ion density ρ(b) ≃ 0.01 M, whereas the self-consistent theory exhibits a good quantitative accuracy up to ρ(b) ≃ 0.2 M, thus improving the accuracy of the Debye-Huckel theory by one order of magnitude in ionic strength. Furthermore, we compare the predictions of the self-consistent theory with previous Monte Carlo simulation data for charged dielectric interfaces and show that the proposed approaches can also accurately handle the correlation effects induced by the surface charge in a parameter regime where the mean-field result significantly deviates from the Monte Carlo data. Then, we derive from the perturbative self-consistent scheme the one-loop theory of asymmetrically partitioned salt systems around a dielectrically homogeneous charged surface. It is shown that correlation effects originate in these systems from a competition between the salt screening loss at the interface driving the ions to the bulk region, and the interfacial counterion screening excess attracting them towards the surface. This competition can be quantified in terms of the characteristic surface charge σ(s)*=√(2ρ(b)/(πl(B)), where l(B) = 7 Å is the Bjerrum length. In the case of weak surface charges σ(s)≪σ(s)* where counterions form a diffuse layer, the interfacial salt screening loss is the dominant effect. As a result, correlation effects decrease the mean-field density of both coions and counterions. With an increase of the surface charge towards σ(s)*, the surface-attractive counterion screening excess starts to dominate, and correlation effects amplify in this regime the mean-field density of both type of ions. However, in the regime σ(s)>σ(s)*, the same counterion screening excess also results in a significant decrease of the electrostatic mean-field potential. This reduces in turn the mean-field counterion density far from the charged surface. We also show that for σ(s)≫σ(s)*, electrostatic correlations result in a charge inversion effect. However, the electrostatic coupling regime where this phenomenon takes place should be verified with Monte Carlo simulations since this parameter regime is located beyond the validity range of the one-loop theory.

  12. "But I'm Not Good at Math": The Changing Salience of Mathematical Self-Concept in Shaping Women's and Men's STEM Aspirations

    ERIC Educational Resources Information Center

    Sax, Linda J.; Kanny, M. Allison; Riggers-Piehl, Tiffani A.; Whang, Hannah; Paulson, Laura N.

    2015-01-01

    Math self-concept (MSC) is considered an important predictor of the pursuit of science, technology, engineering and math (STEM) fields. Women's underrepresentation in the STEM fields is often attributed to their consistently lower ratings on MSC relative to men. Research in this area typically considers STEM in the aggregate and does not account…

  13. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1984-01-01

    Encapsulation materials for solar cells were investigated. The different phases consisted of: (1) identification and development of low cost module encapsulation materials; (2) materials reliability examination; and (3) process sensitivity and process development. It is found that outdoor photothermal aging devices (OPT) are the best accelerated aging methods, simulate worst case field conditions, evaluate formulation and module performance and have a possibility for life assessment. Outdoor metallic copper exposure should be avoided, self priming formulations have good storage stability, stabilizers enhance performance, and soil resistance treatment is still effective.

  14. The study of molecular spectroscopy by ab initio methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.

  15. Self-assembled microstructures of confined rod-coil diblock copolymers by self-consistent field theory.

    PubMed

    Yang, Guang; Tang, Ping; Yang, Yuliang; Wang, Qiang

    2010-11-25

    We employ the self-consistent field theory (SCFT) incorporating Maier-Saupe orientational interactions between rods to investigate the self-assembly of rod-coil diblock copolymers (RC DBC) in bulk and especially confined into two flat surfaces in 2D space. A unit vector defined on a spherical surface for describing the orientation of rigid blocks in 3D Euclidean space is discretized with an icosahedron triangular mesh to numerically integrate over rod orientation, which is confirmed to have numerical accuracy and stability higher than that of the normal Gaussian quadrature. For the hockey puck-shaped phases in bulk, geometrical confinement, i.e., the film thickness, plays an important role in the self-assembled structures' transitions for the neutral walls. However, for the lamellar phase (monolayer smectic-C) in bulk, the perpendicular lamellae are always stable, less dependent on the film thicknesses because they can relax to the bulk spacing with less-paid coil-stretching in thin films. In particular, a very thin rod layer near the surfaces is formed even in a very thin film. When the walls prefer rods, parallel lamellae are obtained, strongly dependent on the competition between the degree of the surface fields and film geometrical confinement, and the effect of surface field on lamellar structure as a function of film thickness is investigated. Our simulation results provide a guide to understanding the self-assembly of the rod-coil films with desirable application prospects in the fabrication of organic light emitting devices.

  16. Quantum chemical methods for the investigation of photoinitiated processes in biological systems: theory and applications.

    PubMed

    Dreuw, Andreas

    2006-11-13

    With the advent of modern computers and advances in the development of efficient quantum chemical computer codes, the meaningful computation of large molecular systems at a quantum mechanical level became feasible. Recent experimental effort to understand photoinitiated processes in biological systems, for instance photosynthesis or vision, at a molecular level also triggered theoretical investigations in this field. In this Minireview, standard quantum chemical methods are presented that are applicable and recently used for the calculation of excited states of photoinitiated processes in biological molecular systems. These methods comprise configuration interaction singles, the complete active space self-consistent field method, and time-dependent density functional theory and its variants. Semiempirical approaches are also covered. Their basic theoretical concepts and mathematical equations are briefly outlined, and their properties and limitations are discussed. Recent successful applications of the methods to photoinitiated processes in biological systems are described and theoretical tools for the analysis of excited states are presented.

  17. Organization a Culture of Self-Education of Music Teachers

    ERIC Educational Resources Information Center

    Dyganova, Elena Aleksandrovna; Yavgildina, Ziliya Mukhtarovna

    2015-01-01

    The article discusses the culture of self-education of music teacher as a professionally necessary quality of a modern specialist in the field of music education. The author proposes finalized definitions of basic concepts; consistently reveals the essence, structure, criteria and indicators of self-culture of music teacher; reveals the potential…

  18. A New Look at Rainfall Fluctuations and Scaling Properties of Spatial Rainfall Using Orthogonal Wavelets.

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Foufoula-Georgiou, Efi

    1993-02-01

    It has been observed that the finite-dimensional distribution functions of rainfall cannot obey simple scaling laws due to rainfall intermittency (mixed distribution with an atom at zero) and the probability of rainfall being an increasing function of area. Although rainfall fluctuations do not suffer these limitations, it is interesting to note that very few attempts have been made to study them in terms of their self-similarity characteristics. This is due to the lack of unambiguous definition of fluctuations in multidimensions. This paper shows that wavelet transforms offer a convenient and consistent method for the decomposition of inhomogeneous and anisotropic rainfall fields in two dimensions and that the components of this decomposition can be looked at as fluctuations of the rainfall field. It is also shown that under some mild assumptions, the component fields can be treated as homogeneous and thus are amenable to second-order analysis, which can provide useful insight into the nature of the process. The fact that wavelet transforms are a space-scale method also provides a convenient tool to study scaling characteristics of the process. Orthogonal wavelets are used, and these properties are investigated for a squall-line storm to study the presence of self-similarity.

  19. A new look at rainfall fluctuations and scaling properties of spatial rainfall using orthogonal wavelets

    NASA Technical Reports Server (NTRS)

    Kumar, Praveen; Foufoula-Georgiou, Efi

    1993-01-01

    It has been observed that the finite-dimensional distribution functions of rainfall cannot obey simple scaling laws due to rainfall intermittency (mixed distribution with an atom at zero) and the probability of rainfall being an increasing function of area. Although rainfall fluctuations do not suffer these limitations, it is interesting to note that very few attempts have been made to study them in terms of their self-similarity characteristics. This is due to the lack of unambiguous definition of fluctuations in multidimensions. This paper shows that wavelet transforms offer a convenient and consistent method for the decomposition of inhomogeneous and anisotropic rainfall fields in two dimensions and that the components of this decomposition can be looked at as fluctuations of the rainfall field. It is also shown that under some mild assumptions, the component fields can be treated as homogeneous and thus are amenable to second-order analysis, which can provide useful insight into the nature of the process. The fact that wavelet transforms are a space-scale method also provides a convenient tool to study scaling characteristics of the process. Orthogonal wavelets are used, and these properties are investigated for a squall-line storm to study the presence of self-similarity.

  20. Anomalous electron transport in Hall-effect thrusters: Comparison between quasi-linear kinetic theory and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Martorelli, R.; Chabert, P.; Bourdon, A.

    2018-06-01

    Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E × B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to "anomalous" electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasi-linear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 2-4 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed.

  1. Self-consistent Simulation of Microparticle and Ion Wakefield Configuration

    NASA Astrophysics Data System (ADS)

    Sanford, Dustin; Brooks, Beau; Ellis, Naoki; Matthews, Lorin; Hyde, Truell

    2017-10-01

    In a complex plasma, positively charged ions often have a directed flow with respect to the negatively charged dust grains. The resulting interaction between the dust and the flowing plasma creates an ion wakefield downstream from the dust particles, with the resulting positive space region modifying the interaction between the grains and contributing to the observed dynamics and equilibrium structure of the system. Here we present a proof of concept method that uses a molecular dynamics simulation to model the ion wakefield allowing the dynamics of the dust particles to be determined self-consistently. The trajectory of each ion is calculated including the forces from all other ions, which are treated as ``Yukawa particles'' and shielded from thermal electrons and the forces of the charged dust particles. Both the dust grain charge and the wakefield structure are also self-consistently determined for various particle configurations. The resultant wakefield potentials are then used to provide dynamic simulations of dust particle pairs. These results will be employed to analyze the formation and dynamics of field-aligned chains in CASPER's PK4 experiment onboard the International Space Station, allowing examination of extended dust chains without the masking force of gravity. This work was supported by the National Science Foundation under Grants PHY-1414523 and PHY-1740203.

  2. Determining geometric error model parameters of a terrestrial laser scanner through Two-face, Length-consistency, and Network methods

    PubMed Central

    Wang, Ling; Muralikrishnan, Bala; Rachakonda, Prem; Sawyer, Daniel

    2017-01-01

    Terrestrial laser scanners (TLS) are increasingly used in large-scale manufacturing and assembly where required measurement uncertainties are on the order of few tenths of a millimeter or smaller. In order to meet these stringent requirements, systematic errors within a TLS are compensated in-situ through self-calibration. In the Network method of self-calibration, numerous targets distributed in the work-volume are measured from multiple locations with the TLS to determine parameters of the TLS error model. In this paper, we propose two new self-calibration methods, the Two-face method and the Length-consistency method. The Length-consistency method is proposed as a more efficient way of realizing the Network method where the length between any pair of targets from multiple TLS positions are compared to determine TLS model parameters. The Two-face method is a two-step process. In the first step, many model parameters are determined directly from the difference between front-face and back-face measurements of targets distributed in the work volume. In the second step, all remaining model parameters are determined through the Length-consistency method. We compare the Two-face method, the Length-consistency method, and the Network method in terms of the uncertainties in the model parameters, and demonstrate the validity of our techniques using a calibrated scale bar and front-face back-face target measurements. The clear advantage of these self-calibration methods is that a reference instrument or calibrated artifacts are not required, thus significantly lowering the cost involved in the calibration process. PMID:28890607

  3. Acceleration of Semiempirical QM/MM Methods through Message Passage Interface (MPI), Hybrid MPI/Open Multiprocessing, and Self-Consistent Field Accelerator Implementations.

    PubMed

    Ojeda-May, Pedro; Nam, Kwangho

    2017-08-08

    The strategy and implementation of scalable and efficient semiempirical (SE) QM/MM methods in CHARMM are described. The serial version of the code was first profiled to identify routines that required parallelization. Afterward, the code was parallelized and accelerated with three approaches. The first approach was the parallelization of the entire QM/MM routines, including the Fock matrix diagonalization routines, using the CHARMM message passage interface (MPI) machinery. In the second approach, two different self-consistent field (SCF) energy convergence accelerators were implemented using density and Fock matrices as targets for their extrapolations in the SCF procedure. In the third approach, the entire QM/MM and MM energy routines were accelerated by implementing the hybrid MPI/open multiprocessing (OpenMP) model in which both the task- and loop-level parallelization strategies were adopted to balance loads between different OpenMP threads. The present implementation was tested on two solvated enzyme systems (including <100 QM atoms) and an S N 2 symmetric reaction in water. The MPI version exceeded existing SE QM methods in CHARMM, which include the SCC-DFTB and SQUANTUM methods, by at least 4-fold. The use of SCF convergence accelerators further accelerated the code by ∼12-35% depending on the size of the QM region and the number of CPU cores used. Although the MPI version displayed good scalability, the performance was diminished for large numbers of MPI processes due to the overhead associated with MPI communications between nodes. This issue was partially overcome by the hybrid MPI/OpenMP approach which displayed a better scalability for a larger number of CPU cores (up to 64 CPUs in the tested systems).

  4. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    NASA Astrophysics Data System (ADS)

    Chen, Teng; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  5. RF plasma modeling of the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Mattei, S.; Ohta, M.; Hatayama, A.; Lettry, J.; Kawamura, Y.; Yasumoto, M.; Schmitzer, C.

    2013-02-01

    This study focuses on the modelling of the ICP RF-plasma in the Linac4 H- ion source currently being constructed at CERN. A self-consistent model of the plasma dynamics with the RF electromagnetic field has been developed by a PIC-MCC method. In this paper, the model is applied to the analysis of a low density plasma discharge initiation, with particular interest on the effect of the external magnetic field on the plasma properties, such as wall loss, electron density and electron energy. The employment of a multi-cusp magnetic field effectively limits the wall losses, particularly in the radial direction. Preliminary results however indicate that a reduced heating efficiency results in such a configuration. The effect is possibly due to trapping of electrons in the multi-cusp magnetic field, preventing their continuous acceleration in the azimuthal direction.

  6. Superthermal Electron Energy Interchange in the Ionosphere-Plasmasphere System

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Glocer, A.; Liemohn, M. W.; Himwich, E. W.

    2013-01-01

    A self-consistent approach to superthermal electron (SE) transport along closed field lines in the inner magnetosphere is used to examine the concept of plasmaspheric transparency, magnetospheric trapping, and SE energy deposition to the thermal electrons. The dayside SE population is generated both by photoionization of the thermosphere and by secondary electron production from impact ionization when the photoelectrons collide with upper atmospheric neutral particles. It is shown that a self-consistent approach to this problem produces significant changes, in comparison with other approaches, in the SE energy exchange between the plasmasphere and the two magnetically conjugate ionospheres. In particular, plasmaspheric transparency can vary by a factor of two depending on the thermal plasma content along the field line and the illumination conditions of the two conjugate ionospheres. This variation in plasmaspheric transparency as a function of thermal plasma and ionospheric conditions increases with L-shell, as the field line gets longer and the equatorial pitch angle extent of the fly-through zone gets smaller. The inference drawn from these results is that such a self-consistent approach to SE transport and energy deposition should be included to ensure robustness in ionosphere-magnetosphere modeling networks.

  7. Collisionless absorption of intense laser radiation in nanoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaretsky, D F; Korneev, Philipp A; Popruzhenko, Sergei V

    The rate of linear collisionless absorption of an electromagnetic radiation in a nanoplasma - classical electron gas localised in a heated ionised nanosystem (thin film or cluster) irradiated by an intense femtosecond laser pulse - is calculated. The absorption is caused by the inelastic electron scattering from the self-consistent potential of the system in the presence of a laser field. The effect proves to be appreciable because of a small size of the systems. General expressions are obtained for the absorption rate as a function of the parameters of the single-particle self-consistent potential and electron distribution function in the regimemore » linear in field. For the simplest cases, where the self-consistent field is created by an infinitely deep well or an infinite charged plane, closed analytic expressions are obtained for the absorption rate. Estimates presented in the paper demonstrate that, over a wide range of the parameters of laser pulses and nanostructures, the collisionless mechanism of heating electron subsystem can be dominant. The possibility of experimental observation of the collisionless absorption of intense laser radiation in nanoplasma is also discussed. (interaction of laser radiation with matter)« less

  8. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    NASA Astrophysics Data System (ADS)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M. N.; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-01

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  9. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory.

    PubMed

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M N; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  10. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE PAGES

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; ...

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  11. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  12. Nonequilibrium electromagnetics: Local and macroscopic fields and constitutive relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker-Jarvis, James; Kabos, Pavel; Holloway, Christopher L.

    We study the electrodynamics of materials using a Liouville-Hamiltonian-based statistical-mechanical theory. Our goal is to develop electrodynamics from an ensemble-average viewpoint that is valid for microscopic and nonequilibrium systems at molecular to submolecular scales. This approach is not based on a Taylor series expansion of the charge density to obtain the multipoles. Instead, expressions of the molecular multipoles are used in an inverse problem to obtain the averaging statistical-density function that is used to obtain the macroscopic fields. The advantages of this method are that the averaging function is constructed in a self-consistent manner and the molecules can either bemore » treated as point multipoles or contain more microstructure. Expressions for the local and macroscopic fields are obtained, and evolution equations for the constitutive parameters are developed. We derive equations for the local field as functions of the applied, polarization, magnetization, strain density, and macroscopic fields.« less

  13. Multipolar Ewald methods, 1: theory, accuracy, and performance.

    PubMed

    Giese, Timothy J; Panteva, Maria T; Chen, Haoyuan; York, Darrin M

    2015-02-10

    The Ewald, Particle Mesh Ewald (PME), and Fast Fourier–Poisson (FFP) methods are developed for systems composed of spherical multipole moment expansions. A unified set of equations is derived that takes advantage of a spherical tensor gradient operator formalism in both real space and reciprocal space to allow extension to arbitrary multipole order. The implementation of these methods into a novel linear-scaling modified “divide-and-conquer” (mDC) quantum mechanical force field is discussed. The evaluation times and relative force errors are compared between the three methods, as a function of multipole expansion order. Timings and errors are also compared within the context of the quantum mechanical force field, which encounters primary errors related to the quality of reproducing electrostatic forces for a given density matrix and secondary errors resulting from the propagation of the approximate electrostatics into the self-consistent field procedure, which yields a converged, variational, but nonetheless approximate density matrix. Condensed-phase simulations of an mDC water model are performed with the multipolar PME method and compared to an electrostatic cutoff method, which is shown to artificially increase the density of water and heat of vaporization relative to full electrostatic treatment.

  14. Low-density homogeneous symmetric nuclear matter: Disclosing dinucleons in coexisting phases

    NASA Astrophysics Data System (ADS)

    Arellano, Hugo F.; Delaroche, Jean-Paul

    2015-01-01

    The effect of in-medium dinucleon bound states on self-consistent single-particle fields in Brueckner, Bethe and Goldstone theory is investigated in symmetric nuclear matter at zero temperature. To this end, dinucleon bound state occurences in the 1 S 0 and 3 SD 1 channels are explicitly accounted for --within the continuous choice for the auxiliary fields-- while imposing self-consistency in Brueckner-Hartree-Fock approximation calculations. Searches are carried out at Fermi momenta in the range fm-1, using the Argonne bare nucleon-nucleon potential without resorting to the effective-mass approximation. As a result, two distinct solutions meeting the self-consistency requirement are found with overlapping domains in the interval 0.130 fm-1 0.285 fm-1, corresponding to mass densities between and g cm-3. Effective masses as high as three times the nucleon mass are found in the coexistence domain. The emergence of superfluidity in relationship with BCS pairing gap solutions is discussed.

  15. Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  16. Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  17. Experiments on Plasma Turbulence Created by Supersonic Plasma Flows with Shear

    DTIC Science & Technology

    2014-04-01

    for producing a plasma column (in black). An insulated wire traverses the plasma and car - ries a pulsed current in x-direction. The unmagnetized ions... electric field which together with the B field around the wire causes an electron ExB drift. The ions are unmagnetized. A radial space charge electric field...by the self-consistent currents passing through the grid. These currents, consisting of electron and ion flows, are controlled by the electrical

  18. Kinetic modeling of Nernst effect in magnetized hohlraums.

    PubMed

    Joglekar, A S; Ridgers, C P; Kingham, R J; Thomas, A G R

    2016-04-01

    We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.

  19. Derivation of the cut-off length from the quantum quadratic enhancement of a mass in vacuum energy constant Lambda

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika; Sato, Hikaru

    2018-04-01

    Ultraviolet self-interaction energies in field theory sometimes contain meaningful physical quantities. The self-energies in such as classical electrodynamics are usually subtracted from the rest mass. For the consistent treatment of energies as sources of curvature in the Einstein field equations, this study includes these subtracted self-energies into vacuum energy expressed by the constant Lambda (used in such as Lambda-CDM). In this study, the self-energies in electrodynamics and macroscopic classical Einstein field equations are examined, using the formalisms with the ultraviolet cut-off scheme. One of the cut-off formalisms is the field theory in terms of the step-function-type basis functions, developed by the present authors. The other is a continuum theory of a fundamental particle with the same cut-off length. Based on the effectiveness of the continuum theory with the cut-off length shown in the examination, the dominant self-energy is the quadratic term of the Higgs field at a quantum level (classical self-energies are reduced to logarithmic forms by quantum corrections). The cut-off length is then determined to reproduce today's tiny value of Lambda for vacuum energy. Additionally, a field with nonperiodic vanishing boundary conditions is treated, showing that the field has no zero-point energy.

  20. A Pilot Study of a Picture- and Audio-Assisted Self-Interviewing Method (PIASI) for the Study of Sensitive Questions on HIV in the Field

    ERIC Educational Resources Information Center

    Aarnio, Pauliina; Kulmala, Teija

    2016-01-01

    Self-interview methods such as audio computer-assisted self-interviewing (ACASI) are used to improve the accuracy of interview data on sensitive topics in large trials. Small field studies on sensitive topics would benefit from methodological alternatives. In a study on male involvement in antenatal HIV testing in a largely illiterate population…

  1. Preclinical studies on the reinforcing effects of cannabinoids. A tribute to the scientific research of Dr. Steve Goldberg

    PubMed Central

    Tanda, Gianluigi

    2016-01-01

    Rationale The reinforcing effects of most abused drugs have been consistently demonstrated and studied in animal models, although those of marijuana were not, until the demonstration fifteen years ago that THC could serve as a reinforcer in self-administration (SA) procedures in squirrel monkeys. Until then, those effects were inferred using indirect assessments. Objectives The aim of this manuscript is to review the primary preclinical procedures used to indirectly and directly infer reinforcing effects of cannabinoid drugs. Methods Results will be reviewed from studies of cannabinoid-discrimination, intracranial-self-stimulation (ICSS), conditioned place preference (CPP), as well as change in levels of dopamine assessed in brain areas related to reinforcement, and finally from self-administration procedures. For each procedure, an evaluation will be made of the predictive validity in detecting the potential abuse liability of cannabinoids based on seminal papers, with the addition of selected reports from more recent years especially those from Dr. Goldberg’s research group. Results and Conclusions ICSS and CPP do not provide consistent results for the assessment of potential for abuse of cannabinoids. However, drug-discrimination and neurochemistry procedures appear to detect potential for abuse of cannabinoids, as well as several novel “designer cannabinoid drugs.” Though after 15 years it remains somewhat problematic transfer the self-administration model of marijuana abuse from squirrel monkeys to other species, studies with the former species have substantially advanced the field, and several reports have been published with consistent self-administration of cannabinoid agonists in rodents. PMID:27026633

  2. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balsara, Dinshaw S., E-mail: dbalsara@nd.edu; Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp; Garain, Sudip, E-mail: sgarain@nd.edu

    In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equationsmore » is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge–Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.« less

  3. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho

    2016-08-01

    In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge-Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.

  4. Quantum Impurity Models as Reference Systems for Strongly Correlated Materials: The Road from the Kondo Impurity Model to First Principles Electronic Structure Calculations with Dynamical Mean-Field Theory

    NASA Astrophysics Data System (ADS)

    Kotliar, Gabriel

    2005-01-01

    Dynamical mean field theory (DMFT) relates extended systems (bulk solids, surfaces and interfaces) to quantum impurity models (QIM) satisfying a self-consistency condition. This mapping provides an economic description of correlated electron materials. It is currently used in practical computations of physical properties of real materials. It has also great conceptual value, providing a simple picture of correlated electron phenomena on the lattice, using concepts derived from quantum impurity models such as the Kondo effect. DMFT can also be formulated as a first principles electronic structure method and is applicable to correlated materials.

  5. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors

    NASA Astrophysics Data System (ADS)

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-01

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green’s function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  6. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors.

    PubMed

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-04

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green's function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  7. Quantitative verification of ab initio self-consistent laser theory.

    PubMed

    Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E

    2008-10-13

    We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.

  8. Modeling of mid-infrared quantum cascade lasers: The role of temperature and operating field strength on the laser performance

    NASA Astrophysics Data System (ADS)

    Yousefvand, Hossein Reza

    2017-07-01

    In this paper a self-consistent numerical approach to study the temperature and bias dependent characteristics of mid-infrared (mid-IR) quantum cascade lasers (QCLs) is presented which integrates a number of quantum mechanical models. The field-dependent laser parameters including the nonradiative scattering times, the detuning and energy levels, the escape activation energy, the backfilling excitation energy and dipole moment of the optical transition are calculated for a wide range of applied electric fields by a self-consistent solution of Schrodinger-Poisson equations. A detailed analysis of performance of the obtained structure is carried out within a self-consistent solution of the subband population rate equations coupled with carrier coherent transport equations through the sequential resonant tunneling, by taking into account the temperature and bias dependency of the relevant parameters. Furthermore, the heat transfer equation is included in order to calculate the carrier temperature inside the active region levels. This leads to a compact predictive model to analyze the temperature and electric field dependent characteristics of the mid-IR QCLs such as the light-current (L-I), electric field-current (F-I) and core temperature-electric field (T-F) curves. For a typical mid-IR QCL, a good agreement was found between the simulated temperature-dependent L-I characteristic and experimental data, which confirms validity of the model. It is found that the main characteristics of the device such as output power and turn-on delay time are degraded by interplay between the temperature and Stark effects.

  9. Transient ElectroMagnetic and Electric Self-Potential survey in the TAG hydrothermal field in MAR

    NASA Astrophysics Data System (ADS)

    Tao, C.; Deng, X.; Wu, G.; Xi, Z.; Zhou, D.; Zuo, L.

    2012-12-01

    The TAG hydrothermal field is one of the most studied hydrothermal fields. This field covers an area of 5km×5km, which includes low-temperature Mn- and Fe-oxides and nontronites zone, relict massive sulfide mounds as well as active hydrothermal mound(TAG mound) [Thompson, 1985, Rona, 1993]. Drilling program was performed in the ODP (Ocean Drilling Program) Leg 158 in the TAG mound [Humphris, 1996]. In 1996, electrical resistivity survey in the TAG mound was conducted using innovative transient electric dipole-dipole instruments which was carried by DSV 'Alvin' [Cairns et al., 1996, Von Herzen et al., 1996]. In June 2012, the 2nd Leg of the Chinese 26th cruise was carried out in the TAG hydrothermal field at Mid Atlantic Ridge by R/V DAYANGYIHAO. Six TEM (Transient ElectroMagnetic) survey lines were deployed, with four of which across the ODP Leg 158 drilling area. Besides, two SP (Electric Self-Potential) survey lines were across the ODP drilling area. The survey results of TEM preliminary revealed the vertical structure of the TAG hydrothermal field. The survey results of both TEM and SP are consistent with the ODP drilling result, and also agree well with the temperature and water-column anomalies obtained in this leg. Preliminary results show that the TEM and SP methods are capable of revealing the horizontal and vertical distribution of the hydrothermal sulfide fields.

  10. The Locations of Ring Current Pressure Peaks: Comparison of TWINS Measurements and CIMI Simulations for the 7-10 September 2015 CIR Storm

    NASA Astrophysics Data System (ADS)

    Hill, S. C.; Edmond, J. A.; Xu, H.; Perez, J. D.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2017-12-01

    The characteristics of a four day 7-10 September 2015 co-rotating interaction region (CIR) storm (min. SYM/H ≤ -110 nT) are categorized by storm phase. Ion distributions of trapped particles in the ring current as measured by the Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) are compared with the simulated ion distributions of the Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI). The energetic neutral atom (ENA) images obtained by TWINS are deconvolved to extract equatorial pitch angle, energy spectra, ion pressure intensity, and ion pressure anisotropy distributions in the inner magnetosphere. CIMI, using either a self-consistent electric field or a semi-empirical electric field, simulates comparable distributions. There is good agreement between the data measured by TWINS and the different distributions produced by the self-consistent electric field and the semi-empirical electric field of CIMI. Throughout the storm the pitch angle distribution (PAD) is mostly perpendicular in both CIMI and TWINS and there is agreement between the anisotropy distributions. The locations of the ion pressure peaks seen by TWINS and by the self-consistent and semi empirical electric field parameters in CIMI are usually between dusk and midnight. On average, the self-consistent electric field in CIMI reveals ion pressure peaks closer to Earth than its semi empirical counterpart, while TWINS reports somewhat larger radial values for the ion pressure peak locations. There are also notable events throughout the storm during which the simulated observations show some characteristics that differ from those measured by TWINS. At times, there are ion pressure peaks with magnetic local time on the dayside and in the midnight to dawn region. We discuss these events in light of substorm injections indicated by fluctuating peaks in the AE index and a positive By component in the solar wind. There are also times in which there are multiple ion pressure peaks. This may imply that there are time dependent and spatially dependent injection events that are influenced by local reconnection regions in the tail of the magnetosphere. Using CIMI simulations, we present paths of particles with various energies to assist in interpreting these notable events.

  11. Dayside Magnetosphere-Ionosphere Coupling and Prompt Response of Low-Latitude/Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Tu, J.; Song, P.

    2017-12-01

    We use a newly developed numerical simulation model of the ionosphere/thermosphere to investigate magnetosphere-ionosphere coupling and response of the low-latitude/equatorial ionosphere. The simulation model adapts an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B-v paradigm), in contrast to the conventional modeling based on electric field E and current j (E-j paradigm). The most distinct feature of this model is that the magnetic field in the ionosphere is not constant but self-consistently varies, e.g., with currents, in time. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, all possible MHD wave modes, each of which may refract and reflect depending on the local conditions, are retained in the solutions so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In this presentation, we show that the disturbances propagate in the Alfven speed from the magnetosphere along the magnetic field lines down to the ionosphere/thermosphere and that they experience a mode conversion to compressional mode MHD waves (particularly fast mode) in the ionosphere. Because the fast modes can propagate perpendicular to the field, they propagate from the dayside high-latitude to the nightside as compressional waves and to the dayside low-latitude/equatorial ionosphere as rarefaction waves. The apparent prompt response of the low-latitude/equatorial ionosphere, manifesting as the sudden increase of the upward flow around the equator and global antisunward convection, is the result of such coupling of the high-latitude and the low-latitude/equatorial ionosphere, and the requirement of the flow continuity, instead of mechanisms such as the penetration electric field.

  12. Magnetic field extrapolation with MHD relaxation using AWSoM

    NASA Astrophysics Data System (ADS)

    Shi, T.; Manchester, W.; Landi, E.

    2017-12-01

    Coronal mass ejections are known to be the major source of disturbances in the solar wind capable of affecting geomagnetic environments. In order for accurate predictions of such space weather events, a data-driven simulation is needed. The first step towards such a simulation is to extrapolate the magnetic field from the observed field that is only at the solar surface. Here we present results of a new code of magnetic field extrapolation with direct magnetohydrodynamics (MHD) relaxation using the Alfvén Wave Solar Model (AWSoM) in the Space Weather Modeling Framework. The obtained field is self-consistent with our model and can be used later in time-dependent simulations without modifications of the equations. We use the Low and Lou analytical solution to test our results and they reach a good agreement. We also extrapolate the magnetic field from the observed data. We then specify the active region corona field with this extrapolation result in the AWSoM model and self-consistently calculate the temperature of the active region loops with Alfvén wave dissipation. Multi-wavelength images are also synthesized.

  13. Self-consistent simulation of an electron beam for a new autoresonant x-ray generator based on TE 102 rectangular mode

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; Orozco, E. A.; Herrera, A. M.

    2016-02-01

    The space cyclotron autoresonance interaction of an electron beam with microwaves of TE 102 rectangular mode is simulated. It is shown that in these conditions the beam electrons can achieve energies which are sufficient to generate hard x-rays. The physical model consists of a rectangular cavity fed by a magnetron oscillator through a waveguide with a ferrite isolator, an iris window and a system of dc current coils which generates an axially symmetric magnetic field. The 3D magnetic field profile is that which maintains the electron beam in the space autoresonance regime. To simulate the beam dynamics, a full self-consistent electromagnetic particle-in-cell code is developed. It is shown that the injected 12keV electron beam of 0.5A current is accelerated to energy of 225keV at a distance of an order of 17cm by 2.45GHz standing microwave field with amplitude of 14kV/cm.

