Sample records for self-consistent multiscale theory

  1. Self-consistent clustering analysis: an efficient multiscale scheme for inelastic heterogeneous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z.; Bessa, M. A.; Liu, W.K.

    A predictive computational theory is shown for modeling complex, hierarchical materials ranging from metal alloys to polymer nanocomposites. The theory can capture complex mechanisms such as plasticity and failure that span across multiple length scales. This general multiscale material modeling theory relies on sound principles of mathematics and mechanics, and a cutting-edge reduced order modeling method named self-consistent clustering analysis (SCA) [Zeliang Liu, M.A. Bessa, Wing Kam Liu, “Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials,” Comput. Methods Appl. Mech. Engrg. 306 (2016) 319–341]. SCA reduces by several orders of magnitude the computational cost of micromechanical andmore » concurrent multiscale simulations, while retaining the microstructure information. This remarkable increase in efficiency is achieved with a data-driven clustering method. Computationally expensive operations are performed in the so-called offline stage, where degrees of freedom (DOFs) are agglomerated into clusters. The interaction tensor of these clusters is computed. In the online or predictive stage, the Lippmann-Schwinger integral equation is solved cluster-wise using a self-consistent scheme to ensure solution accuracy and avoid path dependence. To construct a concurrent multiscale model, this scheme is applied at each material point in a macroscale structure, replacing a conventional constitutive model with the average response computed from the microscale model using just the SCA online stage. A regularized damage theory is incorporated in the microscale that avoids the mesh and RVE size dependence that commonly plagues microscale damage calculations. The SCA method is illustrated with two cases: a carbon fiber reinforced polymer (CFRP) structure with the concurrent multiscale model and an application to fatigue prediction for additively manufactured metals. For the CFRP problem, a speed up estimated to be about 43,000 is achieved by using the SCA method, as opposed to FE2, enabling the solution of an otherwise computationally intractable problem. The second example uses a crystal plasticity constitutive law and computes the fatigue potency of extrinsic microscale features such as voids. This shows that local stress and strain are capture sufficiently well by SCA. This model has been incorporated in a process-structure-properties prediction framework for process design in additive manufacturing.« less

  2. Nanosystem self-assembly pathways discovered via all-atom multiscale analysis.

    PubMed

    Pankavich, Stephen D; Ortoleva, Peter J

    2012-07-26

    We consider the self-assembly of composite structures from a group of nanocomponents, each consisting of particles within an N-atom system. Self-assembly pathways and rates for nanocomposites are derived via a multiscale analysis of the classical Liouville equation. From a reduced statistical framework, rigorous stochastic equations for population levels of beginning, intermediate, and final aggregates are also derived. It is shown that the definition of an assembly type is a self-consistency criterion that must strike a balance between precision and the need for population levels to be slowly varying relative to the time scale of atomic motion. The deductive multiscale approach is complemented by a qualitative notion of multicomponent association and the ensemble of exact atomic-level configurations consistent with them. In processes such as viral self-assembly from proteins and RNA or DNA, there are many possible intermediates, so that it is usually difficult to predict the most efficient assembly pathway. However, in the current study, rates of assembly of each possible intermediate can be predicted. This avoids the need, as in a phenomenological approach, for recalibration with each new application. The method accounts for the feedback across scales in space and time that is fundamental to nanosystem self-assembly. The theory has applications to bionanostructures, geomaterials, engineered composites, and nanocapsule therapeutic delivery systems.

  3. Shock Waves Propagation in Scope of the Nonlocal Theory of Dynamical Plasticity

    NASA Astrophysics Data System (ADS)

    Khantuleva, Tatyana A.

    2004-07-01

    From the point of view of the modern statistical mechanics the problems on shock compression of solids require a reformulation in terms of highly nonequilibrium effects arising inside the wave front. The self-organization during the multiscale and multistage momentum and energy exchange are originated by the correlation function. The theory of dynamic plasticity has been developed by the author on the base of the self-consistent nonlocal hydrodynamic approach had been applied to the shock wave propagation in solids. Nonlocal balance equations describe both the reversible wave type transport at the initial stage and the diffusive (dissipative) one in the end. The involved inverse influence of the mesoeffects on the wave propagation makes the formulation of problems self-consistent and involves a concept of the cybernetic control close-loop.

  4. All-Atom Multiscale Molecular Dynamics Theory and Simulation of Self-Assembly, Energy Transfer and Structural Transition in Nanosystems

    NASA Astrophysics Data System (ADS)

    Espinosa Duran, John Michael

    The study of nanosystems and their emergent properties requires the development of multiscale computational models, theories and methods that preserve atomic and femtosecond resolution, to reveal details that cannot be resolved experimentally today. Considering this, three long time scale phenomena were studied using molecular dynamics and multiscale methods: self-assembly of organic molecules on graphite, energy transfer in nanosystems, and structural transition in vault nanoparticles. Molecular dynamics simulations of the self-assembly of alkoxybenzonitriles with different tail lengths on graphite were performed to learn about intermolecular interactions and phases exhibited by self-organized materials. This is important for the design of ordered self-assembled organic photovoltaic materials with greater efficiency than the disordered blends. Simulations revealed surface dynamical behaviors that cannot be resolved experimentally today due to the lack of spatiotemporal resolution. Atom-resolved structures predicted by simulations agreed with scanning tunneling microscopy images and unit cell measurements. Then, a multiscale theory based on the energy density as a field variable is developed to study energy transfer in nanoscale systems. For applications like photothermal microscopy or cancer phototherapy is required to understand how the energy is transferred to/from nanosystems. This multiscale theory could be applied in this context and here is tested for cubic nanoparticles immersed in water for energy being transferred to/from the nanoparticle. The theory predicts the energy transfer dynamics and reveals phenomena that cannot be described by current phenomenological theories. Finally, temperature-triggered structural transitions were revealed for vault nanoparticles using molecular dynamics and multiscale simulations. Vault is a football-shaped supramolecular assembly very distinct from the commonly observed icosahedral viruses. It has very promising applications in drug delivery and has been extensively studied experimentally. Sub-microsecond multiscale simulations at 310 K on the vault revealed the opening and closing of fractures near the shoulder while preserving the overall structure. This fracture mechanism could explain the uptake and release of small drugs while maintaining the overall structure. Higher temperature simulations show the generation of large fractures near the waist, which enables interaction of the external medium with the inner vault residues. Simulation results agreed with microscopy and spectroscopy measurements, and revealed new structures and mechanisms.

  5. The self-assembly of particles with isotropic interactions: Using DNA coated colloids to create designer nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, R. B.; Dion, S.; Konigslow, K. von

    Self-consistent field theory equations are presented that are suitable for use as a coarse-grained model for DNA coated colloids, polymer-grafted nanoparticles and other systems with approximately isotropic interactions. The equations are generalized for arbitrary numbers of chemically distinct colloids. The advantages and limitations of such a coarse-grained approach for DNA coated colloids are discussed, as are similarities with block copolymer self-assembly. In particular, preliminary results for three species self-assembly are presented that parallel results from a two dimensional ABC triblock copolymer phase. The possibility of incorporating crystallization, dynamics, inverse statistical mechanics and multiscale modelling techniques are discussed.

  6. Multicomponent, Multiphase Thermodynamics of Swelling Porous Media With Electroquasistatics. 1. Macroscale Field Equations

    DTIC Science & Technology

    2001-08-08

    entropy inequality with independent variables consistent with several natural systems and apply the resulting constitutive theory near equi- librium...1973. [3] L. S. Bennethum and J. H. Cushman. Multiscale , hybrid mixture theory for swelling systems - I: Balance laws. International Journal of...Engineering Science, 34(2):125–145, 1996. [4] L. S. Bennethum and J. H. Cushman. Multiscale , hybrid mixture theory for swelling systems - II: Constitutive

  7. A study of microindentation hardness tests by mechanism-based strain gradient plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y.; Xue, Z.; Gao, H.

    2000-08-01

    We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model.more » In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society.« less

  8. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    PubMed

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-10

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  9. Hierarchical Multiscale Modeling of Macromolecules and their Assemblies

    PubMed Central

    Ortoleva, P.; Singharoy, A.; Pankavich, S.

    2013-01-01

    Soft materials (e.g., enveloped viruses, liposomes, membranes and supercooled liquids) simultaneously deform or display collective behaviors, while undergoing atomic scale vibrations and collisions. While the multiple space-time character of such systems often makes traditional molecular dynamics simulation impractical, a multiscale approach has been presented that allows for long-time simulation with atomic detail based on the co-evolution of slowly-varying order parameters (OPs) with the quasi-equilibrium probability density of atomic configurations. However, this approach breaks down when the structural change is extreme, or when nearest-neighbor connectivity of atoms is not maintained. In the current study, a self-consistent approach is presented wherein OPs and a reference structure co-evolve slowly to yield long-time simulation for dynamical soft-matter phenomena such as structural transitions and self-assembly. The development begins with the Liouville equation for N classical atoms and an ansatz on the form of the associated N-atom probability density. Multiscale techniques are used to derive Langevin equations for the coupled OP-configurational dynamics. The net result is a set of equations for the coupled stochastic dynamics of the OPs and centers of mass of the subsystems that constitute a soft material body. The theory is based on an all-atom methodology and an interatomic force field, and therefore enables calibration-free simulations of soft matter, such as macromolecular assemblies. PMID:23671457

  10. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics – Revisiting Perturbative Hybrid Kinetic-MHD Theory

    PubMed Central

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-01-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346

  11. Multiscale modeling and computation of optically manipulated nano devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Gang, E-mail: baog@zju.edu.cn; Liu, Di, E-mail: richardl@math.msu.edu; Luo, Songting, E-mail: luos@iastate.edu

    2016-07-01

    We present a multiscale modeling and computational scheme for optical-mechanical responses of nanostructures. The multi-physical nature of the problem is a result of the interaction between the electromagnetic (EM) field, the molecular motion, and the electronic excitation. To balance accuracy and complexity, we adopt the semi-classical approach that the EM field is described classically by the Maxwell equations, and the charged particles follow the Schrödinger equations quantum mechanically. To overcome the numerical challenge of solving the high dimensional multi-component many-body Schrödinger equations, we further simplify the model with the Ehrenfest molecular dynamics to determine the motion of the nuclei, andmore » use the Time-Dependent Current Density Functional Theory (TD-CDFT) to calculate the excitation of the electrons. This leads to a system of coupled equations that computes the electromagnetic field, the nuclear positions, and the electronic current and charge densities simultaneously. In the regime of linear responses, the resonant frequencies initiating the out-of-equilibrium optical-mechanical responses can be formulated as an eigenvalue problem. A self-consistent multiscale method is designed to deal with the well separated space scales. The isomerization of azobenzene is presented as a numerical example.« less

  12. Tango

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Jeffrey

    Tango enables the accelerated numerical solution of the multiscale problem of self-consistent transport and turbulence. Fast turbulence results in fluxes of heat and particles that slowly change the mean profiles of temperature and density. The fluxes are computed by separate turbulence simulation codes; Tang solves for the self-consistent change in mean temperature or density given those fluxes.

  13. Unified force-level theory of multiscale transient localization and emergent elasticity in polymer solutions and melts

    NASA Astrophysics Data System (ADS)

    Dell, Zachary E.; Schweizer, Kenneth S.

    A unified, microscopic, theoretical understanding of polymer dynamics in concentrated liquids from segmental to macromolecular scales remains an open problem. We have formulated a statistical mechanical theory for this problem that explicitly accounts for intra- and inter-molecular forces at the Kuhn segment level. The theory is self-consistently closed at the level of a matrix of dynamical second moments of a tagged chain. Two distinct regimes of isotropic transient localization are predicted. In semidilute solutions, weak localization is predicted on a mesoscopic length scale between segment and chain scales which is a power law function of the invariant packing length. This is consistent with the breakdown of Rouse dynamics and the emergence of entanglements. The chain structural correlations in the dynamically arrested state are also computed. In dense melts, strong localization is predicted on a scale much smaller than the segment size which is weakly dependent on chain connectivity and signals the onset of glassy dynamics. Predictions of the dynamic plateau shear modulus are consistent with the known features of emergent rubbery and glassy elasticity. Generalizations to treat the effects of chemical crosslinking and physical bond formation in polymer gels are possible.

  14. A Measure of Child and Adolescent Self-Concept and Psychological Adjustment.

    ERIC Educational Resources Information Center

    Bronstein, Phyllis; And Others

    This paper presents a new multi-scale instrument--the Bronstein-Cruz Child/Adolescent Self-Concept and Adjustment Scale, which measures self-concept and psychological adjustment for children and adolescents, aged 10-18 years. It consists of five subscales: Self-Evaluation, Social and Peer Relations, Family Relations, Sense of Mastery, and…

  15. A self-consistent first-principle based approach to model carrier mobility in organic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meded, Velimir; Friederich, Pascal; Symalla, Franz

    2015-12-31

    Transport through thin organic amorphous films, utilized in OLEDs and OPVs, has been a challenge to model by using ab-initio methods. Charge carrier mobility depends strongly on the disorder strength and reorganization energy, both of which are significantly affected by the details in environment of each molecule. Here we present a multi-scale approach to describe carrier mobility in which the materials morphology is generated using DEPOSIT, a Monte Carlo based atomistic simulation approach, or, alternatively by molecular dynamics calculations performed with GROMACS. From this morphology we extract the material specific hopping rates, as well as the on-site energies using amore » fully self-consistent embedding approach to compute the electronic structure parameters, which are then used in an analytic expression for the carrier mobility. We apply this strategy to compute the carrier mobility for a set of widely studied molecules and obtain good agreement between experiment and theory varying over several orders of magnitude in the mobility without any freely adjustable parameters. The work focuses on the quantum mechanical step of the multi-scale workflow, explains the concept along with the recently published workflow optimization, which combines density functional with semi-empirical tight binding approaches. This is followed by discussion on the analytic formula and its agreement with established percolation fits as well as kinetic Monte Carlo numerical approaches. Finally, we skatch an unified multi-disciplinary approach that integrates materials science simulation and high performance computing, developed within EU project MMM@HPC.« less

  16. Transfer the multiscale texture of crystalline Si onto thin-film micromorph cell by UV nanoimprint for light trapping

    NASA Astrophysics Data System (ADS)

    Liu, Daiming; Wang, Qingkang; Wang, Qing

    2018-05-01

    Surface texturing is of great significance in light trapping for solar cells. Herein, the multiscale texture, consisting of microscale pyramids and nanoscale porous arrangement, was fabricated on crystalline Si by KOH etching and Ag-assisted HF etching processes and subsequently replicated onto glass with high fidelity by UV nanoimprint method. Light trapping of the multiscale texture was studied by spectral (reflectance, haze ratio) characterizations. Results reveal the multiscale texture provides the broadband reflection reducing, the highlighted light scattering and the additional self-cleaning behaviors. Compared with bare cell, the multiscale textured micromorph cell achieves a 4% relative increase in power conversion efficiency. This surface texturing route paves a promising way for developing low-cost, large-scale and high-efficiency solar applications.

  17. On Multiscale Modeling: Preserving Energy Dissipation Across the Scales with Consistent Handshaking Methods

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.; Waas, Anthony M.

    2013-01-01

    A mesh objective crack band model was implemented within the generalized method of cells micromechanics theory. This model was linked to a macroscale finite element model to predict post-peak strain softening in composite materials. Although a mesh objective theory was implemented at the microscale, it does not preclude pathological mesh dependence at the macroscale. To ensure mesh objectivity at both scales, the energy density and the energy release rate must be preserved identically across the two scales. This requires a consistent characteristic length or localization limiter. The effects of scaling (or not scaling) the dimensions of the microscale repeating unit cell (RUC), according to the macroscale element size, in a multiscale analysis was investigated using two examples. Additionally, the ramifications of the macroscale element shape, compared to the RUC, was studied.

  18. Multiscale polar theory of microtubule and motor-protein assemblies

    DOE PAGES

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; ...

    2015-01-27

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new “bioactive” liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specificmore » sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. Finally, the results connect local polar structure to flow structures and defect dynamics.« less

  19. Towards Multiscale Interactions Between Tearing Modes and Microturbulence

    NASA Astrophysics Data System (ADS)

    Williams, Z. R.; Pueschel, M. J.; Terry, P. W.

    2017-10-01

    Work on the Madison Symmetric Torus Reversed-Field Pinch (RFP) has shown that large-scale tearing modes present in standard operation are highly detrimental to confinement. These tearing modes, even when reduced in improved confinement regimes of operation, significantly affect zonal flow activity and play a large role in setting microturbulent-induced transport levels. Previous gyrokinetic work has shown that a small but finite tearing fluctuation amplitude is necessary to produce transport values in agreement with experimental observation. This has previously been implemented via an ad-hoc, constant-in-time A∥ perturbation. This work details self-consistent modeling of tearing fluctuations in the RFP using the Gene code via the inclusion of a current gradient drive incorporated into the background distribution function. Tearing mode growth rates calculated from gyrokinetic simulations are benchmarked with results from fluid theory. Additionally, first results from multiscale Gene simulations describing tearing mode interactions with RFP microturbulence are presented. This work is supported by the U.S. Department of Energy, Grant No. DE-FG02-85ER-53121.

  20. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Matouš, Karel; Geers, Marc G. D.; Kouznetsova, Varvara G.; Gillman, Andrew

    2017-02-01

    Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.

  1. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matouš, Karel, E-mail: kmatous@nd.edu; Geers, Marc G.D.; Kouznetsova, Varvara G.

    2017-02-01

    Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platformmore » in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.« less

  2. Multiscale System Theory

    DTIC Science & Technology

    1990-02-21

    LIDS-P-1953 Multiscale System Theory Albert Benveniste IRISA-INRIA, Campus de Beaulieu 35042 RENNES CEDEX, FRANCE Ramine Nikoukhah INRIA...TITLE AND SUBTITLE Multiscale System Theory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...the development of a corresponding system theory and a theory of stochastic processes and their estimation. The research presented in this and several

  3. A New Self-Consistent Field Model of Polymer/Nanoparticle Mixture

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Li, Hui-Shu; Zhang, Bo-Kai; Li, Jian; Tian, Wen-De

    2016-02-01

    Field-theoretical method is efficient in predicting assembling structures of polymeric systems. However, it’s challenging to generalize this method to study the polymer/nanoparticle mixture due to its multi-scale nature. Here, we develop a new field-based model which unifies the nanoparticle description with the polymer field within the self-consistent field theory. Instead of being “ensemble-averaged” continuous distribution, the particle density in the final morphology can represent individual particles located at preferred positions. The discreteness of particle density allows our model to properly address the polymer-particle interface and the excluded-volume interaction. We use this model to study the simplest system of nanoparticles immersed in the dense homopolymer solution. The flexibility of tuning the interfacial details allows our model to capture the rich phenomena such as bridging aggregation and depletion attraction. Insights are obtained on the enthalpic and/or entropic origin of the structural variation due to the competition between depletion and interfacial interaction. This approach is readily extendable to the study of more complex polymer-based nanocomposites or biology-related systems, such as dendrimer/drug encapsulation and membrane/particle assembly.

  4. A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in polycrystalline thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamshidian, M., E-mail: jamshidian@cc.iut.ac.ir; Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstrasse 15, 99423 Weimar; Thamburaja, P., E-mail: prakash.thamburaja@gmail.com

    A previously-developed finite-deformation- and crystal-elasticity-based constitutive theory for stressed grain growth in cubic polycrystalline bodies has been augmented to include a description of excess surface energy and grain-growth stagnation mechanisms through the use of surface effect state variables in a thermodynamically-consistent manner. The constitutive theory was also implemented into a multiscale coupled finite-element and phase-field computational framework. With the material parameters in the constitutive theory suitably calibrated, our three-dimensional numerical simulations show that the constitutive model is able to accurately predict the experimentally-determined evolution of crystallographic texture and grain size statistics in polycrystalline copper thin films deposited on polyimide substratemore » and annealed at high-homologous temperatures. In particular, our numerical analyses show that the broad texture transition observed in the annealing experiments of polycrystalline thin films is caused by grain growth stagnation mechanisms. - Graphical abstract: - Highlights: • Developing a theory for stressed grain growth in polycrystalline thin films. • Implementation into a multiscale coupled finite-element and phase-field framework. • Quantitative reproduction of the experimental grain growth data by simulations. • Revealing the cause of texture transition to be due to the stagnation mechanisms.« less

  5. Surface self-organization: From wear to self-healing in biological and technical surfaces

    NASA Astrophysics Data System (ADS)

    Nosonovsky, Michael; Bhushan, Bharat

    2010-04-01

    Wear occurs at most solid surfaces that come in contact with other solid surfaces. While biological surfaces and tissues usually have the ability for self-healing, engineered self-healing materials only started to emerge recently. These materials are currently created using the trial-and-error approach and phenomenological models, so there is a need of a general first-principles theory of self-healing. We discuss the conditions under which the self-healing occurs and provide a general theoretical framework and criteria for self-healing using the concept of multiscale organization of entropy and non-equilibrium thermodynamics. The example of epicuticular wax regeneration of plant leaves is discussed as a case study.