  14. Bianchi cosmologies with p-form gauge fields

    NASA Astrophysics Data System (ADS)

    Normann, Ben David; Hervik, Sigbjørn; Ricciardone, Angelo; Thorsrud, Mikjel

    2018-05-01

    In this paper the dynamics of free gauge fields in Bianchi type I–VII h space-times is investigated. The general equations for a matter sector consisting of a p-form field strength (p \\in \\{1, 3\\} ), a cosmological constant (4-form) and perfect fluid in Bianchi type I–VII h space-times are computed using the orthonormal frame method. The number of independent components of a p-form in all Bianchi types I–IX are derived and, by means of the dynamical systems approach, the behaviour of such fields in Bianchi type I and V are studied. Both a local and a global analysis are performed and strong global results regarding the general behaviour are obtained. New self-similar cosmological solutions appear both in Bianchi type I and Bianchi type V, in particular, a one-parameter family of self-similar solutions, ‘Wonderland (λ)’ appears generally in type V and in type I for λ=0 . Depending on the value of the equation of state parameter other new stable solutions are also found (‘The Rope’ and ‘The Edge’) containing a purely spatial field strength that rotates relative to the co-moving inertial tetrad. Using monotone functions, global results are given and the conditions under which exact solutions are (global) attractors are found.

  15. Perception of object trajectory: parsing retinal motion into self and object movement components.

    PubMed

    Warren, Paul A; Rushton, Simon K

    2007-08-16

    A moving observer needs to be able to estimate the trajectory of other objects moving in the scene. Without the ability to do so, it would be difficult to avoid obstacles or catch a ball. We hypothesized that neural mechanisms sensitive to the patterns of motion generated on the retina during self-movement (optic flow) play a key role in this process, "parsing" motion due to self-movement from that due to object movement. We investigated this "flow parsing" hypothesis by measuring the perceived trajectory of a moving probe placed within a flow field that was consistent with movement of the observer. In the first experiment, the flow field was consistent with an eye rotation; in the second experiment, it was consistent with a lateral translation of the eyes. We manipulated the distance of the probe in both experiments and assessed the consequences. As predicted by the flow parsing hypothesis, manipulating the distance of the probe had differing effects on the perceived trajectory of the probe in the two experiments. The results were consistent with the scene geometry and the type of simulated self-movement. In a third experiment, we explored the contribution of local and global motion processing to the results of the first two experiments. The data suggest that the parsing process involves global motion processing, not just local motion contrast. The findings of this study support a role for optic flow processing in the perception of object movement during self-movement.

  16. Extended Lagrangian Excited State Molecular Dynamics

    DOE PAGES

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei; ...

    2018-01-09

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  17. Convergence of quasiparticle self-consistent GW calculations of transition metal monoxides

    NASA Astrophysics Data System (ADS)

    Das, Suvadip; Coulter, John E.; Manousakis, Efstratios

    2015-03-01

    We have investigated the electronic structure of the transition metal monoxides MnO, CoO, and NiO in their undistorted rock-salt structure within a fully iterated quasiparticle self-consistent GW (QPscGW) scheme. We have studied the convergence of the QPscGW method, i.e., how the quasiparticle energy eigenvalues and wavefunctions converge as a function of the QPscGW iterations, and compared the converged outputs obtained from different starting wavefunctions. We found that the convergence is slow and that a one-shot G0W0 calculation does not significantly improve the initial eigenvalues and states. In some cases the ``path'' to convergence may go through energy band reordering which cannot be captured by the simple initial unperturbed Hamiltonian. When a fully iterated solution is reached, the converged density of states, band-gaps and magnetic moments of these oxides are found to be only weakly dependent on the choice of the starting wavefunctions and in reasonable agreement with the experiment. National High Magnetic Field Laboratory.

  18. Extended Lagrangian Excited State Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  19. Extended Lagrangian Excited State Molecular Dynamics.

    PubMed

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  20. Testing variations of the GW approximation on strongly correlated transition metal oxides: hematite (α-Fe2O3) as a benchmark.

    PubMed

    Liao, Peilin; Carter, Emily A

    2011-09-07

    Quantitative characterization of low-lying excited electronic states in materials is critical for the development of solar energy conversion materials. The many-body Green's function method known as the GW approximation (GWA) directly probes states corresponding to photoemission and inverse photoemission experiments, thereby determining the associated band structure. Several versions of the GW approximation with different levels of self-consistency exist in the field. While the GWA based on density functional theory (DFT) works well for conventional semiconductors, less is known about its reliability for strongly correlated semiconducting materials. Here we present a systematic study of the GWA using hematite (α-Fe(2)O(3)) as the benchmark material. We analyze its performance in terms of the calculated photoemission/inverse photoemission band gaps, densities of states, and dielectric functions. Overall, a non-self-consistent G(0)W(0) using input from DFT+U theory produces physical observables in best agreement with experiments. This journal is © the Owner Societies 2011

  1. Self-consistent Monte Carlo study of high-field carrier transport in graded heterostructures

    NASA Astrophysics Data System (ADS)

    Al-Omar, A.; Krusius, J. P.

    1987-11-01

    Hot-electron transport over graded heterostructures was investigated. A new formulation of the carrier transport, based on the effective mass theorem, a position-dependent Hamiltonian, scattering rates that included overlap integrals with correct symmetry, and ohmic contact models preserving the stochastic nature of carrier injection, was developed and implemented into the self-consistent ensemble Monte Carlo method. Hot-carrier transport in a graded Al(x)Ga(1-x)As device was explored with the following results: (1) the transport across compositionally graded semiconductor structures cannot be described with drift and diffusion concepts; (2) although heterostructure launchers generate a ballistic electron fraction as high as 15 percent and 40 percent of the total electron population for 300 and 77 K, respectively, they simultaneously reduce macroscopic average currents and carrier velocities; and (3) the width of the ballistic electron distribution and the magnitude of the ballistic fraction are primarily determined by material parameters and operating voltages rather than details of the device structure.

  2. Forward modeling of the Earth's lithospheric field using spherical prisms

    NASA Astrophysics Data System (ADS)

    Baykiev, Eldar; Ebbing, Jörg; Brönner, Marco; Fabian, Karl

    2014-05-01

    The ESA satellite mission Swarm consists of three satellites that measure the magnetic field of the Earth at average flight heights of about 450 km and 530 km above surface. Realistic forward modeling of the expected data is an indispensible first step for both, evaluation and inversion of the real data set. This forward modeling requires a precise definition of the spherical geometry of the magnetic sources. At satellite height only long wavelengths of the magnetic anomalies are reliably measured. Because these are very sensitive to the modeling error in case of a local flat Earth approximation, conventional magnetic modeling tools cannot be reliably used. For an improved modeling approach, we start from the existing gravity modeling code "tesseroids" (http://leouieda.github.io/tesseroids/), which calculates gravity gradient tensor components for any collection of spherical prisms (tesseroids). By Poisson's relation the magnetic field is mathematically equivalent to the gradient of a gravity field. It is therefore directly possible to apply "tesseroids" for magnetic field modeling. To this end, the Earth crust is covered by spherical prisms, each with its own prescribed magnetic susceptibility and remanent magnetization. Induced magnetizations are then derived from the products of the local geomagnetic fields for the chosen main field model (such as the International Geomagnetic Reference Field), and the corresponding tesseroid susceptibilities. Remanent magnetization vectors are directly set. This method inherits the functionality of the original "tesseroids" code and performs parallel computation of the magnetic field vector components on any given grid. Initial global calculations for a simplified geometry and piecewise constant magnetization for each tesseroid show that the method is self-consistent and reproduces theoretically expected results. Synthetic induced crustal magnetic fields and total field anomalies of the CRUST1.0 model converted to magnetic tesseroids reproduce the results of previous forward modelling methods (e.g. using point dipoles as magnetic sources), while reducing error terms. Moreover the spherical-prism method can easily be linked to other geophysical forward or inverse modelling tools. Sensitivity analysis over Fennoscandia will be used to estimate if and how induced and remanent magnetization can be distinguished in data from the Swarm satellite mission.

  3. Assessing the performance of self-consistent hybrid functional for band gap calculation in oxide semiconductors

    NASA Astrophysics Data System (ADS)

    He, Jiangang; Franchini, Cesare

    2017-11-01

    In this paper we assess the predictive power of the self-consistent hybrid functional scPBE0 in calculating the band gap of oxide semiconductors. The computational procedure is based on the self-consistent evaluation of the mixing parameter α by means of an iterative calculation of the static dielectric constant using the perturbation expansion after discretization method and making use of the relation \

  4. Method for Providing Semiconductors Having Self-Aligned Ion Implant

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor)

    2014-01-01

    A method is disclosed that provides a self-aligned nitrogen-implant particularly suited for a Junction Field Effect Transistor (JFET) semiconductor device preferably comprised of a silicon carbide (SiC). This self-aligned nitrogen-implant allows for the realization of durable and stable electrical functionality of high temperature transistors such as JFETs. The method implements the self-aligned nitrogen-implant having predetermined dimensions, at a particular step in the fabrication process, so that the SiC junction field effect transistors are capable of being electrically operating continuously at 500.degree. C. for over 10,000 hours in an air ambient with less than a 10% change in operational transistor parameters.

  5. Method for Providing Semiconductors Having Self-Aligned Ion Implant

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor)

    2011-01-01

    A method is disclosed that provides a self-aligned nitrogen-implant particularly suited for a Junction Field Effect Transistor (JFET) semiconductor device preferably comprised of a silicon carbide (SiC). This self-aligned nitrogen-implant allows for the realization of durable and stable electrical functionality of high temperature transistors such as JFETs. The method implements the self-aligned nitrogen-implant having predetermined dimensions, at a particular step in the fabrication process, so that the SiC junction field effect transistors are capable of being electrically operating continuously at 500.degree. C. for over 10,000 hours in an air ambient with less than a 10% change in operational transistor parameters.

  6. Self-consistency test reveals systematic bias in programs for prediction change of stability upon mutation.

    PubMed

    Usmanova, Dinara R; Bogatyreva, Natalya S; Ariño Bernad, Joan; Eremina, Aleksandra A; Gorshkova, Anastasiya A; Kanevskiy, German M; Lonishin, Lyubov R; Meister, Alexander V; Yakupova, Alisa G; Kondrashov, Fyodor A; Ivankov, Dmitry N

    2018-05-02

    Computational prediction of the effect of mutations on protein stability is used by researchers in many fields. The utility of the prediction methods is affected by their accuracy and bias. Bias, a systematic shift of the predicted change of stability, has been noted as an issue for several methods, but has not been investigated systematically. Presence of the bias may lead to misleading results especially when exploring the effects of combination of different mutations. Here we use a protocol to measure the bias as a function of the number of introduced mutations. It is based on a self-consistency test of the reciprocity the effect of a mutation. An advantage of the used approach is that it relies solely on crystal structures without experimentally measured stability values. We applied the protocol to four popular algorithms predicting change of protein stability upon mutation, FoldX, Eris, Rosetta, and I-Mutant, and found an inherent bias. For one program, FoldX, we manage to substantially reduce the bias using additional relaxation by Modeller. Authors using algorithms for predicting effects of mutations should be aware of the bias described here. ivankov13@gmail.com. Supplementary data are available at Bioinformatics online.

  7. Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.

    PubMed

    Kowalczyk, Tim; Le, Khoa; Irle, Stephan

    2016-01-12

    We present an implementation of energies and gradients for the ΔDFTB method, an analogue of Δ-self-consistent-field density functional theory (ΔSCF) within density-functional tight-binding, for the lowest singlet excited state of closed-shell molecules. Benchmarks of ΔDFTB excitation energies, optimized geometries, Stokes shifts, and vibrational frequencies reveal that ΔDFTB provides a qualitatively correct description of changes in molecular geometries and vibrational frequencies due to excited-state relaxation. The accuracy of ΔDFTB Stokes shifts is comparable to that of ΔSCF-DFT, and ΔDFTB performs similarly to ΔSCF with the PBE functional for vertical excitation energies of larger chromophores where the need for efficient excited-state methods is most urgent. We provide some justification for the use of an excited-state reference density in the DFTB expansion of the electronic energy and demonstrate that ΔDFTB preserves many of the properties of its parent ΔSCF approach. This implementation fills an important gap in the extended framework of DFTB, where access to excited states has been limited to the time-dependent linear-response approach, and affords access to rapid exploration of a valuable class of excited-state potential energy surfaces.

  8. Imagined Self-Motion Differs from Perceived Self-Motion: Evidence from a Novel Continuous Pointing Method

    PubMed Central

    Campos, Jennifer L.; Siegle, Joshua H.; Mohler, Betty J.; Bülthoff, Heinrich H.; Loomis, Jack M.

    2009-01-01

    Background The extent to which actual movements and imagined movements maintain a shared internal representation has been a matter of much scientific debate. Of the studies examining such questions, few have directly compared actual full-body movements to imagined movements through space. Here we used a novel continuous pointing method to a) provide a more detailed characterization of self-motion perception during actual walking and b) compare the pattern of responding during actual walking to that which occurs during imagined walking. Methodology/Principal Findings This continuous pointing method requires participants to view a target and continuously point towards it as they walk, or imagine walking past it along a straight, forward trajectory. By measuring changes in the pointing direction of the arm, we were able to determine participants' perceived/imagined location at each moment during the trajectory and, hence, perceived/imagined self-velocity during the entire movement. The specific pattern of pointing behaviour that was revealed during sighted walking was also observed during blind walking. Specifically, a peak in arm azimuth velocity was observed upon target passage and a strong correlation was observed between arm azimuth velocity and pointing elevation. Importantly, this characteristic pattern of pointing was not consistently observed during imagined self-motion. Conclusions/Significance Overall, the spatial updating processes that occur during actual self-motion were not evidenced during imagined movement. Because of the rich description of self-motion perception afforded by continuous pointing, this method is expected to have significant implications for several research areas, including those related to motor imagery and spatial cognition and to applied fields for which mental practice techniques are common (e.g. rehabilitation and athletics). PMID:19907655

  9. Phase-field approach to implicit solvation of biomolecules with Coulomb-field approximation

    NASA Astrophysics Data System (ADS)

    Zhao, Yanxiang; Kwan, Yuen-Yick; Che, Jianwei; Li, Bo; McCammon, J. Andrew

    2013-07-01

    A phase-field variational implicit-solvent approach is developed for the solvation of charged molecules. The starting point of such an approach is the representation of a solute-solvent interface by a phase field that takes one value in the solute region and another in the solvent region, with a smooth transition from one to the other on a small transition layer. The minimization of an effective free-energy functional of all possible phase fields determines the equilibrium conformations and free energies of an underlying molecular system. All the surface energy, the solute-solvent van der Waals interaction, and the electrostatic interaction are coupled together self-consistently through a phase field. The surface energy results from the minimization of a double-well potential and the gradient of a field. The electrostatic interaction is described by the Coulomb-field approximation. Accurate and efficient methods are designed and implemented to numerically relax an underlying charged molecular system. Applications to single ions, a two-plate system, and a two-domain protein reveal that the new theory and methods can capture capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states as found in molecular dynamics simulations. Comparisons of the phase-field and the original sharp-interface variational approaches are discussed.

  10. The local density of optical states of a metasurface

    NASA Astrophysics Data System (ADS)

    Lunnemann, Per; Koenderink, A. Femius

    2016-02-01

    While metamaterials are often desirable for near-field functions, such as perfect lensing, or cloaking, they are often quantified by their response to plane waves from the far field. Here, we present a theoretical analysis of the local density of states near lattices of discrete magnetic scatterers, i.e., the response to near field excitation by a point source. Based on a pointdipole theory using Ewald summation and an array scanning method, we can swiftly and semi-analytically evaluate the local density of states (LDOS) for magnetoelectric point sources in front of an infinite two-dimensional (2D) lattice composed of arbitrary magnetoelectric dipole scatterers. The method takes into account radiation damping as well as all retarded electrodynamic interactions in a self-consistent manner. We show that a lattice of magnetic scatterers evidences characteristic Drexhage oscillations. However, the oscillations are phase shifted relative to the electrically scattering lattice consistent with the difference expected for reflection off homogeneous magnetic respectively electric mirrors. Furthermore, we identify in which source-surface separation regimes the metasurface may be treated as a homogeneous interface, and in which homogenization fails. A strong frequency and in-plane position dependence of the LDOS close to the lattice reveals coupling to guided modes supported by the lattice.

  11. The density-magnetic field relation in the atomic ISM

    NASA Astrophysics Data System (ADS)

    Gazol, A.; Villagran, M. A.

    2018-07-01

    We present numerical experiments aimed to study the correlation between the magnetic field strength, B, and the density, n, in the cold atomic interstellar medium (CNM). We analyse 24 magnetohydrodynamic models with different initial magnetic field intensities (B0 = 0.4, 2.1, 4.2, and 8.3 μG) and/or mean densities (2, 3, and 4 cm-3), in the presence of driven and decaying turbulence, with and without self-gravity, in a cubic computational domain with 100 pc by side. Our main findings are as follows: (i) For forced simulations that reproduce the main observed physical conditions of the CNM in the solar neighbourhood, a positive correlation between B and n develops for all the B0 values. (ii) The density at which this correlation becomes significant (≲30 cm-3) depends on B0 but is not sensitive to the presence of self-gravity. (iii) The effect of self-gravity, when noticeable, consists of producing a shallower correlation at high densities, suggesting that, in the studied regime, self-gravity induces motions along the field lines. (iv) Self-gravitating decaying models where the CNM is subsonic and sub-Alfvénic with β ≲ 1 develop a high-density positive correlation whose slopes are consistent with a constant β(n). (v) Decaying models where the low-density CNM is subsonic and sub-Alfvénic with β > 1 show a negative correlation at intermediate densities, followed by a high-density positive correlation.

  12. The Density-Magnetic Field Relation in the Atomic ISM

    NASA Astrophysics Data System (ADS)

    Gazol, A.; Villagran, M. A.

    2018-04-01

    We present numerical experiments aimed to study the correlation between the magnetic field strength, B, and the density, n, in the cold atomic interstellar medium (CNM). We analyze 24 magneto-hydrodynamic models with different initial magnetic field intensities (B0 =0.4, 2.1, 4.2, and 8.3 μG) and/or mean densities (2, 3, and 4 cm-3), in the presence of driven and decaying turbulence, with and without self-gravity, in a cubic computational domain with 100 pc by side. Our main findings are: i) For forced simulations, which reproduce the main observed physical conditions of the CNM in the Solar neighborhood, a positive correlation between B and n develops for all the B0 values. ii) The density at which this correlation becomes significant (≲ 30 cm-3) depends on B0 but is not sensitive to the presence of self-gravity. iii) The effect of self-gravity, when noticeable, consists of producing a shallower correlation at high densities, suggesting that, in the studied regime, self-gravity induces motions along the field lines. iv) Self-gravitating decaying models where the CNM is subsonic and sub-Alfvénic with β ≲ 1 develop a high density positive correlation whose slopes are consistent with a constant β(n). v) Decaying models where the low density CNM is subsonic and sub-Alfvénic with β > 1 show a negative correlation at intermediate densities, followed by a high density positive correlation.

  13. Self-consistent current sheet structures in the quiet-time magnetotail

    NASA Technical Reports Server (NTRS)

    Holland, Daniel L.; Chen, James

    1993-01-01

    The structure of the quiet-time magnetotail is studied using a test particle simulation. Vlasov equilibria are obtained in the regime where v(D) = E(y) c/B(z) is much less than the ion thermal velocity and are self-consistent in that the current and magnetic field satisfy Ampere's law. Force balance between the plasma and magnetic field is satisfied everywhere. The global structure of the current sheet is found to be critically dependent on the source distribution function. The pressure tensor is nondiagonal in the current sheet with anisotropic temperature. A kinetic mechanism is proposed whereby changes in the source distribution results in a thinning of the current sheet.

  14. Thermodynamically self-consistent theory for the Blume-Capel model.

    PubMed

    Grollau, S; Kierlik, E; Rosinberg, M L; Tarjus, G

    2001-04-01

    We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the lambda line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.

  15. Methodological study of computational approaches to address the problem of strong correlations

    NASA Astrophysics Data System (ADS)

    Lee, Juho

    The main focus of this thesis is the detailed investigation of computational methods to tackle strongly correlated materials in which a rich variety of exotic phenomena are found. A many-body problem with sizable electronic correlations can no longer be explained by independent-particle approximations such as density functional theory (DFT) or tight-binding approaches. The influence of an electron to the others is too strong for each electron to be treated as an independent quasiparticle and consequently those standard band-structure methods fail even at a qualitative level. One of the most powerful approaches for strong correlations is the dynamical mean-field theory (DMFT), which has enlightened the understanding of the Mott transition based on the Hubbard model. For realistic applications, the dynamical mean-field theory is combined with various independent-particles approaches. The most widely used one is the DMFT combined with the DFT in the local density approximation (LDA), so-called LDA+DMFT. In this approach, the electrons in the weakly correlated orbitals are calculated by LDA while others in the strongly correlated orbitals are treated by DMFT. Recently, the method combining DMFT with Hedin's GW approximation was also developed, in which the momentum-dependent self-energy is also added. In this thesis, we discuss the application of those methodologies based on DMFT. First, we apply the dynamical mean-field theory to solve the 3-dimensional Hubbard model in Chap. 3. In this application, we model the interface between the thermodynamically coexisting metal and Mott insulator. We show how to model the required slab geometry and extract the electronic spectra. We construct an effective Landau free energy and compute the variation of its parameters across the phase diagram. Finally, using a linear mixture of the density and double-occupancy, we identify a natural Ising order parameter which unifies the treatment of the bandwidth and filling controlled Mott transitions. Secondly, we study the double-counting problem, a subtle issue that arises in LDA+DMFT. We propose a highly precise double-counting functional, in which the intersection of LDA and DMFT is calculated exactly, and implement a parameter-free version of the LDA+DMFT that is tested on one of the simplest strongly correlated systems, the H2 molecule. We show that the exact double-counting treatment along with a good DMFT projector leads to very accurate and total energy and excitation spectrum of H2 molecule. Finally, we implement various versions of GW+DMFT, in its fully self-consistent way, one shot GW approximation, and quasiparticle self-consistent scheme, and studied how well these combined methods perform on H2 molecule as compared to more established methods such as LDA+DMFT. We found that most flavors of GW+DMFT break down in strongly correlated regime due to causality violation. Among GW+DMFT methods, only the self-consistent quasiparticle GW+DMFT with static double-counting, and a new method with causal double-counting, correctly recover the atomic limit at large H-atom separation. While some flavors of GW+DMFT improve the single-electron spectra of LDA+DMFT, the total energy is best predicted by LDA+DMFT, for which the exact double-counting is known, and is static.

  16. Development of a 10 m quasi-isotropic strand assembled from 2G wires

    NASA Astrophysics Data System (ADS)

    Kan, Changtao; Wang, Yinshun; Hou, Yanbing; Li, Yan; Zhang, Han; Fu, Yu; Jiang, Zhe

    2018-03-01

    Quasi-isotropic strands made of second generation (2G) high temperature superconducting (HTS) wires are attractive to applications of high-field magnets at low temperatures and power transmission cables at liquid nitrogen temperature in virtue of their high current carrying capability and well mechanical property. In this contribution, a 10 m length quasi-isotropic strand is manufactured and successfully tested in liquid nitrogen to verify the feasibility of an industrial scale production of the strand by the existing cabling technologies. The strand with copper sheath consists of 72 symmetrically assembled 2G wires. The uniformity of critical properties of long quasi-isotropic strands, including critical current and n-value, is very important for their using. Critical currents as well as n-values of the strand are measured every 1 m respectively and compared with the simulation results. Critical current and n-value of the strand are calculated basing on the self-consistent model solved by the finite element method (FEM). Effects of self-field on the critical current and n-value distributions in wires of the strand are analyzed in detail. The simulation results show good agreement with the experimental data and the 10 m quasi-isotropic strand has good critical properties uniformity.

  17. Dynamic polarizabilities and Van der Waals coefficients for alkali atoms Li, Na and alkali dimer molecules Li2, Na2 and NaLi

    NASA Astrophysics Data System (ADS)

    Mérawa, M.; Dargelos, A.

    1998-07-01

    The present paper gives an account of investigations of the polarizability of the alkali atoms Li, Na, diatomics homonuclear and heteronuclear Li2, Na2 and NaLi at SCF (Self Consistent Field) level of approximation and at correlated level, using a time Time-Dependent Gauge Invariant method (TDGI). Our static polarizability values agree with the best experimental and theoretical determinations. The Van der Waals C6 coefficients for the atom-atom, atom-dimer and dimer-dimer interactions have been evaluated. Les polarisabilités des atomes alcalins Li, Na, et des molécules diatomiques homonucléaires et hétéronucléaire Li2, Na2 et NaLi, ont été calculées au niveau SCF (Self Consistent Field) et au niveau corrélé à partir d'une méthode invariante de jauge dépendante du temps(TDGI). Nos valeurs des polarisabilités statiques sont en accord avec les meilleurs déterminations expérimentales et théoriques. Les coefficients C6 de Van de Waals pour les interactions atome-atome, atome-dimère et dimère-dimère ont également été évalués.

  18. Indirect (source-free) integration method. II. Self-force consistent radial fall

    NASA Astrophysics Data System (ADS)

    Ritter, Patxi; Aoudia, Sofiane; Spallicci, Alessandro D. A. M.; Cordier, Stéphane

    2016-12-01

    We apply our method of indirect integration, described in Part I, at fourth order, to the radial fall affected by the self-force (SF). The Mode-Sum regularization is performed in the Regge-Wheeler gauge using the equivalence with the harmonic gauge for this orbit. We consider also the motion subjected to a self-consistent and iterative correction determined by the SF through osculating stretches of geodesics. The convergence of the results confirms the validity of the integration method. This work complements and justifies the analysis and the results appeared in [Int. J. Geom. Meth. Mod. Phys. 11 (2014) 1450090].

  19. Automated classification of self-grooming in mice using open-source software.

    PubMed

    van den Boom, Bastijn J G; Pavlidi, Pavlina; Wolf, Casper J H; Mooij, Adriana H; Willuhn, Ingo

    2017-09-01

    Manual analysis of behavior is labor intensive and subject to inter-rater variability. Although considerable progress in automation of analysis has been made, complex behavior such as grooming still lacks satisfactory automated quantification. We trained a freely available, automated classifier, Janelia Automatic Animal Behavior Annotator (JAABA), to quantify self-grooming duration and number of bouts based on video recordings of SAPAP3 knockout mice (a mouse line that self-grooms excessively) and wild-type animals. We compared the JAABA classifier with human expert observers to test its ability to measure self-grooming in three scenarios: mice in an open field, mice on an elevated plus-maze, and tethered mice in an open field. In each scenario, the classifier identified both grooming and non-grooming with great accuracy and correlated highly with results obtained by human observers. Consistently, the JAABA classifier confirmed previous reports of excessive grooming in SAPAP3 knockout mice. Thus far, manual analysis was regarded as the only valid quantification method for self-grooming. We demonstrate that the JAABA classifier is a valid and reliable scoring tool, more cost-efficient than manual scoring, easy to use, requires minimal effort, provides high throughput, and prevents inter-rater variability. We introduce the JAABA classifier as an efficient analysis tool for the assessment of rodent self-grooming with expert quality. In our "how-to" instructions, we provide all information necessary to implement behavioral classification with JAABA. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Electric field variations measured continuously in free air over a conductive thin zone in the tilted Lias-epsilon black shales near Osnabrück, Northwest Germany

    NASA Astrophysics Data System (ADS)

    Gurk, M.; Bosch, F. P.; Tougiannidis, N.

    2013-04-01

    Common studies on the static electric field distribution over a conductivity anomaly use the self-potential method. However, this method is time consuming and requires nonpolarizable electrodes to be placed in the ground. Moreover, the information gained by this method is restricted to the horizontal variations of the electric field. To overcome the limitation in the self-potential technique, we conducted a field experiment using a non conventional technique to assess the static electric field over a conductivity anomaly. We use two metallic potential probes arranged on an insulated boom with a separation of 126 cm. When placed into the electric field of the free air, a surface charge will be induced on each probe trying to equalize with the potential of the surrounding atmosphere. The use of a plasma source at both probes facilitated continuous and quicker measurement of the electric field in the air. The present study shows first experimental measurements with a modified potential probe technique (MPP) along a 600-meter-long transect to demonstrate the general feasibility of this method for studying the static electric field distribution over shallow conductivity anomalies. Field measurements were carried out on a test site on top of the Bramsche Massif near Osnabrück (Northwest Germany) to benefit from a variety of available near surface data over an almost vertical conductivity anomaly. High resolution self-potential data served in a numerical analysis to estimate the expected individual components of the electric field vector. During the experiment we found more anomalies in the vertical and horizontal components of the electric field than self-potential anomalies. These contrasting findings are successfully cross-validated with conventional near surface geophysical methods. Among these methods, we used self-potential, radiomagnetotelluric, electric resistivity tomography and induced polarization data to derive 2D conductivity models of the subsurface in order to infer the geometrical properties and the origin of the conductivity anomaly in the survey area. The presented study demonstrates the feasibility of electric field measurements in free air to detect and study near surface conductivity anomalies. Variations in Ez correlate well with the conductivity distribution obtained from resistivity methods. Compared to the self-potential technique, continuously free air measurements of the electric field are more rapid and of better lateral resolution combined with the unique ability to analyze vertical components of the electric field which are of particular importance to detect lateral conductivity contrasts. Mapping Ez in free air is a good tool to precisely map lateral changes of the electric field distribution in areas where SP generation fails. MPP offers interesting application in other geophysical techniques e.g. in time domain electromagnetics, DC and IP. With this method we were able to reveal a ca. 150 m broad zone of enhanced electric field strength.

  1. Self-consistent adjoint analysis for topology optimization of electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Deng, Yongbo; Korvink, Jan G.

    2018-05-01

    In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.

  2. Antiplane shear wave propagation in fiber-reinforced composites.

    PubMed

    Kim, Jin-Yeon

    2003-05-01

    A self-consistent method for analyzing antiplane shear wave propagation in two-dimensional inhomogeneous media is presented. For applications in the high-frequency range, the self-consistent condition for the effective medium is solved being supplemented with the theory of quasidynamic effective density. Comparisons with other theoretical calculations and experimental data for fiber-reinforced composites demonstrate the merits of using the present method.

  3. Self-consistent DFT +U method for real-space time-dependent density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Tancogne-Dejean, Nicolas; Oliveira, Micael J. T.; Rubio, Angel

    2017-12-01

    We implemented various DFT+U schemes, including the Agapito, Curtarolo, and Buongiorno Nardelli functional (ACBN0) self-consistent density-functional version of the DFT +U method [Phys. Rev. X 5, 011006 (2015), 10.1103/PhysRevX.5.011006] within the massively parallel real-space time-dependent density functional theory (TDDFT) code octopus. We further extended the method to the case of the calculation of response functions with real-time TDDFT+U and to the description of noncollinear spin systems. The implementation is tested by investigating the ground-state and optical properties of various transition-metal oxides, bulk topological insulators, and molecules. Our results are found to be in good agreement with previously published results for both the electronic band structure and structural properties. The self-consistent calculated values of U and J are also in good agreement with the values commonly used in the literature. We found that the time-dependent extension of the self-consistent DFT+U method yields improved optical properties when compared to the empirical TDDFT+U scheme. This work thus opens a different theoretical framework to address the nonequilibrium properties of correlated systems.

  4. Particle-In-Cell Simulations of the Solar Wind Interaction with Lunar Crustal Magnetic Anomalies: Magnetic Cusp Regions

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.

    2012-01-01

    As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.

  5. Steady-State Ion Beam Modeling with MICHELLE

    NASA Astrophysics Data System (ADS)

    Petillo, John

    2003-10-01

    There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.

  6. Gate-controlled current and inelastic electron tunneling spectrum of benzene: a self-consistent study.

    PubMed

    Liang, Y Y; Chen, H; Mizuseki, H; Kawazoe, Y

    2011-04-14

    We use density functional theory based nonequilibrium Green's function to self-consistently study the current through the 1,4-benzenedithiol (BDT). The elastic and inelastic tunneling properties through this Au-BDT-Au molecular junction are simulated, respectively. For the elastic tunneling case, it is found that the current through the tilted molecule can be modulated effectively by the external gate field, which is perpendicular to the phenyl ring. The gate voltage amplification comes from the modulation of the interaction between the electrodes and the molecules in the junctions. For the inelastic case, the electron tunneling scattered by the molecular vibrational modes is considered within the self-consistent Born approximation scheme, and the inelastic electron tunneling spectrum is calculated.

  7. Inverse-scattering-theory approach to the exact n→∞ solutions of O(n) ϕ⁴ models on films and semi-infinite systems bounded by free surfaces.

    PubMed

    Rutkevich, Sergei B; Diehl, H W

    2015-06-01

    The O(n) ϕ(4) model on a strip bounded by a pair of planar free surfaces at separation L can be solved exactly in the large-n limit in terms of the eigenvalues and eigenfunctions of a self-consistent one-dimensional Schrödinger equation. The scaling limit of a continuum version of this model is considered. It is shown that the self-consistent potential can be eliminated in favor of scattering data by means of appropriately extended methods of inverse scattering theory. The scattering data (Jost function) associated with the self-consistent potential are determined for the L=∞ semi-infinite case in the scaling regime for all values of the temperature scaling field t=(T-T(c))/T(c) above and below the bulk critical temperature T(c). These results are used in conjunction with semiclassical and boundary-operator expansions and a trace formula to derive exact analytical results for a number of quantities such as two-point functions, universal amplitudes of two excess surface quantities, the universal amplitude difference associated with the thermal singularity of the surface free energy, and potential coefficients. The asymptotic behaviors of the scaled eigenenergies and eigenfunctions of the self-consistent Schrödinger equation as function of x=t(L/ξ(+))(1/ν) are determined for x→-∞. In addition, the asymptotic x→-∞ forms of the universal finite-size scaling functions Θ(x) and ϑ(x) of the residual free energy and the Casimir force are computed exactly to order 1/x, including their x(-1)ln|x| anomalies.

  8. Ab initio study of the molecular structure and vibrational spectrum of nitric acid and its protonated forms

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1992-01-01

    The equilibrium structures, harmonic vibrational frequencies, IR intensities, and relative energetics of HNO3 and its protonated form H2NO3+ were investigated using double-zeta plus polarization and triple-zeta plus polarization basis sets in conjunction with high-level ab initio methods. The latter include second-order Moller-Plesset perturbation theory, the single and double excitation coupled cluster (CCSD) methods, a perturbational estimate of the effects of connected triple excitations (CCSD(T)), and the self-consistent field. To determine accurate energy differences CCSD(T) energies were computed using large atomic natural orbital basis sets. Four different isomers of H2NO3+ were considered. The lowest energy form of protonated nitric acid was found to correspond to a complex between H2O and NO2+, which is consistent with earlier theoretical and experimental studies.

  9. Determination of Strain Field on the Superior Surface of Excised Larynx Vocal Folds Using DIC

    PubMed Central

    Bakhshaee, Hani; Young, Jonathan; Yang, Justin C. W.; Mongeau, Luc; Miri, Amir K.

    2013-01-01

    Summary Objective/Hypothesis The objective of the present study was to quantify the mechanical strain and stress in excised porcine larynges during self-oscillation using digital image correlation (DIC) method. The use of DIC in the excised larynx setup may yield accurate measurements of the vocal fold displacement field. Study Design Ex vivo animal larynx. Methods Measurements were performed using excised porcine larynges on a humidified flow bench, equipped with two high-speed cameras and a commercially available DIC software. Surface deformations were calculated from digital images recorded at 3000 frames per second during continuous self-oscillation for four excised porcine larynges. Larynx preparation consisted of removing the supraglottal wall and the false folds. DIC yielded the deformation field on the superior visible surface of the vocal folds. Measurement data for adducted and freely suspended vocal folds were also used to estimate the distribution of the initial prephonatory strain field. An isotropic constitutive law, the polymer eight-chain model, was used to estimate the surface distributions of planar stresses from the strain data. Results The Lagrangian normal strain values were between ~16% and ~29% along the anterior-posterior direction. The motion of material points on the vocal fold surface described an elliptical trajectory during oscillation. A phase difference was observed between the anterior-posterior and the medial-lateral component of the displacement. The strain data and eight-chain model yielded a maximum stress of ~4 kPa along the medial-lateral direction on the superior surface. Conclusion DIC allowed the strain field over the superior surface of an excised porcine larynx to be quantified during self-oscillation. The approach allowed the determination of the trajectory of specific points on the vocal fold surface. The results for the excised larynx were found to be significantly different than previous results obtained using synthetic replicas. The present study provides suggestions for future studies in human subjects. PMID:24070590

  10. Observed and Self-Reported Pesticide Protective Behaviors of Latino Migrant and Seasonal Farmworkers

    PubMed Central

    Walton, AnnMarie Lee; LePrevost, Catherine; Wong, Bob; Linnan, Laura; Sanchez-Birkhead, Ana; Mooney, Kathi

    2016-01-01

    Agricultural pesticide exposure has potential adverse health effects for farmworkers that may be reduced by pesticide protective behaviors (PPBs). The Environmental Protection Agency’s (EPA) Worker Protection Standard (WPS) requires PPBs be taught to farmworkers prior to field work. Studies to date have not utilized observational methods to evaluate the degree to which PPBs are practiced by Latino migrant and seasonal farmworkers in the United States. The purpose of this study was to describe, compare, and contrast observed and self-reported PPBs used by Latino farmworkers; both PPBs that the WPS requires be taught and other PPBs were included. Observed and self-reported data were collected from 71 Latino farmworkers during the 2014 tobacco growing season in North Carolina. Participants were consistent in reporting and using long pants and closed shoes in the field most of the time. In addition, gloves, hats/bandanas, and water-resistant outerwear were frequently observed, although they are not required to be taught by the WPS. Farmworkers reported more long-sleeve (p = .028) and glove use (p = .000) than what was observed. It was uncommon to observe washing behavior before eating or drinking, even when washing supplies were available. Washing behaviors were significantly overreported for hand (p = .000; (p = .000) and face (p = .000; (p = .058) washing before eating and drinking in the field. This study documents that protective clothing behaviors that the WPS requires be taught, plus a few others are commonly practiced by Latino migrant and seasonal farmworkers, but washing behaviors in the field are not. Targeted strategies to improve washing behaviors in the field are needed. PMID:26918841

  11. Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering.

    PubMed

    Gil-Ley, Alejandro; Bussi, Giovanni

    2015-03-10

    The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strengths of the bias potential exploiting the tunability of well-tempered metadynamics. Using this method, free-energy barriers of individual collective variables are significantly reduced compared with simple force-field scaling. The introduced methodology is flexible and allows adaptive bias potentials to be self-consistently constructed for a large number of simple collective variables, such as distances and dihedral angles. The method is tested on alanine dipeptide and applied to the difficult problem of conformational sampling in a tetranucleotide.

  12. The protonation of N2O reexamined - A case study on the reliability of various electron correlation methods for minima and transition states

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.

    1993-01-01

    The protonation of N2O and the intramolecular proton transfer in N2OH(+) are studied using various basis sets and a variety of methods, including second-order many-body perturbation theory (MP2), singles and doubles coupled cluster (CCSD), the augmented coupled cluster (CCSD/T/), and complete active space self-consistent field (CASSCF) methods. For geometries, MP2 leads to serious errors even for HNNO(+); for the transition state, only CCSD/T/ produces a reliable geometry due to serious nondynamical correlation effects. The proton affinity at 298.15 K is estimated at 137.6 kcal/mol, in close agreement with recent experimental determinations of 137.3 +/- 1 kcal/mol.

  13. Predicting Flory-Huggins χ from Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Wenlin; Gomez, Enrique D.; Milner, Scott T.

    2017-07-01

    We introduce a method, based on a novel thermodynamic integration scheme, to extract the Flory-Huggins χ parameter as small as 10-3k T for polymer blends from molecular dynamics (MD) simulations. We obtain χ for the archetypical coarse-grained model of nonpolar polymer blends: flexible bead-spring chains with different Lennard-Jones interactions between A and B monomers. Using these χ values and a lattice version of self-consistent field theory (SCFT), we predict the shape of planar interfaces for phase-separated binary blends. Our SCFT results agree with MD simulations, validating both the predicted χ values and our thermodynamic integration method. Combined with atomistic simulations, our method can be applied to predict χ for new polymers from their chemical structures.

  14. Branch-Based Model for the Diameters of the Pulmonary Airways: Accounting for Departures From Self-Consistency and Registration Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neradilek, Moni B.; Polissar, Nayak L.; Einstein, Daniel R.

    2012-04-24

    We examine a previously published branch-based approach to modeling airway diameters that is predicated on the assumption of self-consistency across all levels of the tree. We mathematically formulate this assumption, propose a method to test it and develop a more general model to be used when the assumption is violated. We discuss the effect of measurement error on the estimated models and propose methods that account for it. The methods are illustrated on data from MRI and CT images of silicone casts of two rats, two normal monkeys and one ozone-exposed monkey. Our results showed substantial departures from self-consistency inmore » all five subjects. When departures from selfconsistency exist we do not recommend using the self-consistency model, even as an approximation, as we have shown that it may likely lead to an incorrect representation of the diameter geometry. Measurement error has an important impact on the estimated morphometry models and needs to be accounted for in the analysis.« less

  15. A self-consistency check for unitary propagation of Hawking quanta

    NASA Astrophysics Data System (ADS)

    Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng

    2017-11-01

    The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.

  16. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere under enhanced convection: RCM simulations combined with force-balance magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R. A.

    2010-12-01

    Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere-ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM) to investigate how the earthward penetration of convection electric field, and therefore plasma sheet population, depends on plasma sheet boundary conditions. Outer boundary conditions at r ~20 RE are a function of MLT and interplanetary conditions based on 11 years of Geotail data. In the previous simulations, Tsyganenko 96 magnetic field model (T96) was used so force balance between plasma pressure and magnetic fields was not maintained. We have now integrated the RCM with a magnetic field solver (Liu et al., 2006) to obtain the required force balance in the equatorial plane. We have run the self-consistent simulations under enhanced convection with different boundary conditions in which we kept different parameters (flux tube particle content, plasma pressure, plasma beta, or magnetic fields) at the outer boundary to be MLT-dependent but time independent. Different boundary conditions result in qualitatively similar plasma sheet profiles. The results show that magnetic field has a dawn dusk asymmetry with field lines being more stretched in the pre-midnight sector, due to relatively higher plasma pressure there. The asymmetry in the magnetic fields in turn affects the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. In comparison with results using the T96, plasma transport under self-consistent magnetic field results in proton and electron plasma sheet inner edges that are located in higher latitudes, weaker pressure gradients, and more efficient shielding of the near-Earth convection electric field (since auroral conductance is also confined to higher latitudes). We are currently evaluating the simulated plasma sheet properties by comparing them with statistical results obtained from Geotail and THEMIS observations.

  17. Self-consistent collective coordinate for reaction path and inertial mass

    NASA Astrophysics Data System (ADS)

    Wen, Kai; Nakatsukasa, Takashi

    2016-11-01

    We propose a numerical method to determine the optimal collective reaction path for a nucleus-nucleus collision, based on the adiabatic self-consistent collective coordinate (ASCC) method. We use an iterative method, combining the imaginary-time evolution and the finite amplitude method, for the solution of the ASCC coupled equations. It is applied to the simplest case, α -α scattering. We determine the collective path, the potential, and the inertial mass. The results are compared with other methods, such as the constrained Hartree-Fock method, Inglis's cranking formula, and the adiabatic time-dependent Hartree-Fock (ATDHF) method.

  18. Equilibrium stellar systems with spindle singularities

    NASA Technical Reports Server (NTRS)

    Shapiro, Stuart L.; Teukolsky, Saul A.

    1992-01-01

    Equilibrium sequences of axisymmetric Newtonian clusters that tend toward singular states are constructed. The distribution functions are chosen to be of the form f = f(E, Jz). The numerical method then determines the density and gravitational potential self-consistently to satisfy Poisson's equation. For the prolate models, spindle singularities arise from the depletion of angular momentum near the symmetry axis. While the resulting density enhancement is confined to the region near the axis, the influence of the spindle extends much further out through its tidal gravitational field. Centrally condensed prolate clusters may contain strong-field regions even though the spindle mass is small and the mean cluster eccentricity is not extreme. While the calculations performed here are entirely Newtonian, the issue of singularities is an important topic in general relativity. Equilibrium solutions for relativistic star clusters can provide a testing ground for exploring this issue. The methods used in this paper for building nonspherical clusters can be extended to relativistic systems.

  19. Three dimensional δf simulations of beams in the SSC

    NASA Astrophysics Data System (ADS)

    Koga, J.; Tajima, T.; Machida, S.

    1993-12-01

    A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.

  20. Spatial correlations in driven-dissipative photonic lattices

    NASA Astrophysics Data System (ADS)

    Biondi, Matteo; Lienhard, Saskia; Blatter, Gianni; Türeci, Hakan E.; Schmidt, Sebastian

    2017-12-01

    We study the nonequilibrium steady-state of interacting photons in cavity arrays as described by the driven-dissipative Bose–Hubbard and spin-1/2 XY model. For this purpose, we develop a self-consistent expansion in the inverse coordination number of the array (∼ 1/z) to solve the Lindblad master equation of these systems beyond the mean-field approximation. Our formalism is compared and benchmarked with exact numerical methods for small systems based on an exact diagonalization of the Liouvillian and a recently developed corner-space renormalization technique. We then apply this method to obtain insights beyond mean-field in two particular settings: (i) we show that the gas–liquid transition in the driven-dissipative Bose–Hubbard model is characterized by large density fluctuations and bunched photon statistics. (ii) We study the antibunching–bunching transition of the nearest-neighbor correlator in the driven-dissipative spin-1/2 XY model and provide a simple explanation of this phenomenon.

  1. Complex-envelope alternating-direction-implicit FDTD method for simulating active photonic devices with semiconductor/solid-state media.

    PubMed

    Singh, Gurpreet; Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong

    2012-06-15

    A complex-envelope (CE) alternating-direction-implicit (ADI) finite-difference time-domain (FDTD) approach to treat light-matter interaction self-consistently with electromagnetic field evolution for efficient simulations of active photonic devices is presented for the first time (to our best knowledge). The active medium (AM) is modeled using an efficient multilevel system of carrier rate equations to yield the correct carrier distributions, suitable for modeling semiconductor/solid-state media accurately. To include the AM in the CE-ADI-FDTD method, a first-order differential system involving CE fields in the AM is first set up. The system matrix that includes AM parameters is then split into two time-dependent submatrices that are then used in an efficient ADI splitting formula. The proposed CE-ADI-FDTD approach with AM takes 22% of the time as the approach of the corresponding explicit FDTD, as validated by semiconductor microdisk laser simulations.

  2. What is a photon?

    NASA Astrophysics Data System (ADS)

    Kracklauer, A. F.

    2015-09-01

    The linguistic and epistemological constraints on finding and expressing an answer to the title question are reviewed. First, it is recalled that "fields" are defined in terms of their effect on "test charges" and not in terms of any, even idealistically considered, primary, native innate qualities of their own. Thus, before fields can be discussed, the theorist has to have already available a defined "test particle" and field source. Clearly, neither the test nor the engendering particles can be defined as elements of the considered field without redefining the term "field." Further, the development of a theory as a logical structure (i.e., an internally self consistent conceptual complex) entails that the subject(s) of the theory (the primitive elements) and the rules governing their interrelationships (axioms) cannot be deduced by any logical procedure. They are always hypothesized on the basis of intuition supported by empirical experience. Given hypothesized primitive elements and axioms it is possible, in principle, to test for the 'completion' of the axiom set (i.e., any addition introduces redundancy) and for self consistency. Thus, theory building is limited to establishing the self consistency of a theory's mathematical expression and comparing that with the external, ontic world. Finally, a classical model with an event-by-event simulation of an EPR-B experiment to test a Bell Inequality is described. This model leads to a violation of Bell's limit without any quantum input (no nonlocal interaction nor entanglement), thus substantiating previous critical analysis of the derivation of Bell inequalities. On the basis of this result, it can be concluded that the electromagnetic interaction possesses no preternatural aspects, and that the usual models in terms of waves, fields and photons are all just imaginary constructs with questionable relation to a presumed reality.

  3. Generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures

    NASA Astrophysics Data System (ADS)

    Pan'kov, A. A.

    1997-05-01

    The feasibility of using a generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures has been examined. Using this method, the problem is reduced to solution of simpler special averaged problems for composites with single inclusions and corresponding transition layers in the medium examined. The dimensions of the transition layers are defined by correlation radii of the composite random structure of the composite, while the heterogeneous elastic properties of the transition layers take account of the probabilities for variation of the size and configuration of the inclusions using averaged special indicator functions. Results are given for a numerical calculation of the averaged indicator functions and analysis of the effect of the micropores in the matrix-fiber interface region on the effective elastic properties of unidirectional fiberglass—epoxy using the generalized self-consistent method and compared with experimental data and reported solutions.

  4. The KP hierarchy with self-consistent sources: construction, Wronskian solutions and bilinear identities

    NASA Astrophysics Data System (ADS)

    Lin, Runliang; Liu, Xiaojun; Zeng, Yunbo

    2014-10-01

    In this paper, we will present some of our results on the soliton hierarchy with self-consistent sources (SHSCSs). The Kadomtsev-Petviashvili (KP) hierarchy will be used as an illustrative example to show the method to construct the SHSCSs. Some properties of the KP hierarchy with self-consistent sources will also be given, such as the dressing approach, the Wronskian solutions (including soliton solutions), its bilinear identities and the tau function.

  5. Identifying Events that Impact Self-Efficacy in Physics Learning

    ERIC Educational Resources Information Center

    Sawtelle, Vashti; Brewe, Eric; Goertzen, Renee Michelle; Kramer, Laird H.

    2012-01-01

    We present a method of analyzing the development of self-efficacy in real time using a framework of self-efficacy opportunities (SEOs). Considerable research has shown a connection between self-efficacy, or the confidence in one's own ability to perform a task, and success in science fields. Traditional methods of investigating the development of…

  6. Sign Switch of Gaussian Bending Modulus for Microemulsions: A Self-Consistent Field Analysis Exploring Scale Invariant Curvature Energies

    NASA Astrophysics Data System (ADS)

    Varadharajan, Ramanathan; Leermakers, Frans A. M.

    2018-01-01

    Bending rigidities of tensionless balanced liquid-liquid interfaces as occurring in microemulsions are predicted using self-consistent field theory for molecularly inhomogeneous systems. Considering geometries with scale invariant curvature energies gives unambiguous bending rigidities for systems with fixed chemical potentials: the minimal surface I m 3 m cubic phase is used to find the Gaussian bending rigidity κ ¯, and a torus with Willmore energy W =2 π2 allows for direct evaluation of the mean bending modulus κ . Consistent with this, the spherical droplet gives access to 2 κ +κ ¯. We observe that κ ¯ tends to be negative for strong segregation and positive for weak segregation, a finding which is instrumental for understanding phase transitions from a lamellar to a spongelike microemulsion. Invariably, κ remains positive and increases with increasing strength of segregation.

  7. Optimizing the field distribution of a Halbach type permanent magnet cylinder using the soft iron and superhard magnet

    NASA Astrophysics Data System (ADS)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2018-01-01

    When a conventional Halbach type Hollow Cylindrical Permanent Magnet Array (HCPMA) is used to generate magnetic induction over the magnitude of coercivity μ0Hc, some detrimental parasitic magnetic phenomena, such as the demagnetization, magnetization reversal, and vortexes of magnetization, can appear in the interior of the magnets. We present a self-consistent quantitative analysis of the magnetization and magnetic induction distributions inside the magnetic array by considering the anisotropic and nonlinear magnetization functions of the materials consisting of the array. These numeric simulations reveal novel magnetization structures resulted from the self-field of array. We demonstrate that both the field uniformity and magnetic flux in the pole gap can be modulated by partially substituting the magnets of high energy products with the soft irons and the superhard magnets. We also show how the optimized substitution parameters can be obtained for a HCPMA achieving the best field uniformity or the maximum magnetic flux.

  8. A stochastically forced time delay solar dynamo model: Self-consistent recovery from a maunder-like grand minimum necessitates a mean-field alpha effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Soumitra; Nandy, Dibyendu; Passos, Dário, E-mail: s.hazra@iiserkol.ac.in, E-mail: dariopassos@ist.utl.pt, E-mail: dnandi@iiserkol.ac.in

    Fluctuations in the Sun's magnetic activity, including episodes of grand minima such as the Maunder minimum have important consequences for space and planetary environments. However, the underlying dynamics of such extreme fluctuations remain ill-understood. Here, we use a novel mathematical model based on stochastically forced, non-linear delay differential equations to study solar cycle fluctuations in which time delays capture the physics of magnetic flux transport between spatially segregated dynamo source regions in the solar interior. Using this model, we explicitly demonstrate that the Babcock-Leighton poloidal field source based on dispersal of tilted bipolar sunspot flux, alone, cannot recover the sunspotmore » cycle from a grand minimum. We find that an additional poloidal field source effective on weak fields—e.g., the mean-field α effect driven by helical turbulence—is necessary for self-consistent recovery of the sunspot cycle from grand minima episodes.« less

  9. Self consistent MHD modeling of the solar wind from coronal holes with distinct geometries

    NASA Technical Reports Server (NTRS)

    Stewart, G. A.; Bravo, S.

    1995-01-01

    Utilizing an iterative scheme, a self-consistent axisymmetric MHD model for the solar wind has been developed. We use this model to evaluate the properties of the solar wind issuing from the open polar coronal hole regions of the Sun, during solar minimum. We explore the variation of solar wind parameters across the extent of the hole and we investigate how these variations are affected by the geometry of the hole and the strength of the field at the coronal base.

  10. The concept of coupling impedance in the self-consistent plasma wake field excitation

    NASA Astrophysics Data System (ADS)

    Fedele, R.; Akhter, T.; De Nicola, S.; Migliorati, M.; Marocchino, A.; Massimo, F.; Palumbo, L.

    2016-09-01

    Within the framework of the Vlasov-Maxwell system of equations, we describe the self-consistent interaction of a relativistic charged-particle beam with the surroundings while propagating through a plasma-based acceleration device. This is done in terms of the concept of coupling (longitudinal) impedance in full analogy with the conventional accelerators. It is shown that also here the coupling impedance is a very useful tool for the Nyquist-type stability analysis. Examples of specific physical situations are finally illustrated.

  11. Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Niu, Xiao-Dong; Li, You; Chen, Mu-Feng

    2018-04-01

    Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.

  12. Combining cell-based hydrodynamics with hybrid particle-field simulations: efficient and realistic simulation of structuring dynamics.

    PubMed

    Sevink, G J A; Schmid, F; Kawakatsu, T; Milano, G

    2017-02-22

    We have extended an existing hybrid MD-SCF simulation technique that employs a coarsening step to enhance the computational efficiency of evaluating non-bonded particle interactions. This technique is conceptually equivalent to the single chain in mean-field (SCMF) method in polymer physics, in the sense that non-bonded interactions are derived from the non-ideal chemical potential in self-consistent field (SCF) theory, after a particle-to-field projection. In contrast to SCMF, however, MD-SCF evolves particle coordinates by the usual Newton's equation of motion. Since collisions are seriously affected by the softening of non-bonded interactions that originates from their evaluation at the coarser continuum level, we have devised a way to reinsert the effect of collisions on the structural evolution. Merging MD-SCF with multi-particle collision dynamics (MPCD), we mimic particle collisions at the level of computational cells and at the same time properly account for the momentum transfer that is important for a realistic system evolution. The resulting hybrid MD-SCF/MPCD method was validated for a particular coarse-grained model of phospholipids in aqueous solution, against reference full-particle simulations and the original MD-SCF model. We additionally implemented and tested an alternative and more isotropic finite difference gradient. Our results show that efficiency is improved by merging MD-SCF with MPCD, as properly accounting for hydrodynamic interactions considerably speeds up the phase separation dynamics, with negligible additional computational costs compared to efficient MD-SCF. This new method enables realistic simulations of large-scale systems that are needed to investigate the applications of self-assembled structures of lipids in nanotechnologies.

  13. Fundamental study on the magnetic field control method using multiple HTS coils for Magnetic Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Hirano, R.; Kim, S. B.; Nakagawa, T.; Tomisaka, Y.; Ueda, H.

    2017-07-01

    The magnetic drug delivery system (MDDS) is a key technology to reduce the side effects in the medical applications, and the magnetic force control is very important issue in MDDS. In this application, the strength of magnetic field and gradient required to MDDS devices are 54 mT and 5.5 T/m, respectively. We proposed the new magnetic force control system that consists of the multiple racetrack HTS magnets. We can control the magnetic field gradient along the longitudinal direction by the arrangement of the multiple racetrack HTS magnets and operating current of each magnet. When the racetrack HTS magnets were used, the critical current was reduced by the self-magnetic field. Therefore, the shape design of HTS magnet to reduce the magnet field into the surface of HTS tapes was required. Therefore, the electromagnetic analysis based on finite element method (FEM) was carried out to design and optimize the shape of multiple racetrack HTS magnet. We were able to suppress the reduction of critical current by placing the magnetic substance at upper and lower side of the HTS magnets. It was confirmed that obtained maximum values of magnetic field strength and field gradient were 33 mT and 0.18 T/m, respectively.

  14. Unmasking the masked Universe: the 2M++ catalogue through Bayesian eyes

    NASA Astrophysics Data System (ADS)

    Lavaux, Guilhem; Jasche, Jens

    2016-01-01

    This work describes a full Bayesian analysis of the Nearby Universe as traced by galaxies of the 2M++ survey. The analysis is run in two sequential steps. The first step self-consistently derives the luminosity-dependent galaxy biases, the power spectrum of matter fluctuations and matter density fields within a Gaussian statistic approximation. The second step makes a detailed analysis of the three-dimensional large-scale structures, assuming a fixed bias model and a fixed cosmology. This second step allows for the reconstruction of both the final density field and the initial conditions at z = 1000 assuming a fixed bias model. From these, we derive fields that self-consistently extrapolate the observed large-scale structures. We give two examples of these extrapolation and their utility for the detection of structures: the visibility of the Sloan Great Wall, and the detection and characterization of the Local Void using DIVA, a Lagrangian based technique to classify structures.

  15. First principles approach to the magneto caloric effect: Application to Ni2MnGa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Don M; Odbadrakh, Khorgolkhuu; Rusanu, Aurelian

    2011-01-01

    The magneto-caloric effect (MCE) is a possible route to more efficient heating and cooling of residential and commercial buildings. The search for improved materials is important to the development of a viable MCE based heat pump technology. We have calculated the magnetic structure of a candidate MCE material: Ni2MnGa. The density of magnetic states was calculated with the Wang Landau statistical method utilizing energies fit to those of the locally self-consistent multiple scattering method. The relationships between the density of magnetic states and the field induced adiabatic temperature change and the isothermal entropy change are discussed. (C) 2011 American Institutemore » of Physics.« less

  16. Rapid fabrication of microneedles using magnetorheological drawing lithography.

    PubMed

    Chen, Zhipeng; Ren, Lei; Li, Jiyu; Yao, Lebin; Chen, Yan; Liu, Bin; Jiang, Lelun

    2018-01-01

    Microneedles are micron-sized needles that are widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. In this study, we present a novel magnetorheological drawing lithography (MRDL) method to efficiently fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. With the assistance of an external magnetic field, the 3D structure of a microneedle can be directly drawn from a droplet of curable magnetorheological fluid. The formation process of a microneedle consists of two key stages, elasto-capillary self-thinning and magneto-capillary self-shrinking, which greatly affect the microneedle height and tip radius. Penetration and fracture tests demonstrated that the microneedle had sufficient strength and toughness for skin penetration. Microneedle arrays and a bio-inspired microneedle were also fabricated, which further demonstrated the versatility and flexibility of the MRDL method. Microneedles have been widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. Furthermore, most researchers have focused on the biomedical applications of microneedles but have given little attention to the optimization of the fabrication process. This research presents a novel magnetorheological drawing lithography (MRDL) method to fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. In this proposed technique, a droplet of curable magnetorheological fluid (CMRF) is drawn directly from almost any substrate to produce a 3D microneedle under an external magnetic field. This method not only inherits the advantages of thermal drawing approach without the need for a mask and light irradiation but also eliminates the requirement for drawing temperature adjustment. The MRDL method is extremely simple and can even produce the complex and multiscale structure of bio-inspired microneedle. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Iterative Methods for the Non-LTE Transfer of Polarized Radiation: Resonance Line Polarization in One-dimensional Atmospheres

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, Javier; Manso Sainz, Rafael

    1999-05-01

    This paper shows how to generalize to non-LTE polarization transfer some operator splitting methods that were originally developed for solving unpolarized transfer problems. These are the Jacobi-based accelerated Λ-iteration (ALI) method of Olson, Auer, & Buchler and the iterative schemes based on Gauss-Seidel and successive overrelaxation (SOR) iteration of Trujillo Bueno and Fabiani Bendicho. The theoretical framework chosen for the formulation of polarization transfer problems is the quantum electrodynamics (QED) theory of Landi Degl'Innocenti, which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. This first paper establishes the grounds of our numerical approach to non-LTE polarization transfer by concentrating on the standard case of scattering line polarization in a gas of two-level atoms, including the Hanle effect due to a weak microturbulent and isotropic magnetic field. We begin demonstrating that the well-known Λ-iteration method leads to the self-consistent solution of this type of problem if one initializes using the ``exact'' solution corresponding to the unpolarized case. We show then how the above-mentioned splitting methods can be easily derived from this simple Λ-iteration scheme. We show that our SOR method is 10 times faster than the Jacobi-based ALI method, while our implementation of the Gauss-Seidel method is 4 times faster. These iterative schemes lead to the self-consistent solution independently of the chosen initialization. The convergence rate of these iterative methods is very high; they do not require either the construction or the inversion of any matrix, and the computing time per iteration is similar to that of the Λ-iteration method.

  18. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins.

    PubMed

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-05

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  19. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-01

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  20. Neutrality and evolvability of designed protein sequences

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Arnab; Biswas, Parbati

    2010-07-01

    The effect of foldability on protein’s evolvability is analyzed by a two-prong approach consisting of a self-consistent mean-field theory and Monte Carlo simulations. Theory and simulation models representing protein sequences with binary patterning of amino acid residues compatible with a particular foldability criteria are used. This generalized foldability criterion is derived using the high temperature cumulant expansion approximating the free energy of folding. The effect of cumulative point mutations on these designed proteins is studied under neutral condition. The robustness, protein’s ability to tolerate random point mutations is determined with a selective pressure of stability (ΔΔG) for the theory designed sequences, which are found to be more robust than that of Monte Carlo and mean-field-biased Monte Carlo generated sequences. The results show that this foldability criterion selects viable protein sequences more effectively compared to the Monte Carlo method, which has a marked effect on how the selective pressure shapes the evolutionary sequence space. These observations may impact de novo sequence design and its applications in protein engineering.

  1. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor

    PubMed Central

    Lee, KyeoReh; Park, YongKeun

    2016-01-01

    The word ‘holography' means a drawing that contains all of the information for light—both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor. PMID:27796290

  2. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor.

    PubMed

    Lee, KyeoReh; Park, YongKeun

    2016-10-31

    The word 'holography' means a drawing that contains all of the information for light-both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor.

  3. Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

    NASA Astrophysics Data System (ADS)

    Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-03-01

    Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.

  4. Student Self-Reported Learning Outcomes of Field Trips: The Pedagogical Impact

    ERIC Educational Resources Information Center

    Alon, Nirit Lavie; Tal, Tali

    2015-01-01

    In this study, we used the classification and regression trees (CART) method to draw relationships between student self-reported learning outcomes in 26 field trips to natural environments and various characteristics of the field trip that include variables associated with preparation and pedagogy. We wished to examine the extent to which the…

  5. Self-consistent description of a system of interacting phonons

    NASA Astrophysics Data System (ADS)

    Poluektov, Yu. M.

    2015-11-01

    A proposal for a method of self-consistent description of phonon systems. This method generalizes the Debye model to account for phonon-phonon interaction. The idea of "self-consistent" phonons is introduced; their speed depends on the temperature and is determined by solving a non-linear equation. The Debye energy is also a function of the temperature within the framework of the proposed approach. The thermodynamics of "self-consistent" phonon gas are built. It is shown that at low temperatures the cubic law temperature dependence of specific heat acquires an additional term that is proportional to the seventh power of the temperature. This seems to explain the reason why the cubic law for specific heat is observed only at relatively low temperatures. At high temperatures, the theory predicts a linear deviation with respect to temperature from the Dulong-Petit law, which is observed experimentally. A modification to the melting criteria is considered, to account for the phonon-phonon interaction.

  6. Effect of tail plasma sheet conditions on the penetration of the convection electric field in the inner magnetosphere: RCM simulations with self-consistent magnetic field

    NASA Astrophysics Data System (ADS)

    Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R.

    2009-12-01

    Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM), using the Tsyganenko 96 magnetic field model, to investigate how the earthward penetration of electric field depends on plasma sheet conditions. Outer proton and electron sources at r ~20 RE, are based on 11 years of Geotail data, and realistically represent the mixture of cold and hot plasma sheet population as a function of MLT and interplanetary conditions. We found that shielding of the inner magnetosphere electric field is more efficient for a colder and denser plasma sheet, which is found following northward IMF, than for the hotter and more tenuous plasma sheet found following southward IMF. Our simulation results so far indicate further earthward penetration of plasma sheet particles in response to enhanced convection if the preceding IMF is southward, which leads to weaker electric field shielding. Recently we have integrated the RCM with a magnetic field solver to obtain magnetic fields that are in force balance with given plasma pressures in the equatorial plane. We expect the self-consistent magnetic field to have a pronounced dawn dusk asymmetry due to the asymmetric inner magnetospheric pressure. This should affect the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. We are currently using this force-balanced and self-consistent model with our realistic boundary conditions to evaluate the dependence of the shielding timescale on pre-existing plasma sheet number density and temperature and to more quantitatively determine the correlation between the plasma sheet conditions and spatial distribution of the penetrating particles. Our results are potentially crucial to understanding the contribution of plasma sheet penetration to the development of the storm-time ring current.