  6. Design principles for radiation-resistant solid solutions

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas; Trinkle, Dallas R.; Bellon, Pascal; Averback, Robert

    2017-05-01

    We develop a multiscale approach to quantify the increase in the recombined fraction of point defects under irradiation resulting from dilute solute additions to a solid solution. This methodology provides design principles for radiation-resistant materials. Using an existing database of solute diffusivities, we identify Sb as one of the most efficient solutes for this purpose in a Cu matrix. We perform density-functional-theory calculations to obtain binding and migration energies of Sb atoms, vacancies, and self-interstitial atoms in various configurations. The computed data informs the self-consistent mean-field formalism to calculate transport coefficients, allowing us to make quantitative predictions of the recombined fraction of point defects as a function of temperature and irradiation rate using homogeneous rate equations. We identify two different mechanisms according to which solutes lead to an increase in the recombined fraction of point defects; at low temperature, solutes slow down vacancies (kinetic effect), while at high temperature, solutes stabilize vacancies in the solid solution (thermodynamic effect). Extension to other metallic matrices and solutes are discussed.

  7. A New Multiscale Model for the Madden-Julian Oscillation.

    NASA Astrophysics Data System (ADS)

    Biello, Joseph A.; Majda, Andrew J.

    2005-06-01

    A multiscale model of the MJO is developed here that accounts, in a simplified fashion, for both the upscale transfer from synoptic to planetary scales of momentum and temperature from wave trains of thermally driven equatorial synoptic-scale circulations in a moving convective envelope as well as direct mean heating on planetary scales. This model involves idealized thermally driven congestus synoptic-scale fluctuations in the eastern part of the moving wave envelope and convective superclusters in the western part of the envelope. The model self-consistently reproduces qualitatively many of the detailed structural features of the planetary circulation in the observations of the MJO, including the vertical structure in both the westerly onset region and the strong westerly wind burst region, as well as the horizontal quadrupole planetary vortex structure. The westerly midlevel inflow in the strong westerly region and the quadrupole vortex are largely produced in the model by the upscale transport of momentum to the planetary scales, while the midlevel easterly jet in the westerly onset region is substantially strengthened by this process. The role of wave trains of tilted organized synoptic-scale circulations is crucial for this fidelity with observations. The appeal of the multiscale models developed below is their firm mathematical underpinnings, simplicity, and analytic tractability while remaining self-consistent with many of the features of the observational record.

  8. Generalized Momentum Control of the Spin-Stabilized Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Queen, Steven Z.; Shah, Neerav; Benegalrao, Suyog S.; Blackman, Kathie

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories elliptically orbiting the Earth in a tetrahedron formation. The on-board attitude control system adjusts the angular momentum of the system using a generalized thruster-actuated control system that simultaneously manages precession, nutation and spin. Originally developed using Lyapunov control-theory with rate-feedback, a published algorithm has been augmented to provide a balanced attitude/rate response using a single weighting parameter. This approach overcomes an orientation sign-ambiguity in the existing formulation, and also allows for a smoothly tuned-response applicable to both a compact/agile spacecraft, as well as one with large articulating appendages.

  9. Liking for Evaluators: Consistency and Self-Esteem Theories

    ERIC Educational Resources Information Center

    Regan, Judith Weiner

    1976-01-01

    Consistency and self-esteem theories make contrasting predictions about the relationship between a person's self-evaluation and his liking for an evaluator. Laboratory experiments confirmed predictions about these theories. (Editor/RK)

  10. Low-Frequency Oscillations and Transport Processes Induced by Multiscale Transverse Structures in the Polar Wind Outflow: A Three-Dimensional Simulation

    NASA Technical Reports Server (NTRS)

    Ganguli, Supriya B.; Gavrishchaka, Valeriy V.

    1999-01-01

    Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.

  11. Critical behavior in earthquake energy dissipation

    NASA Astrophysics Data System (ADS)

    Wanliss, James; Muñoz, Víctor; Pastén, Denisse; Toledo, Benjamín; Valdivia, Juan Alejandro

    2017-09-01

    We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially "scale-free", displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.

  12. Consistency and Need-Fulfillment Theories as Predictors of Eye Contact Behavior in Low Self-Esteem Subjects in Response to Various Feedback Conditions.

    ERIC Educational Resources Information Center

    Bridle, Mary J.; Frandsen, Kenneth D.

    Consistency theory holds that persons are motivated to behave in ways that maintain a "steady state" cognitively and otherwise; need-fulfillment theory argues that people will act in ways that reinforce their sense of worth and enhance their self-esteem. While consistency theory predicts that low self-esteem persons will exhibit more eye…

  13. Process-to-Panel Modeling and Multiprobe Characterization of Silicon Heterojunction Solar Cell Technology

    NASA Astrophysics Data System (ADS)

    Chavali, Raghu Vamsi Krishna

    The large-scale deployment of PV technology is very sensitive to the material and process costs. There are several potential candidates among p-n heterojunction (HJ) solar cells competing for higher efficiencies at lower material and process costs. These systems are, however, generally complex, involve diverse materials, and are not well understood. The direct translation of classical p-n homojunction theory to p-n HJ cells may not always be self-consistent and can lead, therefore, to misinterpretation of experimental results. Ultimately, this translation may not be useful for modeling and characterization of these solar cells. Hence, there is a strong need to redefine/reinterpret the modeling/characterization methodologies for HJ solar cells to produce a self-consistent framework for optimizing HJ solar cell designs. Towards this goal, we explore the physics and interpret characterization experiments of p-n HJs using Silicon HJ (HIT) solar cells. We will: (1) identify the key HJ properties that affect the cell efficiency; (2) analyze the dependence of key HJ properties on the carrier transport under light and dark conditions; (3) provide a selfconsistent multi-probe approach to extract the HJ parameters using several characterization techniques including dark I-V, light I-V, C-V, impedance spectroscopy, and Suns-Voc; (4) propose design guidelines to address the HJ bottlenecks of HIT cells; and (5) develop a process-to-module modeling framework to establish the module performance limits. The guidelines resulting from this multi-scale and self-consistent framework can be used to improve performance of HIT cells as well as other HJ based solar cells.

  14. Multi-Scale Models for the Scale Interaction of Organized Tropical Convection

    NASA Astrophysics Data System (ADS)

    Yang, Qiu

    Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.

  15. Quantum theory of multiscale coarse-graining.

    PubMed

    Han, Yining; Jin, Jaehyeok; Wagner, Jacob W; Voth, Gregory A

    2018-03-14

    Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.

  16. Breakdown parameter for kinetic modeling of multiscale gas flows.

    PubMed

    Meng, Jianping; Dongari, Nishanth; Reese, Jason M; Zhang, Yonghao

    2014-06-01

    Multiscale methods built purely on the kinetic theory of gases provide information about the molecular velocity distribution function. It is therefore both important and feasible to establish new breakdown parameters for assessing the appropriateness of a fluid description at the continuum level by utilizing kinetic information rather than macroscopic flow quantities alone. We propose a new kinetic criterion to indirectly assess the errors introduced by a continuum-level description of the gas flow. The analysis, which includes numerical demonstrations, focuses on the validity of the Navier-Stokes-Fourier equations and corresponding kinetic models and reveals that the new criterion can consistently indicate the validity of continuum-level modeling in both low-speed and high-speed flows at different Knudsen numbers.

  17. 3-D discrete shearlet transform and video processing.

    PubMed

    Negi, Pooran Singh; Labate, Demetrio

    2012-06-01

    In this paper, we introduce a digital implementation of the 3-D shearlet transform and illustrate its application to problems of video denoising and enhancement. The shearlet representation is a multiscale pyramid of well-localized waveforms defined at various locations and orientations, which was introduced to overcome the limitations of traditional multiscale systems in dealing with multidimensional data. While the shearlet approach shares the general philosophy of curvelets and surfacelets, it is based on a very different mathematical framework, which is derived from the theory of affine systems and uses shearing matrices rather than rotations. This allows a natural transition from the continuous setting to the digital setting and a more flexible mathematical structure. The 3-D digital shearlet transform algorithm presented in this paper consists in a cascade of a multiscale decomposition and a directional filtering stage. The filters employed in this decomposition are implemented as finite-length filters, and this ensures that the transform is local and numerically efficient. To illustrate its performance, the 3-D discrete shearlet transform is applied to problems of video denoising and enhancement, and compared against other state-of-the-art multiscale techniques, including curvelets and surfacelets.

  18. Supergranulation and multiscale flows in the solar photosphere. Global observations vs. a theory of anisotropic turbulent convection

    NASA Astrophysics Data System (ADS)

    Rincon, F.; Roudier, T.; Schekochihin, A. A.; Rieutord, M.

    2017-03-01

    The Sun provides us with the only spatially well-resolved astrophysical example of turbulent thermal convection. While various aspects of solar photospheric turbulence, such as granulation (one-Megameter horizontal scale), are well understood, the questions of the physical origin and dynamical organization of larger-scale flows, such as the 30-Megameters supergranulation and flows deep in the solar convection zone, remain largely open in spite of their importance for solar dynamics and magnetism. Here, we present a new critical global observational characterization of multiscale photospheric flows and subsequently formulate an anisotropic extension of the Bolgiano-Obukhov theory of hydrodynamic stratified turbulence that may explain several of their distinctive dynamical properties. Our combined analysis suggests that photospheric flows in the horizontal range of scales between supergranulation and granulation have a typical vertical correlation scale of 2.5 to 4 Megameters and operate in a strongly anisotropic, self-similar, nonlinear, buoyant dynamical regime. While the theory remains speculative at this stage, it lends itself to quantitative comparisons with future high-resolution acoustic tomography of subsurface layers and advanced numerical models. Such a validation exercise may also lead to new insights into the asymptotic dynamical regimes in which other, unresolved turbulent anisotropic astrophysical fluid systems supporting waves or instabilities operate.

  19. Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    NASA Astrophysics Data System (ADS)

    Candy, Adam S.; Pietrzak, Julie D.

    2018-01-01

    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model- or application-specific, and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, to ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions that enable full accounts of provenance, sharing, and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed that is automated, robust and repeatable, quick-to-draft, rigorously verified, and consistent with the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics. Library code, verification tests, and examples available in the repository at https://github.com/shingleproject/Shingle. Further details of the project presented at http://shingleproject.org.

  20. Scale-free avalanche dynamics in the stock market

    NASA Astrophysics Data System (ADS)

    Bartolozzi, M.; Leinweber, D. B.; Thomas, A. W.

    2006-10-01

    Self-organized criticality (SOC) has been claimed to play an important role in many natural and social systems. In the present work we empirically investigate the relevance of this theory to stock-market dynamics. Avalanches in stock-market indices are identified using a multi-scale wavelet-filtering analysis designed to remove Gaussian noise from the index. Here, new methods are developed to identify the optimal filtering parameters which maximize the noise removal. The filtered time series is reconstructed and compared with the original time series. A statistical analysis of both high-frequency Nasdaq E-mini Futures and daily Dow Jones data is performed. The results of this new analysis confirm earlier results revealing a robust power-law behaviour in the probability distribution function of the sizes, duration and laminar times between avalanches. This power-law behaviour holds the potential to be established as a stylized fact of stock market indices in general. While the memory process, implied by the power-law distribution of the laminar times, is not consistent with classical models for SOC, we note that a power-law distribution of the laminar times cannot be used to rule out self-organized critical behaviour.

  1. Variational multiscale models for charge transport.

    PubMed

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle for chemo-electro-fluid systems. A number of computational algorithms is developed to implement the proposed new variational multiscale models in an efficient manner. A set of ten protein molecules and a realistic ion channel, Gramicidin A, are employed to confirm the consistency and verify the capability. Extensive numerical experiment is designed to validate the proposed variational multiscale models. A good quantitative agreement between our model prediction and the experimental measurement of current-voltage curves is observed for the Gramicidin A channel transport. This paper also provides a brief review of the field.

  2. Variational multiscale models for charge transport

    PubMed Central

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle for chemo-electro-fluid systems. A number of computational algorithms is developed to implement the proposed new variational multiscale models in an efficient manner. A set of ten protein molecules and a realistic ion channel, Gramicidin A, are employed to confirm the consistency and verify the capability. Extensive numerical experiment is designed to validate the proposed variational multiscale models. A good quantitative agreement between our model prediction and the experimental measurement of current-voltage curves is observed for the Gramicidin A channel transport. This paper also provides a brief review of the field. PMID:23172978

  3. Frequency-domain multiscale quantum mechanics/electromagnetics simulation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Lingyi; Yin, Zhenyu; Yam, ChiYung, E-mail: yamcy@yangtze.hku.hk, E-mail: ghc@everest.hku.hk

    A frequency-domain quantum mechanics and electromagnetics (QM/EM) method is developed. Compared with the time-domain QM/EM method [Meng et al., J. Chem. Theory Comput. 8, 1190–1199 (2012)], the newly developed frequency-domain QM/EM method could effectively capture the dynamic properties of electronic devices over a broader range of operating frequencies. The system is divided into QM and EM regions and solved in a self-consistent manner via updating the boundary conditions at the QM and EM interface. The calculated potential distributions and current densities at the interface are taken as the boundary conditions for the QM and EM calculations, respectively, which facilitate themore » information exchange between the QM and EM calculations and ensure that the potential, charge, and current distributions are continuous across the QM/EM interface. Via Fourier transformation, the dynamic admittance calculated from the time-domain and frequency-domain QM/EM methods is compared for a carbon nanotube based molecular device.« less

  4. Narrowing of band gap at source/drain contact scheme of nanoscale InAs-nMOS

    NASA Astrophysics Data System (ADS)

    Mohamed, A. H.; Oxland, R.; Aldegunde, M.; Hepplestone, S. P.; Sushko, P. V.; Kalna, K.

    2018-04-01

    A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1 × 1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schrödinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 Ω/sq which is in a good agreement with an experimental value of 97 Ω/sq.

  5. A Technique for Mapping Characteristic Lengths to Preserve Energy Dissipated via Strain Softening in a Multiscale Analysis

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.

    2014-01-01

    It is often advantageous to account for the microstructure of the material directly using multiscale modeling. For computational tractability, an idealized repeating unit cell (RUC) is used to capture all of the pertinent features of the microstructure. Typically, the RUC is dimensionless and depends only on the relative volume fractions of the different phases in the material. This works well for non-linear and inelastic behavior exhibiting a positive-definite constitutive response. Although, once the material exhibits strain softening, or localization, a mesh objective failure theories, such as smeared fracture theories, nodal and element enrichment theories (XFEM), cohesive elements or virtual crack closure technique (VCCT), can be utilized at the microscale, but the dimensions of the RUC must then be defined. One major challenge in multiscale progressive damage modeling is relating the characteristic lengths across the scales in order to preserve the energy that is dissipated via localization at the microscale. If there is no effort to relate the size of the macroscale element to the microscale RUC, then the energy that is dissipated will remain mesh dependent at the macroscale, even if it is regularized at the microscale. Here, a technique for mapping characteristic lengths across the scales is proposed. The RUC will be modeled using the generalized method of cells (GMC) micromechanics theory, and local failure in the matrix constituent subcells will be modeled using the crack band theory. The subcell characteristic lengths used in the crack band calculations will be mapped to the macroscale finite element in order to regularize the local energy in a manner consistent with the global length scale. Examples will be provided with and without the regularization, and they will be compared to a baseline case where the size and shape of the element and RUC are coincident (ensuring energy is preserved across the scales).

  6. The effect of microscopic attractive interactions on piezoelectric coefficients of nanoscale DNA films and its resultant mirocantilever-based biosensor signals

    NASA Astrophysics Data System (ADS)

    Wu, Jun-Zheng; Zhou, Mei-Hong; Zhang, Neng-Hui

    2017-10-01

    The adsorption of charged biomolecules on a substrate will trigger a self-induced electric potential field that could deflect microcantilever biosensors in the nanometer regime. The paper is devoted to a multiscale characterization of the piezoelectric coefficient of double-stranded DNA (dsDNA) films with microscopic attractive interactions in multivalence salt solutions, which has a close relationship with biosensor signals. First, two different analytical models of cantilever deflections based on macroscopic piezoelectric theories or mesoscopic liquid crystal theories were combined in the sense of equivalent deformation in order to bridge the relation between the macroscopic piezoelectric coefficient of an adsorbate film and the sensitivity of its microstructure to surrounding conditions. Second, two interaction potentials of the free energy for repulsion-dominated DNA films in NaCl solution or attraction-repulsion-coexisted DNA films in multivalent salt solutions were used to compare the piezoelectric effect and the resultant cantilever deformation at various packing conditions, such as different packing density, various nucleotide numbers and two packing technologies, i.e. nano-grafting or self-assembling technology. The variational tendency of microcantilever deflections predicted by the present multiscale analytical model agrees well with the related DNA-mirocantilever experiments. Negative piezoelectric coefficient of dsDNA film exists in multivalent salt solutions, and its distinctive size effect with different packing densities and nucleotide numbers provides us with an opportunity to obtain a more sensitive microcantilever sensor by careful control of packing conditions.

  7. Multiscale Modeling: A Review

    NASA Astrophysics Data System (ADS)

    Horstemeyer, M. F.

    This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos).

  8. Analysing and correcting the differences between multi-source and multi-scale spatial remote sensing observations.

    PubMed

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.

  9. Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote Sensing Observations

    PubMed Central

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760

  10. Multiscale unfolding of real networks by geometric renormalization

    NASA Astrophysics Data System (ADS)

    García-Pérez, Guillermo; Boguñá, Marián; Serrano, M. Ángeles

    2018-06-01

    Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.

  11. Multiscale Monte Carlo equilibration: Pure Yang-Mills theory

    DOE PAGES

    Endres, Michael G.; Brower, Richard C.; Orginos, Kostas; ...

    2015-12-29

    In this study, we present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.

  12. On unified modeling, theory, and method for solving multi-scale global optimization problems

    NASA Astrophysics Data System (ADS)

    Gao, David Yang

    2016-10-01

    A unified model is proposed for general optimization problems in multi-scale complex systems. Based on this model and necessary assumptions in physics, the canonical duality theory is presented in a precise way to include traditional duality theories and popular methods as special applications. Two conjectures on NP-hardness are proposed, which should play important roles for correctly understanding and efficiently solving challenging real-world problems. Applications are illustrated for both nonconvex continuous optimization and mixed integer nonlinear programming.

  13. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Accident Tolerant Fuels High Impact Problem: Coordinate Multiscale FeCrAl Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, K. A.; Hales, J. D.; Zhang, Y.

    Since the events at the Fukushima-Daiichi nuclear power plant in March 2011 significant research has unfolded at national laboratories, universities and other institutions into alternative materials that have potential enhanced ac- cident tolerance when compared to traditional UO2 fuel zircaloy clad fuel rods. One of the potential replacement claddings are iron-chromium-alunimum (FeCrAl) alloys due to their increased oxidation resistance [1–4] and higher strength [1, 2]. While the oxidation characteristics of FeCrAl are a benefit for accident tolerance, the thermal neu- tron absorption cross section of FeCrAl is about ten times that of Zircaloy. This neutronic penalty necessitates thinner cladding. Thismore » allows for slightly larger pellets to give the same cold gap width in the rod. However, the slight increase in pellet diameter is not sufficient to compensate for the neutronic penalty and enriching the fuel beyond the current 5% limit appears to be necessary [5]. Current estimates indicate that this neutronic penalty will impose an increase in fuel cost of 15-35% [1, 2]. In addition to the neutronic disadvantage, it is anticipated that tritium release to the coolant will be larger because the permeability of hydrogen in FeCrAl is about 100 times higher than in Zircaloy [6]. Also, radiation-induced hardening and embrittlement of FeCrAl need to be fully characterized experimentally [7]. Due to the aggressive development schedule for inserting some of the potential materials into lead test assemblies or rods by 2022 [8] multiscale multiphysics modeling approaches have been used to provide insight into these the use of FeCrAl as a cladding material. The purpose of this letter report is to highlight the multiscale modeling effort for iron-chromium-alunimum (FeCrAl) cladding alloys as part of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program through its Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The approach taken throughout the HIP is to utilize lower length scale approaches (e.g., density functional theory, cluster dynamics, rate theory, phase field, and Visco-Plastic- Self-Consistent (VPSC)) to develop more physically informed models at the engineering scale for use in the BISON [9] fuel performance code.« less

  14. Multiscale Macromolecular Simulation: Role of Evolving Ensembles

    PubMed Central

    Singharoy, A.; Joshi, H.; Ortoleva, P.J.

    2013-01-01

    Multiscale analysis provides an algorithm for the efficient simulation of macromolecular assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted order parameters (OPs) characterizing nanoscale system features. In practice, implementation of the probability density involves the generation of constant OP ensembles of atomic configurations. Such ensembles are used to construct thermal forces and diffusion factors that mediate the stochastic OP dynamics. Generation of all-atom ensembles at every Langevin timestep is computationally expensive. Here, multiscale computation for macromolecular systems is made more efficient by a method that self-consistently folds in ensembles of all-atom configurations constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is shown that efficiency and accuracy of the OP-based simulations is increased via the integration of this historical information. Accuracy improves with the square root of the number of historical timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8 without loss of accuracy. The algorithm is implemented into our existing force-field based multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers. PMID:22978601

  15. Multiscale modeling methods in biomechanics.

    PubMed

    Bhattacharya, Pinaki; Viceconti, Marco

    2017-05-01

    More and more frequently, computational biomechanics deals with problems where the portion of physical reality to be modeled spans over such a large range of spatial and temporal dimensions, that it is impossible to represent it as a single space-time continuum. We are forced to consider multiple space-time continua, each representing the phenomenon of interest at a characteristic space-time scale. Multiscale models describe a complex process across multiple scales, and account for how quantities transform as we move from one scale to another. This review offers a set of definitions for this emerging field, and provides a brief summary of the most recent developments on multiscale modeling in biomechanics. Of all possible perspectives, we chose that of the modeling intent, which vastly affect the nature and the structure of each research activity. To the purpose we organized all papers reviewed in three categories: 'causal confirmation,' where multiscale models are used as materializations of the causation theories; 'predictive accuracy,' where multiscale modeling is aimed to improve the predictive accuracy; and 'determination of effect,' where multiscale modeling is used to model how a change at one scale manifests in an effect at another radically different space-time scale. Consistent with how the volume of computational biomechanics research is distributed across application targets, we extensively reviewed papers targeting the musculoskeletal and the cardiovascular systems, and covered only a few exemplary papers targeting other organ systems. The review shows a research subdomain still in its infancy, where causal confirmation papers remain the most common. WIREs Syst Biol Med 2017, 9:e1375. doi: 10.1002/wsbm.1375 For further resources related to this article, please visit the WIREs website. © 2017 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.

  16. Self-Consistency of the Theory of Elementary Stage Rates of Reversible Processes and the Equilibrium Distribution of Reaction Mixture Components

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2018-06-01

    An analysis is presented of one of the key concepts of physical chemistry of condensed phases: the theory self-consistency in describing the rates of elementary stages of reversible processes and the equilibrium distribution of components in a reaction mixture. It posits that by equating the rates of forward and backward reactions, we must obtain the same equation for the equilibrium distribution of reaction mixture components, which follows directly from deducing the equation in equilibrium theory. Ideal reaction systems always have this property, since the theory is of a one-particle character. Problems arise in considering interparticle interactions responsible for the nonideal behavior of real systems. The Eyring and Temkin approaches to describing nonideal reaction systems are compared. Conditions for the self-consistency of the theory for mono- and bimolecular processes in different types of interparticle potentials, the degree of deviation from the equilibrium state, allowing for the internal motions of molecules in condensed phases, and the electronic polarization of the reagent environment are considered within the lattice gas model. The inapplicability of the concept of an activated complex coefficient for reaching self-consistency is demonstrated. It is also shown that one-particle approximations for considering intermolecular interactions do not provide a theory of self-consistency for condensed phases. We must at a minimum consider short-range order correlations.

  17. Quantitative verification of ab initio self-consistent laser theory.

    PubMed

    Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E

    2008-10-13

    We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.

  18. A Multi-Scale Structural Health Monitoring Approach for Damage Detection, Diagnosis and Prognosis in Aerospace Structures

    DTIC Science & Technology

    2012-01-20

    ultrasonic Lamb waves to plastic strain and fatigue life. Theory was developed and validated to predict second harmonic generation for specific mode... Fatigue and damage generation and progression are processes consisting of a series of interrelated events that span large scales of space and time...strain and fatigue life A set of experiments were completed that worked to relate the acoustic nonlinearity measured with Lamb waves to both the

  19. A tree canopy height delineation method based on Morphological Reconstruction—Open Crown Decomposition

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Jing, L.; Li, Y.; Tang, Y.; Li, H.; Lin, Q.

    2016-04-01

    For the purpose of forest management, high resolution LIDAR and optical remote sensing imageries are used for treetop detection, tree crown delineation, and classification. The purpose of this study is to develop a self-adjusted dominant scales calculation method and a new crown horizontal cutting method of tree canopy height model (CHM) to detect and delineate tree crowns from LIDAR, under the hypothesis that a treetop is radiometric or altitudinal maximum and tree crowns consist of multi-scale branches. The major concept of the method is to develop an automatic selecting strategy of feature scale on CHM, and a multi-scale morphological reconstruction-open crown decomposition (MRCD) to get morphological multi-scale features of CHM by: cutting CHM from treetop to the ground; analysing and refining the dominant multiple scales with differential horizontal profiles to get treetops; segmenting LiDAR CHM using watershed a segmentation approach marked with MRCD treetops. This method has solved the problems of false detection of CHM side-surface extracted by the traditional morphological opening canopy segment (MOCS) method. The novel MRCD delineates more accurate and quantitative multi-scale features of CHM, and enables more accurate detection and segmentation of treetops and crown. Besides, the MRCD method can also be extended to high optical remote sensing tree crown extraction. In an experiment on aerial LiDAR CHM of a forest of multi-scale tree crowns, the proposed method yielded high-quality tree crown maps.

  20. Multiscale time-dependent density functional theory: Demonstration for plasmons.

    PubMed

    Jiang, Jiajian; Abi Mansour, Andrew; Ortoleva, Peter J

    2017-08-07

    Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed. This formalism is based on Trotter factorization and the explicit introduction of a coarse-grained (CG) structure function constructed as the Weierstrass transform of the electron wavefunction. This CG structure function is shown to vary on a time scale much longer than that of the latter. A multiscale propagator that coevolves both the CG structure function and the electron wavefunction is shown to bring substantial efficiency over classical propagators used in TDDFT. This efficiency follows from the enhanced numerical stability of the multiscale method and the consequence of larger time steps that can be used in a discrete time evolution. The multiscale algorithm is demonstrated for plasmons in a group of interacting sodium nanoparticles (15-240 atoms), and it achieves improved efficiency over TDDFT without significant loss of accuracy or space-time resolution.

  1. Density-Dependent Formulation of Dispersion-Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models.

    PubMed

    Curutchet, Carles; Cupellini, Lorenzo; Kongsted, Jacob; Corni, Stefano; Frediani, Luca; Steindal, Arnfinn Hykkerud; Guido, Ciro A; Scalmani, Giovanni; Mennucci, Benedetta

    2018-03-13

    Mixed multiscale quantum/molecular mechanics (QM/MM) models are widely used to explore the structure, reactivity, and electronic properties of complex chemical systems. Whereas such models typically include electrostatics and potentially polarization in so-called electrostatic and polarizable embedding approaches, respectively, nonelectrostatic dispersion and repulsion interactions are instead commonly described through classical potentials despite their quantum mechanical origin. Here we present an extension of the Tkatchenko-Scheffler semiempirical van der Waals (vdW TS ) scheme aimed at describing dispersion and repulsion interactions between quantum and classical regions within a QM/MM polarizable embedding framework. Starting from the vdW TS expression, we define a dispersion and a repulsion term, both of them density-dependent and consistently based on a Lennard-Jones-like potential. We explore transferable atom type-based parametrization strategies for the MM parameters, based on either vdW TS calculations performed on isolated fragments or on a direct estimation of the parameters from atomic polarizabilities taken from a polarizable force field. We investigate the performance of the implementation by computing self-consistent interaction energies for the S22 benchmark set, designed to represent typical noncovalent interactions in biological systems, in both equilibrium and out-of-equilibrium geometries. Overall, our results suggest that the present implementation is a promising strategy to include dispersion and repulsion in multiscale QM/MM models incorporating their explicit dependence on the electronic density.

  2. Varying electric charge in multiscale spacetimes

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Magueijo, João; Fernández, David Rodríguez

    2014-01-01

    We derive the covariant equations of motion for Maxwell field theory and electrodynamics in multiscale spacetimes with weighted Laplacian. An effective spacetime-dependent electric charge of geometric origin naturally emerges from the theory, thus giving rise to a varying fine-structure constant. The theory is compared with other varying-coupling models, such as those with a varying electric charge or varying speed of light. The theory is also confronted with cosmological observations, which can place constraints on the characteristic scales in the multifractional measure. We note that the model considered here is fundamentally different from those previously proposed in the literature, either of the varying-e or varying-c persuasion.

  3. Testing strong-segregation theory against self-consistent-field theory for block copolymer melts

    NASA Astrophysics Data System (ADS)

    Matsen, M. W.

    2001-06-01

    We introduce a highly efficient self-consistent-field theory (SCFT) method for examining the cylindrical and spherical block copolymer morphologies using a standard unit cell approximation (UCA). The method is used to calculate the classical diblock copolymer phase boundaries deep into the strong-segregation regime, where they can be compared with recent improvements to strong-segregation theory (SST). The comparison suggests a significant discrepancy between the two theories indicating that our understanding of strongly stretched polymer brushes is still incomplete.

  4. Doubly self-consistent field theory of grafted polymers under simple shear in steady state.

    PubMed

    Suo, Tongchuan; Whitmore, Mark D

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.

  5. Kinetic Approaches to Shear-Driven Magnetic Reconnection for Multi-Scale Modeling of CME Initiation

    NASA Astrophysics Data System (ADS)

    Black, C.; Antiochos, S. K.; DeVore, C.; Germaschewski, K.; Karpen, J. T.

    2013-12-01

    In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance, consisting of an upward force due to the magnetic pressure of the sheared field balanced by a downward tension due to overlying un-sheared field, is widely believed to be disrupted by magnetic reconnection. Therefore, understanding initiation of solar explosive phenomena requires a true multi-scale model of reconnection onset driven by the buildup of magnetic shear. While the application of magnetic-field shear is a trivial matter in MHD simulations, it is a significant challenge in a PIC code. The driver must be implemented in a self-consistent manner and with boundary conditions that avoid the generation of waves that destroy the applied shear. In this work, we describe drivers for 2.5D, aperiodic, PIC systems and discuss the implementation of driver-consistent boundary conditions that allow a net electric current to flow through the walls. Preliminary tests of these boundaries with a MHD equilibrium are shown. This work was supported, in part, by the NASA Living With a Star TR&T Program.

  6. Self-consistent formation of electron $\\kappa$ distribution: 1. Theory

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.; Rhee, Tongnyeol; Ryu, Chang-Mo

    2006-09-01

    Since the early days of plasma physics research suprathermal electrons were observed to be generated during beam-plasma laboratory experiments. Energetic electrons, often modeled by κ distributions, are also ubiquitously observed in space. Various particle acceleration mechanisms have been proposed to explain such a feature, but all previous theories rely on either qualitative analytical method or on non-self-consistent approaches. This paper discusses the self-consistent acceleration of electrons to suprathermal energies by weak turbulence processes which involve the Langmuir/ion-sound turbulence and the beam-plasma interaction. It is discussed that the spontaneous scatttering process, which is absent in the purely collisionless theory, is singularly responsible for the generation of κ distributions. The conclusion is that purely collisionless Vlasov theory cannot produce suprathermal population.

  7. Quasiparticle self-consistent GW method for the spectral properties of complex materials.

    PubMed

    Bruneval, Fabien; Gatti, Matteo

    2014-01-01

    The GW approximation to the formally exact many-body perturbation theory has been applied successfully to materials for several decades. Since the practical calculations are extremely cumbersome, the GW self-energy is most commonly evaluated using a first-order perturbative approach: This is the so-called G 0 W 0 scheme. However, the G 0 W 0 approximation depends heavily on the mean-field theory that is employed as a basis for the perturbation theory. Recently, a procedure to reach a kind of self-consistency within the GW framework has been proposed. The quasiparticle self-consistent GW (QSGW) approximation retains some positive aspects of a self-consistent approach, but circumvents the intricacies of the complete GW theory, which is inconveniently based on a non-Hermitian and dynamical self-energy. This new scheme allows one to surmount most of the flaws of the usual G 0 W 0 at a moderate calculation cost and at a reasonable implementation burden. In particular, the issues of small band gap semiconductors, of large band gap insulators, and of some transition metal oxides are then cured. The QSGW method broadens the range of materials for which the spectral properties can be predicted with confidence.

  8. Traditional Chinese medicine: potential approaches from modern dynamical complexity theories.

    PubMed

    Ma, Yan; Zhou, Kehua; Fan, Jing; Sun, Shuchen

    2016-03-01

    Despite the widespread use of traditional Chinese medicine (TCM) in clinical settings, proving its effectiveness via scientific trials is still a challenge. TCM views the human body as a complex dynamical system, and focuses on the balance of the human body, both internally and with its external environment. Such fundamental concepts require investigations using system-level quantification approaches, which are beyond conventional reductionism. Only methods that quantify dynamical complexity can bring new insights into the evaluation of TCM. In a previous article, we briefly introduced the potential value of Multiscale Entropy (MSE) analysis in TCM. This article aims to explain the existing challenges in TCM quantification, to introduce the consistency of dynamical complexity theories and TCM theories, and to inspire future system-level research on health and disease.

  9. Characterizing multi-scale self-similar behavior and non-statistical properties of fluctuations in financial time series

    NASA Astrophysics Data System (ADS)

    Ghosh, Sayantan; Manimaran, P.; Panigrahi, Prasanta K.

    2011-11-01

    We make use of wavelet transform to study the multi-scale, self-similar behavior and deviations thereof, in the stock prices of large companies, belonging to different economic sectors. The stock market returns exhibit multi-fractal characteristics, with some of the companies showing deviations at small and large scales. The fact that, the wavelets belonging to the Daubechies’ (Db) basis enables one to isolate local polynomial trends of different degrees, plays the key role in isolating fluctuations at different scales. One of the primary motivations of this work is to study the emergence of the k-3 behavior [X. Gabaix, P. Gopikrishnan, V. Plerou, H. Stanley, A theory of power law distributions in financial market fluctuations, Nature 423 (2003) 267-270] of the fluctuations starting with high frequency fluctuations. We make use of Db4 and Db6 basis sets to respectively isolate local linear and quadratic trends at different scales in order to study the statistical characteristics of these financial time series. The fluctuations reveal fat tail non-Gaussian behavior, unstable periodic modulations, at finer scales, from which the characteristic k-3 power law behavior emerges at sufficiently large scales. We further identify stable periodic behavior through the continuous Morlet wavelet.

  10. Quantum non-objectivity from performativity of quantum phenomena

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei; Schumann, Andrew

    2014-12-01

    We analyze the logical foundations of quantum mechanics (QM) by stressing non-objectivity of quantum observables, which is a consequence of the absence of logical atoms in QM. We argue that the matter of quantum non-objectivity is that, on the one hand, the formalism of QM constructed as a mathematical theory is self-consistent, but, on the other hand, quantum phenomena as results of experimenters’ performances are not self-consistent. This self-inconsistency is an effect of the language of QM differing greatly from the language of human performances. The former is the language of a mathematical theory that uses some Aristotelian and Russellian assumptions (e.g., the assumption that there are logical atoms). The latter language consists of performative propositions that are self-inconsistent only from the viewpoint of conventional mathematical theory, but they satisfy another logic that is non-Aristotelian. Hence, the representation of quantum reality in linguistic terms may be different: the difference between a mathematical theory and a logic of performative propositions. To solve quantum self-inconsistency, we apply the formalism of non-classical self-referent logics.

  11. Multi-scale Methods in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Polyzou, W. N.; Michlin, Tracie; Bulut, Fatih

    2018-05-01

    Daubechies wavelets are used to make an exact multi-scale decomposition of quantum fields. For reactions that involve a finite energy that take place in a finite volume, the number of relevant quantum mechanical degrees of freedom is finite. The wavelet decomposition has natural resolution and volume truncations that can be used to isolate the relevant degrees of freedom. The application of flow equation methods to construct effective theories that decouple coarse and fine scale degrees of freedom is examined.

  12. Comparison of Multiscale Method of Cells-Based Models for Predicting Elastic Properties of Filament Wound C/C-SiC

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Fassin, Marek; Bednarcyk, Brett A.; Reese, Stefanie; Simon, Jaan-Willem

    2017-01-01

    Three different multiscale models, based on the method of cells (generalized and high fidelity) micromechanics models were developed and used to predict the elastic properties of C/C-SiC composites. In particular, the following multiscale modeling strategies were employed: Concurrent multiscale modeling of all phases using the generalized method of cells, synergistic (two-way coupling in space) multiscale modeling with the generalized method of cells, and hierarchical (one-way coupling in space) multiscale modeling with the high fidelity generalized method of cells. The three models are validated against data from a hierarchical multiscale finite element model in the literature for a repeating unit cell of C/C-SiC. Furthermore, the multiscale models are used in conjunction with classical lamination theory to predict the stiffness of C/C-SiC plates manufactured via a wet filament winding and liquid silicon infiltration process recently developed by the German Aerospace Institute.

  13. Structural setting and kinematics of Nubian fault system, SE Western Desert, Egypt: An example of multi-reactivated intraplate strike-slip faults

    NASA Astrophysics Data System (ADS)

    Sakran, Shawky; Said, Said Mohamed

    2018-02-01

    Detailed surface geological mapping and subsurface seismic interpretation have been integrated to unravel the structural style and kinematic history of the Nubian Fault System (NFS). The NFS consists of several E-W Principal Deformation Zones (PDZs) (e.g. Kalabsha fault). Each PDZ is defined by spectacular E-W, WNW and ENE dextral strike-slip faults, NNE sinistral strike-slip faults, NE to ENE folds, and NNW normal faults. Each fault zone has typical self-similar strike-slip architecture comprising multi-scale fault segments. Several multi-scale uplifts and basins were developed at the step-over zones between parallel strike-slip fault segments as a result of local extension or contraction. The NNE faults consist of right-stepping sinistral strike-slip fault segments (e.g. Sin El Kiddab fault). The NNE sinistral faults extend for long distances ranging from 30 to 100 kms and cut one or two E-W PDZs. Two nearly perpendicular strike-slip tectonic regimes are recognized in the NFS; an inactive E-W Late Cretaceous - Early Cenozoic dextral transpression and an active NNE sinistral shear.

  14. Extremes and bursts in complex multi-scale plasmas

    NASA Astrophysics Data System (ADS)

    Watkins, N. W.; Chapman, S. C.; Hnat, B.

    2012-04-01

    Quantifying the spectrum of sizes and durations of large and/or long-lived fluctuations in complex, multi-scale, space plasmas is a topic of both theoretical and practical importance. The predictions of inherently multi-scale physical theories such as MHD turbulence have given one direct stimulus for its investigation. There are also space weather implications to an improved ability to assess the likelihood of an extreme fluctuation of a given size. Our intuition as scientists tends to be formed on the familiar Gaussian "normal" distribution, which has a very low likelihood of extreme fluctuations. Perhaps surprisingly, there is both theoretical and observational evidence that favours non-Gaussian, heavier-tailed, probability distributions for some space physics datasets. Additionally there is evidence for the existence of long-ranged memory between the values of fluctuations. In this talk I will show how such properties can be captured in a preliminary way by a self-similar, fractal model. I will show how such a fractal model can be used to make predictions for experimental accessible quantities like the size and duration of a buurst (a sequence of values that exceed a given threshold), or the survival probability of a burst [c.f. preliminary results in Watkins et al, PRE, 2009]. In real-world time series scaling behaviour need not be "mild" enough to be captured by a single self-similarity exponent H, but might instead require a "wild" multifractal spectrum of scaling exponents [e.g. Rypdal and Rypdal, JGR, 2011; Moloney and Davidsen, JGR, 2011] to give a complete description. I will discuss preliminary work on extending the burst approach into the multifractal domain [see also Watkins et al, chapter in press for AGU Chapman Conference on Complexity and Extreme Events in the Geosciences, Hyderabad].

  15. Doubly self-consistent field theory of grafted polymers under simple shear in steady state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo, Tongchuan; Whitmore, Mark D., E-mail: mark-whitmore@umanitoba.ca

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkmanmore » equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.« less

  16. Multiscale Modeling of Deformation Twinning Based on Field Theory of Multiscale Plasticity (FTMP)

    DTIC Science & Technology

    2013-09-01

    of the deformation twinning: nucleation, growth (into, e.g., lenticular shapes), lattice rotation (satisfying the mirror symmetry), the attendant...Nucleation and subsequent growth into lenticular shapes is realistically captured. • Stress-strain responses accompanied by serration and overall softening

  17. Similarities between Prescott Lecky's theory of self-consistency and Carl Rogers' self-theory.

    PubMed

    Merenda, Peter F

    2010-10-01

    The teachings of Prescott Lecky on the self-concept at Columbia University in the 1920s and 1930s and the posthumous publications of his book on self-consistency beginning in 1945 are compared with the many publications of Carl Rogers on the self-concept beginning in the early 1940s. Given that Rogers was a graduate student at Columbia in the 1920s and 1930s, the striking similarities between these two theorists, as well as claims attributed to Rogers by Rogers' biographers and writers who have quoted Rogers on his works relating to self-theory, strongly suggest that Rogers borrowed from Lecky without giving him the proper credit. Much of Rogers' writings on the self-concept included not only terms and concepts which were original with Lecky, but at times these were actually identical.

  18. A multiscale modeling approach to inflammation: A case study in human endotoxemia

    NASA Astrophysics Data System (ADS)

    Scheff, Jeremy D.; Mavroudis, Panteleimon D.; Foteinou, Panagiota T.; An, Gary; Calvano, Steve E.; Doyle, John; Dick, Thomas E.; Lowry, Stephen F.; Vodovotz, Yoram; Androulakis, Ioannis P.