  7. Dust particle radial confinement in a dc glow discharge.

    PubMed

    Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E

    2013-01-01

    A self-consistent nonlocal model of the positive column of a dc glow discharge with dust particles is presented. Radial distributions of plasma parameters and the dust component in an axially homogeneous glow discharge are considered. The model is based on the solution of a nonlocal Boltzmann equation for the electron energy distribution function, drift-diffusion equations for ions, and the Poisson equation for a self-consistent electric field. The radial distribution of dust particle density in a dust cloud was fixed as a given steplike function or was chosen according to an equilibrium Boltzmann distribution. The balance of electron and ion production in argon ionization by an electron impact and their losses on the dust particle surface and on the discharge tube walls is taken into account. The interrelation of discharge plasma and the dust cloud is studied in a self-consistent way, and the radial distributions of the discharge plasma and dust particle parameters are obtained. It is shown that the influence of the dust cloud on the discharge plasma has a nonlocal behavior, e.g., density and charge distributions in the dust cloud substantially depend on the plasma parameters outside the dust cloud. As a result of a self-consistent evolution of plasma parameters to equilibrium steady-state conditions, ionization and recombination rates become equal to each other, electron and ion radial fluxes become equal to zero, and the radial component of electric field is expelled from the dust cloud.

  8. Band-edge positions in G W : Effects of starting point and self-consistency

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Pasquarello, Alfredo

    2014-10-01

    We study the effect of starting point and self-consistency within G W on the band-edge positions of semiconductors and insulators. Compared to calculations based on a semilocal starting point, the use of a hybrid-functional starting point shows a larger quasiparticle correction for both band-edge states. When the self-consistent treatment is employed, the band-gap opening is found to result mostly from a shift of the valence-band edge. Within the non-self-consistent methods, we analyse the performance of empirical and nonempirical schemes in which the starting point is optimally tuned. We further assess the accuracy of the band-edge positions through the calculation of ionization potentials of surfaces. The ionization potentials for most systems are reasonably well described by one-shot calculations. However, in the case of TiO2, we find that the use of self-consistency is critical to obtain a good agreement with experiment.

  9. Effects of a parallel electric field and the geomagnetic field in the topside ionosphere on auroral and photoelectron energy distributions

    NASA Technical Reports Server (NTRS)

    Min, Q.-L.; Lummerzheim, D.; Rees, M. H.; Stamnes, K.

    1993-01-01

    The consequences of electric field acceleration and an inhomogeneous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one-dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogeneous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of O(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function is investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogeneous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.

  10. Effects of a Parallel Electric Field and the Geomagnetic Field in the Topside Ionosphere on Auroral and Photoelectron Energy Distributions

    NASA Technical Reports Server (NTRS)

    Min, Q.-L.; Lummerzheim, D.; Rees, M. H.; Stamnes, K.

    1993-01-01

    The consequences of electric field acceleration and an inhomogencous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one- dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogencous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of 0(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function in investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogencous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.

  11. Fireball as the result of self-organization of an ensemble of diamagnetic electron-ion nanoparticles in molecular gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopasov, V. P., E-mail: lopas@iao.ru

    The conditions for dissipative self-organization of a fireball (FB) is a molecular gas by means of a regular correction of an elastic collision of water and nitrogen molecules by the field of a coherent bi-harmonic light wave (BLW) are presented. The BWL field is generated due to conversion of energy of a linear lightning discharge into light energy. A FB consists of two components: an ensemble of optically active diamagnetic electron-ion nanoparticles and a standing wave of elliptical polarization (SWEP). It is shown that the FB lifetime depends on the energies accumulated by nanoparticles and the SWEP field and onmore » the stability of self-oscillations of the energy between nanoparticles and SWEP.« less

  12. Orbitals, Occupation Numbers, and Band Structure of Short One-Dimensional Cadmium Telluride Polymers.

    PubMed

    Valentine, Andrew J S; Talapin, Dmitri V; Mazziotti, David A

    2017-04-27

    Recent work found that soldering CdTe quantum dots together with a molecular CdTe polymer yielded field-effect transistors with much greater electron mobility than quantum dots alone. We present a computational study of the CdTe polymer using the active-space variational two-electron reduced density matrix (2-RDM) method. While analogous complete active-space self-consistent field (CASSCF) methods scale exponentially with the number of active orbitals, the active-space variational 2-RDM method exhibits polynomial scaling. A CASSCF calculation using the (48o,64e) active space studied in this paper requires 10 24 determinants and is therefore intractable, while the variational 2-RDM method in the same active space requires only 2.1 × 10 7 variables. Natural orbitals, natural-orbital occupations, charge gaps, and Mulliken charges are reported as a function of polymer length. The polymer, we find, is strongly correlated, despite possessing a simple sp 3 -hybridized bonding scheme. Calculations reveal the formation of a nearly saturated valence band as the polymer grows and a charge gap that decreases sharply with polymer length.

  13. Evolution of magnetic field and atmospheric response. I - Three-dimensional formulation by the method of projected characteristics. II - Formulation of proper boundary equations. [stellar magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y.

    1981-01-01

    The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.

  14. Temperature compensated and self-calibrated current sensor using reference magnetic field

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-10-09

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference magnetic field generated within the current sensor housing is detected by the magnetic field sensors and is used to correct variations in the output signal due to temperature variations and aging.

  15. A Monte Carlo modeling on charging effect for structures with arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Li, C.; Mao, S. F.; Zou, Y. B.; Li, Yong Gang; Zhang, P.; Li, H. M.; Ding, Z. J.

    2018-04-01

    Insulating materials usually suffer charging effects when irradiated by charged particles. In this paper, we present a Monte Carlo study on the charging effect caused by electron beam irradiation for sample structures with any complex geometry. When transporting in an insulating solid, electrons encounter elastic and inelastic scattering events; the Mott cross section and a Lorentz-type dielectric function are respectively employed to describe such scatterings. In addition, the band gap and the electron–long optical phonon interaction are taken into account. The electronic excitation in inelastic scattering causes generation of electron–hole pairs; these negative and positive charges establish an inner electric field, which in turn induces the drift of charges to be trapped by impurities, defects, vacancies etc in the solid, where the distributions of trapping sites are assumed to have uniform density. Under charging conditions, the inner electric field distorts electron trajectories, and the surface electric potential dynamically alters secondary electron emission. We present, in this work, an iterative modeling method for a self-consistent calculation of electric potential; the method has advantages in treating any structure with arbitrary complex geometry, in comparison with the image charge method—which is limited to a quite simple boundary geometry. Our modeling is based on: the combination of the finite triangle mesh method for an arbitrary geometry construction; a self-consistent method for the spatial potential calculation; and a full dynamic description for the motion of deposited charges. Example calculations have been done to simulate secondary electron yield of SiO2 for a semi-infinite solid, the charging for a heterostructure of SiO2 film grown on an Au substrate, and SEM imaging of a SiO2 line structure with rough surfaces and SiO2 nanoparticles with irregular shapes. The simulations have explored interesting interlaced charge layer distribution underneath the nanoparticle surface and the mechanism by which it is produced.

  16. Magnetic anisotropy of dysprosium(III) in a low-symmetry environment: a theoretical and experimental investigation.

    PubMed

    Bernot, Kevin; Luzon, Javier; Bogani, Lapo; Etienne, Mael; Sangregorio, Claudio; Shanmugam, Muralidharan; Caneschi, Andrea; Sessoli, Roberta; Gatteschi, Dante

    2009-04-22

    A mixed theoretical and experimental approach was used to determine the local magnetic anisotropy of the dysprosium(III) ion in a low-symmetry environment. The susceptibility tensor of the monomeric species having the formula [Dy(hfac)(3)(NIT-C(6)H(4)-OEt)(2)], which contains nitronyl nitroxide (NIT-R) radicals, was determined at various temperatures through angle-resolved magnetometry. These results are in agreement with ab initio calculations performed using the complete active space self-consistent field (CASSCF) method, validating the predictive power of this theoretical approach for complex systems containing rare-earth ions, even in low-symmetry environments. Susceptibility measurements performed with the applied field along the easy axis eventually permitted a detailed analysis of the temperature and field dependence of the magnetization, providing evidence that the Dy ion transmits an antiferromagnetic interaction between radicals but that the Dy-radical interaction is ferromagnetic.

  17. A 2D electrostatic PIC code for the Mark III Hypercube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraro, R.D.; Liewer, P.C.; Decyk, V.K.

    We have implemented a 2D electrostastic plasma particle in cell (PIC) simulation code on the Caltech/JPL Mark IIIfp Hypercube. The code simulates plasma effects by evolving in time the trajectories of thousands to millions of charged particles subject to their self-consistent fields. Each particle`s position and velocity is advanced in time using a leap frog method for integrating Newton`s equations of motion in electric and magnetic fields. The electric field due to these moving charged particles is calculated on a spatial grid at each time by solving Poisson`s equation in Fourier space. These two tasks represent the largest part ofmore » the computation. To obtain efficient operation on a distributed memory parallel computer, we are using the General Concurrent PIC (GCPIC) algorithm previously developed for a 1D parallel PIC code.« less

  18. Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering

    PubMed Central

    2015-01-01

    The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strengths of the bias potential exploiting the tunability of well-tempered metadynamics. Using this method, free-energy barriers of individual collective variables are significantly reduced compared with simple force-field scaling. The introduced methodology is flexible and allows adaptive bias potentials to be self-consistently constructed for a large number of simple collective variables, such as distances and dihedral angles. The method is tested on alanine dipeptide and applied to the difficult problem of conformational sampling in a tetranucleotide. PMID:25838811

  19. Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars

    NASA Astrophysics Data System (ADS)

    Warnecke, J.; Rheinhardt, M.; Tuomisto, S.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.

    2018-01-01

    Aims: We investigate dynamo action in global compressible solar-like convective dynamos in the framework of mean-field theory. Methods: We simulate a solar-type star in a wedge-shaped spherical shell, where the interplay between convection and rotation self-consistently drives a large-scale dynamo. To analyze the dynamo mechanism we apply the test-field method for azimuthally (φ) averaged fields to determine the 27 turbulent transport coefficients of the electromotive force, of which six are related to the α tensor. This method has previously been used either in simulations in Cartesian coordinates or in the geodynamo context and is applied here for the first time to fully compressible simulations of solar-like dynamos. Results: We find that the φφ-component of the α tensor does not follow the profile expected from that of kinetic helicity. The turbulent pumping velocities significantly alter the effective mean flows acting on the magnetic field and therefore challenge the flux transport dynamo concept. All coefficients are significantly affected by dynamically important magnetic fields. Quenching as well as enhancement are being observed. This leads to a modulation of the coefficients with the activity cycle. The temporal variations are found to be comparable to the time-averaged values and seem to be responsible for a nonlinear feedback on the magnetic field generation. Furthermore, we quantify the validity of the Parker-Yoshimura rule for the equatorward propagation of the mean magnetic field in the present case.

  20. On the bonding mechanism of CO to Pt(111) and its effect on the vibrational frequency of chemisorbed CO

    NASA Astrophysics Data System (ADS)

    Illas, F.; Zurita, S.; Márquez, A. M.; Rubio, J.

    1997-04-01

    The chemisorption of CO on the atop site of Pt(111) has been simulated by a Pt4 cluster model. Ab initio self consistent field (SCF) and complete active space self consistent field (CASSCF) cluster model wave functions have been obtained for the electronic ground state. Likewise, ab initio SCF wavefunctions have been obtained for two other electronic states. The optimum geometry and vibrational frequencies of chemisorbed CO are reported for the three states. The interaction energy and vibrational shift of chemisorbed CO, with respect to free gas phase CO, have been analyzed for the three electronic states. This analysis is carried out by means of the constrained space orbital variation (CSOV) method. In all cases the bond is found to be dominated by σ donation and π back-donation, known as Blyholder's mechanism. This mechanism is further supported by SCF calculations on a larger, Pt13, cluster model. For both clusters, the CSOV analysis of the vibrational frequency definitely shows that, contrary to previous recent studies, a major contribution to the experimentally observed vibrational shift comes from the π back-donation mechanism. However, we found that, contrary to common belief, σ donation also acts to lower the CO frequency and not to increase it. Physical reasons for such unexpected behaviour are given.

  1. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albaugh, Alex; Demerdash, Omar; Head-Gordon, Teresa, E-mail: thg@berkeley.edu

    2015-11-07

    We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the coursemore » of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well.« less

  2. A complete active space valence bond method with nonorthogonal orbitals

    NASA Astrophysics Data System (ADS)

    Hirao, Kimihiko; Nakano, Haruyuki; Nakayama, Kenichi

    1997-12-01

    A complete active space self-consistent field (SCF) wave function is transformed into a valence bond type representation built from nonorthogonal orbitals, each strongly localized on a single atom. Nonorthogonal complete active space SCF orbitals are constructed by Ruedenberg's projected localization procedure so that they have maximal overlaps with the corresponding minimum basis set of atomic orbitals of the free-atoms. The valence bond structures which are composed of such nonorthogonal quasiatomic orbitals constitute the wave function closest to the concept of the oldest and most simple valence bond method. The method is applied to benzene, butadiene, hydrogen, and methane molecules and compared to the previously proposed complete active space valence bond approach with orthogonal orbitals. The results demonstrate the validity of the method as a powerful tool for describing the electronic structure of various molecules.

  3. A third-generation density-functional-theory-based method for calculating canonical molecular orbitals of large molecules.

    PubMed

    Hirano, Toshiyuki; Sato, Fumitoshi

    2014-07-28

    We used grid-free modified Cholesky decomposition (CD) to develop a density-functional-theory (DFT)-based method for calculating the canonical molecular orbitals (CMOs) of large molecules. Our method can be used to calculate standard CMOs, analytically compute exchange-correlation terms, and maximise the capacity of next-generation supercomputers. Cholesky vectors were first analytically downscaled using low-rank pivoted CD and CD with adaptive metric (CDAM). The obtained Cholesky vectors were distributed and stored on each computer node in a parallel computer, and the Coulomb, Fock exchange, and pure exchange-correlation terms were calculated by multiplying the Cholesky vectors without evaluating molecular integrals in self-consistent field iterations. Our method enables DFT and massively distributed memory parallel computers to be used in order to very efficiently calculate the CMOs of large molecules.

  4. Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: Calculation and application

    NASA Astrophysics Data System (ADS)

    Luo, Yao; Wu, Mei-Ping; Wang, Ping; Duan, Shu-Ling; Liu, Hao-Jun; Wang, Jin-Long; An, Zhan-Feng

    2015-09-01

    The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.

  5. Global Futures: a multithreaded execution model for Global Arrays-based applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavarría-Miranda, Daniel; Krishnamoorthy, Sriram; Vishnu, Abhinav

    2012-05-31

    We present Global Futures (GF), an execution model extension to Global Arrays, which is based on a PGAS-compatible Active Message-based paradigm. We describe the design and implementation of Global Futures and illustrate its use in a computational chemistry application benchmark (Hartree-Fock matrix construction using the Self-Consistent Field method). Our results show how we used GF to increase the scalability of the Hartree-Fock matrix build to up to 6,144 cores of an Infiniband cluster. We also show how GF's multithreaded execution has comparable performance to the traditional process-based SPMD model.

  6. Theory of Thomson scattering in inhomogeneous plasmas

    NASA Astrophysics Data System (ADS)

    Belyi, V. V.

    2018-05-01

    A self-consistent kinetic theory of Thomson scattering of an electromagnetic field by a nonuniform plasma is derived. We show that not only the imaginary part, but also the time and space derivatives of the real part of the dielectric susceptibility determine the amplitude and the width of the Thomson scattering spectral lines. As a result of inhomogeneity, these properties become asymmetric with respect to inversion of the sign of the frequency. Our theory provides a method of a remote probing and measurement of electron density gradients in plasma; this is based on the demonstrated asymmetry of the Thomson scattering lines.

  7. Anharmonic frequencies of CX2Y2 (X, Y = O, N, F, H, D) isomers and related systems obtained from vibrational multiconfiguration self-consistent field theory.

    PubMed

    Pfeiffer, Florian; Rauhut, Guntram

    2011-10-13

    Accurate anharmonic frequencies are provided for molecules of current research, i.e., diazirines, diazomethane, the corresponding fluorinated and deuterated compounds, their dioxygen analogs, and others. Vibrational-state energies were obtained from state-specific vibrational multiconfiguration self-consistent field theory (VMCSCF) based on multilevel potential energy surfaces (PES) generated from explicitly correlated coupled cluster, CCSD(T)-F12a, and double-hybrid density functional calculations, B2PLYP. To accelerate the vibrational structure calculations, a configuration selection scheme as well as a polynomial representation of the PES have been exploited. Because experimental data are scarce for these systems, many calculated frequencies of this study are predictions and may guide experiments to come.

  8. The Landau-de Gennes approach revisited: A minimal self-consistent microscopic theory for spatially inhomogeneous nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Gârlea, Ioana C.; Mulder, Bela M.

    2017-12-01

    We design a novel microscopic mean-field theory of inhomogeneous nematic liquid crystals formulated entirely in terms of the tensor order parameter field. It combines the virtues of the Landau-de Gennes approach in allowing both the direction and magnitude of the local order to vary, with a self-consistent treatment of the local free-energy valid beyond the small order parameter limit. As a proof of principle, we apply this theory to the well-studied problem of a colloid dispersed in a nematic liquid crystal by including a tunable wall coupling term. For the two-dimensional case, we investigate the organization of the liquid crystal and the position of the point defects as a function of the strength of the coupling constant.

  9. Application of discrete solvent reaction field model with self-consistent atomic charges and atomic polarizabilities to calculate the χ(1) and χ(2) of organic molecular crystals

    NASA Astrophysics Data System (ADS)

    Lu, Shih-I.

    2018-01-01

    We use the discrete solvent reaction field model to evaluate the linear and second-order nonlinear optical susceptibilities of 3-methyl-4-nitropyridine-1-oxyde crystal. In this approach, crystal environment is created by supercell architecture. A self-consistent procedure is used to obtain charges and polarizabilities for environmental atoms. Impact of atomic polarizabilities on the properties of interest is highlighted. This approach is shown to give the second-order nonlinear optical susceptibilities within error bar of experiment as well as the linear optical susceptibilities in the same order as experiment. Similar quality of calculations are also applied to both 4-N,N-dimethylamino-3-acetamidonitrobenzene and 2-methyl-4-nitroaniline crystals.

  10. A Sparse Self-Consistent Field Algorithm and Its Parallel Implementation: Application to Density-Functional-Based Tight Binding.

    PubMed

    Scemama, Anthony; Renon, Nicolas; Rapacioli, Mathias

    2014-06-10

    We present an algorithm and its parallel implementation for solving a self-consistent problem as encountered in Hartree-Fock or density functional theory. The algorithm takes advantage of the sparsity of matrices through the use of local molecular orbitals. The implementation allows one to exploit efficiently modern symmetric multiprocessing (SMP) computer architectures. As a first application, the algorithm is used within the density-functional-based tight binding method, for which most of the computational time is spent in the linear algebra routines (diagonalization of the Fock/Kohn-Sham matrix). We show that with this algorithm (i) single point calculations on very large systems (millions of atoms) can be performed on large SMP machines, (ii) calculations involving intermediate size systems (1000-100 000 atoms) are also strongly accelerated and can run efficiently on standard servers, and (iii) the error on the total energy due to the use of a cutoff in the molecular orbital coefficients can be controlled such that it remains smaller than the SCF convergence criterion.

  11. Spin torque oscillator for microwave assisted magnetization reversal

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro; Kubota, Hitoshi

    2018-05-01

    A theoretical study is given for the self-oscillation excited in a spin torque oscillator (STO) consisting of an in-plane magnetized free layer and a perpendicularly magnetized pinned layer in the presence of a perpendicular magnetic field. This type of STO is a potential candidate for a microwave source of microwave assisted magnetization reversal (MAMR). It is, however, found that the self-oscillation applicable to MAMR disappears when the perpendicular field is larger than a critical value, which is much smaller than a demagnetization field. This result provides a condition that the reversal field of a magnetic recording bit by MAMR in nanopillar structure should be smaller than the critical value. The analytical formulas of currents determining the critical field are obtained, which indicate that a material with a small damping is not preferable to acheive a wide range of the self-oscillation applicable to MAMR, although such a material is preferable from the viewpoint of the reduction of the power consumption.

  12. Self-consistent field theory and numerical scheme for calculating the phase diagram of wormlike diblock copolymers

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Chen, Jeff Z. Y.

    2013-10-01

    This paper concerns establishing a theoretical basis and numerical scheme for studying the phase behavior of AB diblock copolymers made of wormlike chains. The general idea of a self-consistent field theory is the combination of the mean-field approach together with a statistical weight that describes the configurational properties of a polymer chain. In recent years, this approach has been extensively used for structural prediction of block copolymers, based on the Gaussian-model description of a polymer chain. The wormlike-chain model has played an important role in the description of polymer systems, covering the semiflexible-to-rod crossover of the polymer properties and the highly stretching regime, which the Gaussian-chain model has difficulties to describe. Although the idea of developing a self-consistent field theory for wormlike chains could be traced back to early development in polymer physics, the solution of such a theory has been limited due to technical difficulties. In particular, a challenge has been to develop a numerical algorithm enabling the calculation of the phase diagram containing three-dimensional structures for wormlike AB diblock copolymers. This paper describes a computational algorithm that combines a number of numerical tricks, which can be used for such a calculation. A phase diagram covering major parameter areas was constructed for the wormlike-chain system and reported by us, where the ratio between the total length and the persistence length of a constituent polymer is suggested as another tuning parameter for the microphase-separated structures; all detailed technical issues are carefully addressed in the current paper.

  13. Performance of local orbital basis sets in the self-consistent Sternheimer method for dielectric matrices of extended systems

    NASA Astrophysics Data System (ADS)

    Hübener, H.; Pérez-Osorio, M. A.; Ordejón, P.; Giustino, F.

    2012-09-01

    We present a systematic study of the performance of numerical pseudo-atomic orbital basis sets in the calculation of dielectric matrices of extended systems using the self-consistent Sternheimer approach of [F. Giustino et al., Phys. Rev. B 81, 115105 (2010)]. In order to cover a range of systems, from more insulating to more metallic character, we discuss results for the three semiconductors diamond, silicon, and germanium. Dielectric matrices of silicon and diamond calculated using our method fall within 1% of reference planewaves calculations, demonstrating that this method is promising. We find that polarization orbitals are critical for achieving good agreement with planewaves calculations, and that only a few additional ζ's are required for obtaining converged results, provided the split norm is properly optimized. Our present work establishes the validity of local orbital basis sets and the self-consistent Sternheimer approach for the calculation of dielectric matrices in extended systems, and prepares the ground for future studies of electronic excitations using these methods.

  14. Data selection techniques in the interpretation of MAGSAT data over Australia

    NASA Technical Reports Server (NTRS)

    Johnson, B. D.; Dampney, C. N. G.

    1983-01-01

    The MAGSAT data require critical selection in order to produce a self-consistent data set suitable for map construction and subsequent interpretation. Interactive data selection techniques are described which involve the use of a special-purpose profile-oriented data base and a colour graphics display. The careful application of these data selection techniques permits validation every data value and ensures that the best possible self-consistent data set is being used to construct the maps of the magnetic field measured at satellite altitudes over Australia.

  15. Development of a Self-Efficacy Scale toward Piano Lessons

    ERIC Educational Resources Information Center

    Kurtuldu, M. Kayhan; Bulut, Damla

    2017-01-01

    This study aimed to develop a valid and reliable scale to determine students' levels of self-efficacy toward piano lessons. The sample consisted of 456 university-level piano students enrolled in Music Education programs. Experts in language and the field of music were consulted to establish content validity of the items included in the scalar…

  16. Analysis of Social Problem Solving and Social Self-Efficacy in Prospective Teachers

    ERIC Educational Resources Information Center

    Erozkan, Atilgan

    2014-01-01

    The purpose of this study is to investigate the relationship between social problem solving and social selfefficacy and the predictive role of social problem solving skills with social self-efficacy. The sample consists of 706 prospective teachers (362 female and 344 male) who are majoring in different fields at Mugla Sitki Kocman University's…

  17. Self-Esteem and Method Effects Associated with Negatively Worded Items: Investigating Factorial Invariance by Sex

    ERIC Educational Resources Information Center

    DiStefano, Christine; Motl, Robert W.

    2009-01-01

    The Rosenberg Self-Esteem scale (RSE) has been widely used in examinations of sex differences in global self-esteem. However, previous examinations of sex differences have not accounted for method effects associated with item wording, which have consistently been reported by researchers using the RSE. Accordingly, this study examined the…

  18. Nonequilibrium evolution of scalar fields in FRW cosmologies

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.; de Vega, H. J.; Holman, R.

    1994-03-01

    We derive the effective equations for the out of equilibrium time evolution of the order parameter and the fluctuations of a scalar field theory in spatially flat FRW cosmologies. The calculation is performed both to one loop and in a nonperturbative, self-consistent Hartree approximation. The method consists of evolving an initial functional thermal density matrix in time and is suitable for studying phase transitions out of equilibrium. The renormalization aspects are studied in detail and we find that the counterterms depend on the initial state. We investigate the high temperature expansion and show that it breaks down at long times. We also obtain the time evolution of the initial Boltzmann distribution functions, and argue that to one-loop order or in the Hartree approximation the time evolved state is a ``squeezed'' state. We illustrate the departure from thermal equilibrium by numerically studying the case of a free massive scalar field in de Sitter and radiation-dominated cosmologies. It is found that a suitably defined nonequilibrium entropy per mode increases linearly with comoving time in a de Sitter cosmology, whereas it is not a monotonically increasing function in the radiation-dominated case.

  19. Some aspects of self-consistent higher-order interactions

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hideo

    2018-05-01

    After a brief review of the formalism of the self-consistent higher-order interactions, applications of a ([Q 3 Q 3](2) · Q 2) type of three-body interaction to the quadrupole moment of the 3‑ state in 208Pb and the energy splitting of the septuplet of states (h 9/23‑)I with I = 3/2, 5/2, …, 15/2 in 209Bi are discussed. It is shown that if the contribution of the three-body interaction is included, the theoretical value of the Qel (3‑) moment becomes rather small compared to the experiment, but the observed small energy splitting of the septuplet can essentially be understood within the particle-vibration coupling model. Roles of non-linear field couplings provided by the self-consistent higher-order interactions are also discussed.

  20. Enhancing Photoresponsivity of Self-Aligned MoS2 Field-Effect Transistors by Piezo-Phototronic Effect from GaN Nanowires.

    PubMed

    Liu, Xingqiang; Yang, Xiaonian; Gao, Guoyun; Yang, Zhenyu; Liu, Haitao; Li, Qiang; Lou, Zheng; Shen, Guozhen; Liao, Lei; Pan, Caofeng; Lin Wang, Zhong

    2016-08-23

    We report high-performance self-aligned MoS2 field-effect transistors (FETs) with enhanced photoresponsivity by the piezo-phototronic effect. The FETs are fabricated based on monolayer MoS2 with a piezoelectric GaN nanowire (NW) as the local gate, and a self-aligned process is employed to define the source/drain electrodes. The fabrication method allows the preservation of the intrinsic property of MoS2 and suppresses the scattering center density in the MoS2/GaN interface, which results in high electrical and photoelectric performances. MoS2 FETs with channel lengths of ∼200 nm have been fabricated with a small subthreshold slope of 64 mV/dec. The photoresponsivity is 443.3 A·W(-1), with a fast response and recovery time of ∼5 ms under 550 nm light illumination. When strain is introduced into the GaN NW, the photoresponsivity is further enhanced to 734.5 A·W(-1) and maintains consistent response and recovery time, which is comparable with that of the mechanical exfoliation of MoS2 transistors. The approach presented here opens an avenue to high-performance top-gated piezo-enhanced MoS2 photodetectors.

  1. Data-driven automated acoustic analysis of human infant vocalizations using neural network tools.

    PubMed

    Warlaumont, Anne S; Oller, D Kimbrough; Buder, Eugene H; Dale, Rick; Kozma, Robert

    2010-04-01

    Acoustic analysis of infant vocalizations has typically employed traditional acoustic measures drawn from adult speech acoustics, such as f(0), duration, formant frequencies, amplitude, and pitch perturbation. Here an alternative and complementary method is proposed in which data-derived spectrographic features are central. 1-s-long spectrograms of vocalizations produced by six infants recorded longitudinally between ages 3 and 11 months are analyzed using a neural network consisting of a self-organizing map and a single-layer perceptron. The self-organizing map acquires a set of holistic, data-derived spectrographic receptive fields. The single-layer perceptron receives self-organizing map activations as input and is trained to classify utterances into prelinguistic phonatory categories (squeal, vocant, or growl), identify the ages at which they were produced, and identify the individuals who produced them. Classification performance was significantly better than chance for all three classification tasks. Performance is compared to another popular architecture, the fully supervised multilayer perceptron. In addition, the network's weights and patterns of activation are explored from several angles, for example, through traditional acoustic measurements of the network's receptive fields. Results support the use of this and related tools for deriving holistic acoustic features directly from infant vocalization data and for the automatic classification of infant vocalizations.

  2. Nonadiabatic Ab Initio Molecular Dynamics with the Floating Occupation Molecular Orbital-Complete Active Space Configuration Interaction Method [Non-Adiabatic Ab Initio Molecular Dynamics with Floating Occupation Molecular Orbitals CASCI Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollas, Daniel; Sistik, Lukas; Hohenstein, Edward G.

    Here, we show that the floating occupation molecular orbital complete active space configuration interaction (FOMO-CASCI) method is a promising alternative to the widely used complete active space self-consistent field (CASSCF) method in direct nonadiabatic dynamics simulations. We have simulated photodynamics of three archetypal molecules in photodynamics: ethylene, methaniminium cation, and malonaldehyde. We compared the time evolution of electronic populations and reaction mechanisms as revealed by the FOMO-CASCI and CASSCF approaches. Generally, the two approaches provide similar results. Some dynamical differences are observed, but these can be traced back to energetically minor differences in the potential energy surfaces. We suggest thatmore » the FOMO-CASCI method represents, due to its efficiency and stability, a promising approach for direct ab initio dynamics in the excited state.« less

  3. Complete active space configuration interaction from state-averaged configuration interaction singles natural orbitals: Analytic first derivatives and derivative coupling vectors

    NASA Astrophysics Data System (ADS)

    Fales, B. Scott; Shu, Yinan; Levine, Benjamin G.; Hohenstein, Edward G.

    2017-09-01

    A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.

  4. Complete active space configuration interaction from state-averaged configuration interaction singles natural orbitals: Analytic first derivatives and derivative coupling vectors.

    PubMed

    Fales, B Scott; Shu, Yinan; Levine, Benjamin G; Hohenstein, Edward G

    2017-09-07

    A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.

  5. The Force-Free Magnetosphere of a Rotating Black Hole

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Kazanas, Demosthenes; Papadopoulos, Demetrios B.

    2013-01-01

    We revisit the Blandford-Znajek process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity and the poloidal electric current. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem: the inner "light surface" located inside the ergosphere and the outer "light surface" which is the generalization of the pulsar light cylinder.We find the solution for the simplest possible magnetic field configuration, the split monopole, through a numerical iterative relaxation method analogous to the one that yields the structure of the steady-state axisymmetric force-free pulsar magnetosphere. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blandford and Znajek and of previous time-dependent simulations. Furthermore, we discuss the physical applicability of magnetic field configurations that do not cross both "light surfaces."

  6. Integral Equation Method for Electromagnetic Wave Propagation in Stratified Anisotropic Dielectric-Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Shu, Wei-Xing; Fu, Na; Lü, Xiao-Fang; Luo, Hai-Lu; Wen, Shuang-Chun; Fan, Dian-Yuan

    2010-11-01

    We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materials using the integral equation method (IEM). Based on the superposition principle, we use Hertz vector formulations of radiated fields to study the interaction of wave with matter. We derive in a new way the dispersion relation, Snell's law and reflection/transmission coefficients by self-consistent analyses. Moreover, we find two new forms of the generalized extinction theorem. Applying the IEM, we investigate the wave propagation through a slab and disclose the underlying physics, which are further verified by numerical simulations. The results lead to a unified framework of the IEM for the propagation of wave incident either from a medium or vacuum in stratified dielectric-magnetic materials.

  7. Natural chemical shielding analysis of nuclear magnetic resonance shielding tensors from gauge-including atomic orbital calculations

    NASA Astrophysics Data System (ADS)

    Bohmann, Jonathan A.; Weinhold, Frank; Farrar, Thomas C.

    1997-07-01

    Nuclear magnetic shielding tensors computed by the gauge including atomic orbital (GIAO) method in the Hartree-Fock self-consistent-field (HF-SCF) framework are partitioned into magnetic contributions from chemical bonds and lone pairs by means of natural chemical shielding (NCS) analysis, an extension of natural bond orbital (NBO) analysis. NCS analysis complements the description provided by alternative localized orbital methods by directly calculating chemical shieldings due to delocalized features in the electronic structure, such as bond conjugation and hyperconjugation. Examples of NCS tensor decomposition are reported for CH4, CO, and H2CO, for which a graphical mnemonic due to Cornwell is used to illustrate the effect of hyperconjugative delocalization on the carbon shielding.

  8. Immediate estimation of correlation energy for molecular systems from the partial charges on atoms in the molecule

    NASA Astrophysics Data System (ADS)

    Kristyán, Sándor

    1997-11-01

    In the author's previous work (Chem. Phys. Lett. 247 (1995) 101 and Chem. Phys. Lett. 256 (1996) 229) a simple quasi-linear relationship was introduced between the number of electrons, N, participating in any molecular system and the correlation energy: -0.035 ( N - 1) > Ecorr[hartree] > - 0.045( N -1). This relationship was developed to estimate more accurately correlation energy immediately in ab initio calculations by using the partial charges of atoms in the molecule, easily obtained after Hartree-Fock self-consistent field (HF-SCF) calculations. The method is compared to the well-known B3LYP, MP2, CCSD and G2M methods. Correlation energy estimations for negatively (-1) charged atomic ions are also reported.

  9. Self-consistent Model of Magnetospheric Electric Field, RC and EMIC Waves

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.

    2007-01-01

    Electromagnetic ion cyclotron (EMIC) waves are an important magnetospheric emission, which is excited near the magnetic equator with frequencies below the proton gyro-frequency. The source of bee energy for wave growth is provided by temperature anisotropy of ring current (RC) ions, which develops naturally during inward convection from the plasma sheet These waves strongly affect the dynamic s of resonant RC ions, thermal electrons and ions, and the outer radiation belt relativistic electrons, leading to non-adiabatic particle heating and/or pitch-angle scattering and loss to the atmosphere. The rate of ion and electron scattering/heating is strongly controlled by the Wave power spectral and spatial distributions, but unfortunately, the currently available observational information regarding EMIC wave power spectral density is poor. So combinations of reliable data and theoretical models should be utilized in order to obtain the power spectral density of EMIC waves over the entire magnetosphere throughout the different storm phases. In this study, we present the simulation results, which are based on two coupled RC models that our group has developed. The first model deals with the large-scale magnetosphere-ionosphere electrodynamic coupling, and provides a self-consistent description of RC ions/electrons and the magnetospheric electric field. The second model is based on a coupled system of two kinetic equations, one equation describes the RC ion dynamics and another equation describes the power spectral density evolution of EMIC waves, and self-consistently treats a micro-scale electrodynamic coupling of RC and EMIC waves. So far, these two models have been applied independently. However, the large-scale magnetosphere-ionosphere electrodynamics controls the convective patterns of both the RC ions and plasmasphere altering conditions for EMIC wave-particle interaction. In turn, the wave induced RC precipitation Changes the local field-aligned current distributions and the ionospheric conductances, which are crucial for a large-scale electrodynamics. The initial results from this new self-consistent model of the magnetospheric electric field, RC and EMIC waves will be shown in this presentation.

  10. AR Scorpii and possible gravitational wave radiation from pulsar white dwarfs

    NASA Astrophysics Data System (ADS)

    Franzon, B.; Schramm, S.

    2017-06-01

    In view of the new recent observation and measurement of the rotating and highly magnetized white dwarf AR Scorpii, we determine bounds of its moment of inertia, magnetic fields and radius. Moreover, we investigate the possibility of fast rotating and/or magnetized white dwarfs to be sources of detectable gravitational wave (GW) emission. Numerical stellar models at different baryon masses are constructed. For each star configuration, we compute self-consistent relativistic solutions for white dwarfs endowed with poloidal magnetic fields by solving the Einstein-Maxwell field equations in a self-consistent way. The magnetic field supplies an anisotropic pressure, leading to the braking of the spherical symmetry of the star. In this case, we compute the quadrupole moment of the mass distribution. Next, we perform an estimate of the GW of such objects. Finally, we show that the new recent observation and measurement pulsar white dwarf AR Scorpii, as well as other stellar models, might generate GW radiation that lies in the bandwidth of the discussed next generation of space-based GW detectors DECI-hertz Interferometer Gravitational wave Observatory (DECIGO) and Big Bang Observer (BBO).

  11. Self-Consistent Magnetosphere-Ionosphere Coupling and Associated Plasma Energization Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Magnetosphere-Ionosphere (MI) coupling and associated with this process electron and ion energization processes have interested scientists for decades and, in spite of experimental and theoretical research efforts, are still ones of the least well known dynamic processes in space plasma physics. The reason for this is that the numerous physical processes associated with MI coupling occur over multiple spatial lengths and temporal scales. One typical example of MI coupling is large scale ring current (RC) electrodynamic coupling that includes calculation of the magnetospheric electric field that is consistent with the ring current (RC) distribution. A general scheme for numerical simulation of such large-scale magnetosphere-ionosphere coupling processes has been presented earlier in many works. The mathematical formulation of these models are based on "modified frozen-in flux theorem" for an ensemble of adiabatically drifting particles in the magnetosphere. By tracking the flow of particles through the inner magnetosphere, the bounce-averaged phase space density of the hot ions and electrons can be reconstructed and the magnetospheric electric field can be calculated such that it is consistent with the particle distribution in the magnetosphere. The new a self-consistent ring current model has been developed that couples electron and ion magnetospheric dynamics with calculation of electric field. Two new features were taken into account in addition to the RC ions, we solve an electron kinetic equation in our model, self-consistently including these results in the solution. Second, using different analytical relationships, we calculate the height integrated ionospheric conductances as the function of precipitated high energy magnetospheric electrons and ions as produced by our model. This results in fundamental changes to the electric potential pattern in the inner magnetosphere, with a smaller Alfven boundary than previous potential formulations would predict but one consistent with recent satellite observations. This leads to deeper penetration of the plasma sheet ions and electrons into the inner magnetosphere and more effective ring current ions and electron energization.

  12. Field test comparison of two dermal tolerance assessment methods of hand hygiene products.

    PubMed

    Girard, R; Carré, E; Pires-Cronenberger, S; Bertin-Mandy, M; Favier-Bulit, M C; Coyault, C; Coudrais, S; Billard, M; Regard, A; Kerhoas, A; Valdeyron, M L; Cracco, B; Misslin, P

    2008-06-01

    This study aimed to compare the sensitivity and workload requirement of two dermal tolerance assessment methods of hand hygiene products, in order to select a suitable pilot testing method for field tests. An observer-rating method and a self-assessment method were compared in 12 voluntary hospital departments (autumn/winter of 2005-2006). Three test-periods of three weeks were separated by two-week intervals during which the routine products were reintroduced. The observer rating method scored dryness and irritation on four-point scales. In the self-assessment method, the user rated appearance, intactness, moisture content, and sensation on a visual analogue scale which was converted into a 10-point numerical scale. Eleven products (soaps) were tested (223/250 complete reports for observer rating, 131/251 for self-assessment). Two products were significantly less well tolerated than the routine product according to the observers, four products according to the self-assessments. There was no significant difference between the two methods when products were classified according to tolerance (Fisher's test: P=0.491). For the symptom common to both assessment methods (dryness), there is a good correlation between the two methods (Spearman's Rho: P=0.032). The workload was higher for observer rating method (288 h of observer time plus 122 h of prevention team and pharmacist time compared with 15 h of prevention team and pharmacist time for self-assessment). In conclusion, the self-assessment method was considered more suitable for pilot testing, although further time should be allocated for educational measures as the return rate of complete self-assessment forms was poor.

  13. Development of FullWave : Hot Plasma RF Simulation Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Kim, Jin-Soo; Spencer, J. Andrew; Zhao, Liangji; Galkin, Sergei

    2017-10-01

    Full wave simulation tool, modeling RF fields in hot inhomogeneous magnetized plasma, is being developed. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated in configuration space without limiting approximations by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. This approach allows for better resolution of plasma resonances, antenna structures and complex boundaries. The formulation of FullWave and preliminary results will be presented: construction of the finite differences for approximation of derivatives on adaptive cloud of computational points; model and results of nonlocal conductivity kernel calculation in tokamak geometry; results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach; results of self-consistent calculations of hot plasma dielectric response and RF fields in 1-D mirror magnetic field; preliminary results of self-consistent simulations of 2-D RF fields in tokamak using the calculated hot plasma conductivity kernel; development of iterative solver for wave equations. Work is supported by the U.S. DOE SBIR program.

  14. Self-consistent-field study of conduction through conjugated molecules

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Stafström, Sven

    2001-07-01

    Current-voltage (I-V) characteristics of individual molecules connected by metallic leads are studied theoretically. Using the Pariser-Parr-Pople quantum chemical method to model the molecule enables us to include electron-electron interactions in the Hartree approximation. The self-consistent-field method is used to calculate charging together with other properties for the total system under bias. Thereafter the Landauer formula is used to calculate the current from the transmission amplitudes. The most important parameter to understand charging is the position of the chemical potentials of the leads in relation to the molecular levels. At finite bias, the main part of the potential drop is located at the molecule-lead junctions. Also, the potential of the molecule is shown to partially follow the chemical potential closest to the highest occupied molecular orbital (HOMO). Therefore, the resonant tunneling steps in the I-V curves are smoothed giving a I-V resembling a ``Coulomb-gap.'' However, the charge of the molecule is not quantized since the molecule is small with quite strong interactions with the leads. The calculations predict an increase in the current at the bias corresponding to the energy gap of the molecule irrespective of the metals used in the leads. When the bias is increased further, charge is redistributed from the HOMO level to the lowest unoccupied molecular orbital of the molecule. This gives a step in the I-V curves and a corresponding change in the potential profile over the molecule. Calculations were mainly performed on polyene molecules. Molecules asymmetrically coupled to the leads model the I-V curves for molecules contacted by a scanning tunneling microscopy tip. I-V curves for pentapyrrole and another molecule that show negative differential conductance are also analyzed. The charging of these two systems depends on the shape of the molecular wave functions.

  15. Pollen limitation and reduced reproductive success are associated with local genetic effects in Prunus virginiana, a widely distributed self-incompatible shrub

    PubMed Central

    Suarez-Gonzalez, Adriana; Good, Sara V.

    2014-01-01

    Background and Aims A vast quantity of empirical evidence suggests that insufficient quantity or quality of pollen may lead to a reduction in fruit set, in particular for self-incompatible species. This study uses an integrative approach that combines field research with marker gene analysis to understand the factors affecting reproductive success in a widely distributed self-incompatible species, Prunus virginiana (Rosaceae). Methods Twelve patches of P. virginiana distributed within three populations that differed in degree of disturbance were examined. Two of the sites were small (7–35 km2) remnants of forest in an intensively used agricultural landscape, while the third was continuous (350 km2) and less disturbed. Field studies (natural and hand cross-pollinations) were combined with marker gene analyses (microsatellites and S-locus) in order to explore potential factors affecting pollen delivery and consequently reproductive success at landscape (between populations) and fine scales (within populations). Key Results Reductions in reproductive output were found in the two fragments compared with the continuous population, and suggest that pollen is an important factor limiting fruit production. Genetic analyses carried out in one of the fragments and in the continuous site suggest that even though S-allele diversity is high in both populations, the fragment exhibits an increase in biparental inbreeding and correlated paternity. The increase in biparental inbreeding in the fragment is potentially attributable to variation in the density of individuals and/or the spatial distribution of genotypes among populations, both of which could alter mating dynamics. Conclusions By using a novel integrative approach, this study shows that even though P. virginiana is a widespread species, fragmented populations can experience significant reductions in fruit set and pollen limitation in the field. Deatiled examination of one fragmented population suggests that these linitations may be explained by an increase in biparental inbreeding, correlated paternity and fine-scale genetic structure. The consistency of the field and fine-scale genetic analyses, and the consistency of the results within patches and across years, suggest that these are important processes driving pollen limitation in the fragment. PMID:24327534

  16. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics.

    PubMed

    Crespo-Otero, Rachel; Barbatti, Mario

    2018-05-16

    Nonadiabatic mixed quantum-classical (NA-MQC) dynamics methods form a class of computational theoretical approaches in quantum chemistry tailored to investigate the time evolution of nonadiabatic phenomena in molecules and supramolecular assemblies. NA-MQC is characterized by a partition of the molecular system into two subsystems: one to be treated quantum mechanically (usually but not restricted to electrons) and another to be dealt with classically (nuclei). The two subsystems are connected through nonadiabatic couplings terms to enforce self-consistency. A local approximation underlies the classical subsystem, implying that direct dynamics can be simulated, without needing precomputed potential energy surfaces. The NA-MQC split allows reducing computational costs, enabling the treatment of realistic molecular systems in diverse fields. Starting from the three most well-established methods-mean-field Ehrenfest, trajectory surface hopping, and multiple spawning-this review focuses on the NA-MQC dynamics methods and programs developed in the last 10 years. It stresses the relations between approaches and their domains of application. The electronic structure methods most commonly used together with NA-MQC dynamics are reviewed as well. The accuracy and precision of NA-MQC simulations are critically discussed, and general guidelines to choose an adequate method for each application are delivered.

  17. Communication: Mechanochemical fluctuation theorem and thermodynamics of self-phoretic motors

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre; Kapral, Raymond

    2017-12-01

    Microscopic dynamical aspects of the propulsion of nanomotors by self-phoretic mechanisms are considered. Propulsion by self-diffusiophoresis relies on the mechanochemical coupling between the fluid velocity field and the concentration fields induced by asymmetric catalytic reactions on the motor surface. The consistency between the thermodynamics of this coupling and the microscopic reversibility of the underlying molecular dynamics is investigated. For this purpose, a mechanochemical fluctuation theorem for the joint probability to find the motor at position r after n reactive events have occurred during the time interval t is derived, starting from coupled Langevin equations for the translational, rotational, and chemical fluctuations of self-phoretic motors. An important result that follows from this analysis is the identification of an effect that is reciprocal to self-propulsion by diffusiophoresis, which leads to a dependence of the reaction rate on the value of an externally applied force.

  18. Self-Adaptive System based on Field Programmable Gate Array for Extreme Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Zebulum, Ricardo; Rajeshuni, Ramesham; Stoica, Adrian; Katkoori, Srinivas; Graves, Sharon; Novak, Frank; Antill, Charles

    2006-01-01

    In this work, we report the implementation of a self-adaptive system using a field programmable gate array (FPGA) and data converters. The self-adaptive system can autonomously recover the lost functionality of a reconfigurable analog array (RAA) integrated circuit (IC) [3]. Both the RAA IC and the self-adaptive system are operating in extreme temperatures (from 120 C down to -180 C). The RAA IC consists of reconfigurable analog blocks interconnected by several switches and programmable by bias voltages. It implements filters/amplifiers with bandwidth up to 20 MHz. The self-adaptive system controls the RAA IC and is realized on Commercial-Off-The-Shelf (COTS) parts. It implements a basic compensation algorithm that corrects a RAA IC in less than a few milliseconds. Experimental results for the cold temperature environment (down to -180 C) demonstrate the feasibility of this approach.

  19. Self-disclosure. Reconciling psychoanalytic psychotherapy and alcoholics anonymous philosophy.

    PubMed

    Mallow, A J

    1998-01-01

    Therapists working in the addictions field and practicing from a psychoanalytic psychodynamic framework are often confronted with the patient's need to know, the demand for therapist self-disclosure. Consistent with Alcoholics Anonymous (AA) principles, many patients state that they cannot be helped unless the therapist is revealing of their personal background. This paper discusses the theoretical roots of therapist self-disclosure and the AA philosophy and offers suggestions for how the two might be reconciled.

  20. Field-gradient partitioning for fracture and frictional contact in the material point method: Field-gradient partitioning for fracture and frictional contact in the material point method [Fracture and frictional contact in material point method using damage-field gradients for velocity-field partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homel, Michael A.; Herbold, Eric B.

    Contact and fracture in the material point method require grid-scale enrichment or partitioning of material into distinct velocity fields to allow for displacement or velocity discontinuities at a material interface. We present a new method which a kernel-based damage field is constructed from the particle data. The gradient of this field is used to dynamically repartition the material into contact pairs at each node. Our approach avoids the need to construct and evolve explicit cracks or contact surfaces and is therefore well suited to problems involving complex 3-D fracture with crack branching and coalescence. A straightforward extension of this approachmore » permits frictional ‘self-contact’ between surfaces that are initially part of a single velocity field, enabling more accurate simulation of granular flow, porous compaction, fragmentation, and comminution of brittle materials. Finally, numerical simulations of self contact and dynamic crack propagation are presented to demonstrate the accuracy of the approach.« less

  1. Field-gradient partitioning for fracture and frictional contact in the material point method: Field-gradient partitioning for fracture and frictional contact in the material point method [Fracture and frictional contact in material point method using damage-field gradients for velocity-field partitioning

    DOE PAGES

    Homel, Michael A.; Herbold, Eric B.

    2016-08-15

    Contact and fracture in the material point method require grid-scale enrichment or partitioning of material into distinct velocity fields to allow for displacement or velocity discontinuities at a material interface. We present a new method which a kernel-based damage field is constructed from the particle data. The gradient of this field is used to dynamically repartition the material into contact pairs at each node. Our approach avoids the need to construct and evolve explicit cracks or contact surfaces and is therefore well suited to problems involving complex 3-D fracture with crack branching and coalescence. A straightforward extension of this approachmore » permits frictional ‘self-contact’ between surfaces that are initially part of a single velocity field, enabling more accurate simulation of granular flow, porous compaction, fragmentation, and comminution of brittle materials. Finally, numerical simulations of self contact and dynamic crack propagation are presented to demonstrate the accuracy of the approach.« less

  2. Nonequilibrium Saturation States and Fractional Kinetic Processes In The Turbulent Magnetotail

    NASA Astrophysics Data System (ADS)

    Milovanov, A. V.; Zelenyi, L. M.

    Magnetotail regions with the considerably stretched and thinned magnetic lobe field offer a fertile playground for studying the fundamental properties of the self-organized turbulent systems. The focus of this report is on the turbulent nonequilibrium satu- ration states (NESS's) of the tail, where the plasma strongly couples with the self- organized magnetic and inductive electric fields. We advocate an unconventional de- scription of the NESS's, which brings together the ideas of fractal geometry, topology of manifolds, and fractional ("strange") kinetics. A self-consistent nonlinear fractional kinetic equation is proposed for the particle dynamics near the marginal NESS. We ar- gue that the inherent variability of the NESS is manifest in the low-frequency fluctu- ation spectrum f-1 often referred to as "flicker noise". The self-consistent plasma distribution function at the NESS is shown to reveal a power-law nonthermal tail (E) E-, where the slope 6 7 depends on the type of the spatiotem- poral correlations in the medium. Basic theoretical predictions are discussed against observations. This study was sponsored by the INTAS project 97-1612 and RFBR grants 00-02-17127 and 00-15-96631.

  3. [Self-esteem in adolescents with and without cleft-lip and/or palate].

    PubMed

    de Andrade, D; Angerami, E L

    2001-01-01

    Self-image is an important determinant of self-esteem among men and women, which makes us reflect about the process of rehabilitation of people with facial malformations. In order to measure self-esteem, the Janis and Field Scale was used. The sample consisted of 608 adolescents aged 17 to 20 years including males and females. Two hundred and thirty-five had a cleft lip and/or palate and 373 did not. The analysis of the self-esteem levels obtained enabled to conclude that the adolescents with a cleft lip and/or palate behave differently from those without it, that is, they present lower self-esteem scores.

  4. Dynamic Self-Consistent Field Theories for Polymer Blends and Block Copolymers

    NASA Astrophysics Data System (ADS)

    Kawakatsu, Toshihiro

    Understanding the behavior of the phase separated domain structures and rheological properties of multi-component polymeric systems require detailed information on the dynamics of domains and that of conformations of constituent polymer chains. Self-consistent field (SCF) theory is a useful tool to treat such a problem because the conformation entropy of polymer chains in inhomogeneous systems can be evaluated quantitatively using this theory. However, when we turn our attention to the dynamic properties in a non-equilibrium state, the basic assumption of the SCF theory, i.e. the assumption of equilibrium chain conformation, breaks down. In order to avoid such a difficulty, dynamic SCF theories were developed. In this chapter, we give a brief review of the recent developments of dynamic SCF theories, and discuss where the cutting-edge of this theory is.

  5. A unified radiative magnetohydrodynamics code for lightning-like discharge simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang, E-mail: cq0405@126.com; Chen, Bin, E-mail: emcchen@163.com; Xiong, Run

    2014-03-15

    A two-dimensional Eulerian finite difference code is developed for solving the non-ideal magnetohydrodynamic (MHD) equations including the effects of self-consistent magnetic field, thermal conduction, resistivity, gravity, and radiation transfer, which when combined with specified pulse current models and plasma equations of state, can be used as a unified lightning return stroke solver. The differential equations are written in the covariant form in the cylindrical geometry and kept in the conservative form which enables some high-accuracy shock capturing schemes to be equipped in the lightning channel configuration naturally. In this code, the 5-order weighted essentially non-oscillatory scheme combined with Lax-Friedrichs fluxmore » splitting method is introduced for computing the convection terms of the MHD equations. The 3-order total variation diminishing Runge-Kutta integral operator is also equipped to keep the time-space accuracy of consistency. The numerical algorithms for non-ideal terms, e.g., artificial viscosity, resistivity, and thermal conduction, are introduced in the code via operator splitting method. This code assumes the radiation is in local thermodynamic equilibrium with plasma components and the flux limited diffusion algorithm with grey opacities is implemented for computing the radiation transfer. The transport coefficients and equation of state in this code are obtained from detailed particle population distribution calculation, which makes the numerical model is self-consistent. This code is systematically validated via the Sedov blast solutions and then used for lightning return stroke simulations with the peak current being 20 kA, 30 kA, and 40 kA, respectively. The results show that this numerical model consistent with observations and previous numerical results. The population distribution evolution and energy conservation problems are also discussed.« less

  6. Knowledge acquisition and learning process description in context of e-learning

    NASA Astrophysics Data System (ADS)

    Kiselev, B. G.; Yakutenko, V. A.; Yuriev, M. A.

    2017-01-01

    This paper investigates the problem of design of e-learning and MOOC systems. It describes instructional design-based approaches to e-learning systems design: IMS Learning Design, MISA and TELOS. To solve this problem we present Knowledge Field of Educational Environment with Competence boundary conditions - instructional engineering method for self-learning systems design. It is based on the simplified TELOS approach and enables a user to create their individual learning path by choosing prerequisite and target competencies. The paper provides the ontology model for the described instructional engineering method, real life use cases and the classification of the presented model. Ontology model consists of 13 classes and 15 properties. Some of them are inherited from Knowledge Field of Educational Environment and some are new and describe competence boundary conditions and knowledge validation objects. Ontology model uses logical constraints and is described using OWL 2 standard. To give TELOS users better understanding of our approach we list mapping between TELOS and KFEEC.

  7. Self-consistent multidimensional electron kinetic model for inductively coupled plasma sources

    NASA Astrophysics Data System (ADS)

    Dai, Fa Foster

    Inductively coupled plasma (ICP) sources have received increasing interest in microelectronics fabrication and lighting industry. In 2-D configuration space (r, z) and 2-D velocity domain (νθ,νz), a self- consistent electron kinetic analytic model is developed for various ICP sources. The electromagnetic (EM) model is established based on modal analysis, while the kinetic analysis gives the perturbed Maxwellian distribution of electrons by solving Boltzmann-Vlasov equation. The self- consistent algorithm combines the EM model and the kinetic analysis by updating their results consistently until the solution converges. The closed-form solutions in the analytical model provide rigorous and fast computing for the EM fields and the electron kinetic behavior. The kinetic analysis shows that the RF energy in an ICP source is extracted by a collisionless dissipation mechanism, if the electron thermovelocity is close to the RF phase velocities. A criterion for collisionless damping is thus given based on the analytic solutions. To achieve uniformly distributed plasma for plasma processing, we propose a novel discharge structure with both planar and vertical coil excitations. The theoretical results demonstrate improved uniformity for the excited azimuthal E-field in the chamber. Non-monotonic spatial decay in electric field and space current distributions was recently observed in weakly- collisional plasmas. The anomalous skin effect is found to be responsible for this phenomenon. The proposed model successfully models the non-monotonic spatial decay effect and achieves good agreements with the measurements for different applied RF powers. The proposed analytical model is compared with other theoretical models and different experimental measurements. The developed model is also applied to two kinds of ICP discharges used for electrodeless light sources. One structure uses a vertical internal coil antenna to excite plasmas and another has a metal shield to prevent the electromagnetic radiation. The theoretical results delivered by the proposed model agree quite well with the experimental measurements in many aspects. Therefore, the proposed self-consistent model provides an efficient and reliable means for designing ICP sources in various applications such as VLSI fabrication and electrodeless light sources.

  8. Internal gravity, self-energy, and disruption of comets and asteroids

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.; Korycansky, D. G.

    2018-03-01

    The internal gravity and self-gravitational energy of a comet, asteroid, or small moon have applications to their geophysics, including their formation, evolution, cratering, and disruption, the stresses and strains inside such objects, sample return, eventual asteroid mining, and planetary defense strategies for potentially hazardous objects. This paper describes the relation of an object's self-energy to its collisional disruption energy, and shows how to determine an object's self-energy from its internal gravitational potential. Any solid object can be approximated to any desired accuracy by a polyhedron of sufficient complexity. An analytic formula is known for the gravitational potential of any homogeneous polyhedron, but it is widely believed that this formula applies only on the surface or outside of the object. Here we show instead that this formula applies equally well inside the object. We have used these formulae to develop a numerical code which evaluates the self-energy of any homogeneous polyhedron, along with the gravitational potential and attraction both inside and outside of the object, as well as the slope of its surface. Then we use our code to find the internal, external, and surface gravitational fields of the Platonic solids, asteroid (216) Kleopatra, and comet 67P/Churyumov-Gerasimenko, as well as their surface slopes and their self-gravitational energies. We also present simple spherical, ellipsoidal, cuboidal, and duplex models of Kleopatra and comet 67P, and show how to generalize our methods to inhomogeneous objects and magnetic fields. At present, only the self-energies of spheres, ellipsoids, and cuboids (boxes) are known analytically (or semi-analytically). The Supplementary Material contours the central potential and self-energy of homogeneous ellipsoids and cuboids of all aspect ratios, and also analytically the self-gravitational energy of a "duplex" consisting of two coupled spheres. The duplex is a good model for "contact binary" comets and asteroids; in fact, most comets seem to be bilobate, and might be described better as "dirty snowmen" than as "dirty snowballs".

  9. Transport across nanogaps using self-consistent boundary conditions

    NASA Astrophysics Data System (ADS)

    Biswas, D.; Kumar, R.

    2012-06-01

    Charge particle transport across nanogaps is studied theoretically within the Schrodinger-Poisson mean field framework. The determination of self-consistent boundary conditions across the gap forms the central theme in order to allow for realistic interface potentials (such as metal-vacuum) which are smooth at the boundary and do not abruptly assume a constant value at the interface. It is shown that a semiclassical expansion of the transmitted wavefunction leads to approximate but self consistent boundary conditions without assuming any specific form of the potential beyond the gap. Neglecting the exchange and correlation potentials, the quantum Child-Langmuir law is investigated. It is shown that at zero injection energy, the quantum limiting current density (Jc) is found to obey the local scaling law Jc ~ Vgα/D5-2α with the gap separation D and voltage Vg. The exponent α > 1.1 with α → 3/2 in the classical regime of small de Broglie wavelengths.

  10. Metastable Prepores in Tension-Free Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Ting, Christina L.; Awasthi, Neha; Müller, Marcus; Hub, Jochen S.

    2018-03-01

    The formation and closure of aqueous pores in lipid bilayers is a key step in various biophysical processes. Large pores are well described by classical nucleation theory, but the free-energy landscape of small, biologically relevant pores has remained largely unexplored. The existence of small and metastable "prepores" was hypothesized decades ago from electroporation experiments, but resolving metastable prepores from theoretical models remained challenging. Using two complementary methods—atomistic simulations and self-consistent field theory of a minimal lipid model—we determine the parameters for which metastable prepores occur in lipid membranes. Both methods consistently suggest that pore metastability depends on the relative volume ratio between the lipid head group and lipid tails: lipids with a larger head-group volume fraction (or shorter saturated tails) form metastable prepores, whereas lipids with a smaller head-group volume fraction (or longer unsaturated tails) form unstable prepores.

  11. General Second-Order Scalar-Tensor Theory and Self-Tuning

    NASA Astrophysics Data System (ADS)

    Charmousis, Christos; Copeland, Edmund J.; Padilla, Antonio; Saffin, Paul M.

    2012-02-01

    Starting from the most general scalar-tensor theory with second-order field equations in four dimensions, we establish the unique action that will allow for the existence of a consistent self-tuning mechanism on Friedmann-Lemaître-Robertson-Walker backgrounds, and show how it can be understood as a combination of just four base Lagrangians with an intriguing geometric structure dependent on the Ricci scalar, the Einstein tensor, the double dual of the Riemann tensor, and the Gauss-Bonnet combination. Spacetime curvature can be screened from the net cosmological constant at any given moment because we allow the scalar field to break Poincaré invariance on the self-tuning vacua, thereby evading the Weinberg no-go theorem. We show how the four arbitrary functions of the scalar field combine in an elegant way opening up the possibility of obtaining nontrivial cosmological solutions.

  12. High-resolution geological mapping at 3D Environments: A case study from the fold-and-thrust belt in northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Y. C.; Shih, N. C.; Hsieh, Y. C.

    2016-12-01

    Geologic maps have provided fundamental information for many scientific and engineering applications in human societies. Geologic maps directly influence the reliability of research results or the robustness of engineering projects. In the past, geologic maps were mainly produced by field geologists through direct field investigations and 2D topographic maps. However, the quality of traditional geologic maps was significantly compromised by field conditions, particularly, when the map area is covered by heavy forest canopies. Recent developments in airborne LiDAR technology may virtually remove trees or buildings, thus, providing a useful data set for improving geological mapping. Because high-quality topographic information still needs to be interpreted in terms of geology, there are many fundamental questions regarding how to best apply the data set for high-resolution geological mapping. In this study, we aim to test the quality and reliability of high-resolution geologic maps produced by recent technological methods through an example from the fold-and-thrust belt in northern Taiwan. We performed the geological mapping by applying the LiDAR-derived DEM, self-developed program tools and many layers of relevant information at interactive 3D environments. Our mapping results indicate that the proposed methods will considerably improve the quality and consistency of the geologic maps. The study also shows that in order to gain consistent mapping results, future high-resolution geologic maps should be produced at interactive 3D environments on the basis of existing geologic maps.

  13. Study of ultrasonic attenuation in f-electron systems in the paramagnetic limit of Coulomb interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadangi, Asit Ku., E-mail: asitshad@iopb.res.in; Rout, G. C., E-mail: gcr@iopb.res.in

    2015-05-15

    We report here a microscopic model study of ultrasonic attenuation in f-electron systems based on Periodic Anderson Model in which Coulomb interaction is considered within a mean-field approximation for a weak interaction. The Phonon is coupled to the conduction band and f-electrons. The phonon Green's function is calculated by Zubarev's technique of the Green's function method. The temperature dependent ultrasonic attenuation co-efficient is calculated from the imaginary part of the phonon self-energy in the dynamic and long wave length limit. The f-electron occupation number is calculated self-consistently in paramagnetic limit of Coulomb interaction. The effect of the Coulomb interaction onmore » ultrasonic attenuation is studied by varying the phonon coupling parameters to the conduction and f-electrons, hybridization strength, the position of f-level and the Coulomb interaction Strength. Results are discussed on the basis of experimental results.« less

  14. On the interpretation of energy and energy fluxes of nonlinear internal waves: An example from Massachusetts Bay

    USGS Publications Warehouse

    Scotti, A.; Beardsley, R.; Butman, B.

    2006-01-01

    A self-consistent formalism to estimate baroclinic energy densities and fluxes resulting from the propagation of internal waves of arbitrary amplitude is derived using the concept of available potential energy. The method can be applied to numerical, laboratory or field data. The total energy flux is shown to be the sum of the linear energy flux ??? u??? p??? dz (primes denote baroclinic quantities), plus contributions from the non-hydrostatic pressure anomaly and the self-advection of kinetic and available potential energy. Using highly resolved observations in Massachusetts Bay, it is shown that due to the presence of nonlinear internal waves periodically propagating in the area, ??? u??? p??? dz accounts for only half of the total flux. The same data show that equipartition of available potential and kinetic energy can be violated, especially when the nonlinear waves begin to interact with the bottom. ?? 2006 Cambridge University Press.

  15. Extremely asymmetric phase diagram of homopolymer-monotethered nanoparticles: Competition between chain conformational entropy and particle steric interaction.

    PubMed

    Zhang, Tiancai; Fu, Chao; Yang, Yingzi; Qiu, Feng

    2017-02-07

    The phase behaviors of homopolymer-monotethered nanoparticles (HMNs) in melt are investigated via a theoretical method combining self-consistent field theory for polymers and density functional theory for hard spheres. An extremely asymmetric phase diagram is observed: (i) microphases are only possible for the volume fraction of the tethered polymer f A > 0.35; (ii) in addition to lamellar phase, the system can only self-assemble into various morphologies with a polymer-rich matrix, including gyroid phase, cylindrical phase, and spherical phase. In the frame of this theory, the critical point for HMNs' microphase separation is significantly lower than that of linear diblock copolymers. Furthermore, the characteristic length of microphase-separated structures of HMNs is much smaller than that of linear diblock copolymers with the same molecular weight. Our calculation results on morphologies and characteristic length agree well with recent simulations and experimental observations.