    2013-07-01

    Inflammation is a critical component in the body's response to injury. A dysregulated inflammatory response, in which either the injury is not repaired or the inflammatory response does not appropriately self-regulate and end, is associated with a wide range of inflammatory diseases such as sepsis. Clinical management of sepsis is a significant problem, but progress in this area has been slow. This may be due to the inherent nonlinearities and complexities in the interacting multiscale pathways that are activated in response to systemic inflammation, motivating the application of systems biology techniques to better understand the inflammatory response. Here, we review our past work on a multiscale modeling approach applied to human endotoxemia, a model of systemic inflammation, consisting of a system of compartmentalized differential equations operating at different time scales and through a discrete model linking inflammatory mediators with changing patterns in the beating of the heart, which has been correlated with outcome and severity of inflammatory disease despite unclear mechanistic underpinnings. Working towards unraveling the relationship between inflammation and heart rate variability (HRV) may enable greater understanding of clinical observations as well as novel therapeutic targets.

  19. Multiscale modelling for tokamak pedestals

    NASA Astrophysics Data System (ADS)

    Abel, I. G.

    2018-04-01

    Pedestal modelling is crucial to predict the performance of future fusion devices. Current modelling efforts suffer either from a lack of kinetic physics, or an excess of computational complexity. To ameliorate these problems, we take a first-principles multiscale approach to the pedestal. We will present three separate sets of equations, covering the dynamics of edge localised modes (ELMs), the inter-ELM pedestal and pedestal turbulence, respectively. Precisely how these equations should be coupled to each other is covered in detail. This framework is completely self-consistent; it is derived from first principles by means of an asymptotic expansion of the fundamental Vlasov-Landau-Maxwell system in appropriate small parameters. The derivation exploits the narrowness of the pedestal region, the smallness of the thermal gyroradius and the low plasma (the ratio of thermal to magnetic pressures) typical of current pedestal operation to achieve its simplifications. The relationship between this framework and gyrokinetics is analysed, and possibilities to directly match our systems of equations onto multiscale gyrokinetics are explored. A detailed comparison between our model and other models in the literature is performed. Finally, the potential for matching this framework onto an open-field-line region is briefly discussed.

  20. A Self-Critique of Self-Organized Criticality in Astrophysics

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2015-08-01

    The concept of ``self-organized criticality'' (SOC) was originally proposed as an explanation of 1/f-noise by Bak, Tang, and Wiesenfeld (1987), but turned out to have a far broader significance for scale-free nonlinear energy dissipation processes occurring in the entire universe. Over the last 30 years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into numerical SOC toy models. The novel applications stimulated also vigorous debates about the discrimination between SOC-related and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC models applied to astrophysical observations, attempt to describe what physics can be captured by SOC models, and offer a critique of weaknesses and strengths in existing SOC models.

  1. A Self-Critique of Self-Organized Criticality in Astrophysics

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    The concept of ``self-organized criticality'' (SOC) was originally proposed as an explanation of 1/f-noise by Bak, Tang, and Wiesenfeld (1987), but turned out to have a far broader significance for scale-free nonlinear energy dissipation processes occurring in the entire universe. Over the last 30 years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into numerical SOC toy models. The novel applications stimulated also vigorous debates about the discrimination between SOC-related and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC models applied to astrophysical observations, attempt to describe what physics can be captured by SOC models, and offer a critique of weaknesses and strengths in existing SOC models.

  2. Drag Reduction On Multiscale Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Jenner, Elliot; Barbier, Charlotte; D'Urso, Brian

    2013-11-01

    Fluid drag reduction is of great interest in a variety of fields, including hull engineering, microfluidics, and drug delivery. We fabricated samples with multi-scale superhydrophobic surfaces, which consist of hexagonally self-ordered microscopic spikes grown via anodization on macroscopic grooves cut in aluminum. The hydrodynamic drag properties were studied with a cone-and-plate rheometer, showing significant drag reduction near 15% in turbulent flow and near 30% in laminar flow. In addition to these experiments, numerical simulations were performed in order to estimate the slip length at high speeds. Furthermore, we will report on the progress of experiments with a new type of surface combining superhydrophobic surfaces like those discussed above with Slippery Liquid Infused Porous Surfaces (SLIPS), which utilize an oil layer to create a hydrophobic self-repairing surface. These ``Super-SLIPS'' may combine the best properties of both superhydrophobic surfaces and SLIPS, by combining a drag reducing air-layer and an oil layer which may improve durability and biofouling resistance. This research was supported by the ORNL Seed Money Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725.

  3. Multiscale Phenomena in the Solid-Liquid Transition State of a Granular Material: Analysis and Modelling of Dense Granular Materials

    DTIC Science & Technology

    2011-09-26

    most challenging to characterize and model of the gamut of granular behaviour encountered in practice. In particular, it exhibits self-organized...is intrinsically multiscale and is arguably one of, if not, the most challenging to characterize and model of the gamut of granular behaviour...the most challenging to characterize and model of the gamut of granular behaviour encountered in practice. In particular, it exhibits self-organized

  4. Nanoparticle interaction potentials constructed by multiscale computation

    NASA Astrophysics Data System (ADS)

    Lee, Cheng K.; Hua, Chi C.

    2010-06-01

    The van der Waals (vdW) potentials governing macroscopic objects have long been formulated in the context of classical theories, such as Hamaker's microscopic theory and Lifshitz's continuum theory. This work addresses the possibility of constructing the vdW interaction potentials of nanoparticle species using multiscale simulation schemes. Amorphous silica nanoparticles were considered as a benchmark example for which a series of (SiO2)n (n being an integer) has been systematically surveyed as the potential candidates of the packing units that reproduce known bulk material properties in atomistic molecular dynamics simulations. This strategy led to the identification of spherical Si6O12 molecules, later utilized as the elementary coarse-grained (CG) particles to compute the pair interaction potentials of silica nanoparticles ranging from 0.62 to 100 nm in diameter. The model nanoparticles so built may, in turn, serve as the children CG particles to construct nanoparticles assuming arbitrary sizes and shapes. Major observations are as follows. The pair interaction potentials for all the investigated spherical silica nanoparticles can be cast into a semiempirical, generalized Lennard-Jones 2α-α potential (α being a size-dependent, large integral number). In its reduced form, we discuss the implied universalities for the vdW potentials governing a certain range of amorphous nanoparticle species as well as how thermodynamic transferability can be fulfilled automatically. In view of future applications with colloidal suspensions, we briefly evaluated the vdW potential in the presence of a "screening" medium mimicking the effects of electrical double layers or grafting materials atop the nanoparticle core. The general observations shed new light on strategies to attain a microscopic control over interparticle attractions. In future perspectives, the proposed multiscale computation scheme shall help bridge the current gap between the modeling of polymer chains and macroscopic objects by introducing molecular models coarse-grained at a similar level so that the interactions between these two can be treated in a consistent and faithful way.

  5. On multiscale moving contact line theory.

    PubMed

    Li, Shaofan; Fan, Houfu

    2015-07-08

    In this paper, a multiscale moving contact line (MMCL) theory is presented and employed to simulate liquid droplet spreading and capillary motion. The proposed MMCL theory combines a coarse-grained adhesive contact model with a fluid interface membrane theory, so that it can couple molecular scale adhesive interaction and surface tension with hydrodynamics of microscale flow. By doing so, the intermolecular force, the van der Waals or double layer force, separates and levitates the liquid droplet from the supporting solid substrate, which avoids the shear stress singularity caused by the no-slip condition in conventional hydrodynamics theory of moving contact line. Thus, the MMCL allows the difference of the surface energies and surface stresses to drive droplet spreading naturally. To validate the proposed MMCL theory, we have employed it to simulate droplet spreading over various elastic substrates. The numerical simulation results obtained by using MMCL are in good agreement with the molecular dynamics results reported in the literature.

  6. Microscopic and continuum descriptions of Janus motor fluid flow fields

    PubMed Central

    Reigh, Shang Yik; Schofield, Jeremy; Kapral, Raymond

    2016-01-01

    Active media, whose constituents are able to move autonomously, display novel features that differ from those of equilibrium systems. In addition to naturally occurring active systems such as populations of swimming bacteria, active systems of synthetic self-propelled nanomotors have been developed. These synthetic systems are interesting because of their potential applications in a variety of fields. Janus particles, synthetic motors of spherical geometry with one hemisphere that catalyses the conversion of fuel to product and one non-catalytic hemisphere, can propel themselves in solution by self-diffusiophoresis. In this mechanism, the concentration gradient generated by the asymmetric catalytic activity leads to a force on the motor that induces fluid flows in the surrounding medium. These fluid flows are studied in detail through microscopic simulations of Janus motor motion and continuum theory. It is shown that continuum theory is able to capture many, but not all, features of the dynamics of the Janus motor and the velocity fields of the fluid. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698037

  7. Differential geometry based solvation model. III. Quantum formulation

    PubMed Central

    Chen, Zhan; Wei, Guo-Wei

    2011-01-01

    Solvation is of fundamental importance to biomolecular systems. Implicit solvent models, particularly those based on the Poisson-Boltzmann equation for electrostatic analysis, are established approaches for solvation analysis. However, ad hoc solvent-solute interfaces are commonly used in the implicit solvent theory. Recently, we have introduced differential geometry based solvation models which allow the solvent-solute interface to be determined by the variation of a total free energy functional. Atomic fixed partial charges (point charges) are used in our earlier models, which depends on existing molecular mechanical force field software packages for partial charge assignments. As most force field models are parameterized for a certain class of molecules or materials, the use of partial charges limits the accuracy and applicability of our earlier models. Moreover, fixed partial charges do not account for the charge rearrangement during the solvation process. The present work proposes a differential geometry based multiscale solvation model which makes use of the electron density computed directly from the quantum mechanical principle. To this end, we construct a new multiscale total energy functional which consists of not only polar and nonpolar solvation contributions, but also the electronic kinetic and potential energies. By using the Euler-Lagrange variation, we derive a system of three coupled governing equations, i.e., the generalized Poisson-Boltzmann equation for the electrostatic potential, the generalized Laplace-Beltrami equation for the solvent-solute boundary, and the Kohn-Sham equations for the electronic structure. We develop an iterative procedure to solve three coupled equations and to minimize the solvation free energy. The present multiscale model is numerically validated for its stability, consistency and accuracy, and is applied to a few sets of molecules, including a case which is difficult for existing solvation models. Comparison is made to many other classic and quantum models. By using experimental data, we show that the present quantum formulation of our differential geometry based multiscale solvation model improves the prediction of our earlier models, and outperforms some explicit solvation model. PMID:22112067

  8. Single-World Theory of the Extended Wigner's Friend Experiment

    NASA Astrophysics Data System (ADS)

    Sudbery, Anthony

    2017-05-01

    Frauchiger and Renner have recently claimed to prove that "Single-world interpretations of quantum theory cannot be self-consistent". This is contradicted by a construction due to Bell, inspired by Bohmian mechanics, which shows that any quantum system can be modelled in such a way that there is only one "world" at any time, but the predictions of quantum theory are reproduced. This Bell-Bohmian theory is applied to the experiment proposed by Frauchiger and Renner, and their argument is critically examined. It is concluded that it is their version of "standard quantum theory", incorporating state vector collapse upon measurement, that is not self-consistent.

  9. The Moral Self: Applying Identity Theory

    ERIC Educational Resources Information Center

    Stets, Jan E.; Carter, Michael J.

    2011-01-01

    This research applies identity theory to understand the moral self. In identity theory, individuals act on the basis of their identity meanings, and they regulate the meanings of their behavior so that those meanings are consistent with their identity meanings. An inconsistency produces negative emotions and motivates individuals to behave…

  10. Towards an automated and efficient calculation of resonating vibrational states based on state-averaged multiconfigurational approaches

    NASA Astrophysics Data System (ADS)

    Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian; Rauhut, Guntram

    2015-12-01

    Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.

  11. Towards an automated and efficient calculation of resonating vibrational states based on state-averaged multiconfigurational approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian

    Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.

  12. Predictors of consistent condom use among Chinese female sex workers: an application of the protection motivation theory.

    PubMed

    Zhang, Liying; Li, Xiaoming; Zhou, Yuejiao; Lin, Danhua; Su, Shaobing; Zhang, Chen; Stanton, Bonita

    2015-01-01

    We utilized Protection Motivation Theory to assess predictors of intention and behavior of consistent condom use among Chinese female sex workers (FSWs). A self-administered questionnaire was used in a cross-sectional survey among 700 FSWs in Guangxi, China. Multivariate logistic regression analysis indicated that extrinsic and intrinsic rewards, self-efficacy, and response costs predicted consistent condom use intention and behavior among FSWs. Sexually transmitted infection/ HIV prevention programs need to reduce FSWs' perceptions of positive extrinsic rewards and intrinsic rewards for engaging in consistent condom use, reduce FSWs' perception of response costs for using a condom, and increase condom use self-efficacy among FSWs.

  13. Functional level-set derivative for a polymer self consistent field theory Hamiltonian

    NASA Astrophysics Data System (ADS)

    Ouaknin, Gaddiel; Laachi, Nabil; Bochkov, Daniil; Delaney, Kris; Fredrickson, Glenn H.; Gibou, Frederic

    2017-09-01

    We derive functional level-set derivatives for the Hamiltonian arising in self-consistent field theory, which are required to solve free boundary problems in the self-assembly of polymeric systems such as block copolymer melts. In particular, we consider Dirichlet, Neumann and Robin boundary conditions. We provide numerical examples that illustrate how these shape derivatives can be used to find equilibrium and metastable structures of block copolymer melts with a free surface in both two and three spatial dimensions.

  14. Agreeable fancy or disagreeable truth? Reconciling self-enhancement and self-verification.

    PubMed

    Swann, W B; Pelham, B W; Krull, D S

    1989-11-01

    Three studies asked why people sometimes seek positive feedback (self-enhance) and sometimes seek subjectively accurate feedback (self-verify). Consistent with self-enhancement theory, people with low self-esteem as well as those with high self-esteem indicated that they preferred feedback pertaining to their positive rather than negative self-views. Consistent with self-verification theory, the very people who sought favorable feedback pertaining to their positive self-conceptions sought unfavorable feedback pertaining to their negative self-views, regardless of their level of global self-esteem. Apparently, although all people prefer to seek feedback regarding their positive self-views, when they seek feedback regarding their negative self-views, they seek unfavorable feedback. Whether people self-enhance or self-verify thus seems to be determined by the positivity of the relevant self-conceptions rather than their level of self-esteem or the type of person they are.

  15. Book review: Modern Plasma Physics, Vol. I: Physical Kinetics of Turbulent Plasmas, by Patrick H. Diamond, Sanae-I. Itoh and Kimitaka Itoh, Cambridge University Press, Cambridge (UK), 2010, IX, 417 p., ISBN 978-0-521-86920-1 (Hardback)

    NASA Astrophysics Data System (ADS)

    Somov, B. V.

    If you want to learn not only the most fundamental things about the physics of turbulent plasmas but also the current state of the problem including the most recent results in theoretical and experimental investigations - and certainly many physicists and astrophysicists do - this series of three excellent monographs is just for you. The first volume "Physical Kinetics of Turbulent Plasmas" develops the kinetic theory of turbulence through a focus on quasi-particle models and dynamics. It discusses the concepts and theoretical methods for describing weak and strong fluid and phase space turbulence in plasma systems far from equilibrium. The core material includes fluctuation theory, self-similar cascades and transport, mean field theory, resonance broadening and nonlinear wave-particle interaction, wave-wave interaction and wave turbulence, strong turbulence theory and renormalization. The book gives readers a deep understanding of the fields under consideration and builds a foundation for future applications to multi-scale processes of self-organization in tokamaks and other confined plasmas. In spite of a short pedagogical introduction, the book is addressed mainly to well prepared readers with a serious background in plasma physics, to researchers and advanced graduate students in nonlinear plasma physics, controlled fusions and related fields such as cosmic plasma physics

  16. Self-other agreement in personality traits and profiles across cultures: A multirater, multiscale study in Blacks and Whites in South Africa.

    PubMed

    Fetvadjiev, Velichko H; Meiring, Deon; van de Vijver, Fons J R; Nel, J Alewyn; De Kock, François

    2017-12-15

    Despite the importance of self-other agreement for the validity of trait models, few studies have assessed cultural differences systematically. We examined self-other agreement in traits and profiles in the more collectivistic Black group and the more individualistic White group in South Africa. Participants were 172 Black and 198 White students, and one relative and one friend of each student. Participants completed a behavior-based and a trait-adjective-based inventory. Aggregated across traits and raters, there were no cultural differences in trait agreement. However, agreement was stronger for social-relational concepts in Blacks and for personal growth concepts in Whites, providing moderate support for the hypothesis of stronger agreement on culturally more salient traits. Trait agreement was stronger in Blacks' relatives and Whites' friends, but there was no such interaction in profile agreement. The differences in profile agreement (higher in Whites than in Blacks) involved normative agreement and were mediated by dialecticism (higher in Blacks) and social desirability (higher in Whites). Results with the two inventories were similar. In the framework of trait consistency research, cultural differences in self-other agreement may be limited compared to differences in perceived trait consistency, although sizable compared to differences in actual behavior consistency. © 2017 Wiley Periodicals, Inc.

  17. Construction of multi-scale consistent brain networks: methods and applications.

    PubMed

    Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming

    2015-01-01

    Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.

  18. Standard Model in multiscale theories and observational constraints

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Nardelli, Giuseppe; Rodríguez-Fernández, David

    2016-08-01

    We construct and analyze the Standard Model of electroweak and strong interactions in multiscale spacetimes with (i) weighted derivatives and (ii) q -derivatives. Both theories can be formulated in two different frames, called fractional and integer picture. By definition, the fractional picture is where physical predictions should be made. (i) In the theory with weighted derivatives, it is shown that gauge invariance and the requirement of having constant masses in all reference frames make the Standard Model in the integer picture indistinguishable from the ordinary one. Experiments involving only weak and strong forces are insensitive to a change of spacetime dimensionality also in the fractional picture, and only the electromagnetic and gravitational sectors can break the degeneracy. For the simplest multiscale measures with only one characteristic time, length and energy scale t*, ℓ* and E*, we compute the Lamb shift in the hydrogen atom and constrain the multiscale correction to the ordinary result, getting the absolute upper bound t*<10-23 s . For the natural choice α0=1 /2 of the fractional exponent in the measure, this bound is strengthened to t*<10-29 s , corresponding to ℓ*<10-20 m and E*>28 TeV . Stronger bounds are obtained from the measurement of the fine-structure constant. (ii) In the theory with q -derivatives, considering the muon decay rate and the Lamb shift in light atoms, we obtain the independent absolute upper bounds t*<10-13 s and E*>35 MeV . For α0=1 /2 , the Lamb shift alone yields t*<10-27 s , ℓ*<10-19 m and E*>450 GeV .

  19. Misery is not Miserly: Sad and Self-Focused Individuals Spend More

    PubMed Central

    Cryder, Cynthia E.; Lerner, Jennifer S; Gross, James J.; Dahl, Ronald E.

    2014-01-01

    Misery is not miserly: sadness increases the amount of money decision makers give up to acquire a commodity (Lerner, Small, & Loewenstein, 2004). The present research investigated when and why the “misery-is-not-miserly” effect occurs. Drawing on William James’s (1890) concept of the material self, we tested a model specifying relationships among sadness, self-focus, and the amount of money decision makers spend. Consistent with our Jamesian hypothesis, results revealed that self-focus both moderates and mediates the effect of sadness on spending. Results were consistent across males and females. Because the study used real commodities and real money, results hold implications for everyday decisions. They also hold implications for theoretical development. Economic theories of spending may benefit from incorporating psychological theories – specifically theories of emotion and the self. PMID:18578840

  20. Complexity Theory

    USGS Publications Warehouse

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  1. Multiscale Modeling of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  2. Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey B.; LoDestro, Lynda L.; Told, Daniel; Merlo, Gabriele; Ricketson, Lee F.; Campos, Alejandro; Jenko, Frank; Hittinger, Jeffrey A. F.

    2018-05-01

    The vast separation dividing the characteristic times of energy confinement and turbulence in the core of toroidal plasmas makes first-principles prediction on long timescales extremely challenging. Here we report the demonstration of a multiple-timescale method that enables coupling global gyrokinetic simulations with a transport solver to calculate the evolution of the self-consistent temperature profile. This method, which exhibits resiliency to the intrinsic fluctuations arising in turbulence simulations, holds potential for integrating nonlocal gyrokinetic turbulence simulations into predictive, whole-device models.

  3. Self-consistency in Capital Markets

    NASA Astrophysics Data System (ADS)

    Benbrahim, Hamid

    2013-03-01

    Capital Markets are considered, at least in theory, information engines whereby traders contribute to price formation with their diverse perspectives. Regardless whether one believes in efficient market theory on not, actions by individual traders influence prices of securities, which in turn influence actions by other traders. This influence is exerted through a number of mechanisms including portfolio balancing, margin maintenance, trend following, and sentiment. As a result market behaviors emerge from a number of mechanisms ranging from self-consistency due to wisdom of the crowds and self-fulfilling prophecies, to more chaotic behavior resulting from dynamics similar to the three body system, namely the interplay between equities, options, and futures. This talk will address questions and findings regarding the search for self-consistency in capital markets.

  4. A multiscale quantum mechanics/electromagnetics method for device simulations.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-07

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  5. Localized multi-scale energy and vorticity analysis. II. Finite-amplitude instability theory and validation

    NASA Astrophysics Data System (ADS)

    San Liang, X.; Robinson, Allan R.