  16. Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging

    NASA Astrophysics Data System (ADS)

    Jardani, A.; Revil, A.; Dupont, J. P.

    2013-02-01

    The assessment of hydraulic conductivity of heterogeneous aquifers is a difficult task using traditional hydrogeological methods (e.g., steady state or transient pumping tests) due to their low spatial resolution. Geophysical measurements performed at the ground surface and in boreholes provide additional information for increasing the resolution and accuracy of the inverted hydraulic conductivity field. We used a stochastic joint inversion of Direct Current (DC) resistivity and self-potential (SP) data plus in situ measurement of the salinity in a downstream well during a synthetic salt tracer experiment to reconstruct the hydraulic conductivity field between two wells. The pilot point parameterization was used to avoid over-parameterization of the inverse problem. Bounds on the model parameters were used to promote a consistent Markov chain Monte Carlo sampling of the model parameters. To evaluate the effectiveness of the joint inversion process, we compared eight cases in which the geophysical data are coupled or not to the in situ sampling of the salinity to map the hydraulic conductivity. We first tested the effectiveness of the inversion of each type of data alone (concentration sampling, self-potential, and DC resistivity), and then we combined the data two by two. We finally combined all the data together to show the value of each type of geophysical data in the joint inversion process because of their different sensitivity map. We also investigated a case in which the data were contaminated with noise and the variogram unknown and inverted stochastically. The results of the inversion revealed that incorporating the self-potential data improves the estimate of hydraulic conductivity field especially when the self-potential data were combined to the salt concentration measurement in the second well or to the time-lapse cross-well electrical resistivity data. Various tests were also performed to quantify the uncertainty in the inverted hydraulic conductivity field.

  17. Lateral temperature variations at the core-mantle boundary deduced from the magnetic field

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy; Jackson, Andrew

    1990-01-01

    Recent studies of the secular variation of the earth's magnetic field over periods of a few centuries have suggested that the pattern of fluid motion near the surface of earth's outer core may be strongly influenced by lateral temperature variations in the lowermost mantle. This paper introduces a self-consistent method for finding the temperature variations near the core surface by assuming that the dynamical balance there is geostrophic and that lateral density variations there are thermal in origin. As expected, the lateral temperature variations are very small. Some agreement is found between this pattern and the pattern of topography of the core-mantle boundary, but this does not conclusively answer to what extent core surface motions are controlled by the mantle, rather than being determined by processes in the core.

  18. Numerical Simulations of Dynamical Mass Transfer in Binaries

    NASA Astrophysics Data System (ADS)

    Motl, P. M.; Frank, J.; Tohline, J. E.

    1999-05-01

    We will present results from our ongoing research project to simulate dynamically unstable mass transfer in near contact binaries with mass ratios different from one. We employ a fully three-dimensional self-consistent field technique to generate synchronously rotating polytropic binaries. With our self-consistent field code we can create equilibrium binaries where one component is, by radius, within about 99 of filling its Roche lobe for example. These initial configurations are evolved using a three-dimensional, Eulerian hydrodynamics code. We make no assumptions about the symmetry of the subsequent flow and the entire binary system is evolved self-consistently under the influence of its own gravitational potential. For a given mass ratio and polytropic index for the binary components, mass transfer via Roche lobe overflow can be predicted to be stable or unstable through simple theoretical arguments. The validity of the approximations made in the stability calculations are tested against our numerical simulations. We acknowledge support from the U.S. National Science Foundation through grants AST-9720771, AST-9528424, and DGE-9355007. This research has been supported, in part, by grants of high-performance computing time on NPACI facilities at the San Diego Supercomputer Center, the Texas Advanced Computing Center and through the PET program of the NAVOCEANO DoD Major Shared Resource Center in Stennis, MS.

  19. Ab initio quantum chemistry: methodology and applications.

    PubMed

    Friesner, Richard A

    2005-05-10

    This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller-Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly.

  20. Heat transfer and fluid flow analysis of self-healing in metallic materials

    NASA Astrophysics Data System (ADS)

    Martínez Lucci, J.; Amano, R. S.; Rohatgi, P. K.

    2017-03-01

    This paper explores imparting self-healing characteristics to metal matrices similar to what are observed in biological systems and are being developed for polymeric materials. To impart self-healing properties to metal matrices, a liquid healing method was investigated; the met hod consists of a container filled with low melting alloy acting as a healing agent, embedded into a high melting metal matrix. When the matrix is cracked; self-healing is achieved by melting the healing agent allowing the liquid metal to flow into the crack. Upon cooling, solidification of the healing agent occurs and seals the crack. The objective of this research is to investigate the fluid flow and heat transfer to impart self-healing property to metal matrices. In this study, a dimensionless healing factor, which may help predict the possibility of healing is proposed. The healing factor is defined as the ratio of the viscous forces and the contact area of liquid metal and solid which prevent flow, and volume expansion, density, and velocity of the liquid metal, gravity, crack size and orientation which promote flow. The factor incorporates the parameters that control self-healing mechanism. It was observed that for lower values of the healing factor, the liquid flows, and for higher values of healing factor, the liquid remains in the container and healing does not occur. To validate and identify the critical range of the healing factor, experiments and simulations were performed for selected combinations of healing agents and metal matrices. The simulations were performed for three-dimensional models and a commercial software 3D Ansys-Fluent was used. Three experimental methods of synthesis of self-healing composites were used. The first method consisted of creating a hole in the matrices, and liquid healing agent was poured into the hole. The second method consisted of micro tubes containing the healing agent, and the third method consisted of incorporating micro balloons containing the healing agent in the matrix. The observed critical range of the healing factor is between 407 and 495; only for healing factor values below 407 healing was observed in the matrices.

  1. Evaluation and Field Assessment of Bifacial Photovoltaic Module Power Rating Methodologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deline, Chris; MacAlpine, Sara; Marion, Bill

    2016-11-21

    1-sun power ratings for bifacial modules are currently undefined. This is partly because there is no standard definition of rear irradiance given 1000 Wm-2 on the front. Using field measurements and simulations, we evaluate multiple deployment scenarios for bifacial modules and provide details on the amount of irradiance that could be expected. A simplified case that represents a single module deployed under conditions consistent with existing 1-sun irradiance standards leads to a bifacial reference condition of 1000 Wm-2 Gfront and 130-140 Wm-2 Grear. For fielded systems of bifacial modules, Grear magnitude and spatial uniformity will be affected by self-shade frommore » adjacent modules, varied ground cover, and ground-clearance height. A standard measurement procedure for bifacial modules is also currently undefined. A proposed international standard is under development, which provides the motivation for this work. Here, we compare outdoor field measurements of bifacial modules with irradiance on both sides with proposed indoor test methods where irradiance is only applied to one side at a time. The indoor method has multiple advantages, including controlled and repeatable irradiance and thermal environment, along with allowing the use of conventional single-sided flash test equipment. The comparison results are promising, showing that the indoor and outdoor methods agree within 1%-2% for multiple rear-irradiance conditions and bifacial module types.« less

  2. Evaluation and Field Assessment of Bifacial Photovoltaic Module Power Rating Methodologies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deline, Chris; MacAlpine, Sara; Marion, Bill

    2016-06-16

    1-sun power ratings for bifacial modules are currently undefined. This is partly because there is no standard definition of rear irradiance given 1000 Wm-2 on the front. Using field measurements and simulations, we evaluate multiple deployment scenarios for bifacial modules and provide details on the amount of irradiance that could be expected. A simplified case that represents a single module deployed under conditions consistent with existing 1-sun irradiance standards leads to a bifacial reference condition of 1000 Wm-2 Gfront and 130-140 Wm-2 Grear. For fielded systems of bifacial modules, Grear magnitude and spatial uniformity will be affected by self-shade frommore » adjacent modules, varied ground cover, and ground-clearance height. A standard measurement procedure for bifacial modules is also currently undefined. A proposed international standard is under development, which provides the motivation for this work. Here, we compare outdoor field measurements of bifacial modules with irradiance on both sides with proposed indoor test methods where irradiance is only applied to one side at a time. The indoor method has multiple advantages, including controlled and repeatable irradiance and thermal environment, along with allowing the use of conventional single-sided flash test equipment. The comparison results are promising, showing that the indoor and outdoor methods agree within 1%-2% for multiple rear-irradiance conditions and bifacial module types.« less

  3. LEAKAGE CHARACTERISTICS OF BASE OF RIVERBANK BY SELF POTENTIAL METHOD AND EXAMINATION OF EFFECTIVENESS OF SELF POTENTIAL METHOD TO HEALTH MONITORING OF BASE OF RIVERBANK

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kensaku; Okada, Takashi; Takeuchi, Atsuo; Yazawa, Masato; Uchibori, Sumio; Shimizu, Yoshihiko

    Field Measurement of Self Potential Method using Copper Sulfate Electrode was performed in base of riverbank in WATARASE River, where has leakage problem to examine leakage characteristics. Measurement results showed typical S-shape what indicates existence of flow groundwater. The results agreed with measurement results by Ministry of Land, Infrastructure and Transport with good accuracy. Results of 1m depth ground temperature detection and Chain-Array detection showed good agreement with results of the Self Potential Method. Correlation between Self Potential value and groundwater velocity was examined model experiment. The result showed apparent correlation. These results indicate that the Self Potential Method was effective method to examine the characteristics of ground water of base of riverbank in leakage problem.

  4. Self-pinched transport for ion-driven inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, D.R.; Olson, C.L.

    Efficient transport of intense ion beams is necessary for ion-driven inertial confinement fusion (ICF). The self-pinched transport scheme involves the focusing of an ion beam to a radius of about 1 cm or less. At this radius, using the beam`s self-magnetic field for confinement, the ion beam propagates through the reactor chamber to an ICF target. A promising regime for self-pinched transport involves the injection of a high current beam into an initially neutral gas at about 200 mTorr less. A simple equilibrium theory of a beam with a temporally pinching radial envelope predicts that large confining magnetic fields aremore » possible with net currents of more than 50% of the beam current. The magnitude of these fields is strongly dependent on the rate of ionization of the given ion species. The authors have simulated ion-beam propagation, using the hybrid code IPROP, which self-consistently calculates the gas breakdown and electromagnetic fields. In agreement, with the theory, a propagation window of 20-200 mTorr of argon is calculated for a 50 kA, 5 MeV proton beam similar to the parameters of the SABRE accelerator at Sandia National Laboratories. The authors present simulations of the focusing and propagation of the SABRE beam, with the purpose of designing a self-pinch experiment.« less

  5. HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios

    2015-08-01

    HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.

  6. Short-time dynamics of 2-thiouracil in the light absorbing S{sub 2}(ππ{sup ∗}) state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jie; Zhang, Teng-shuo; Xue, Jia-dan

    2015-11-07

    Ultrahigh quantum yields of intersystem crossing to the lowest triplet state T{sub 1} are observed for 2-thiouracils (2TU), which is in contrast to the natural uracils that predominantly exhibit ultrafast internal conversion to the ground state upon excitation to the singlet excited state. The intersystem crossing mechanism of 2TU has recently been investigated using second-order perturbation methods with a high-level complete-active space self-consistent field. Three competitive nonadiabatic pathways to the lowest triplet state T{sub 1} from the initially populated singlet excited state S{sub 2} were proposed. We investigate the initial decay dynamics of 2TU from the light absorbing excited statesmore » using resonance Raman spectroscopy, time-dependent wave-packet theory in the simple model, and complete-active space self-consistent field (CASSCF) and time dependent-Becke’s three-parameter exchange and correlation functional with the Lee-Yang-Parr correlation functional (TD-B3LYP) calculations. The obtained short-time structural dynamics in easy-to-visualize internal coordinates were compared with the CASSCF(16,11) predicted key nonadiabatic decay routes. Our results indicate that the predominant decay pathway initiated at the Franck-Condon region is toward the S{sub 2}/S{sub 1} conical intersection point and S{sub 2}T{sub 3} intersystem crossing point, but not toward the S{sub 2}T{sub 2} intersystem crossing point.« less

  7. A splitting scheme based on the space-time CE/SE method for solving multi-dimensional hydrodynamical models of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    2016-08-01

    Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  8. Research Designs and Methods in Self-Assessment Studies: A Content Analysis

    ERIC Educational Resources Information Center

    Pastore, Serafina

    2017-01-01

    This paper focuses on self-assessment studies in the higher education field. In the assessment for learning perspective, self-assessment is related to reflection, metacognition, and self-regulation: all these aspects are considered as fundamental prerequisites for students' future professional development. Despite the recognition of…

  9. Student Self-Reported Learning Outcomes of Field Trips: The pedagogical impact

    NASA Astrophysics Data System (ADS)

    Lavie Alon, Nirit; Tal, Tali

    2015-05-01

    In this study, we used the classification and regression trees (CART) method to draw relationships between student self-reported learning outcomes in 26 field trips to natural environments and various characteristics of the field trip that include variables associated with preparation and pedagogy. We wished to examine the extent to which the preparation for the field trip, its connection to the school curriculum, and the pedagogies used, affect students' self-reported outcomes in three domains: cognitive, affective, and behavioral; and the extent the students' socioeconomic group and the guide's affiliation affect students' reported learning outcomes. Given that most of the field trips were guide-centered, the most important variable that affected the three domains of outcomes was the guide's storytelling. Other variables that showed relationships with self-reported outcomes were physical activity and making connections to everyday life-all of which we defined as pedagogical variables. We found no significant differences in student self-reported outcomes with respect to their socioeconomic group and the guide's organizational affiliation.

  10. A New Self-Constrained Inversion Method of Potential Fields Based on Probability Tomography

    NASA Astrophysics Data System (ADS)

    Sun, S.; Chen, C.; WANG, H.; Wang, Q.

    2014-12-01

    The self-constrained inversion method of potential fields uses a priori information self-extracted from potential field data. Differing from external a priori information, the self-extracted information are generally parameters derived exclusively from the analysis of the gravity and magnetic data (Paoletti et al., 2013). Here we develop a new self-constrained inversion method based on probability tomography. Probability tomography doesn't need any priori information, as well as large inversion matrix operations. Moreover, its result can describe the sources, especially the distribution of which is complex and irregular, entirely and clearly. Therefore, we attempt to use the a priori information extracted from the probability tomography results to constrain the inversion for physical properties. The magnetic anomaly data was taken as an example in this work. The probability tomography result of magnetic total field anomaly(ΔΤ) shows a smoother distribution than the anomalous source and cannot display the source edges exactly. However, the gradients of ΔΤ are with higher resolution than ΔΤ in their own direction, and this characteristic is also presented in their probability tomography results. So we use some rules to combine the probability tomography results of ∂ΔΤ⁄∂x, ∂ΔΤ⁄∂y and ∂ΔΤ⁄∂z into a new result which is used for extracting a priori information, and then incorporate the information into the model objective function as spatial weighting functions to invert the final magnetic susceptibility. Some magnetic synthetic examples incorporated with and without a priori information extracted from the probability tomography results were made to do comparison, results of which show that the former are more concentrated and with higher resolution of the source body edges. This method is finally applied in an iron mine in China with field measured ΔΤ data and performs well. ReferencesPaoletti, V., Ialongo, S., Florio, G., Fedi, M. & Cella, F., 2013. Self-constrained inversion of potential fields, Geophys J Int.This research is supported by the Fundamental Research Funds for Institute for Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences (Grant Nos. WHS201210 and WHS201211).

  11. BRST Formalism in Self-Dual Chern-Simons Theory with Matter Fields

    NASA Astrophysics Data System (ADS)

    Dai, Jialiang; Fan, Engui

    2018-04-01

    We apply BRST method to the self-dual Chern-Simons gauge theory with matter fields and the generators of symmetries of the system from an elegant Lie algebra structure under the operation of Poisson bracket. We discuss four different cases: abelian, nonabelian, relativistic, and nonrelativistic situations and extend the system to the whole phase space including ghost fields. In addition, we obtain the BRST charge of the field system and check its nilpotence of the BRST transformation which plays an important role such as in topological quantum field theory and string theory.

  12. Quantum paradoxes, entanglement and their explanation on the basis of quantization of fields

    NASA Astrophysics Data System (ADS)

    Melkikh, A. V.

    2017-01-01

    Quantum entanglement is discussed as a consequence of the quantization of fields. The inclusion of quantum fields self-consistently explains some quantum paradoxes (EPR and Hardy’s paradox). The definition of entanglement was introduced, which depends on the maximum energy of the interaction of particles. The destruction of entanglement is caused by the creation and annihilation of particles. On this basis, an algorithm for quantum particle evolution was formulated.

  13. A comparison of the coupled cluster and internally contracted averaged coupled-pair functional levels of theory for the calculation of the MCH2(+) binding energies for M = Sc to Cu

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Scuseria, Gustavo E.

    1992-01-01

    The correlation contribution to the M-C binding energy for the MCH2(+) systems can exceed 100 kcal/mol. At the self-consistent field (SCF) level, these systems can be more than 50 kcal/mol above the fragment energies. In spite of the poor zeroth-order reference, the coupled cluster single and double excitation method with a perturbational estimate of triple excitations, CCSD(T), method is shown to provide an accurate description of these systems. The maximum difference between the CCSD(T) and internally contracted averaged coupled-pair functional binding energies is 1.5 kcal/mol for CrCH2(+), with the remaining systems agreeing to within 1.0 kcal/mol.

  14. The Vibrational Frequencies of CaO2, ScO2, and TiO2: A Comparison of Theoretical Methods

    NASA Technical Reports Server (NTRS)

    Rosi, Marzio; Bauschlicher, Charles W., Jr.; Chertihin, George V.; Andrews, Lester; Arnold, James O. (Technical Monitor)

    1997-01-01

    The vibrational frequencies of several states of CaO2, ScO2, and TiO2 are computed at using density functional theory (DFT), the Hatree-Fock approach, second order Moller-Plesset perturbation theory (MP2), and the complete-active-space self-consistent-field theory. Three different functionals are used in the DFT calculations, including two hybrid functionals. The coupled cluster singles and doubles approach including the effect of unlinked triples, determined using perturbation theory, is applied to selected states. The Becke-Perdew 86 functional appears to be the cost effective method of choice, although even this functional does not perform well for one state of CaO2. The MP2 approach is significantly inferior to the DFT approaches.

  15. From Excessive Journal Self-Cites to Citation Stacking: Analysis of Journal Self-Citation Kinetics in Search for Journals, Which Boost Their Scientometric Indicators.

    PubMed

    Heneberg, Petr

    2016-01-01

    Bibliometric indicators increasingly affect careers, funding, and reputation of individuals, their institutions and journals themselves. In contrast to author self-citations, little is known about kinetics of journal self-citations. Here we hypothesized that they may show a generalizable pattern within particular research fields or across multiple fields. We thus analyzed self-cites to 60 journals from three research fields (multidisciplinary sciences, parasitology, and information science). We also hypothesized that the kinetics of journal self-citations and citations received from other journals of the same publisher may differ from foreign citations. We analyzed the journals published the American Association for the Advancement of Science, Nature Publishing Group, and Editura Academiei Române. We found that although the kinetics of journal self-cites is generally faster compared to foreign cites, it shows some field-specific characteristics. Particularly in information science journals, the initial increase in a share of journal self-citations during post-publication year 0 was completely absent. Self-promoting journal self-citations of top-tier journals have rather indirect but negligible direct effects on bibliometric indicators, affecting just the immediacy index and marginally increasing the impact factor itself as long as the affected journals are well established in their fields. In contrast, other forms of journal self-citations and citation stacking may severely affect the impact factor, or other citation-based indices. We identified here a network consisting of three Romanian physics journals Proceedings of the Romanian Academy, Series A, Romanian Journal of Physics, and Romanian Reports in Physics, which displayed low to moderate ratio of journal self-citations, but which multiplied recently their impact factors, and were mutually responsible for 55.9%, 64.7% and 63.3% of citations within the impact factor calculation window to the three journals, respectively. They did not receive nearly any network self-cites prior impact factor calculation window, and their network self-cites decreased sharply after the impact factor calculation window. Journal self-citations and citation stacking requires increased attention and elimination from citation indices.

  16. From Excessive Journal Self-Cites to Citation Stacking: Analysis of Journal Self-Citation Kinetics in Search for Journals, Which Boost Their Scientometric Indicators

    PubMed Central

    2016-01-01

    Bibliometric indicators increasingly affect careers, funding, and reputation of individuals, their institutions and journals themselves. In contrast to author self-citations, little is known about kinetics of journal self-citations. Here we hypothesized that they may show a generalizable pattern within particular research fields or across multiple fields. We thus analyzed self-cites to 60 journals from three research fields (multidisciplinary sciences, parasitology, and information science). We also hypothesized that the kinetics of journal self-citations and citations received from other journals of the same publisher may differ from foreign citations. We analyzed the journals published the American Association for the Advancement of Science, Nature Publishing Group, and Editura Academiei Române. We found that although the kinetics of journal self-cites is generally faster compared to foreign cites, it shows some field-specific characteristics. Particularly in information science journals, the initial increase in a share of journal self-citations during post-publication year 0 was completely absent. Self-promoting journal self-citations of top-tier journals have rather indirect but negligible direct effects on bibliometric indicators, affecting just the immediacy index and marginally increasing the impact factor itself as long as the affected journals are well established in their fields. In contrast, other forms of journal self-citations and citation stacking may severely affect the impact factor, or other citation-based indices. We identified here a network consisting of three Romanian physics journals Proceedings of the Romanian Academy, Series A, Romanian Journal of Physics, and Romanian Reports in Physics, which displayed low to moderate ratio of journal self-citations, but which multiplied recently their impact factors, and were mutually responsible for 55.9%, 64.7% and 63.3% of citations within the impact factor calculation window to the three journals, respectively. They did not receive nearly any network self-cites prior impact factor calculation window, and their network self-cites decreased sharply after the impact factor calculation window. Journal self-citations and citation stacking requires increased attention and elimination from citation indices. PMID:27088862

  17. Full-band quantum simulation of electron devices with the pseudopotential method: Theory, implementation, and applications

    NASA Astrophysics Data System (ADS)

    Pala, M. G.; Esseni, D.

    2018-03-01

    This paper presents the theory, implementation, and application of a quantum transport modeling approach based on the nonequilibrium Green's function formalism and a full-band empirical pseudopotential Hamiltonian. We here propose to employ a hybrid real-space/plane-wave basis that results in a significant reduction of the computational complexity compared to a full plane-wave basis. To this purpose, we provide a theoretical formulation in the hybrid basis of the quantum confinement, the self-energies of the leads, and the coupling between the device and the leads. After discussing the theory and the implementation of the new simulation methodology, we report results for complete, self-consistent simulations of different electron devices, including a silicon Esaki diode, a thin-body silicon field effect transistor (FET), and a germanium tunnel FET. The simulated transistors have technologically relevant geometrical features with a semiconductor film thickness of about 4 nm and a channel length ranging from 10 to 17 nm. We believe that the newly proposed formalism may find applications also in transport models based on ab initio Hamiltonians, as those employed in density functional theory methods.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrish, Robert M.; Liu, Fang; Martínez, Todd J., E-mail: toddjmartinez@gmail.com

    We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this “difference self-consistent field (dSCF)” picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space.more » These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TERACHEM SCF implementation.« less

  19. Structure of relativistic shocks in pulsar winds: A model of the wisps in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Gallant, Yves A.; Arons, Jonathan

    1994-01-01

    We propose a model of a optical 'wisps' of the Crab Nebula, features observed in the nebular synchrotron surface brightness near the central pulsar, as manifestations of the internal structure of the shock terminating the pulsar wind. We assume that this wind is composed of ions and a much denser plasma of electrons and positrons, frozen together to a toroidal magnetic field and flowing relativistically. We construct a form of solitary wave model of the shock structure in which we self-consistently solve for the ion orbits and the dynamics of the relativistically hot, magnetized e(+/-) background flow. We ignore dispersion in the ion energies, and we treat the pairs as an adiabatic fluid. The synchrotron emission enhancements, observed as the wisps, are then explained as the regions where reflection of the ions in the self-consistent magnetic field causes compressions of the e(+/-).

  20. Largely reduced grid densities in a vibrational self-consistent field treatment do not significantly impact the resultingwavenumbers.

    PubMed

    Lutz, Oliver M D; Rode, Bernd M; Bonn, Günther K; Huck, Christian W

    2014-12-17

    Especially for larger molecules relevant to life sciences, vibrational self-consistent field (VSCF) calculations can become unmanageably demanding even when only first and second order potential coupling terms are considered. This paper investigates to what extent the grid density of the VSCF's underlying potential energy surface can be reduced without sacrificing accuracy of the resulting wavenumbers. Including single-mode and pair contributions, a reduction to eight points per mode did not introduce a significant deviation but improved the computational efficiency by a factor of four. A mean unsigned deviation of 1.3% from the experiment could be maintained for the fifteen molecules under investigation and the approach was found to be applicable to rigid, semi-rigid and soft vibrational problems likewise. Deprotonated phosphoserine, stabilized by two intramolecular hydrogen bonds, was investigated as an exemplary application.

  1. The ordering of symmetric diblock copolymers: A comparison of self-consistent-field and density functional approaches

    NASA Astrophysics Data System (ADS)

    Nath, Shyamal K.; McCoy, John D.; Curro, John G.; Saunders, Randall S.

    1997-02-01

    Polymer reference interaction site model (PRISM) based density functional (DF) theory is used to evaluate the structure and thermodynamics of structurally symmetric, freely jointed, diblock chains with 0.50 volume fraction. These results are compared to the results of self-consistent-field (SCF) theory. Agreement between the predictions of the SCF and DF theories is found for the lamella spacing well above the order-disorder transition (ODT) and for the qualitative behavior of the interfacial thickness as a function of both chain length and Flory-Huggins χ parameter. Disagreement is found for the magnitude of the interfacial thickness where DF theory indicates that the thickness is 1.7±0.2 times larger than that predicted by SCF theory. It appears that behavior on the monomer length scale is sensitive to system specific details which are neglected by SCF theory.

  2. Influence of Chirality in Ordered Block Copolymer Phases

    NASA Astrophysics Data System (ADS)

    Prasad, Ishan; Grason, Gregory

    2015-03-01

    Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.

  3. Study on the University Students' Self-Expressive Tendency in Mongolia

    ERIC Educational Resources Information Center

    Jagdag, Davaa; Dembereldorj, Zoljargal

    2017-01-01

    The study aimed to explore Mongolian students' tendency of self-expression and a conduct of self-study at one university of Mongolia. It employed quantitative research method to explore the relationship between self-expression and self-study and examined them in terms of age, gender, years of study and field of study. The chi-squared test found…

  4. New type of a generalized variable-coefficient Kadomtsev-Petviashvili equation with self-consistent sources and its Grammian-type solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Xu, Yue; Ma, Kun

    2016-08-01

    In this paper, the variable-coefficient Kadomtsev-Petviashvili (vcKP) equation with self-consistent sources is presented by two different methods, one is the source generation procedure, the other is the Pfaffianization procedure, and the solutions for the two new coupled systems are given through Grammian-type Pfaffian determinants.

  5. Comparison of the EIA, EETA and ETWA, received in the model GSM TIP, at the self-consistent approach and with use of the model MSIS-90

    NASA Astrophysics Data System (ADS)

    Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.

    On the basis of the Global Self-consistent model of the thermosphere ionosphere and protonosphere GSM TIP developed in WD IZMIRAN the calculations for the quiet geomagnetic conditions of the equinox in the minimum of solar activity are carried out In the calculations the new block of the computation of electric fields in the ionosphere briefly described in COSPAR2006-A-00108 was used Two variants of calculations are executed with the account only the dynamo field generated by the thermosphere winds - completely self-consistent and with use of the model MSIS-90 for the calculation of the composition and temperature of the neutral atmosphere The results of the calculations are compared among themselves The global distributions of the foF2 the latitude behavior of the N e and T e on the near-midnight meridian at two height levels 233 and 626 km the latitude-altitude sections on the near-midnight meridian of the T e and time developments on UT of zonal component of the thermosphere wind and ion temperature at height sim 300 km and foF2 and h m F2 for three longitudinal chains of stations - Brazil Pacific and Indian in a vicinity of geomagnetic equator COSPAR2006-A-00109 calculated in two variants are submitted It is shown that at the self-consistent approach the maxima of the crests of the equatorial ionization anomaly EIA in the foF2 are shifted concerning calculated with the MSIS aside later evening hours The equatorial electron temperature anomaly EETA is formed in both variants of calculations However at the

  6. Combining multi-atlas segmentation with brain surface estimation

    NASA Astrophysics Data System (ADS)

    Huo, Yuankai; Carass, Aaron; Resnick, Susan M.; Pham, Dzung L.; Prince, Jerry L.; Landman, Bennett A.

    2016-03-01

    Whole brain segmentation (with comprehensive cortical and subcortical labels) and cortical surface reconstruction are two essential techniques for investigating the human brain. The two tasks are typically conducted independently, however, which leads to spatial inconsistencies and hinders further integrated cortical analyses. To obtain self-consistent whole brain segmentations and surfaces, FreeSurfer segregates the subcortical and cortical segmentations before and after the cortical surface reconstruction. However, this "segmentation to surface to parcellation" strategy has shown limitation in various situations. In this work, we propose a novel "multi-atlas segmentation to surface" method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. To our knowledge, this is the first work that achieves the reliability of state-of-the-art multi-atlas segmentation and labeling methods together with accurate and consistent cortical surface reconstruction. Compared with previous methods, MaCRUISE has three features: (1) MaCRUISE obtains 132 cortical/subcortical labels simultaneously from a single multi-atlas segmentation before reconstructing volume consistent surfaces; (2) Fuzzy tissue memberships are combined with multi-atlas segmentations to address partial volume effects; (3) MaCRUISE reconstructs topologically consistent cortical surfaces by using the sulci locations from multi-atlas segmentation. Two data sets, one consisting of five subjects with expertly traced landmarks and the other consisting of 100 volumes from elderly subjects are used for validation. Compared with CRUISE, MaCRUISE achieves self-consistent whole brain segmentation and cortical reconstruction without compromising on surface accuracy. MaCRUISE is comparably accurate to FreeSurfer while achieving greater robustness across an elderly population.

  7. Combining Multi-atlas Segmentation with Brain Surface Estimation.

    PubMed

    Huo, Yuankai; Carass, Aaron; Resnick, Susan M; Pham, Dzung L; Prince, Jerry L; Landman, Bennett A

    2016-02-27

    Whole brain segmentation (with comprehensive cortical and subcortical labels) and cortical surface reconstruction are two essential techniques for investigating the human brain. The two tasks are typically conducted independently, however, which leads to spatial inconsistencies and hinders further integrated cortical analyses. To obtain self-consistent whole brain segmentations and surfaces, FreeSurfer segregates the subcortical and cortical segmentations before and after the cortical surface reconstruction. However, this "segmentation to surface to parcellation" strategy has shown limitations in various situations. In this work, we propose a novel "multi-atlas segmentation to surface" method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. To our knowledge, this is the first work that achieves the reliability of state-of-the-art multi-atlas segmentation and labeling methods together with accurate and consistent cortical surface reconstruction. Compared with previous methods, MaCRUISE has three features: (1) MaCRUISE obtains 132 cortical/subcortical labels simultaneously from a single multi-atlas segmentation before reconstructing volume consistent surfaces; (2) Fuzzy tissue memberships are combined with multi-atlas segmentations to address partial volume effects; (3) MaCRUISE reconstructs topologically consistent cortical surfaces by using the sulci locations from multi-atlas segmentation. Two data sets, one consisting of five subjects with expertly traced landmarks and the other consisting of 100 volumes from elderly subjects are used for validation. Compared with CRUISE, MaCRUISE achieves self-consistent whole brain segmentation and cortical reconstruction without compromising on surface accuracy. MaCRUISE is comparably accurate to FreeSurfer while achieving greater robustness across an elderly population.

  8. Energetics of jellyfish locomotion determined from field measurements using a Self- Contained Underwater Velocimetry Apparatus (SCUVA)

    NASA Astrophysics Data System (ADS)

    Katija, K.; Dabiri, J. O.

    2007-12-01

    We conduct laboratory measurements of the flow fields induced by Aurelia labiata over a range of sizes using the method of digital particle image velocimetry (DPIV). The flow field measurements are used to directly quantify the kinetic energy induced by the swimming motions of individual medusae. This method provides details regarding the temporal evolution of the energetics during a swimming cycle and its scaling with bell diameter. These types of measurements also allow for the determination of propulsive efficiency, which can be used to compare various methods of propulsion, both biological and artificial. We then describe the development and application of a Self-Contained Underwater Velocimetry Apparatus (SCUVA), a device that enables a single SCUBA diver to make DPIV measurements of animal-fluid interactions in the field. Improvements and adjustments made to the original system will be presented, and a comparison between the animal-induced flow fields in the laboratory and in the field will be made.

  9. Non-Gaussianity from self-ordering scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, Daniel G.; Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid; Caldwell, Robert R.

    The Universe may harbor relics of the post-inflationary epoch in the form of a network of self-ordered scalar fields. Such fossils, while consistent with current cosmological data at trace levels, may leave too weak an imprint on the cosmic microwave background and the large-scale distribution of matter to allow for direct detection. The non-Gaussian statistics of the density perturbations induced by these fields, however, permit a direct means to probe for these relics. Here we calculate the bispectrum that arises in models of self-ordered scalar fields. We find a compact analytic expression for the bispectrum, evaluate it numerically, and providemore » a simple approximation that may be useful for data analysis. The bispectrum is largest for triangles that are aligned (have edges k{sub 1{approx_equal}}2k{sub 2{approx_equal}}2k{sub 3}) as opposed to the local-model bispectrum, which peaks for squeezed triangles (k{sub 1{approx_equal}}k{sub 2}>>k{sub 3}), and the equilateral bispectrum, which peaks at k{sub 1{approx_equal}}k{sub 2{approx_equal}}k{sub 3}. We estimate that this non-Gaussianity should be detectable by the Planck satellite if the contribution from self-ordering scalar fields to primordial perturbations is near the current upper limit.« less

  10. Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation.

    PubMed

    Wu, Fengluan; Jin, Long; Zheng, Xiaotong; Yan, Bingyun; Tang, Pandeng; Yang, Huikai; Deng, Weili; Yang, Weiqing

    2017-11-08

    Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe 3 O 4 /PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.

  11. Performance and Self-Consistency of the Generalized Dielectric Dependent Hybrid Functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brawand, Nicholas P.; Govoni, Marco; Vörös, Márton

    Here, we analyze the performance of the recently proposed screened exchange constant functional (SX) on the GW100 test set, and we discuss results obtained at different levels of self-consistency. The SX functional is a generalization of dielectric dependent hybrid functionals to finite systems; it is nonempirical and depends on the average screening of the exchange interaction. We compare results for ionization potentials obtained with SX to those of CCSD(T) calculations and experiments, and we find excellent agreement, on par with recent state of the art methods based on many body perturbation theory. Applying SX perturbatively to correct PBE eigenvalues yieldsmore » improved results in most cases, except for ionic molecules, for which wave function self-consistency is instead crucial. Calculations where wave functions and the screened exchange constant (α SX) are determined self-consistently, and those where α SX is fixed to the value determined within PBE, yield results of comparable accuracy. Perturbative G 0W 0 corrections of eigenvalues obtained with self-consistent αSX are small on average, for all molecules in the GW100 test set.« less

  12. Performance and Self-Consistency of the Generalized Dielectric Dependent Hybrid Functional

    DOE PAGES

    Brawand, Nicholas P.; Govoni, Marco; Vörös, Márton; ...

    2017-05-24

    Here, we analyze the performance of the recently proposed screened exchange constant functional (SX) on the GW100 test set, and we discuss results obtained at different levels of self-consistency. The SX functional is a generalization of dielectric dependent hybrid functionals to finite systems; it is nonempirical and depends on the average screening of the exchange interaction. We compare results for ionization potentials obtained with SX to those of CCSD(T) calculations and experiments, and we find excellent agreement, on par with recent state of the art methods based on many body perturbation theory. Applying SX perturbatively to correct PBE eigenvalues yieldsmore » improved results in most cases, except for ionic molecules, for which wave function self-consistency is instead crucial. Calculations where wave functions and the screened exchange constant (α SX) are determined self-consistently, and those where α SX is fixed to the value determined within PBE, yield results of comparable accuracy. Perturbative G 0W 0 corrections of eigenvalues obtained with self-consistent αSX are small on average, for all molecules in the GW100 test set.« less

  13. Self-organization of developing embryo using scale-invariant approach

    PubMed Central

    2011-01-01

    Background Self-organization is a fundamental feature of living organisms at all hierarchical levels from molecule to organ. It has also been documented in developing embryos. Methods In this study, a scale-invariant power law (SIPL) method has been used to study self-organization in developing embryos. The SIPL coefficient was calculated using a centro-axial skew symmetrical matrix (CSSM) generated by entering the components of the Cartesian coordinates; for each component, one CSSM was generated. A basic square matrix (BSM) was constructed and the determinant was calculated in order to estimate the SIPL coefficient. This was applied to developing C. elegans during early stages of embryogenesis. The power law property of the method was evaluated using the straight line and Koch curve and the results were consistent with fractal dimensions (fd). Diffusion-limited aggregation (DLA) was used to validate the SIPL method. Results and conclusion The fractal dimensions of both the straight line and Koch curve showed consistency with the SIPL coefficients, which indicated the power law behavior of the SIPL method. The results showed that the ABp sublineage had a higher SIPL coefficient than EMS, indicating that ABp is more organized than EMS. The fd determined using DLA was higher in ABp than in EMS and its value was consistent with type 1 cluster formation, while that in EMS was consistent with type 2. PMID:21635789

  14. Supported Exercise Improves Controlled Eating and Weight through Its Effects on Psychosocial Factors: Extending a Systematic Research Program Toward Treatment Development

    PubMed Central

    Annesi, James J

    2012-01-01

    Background: Behavioral weight-loss treatments have been overwhelmingly unsuccessful. Many inadequately address both behavioral theory and extant research—especially in regard to the lack of viability of simply educating individuals on improved eating and exercise behaviors. Objective: The aim was to synthesize research on associations of changes in exercise behaviors, psychosocial factors, eating behaviors, and weight; and then conduct further direct testing to inform the development of an improved treatment approach. Methods: A systematic program of health behavior-change research based on social cognitive theory, and extensions of that theory applied to exercise and weight loss, was first reviewed. Then, to extend this research toward treatment development and application, a field-based study of obese adults was conducted. Treatments incorporated a consistent component of cognitive-behaviorally supported exercise during 26 weeks that was paired with either standard nutrition education (n = 183) or cognitive-behavioral methods for controlled eating that emphasized self-regulatory methods such as goal setting and caloric tracking, cognitive restructuring, and eating cue awareness (n = 247). Results: Both treatment conditions were associated with improved self-efficacy, self-regulation, mood, exercise, fruit and vegetable consumption, weight, and waist circumference; with improvements in self-regulation for eating, fruit and vegetable consumption, weight, and waist circumference significantly greater in the cognitive-behavioral nutrition condition. Changes in exercise- and eating-related self-efficacy and self-regulation were associated with changes in exercise and eating (R2 = 0.40 and 0.17, respectively), with mood change increasing the explanatory power to R2 = 0.43 and 0.20. Improved self-efficacy and self-regulation for exercise carried over to self-efficacy and self-regulation for controlled eating (β= 0.53 and 0.68, respectively). Conclusions: Development and longitudinal testing of a new and different approach to behavioral treatment for sustained weight loss that emphasizes exercise program-induced psychosocial changes preceding the facilitation of improved eating and weight loss should be guided by our present research. PMID:22529754

  15. Electron distribution function in a laser plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalal, M.; Stoll, I.

    1983-01-01

    An accurate analytic solution of the Vlasov equation in the one-dimensional case is given for plasma electrons in the potential electric field of a monochromatic high-frequency wave of arbitrary amplitude and spatial modulation allowing for a self-consistent field. The phase velocity of the plasma waves is assumed to be appreciably higher than the electron thermal velocity (the case of nonresonant diffusion).

  16. Transport characteristics of a ZnMgO/ZnO hetero junction and the effect of temperature and Mg content

    NASA Astrophysics Data System (ADS)

    Uslu, Salih; Yarar, Zeki

    2017-02-01

    The Ensemble Monte Carlo method is used to calculate the transport characteristics of two dimensional electron gas (2DEG) at a ZnMgO/ZnO hetero structure. The spontaneous and piezoelectric polarizations are considered and there is no intentional doping in either material. Numerical Schrödinger and Poisson equations are solved self consistently to obtain the scattering rates of various scattering mechanisms. The density of carriers, each energy sub bands, potential profile and corresponding wave functions are obtained from the self consistent calculations. The self consistent sub band wave functions of acoustic and optic phonon scattering and interface roughness scattering are used in Monte Carlo method to obtain transport characteristics at ZnMgO/ZnO junction. Two dimensional electron gas confined to ZnMgO/ZnO hetero structure is studied and the effect of temperature and Mg content are investigated.

  17. Self-consistent analysis of radiation and relativistic electron beam dynamics in a helical wiggler using Lienard-Wiechert fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tecimer, M.; Elias, L.R.

    1995-12-31

    Lienard-Wiechert (LW) fields, which are exact solutions of the Wave Equation for a point charge in free space, are employed to formulate a self-consistent treatment of the electron beam dynamics and the evolution of the generated radiation in long undulators. In a relativistic electron beam the internal forces leading to the interaction of the electrons with each other can be computed by means of retarded LW fields. The resulting electron beam dynamics enables us to obtain three dimensional radiation fields starting from an initial incoherent spontaneous emission, without introducing a seed wave at start-up. Based on the formalism employed here,more » both the evolution of the multi-bucket electron phase space dynamics in the beam body as well as edges and the relative slippage of the radiation with respect to the electrons in the considered short bunch are naturally embedded into the simulation model. In this paper, we present electromagnetic radiation studies, including multi-bucket electron phase dynamics and angular distribution of radiation in the time and frequency domain produced by a relativistic short electron beam bunch interacting with a circularly polarized magnetic undulator.« less

  18. Principles and Applications of Ultrasonic-Based Nondestructive Methods for Self-Healing in Cementitious Materials

    PubMed Central

    Ahn, Eunjong; Kim, Hyunjun; Sim, Sung-Han; Shin, Sung Woo; Shin, Myoungsu

    2017-01-01

    Recently, self-healing technologies have emerged as a promising approach to extend the service life of social infrastructure in the field of concrete construction. However, current evaluations of the self-healing technologies developed for cementitious materials are mostly limited to lab-scale experiments to inspect changes in surface crack width (by optical microscopy) and permeability. Furthermore, there is a universal lack of unified test methods to assess the effectiveness of self-healing technologies. Particularly, with respect to the self-healing of concrete applied in actual construction, nondestructive test methods are required to avoid interrupting the use of the structures under evaluation. This paper presents a review of all existing research on the principles of ultrasonic test methods and case studies pertaining to self-healing concrete. The main objective of the study is to examine the applicability and limitation of various ultrasonic test methods in assessing the self-healing performance. Finally, future directions on the development of reliable assessment methods for self-healing cementitious materials are suggested. PMID:28772640

  19. Understanding Magnetic Reconnection: The Physical Mechanism Driving Space Weather

    NASA Astrophysics Data System (ADS)

    Black, Carrie; Antiochos, Spiro K.; Karpen, Judith T.; Germaschewski, Kai; Bessho, Naoki

    2015-04-01

    The explosive energy release in solar eruptive events is believed to be due to magnetic reconnection. In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field countered by the downward tension of the overlying unsheared field. Magnetic reconnection disrupts this force balance. Therefore, to understand CME/flare initiation, it is critical to model the onset of reconnection driven by the build-up of magnetic shear. In MHD simulations, the application of a magnetic-field shear is trivial. However, kinetic effects are important in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is nontrivial, however, and indicates the necessity of a true multiscale model for such processes in the solar environment. The field must be sheared self-consistently and indirectly to prevent the generation of waves that destroy the desired system. In the work presented here, we show reconnection in an X-Point geometry due to a velocity shear driver perpendicular to the plane of reconnection.This material is based upon work supported by the National Science Foundation under Award No. AGS-1331356 and NASA's Living With a Star Targeted Research and Technology program.

  20. Gender Differences in Self-Regulated Online Learning Environment

    ERIC Educational Resources Information Center

    Yukselturk, Erman; Bulut, Safure

    2009-01-01

    This study analyzed gender differences in self-regulated learning components, motivational beliefs and achievement in self-regulated online learning environment. Sample of the study consisted of 145 participants from an online programming course which is based on synchronous and asynchronous communication methods over the Internet. Motivated…

  1. Magnetic domain formation in monolayer nanoparticle films

    NASA Astrophysics Data System (ADS)

    Maranville, Brian; Krycka, Kathryn; Borchers, Julie; Hogg, Charles; Majetich, Sara; Ijiri, Yumi

    2009-03-01

    Self-assembled magnetic nanoparticle films offer promise as data storage media, but an understanding of the interactions is missing. Modified Langmuir-Blodgett methods were used to prepare monolayer films of 7 and 11 nm diameter Fe3O4 nanoparticles with large structural domains. Small-angle neutron scattering (SANS) shows a peak at a wavevector Q corresponding to the particle size and spacing, and scattering at intermediate Q indicating possible long-range correlations. We extend to lower Q with off-specular neutron reflectivity, achieving high intensity by sacrificing resolution along one in-plane direction y while retaining high resolution in the other in-plane direction x and the normal direction z. We measure in saturation and zero field to extract magnetic scattering. In high fields, the specular scattering (Qx=0) is increased, consistent with aligned moments. Preliminary results show weak magnetic scattering for nonzero Qx . Since the maximal Qx roughly corresponds to the lowest Q in SANS, the combination of these techniques allows us to quantify field-dependent magnetic domain size.

  2. Electro-thermo-optical simulation of vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Smagley, Vladimir Anatolievich

    Three-dimensional electro-thermal simulator based on the double-layer approximation for the active region was coupled to optical gain and optical field numerical simulators to provide a self-consistent steady-state solution of VCSEL current-voltage and current-output power characteristics. Methodology of VCSEL modeling had been established and applied to model a standard 850-nm VCSEL based on GaAs-active region and a novel intracavity-contacted 400-nm GaN-based VCSEL. Results of GaAs VCSEL simulation were in a good agreement with experiment. Correlations between current injection and radiative mode profiles have been observed. Physical sub-models of transport, optical gain and cavity optical field were developed. Carrier transport through DBRs was studied. Problem of optical fields in VCSEL cavity was treated numerically by the effective frequency method. All the sub-models were connected through spatially inhomogeneous rate equation system. It was shown that the conventional uncoupled analysis of every separate physical phenomenon would be insufficient to describe VCSEL operation.

  3. Critical scaling analysis for displacive-type organic ferroelectrics around ferroelectric transition

    NASA Astrophysics Data System (ADS)

    Ding, L. J.

    2017-04-01

    The critical scaling properties of displacive-type organic ferroelectrics, in which the ferroelectric-paraelectric transition is induced by spin-Peierls instability, are investigated by Green's function theory through the modified Arrott plot, critical isothermal and electrocaloric effect (ECE) analysis around the transition temperature TC. It is shown that the electric entropy change - ΔS follows a power-law dependence of electric field E : - ΔS ∼En with n satisfying the Franco equation n(TC) = 1 +(β - 1) /(β + γ) = 0.618, wherein the obtained critical exponents β = 0.440 and γ = 1.030 are not only corroborated by Kouvel-Fisher method, but also confirm the Widom critical relation δ = 1 + γ / β. The self-consistency and reliability of the obtained critical exponents are further verified by the scaling equations. Additionally, a universal curve of - ΔS is constructed with rescaling temperature and electric field, so that one can extrapolate the ECE in a certain temperature and electric field range, which would be helpful in designing controlled electric refrigeration devices.

  4. Four-Dimensional Continuum Gyrokinetic Code: Neoclassical Simulation of Fusion Edge Plasmas

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2005-10-01

    We are developing a continuum gyrokinetic code, TEMPEST, to simulate edge plasmas. Our code represents velocity space via a grid in equilibrium energy and magnetic moment variables, and configuration space via poloidal magnetic flux and poloidal angle. The geometry is that of a fully diverted tokamak (single or double null) and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The 4-dimensional code includes kinetic electrons and ions, and electrostatic field-solver options, and simulates neoclassical transport. The present implementation is a Method of Lines approach where spatial finite-differences (higher order upwinding) and implicit time advancement are used. We present results of initial verification and validation studies: transition from collisional to collisionless limits of parallel end-loss in the scrape-off layer, self-consistent electric field, and the effect of the real X-point geometry and edge plasma conditions on the standard neoclassical theory, including a comparison of our 4D code with other kinetic neoclassical codes and experiments.

  5. Electromagnetic scattering from a class of open-ended waveguide discontinuities

    NASA Technical Reports Server (NTRS)

    Altintas, A.; Pathak, P. H.; Burnside, Walter D.

    1986-01-01

    A relatively simple high frequency analysis of electromagnetic scattering from a class of open-ended waveguide discontinuites was developed. The waveguides are composed of perfectly-conducting sections in which the electromagnetic field can be written as the sum of waveguide modes. Junctions are formed at the open end and also within interior regions where different sections are joined. The reflection and transmission properties of each junction are described in terms of a scattering matrix which is determined by combining the modal ray picture with high frequency techniques such as the Geometrical Theory of Diffraction (GTD), the Equivalent Current Method (ECM), and modifications of the Physical Theory of Diffraction (PTD). A new set of equivalent circuits are employed in this ECM analysis which leads to a simple treatment of many types of junction discontinuities. Also, a new procedure is presented to improve the efficiency of the aperture integration at the open end which is required in the PTD procedure for finding the fields radiated from (or coupled to) the open end. Once the scattering matrices are determined, they are then combined using a self-consistent multiple scattering method to obtain the total scattered fields.

  6. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: the role of 4f electrons.

    PubMed

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  7. New algorithms for field-theoretic block copolymer simulations: Progress on using adaptive-mesh refinement and sparse matrix solvers in SCFT calculations

    NASA Astrophysics Data System (ADS)

    Sides, Scott; Jamroz, Ben; Crockett, Robert; Pletzer, Alexander

    2012-02-01

    Self-consistent field theory (SCFT) for dense polymer melts has been highly successful in describing complex morphologies in block copolymers. Field-theoretic simulations such as these are able to access large length and time scales that are difficult or impossible for particle-based simulations such as molecular dynamics. The modified diffusion equations that arise as a consequence of the coarse-graining procedure in the SCF theory can be efficiently solved with a pseudo-spectral (PS) method that uses fast-Fourier transforms on uniform Cartesian grids. However, PS methods can be difficult to apply in many block copolymer SCFT simulations (eg. confinement, interface adsorption) in which small spatial regions might require finer resolution than most of the simulation grid. Progress on using new solver algorithms to address these problems will be presented. The Tech-X Chompst project aims at marrying the best of adaptive mesh refinement with linear matrix solver algorithms. The Tech-X code PolySwift++ is an SCFT simulation platform that leverages ongoing development in coupling Chombo, a package for solving PDEs via block-structured AMR calculations and embedded boundaries, with PETSc, a toolkit that includes a large assortment of sparse linear solvers.

  8. Generalizing the correlated chromophore domain model of reversible photodegradation to include the effects of an applied electric field

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin; Kuzyk, Mark G.

    2014-03-01

    All observations of photodegradation and self-healing follow the predictions of the correlated chromophore domain model [Ramini et al., Polym. Chem. 4, 4948 (2013), 10.1039/c3py00263b]. In the present work, we generalize the domain model to describe the effects of an electric field by including induced dipole interactions between molecules in a domain by means of a self-consistent field approach. This electric field correction is added to the statistical mechanical model to calculate the distribution of domains that are central to healing. Also included in the model are the dynamics due to the formation of an irreversibly damaged species, which we propose involves damage to the polymer mediated through energy transfer from a dopant molecule after absorbing a photon. As in previous studies, the model with one-dimensional domains best explains all experimental data of the population as a function of time, temperature, intensity, concentration, and now applied electric field. Though the precise nature of a domain is yet to be determined, the fact that only one-dimensional domain models are consistent with observations suggests that they might be made of correlated dye molecules along polymer chains. Furthermore, the voltage-dependent measurements suggest that the largest polarizability axis of the molecules are oriented perpendicular to the chain.

  9. Models for the dynamics of dust-like matter in the self-gravity field: The method of hydrodynamic substitutions

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. M.

    2017-09-01

    Models for the dynamics of a dust-like medium in the self-gravity field are investigated. Solutions of the corresponding problems are constructed by the method of hydrodynamic substitutions generalizing the Cole-Hopf substitutions. The method is extended to multidimensional ideal and viscous fluid flows with cylindrical and spherical symmetries for which exact solutions are constructed. Solutions for the dynamics of self-gravitating dust with arbitrary initial distributions of both fluid density and velocity are constructed using special coordinate transformations. In particular, the problem of cosmological expansion is considered in terms of Newton's gravity theory. Models of a one-dimensional viscous dust fluid flow and some problems of gas hydrodynamics are considered. Examples of exact solutions and their brief analysis are provided.

  10. A new approach to modeling the effective thermal conductivity of ceramics porous media using a generalized self-consistent method

    NASA Astrophysics Data System (ADS)

    Edrisi, Siroos; Bidhendi, Norollah Kasiri; Haghighi, Maryam

    2017-01-01

    Effective thermal conductivity of the porous media was modeled based on a self-consistent method. This model estimates the heat transfer between insulator surface and air cavities accurately. In this method, the pore size and shape, the temperature gradient and other thermodynamic properties of the fluid was taken into consideration. The results are validated by experimental data for fire bricks used in cracking furnaces at the olefin plant of Maroon petrochemical complexes well as data published for polyurethane foam (synthetic polymers) IPTM and IPM. The model predictions present a good agreement against experimental data with thermal conductivity deviating <1 %.

  11. Supported exercise improves controlled eating and weight through its effects on psychosocial factors: extending a systematic research program toward treatment development.

    PubMed

    Annesi, James J

    2012-01-01

    Behavioral weight-loss treatments have been overwhelmingly unsuccessful. Many inadequately address both behavioral theory and extant research--especially in regard to the lack of viability of simply educating individuals on improved eating and exercise behaviors. The aim was to synthesize research on associations of changes in exercise behaviors, psychosocial factors, eating behaviors, and weight; and then conduct further direct testing to inform the development of an improved treatment approach. A systematic program of health behavior-change research based on social cognitive theory, and extensions of that theory applied to exercise and weight loss, was first reviewed. Then, to extend this research toward treatment development and application, a field-based study of obese adults was conducted. Treatments incorporated a consistent component of cognitive-behaviorally supported exercise during 26 weeks that was paired with either standard nutrition education (n = 183) or cognitive-behavioral methods for controlled eating that emphasized self-regulatory methods such as goal setting and caloric tracking, cognitive restructuring, and eating cue awareness (n = 247). Both treatment conditions were associated with improved self-efficacy, self-regulation, mood, exercise, fruit and vegetable consumption, weight, and waist circumference; with improvements in self-regulation for eating, fruit and vegetable consumption, weight, and waist circumference significantly greater in the cognitive-behavioral nutrition condition. Changes in exercise- and eating-related self-efficacy and self-regulation were associated with changes in exercise and eating (R(2) = 0.40 and 0.17, respectively), with mood change increasing the explanatory power to R(2) = 0.43 and 0.20. Improved self-efficacy and self-regulation for exercise carried over to self-efficacy and self-regulation for controlled eating (β= 0.53 and 0.68, respectively). Development and longitudinal testing of a new and different approach to behavioral treatment for sustained weight loss that emphasizes exercise program-induced psychosocial changes preceding the facilitation of improved eating and weight loss should be guided by our present research.

  12. Response theory of the ergodic many-body delocalized phase: Keldysh Finkel'stein sigma models and the 10-fold way

    NASA Astrophysics Data System (ADS)

    Liao, Yunxiang; Levchenko, Alex; Foster, Matthew S.

    2017-11-01

    We derive the finite temperature Keldysh response theory for interacting fermions in the presence of quenched short-ranged disorder, as applicable to any of the 10 Altland-Zirnbauer classes in an Anderson delocalized phase with at least a U(1) continuous symmetry. In this formulation of the interacting Finkel'stein nonlinear sigma model, the statistics of one-body wave functions are encoded by the constrained matrix field, while physical correlations follow from the hydrodynamic density or spin response field, which decouples the interactions. Integrating out the matrix field first, we obtain weak (anti) localization and Altshuler-Aronov quantum conductance corrections from the hydrodynamic response function. This procedure automatically incorporates the correct infrared cutoff physics, and in particular gives the Altshuler-Aronov-Khmelnitsky (AAK) equations for dephasing of weak (anti)localization due to electron-electron collisions. We explicate the method by deriving known quantumcorrections in two dimensions for the symplectic metal class AII, as well as the spin-SU(2) invariant superconductor classes C and CI. We show that quantum conductance corrections due to the special modes at zero energy in nonstandard classes are automatically cut off by temperature, as previously expected, while the Wigner-Dyson class Cooperon modes that persist to all energies are cut by dephasing. We also show that for short-ranged interactions, the standard self-consistent solution for the dephasing rate is equivalent to a particular summation of diagrams via the self-consistent Born approximation. This should be compared to the corresponding AAK solution for long-ranged Coulomb interactions, which exploits the Markovian noise correlations induced by thermal fluctuations of the electromagnetic field. We discuss prospects for exploring the many-body localization transition as a dephasing catastrophe in short-range interacting models, as encountered by approaching from the ergodic side.

  13. Fierz Convergence Criterion: A Controlled Approach to Strongly Interacting Systems with Small Embedded Clusters.

    PubMed

    Ayral, Thomas; Vučičević, Jaksa; Parcollet, Olivier

    2017-10-20

    We present an embedded-cluster method, based on the triply irreducible local expansion formalism. It turns the Fierz ambiguity, inherent to approaches based on a bosonic decoupling of local fermionic interactions, into a convergence criterion. It is based on the approximation of the three-leg vertex by a coarse-grained vertex computed from a self-consistently determined cluster impurity model. The computed self-energies are, by construction, continuous functions of momentum. We show that, in three interaction and doping regimes of the two-dimensional Hubbard model, self-energies obtained with clusters of size four only are very close to numerically exact benchmark results. We show that the Fierz parameter, which parametrizes the freedom in the Hubbard-Stratonovich decoupling, can be used as a quality control parameter. By contrast, the GW+extended dynamical mean field theory approximation with four cluster sites is shown to yield good results only in the weak-coupling regime and for a particular decoupling. Finally, we show that the vertex has spatially nonlocal components only at low Matsubara frequencies.

  14. "I like to Treat Others as Others Would Treat Me": The Development of Prosocial Selves in an Urban Youth Organization

    ERIC Educational Resources Information Center

    Deutsch, Nancy L.

    2005-01-01

    The field of moral development has moved toward an identity-based model suggesting that moral action stems not only from moral reasoning but from a desire to act in ways consistent with one's self-concept. Moral identity, in turn, is rooted in social relationships. This idea, that one's sense of self drives moral behavior and that this identity is…

  15. PREFACE: Self-organized nanostructures

    NASA Astrophysics Data System (ADS)

    Rousset, Sylvie; Ortega, Enrique

    2006-04-01

    In order to fabricate ordered arrays of nanostructures, two different strategies might be considered. The `top-down' approach consists of pushing the limit of lithography techniques down to the nanometre scale. However, beyond 10 nm lithography techniques will inevitably face major intrinsic limitations. An alternative method for elaborating ultimate-size nanostructures is based on the reverse `bottom-up' approach, i.e. building up nanostructures (and eventually assemble them to form functional circuits) from individual atoms or molecules. Scanning probe microscopies, including scanning tunnelling microscopy (STM) invented in 1982, have made it possible to create (and visualize) individual structures atom by atom. However, such individual atomic manipulation is not suitable for industrial applications. Self-assembly or self-organization of nanostructures on solid surfaces is a bottom-up approach that allows one to fabricate and assemble nanostructure arrays in a one-step process. For applications, such as high density magnetic storage, self-assembly appears to be the simplest alternative to lithography for massive, parallel fabrication of nanostructure arrays with regular sizes and spacings. These are also necessary for investigating the physical properties of individual nanostructures by means of averaging techniques, i.e. all those using light or particle beams. The state-of-the-art and the current developments in the field of self-organization and physical properties of assembled nanostructures are reviewed in this issue of Journal of Physics: Condensed Matter. The papers have been selected from among the invited and oral presentations of the recent summer workshop held in Cargese (Corsica, France, 17-23 July 2005). All authors are world-renowned in the field. The workshop has been funded by the Marie Curie Actions: Marie Curie Conferences and Training Courses series named `NanosciencesTech' supported by the VI Framework Programme of the European Community, by the EUROCORES SONS Programme under the auspices of the European Science Foundation and the VI Framework Programme of the European Community. It was also funded by CNRS `formation permanente'. Major topics relevant to self-organization are covered in these papers. The first two papers deal with the physics of self-organized nucleation and growth. Both metal and semiconductor templates are investigated. The paper by Meyer zu Heringdorf focuses on the mesoscopic patterns formed by the Au-induced faceting of vicinal Si (001). Repain et al describe how uniform and long-range ordered nanostructures are built on a surface by using nucleation on a point-defect array. Electronic properties of such self-organized systems are reviewed by Mugarza and Ortega. The next three papers deal with molecules and self-organization. In the paper presented by Kröger, molecules are deposited on vicinal Au surfaces and are studied by STM. A very active field in self-organized nanostructures is the chemical route for nanoparticle synthesis. The paper by Piléni deals with self-organization of inorganic crystals produced by evaporation of a solution, also called colloids. Their physical properties are also treated. Gacoin et al illustrate chemical synthesis, including the template approach, using organized mesoporous silica films for the production of semiconductor or metal arrays of particles. An alternative method is developed in the paper by Allongue and Maroun which is the electrochemical method of building arrays of nanostructures. Ultimately, self-organization is a very interdisciplinary field. There is also an attempt in this issue to present some of the challenges using biology. The paper by Belamie et al deals with the self-assembly of biological macromolecules, such as chitin and collagen. Finally, Molodtsov and co-workers describe how a biological template can be used in order to achieve novel materials made of hybrid metallo-organic nanostructures.

  16. Fringe image processing based on structured light series

    NASA Astrophysics Data System (ADS)

    Gai, Shaoyan; Da, Feipeng; Li, Hongyan

    2009-11-01

    The code analysis of the fringe image is playing a vital role in the data acquisition of structured light systems, which affects precision, computational speed and reliability of the measurement processing. According to the self-normalizing characteristic, a fringe image processing method based on structured light is proposed. In this method, a series of projective patterns is used when detecting the fringe order of the image pixels. The structured light system geometry is presented, which consist of a white light projector and a digital camera, the former projects sinusoidal fringe patterns upon the object, and the latter acquires the fringe patterns that are deformed by the object's shape. Then the binary images with distinct white and black strips can be obtained and the ability to resist image noise is improved greatly. The proposed method can be implemented easily and applied for profile measurement based on special binary code in a wide field.

  17. Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development.

    PubMed

    Smith, Daniel G A; Burns, Lori A; Sirianni, Dominic A; Nascimento, Daniel R; Kumar, Ashutosh; James, Andrew M; Schriber, Jeffrey B; Zhang, Tianyuan; Zhang, Boyi; Abbott, Adam S; Berquist, Eric J; Lechner, Marvin H; Cunha, Leonardo A; Heide, Alexander G; Waldrop, Jonathan M; Takeshita, Tyler Y; Alenaizan, Asem; Neuhauser, Daniel; King, Rollin A; Simmonett, Andrew C; Turney, Justin M; Schaefer, Henry F; Evangelista, Francesco A; DePrince, A Eugene; Crawford, T Daniel; Patkowski, Konrad; Sherrill, C David

    2018-06-11

    Psi4NumPy demonstrates the use of efficient computational kernels from the open-source Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the rapid development of clear, understandable Python computer code for new quantum chemical methods, while maintaining a relatively low execution time. Using these tools, reference implementations have been created for a number of methods, including self-consistent field (SCF), SCF response, many-body perturbation theory, coupled-cluster theory, configuration interaction, and symmetry-adapted perturbation theory. Furthermore, several reference codes have been integrated into Jupyter notebooks, allowing background, underlying theory, and formula information to be associated with the implementation. Psi4NumPy tools and associated reference implementations can lower the barrier for future development of quantum chemistry methods. These implementations also demonstrate the power of the hybrid C++/Python programming approach employed by the Psi4 program.

  18. Non-orthogonal internally contracted multi-configurational perturbation theory (NICPT): Dynamic electron correlation for large, compact active spaces

    NASA Astrophysics Data System (ADS)

    Kähler, Sven; Olsen, Jeppe

    2017-11-01

    A computational method is presented for systems that require high-level treatments of static and dynamic electron correlation but cannot be treated using conventional complete active space self-consistent field-based methods due to the required size of the active space. Our method introduces an efficient algorithm for perturbative dynamic correlation corrections for compact non-orthogonal MCSCF calculations. In the algorithm, biorthonormal expansions of orbitals and CI-wave functions are used to reduce the scaling of the performance determining step from quadratic to linear in the number of configurations. We describe a hierarchy of configuration spaces that can be chosen for the active space. Potential curves for the nitrogen molecule and the chromium dimer are compared for different configuration spaces. Already the most compact spaces yield qualitatively correct potentials that with increasing size of configuration spaces systematically approach complete active space results.

  19. Tuning the electronic properties of gated multilayer phosphorene: A self-consistent tight-binding study

    NASA Astrophysics Data System (ADS)

    Li, L. L.; Partoens, B.; Peeters, F. M.

    2018-04-01

    By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.