    2007-12-01

    A novel localized finite-amplitude hydrodynamic stability analysis is established in a unified treatment for the study of real oceanic and atmospheric processes, which are in general highly nonlinear, and intermittent in space and time. We first re-state the classical definition using the multi-scale energy and vorticity analysis (MS-EVA) developed in Liang and Robinson [Liang, X.S., Robinson, A.R., 2005. Localized multiscale energy and vorticity analysis. I. Fundamentals. Dyn. Atmos. Oceans 38, 195-230], and then manipulate certain global operators to achieve the temporal and spatial localization. The key of the spatial localization is transfer-transport separation, which is made precise with the concept of perfect transfer, while relaxation of marginalization leads to the localization of time. In doing so the information of transfer lost in the averages is retrieved and an easy-to-use instability metric is obtained. The resulting metric is field-like (Eulerian), conceptually generalizing the classical formalism, a bulk notion over the whole system. In this framework, an instability has a structure, which is of particular use for open flow processes. We check the structure of baroclinic instability with the benchmark Eady model solution, and the Iceland-Faeroe Frontal (IFF) intrusion, a highly localized and nonlinear process occurring frequently in the region between Iceland and Faeroe Islands. A clear isolated baroclinic instability is identified around the intrusion, which is further found to be characterized by the transition from a spatially growing mode to a temporally growing mode. We also check the consistency of the MS-EVA dynamics with the barotropic Kuo model. An observation is that a local perturbation burst does not necessarily imply an instability: the perturbation energy could be transported from other processes occurring elsewhere. We find that our analysis yields a Kuo theorem-consistent mean-eddy interaction, which is not seen in a conventional Reynolds stress framework. Using the techniques of marginalization and localization, this work sets up an example for the generalization of certain geophysical fluid dynamics theories for more generic purposes.

  6. Optimal Damping Behavior of a Composite Sandwich Beam Reinforced with Coated Fibers

    NASA Astrophysics Data System (ADS)

    Lurie, S.; Solyaev, Y.; Ustenko, A.

    2018-04-01

    In the present paper, the effective damping properties of a symmetric foam-core sandwich beam with composite face plates reinforced with coated fibers is studied. A glass fiber-epoxy composite with additional rubber-toughened epoxy coatings on the fibers is considered as the material of the face plates. A micromechanical analysis of the effective properties of the unidirectional lamina is conducted based on the generalized self-consistent method and the viscoelastic correspondence principle. The effective complex moduli of composite face plates with a symmetric angle-ply structure are evaluated based on classical lamination theory. A modified Mead-Markus model is utilized to evaluate the fundamental modal loss factor of a simply supported sandwich beam with a polyurethane core. The viscoelastic frequency-dependent behaviors of the core and face plate materials are both considered. The properties of the face plates are evaluated based on a micromechanical analysis and found to implicitly depend on frequency; thus, an iterative procedure is applied to find the natural frequencies of the lateral vibrations of the beam. The optimal values of the coating thickness, lamination angle and core thickness for the best multi-scale damping behavior of the beam are found.

  7. Geophysics and Nanosciences: Nano to Micro to Meso to Macro Scale Swelling Soils

    NASA Astrophysics Data System (ADS)

    Cushman, J.

    2003-04-01

    We use statistical mechanical simulations of nanoporous materials to motivate a choice of independent constitutive variables for a multiscale mixture theory of swelling soils. A video will illustrate the structural behavior of fluids in nanopores when they are adsorbed from a bulk phase vapor to form capillaries on the nanoscale. These simulations suggest that when a swelling soil is very dry, the full strain tensor for the liquid phase should be included in the list of independent variables in any mixture theory. We use this information to develop a three-scale (micro, meso, macro) mixture theory for swelling soils. For a simplified case, we present the underlying multiscale field equations and constitutive theory, solve the resultant well posed system numerically, and present some graphical results for a drying and shrinking body.

  8. Self-consistent theory of atomic Fermi gases with a Feshbach resonance at the superfluid transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xiaji; Hu Hui

    2005-12-15

    A self-consistent theory is derived to describe the BCS-Bose-Einstein-condensate crossover for a strongly interacting Fermi gas with a Feshbach resonance. In the theory the fluctuation of the dressed molecules, consisting of both preformed Cooper pairs and 'bare' Feshbach molecules, has been included within a self-consistent T-matrix approximation, beyond the Nozieres and Schmitt-Rink strategy considered by Ohashi and Griffin. The resulting self-consistent equations are solved numerically to investigate the normal-state properties of the crossover at various resonance widths. It is found that the superfluid transition temperature T{sub c} increases monotonically at all widths as the effective interaction between atoms becomes moremore » attractive. Furthermore, a residue factor Z{sub m} of the molecule's Green function and a complex effective mass have been determined to characterize the fraction and lifetime of Feshbach molecules at T{sub c}. Our many-body calculations of Z{sub m} agree qualitatively well with recent measurments of the gas of {sup 6}Li atoms near the broad resonance at 834 G. The crossover from narrow to broad resonances has also been studied.« less

  9. A Theory for Self-consistent Acceleration of Energetic Charged Particles by Dynamic Small-scale Flux Ropes

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.; Zank, G. P.; Khabarova, O.; Webb, G. M.

    2016-12-01

    Simulations of charged particle acceleration in turbulent plasma regions with numerous small-scale contracting and merging (reconnecting) magnetic islands/flux ropes emphasize the key role of temporary particle trapping in these structures for efficient acceleration that can result in power-law spectra. In response, a comprehensive kinetic transport theory framework was developed by Zank et al. and le Roux et al. to capture the essential physics of energetic particle acceleration in solar wind regions containing numerous dynamic small-scale flux ropes. Examples of test particle solutions exhibiting hard power-law spectra for energetic particles were presented in recent publications by both Zank et al. and le Roux et al.. However, the considerable pressure in the accelerated particles suggests the need for expanding the kinetic transport theory to enable a self-consistent description of energy exchange between energetic particles and small-scale flux ropes. We plan to present the equations of an expanded kinetic transport theory framework that will enable such a self-consistent description.

  10. Multiscale structure in eco-evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Stacey, Blake C.

    In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.

  11. Communication: The description of strong correlation within self-consistent Green's function second-order perturbation theory

    NASA Astrophysics Data System (ADS)

    Phillips, Jordan J.; Zgid, Dominika

    2014-06-01

    We report an implementation of self-consistent Green's function many-body theory within a second-order approximation (GF2) for application with molecular systems. This is done by iterative solution of the Dyson equation expressed in matrix form in an atomic orbital basis, where the Green's function and self-energy are built on the imaginary frequency and imaginary time domain, respectively, and fast Fourier transform is used to efficiently transform these quantities as needed. We apply this method to several archetypical examples of strong correlation, such as a H32 finite lattice that displays a highly multireference electronic ground state even at equilibrium lattice spacing. In all cases, GF2 gives a physically meaningful description of the metal to insulator transition in these systems, without resorting to spin-symmetry breaking. Our results show that self-consistent Green's function many-body theory offers a viable route to describing strong correlations while remaining within a computationally tractable single-particle formalism.

  12. Laser induced hierarchical calcium phosphate structures.

    PubMed

    Kurella, Anil; Dahotre, Narendra B

    2006-11-01

    The surface properties of biomedical implant materials control the dynamic interactions at tissue-implant interfaces. At such interfaces, if the nanoscale features influence protein interactions, those of the microscale and mesoscale aid cell orientation and provide tissue integration, respectively. It seems imperative that the synthetic materials expected to replace natural hard tissues are engineered to mimic the complexity of their hierarchical assembly. However, the current surface engineering approaches are single scaled. It is demonstrated that using laser surface engineering a controlled multiscale surface can be synthesized for bioactive functions. A systematic organization of bioactive calcium phosphate coating with multiphase composition on Ti-alloy substrate ranging from nano- to mesoscale has been achieved by effectively controlling the thermo physical interactions during laser processing. The morphology of the coating consisted of a periodic arrangement of Ti-rich and Ca-P-deficient star-like phases uniformly distributed inside a Ca-P-rich self-assembled cellular structure with the presence of CaO, alpha-tricalcium phosphate, CaTiO(3), TiO(2) and Ti phase in the coating matrix. The cellular structures ranged in diameter from 2.5 microm to 10 microm as an assembly of cuboid shaped particles of dimensions of approximately 200 nm x 1 microm. The multiscale texture also included nanoscale particles that are the precursors for many of these phases. The rapid cooling associated with the laser processing resulted in formation, organization and controlling dimensions of the Ca-P-rich glassy phase into a micron scale cellular morphology and submicron scale clusters of CaTiO(3) phase inside the cellular structures. The self-assembly of the coating into multiscale structure was influenced by chemical and physical interactions among the multiphases that evolved during laser processing.

  13. Winners, Losers, Insiders, and Outsiders: Comparing Hierometer and Sociometer Theories of Self-Regard

    PubMed Central

    Mahadevan, Nikhila; Gregg, Aiden P.; Sedikides, Constantine; de Waal-Andrews, Wendy G.

    2016-01-01

    What evolutionary function does self-regard serve? Hierometer theory, introduced here, provides one answer: it helps individuals navigate status hierarchies, which feature zero-sum contests that can be lost as well as won. In particular, self-regard tracks social status to regulate behavioral assertiveness, augmenting or diminishing it to optimize performance in such contests. Hierometer theory also offers a conceptual counterpoint that helps resolve ambiguities in sociometer theory, which offers a complementary account of self-regard’s evolutionary function. In two large-scale cross-sectional studies, we operationalized theoretically relevant variables at three distinct levels of analysis, namely, social (relations: status, inclusion), psychological (self-regard: self-esteem, narcissism), and behavioral (strategy: assertiveness, affiliativeness). Correlational and mediational analyses consistently supported hierometer theory, but offered only mixed support for sociometer theory, including when controlling for confounding constructs (anxiety, depression). We interpret our results in terms of a broader agency-communion framework. PMID:27065896

  14. Dynamic Self-Consistent Field Theories for Polymer Blends and Block Copolymers

    NASA Astrophysics Data System (ADS)

    Kawakatsu, Toshihiro

    Understanding the behavior of the phase separated domain structures and rheological properties of multi-component polymeric systems require detailed information on the dynamics of domains and that of conformations of constituent polymer chains. Self-consistent field (SCF) theory is a useful tool to treat such a problem because the conformation entropy of polymer chains in inhomogeneous systems can be evaluated quantitatively using this theory. However, when we turn our attention to the dynamic properties in a non-equilibrium state, the basic assumption of the SCF theory, i.e. the assumption of equilibrium chain conformation, breaks down. In order to avoid such a difficulty, dynamic SCF theories were developed. In this chapter, we give a brief review of the recent developments of dynamic SCF theories, and discuss where the cutting-edge of this theory is.

  15. Multiscale Modeling for Linking Growth, Microstructure, and Properties of Inorganic Microporous Films

    NASA Technical Reports Server (NTRS)

    Vlachos, Dion G.

    2002-01-01

    The focus of this presentation is on multiscale modeling in order to link processing, microstructure, and properties of materials. Overview of problems we study includes: Growth mechanisms in chemical and physical vapor epitaxy; thin films of zeolites for separation and sensing; thin Pd films for hydrogen separation and pattern formation by self-regulation routes.

  16. Towards Characterization, Modeling, and Uncertainty Quantification in Multi-scale Mechanics of Oragnic-rich Shales

    NASA Astrophysics Data System (ADS)

    Abedi, S.; Mashhadian, M.; Noshadravan, A.

    2015-12-01

    Increasing the efficiency and sustainability in operation of hydrocarbon recovery from organic-rich shales requires a fundamental understanding of chemomechanical properties of organic-rich shales. This understanding is manifested in form of physics-bases predictive models capable of capturing highly heterogeneous and multi-scale structure of organic-rich shale materials. In this work we present a framework of experimental characterization, micromechanical modeling, and uncertainty quantification that spans from nanoscale to macroscale. Application of experiments such as coupled grid nano-indentation and energy dispersive x-ray spectroscopy and micromechanical modeling attributing the role of organic maturity to the texture of the material, allow us to identify unique clay mechanical properties among different samples that are independent of maturity of shale formations and total organic content. The results can then be used to inform the physically-based multiscale model for organic rich shales consisting of three levels that spans from the scale of elementary building blocks (e.g. clay minerals in clay-dominated formations) of organic rich shales to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Although this approach is powerful in capturing the effective properties of organic-rich shale in an average sense, it does not account for the uncertainty in compositional and mechanical model parameters. Thus, we take this model one step forward by systematically incorporating the main sources of uncertainty in modeling multiscale behavior of organic-rich shales. In particular we account for the uncertainty in main model parameters at different scales such as porosity, elastic properties and mineralogy mass percent. To that end, we use Maximum Entropy Principle and random matrix theory to construct probabilistic descriptions of model inputs based on available information. The Monte Carlo simulation is then carried out to propagate the uncertainty and consequently construct probabilistic descriptions of properties at multiple length-scales. The combination of experimental characterization and stochastic multi-scale modeling presented in this work improves the robustness in the prediction of essential subsurface parameters in engineering scale.

  17. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carretero, M.; Segura, A.

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  18. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice.

    PubMed

    Bonilla, L L; Carretero, M; Segura, A

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  19. Process of Coping with Radiation Therapy.

    ERIC Educational Resources Information Center

    Johnson, Jean E.; And Others

    1989-01-01

    Evaluated ability of self-regulation and emotional-drive theories to explain effects of informational intervention entailing objective descriptions of experience on outcomes of coping with radiation therapy among 84 men with prostate cancer. Consistent with self-regulation theory, similarity between expectations and experience and degree of…

  20. Quasi-Particle Self-Consistent GW for Molecules.

    PubMed

    Kaplan, F; Harding, M E; Seiler, C; Weigend, F; Evers, F; van Setten, M J

    2016-06-14

    We present the formalism and implementation of quasi-particle self-consistent GW (qsGW) and eigenvalue only quasi-particle self-consistent GW (evGW) adapted to standard quantum chemistry packages. Our implementation is benchmarked against high-level quantum chemistry computations (coupled-cluster theory) and experimental results using a representative set of molecules. Furthermore, we compare the qsGW approach for five molecules relevant for organic photovoltaics to self-consistent GW results (scGW) and analyze the effects of the self-consistency on the ground state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives.

  1. Multiscale Molecular Dynamics Model for Heterogeneous Charged Systems

    NASA Astrophysics Data System (ADS)

    Stanton, L. G.; Glosli, J. N.; Murillo, M. S.

    2018-04-01

    Modeling matter across large length scales and timescales using molecular dynamics simulations poses significant challenges. These challenges are typically addressed through the use of precomputed pair potentials that depend on thermodynamic properties like temperature and density; however, many scenarios of interest involve spatiotemporal variations in these properties, and such variations can violate assumptions made in constructing these potentials, thus precluding their use. In particular, when a system is strongly heterogeneous, most of the usual simplifying assumptions (e.g., spherical potentials) do not apply. Here, we present a multiscale approach to orbital-free density functional theory molecular dynamics (OFDFT-MD) simulations that bridges atomic, interionic, and continuum length scales to allow for variations in hydrodynamic quantities in a consistent way. Our multiscale approach enables simulations on the order of micron length scales and 10's of picosecond timescales, which exceeds current OFDFT-MD simulations by many orders of magnitude. This new capability is then used to study the heterogeneous, nonequilibrium dynamics of a heated interface characteristic of an inertial-confinement-fusion capsule containing a plastic ablator near a fuel layer composed of deuterium-tritium ice. At these scales, fundamental assumptions of continuum models are explored; features such as the separation of the momentum fields among the species and strong hydrogen jetting from the plastic into the fuel region are observed, which had previously not been seen in hydrodynamic simulations.

  2. Filter-based multiscale entropy analysis of complex physiological time series.

    PubMed

    Xu, Yuesheng; Zhao, Liang

    2013-08-01

    Multiscale entropy (MSE) has been widely and successfully used in analyzing the complexity of physiological time series. We reinterpret the averaging process in MSE as filtering a time series by a filter of a piecewise constant type. From this viewpoint, we introduce filter-based multiscale entropy (FME), which filters a time series to generate multiple frequency components, and then we compute the blockwise entropy of the resulting components. By choosing filters adapted to the feature of a given time series, FME is able to better capture its multiscale information and to provide more flexibility for studying its complexity. Motivated by the heart rate turbulence theory, which suggests that the human heartbeat interval time series can be described in piecewise linear patterns, we propose piecewise linear filter multiscale entropy (PLFME) for the complexity analysis of the time series. Numerical results from PLFME are more robust to data of various lengths than those from MSE. The numerical performance of the adaptive piecewise constant filter multiscale entropy without prior information is comparable to that of PLFME, whose design takes prior information into account.

  3. Enhancement of low visibility aerial images using histogram truncation and an explicit Retinex representation for balancing contrast and color consistency

    NASA Astrophysics Data System (ADS)

    Liu, Changjiang; Cheng, Irene; Zhang, Yi; Basu, Anup

    2017-06-01

    This paper presents an improved multi-scale Retinex (MSR) based enhancement for ariel images under low visibility. For traditional multi-scale Retinex, three scales are commonly employed, which limits its application scenarios. We extend our research to a general purpose enhanced method, and design an MSR with more than three scales. Based on the mathematical analysis and deductions, an explicit multi-scale representation is proposed that balances image contrast and color consistency. In addition, a histogram truncation technique is introduced as a post-processing strategy to remap the multi-scale Retinex output to the dynamic range of the display. Analysis of experimental results and comparisons with existing algorithms demonstrate the effectiveness and generality of the proposed method. Results on image quality assessment proves the accuracy of the proposed method with respect to both objective and subjective criteria.

  4. An implicit theory of self-esteem: the consequences of perceived self-esteem for romantic desirability.

    PubMed

    Zeigler-Hill, Virgil; Myers, Erin M

    2011-04-07

    The provision of information appears to be an important property of self-esteem as evidenced by previous research concerning the status-tracking and status-signaling models of self-esteem. The present studies examine whether there is an implicit theory of self-esteem that leads individuals to assume targets with higher levels of self-esteem possess more desirable characteristics than those with lower levels of self-esteem. Across 6 studies, targets with ostensibly higher levels of self-esteem were generally rated as more attractive and as more desirable relationship partners than those with lower levels of self- esteem. It is important to note, however, that this general trend did not consistently emerge for female targets. Rather, female targets with high self-esteem were often evaluated less positively than those with more moderate levels of self-esteem. The present findings are discussed in the context of an extended informational model of self-esteem consisting of both the status-tracking and status-signaling properties of self-esteem.

  5. Formation, spin-up, and stability of field-reversed configurations

    DOE PAGES

    Omelchenko, Yuri A.

    2015-08-24

    Formation, spontaneous spin-up and stability of theta-pinch formed field-reversed configurations are studied self-consistently in three dimensions with a multiscale hybrid model that treats all plasma ions as full-orbit collisional macro-particles and the electrons as a massless quasineutral fluid. The end-to-end hybrid simulations for the first time reveal poloidal profiles of implosion-driven fast toroidal plasma rotation and demonstrate three well-known discharge regimes as a function of experimental parameters: the decaying stable configuration, the tilt unstable configuration and the nonlinear evolution of a fast growing tearing mode.

  6. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: Exactly solvable two-site Hubbard model

    DOE PAGES

    Kutepov, A. L.

    2015-07-22

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ₁ from the first-order perturbation theory, and the exact vertex Γ E). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. Results obtained with the exact vertex are directly related to the present open question—which approximation is more advantageous for future implementations, GW + DMFT or QPGW +more » DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on Perturbation Theory systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.« less

  7. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: exactly solvable two-site Hubbard model.

    PubMed

    Kutepov, A L

    2015-08-12

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ1 from the first-order perturbation theory, and the exact vertex Γ(E)). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. The results obtained with the exact vertex are directly related to the present open question-which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on perturbation theory (PT) systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.

  8. Imaging energy landscapes with concentrated diffusing colloidal probes

    NASA Astrophysics Data System (ADS)

    Bahukudumbi, Pradipkumar; Bevan, Michael A.

    2007-06-01

    The ability to locally interrogate interactions between particles and energetically patterned surfaces provides essential information to design, control, and optimize template directed self-assembly processes. Although numerous techniques are capable of characterizing local physicochemical surface properties, no current method resolves interactions between colloids and patterned surfaces on the order of the thermal energy kT, which is the inherent energy scale of equilibrium self-assembly processes. Here, the authors describe video microscopy measurements and an inverse Monte Carlo analysis of diffusing colloidal probes as a means to image three dimensional free energy and potential energy landscapes due to physically patterned surfaces. In addition, they also develop a consistent analysis of self-diffusion in inhomogeneous fluids of concentrated diffusing probes on energy landscapes, which is important to the temporal imaging process and to self-assembly kinetics. Extension of the concepts developed in this work suggests a general strategy to image multidimensional and multiscale physical, chemical, and biological surfaces using a variety of diffusing probes (i.e., molecules, macromolecules, nanoparticles, and colloids).

  9. Coupling of ab initio density functional theory and molecular dynamics for the multiscale modeling of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ng, T. Y.; Yeak, S. H.; Liew, K. M.

    2008-02-01

    A multiscale technique is developed that couples empirical molecular dynamics (MD) and ab initio density functional theory (DFT). An overlap handshaking region between the empirical MD and ab initio DFT regions is formulated and the interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical bond order potential, the long-range Lennard-Jones potential as well as the quantum-mechanical DFT derived forces. A density of point algorithm is also developed to track all interatomic distances in the system, and to activate and establish the DFT and handshaking regions. Through parallel computing, this multiscale method is used here to study the dynamic behavior of single-walled carbon nanotubes (SWCNTs) under asymmetrical axial compression. The detection of sideways buckling due to the asymmetrical axial compression is reported and discussed. It is noted from this study on SWCNTs that the MD results may be stiffer compared to those with electron density considerations, i.e. first-principle ab initio methods.

  10. 25 Years of Self-Organized Criticality: Solar and Astrophysics

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Crosby, Norma B.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Hergarten, Stefan; McAteer, James; Milovanov, Alexander V.; Mineshige, Shin; Morales, Laura; Nishizuka, Naoto; Pruessner, Gunnar; Sanchez, Raul; Sharma, A. Surja; Strugarek, Antoine; Uritsky, Vadim

    2016-01-01

    Shortly after the seminal paper "Self-Organized Criticality: An explanation of 1/ f noise" by Bak et al. (1987), the idea has been applied to solar physics, in "Avalanches and the Distribution of Solar Flares" by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme.

  11. Object-oriented recognition of high-resolution remote sensing image

    NASA Astrophysics Data System (ADS)

    Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan

    2016-01-01

    With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .

  12. Vocational Preferences and College Expectations: An Extension of Holland's Principle of Self-Selection

    ERIC Educational Resources Information Center

    Pike, Gary R.

    2006-01-01

    Holland's theory of vocational preferences provides a powerful framework for studying students' college experiences. A basic proposition of Holland's theory is that individuals actively seek out and select environments that are congruent with their personality types. Although studies consistently support the self-selection proposition, they have…

  13. Testing Self-Determination Theory via Nigerian and Indian Adolescents

    ERIC Educational Resources Information Center

    Sheldon, Kennon M.; Abad, Neetu; Omoile, Jessica

    2009-01-01

    We tested the generalizability of five propositions derived from Self-Determination Theory (SDT; Deci & Ryan, 2000) using school-aged adolescents living in India (N = 926) and Nigeria (N = 363). Consistent with past U.S. research, perceived teacher autonomy-support predicted students' basic need-satisfaction in the classroom and also predicted…

  14. Multidimensional Self-Efficacy and Affect in Wheelchair Basketball Players

    ERIC Educational Resources Information Center

    Martin, Jeffrey J.

    2008-01-01

    In the current study, variables grounded in social cognitive theory with athletes with disabilities were examined. Performance, training, resiliency, and thought control self-efficacy, and positive (PA) and negative (NA) affect were examined with wheelchair basketball athletes (N = 79). Consistent with social cognitive theory, weak to strong…

  15. Nonlocal and Mixed-Locality Multiscale Finite Element Methods

    DOE PAGES

    Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.

    2018-03-27

    In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less

  16. Nonlocal and Mixed-Locality Multiscale Finite Element Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.

    In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less

  17. The Self-Efficacy Scale: A Construct Validity Study.

    ERIC Educational Resources Information Center

    Sherer, Mark; Adams, Carol

    Self-efficacy is defined as the belief that one can successfully perform a behavior. Self-efficacy theory asserts that self-efficacy expectancies exert powerful influence on behavior and behavior change. The Self-efficacy Scale, which was developed to assess generalized self-efficacy expectations, consists of two subscales: general self-efficacy…

  18. The self-organizing fractal theory as a universal discovery method: the phenomenon of life.

    PubMed

    Kurakin, Alexei

    2011-03-29

    A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy.An application of the new discovery method to life sciences reveals that moving electrons represent a keystone physical force (flux) that powers, animates, informs, and binds all living structures-processes into a planetary-wide, multiscale system of electron flow/circulation, and that all living organisms and their larger-scale organizations emerge to function as electron transport networks that are supported by and, at the same time, support the flow of electrons down the Earth's redox gradient maintained along the core-mantle-crust-ocean-atmosphere axis of the planet. The presented findings lead to a radically new perspective on the nature and origin of life, suggesting that living matter is an organizational state/phase of nonliving matter and a natural consequence of the evolution and self-organization of nonliving matter.The presented paradigm opens doors for explosive advances in many disciplines, by uniting them within a single conceptual framework and providing a discovery method that allows for the systematic generation of knowledge through comparison and complementation of empirical data across different sciences and disciplines.

  19. The self-organizing fractal theory as a universal discovery method: the phenomenon of life

    PubMed Central

    2011-01-01

    A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy. An application of the new discovery method to life sciences reveals that moving electrons represent a keystone physical force (flux) that powers, animates, informs, and binds all living structures-processes into a planetary-wide, multiscale system of electron flow/circulation, and that all living organisms and their larger-scale organizations emerge to function as electron transport networks that are supported by and, at the same time, support the flow of electrons down the Earth's redox gradient maintained along the core-mantle-crust-ocean-atmosphere axis of the planet. The presented findings lead to a radically new perspective on the nature and origin of life, suggesting that living matter is an organizational state/phase of nonliving matter and a natural consequence of the evolution and self-organization of nonliving matter. The presented paradigm opens doors for explosive advances in many disciplines, by uniting them within a single conceptual framework and providing a discovery method that allows for the systematic generation of knowledge through comparison and complementation of empirical data across different sciences and disciplines. PMID:21447162

  20. Multiscale Investigations of the Early Stage Oxidation on Cu Surfaces

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Xiao, Penghao; Lian, Xin; Yang, Shen-Che; Henkelman, Grame; Saidi, Wissam; Yang, Judith; University of Pittsburgh Team; University of Texas at Austin Team

    Previous in situ TEM experiments have shown that the oxidation of the three low index Cu surfaces (100), (110) and (111) exhibit different oxide nucleation rates, and the resulting oxides have 3-dimensional (3D) island shapes or 2D rafts under different conditions. In order to better understand these results, we have investigated the early stages of Cu oxidation using a multiscale computational approach that employs density functional theory (DFT), reactive force field (ReaxFF), and kinetic Mote Carlo (KMC). With DFT calculation, we have compared O2 dissociation barriers on Cu (100), (110) and (111) surfaces at high oxygen coverage to evaluate the kinetic barrier of sublayer oxidization. We found that O2 dissociation barriers on Cu(111) surface are all lower than those on (110) and (100) surfaces. This trend agrees with experimental observations that (111) surface is easier to oxidize. These DFT calculated energy barriers are then incorporated into KMC simulations. The large scale ReaxFF molecular dynamics and KMC simulations detail the oxidation dynamics of the different Cu surfaces, and show the formation of various oxide morphologies that are consistent with experimental observations.

  1. Scalable High-order Methods for Multi-Scale Problems: Analysis, Algorithms and Application

    DTIC Science & Technology

    2016-02-26

    Karniadakis, “Resilient algorithms for reconstructing and simulating gappy flow fields in CFD ”, Fluid Dynamic Research, vol. 47, 051402, 2015. 2. Y. Yu, H...simulation, domain decomposition, CFD , gappy data, estimation theory, and gap-tooth algorithm. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...objective of this project was to develop a general CFD framework for multifidelity simula- tions to target multiscale problems but also resilience in

  2. Simulation of Left Atrial Function Using a Multi-Scale Model of the Cardiovascular System

    PubMed Central

    Pironet, Antoine; Dauby, Pierre C.; Paeme, Sabine; Kosta, Sarah; Chase, J. Geoffrey; Desaive, Thomas

    2013-01-01

    During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to characterize the left atrium, first, because this theory has known limitations, and second, because it is still uncertain whether the load independence hypothesis holds. In this study, we aim to bypass this uncertainty by relying on another kind of mathematical model of the cardiac chambers. In the present work, we describe both the left atrium and the left ventricle with a multi-scale model. The multi-scale property of this model comes from the fact that pressure inside a cardiac chamber is derived from a model of the sarcomere behavior. Macroscopic model parameters are identified from reference dog hemodynamic data. The multi-scale model of the cardiovascular system including the left atrium is then simulated to show that the physiological roles of the left atrium are correctly reproduced. This include a biphasic pressure wave and an eight-shaped pressure-volume loop. We also test the validity of our model in non basal conditions by reproducing a preload reduction experiment by inferior vena cava occlusion with the model. We compute the variation of eight indices before and after this experiment and obtain the same variation as experimentally observed for seven out of the eight indices. In summary, the multi-scale mathematical model presented in this work is able to correctly account for the three roles of the left atrium and also exhibits a realistic left atrial pressure-volume loop. Furthermore, the model has been previously presented and validated for the left ventricle. This makes it a proper alternative to the time-varying elastance theory if the focus is set on precisely representing the left atrial and left ventricular behaviors. PMID:23755183

  3. Coherent multiscale image processing using dual-tree quaternion wavelets.

    PubMed

    Chan, Wai Lam; Choi, Hyeokho; Baraniuk, Richard G

    2008-07-01

    The dual-tree quaternion wavelet transform (QWT) is a new multiscale analysis tool for geometric image features. The QWT is a near shift-invariant tight frame representation whose coefficients sport a magnitude and three phases: two phases encode local image shifts while the third contains image texture information. The QWT is based on an alternative theory for the 2-D Hilbert transform and can be computed using a dual-tree filter bank with linear computational complexity. To demonstrate the properties of the QWT's coherent magnitude/phase representation, we develop an efficient and accurate procedure for estimating the local geometrical structure of an image. We also develop a new multiscale algorithm for estimating the disparity between a pair of images that is promising for image registration and flow estimation applications. The algorithm features multiscale phase unwrapping, linear complexity, and sub-pixel estimation accuracy.

  4. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    NASA Astrophysics Data System (ADS)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-05-01

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.

  5. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  6. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-04

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  7. A behavior-analytic critique of Bandura's self-efficacy theory

    PubMed Central

    Biglan, Anthony

    1987-01-01

    A behavior-analytic critique of self-efficacy theory is presented. Self-efficacy theory asserts that efficacy expectations determine approach behavior and physiological arousal of phobics as well as numerous other clinically important behaviors. Evidence which is purported to support this assertion is reviewed. The evidence consists of correlations between self-efficacy ratings and other behaviors. Such response-response relationships do not unequivocally establish that one response causes another. A behavior-analytic alternative to self-efficacy theory explains these relationships in terms of environmental events. Correlations between self-efficacy rating behavior and other behavior may be due to the contingencies of reinforcement that establish a correspondence between such verbal predictions and the behavior to which they refer. Such a behavior-analytic account does not deny any of the empirical relationships presented in support of self-efficacy theory, but it points to environmental variables that could account for those relationships and that could be manipulated in the interest of developing more effective treatment procedures. PMID:22477956

  8. Depression and selection of positive and negative social feedback: motivated preference or cognitive balance?

    PubMed

    Alloy, L B; Lipman, A J

    1992-05-01

    In this commentary we examine Swann, Wenzlaff, Krull, and Pelham's (1992) findings with respect to each of 5 central propositions in self-verification theory. We conclude that although the data are consistent with self-verification theory, none of the 5 components of the theory have been demonstrated convincingly as yet. Specifically, we argue that depressed subjects' selection of social feedback appears to be balanced or evenhanded rather than biased toward negative feedback and that there is little evidence to indicate that depressives actively seek negative appraisals. Furthermore, we suggest that the studies are silent with respect to the motivational postulates of self-verification theory and that a variety of competing cognitive and motivational models can explain Swann et al.'s findings as well as self-verification theory.

  9. A complete categorization of multiscale models of infectious disease systems.

    PubMed

    Garira, Winston

    2017-12-01

    Modelling of infectious disease systems has entered a new era in which disease modellers are increasingly turning to multiscale modelling to extend traditional modelling frameworks into new application areas and to achieve higher levels of detail and accuracy in characterizing infectious disease systems. In this paper we present a categorization framework for categorizing multiscale models of infectious disease systems. The categorization framework consists of five integration frameworks and five criteria. We use the categorization framework to give a complete categorization of host-level immuno-epidemiological models (HL-IEMs). This categorization framework is also shown to be applicable in categorizing other types of multiscale models of infectious diseases beyond HL-IEMs through modifying the initial categorization framework presented in this study. Categorization of multiscale models of infectious disease systems in this way is useful in bringing some order to the discussion on the structure of these multiscale models.

  10. Self-Consistent Field Lattice Model for Polymer Networks.

    PubMed

    Tito, Nicholas B; Storm, Cornelis; Ellenbroek, Wouter G

    2017-12-26

    A lattice model based on polymer self-consistent field theory is developed to predict the equilibrium statistics of arbitrary polymer networks. For a given network topology, our approach uses moment propagators on a lattice to self-consistently construct the ensemble of polymer conformations and cross-link spatial probability distributions. Remarkably, the calculation can be performed "in the dark", without any prior knowledge on preferred chain conformations or cross-link positions. Numerical results from the model for a test network exhibit close agreement with molecular dynamics simulations, including when the network is strongly sheared. Our model captures nonaffine deformation, mean-field monomer interactions, cross-link fluctuations, and finite extensibility of chains, yielding predictions that differ markedly from classical rubber elasticity theory for polymer networks. By examining polymer networks with different degrees of interconnectivity, we gain insight into cross-link entropy, an important quantity in the macroscopic behavior of gels and self-healing materials as they are deformed.

  11. Feeling Interpersonally Controlled While Pursuing Materialistic Goals: A Problematic Combination for Moral Behavior.

    PubMed

    Sheldon, Kennon M; Sommet, Nicolas; Corcoran, Mike; Elliot, Andrew J

    2018-04-01

    We created a life-goal assessment drawing from self-determination theory and achievement goal literature, examining its predictive power regarding immoral behavior and subjective well-being. Our source items assessed direction and energization of motivation, via the distinction between intrinsic and extrinsic aims and between intrinsic and extrinsic reasons for acting, respectively. Fused source items assessed four goal complexes representing a combination of direction and energization. Across three studies ( Ns = 109, 121, and 398), the extrinsic aim/extrinsic reason complex was consistently associated with immoral and/or unethical behavior beyond four source and three other goal complex variables. This was consistent with the triangle model of responsibility's claim that immoral behaviors may result when individuals disengage the self from moral prescriptions. The extrinsic/extrinsic complex also predicted lower subjective well-being, albeit less consistently. Our goal complex approach sheds light on how self-determination theory's goal contents and organismic integration mini-theories interact, particularly with respect to unethical behavior.

  12. Model-Based Self-Tuning Multiscale Method for Combustion Control

    NASA Technical Reports Server (NTRS)

    Le, Dzu, K.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2006-01-01

    A multi-scale representation of the combustor dynamics was used to create a self-tuning, scalable controller to suppress multiple instability modes in a liquid-fueled aero engine-derived combustor operating at engine-like conditions. Its self-tuning features designed to handle the uncertainties in the combustor dynamics and time-delays are essential for control performance and robustness. The controller was implemented to modulate a high-frequency fuel valve with feedback from dynamic pressure sensors. This scalable algorithm suppressed pressure oscillations of different instability modes by as much as 90 percent without the peak-splitting effect. The self-tuning logic guided the adjustment of controller parameters and converged quickly toward phase-lock for optimal suppression of the instabilities. The forced-response characteristics of the control model compare well with those of the test rig on both the frequency-domain and the time-domain.

  13. The ordering of symmetric diblock copolymers: A comparison of self-consistent-field and density functional approaches

    NASA Astrophysics Data System (ADS)

    Nath, Shyamal K.; McCoy, John D.; Curro, John G.; Saunders, Randall S.

    1997-02-01

    Polymer reference interaction site model (PRISM) based density functional (DF) theory is used to evaluate the structure and thermodynamics of structurally symmetric, freely jointed, diblock chains with 0.50 volume fraction. These results are compared to the results of self-consistent-field (SCF) theory. Agreement between the predictions of the SCF and DF theories is found for the lamella spacing well above the order-disorder transition (ODT) and for the qualitative behavior of the interfacial thickness as a function of both chain length and Flory-Huggins χ parameter. Disagreement is found for the magnitude of the interfacial thickness where DF theory indicates that the thickness is 1.7±0.2 times larger than that predicted by SCF theory. It appears that behavior on the monomer length scale is sensitive to system specific details which are neglected by SCF theory.

  14. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plechac, Petr; Vlachos, Dionisios; Katsoulakis, Markos

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomassmore » transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.« less

  15. A fast solver for the Helmholtz equation based on the generalized multiscale finite-element method

    NASA Astrophysics Data System (ADS)

    Fu, Shubin; Gao, Kai

    2017-11-01

    Conventional finite-element methods for solving the acoustic-wave Helmholtz equation in highly heterogeneous media usually require finely discretized mesh to represent the medium property variations with sufficient accuracy. Computational costs for solving the Helmholtz equation can therefore be considerably expensive for complicated and large geological models. Based on the generalized multiscale finite-element theory, we develop a novel continuous Galerkin method to solve the Helmholtz equation in acoustic media with spatially variable velocity and mass density. Instead of using conventional polynomial basis functions, we use multiscale basis functions to form the approximation space on the coarse mesh. The multiscale basis functions are obtained from multiplying the eigenfunctions of a carefully designed local spectral problem with an appropriate multiscale partition of unity. These multiscale basis functions can effectively incorporate the characteristics of heterogeneous media's fine-scale variations, thus enable us to obtain accurate solution to the Helmholtz equation without directly solving the large discrete system formed on the fine mesh. Numerical results show that our new solver can significantly reduce the dimension of the discrete Helmholtz equation system, and can also obviously reduce the computational time.

  16. Self Modeling: Expanding the Theories of Learning

    ERIC Educational Resources Information Center

    Dowrick, Peter W.

    2012-01-01

    Self modeling (SM) offers a unique expansion of learning theory. For several decades, a steady trickle of empirical studies has reported consistent evidence for the efficacy of SM as a procedure for positive behavior change across physical, social, educational, and diagnostic variations. SM became accepted as an extreme case of model similarity;…

  17. Many-body Green’s function theory for electron-phonon interactions: Ground state properties of the Holstein dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Säkkinen, Niko; Leeuwen, Robert van; Peng, Yang

    2015-12-21

    We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong, whereas at smaller interactions, only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron densities. A comparison to exact results indicates that this symmetry breaking is stronglymore » correlated with the formation of a bipolaron state in which the two electrons prefer to reside on the same molecule. The results further show that the Hartree and partially self-consistent Born solutions obtained by enforcing symmetry do not compare well with exact energetics, while the fully self-consistent Born approximation improves the qualitative and quantitative agreement with exact results in the same symmetric case. This together with a presented natural occupation number analysis supports the conclusion that the fully self-consistent approximation describes partially the bipolaron crossover. These results contribute to better understanding how these approximations cope with the strong localizing effect of the electron-phonon interaction.« less

  18. Differential dynamic microscopy microrheology of soft materials: A tracking-free determination of the frequency-dependent loss and storage moduli

    NASA Astrophysics Data System (ADS)

    Edera, Paolo; Bergamini, Davide; Trappe, Véronique; Giavazzi, Fabio; Cerbino, Roberto

    2017-12-01

    Particle-tracking microrheology (PT-μ r ) exploits the thermal motion of embedded particles to probe the local mechanical properties of soft materials. Despite its appealing conceptual simplicity, PT-μ r requires calibration procedures and operating assumptions that constitute a practical barrier to its wider application. Here we demonstrate differential dynamic microscopy microrheology (DDM-μ r ), a tracking-free approach based on the multiscale, temporal correlation study of the image intensity fluctuations that are observed in microscopy experiments as a consequence of the translational and rotational motion of the tracers. We show that the mechanical moduli of an arbitrary sample are determined correctly over a wide frequency range provided that the standard DDM analysis is reinforced with an iterative, self-consistent procedure that fully exploits the multiscale information made available by DDM. Our approach to DDM-μ r does not require any prior calibration, is in agreement with both traditional rheology and diffusing wave spectroscopy microrheology, and works in conditions where PT-μ r fails, providing thus an operationally simple, calibration-free probe of soft materials.

  19. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles.

    PubMed

    Elizondo-Aguilera, L F; Zubieta Rico, P F; Ruiz-Estrada, H; Alarcón-Waess, O

    2014-11-01

    A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, F_{lm,lm}(k,t) and F_{lm,lm}^{S}(k,t), are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density n_{lm}(k,t) and the translational (α=T) and rotational (α=R) current densities j_{lm}^{α}(k,t). Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by S_{lm,lm}(k). Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γ_{T} and γ_{R}, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.

  20. A dynamic multi-scale Markov model based methodology for remaining life prediction

    NASA Astrophysics Data System (ADS)

    Yan, Jihong; Guo, Chaozhong; Wang, Xing

    2011-05-01

    The ability to accurately predict the remaining life of partially degraded components is crucial in prognostics. In this paper, a performance degradation index is designed using multi-feature fusion techniques to represent deterioration severities of facilities. Based on this indicator, an improved Markov model is proposed for remaining life prediction. Fuzzy C-Means (FCM) algorithm is employed to perform state division for Markov model in order to avoid the uncertainty of state division caused by the hard division approach. Considering the influence of both historical and real time data, a dynamic prediction method is introduced into Markov model by a weighted coefficient. Multi-scale theory is employed to solve the state division problem of multi-sample prediction. Consequently, a dynamic multi-scale Markov model is constructed. An experiment is designed based on a Bently-RK4 rotor testbed to validate the dynamic multi-scale Markov model, experimental results illustrate the effectiveness of the methodology.