  20. Implementation of extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude oscillator model.

    PubMed

    Lemkul, Justin A; Roux, Benoît; van der Spoel, David; MacKerell, Alexander D

    2015-07-15

    Explicit treatment of electronic polarization in empirical force fields used for molecular dynamics simulations represents an important advancement in simulation methodology. A straightforward means of treating electronic polarization in these simulations is the inclusion of Drude oscillators, which are auxiliary, charge-carrying particles bonded to the cores of atoms in the system. The additional degrees of freedom make these simulations more computationally expensive relative to simulations using traditional fixed-charge (additive) force fields. Thus, efficient tools are needed for conducting these simulations. Here, we present the implementation of highly scalable algorithms in the GROMACS simulation package that allow for the simulation of polarizable systems using extended Lagrangian dynamics with a dual Nosé-Hoover thermostat as well as simulations using a full self-consistent field treatment of polarization. The performance of systems of varying size is evaluated, showing that the present code parallelizes efficiently and is the fastest implementation of the extended Lagrangian methods currently available for simulations using the Drude polarizable force field. © 2015 Wiley Periodicals, Inc.

  1. Configuration interaction singles natural orbitals: An orbital basis for an efficient and size intensive multireference description of electronic excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Yinan; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu; Hohenstein, Edward G.

    2015-01-14

    Multireference quantum chemical methods, such as the complete active space self-consistent field (CASSCF) method, have long been the state of the art for computing regions of potential energy surfaces (PESs) where complex, multiconfigurational wavefunctions are required, such as near conical intersections. Herein, we present a computationally efficient alternative to the widely used CASSCF method based on a complete active space configuration interaction (CASCI) expansion built from the state-averaged natural orbitals of configuration interaction singles calculations (CISNOs). This CISNO-CASCI approach is shown to predict vertical excitation energies of molecules with closed-shell ground states similar to those predicted by state averaged (SA)-CASSCFmore » in many cases and to provide an excellent reference for a perturbative treatment of dynamic electron correlation. Absolute energies computed at the CISNO-CASCI level are found to be variationally superior, on average, to other CASCI methods. Unlike SA-CASSCF, CISNO-CASCI provides vertical excitation energies which are both size intensive and size consistent, thus suggesting that CISNO-CASCI would be preferable to SA-CASSCF for the study of systems with multiple excitable centers. The fact that SA-CASSCF and some other CASCI methods do not provide a size intensive/consistent description of excited states is attributed to changes in the orbitals that occur upon introduction of non-interacting subsystems. Finally, CISNO-CASCI is found to provide a suitable description of the PES surrounding a biradicaloid conical intersection in ethylene.« less

  2. An SCF and MCSCF description of the low-lying states of MgO. [Configuration State Functions Multiconfiguration Self Consistent Field

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Silver, D. M.; Yarkony, D. R.

    1980-01-01

    The paper presents the multiconfiguration-self-consistent (MCSCF) and configuration state functions (CSF) for the low-lying electronic states of MgO. It was shown that simple description of these states was possible provided the 1 Sigma(+) states are individually optimized at the MCSCF level, noting that the 1(3 Sigma)(+) and 2(1 Sigma)(+) states which nominally result from the same electron occupation are separated energetically. The molecular orbitals obtained at this level of approximation should provide a useful starting point for extended configuration interaction calculations since they have been optimized for the particular states of interest.

  3. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-12-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  4. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    PubMed

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  5. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson–Boltzmann electrostatics

    PubMed Central

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-01-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson–Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum–Chandler–Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods. PMID:26723595

  6. Insights into Appreciation and Learning Systems

    NASA Astrophysics Data System (ADS)

    Vickers, Geoffrey

    [. . .] I grew to manhood before the FirstWorldWar in an England that took stability for granted and regarded order - national and international - both as a self-regulating process of betterment called progress and also as a field for human design directed to the same end. These two not wholly consistent ideas applied in the political-social, the financial-economic, and the scientific-technological fields; all these fields are regarded as benign partners, the first still the most prized.

  7. Collapsing spherical star in Scalar-Einstein-Gauss-Bonnet gravity with a quadratic coupling

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Soumya

    2018-04-01

    We study the evolution of a self interacting scalar field in Einstein-Gauss-Bonnet theory in four dimension where the scalar field couples non minimally with the Gauss-Bonnet term. Considering a polynomial coupling of the scalar field with the Gauss-Bonnet term, a self-interaction potential and an additional perfect fluid distribution alongwith the scalar field, we investigate different possibilities regarding the outcome of the collapsing scalar field. The strength of the coupling and choice of the self-interaction potential serves as the pivotal initial conditions of the models presented. The high degree of non-linearity in the equation system is taken care off by using a method of invertibe point transformation of anharmonic oscillator equation, which has proven itself very useful in recent past while investigating dynamics of minimally coupled scalar fields.

  8. Metastable Prepores in Tension-Free Lipid Bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, Christina L.; Awasthi, Neha; Muller, Marcus

    The formation and closure of aqueous pores in lipid bilayers is a key step in various biophysical processes. Large pores are well described by classical nucleation theory, but the free-energy landscape of small, biologically relevant pores has remained largely unexplored. The existence of small and metastable “prepores” was hypothesized decades ago from electroporation experiments, but resolving metastable prepores from theoretical models remained challenging. Using two complementary methods—atomistic simulations and self-consistent field theory of a minimal lipid model—we determine the parameters for which metastable prepores occur in lipid membranes. Here, both methods consistently suggest that pore metastability depends on the relativemore » volume ratio between the lipid head group and lipid tails: lipids with a larger head-group volume fraction (or shorter saturated tails) form metastable prepores, whereas lipids with a smaller head-group volume fraction (or longer unsaturated tails) form unstable prepores.« less

  9. Onset of η-nuclear binding in a pionless EFT approach

    NASA Astrophysics Data System (ADS)

    Barnea, N.; Bazak, B.; Friedman, E.; Gal, A.

    2017-08-01

    ηNNN and ηNNNN bound states are explored in stochastic variational method (SVM) calculations within a pionless effective field theory (EFT) approach at leading order. The theoretical input consists of regulated NN and NNN contact terms, and a regulated energy dependent ηN contact term derived from coupled-channel models of the N* (1535) nucleon resonance. A self consistency procedure is applied to deal with the energy dependence of the ηN subthreshold input, resulting in a weak dependence of the calculated η-nuclear binding energies on the EFT regulator. It is found, in terms of the ηN scattering length aηN, that the onset of binding η 3He requires a minimal value of ReaηN close to 1 fm, yielding then a few MeV η binding in η 4He. The onset of binding η 4He requires a lower value of ReaηN, but exceeding 0.7 fm.

  10. Metastable Prepores in Tension-Free Lipid Bilayers

    DOE PAGES

    Ting, Christina L.; Awasthi, Neha; Muller, Marcus; ...

    2018-03-23

    The formation and closure of aqueous pores in lipid bilayers is a key step in various biophysical processes. Large pores are well described by classical nucleation theory, but the free-energy landscape of small, biologically relevant pores has remained largely unexplored. The existence of small and metastable “prepores” was hypothesized decades ago from electroporation experiments, but resolving metastable prepores from theoretical models remained challenging. Using two complementary methods—atomistic simulations and self-consistent field theory of a minimal lipid model—we determine the parameters for which metastable prepores occur in lipid membranes. Here, both methods consistently suggest that pore metastability depends on the relativemore » volume ratio between the lipid head group and lipid tails: lipids with a larger head-group volume fraction (or shorter saturated tails) form metastable prepores, whereas lipids with a smaller head-group volume fraction (or longer unsaturated tails) form unstable prepores.« less

  11. Quantum mechanical/molecular mechanical/continuum style solvation model: linear response theory, variational treatment, and nuclear gradients.

    PubMed

    Li, Hui

    2009-11-14

    Linear response and variational treatment are formulated for Hartree-Fock (HF) and Kohn-Sham density functional theory (DFT) methods and combined discrete-continuum solvation models that incorporate self-consistently induced dipoles and charges. Due to the variational treatment, analytic nuclear gradients can be evaluated efficiently for these discrete and continuum solvation models. The forces and torques on the induced point dipoles and point charges can be evaluated using simple electrostatic formulas as for permanent point dipoles and point charges, in accordance with the electrostatic nature of these methods. Implementation and tests using the effective fragment potential (EFP, a polarizable force field) method and the conductorlike polarizable continuum model (CPCM) show that the nuclear gradients are as accurate as those in the gas phase HF and DFT methods. Using B3LYP/EFP/CPCM and time-dependent-B3LYP/EFP/CPCM methods, acetone S(0)-->S(1) excitation in aqueous solution is studied. The results are close to those from full B3LYP/CPCM calculations.

  12. The complex-scaled multiconfigurational spin-tensor electron propagator method for low-lying shape resonances in Be-, Mg- and Ca-

    NASA Astrophysics Data System (ADS)

    Tsogbayar, Tsednee; Yeager, Danny L.

    2017-01-01

    We further apply the complex scaled multiconfigurational spin-tensor electron propagator method (CMCSTEP) for the theoretical determination of resonance parameters with electron-atom systems including open-shell and highly correlated (non-dynamical correlation) atoms and molecules. The multiconfigurational spin-tensor electron propagator method (MCSTEP) developed and implemented by Yeager and his coworkers for real space gives very accurate and reliable ionization potentials and electron affinities. CMCSTEP uses a complex scaled multiconfigurational self-consistent field (CMCSCF) state as an initial state along with a dilated Hamiltonian where all of the electronic coordinates are scaled by a complex factor. CMCSTEP is designed for determining resonances. We apply CMCSTEP to get the lowest 2P (Be-, Mg-) and 2D (Mg-, Ca-) shape resonances using several different basis sets each with several complete active spaces. Many of these basis sets we employ have been used by others with different methods. Hence, we can directly compare results with different methods but using the same basis sets.

  13. Modes of self-organization of diluted bubbly liquids in acoustic fields: One-dimensional theory.

    PubMed

    Gumerov, Nail A; Akhatov, Iskander S

    2017-02-01

    The paper is dedicated to mathematical modeling of self-organization of bubbly liquids in acoustic fields. A continuum model describing the two-way interaction of diluted polydisperse bubbly liquids and acoustic fields in weakly-nonlinear approximation is studied analytically and numerically in the one-dimensional case. It is shown that the regimes of self-organization of monodisperse bubbly liquids can be controlled by only a few dimensionless parameters. Two basic modes, clustering and propagating shock waves of void fraction (acoustically induced transparency), are identified and criteria for their realization in the space of parameters are proposed. A numerical method for solving of one-dimensional self-organization problems is developed. Computational results for mono- and polydisperse systems are discussed.

  14. Emergency Medical Care. A Manual for the Paramedic in the Field--Workbook.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This workbook is designed to accompany the text of the same name and to serve as an aid to both learning and review during the course of study. The workbook consists of 15 module self-tests and vocabulary lists that follow the modules of the text. Tests consist of objective questions (multiple choice, fill-in-the-blank, short answers, and…

  15. Systems and methods for creation of conducting networks of magnetic particles through dynamic self-assembly process

    DOEpatents

    Snezhko, Oleksiy [Woodridge, IL; Aronson, Igor [Darien, IL; Kwok, Wai-Kwong [Downers Grove, IL

    2011-01-25

    Self-assembly of magnetic microparticles in AC magnetic fields. Excitation of the system by an AC magnetic field provides a variety of patterns that can be controlled by adjusting the frequency and the amplitude of the field. At low particle densities the low-frequency magnetic excitation favors cluster phase formation, while high frequency excitation favors chains and netlike structures. For denser configurations, an abrupt transition to the network phase was obtained.

  16. Toward computational models of magma genesis and geochemical transport in subduction zones

    NASA Astrophysics Data System (ADS)

    Katz, R.; Spiegelman, M.

    2003-04-01

    The chemistry of material erupted from subduction-related volcanoes records important information about the processes that lead to its formation at depth in the Earth. Self-consistent numerical simulations provide a useful tool for interpreting this data as they can explore the non-linear feedbacks between processes that control the generation and transport of magma. A model capable of addressing such issues should include three critical components: (1) a variable viscosity solid flow solver with smooth and accurate pressure and velocity fields, (2) a parameterization of mass transfer reactions between the solid and fluid phases and (3) a consistent fluid flow and reactive transport code. We report on progress on each of these parts. To handle variable-viscosity solid-flow in the mantle wedge, we are adapting a Patankar-based FAS multigrid scheme developed by Albers (2000, J. Comp. Phys.). The pressure field in this scheme is the solution to an elliptic equation on a staggered grid. Thus we expect computed pressure fields to have smooth gradient fields suitable for porous flow calculations, unlike those of commonly used penalty-method schemes. Use of a temperature and strain-rate dependent mantle rheology has been shown to have important consequences for the pattern of flow and the temperature structure in the wedge. For computing thermal structure we present a novel scheme that is a hybrid of Crank-Nicholson (CN) and Semi-Lagrangian (SL) methods. We have tested the SLCN scheme on advection across a broad range of Peclet numbers and show the results. This scheme is also useful for low-diffusivity chemical transport. We also describe our parameterization of hydrous mantle melting [Katz et. al., G3, 2002 in review]. This parameterization is designed to capture the melting behavior of peridotite--water systems over parameter ranges relevant to subduction. The parameterization incorporates data and intuition gained from laboratory experiments and thermodynamic calculations yet it remains flexible and computationally efficient. Given accurate solid-flow fields, a parameterization of hydrous melting and a method for calculating thermal structure (enforcing energy conservation), the final step is to integrate these components into a consistent framework for reactive-flow and chemical transport in deformable porous media. We present preliminary results for reactive flow in 2-D static and upwelling columns and discuss possible mechanical and chemical consequences of open system reactive melting with application to arcs.

  17. Self-Concept Structure and the Quality of Self-Knowledge

    PubMed Central

    Showers, Carolin J.; Ditzfeld, Christopher P.; Zeigler-Hill, Virgil

    2014-01-01

    Objective Explores the hidden vulnerability of individuals with compartmentalized self-concept structures by linking research on self-organization to related models of self functioning. Method Across three studies, college students completed self-descriptive card sorts as a measure of self-concept structure and either the Contingencies of Self-Worth Scale; Likert ratings of perceived authenticity of self-aspects; or a response latency measure of self-esteem accessibility. In all, there were 382 participants (247 females; 77% White, 6% Hispanic, 5% Black, 5% Asian, 4% Native American, and 3% Other). Results Consistent with their unstable self-evaluations, compartmentalized individuals report greater contingencies of self-worth and describe their experience of multiple self-aspects as less authentic than do individuals with integrative self-organization. Compartmentalized individuals also make global self-evaluations more slowly than do integrative individuals. Conclusions Together with previous findings on self-clarity, these results suggest that compartmentalized individuals may experience difficulties in how they know the self, whereas individuals with integrative self-organization may display greater continuity and evaluative consistency across self-aspects, with easier access to evaluative self-knowledge. PMID:25180616

  18. Psychometric properties of the Spanish version of the Experiencing of Self Scale (EOSS) for assessment in Functional Analytic Psychotherapy.

    PubMed

    Valero-Aguayo, Luis; Ferro-García, Rafael; López-Bermúdez, Miguel Ángel; Selva-López de Huralde, María de los Ángeles

    2014-01-01

    The Experiencing of Self Scale (EOSS) was created to evaluate the experience of the personal self, within the field of Functional Analytic Psychotherapy. This paper presents a study of the reliability and validity of the EOSS in a Spanish sample. The study sample, chosen from 24 different centres, comprised 1,040 participants aged between 18-75, of whom 32% were men and 68% women. The clinical sample was made up of 32.7%, whereas 67.3% had no known problem. To obtain evidence of convergent validity, other questionnaires related to the self (EPQ-R, DES, RSES) were used for comparison. The EOSS showed high internal consistency (Cronbach's α = .941) and significantly high correlations with the EPQ-R Neuroticism scale and the DES Dissociation scale, while showing negative correlations with the Rosenberg Self-Esteem Scale (RSES). The EOSS revealed 4 principal factors: a self in close relationships, a self with casual social relationships, a self in general and a positive self-concept. Significant statistical differences were found between the clinical and standard sample, the former showing a higher average. The EOSS had high internal consistency, showing evidence of convergent validity with similar scales and proving useful for the assessment of people with psychological problems related to the self.

  19. Mesoscale modeling of vacancy-mediated Si segregation near an edge dislocation in Ni under irradiation

    NASA Astrophysics Data System (ADS)

    Li, Zebo; Trinkle, Dallas R.

    2017-04-01

    We use a continuum method informed by transport coefficients computed using self-consistent mean field theory to model vacancy-mediated diffusion of substitutional Si solutes in FCC Ni near an a/2 [1 1 ¯0 ] (111 ) edge dislocation. We perform two sequential simulations: first under equilibrium boundary conditions and then under irradiation. The strain field around the dislocation induces heterogeneity and anisotropy in the defect transport properties and determines the steady-state vacancy and Si distributions. At equilibrium both vacancies and Si solutes diffuse to form Cottrell atmospheres with vacancies accumulating in the compressive region above the dislocation core while Si segregates to the tensile region below the core. Irradiation raises the bulk vacancy concentration, driving vacancies to flow into the dislocation core. The out-of-equilibrium vacancy fluxes drag Si atoms towards the core, causing segregation to the compressive region, despite Si being an oversized solute in Ni.

  20. Analysis and characterization of graphene-on-substrate devices

    NASA Astrophysics Data System (ADS)

    Berdebes, Dionisis

    The purpose of this MS Thesis is the analysis and characterization of graphene on substrate structures prepared at the Birck Nanotechnology Center-Purdue University/IBM Watson Research Center-N.Y., and characterized under low-field transport conditions. First, a literature survey is conducted, both in theoretical and experimental work on graphene transport phenomena, and the open issues are reported. Next, the theory of low-field transport in graphene is reviewed within a Landauer framework. Experimental results of back-gated graphene-on-substrate devices, prepared by the Appenzeller group, are then presented, followed by an extraction of an energy/temperature dependent backscattering mean free path as the main characterization parameter. A key conclusion is the critical role of contacts in two-probe measurements. In this framework, a non-self-consistent Non Equilibrium Green's Function method is employed for the calculation of the odd and even metal-graphene ballistic interfacial resistance. A good agreement with the relevant experimental work is observed.

  1. The ePLAS code for Ignition Studies

    NASA Astrophysics Data System (ADS)

    Faehl, R. J.; Mason, R. J.; Kirkpatrick, R. C.

    2012-10-01

    The ePLAS code is a multi-fluid/PIC hybrid developing self-consistent E & B-fields by the Implicit Moment Method for stable calculations of high density plasma problems with voids on the electron Courant time scale. See: http://www.researchapplicationscorp.com. Here, we outline typical applications to: 1) short pulse driven electron transport along void (or high Z) insulated wires, and 2) the 2D development of shock ignition pressure peaks with B-fields. We outline the code's recent inclusion of SESAME EOS data, a DT/DD burn capability, a new option for K-alpha imaging of modeling output, and demonstrate a foil expansion tracked with either fluid or particle ions. Also, we describe a new super-hybrid extension of our implicit solver that permits full target dynamics studies on the ion Courant scale. Finally, we will touch on the very recent application of ePLAS to possible non-local/kinetic hydro effects NIF capsules.

  2. Cd in SnO: Probing structural effects on the electronic structure of doped oxide semiconductors through the electric field gradient at the Cd nucleus

    NASA Astrophysics Data System (ADS)

    Errico, Leonardo A.; Rentería, Mario; Petrilli, Helena M.

    2007-04-01

    We perform an ab initio study of the electric field gradient (EFG) at the nucleus of Cd impurities at substitutional Sn sites in crystalline SnO. The full-potential linearized-augmented plane wave and the projector augmented wave methods used here allow us to treat the electronic structure of the doped system and the atomic relaxations introduced by the impurities in the host in a fully self-consistent way using a supercell approach in a state-of-the-art way. Effects of the impurity charge state on the electronic and structural properties are also discussed. Since the EFG is a very subtle quantity, its determination is very useful to probe ground-state properties such as the charge density. We show that the EFG is very sensitive to structural relaxations induced by the impurity. Our theoretical predictions are compared with available experimental results.

  3. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    PubMed

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  4. DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).

    PubMed

    Gaus, Michael; Cui, Qiang; Elstner, Marcus

    2012-04-10

    The self-consistent-charge density-functional tight-binding method (SCC-DFTB) is an approximate quantum chemical method derived from density functional theory (DFT) based on a second-order expansion of the DFT total energy around a reference density. In the present study we combine earlier extensions and improve them consistently with, first, an improved Coulomb interaction between atomic partial charges, and second, the complete third-order expansion of the DFT total energy. These modifications lead us to the next generation of the DFTB methodology called DFTB3, which substantially improves the description of charged systems containing elements C, H, N, O, and P, especially regarding hydrogen binding energies and proton affinities. As a result, DFTB3 is particularly applicable to biomolecular systems. Remaining challenges and possible solutions are also briefly discussed.

  5. The Effect of Educational Disequilibrium in Field Work on Graduate Social Work Students' Self-Concept and Mental Health

    ERIC Educational Resources Information Center

    Ying, Yu-Wen

    2011-01-01

    The author used a mixed methods design to assess field work-related educational disequilibrium and its effect on the self-concept and mental health of MSW students. Twenty-eight advanced, fourth-semester MSW students were compared with 37 entering, first-semester MSW students in practice-related sense of accomplishment. Compared with first-year…

  6. Self-consistent one dimension in space and three dimension in velocity kinetic trajectory simulation model of magnetized plasma-wall transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chalise, Roshan, E-mail: plasma.roshan@gmail.com; Khanal, Raju

    2015-11-15

    We have developed a self-consistent 1d3v (one dimension in space and three dimension in velocity) Kinetic Trajectory Simulation (KTS) model, which can be used for modeling various situations of interest and yields results of high accuracy. Exact ion trajectories are followed, to calculate along them the ion distribution function, assuming an arbitrary injection ion distribution. The electrons, on the other hand, are assumed to have a cut-off Maxwellian velocity distribution at injection and their density distribution is obtained analytically. Starting from an initial guess, the potential profile is iterated towards the final time-independent self-consistent state. We have used it tomore » study plasma sheath region formed in presence of an oblique magnetic field. Our results agree well with previous works from other models, and hence, we expect our 1d3v KTS model to provide a basis for the studying of all types of magnetized plasmas, yielding more accurate results.« less

  7. Systems and methods for detecting a failure event in a field programmable gate array

    NASA Technical Reports Server (NTRS)

    Ng, Tak-Kwong (Inventor); Herath, Jeffrey A. (Inventor)

    2009-01-01

    An embodiment generally relates to a method of self-detecting an error in a field programmable gate array (FPGA). The method includes writing a signature value into a signature memory in the FPGA and determining a conclusion of a configuration refresh operation in the FPGA. The method also includes reading an outcome value from the signature memory.

  8. 3D-MHD Simulations of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Bayliss, R. A.; Forest, C. B.; Wright, J. C.; O'Connell, R.

    2003-10-01

    Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a 3-D pseudo-spectral simulation of the MHD equations; results of the simulations are used to predict behavior of the experiment. The code solves the self-consistent full evolution of the magnetic and velocity fields. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and fourth order finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James [Proc. R. Soc. Lond. A 425. 407-429 (1989)]. Initial results indicate that saturation of the magnetic field occurs so that the resulting perturbed backreaction of the induced magnetic field changes the velocity field such that it would no longer be linearly unstable, suggesting non-linear terms are necessary for explaining the resulting state. Saturation and self-excitation depend in detail upon the magnetic Prandtl number.

  9. Gas-Phase Reaction Pathways and Rate Coefficients for the Dichlorosilane-Hydrogen and Trichlorosilane-Hydrogen Systems

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Walch, Stephen P.

    2002-01-01

    As part of NASA Ames Research Center's Integrated Process Team on Device/Process Modeling and Nanotechnology our goal is to create/contribute to a gas-phase chemical database for use in modeling microelectronics devices. In particular, we use ab initio methods to determine chemical reaction pathways and to evaluate reaction rate coefficients. Our initial studies concern reactions involved in the dichlorosilane-hydrogen (SiCl2H2--H2) and trichlorosilane-hydrogen (SiCl2H-H2) systems. Reactant, saddle point (transition state), and product geometries and their vibrational harmonic frequencies are determined using the complete-active-space self-consistent-field (CASSCF) electronic structure method with the correlation consistent polarized valence double-zeta basis set (cc-pVDZ). Reaction pathways are constructed by following the imaginary frequency mode of the saddle point to both the reactant and product. Accurate energetics are determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations (CCSD(T)) extrapolated to the complete basis set limit. Using the data from the electronic structure calculations, reaction rate coefficients are obtained using conventional and variational transition state and RRKM theories.

  10. Testing the Self-Efficacy Questionnaire with Korean Children in Institutionalized Care

    ERIC Educational Resources Information Center

    Kim, Youngmi; Kim, Kyeongmo; Lee, Shinhye

    2017-01-01

    Purpose: We tested the reliability and validity of the Self-Efficacy Questionnaire for Children (SEQ-C) in a sample of children living in orphanages in South Korea. Methods: Our study sample consisted of 334 children aged 13-18 obtained using a convenience sampling method. We conducted a confirmatory factor analysis to identify the factor…

  11. Self-organization of developing embryo using scale-invariant approach.

    PubMed

    Tiraihi, Ali; Tiraihi, Mujtaba; Tiraihi, Taki

    2011-06-03

    Self-organization is a fundamental feature of living organisms at all hierarchical levels from molecule to organ. It has also been documented in developing embryos. In this study, a scale-invariant power law (SIPL) method has been used to study self-organization in developing embryos. The SIPL coefficient was calculated using a centro-axial skew symmetrical matrix (CSSM) generated by entering the components of the Cartesian coordinates; for each component, one CSSM was generated. A basic square matrix (BSM) was constructed and the determinant was calculated in order to estimate the SIPL coefficient. This was applied to developing C. elegans during early stages of embryogenesis. The power law property of the method was evaluated using the straight line and Koch curve and the results were consistent with fractal dimensions (fd). Diffusion-limited aggregation (DLA) was used to validate the SIPL method. The fractal dimensions of both the straight line and Koch curve showed consistency with the SIPL coefficients, which indicated the power law behavior of the SIPL method. The results showed that the ABp sublineage had a higher SIPL coefficient than EMS, indicating that ABp is more organized than EMS. The fd determined using DLA was higher in ABp than in EMS and its value was consistent with type 1 cluster formation, while that in EMS was consistent with type 2. © 2011 Tiraihi et al; licensee BioMed Central Ltd.

  12. SQDFT: Spectral Quadrature method for large-scale parallel O(N) Kohn-Sham calculations at high temperature

    NASA Astrophysics Data System (ADS)

    Suryanarayana, Phanish; Pratapa, Phanisri P.; Sharma, Abhiraj; Pask, John E.

    2018-03-01

    We present SQDFT: a large-scale parallel implementation of the Spectral Quadrature (SQ) method for O(N) Kohn-Sham Density Functional Theory (DFT) calculations at high temperature. Specifically, we develop an efficient and scalable finite-difference implementation of the infinite-cell Clenshaw-Curtis SQ approach, in which results for the infinite crystal are obtained by expressing quantities of interest as bilinear forms or sums of bilinear forms, that are then approximated by spatially localized Clenshaw-Curtis quadrature rules. We demonstrate the accuracy of SQDFT by showing systematic convergence of energies and atomic forces with respect to SQ parameters to reference diagonalization results, and convergence with discretization to established planewave results, for both metallic and insulating systems. We further demonstrate that SQDFT achieves excellent strong and weak parallel scaling on computer systems consisting of tens of thousands of processors, with near perfect O(N) scaling with system size and wall times as low as a few seconds per self-consistent field iteration. Finally, we verify the accuracy of SQDFT in large-scale quantum molecular dynamics simulations of aluminum at high temperature.

  13. Revisiting Photoemission and Inverse Photoemission Spectra of Nickel Oxide from First Principles: Implications for Solar Energy Conversion

    PubMed Central

    2015-01-01

    We use two different ab initio quantum mechanics methods, complete active space self-consistent field theory applied to electrostatically embedded clusters and periodic many-body G0W0 calculations, to reanalyze the states formed in nickel(II) oxide upon electron addition and ionization. In agreement with interpretations of earlier measurements, we find that the valence and conduction band edges consist of oxygen and nickel states, respectively. However, contrary to conventional wisdom, we find that the oxygen states of the valence band edge are localized whereas the nickel states at the conduction band edge are delocalized. We argue that these characteristics may lead to low electron–hole recombination and relatively efficient electron transport, which, coupled with band gap engineering, could produce higher solar energy conversion efficiency compared to that of other transition-metal oxides. Both methods find a photoemission/inverse-photoemission gap of 3.6–3.9 eV, in good agreement with the experimental range, lending credence to our analysis of the electronic structure of NiO. PMID:24689856

  14. Tectonic predictions with mantle convection models

    NASA Astrophysics Data System (ADS)

    Coltice, Nicolas; Shephard, Grace E.

    2018-04-01

    Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough for an accurate prediction of instantaneous flow, but not for a prediction after 10 My of evolution. Therefore, inverse methods (sequential or data assimilation methods) using short-term fully dynamic evolution that predict surface kinematics are promising tools for a better understanding of the state of the Earth's mantle.

  15. Barriers to Self-Sufficiency for Single Female Heads of Families. Hearings before a Subcommitee of the Committee on Government Operations, House of Representatives, Ninety-Ninth Congress, First Session (July 9-10, 1985).

    ERIC Educational Resources Information Center

    Congress of the U. S., Washington, DC. House Committee on Government Operations.

    The proceedings of a House of Representatives hearing on opportunities for self-sufficiency for single women in poverty are presented in this document. Included are statements presented by three panels consisting of experts in the field of welfare and employment policy, the General Accounting Office, and representatives of the National Association…

  16. Domain walls of linear polarization in isotropic Kerr media

    NASA Astrophysics Data System (ADS)

    Louis, Y.; Sheppard, A. P.; Haelterman, M.

    1997-09-01

    We present a new type of domain-wall vector solitary waves in isotropic self-defocusing Kerr media. These domain walls consist of localized structures separating uniform field domains of orthogonal linear polarizations. They result from the interplay between diffraction, self-phase modulation and cross-phase modulation in cases where the nonlinear birefringence coefficient B = {χxyyx(3)}/{χxxxx(3)} is negative. Numerical simulations show that these new vector solitary waves are stable.

  17. The self-assembly of particles with isotropic interactions: Using DNA coated colloids to create designer nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, R. B.; Dion, S.; Konigslow, K. von

    Self-consistent field theory equations are presented that are suitable for use as a coarse-grained model for DNA coated colloids, polymer-grafted nanoparticles and other systems with approximately isotropic interactions. The equations are generalized for arbitrary numbers of chemically distinct colloids. The advantages and limitations of such a coarse-grained approach for DNA coated colloids are discussed, as are similarities with block copolymer self-assembly. In particular, preliminary results for three species self-assembly are presented that parallel results from a two dimensional ABC triblock copolymer phase. The possibility of incorporating crystallization, dynamics, inverse statistical mechanics and multiscale modelling techniques are discussed.

  18. Cluster Dynamical Mean Field Methods and the Momentum-selective Mott transition

    NASA Astrophysics Data System (ADS)

    Gull, Emanuel

    2011-03-01

    Innovations in methodology and computational power have enabled cluster dynamical mean field calculations of the Hubbard model with interaction strengths and band structures representative of high temperature copper oxide superconductors, for clusters large enough that the thermodyamic limit behavior may be determined. We present the methods and show how extrapolations to the thermodynamic limit work in practice. We show that the Hubbard model with next-nearest neighbor hopping at intermediate interaction strength captures much of the exotic behavior characteristic of the high temperature superconductors. An important feature of the results is a pseudogap for hole doping but not for electron doping. The pseudogap regime is characterized by a gap for momenta near Brillouin zone face and gapless behavior near the zone diagonal. for dopings outside of the pseudogap regime we find scattering rates which vary around the fermi surface in a way consistent with recent transport measurements. Using the maximum entropy method we calculate spectra, self-energies, and response functions for Raman spectroscopy and optical conductivities, finding results also in good agreement with experiment. Olivier Parcollet, Philipp Werner, Nan Lin, Michel Ferrero, Antoine Georges, Andrew J. Millis; NSF-DMR-0705847.

  19. Homogenization of Periodic Masonry Using Self-Consistent Scheme and Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Lambadi, Harish; Pandey, Manoj; Rajagopal, Amirtham

    2016-01-01

    Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in a periodic manner. Obtaining the effective elastic stiffness of the masonry structures has been a challenging task. In this study, the homogenization theory for periodic media is implemented in a very generic manner to derive the anisotropic global behavior of the masonry, through rigorous application of the homogenization theory in one step and through a full three-dimensional behavior. We have considered the periodic Eshelby self-consistent method and the finite element method. Two representative unit cells that represent the microstructure of the masonry wall exactly are considered for calibration and numerical application of the theory.

  20. Preschool Teachers' Perceived Math Anxiety and Self-Efficacy for Teaching Mathematics

    ERIC Educational Resources Information Center

    Cook, Carolyn D.

    2017-01-01

    This study explored the relationship between math anxiety and perceived self-efficacy for teaching mathematics in preschool teachers. Perceptions of and attributions for the teachers' perceived math anxiety and perceived self-efficacy for teaching mathematics were also explored. The study employed a mixed-method design consisting of both…

Top