  1. Interacting Multiscale Acoustic Vortices as Coherent Excitations in Dust Acoustic Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Lin, Po-Cheng; I, Lin

    2018-03-01

    In this work, using three-dimensional intermittent dust acoustic wave turbulence in a dusty plasma as a platform and multidimensional empirical mode decomposition into different-scale modes in the 2 +1 D spatiotemporal space, we demonstrate the experimental observation of the interacting multiscale acoustic vortices, winding around wormlike amplitude hole filaments coinciding with defect filaments, as the basic coherent excitations for acoustic-type wave turbulence. For different decomposed modes, the self-similar rescaled stretched exponential lifetime histograms of amplitude hole filaments, and the self-similar power spectra of dust density fluctuations, indicate that similar dynamical rules are followed over a wide range of scales. In addition to the intermode acoustic vortex pair generation, propagation, or annihilation, the intra- and intermode interactions of acoustic vortices with the same or opposite helicity, their entanglement and synchronization, are found to be the key dynamical processes in acoustic wave turbulence, akin to the interacting multiscale vortices around wormlike cores observed in hydrodynamic turbulence.

  2. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe-Salpeter equation.

    PubMed

    Ziaei, Vafa; Bredow, Thomas

    2018-05-31

    An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe-Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.

  3. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe–Salpeter equation

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2018-05-01

    An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe–Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.

  4. The effects of selective schooling and self-concept on adolescents' academic aspiration: an examination of Dweck's self-theory.

    PubMed

    Ahmavaara, Anni; Houston, Diane M

    2007-09-01

    Dweck has emphasized the role of pupils' implicit theories about intellectual ability in explaining variations in their engagement, persistence and achievement. She has also highlighted the role of confidence in one's intelligence as a factor influencing educational attainment. The aim of this paper is to develop a model of achievement aspiration in adolescence and to compare young people who are educated at a selective grammar school with those who attend a non-selective 'secondary modern' school. The sample consisted of 856 English secondary school pupils in years 7 and 10 from two selective and two non-selective secondary schools. Questionnaires were completed in schools. The findings are consistent with the model, showing that achievement aspiration is predicted directly by gender, school type and type of intelligence theory. Importantly, school type also affects aspirations indirectly, with effects being mediated by confidence in one's own intelligence and perceived academic performance. Intelligence theory also affects aspirations indirectly with effects being mediated by perceived academic performance, confidence and self-esteem. Additionally, intelligence theory has a stronger effect on aspirations in the selective schools than in the non-selective schools. The findings provide substantial support for Dweck's self-theory, showing that implicit theories are related to aspirations. However, the way in which theory of intelligence relates to age and gender suggests there may be important cross-cultural or contextual differences not addressed by Dweck's theory. Further research should also investigate the causal paths between aspirations, implicit theories of intelligence and the impact of school selection.

  5. Analytic and Computational Perspectives of Multi-Scale Theory for Homogeneous, Laminated Composite, and Sandwich Beams and Plates

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Gherlone, Marco; Versino, Daniele; DiSciuva, Marco

    2012-01-01

    This paper reviews the theoretical foundation and computational mechanics aspects of the recently developed shear-deformation theory, called the Refined Zigzag Theory (RZT). The theory is based on a multi-scale formalism in which an equivalent single-layer plate theory is refined with a robust set of zigzag local layer displacements that are free of the usual deficiencies found in common plate theories with zigzag kinematics. In the RZT, first-order shear-deformation plate theory is used as the equivalent single-layer plate theory, which represents the overall response characteristics. Local piecewise-linear zigzag displacements are used to provide corrections to these overall response characteristics that are associated with the plate heterogeneity and the relative stiffnesses of the layers. The theory does not rely on shear correction factors and is equally accurate for homogeneous, laminated composite, and sandwich beams and plates. Regardless of the number of material layers, the theory maintains only seven kinematic unknowns that describe the membrane, bending, and transverse shear plate-deformation modes. Derived from the virtual work principle, RZT is well-suited for developing computationally efficient, C(sup 0)-continuous finite elements; formulations of several RZT-based elements are highlighted. The theory and its finite element approximations thus provide a unified and reliable computational platform for the analysis and design of high-performance load-bearing aerospace structures.

  6. Analytic and Computational Perspectives of Multi-Scale Theory for Homogeneous, Laminated Composite, and Sandwich Beams and Plates

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Gherlone, Marco; Versino, Daniele; Di Sciuva, Marco

    2012-01-01

    This paper reviews the theoretical foundation and computational mechanics aspects of the recently developed shear-deformation theory, called the Refined Zigzag Theory (RZT). The theory is based on a multi-scale formalism in which an equivalent single-layer plate theory is refined with a robust set of zigzag local layer displacements that are free of the usual deficiencies found in common plate theories with zigzag kinematics. In the RZT, first-order shear-deformation plate theory is used as the equivalent single-layer plate theory, which represents the overall response characteristics. Local piecewise-linear zigzag displacements are used to provide corrections to these overall response characteristics that are associated with the plate heterogeneity and the relative stiffnesses of the layers. The theory does not rely on shear correction factors and is equally accurate for homogeneous, laminated composite, and sandwich beams and plates. Regardless of the number of material layers, the theory maintains only seven kinematic unknowns that describe the membrane, bending, and transverse shear plate-deformation modes. Derived from the virtual work principle, RZT is well-suited for developing computationally efficient, C0-continuous finite elements; formulations of several RZT-based elements are highlighted. The theory and its finite elements provide a unified and reliable computational platform for the analysis and design of high-performance load-bearing aerospace structures.

  7. Magnetospheric Multiscale Observation of Plasma Velocity-Space Cascade: Hermite Representation and Theory.

    PubMed

    Servidio, S; Chasapis, A; Matthaeus, W H; Perrone, D; Valentini, F; Parashar, T N; Veltri, P; Gershman, D; Russell, C T; Giles, B; Fuselier, S A; Phan, T D; Burch, J

    2017-11-17

    Plasma turbulence is investigated using unprecedented high-resolution ion velocity distribution measurements by the Magnetospheric Multiscale mission (MMS) in the Earth's magnetosheath. This novel observation of a highly structured particle distribution suggests a cascadelike process in velocity space. Complex velocity space structure is investigated using a three-dimensional Hermite transform, revealing, for the first time in observational data, a power-law distribution of moments. In analogy to hydrodynamics, a Kolmogorov approach leads directly to a range of predictions for this phase-space transport. The scaling theory is found to be in agreement with observations. The combined use of state-of-the-art MMS data sets, novel implementation of a Hermite transform method, and scaling theory of the velocity cascade opens new pathways to the understanding of plasma turbulence and the crucial velocity space features that lead to dissipation in plasmas.

  8. Self-excited multi-scale skin vibrations probed by optical tracking micro-motions of tracers on arms

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chia; Chen, Hsiang-Ying; Chen, Yu-Sheng; Tian, Yong; I, Lin

    2017-07-01

    The self-excited multi-scale mechanical vibrations, their sources and their mutual coupling of different regions on the forearms of supine subjects, are experimentally investigated, using a simple noncontact method, optical video microscopy, which provides 1 μm and 25 ms spatiotemporal resolutions. It is found that, in proximal regions far from the radial artery, the vibrations are the global vibrations of the entire forearm excited by remote sources, propagating through the trunk and the limb. The spectrum is mainly composed of peaks of very low frequency motion (down to 0.05 Hz), low frequency respiration modes, and heartbeat induced modes (about 1 Hz and its harmonics), standing out of the spectrum floor exhibiting power law decay. The nonlinear mode-mode coupling leads to the cascaded modulations of higher frequency modes by lower frequency modes. The nearly identical waveforms without detectable phase delays for a pair of signals along or transverse to the meridian of regions far away from the artery rule out the detectable contribution from the propagation of Qi, some kind of collective excitation which more efficiently propagates along meridians, according to the Chinese medicine theory. Around the radial artery, in addition to the global vibration, the local vibration spectrum shows very slow breathing type vibration around 0.05 Hz, and the artery pulsation induced fundamental and higher harmonics with descending intensities up to the fifth harmonics, standing out of a flat spectrum floor. All the artery pulsation modes are also modulated by respiration and the very slow vibration.

  9. Implicit theories about willpower predict the activation of a rest goal following self-control exertion.

    PubMed

    Job, Veronika; Bernecker, Katharina; Miketta, Stefanie; Friese, Malte

    2015-10-01

    Past research indicates that peoples' implicit theories about the nature of willpower moderate the ego-depletion effect. Only people who believe or were led to believe that willpower is a limited resource (limited-resource theory) showed lower self-control performance after an initial demanding task. As of yet, the underlying processes explaining this moderating effect by theories about willpower remain unknown. Here, we propose that the exertion of self-control activates the goal to preserve and replenish mental resources (rest goal) in people with a limited-resource theory. Five studies tested this hypothesis. In Study 1, individual differences in implicit theories about willpower predicted increased accessibility of a rest goal after self-control exertion. Furthermore, measured (Study 2) and manipulated (Study 3) willpower theories predicted an increased preference for rest-conducive objects. Finally, Studies 4 and 5 provide evidence that theories about willpower predict actual resting behavior: In Study 4, participants who held a limited-resource theory took a longer break following self-control exertion than participants with a nonlimited-resource theory. Longer resting time predicted decreased rest goal accessibility afterward. In Study 5, participants with an induced limited-resource theory sat longer on chairs in an ostensible product-testing task when they had engaged in a task requiring self-control beforehand. This research provides consistent support for a motivational shift toward rest after self-control exertion in people holding a limited-resource theory about willpower. (c) 2015 APA, all rights reserved).

  10. A prospectus on kinetic heliophysics

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    2017-05-01

    Under the low density and high temperature conditions typical of heliospheric plasmas, the macroscopic evolution of the heliosphere is strongly affected by the kinetic plasma physics governing fundamental microphysical mechanisms. Kinetic turbulence, collisionless magnetic reconnection, particle acceleration, and kinetic instabilities are four poorly understood, grand-challenge problems that lie at the new frontier of kinetic heliophysics. The increasing availability of high cadence and high phase-space resolution measurements of particle velocity distributions by current and upcoming spacecraft missions and of massively parallel nonlinear kinetic simulations of weakly collisional heliospheric plasmas provides the opportunity to transform our understanding of these kinetic mechanisms through the full utilization of the information contained in the particle velocity distributions. Several major considerations for future investigations of kinetic heliophysics are examined. Turbulent dissipation followed by particle heating is highlighted as an inherently two-step process in weakly collisional plasmas, distinct from the more familiar case in fluid theory. Concerted efforts must be made to tackle the big-data challenge of visualizing the high-dimensional (3D-3V) phase space of kinetic plasma theory through physics-based reductions. Furthermore, the development of innovative analysis methods that utilize full velocity-space measurements, such as the field-particle correlation technique, will enable us to gain deeper insight into these four grand-challenge problems of kinetic heliophysics. A systems approach to tackle the multi-scale problem of heliophysics through a rigorous connection between the kinetic physics at microscales and the self-consistent evolution of the heliosphere at macroscales will propel the field of kinetic heliophysics into the future.

  11. A prospectus on kinetic heliophysics

    PubMed Central

    2017-01-01

    Under the low density and high temperature conditions typical of heliospheric plasmas, the macroscopic evolution of the heliosphere is strongly affected by the kinetic plasma physics governing fundamental microphysical mechanisms. Kinetic turbulence, collisionless magnetic reconnection, particle acceleration, and kinetic instabilities are four poorly understood, grand-challenge problems that lie at the new frontier of kinetic heliophysics. The increasing availability of high cadence and high phase-space resolution measurements of particle velocity distributions by current and upcoming spacecraft missions and of massively parallel nonlinear kinetic simulations of weakly collisional heliospheric plasmas provides the opportunity to transform our understanding of these kinetic mechanisms through the full utilization of the information contained in the particle velocity distributions. Several major considerations for future investigations of kinetic heliophysics are examined. Turbulent dissipation followed by particle heating is highlighted as an inherently two-step process in weakly collisional plasmas, distinct from the more familiar case in fluid theory. Concerted efforts must be made to tackle the big-data challenge of visualizing the high-dimensional (3D-3V) phase space of kinetic plasma theory through physics-based reductions. Furthermore, the development of innovative analysis methods that utilize full velocity-space measurements, such as the field-particle correlation technique, will enable us to gain deeper insight into these four grand-challenge problems of kinetic heliophysics. A systems approach to tackle the multi-scale problem of heliophysics through a rigorous connection between the kinetic physics at microscales and the self-consistent evolution of the heliosphere at macroscales will propel the field of kinetic heliophysics into the future. PMID:29104421

  12. Island of stability for consistent deformations of Einstein's gravity.

    PubMed

    Berkhahn, Felix; Dietrich, Dennis D; Hofmann, Stefan; Kühnel, Florian; Moyassari, Parvin

    2012-03-30

    We construct deformations of general relativity that are consistent and phenomenologically viable, since they respect, in particular, cosmological backgrounds. These deformations have unique symmetries in accordance with their Minkowski cousins (Fierz-Pauli theory for massive gravitons) and incorporate a background curvature induced self-stabilizing mechanism. Self-stabilization is essential in order to guarantee hyperbolic evolution in and unitarity of the covariantized theory, as well as the deformation's uniqueness. We show that the deformation's parameter space contains islands of absolute stability that are persistent through the entire cosmic evolution.

  13. Homogenization of Periodic Masonry Using Self-Consistent Scheme and Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Lambadi, Harish; Pandey, Manoj; Rajagopal, Amirtham

    2016-01-01

    Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in a periodic manner. Obtaining the effective elastic stiffness of the masonry structures has been a challenging task. In this study, the homogenization theory for periodic media is implemented in a very generic manner to derive the anisotropic global behavior of the masonry, through rigorous application of the homogenization theory in one step and through a full three-dimensional behavior. We have considered the periodic Eshelby self-consistent method and the finite element method. Two representative unit cells that represent the microstructure of the masonry wall exactly are considered for calibration and numerical application of the theory.

  14. Thermodynamically self-consistent theory for the Blume-Capel model.

    PubMed

    Grollau, S; Kierlik, E; Rosinberg, M L; Tarjus, G

    2001-04-01

    We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the lambda line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.

  15. Vibrational multiconfiguration self-consistent field theory: implementation and test calculations.

    PubMed

    Heislbetz, Sandra; Rauhut, Guntram

    2010-03-28

    A state-specific vibrational multiconfiguration self-consistent field (VMCSCF) approach based on a multimode expansion of the potential energy surface is presented for the accurate calculation of anharmonic vibrational spectra. As a special case of this general approach vibrational complete active space self-consistent field calculations will be discussed. The latter method shows better convergence than the general VMCSCF approach and must be considered the preferred choice within the multiconfigurational framework. Benchmark calculations are provided for a small set of test molecules.

  16. A Multiscale Model for Virus Capsid Dynamics

    PubMed Central

    Chen, Changjun; Saxena, Rishu; Wei, Guo-Wei

    2010-01-01

    Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. PMID:20224756

  17. PDF-based heterogeneous multiscale filtration model.

    PubMed

    Gong, Jian; Rutland, Christopher J

    2015-04-21

    Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.

  18. Finite Dimensional Approximations for Continuum Multiscale Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlyand, Leonid

    2017-01-24

    The completed research project concerns the development of novel computational techniques for modeling nonlinear multiscale physical and biological phenomena. Specifically, it addresses the theoretical development and applications of the homogenization theory (coarse graining) approach to calculation of the effective properties of highly heterogenous biological and bio-inspired materials with many spatial scales and nonlinear behavior. This theory studies properties of strongly heterogeneous media in problems arising in materials science, geoscience, biology, etc. Modeling of such media raises fundamental mathematical questions, primarily in partial differential equations (PDEs) and calculus of variations, the subject of the PI’s research. The focus of completed researchmore » was on mathematical models of biological and bio-inspired materials with the common theme of multiscale analysis and coarse grain computational techniques. Biological and bio-inspired materials offer the unique ability to create environmentally clean functional materials used for energy conversion and storage. These materials are intrinsically complex, with hierarchical organization occurring on many nested length and time scales. The potential to rationally design and tailor the properties of these materials for broad energy applications has been hampered by the lack of computational techniques, which are able to bridge from the molecular to the macroscopic scale. The project addressed the challenge of computational treatments of such complex materials by the development of a synergistic approach that combines innovative multiscale modeling/analysis techniques with high performance computing.« less

  19. Dynamical self-arrest in symmetric and asymmetric diblock copolymer melts using a replica approach within a local theory.

    PubMed

    Wu, Sangwook

    2009-03-01

    We investigate dynamical self-arrest in a diblock copolymer melt using a replica approach within a self-consistent local method based on dynamical mean-field theory (DMFT). The local replica approach effectively predicts (chiN)_{A} for dynamical self-arrest in a block copolymer melt for symmetric and asymmetric cases. We discuss the competition of the cubic and quartic interactions in the Landau free energy for a block copolymer melt in stabilizing a glassy state depending on the chain length. Our local replica theory provides a universal value for the dynamical self-arrest in block copolymer melts with (chiN)_{A} approximately 10.5+64N;{-3/10} for the symmetric case.

  20. Differential Geometry Based Multiscale Models

    PubMed Central

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that are coupled to generalized Navier–Stokes equations for fluid dynamics, Newton's equation for molecular dynamics, and potential and surface driving geometric flows for the micro-macro interface. For excessively large aqueous macromolecular complexes in chemistry and biology, we further develop differential geometry based multiscale fluid-electro-elastic models to replace the expensive molecular dynamics description with an alternative elasticity formulation. PMID:20169418

  1. When does self-esteem relate to deviant behavior? The role of contingencies of self-worth.

    PubMed

    Ferris, D Lance; Brown, Douglas J; Lian, Huiwen; Keeping, Lisa M

    2009-09-01

    Researchers have assumed that low self-esteem predicts deviance, but empirical results have been mixed. This article draws upon recent theoretical developments regarding contingencies of self-worth to clarify the self-esteem/deviance relation. It was predicted that self-esteem level would relate to deviance only when self-esteem was not contingent on workplace performance. In this manner, contingent self-esteem is a boundary condition for self-consistency/behavioral plasticity theory predictions. Using multisource data collected from 123 employees over 6 months, the authors examined the interaction between level (high/low) and type (contingent/noncontingent) of self-esteem in predicting workplace deviance. Results support the hypothesized moderating effects of contingent self-esteem; implications for self-esteem theories are discussed.

  2. Charge and spin diffusion on the metallic side of the metal-insulator transition: A self-consistent approach

    NASA Astrophysics Data System (ADS)

    Wellens, Thomas; Jalabert, Rodolfo A.

    2016-10-01

    We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.

  3. Multiscale Characterization of Engineered Cardiac Tissue Architecture.

    PubMed

    Drew, Nancy K; Johnsen, Nicholas E; Core, Jason Q; Grosberg, Anna

    2016-11-01

    In a properly contracting cardiac muscle, many different subcellular structures are organized into an intricate architecture. While it has been observed that this organization is altered in pathological conditions, the relationship between length-scales and architecture has not been properly explored. In this work, we utilize a variety of architecture metrics to quantify organization and consistency of single structures over multiple scales, from subcellular to tissue scale as well as correlation of organization of multiple structures. Specifically, as the best way to characterize cardiac tissues, we chose the orientational and co-orientational order parameters (COOPs). Similarly, neonatal rat ventricular myocytes were selected for their consistent architectural behavior. The engineered cells and tissues were stained for four architectural structures: actin, tubulin, sarcomeric z-lines, and nuclei. We applied the orientational metrics to cardiac cells of various shapes, isotropic cardiac tissues, and anisotropic globally aligned tissues. With these novel tools, we discovered: (1) the relationship between cellular shape and consistency of self-assembly; (2) the length-scales at which unguided tissues self-organize; and (3) the correlation or lack thereof between organization of actin fibrils, sarcomeric z-lines, tubulin fibrils, and nuclei. All of these together elucidate some of the current mysteries in the relationship between force production and architecture, while raising more questions about the effect of guidance cues on self-assembly function. These types of metrics are the future of quantitative tissue engineering in cardiovascular biomechanics.

  4. A multi-scale homogenization model for fine-grained porous viscoplastic polycrystals: I - Finite-strain theory

    NASA Astrophysics Data System (ADS)

    Song, Dawei; Ponte Castañeda, P.

    2018-06-01

    We make use of the recently developed iterated second-order homogenization method to obtain finite-strain constitutive models for the macroscopic response of porous polycrystals consisting of large pores randomly distributed in a fine-grained polycrystalline matrix. The porous polycrystal is modeled as a three-scale composite, where the grains are described by single-crystal viscoplasticity and the pores are assumed to be large compared to the grain size. The method makes use of a linear comparison composite (LCC) with the same substructure as the actual nonlinear composite, but whose local properties are chosen optimally via a suitably designed variational statement. In turn, the effective properties of the resulting three-scale LCC are determined by means of a sequential homogenization procedure, utilizing the self-consistent estimates for the effective behavior of the polycrystalline matrix, and the Willis estimates for the effective behavior of the porous composite. The iterated homogenization procedure allows for a more accurate characterization of the properties of the matrix by means of a finer "discretization" of the properties of the LCC to obtain improved estimates, especially at low porosities, high nonlinearties and high triaxialities. In addition, consistent homogenization estimates for the average strain rate and spin fields in the pores and grains are used to develop evolution laws for the substructural variables, including the porosity, pore shape and orientation, as well as the "crystallographic" and "morphological" textures of the underlying matrix. In Part II of this work has appeared in Song and Ponte Castañeda (2018b), the model will be used to generate estimates for both the instantaneous effective response and the evolution of the microstructure for porous FCC and HCP polycrystals under various loading conditions.

  5. Towards a first implementation of the WLIMES approach in living system studies advancing the diagnostics and therapy in augmented personalized medicine.

    PubMed

    Simeonov, Plamen L

    2017-12-01

    The goal of this paper is to advance an extensible theory of living systems using an approach to biomathematics and biocomputation that suitably addresses self-organized, self-referential and anticipatory systems with multi-temporal multi-agents. Our first step is to provide foundations for modelling of emergent and evolving dynamic multi-level organic complexes and their sustentative processes in artificial and natural life systems. Main applications are in life sciences, medicine, ecology and astrobiology, as well as robotics, industrial automation, man-machine interface and creative design. Since 2011 over 100 scientists from a number of disciplines have been exploring a substantial set of theoretical frameworks for a comprehensive theory of life known as Integral Biomathics. That effort identified the need for a robust core model of organisms as dynamic wholes, using advanced and adequately computable mathematics. The work described here for that core combines the advantages of a situation and context aware multivalent computational logic for active self-organizing networks, Wandering Logic Intelligence (WLI), and a multi-scale dynamic category theory, Memory Evolutive Systems (MES), hence WLIMES. This is presented to the modeller via a formal augmented reality language as a first step towards practical modelling and simulation of multi-level living systems. Initial work focuses on the design and implementation of this visual language and calculus (VLC) and its graphical user interface. The results will be integrated within the current methodology and practices of theoretical biology and (personalized) medicine to deepen and to enhance the holistic understanding of life. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Thomas-Fermi model in the theory of systems of charged particles above the surface of liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Lytvtnenko, D. M.; Slyusarenko, Yu. V.; Kirdin, A. I.

    2012-10-01

    A consistent theory of equilibrium states of same sign charges above the surface of liquid dielectric film located on solid substrate in the presence of external attracting constant electric field is proposed. The approach to the development of the theory is based on the Thomas-Fermi model generalized to the systems under consideration and on the variational principle. The using of self-consistent field model allows formulating a theory containing no adjustable constants. In the framework of the variational principle we obtain the self-consistency equations for the parameters describing the system: the distribution function of charges above the liquid dielectric surface, the electrostatic field potentials in all regions of the system and the surface profile of the liquid dielectric. The self-consistency equations are used to describe the phase transition associated with the formation of spatially periodic structures in the system of charges on liquid dielectric surface. Assuming the non-degeneracy of the gas of charges above the surface of liquid dielectric film the solutions of the self-consistency equations near the critical point are obtained. In the case of the symmetric phase we obtain the expressions for the potentials and electric fields in all regions of the studied system. The distribution of the charges above the surface of liquid dielectric film for the symmetric phase is derived. The system parameters of the phase transition to nonsymmetric phase - the states with a spatially periodic ordering are obtained. We derive the expression determining the period of two-dimensional lattice as a function of physical parameters of the problem - the temperature, the external attractive electric field, the number of electrons per unit of the flat surface area of the liquid dielectric, the density of the dielectric, its surface tension and permittivity, and the permittivity of the solid substrate. The possibility of generalizing the developed theory in the case of degenerate gas of like-charged particles above the liquid dielectric surface is discussed.

  7. Microphysics in Multi-scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  8. Self-consistent projection operator theory in nonlinear quantum optical systems: A case study on degenerate optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Degenfeld-Schonburg, Peter; Navarrete-Benlloch, Carlos; Hartmann, Michael J.

    2015-05-01

    Nonlinear quantum optical systems are of paramount relevance for modern quantum technologies, as well as for the study of dissipative phase transitions. Their nonlinear nature makes their theoretical study very challenging and hence they have always served as great motivation to develop new techniques for the analysis of open quantum systems. We apply the recently developed self-consistent projection operator theory to the degenerate optical parametric oscillator to exemplify its general applicability to quantum optical systems. We show that this theory provides an efficient method to calculate the full quantum state of each mode with a high degree of accuracy, even at the critical point. It is equally successful in describing both the stationary limit and the dynamics, including regions of the parameter space where the numerical integration of the full problem is significantly less efficient. We further develop a Gaussian approach consistent with our theory, which yields sensibly better results than the previous Gaussian methods developed for this system, most notably standard linearization techniques.

  9. N = (2,0) self-dual non-Abelian tensor multiplet in D = 3 + 3 generates N = (1,1) self-dual systems in D = 2 + 2

    NASA Astrophysics Data System (ADS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2018-03-01

    We formulate an N = (2 , 0) system in D = 3 + 3 dimensions consisting of a Yang-Mills (YM)-multiplet (ˆ μ ˆ IA, λˆI), a self-dual non-Abelian tensor multiplet (ˆ μ ˆ ν ˆ IB, χˆI ,φˆI), and an extra vector multiplet (C ˆ μ ˆ IC, ρˆI). We next perform the dimensional reductions of this system into D = 2 + 2, and obtain N = (1 , 1) systems with a self-dual YM-multiplet (AIμ ,λI), a self-dual tensor multiplet (BIμν , χI , φI), and an extra vector multiplet (CIμ , ρI). In D = 2 + 2, we reach two distinct theories: 'Theory-I' and 'Theory-II'. The former has the self-dual field-strength Hμν(+)I of CIμ already presented in our recent paper, while the latter has anti-self-dual field strength Hμν(-)I. As an application, we show that Theory-II actually generates supersymmetric-KdV equations in D = 1 + 1. Our result leads to a new conclusion that the D = 3 + 3 theory with non-Abelian tensor multiplet can be a 'Grand Master Theory' for self-dual multiplet and self-dual YM-multiplet in D = 2 + 2, that in turn has been conjectured to be the 'Master Theory' for all supersymmetric integrable theories in D ≤ 3.

  10. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  11. Multiscale modeling and simulation of microtubule-motor-protein assemblies.

    PubMed

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  12. Multiscale modeling and simulation of microtubule–motor-protein assemblies

    PubMed Central

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2016-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate–consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation. PMID:26764729

  13. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics

    NASA Astrophysics Data System (ADS)

    Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.

    2017-03-01

    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.

  14. Reconnection properties in Kelvin-Helmholtz instabilities

    NASA Astrophysics Data System (ADS)

    Vernisse, Y.; Lavraud, B.; Eriksson, S.; Gershman, D. J.; Dorelli, J.; Pollock, C. J.; Giles, B. L.; Aunai, N.; Avanov, L. A.; Burch, J.; Chandler, M. O.; Coffey, V. N.; Dargent, J.; Ergun, R.; Farrugia, C. J.; Genot, V. N.; Graham, D.; Hasegawa, H.; Jacquey, C.; Kacem, I.; Khotyaintsev, Y. V.; Li, W.; Magnes, W.; Marchaudon, A.; Moore, T. E.; Paterson, W. R.; Penou, E.; Phan, T.; Retino, A.; Schwartz, S. J.; Saito, Y.; Sauvaud, J. A.; Schiff, C.; Torbert, R. B.; Wilder, F. D.; Yokota, S.

    2017-12-01

    Kelvin-Helmholtz instabilities are particular laboratories to study strong guide field reconnection processes. In particular, unlike the usual dayside magnetopause, the conditions across the magnetopause in KH vortices are quasi-symmetric, with low differences in beta and magnetic shear angle. We study these properties by means of statistical analysis of the high-resolution data of the Magnetospheric Multiscale mission. Several events of Kelvin-Helmholtz instabilities pas the terminator plane and a long lasting dayside instabilities event where used in order to produce this statistical analysis. Early results present a consistency between the data and the theory. In addition, the results emphasize the importance of the thickness of the magnetopause as a driver of magnetic reconnection in low magnetic shear events.

  15. Approach to atmospheric laser-propagation theory based on the extended Huygens-Fresnel principle and a self-consistency concept.

    PubMed

    Bochove, Erik J; Rao Gudimetla, V S

    2017-01-01

    We propose a self-consistency condition based on the extended Huygens-Fresnel principle, which we apply to the propagation kernel of the mutual coherence function of a partially coherent laser beam propagating through a turbulent atmosphere. The assumption of statistical independence of turbulence in neighboring propagation segments leads to an integral equation in the propagation kernel. This integral equation is satisfied by a Gaussian function, with dependence on the transverse coordinates that is identical to the previous Gaussian formulation by Yura [Appl. Opt.11, 1399 (1972)APOPAI0003-693510.1364/AO.11.001399], but differs in the transverse coherence length's dependence on propagation distance, so that this established version violates our self-consistency principle. Our formulation has one free parameter, which in the context of Kolmogorov's theory is independent of turbulence strength and propagation distance. We determined its value by numerical fitting to the rigorous beam propagation theory of Yura and Hanson [J. Opt. Soc. Am. A6, 564 (1989)JOAOD60740-323210.1364/JOSAA.6.000564], demonstrating in addition a significant improvement over other Gaussian models.

  16. Interactions between Nanoparticles and Polymer Brushes: Molecular Dynamics Simulations and Self-consistent Field Theory Calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei

    2015-03-01

    Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.

  17. Self-management programs based on the social cognitive theory for Koreans with chronic disease: a systematic review.

    PubMed

    Jang, Yeonsoo; Yoo, Hyera

    2012-02-01

    Self-management programs based on social cognitive theory are useful to improve health care outcomes for patients with chronic diseases in Western culture. The purpose of this review is to identify and synthesize published research on the theory to enhance self-efficacy in disease management and examine its applicability to Korean culture regarding the learning strategies used. Ultimately, it was to identify the optimal use of these learning strategies to improve the self-efficacy of Korean patients in self-management of their hypertension and diabetic mellitus. The authors searched the Korean and international research databases from January 2000 to September 2009. Twenty studies were selected and reviewed. The most frequently used learning strategies of social cognitive theory was skill mastery by practice and feedback (N = 13), followed by social or verbal persuasion by group members (N = 7) and, however, observation learning and reinterpretation of symptoms by debriefing or discussion were not used any of the studies. Eight studies used only one strategy to enhance self-efficacy and six used two. A lack of consistency regarding the content and clinical efficacy of the self-efficacy theory-based self-management programs is found among the reviewed studies on enhancing self-efficacy in Koreans with hypertension and diabetes mellitus. Further research on the effectiveness of these theory-based self-management programs for patients with chronic diseases in Korea and other countries is recommended.

  18. The role and behavior of spin in gravitational physics

    NASA Technical Reports Server (NTRS)

    Ray, John R.

    1987-01-01

    A self-consistent method of introducing spin into any Lagrangian based theory of gravitation was developed. The metric variation of the Lagrangian in the theory leads to an improved energy-momentum tensor which represents the source term in the gravitational field equations. The goal of the research is the construction of a theory general enough to be used to investigate spin effects in astrophysical objects and cosmology, and also to serve as a basis for discussion of the theoretical ideas tested by the NASA Gyroscope Experiment (aboard Gravity Probe B). Specific accomplishments in the following areas are summarized: the inclusion of electromagnetism into the variational principle for spinning matter, formulation of a self-consistent theory for the case of a fluid in which particle production processes occur, and the derivation of the Raychaudhuri equation in the case of spinning matter.

  19. Self-consistent quantum kinetic theory of diatomic molecule formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrey, Robert C.

    2015-07-14

    A quantum kinetic theory of molecule formation is presented which includes three-body recombination and radiative association for a thermodynamically closed system which may or may not exchange energy with its surrounding at a constant temperature. The theory uses a Sturmian representation of a two-body continuum to achieve a steady-state solution of a governing master equation which is self-consistent in the sense that detailed balance between all bound and unbound states is rigorously enforced. The role of quasibound states in catalyzing the molecule formation is analyzed in complete detail. The theory is used to make three predictions which differ from conventionalmore » kinetic models. These predictions suggest significant modifications may be needed to phenomenological rate constants which are currently in wide use. Implications for models of low and high density systems are discussed.« less

  20. Multi-scale modelling of elastic moduli of trabecular bone

    PubMed Central

    Hamed, Elham; Jasiuk, Iwona; Yoo, Andrew; Lee, YikHan; Liszka, Tadeusz

    2012-01-01

    We model trabecular bone as a nanocomposite material with hierarchical structure and predict its elastic properties at different structural scales. The analysis involves a bottom-up multi-scale approach, starting with nanoscale (mineralized collagen fibril) and moving up the scales to sub-microscale (single lamella), microscale (single trabecula) and mesoscale (trabecular bone) levels. Continuum micromechanics methods, composite materials laminate theory and finite-element methods are used in the analysis. Good agreement is found between theoretical and experimental results. PMID:22279160

  1. Relative entropy as a universal metric for multiscale errors

    NASA Astrophysics Data System (ADS)

    Chaimovich, Aviel; Shell, M. Scott

    2010-06-01

    We show that the relative entropy, Srel , suggests a fundamental indicator of the success of multiscale studies, in which coarse-grained (CG) models are linked to first-principles (FP) ones. We demonstrate that Srel inherently measures fluctuations in the differences between CG and FP potential energy landscapes, and develop a theory that tightly and generally links it to errors associated with coarse graining. We consider two simple case studies substantiating these results, and suggest that Srel has important ramifications for evaluating and designing coarse-grained models.

  2. Relative entropy as a universal metric for multiscale errors.

    PubMed

    Chaimovich, Aviel; Shell, M Scott

    2010-06-01

    We show that the relative entropy, Srel, suggests a fundamental indicator of the success of multiscale studies, in which coarse-grained (CG) models are linked to first-principles (FP) ones. We demonstrate that Srel inherently measures fluctuations in the differences between CG and FP potential energy landscapes, and develop a theory that tightly and generally links it to errors associated with coarse graining. We consider two simple case studies substantiating these results, and suggest that Srel has important ramifications for evaluating and designing coarse-grained models.

  3. A study of the dynamic tire properties over a range of tire constructions

    NASA Technical Reports Server (NTRS)

    Nybakken, G. H.; Dodge, R. N.; Clark, S. K.

    1973-01-01

    The dynamic properties of four model aircraft tires of various construction were evaluated experimentally and compared with available theory. The experimental investigation consisted of measuring the cornering force and the self-aligning torque developed by the tires undergoing sinusoidal steering inputs while operating on a small scale, road-wheel tire testing apparatus. The force and moment data from the different tires are compared with both finite- and point-contact patch string theory predictions. In general, agreement between finite contact patch theory and experimental observation is good. A modified string theory is also presented in which coefficients for cornering force and self-aligning torque are determined separately. This theory improves the correspondence between the experimental and analytical data, particularly on tires with relatively high self-aligning torques.

  4. Interpreting multiscale domains of tree cover disturbance patterns in North America

    Treesearch

    Kurt Riitters; Jennifer K. Costanza; Brian Buma

    2017-01-01

    Spatial patterns at multiple observation scales provide a framework to improve understanding of pattern-related phenomena. However, the metrics that are most sensitive to local patterns are least likely to exhibit consistent scaling relations with increasing extent (observation scale). A conceptual framework based on multiscale domains (i.e., geographic locations...

  5. Goal-oriented robot navigation learning using a multi-scale space representation.

    PubMed

    Llofriu, M; Tejera, G; Contreras, M; Pelc, T; Fellous, J M; Weitzenfeld, A

    2015-12-01

    There has been extensive research in recent years on the multi-scale nature of hippocampal place cells and entorhinal grid cells encoding which led to many speculations on their role in spatial cognition. In this paper we focus on the multi-scale nature of place cells and how they contribute to faster learning during goal-oriented navigation when compared to a spatial cognition system composed of single scale place cells. The task consists of a circular arena with a fixed goal location, in which a robot is trained to find the shortest path to the goal after a number of learning trials. Synaptic connections are modified using a reinforcement learning paradigm adapted to the place cells multi-scale architecture. The model is evaluated in both simulation and physical robots. We find that larger scale and combined multi-scale representations favor goal-oriented navigation task learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Multiscale modelling in immunology: a review.

    PubMed

    Cappuccio, Antonio; Tieri, Paolo; Castiglione, Filippo

    2016-05-01

    One of the greatest challenges in biomedicine is to get a unified view of observations made from the molecular up to the organism scale. Towards this goal, multiscale models have been highly instrumental in contexts such as the cardiovascular field, angiogenesis, neurosciences and tumour biology. More recently, such models are becoming an increasingly important resource to address immunological questions as well. Systematic mining of the literature in multiscale modelling led us to identify three main fields of immunological applications: host-virus interactions, inflammatory diseases and their treatment and development of multiscale simulation platforms for immunological research and for educational purposes. Here, we review the current developments in these directions, which illustrate that multiscale models can consistently integrate immunological data generated at several scales, and can be used to describe and optimize therapeutic treatments of complex immune diseases. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Derivation of the density functional theory from the cluster expansion.

    PubMed

    Hsu, J Y

    2003-09-26

    The density functional theory is derived from a cluster expansion by truncating the higher-order correlations in one and only one term in the kinetic energy. The formulation allows self-consistent calculation of the exchange correlation effect without imposing additional assumptions to generalize the local density approximation. The pair correlation is described as a two-body collision of bound-state electrons, and modifies the electron- electron interaction energy as well as the kinetic energy. The theory admits excited states, and has no self-interaction energy.

  8. Morphological rational multi-scale algorithm for color contrast enhancement

    NASA Astrophysics Data System (ADS)

    Peregrina-Barreto, Hayde; Terol-Villalobos, Iván R.

    2010-01-01

    Contrast enhancement main goal consists on improving the image visual appearance but also it is used for providing a transformed image in order to segment it. In mathematical morphology several works have been derived from the framework theory for contrast enhancement proposed by Meyer and Serra. However, when working with images with a wide range of scene brightness, as for example when strong highlights and deep shadows appear in the same image, the proposed morphological methods do not allow the enhancement. In this work, a rational multi-scale method, which uses a class of morphological connected filters called filters by reconstruction, is proposed. Granulometry is used by finding the more accurate scales for filters and with the aim of avoiding the use of other little significant scales. The CIE-u'v'Y' space was used to introduce our results since it takes into account the Weber's Law and by avoiding the creation of new colors it permits to modify the luminance values without affecting the hue. The luminance component ('Y) is enhanced separately using the proposed method, next it is used for enhancing the chromatic components (u', v') by means of the center of gravity law of color mixing.

  9. Self-consistent-field perturbation theory for the Schröautdinger equation

    NASA Astrophysics Data System (ADS)

    Goodson, David Z.

    1997-06-01

    A method is developed for using large-order perturbation theory to solve the systems of coupled differential equations that result from the variational solution of the Schröautdinger equation with wave functions of product form. This is a noniterative, computationally efficient way to solve self-consistent-field (SCF) equations. Possible applications include electronic structure calculations using products of functions of collective coordinates that include electron correlation, vibrational SCF calculations for coupled anharmonic oscillators with selective coupling of normal modes, and ab initio calculations of molecular vibration spectra without the Born-Oppenheimer approximation.

  10. Theoretical studies of electronically excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besley, Nicholas A.

    2014-10-06

    Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.

  11. Distinct Photovoltaic Performance of Hierarchical Nanostructures Self-Assembled from Multiblock Copolymers.

    PubMed

    Xu, Zhanwen; Lin, Jiaping; Zhang, Liangshun; Wang, Liquan; Wang, Gengchao; Tian, Xiaohui; Jiang, Tao

    2018-06-14

    We applied a multi-scale approach coupling dissipative particle dynamics method with a drift-diffusion model to elucidate the photovoltaic properties of multiblock copolymers consisting of alternating electron donor and acceptor blocks. A series of hierarchical lamellae-in-lamellar structures were obtained from the self-assembly of the multiblock copolymers. A distinct improvement in photovoltaic performance upon the morphology transformation from lamella to lamellae-in-lamella was observed. The hierarchical lamellae-in-lamellar structures significantly enhanced exciton dissociation and charge carrier transport, which consequently contributed to the improved photovoltaic performance. Based on our theoretical calculations, the hierarchical nanostructures can achieve a much enhanced energy conversion efficiency, improved by around 25% compared with that of general ones, through structure modulation on number and size of the small-length-scale domains. Our findings are supported by recent experimental evidence and yield guidelines for designing hierarchical materials with improved photovoltaic properties.

  12. Turbulent Chemically Reacting Flows According to a Kinetic Theory. Ph.D. Thesis; [statistical analysis/gas flow

    NASA Technical Reports Server (NTRS)

    Hong, Z. C.

    1975-01-01

    A review of various methods of calculating turbulent chemically reacting flow such as the Green Function, Navier-Stokes equation, and others is presented. Nonequilibrium degrees of freedom were employed to study the mixing behavior of a multiscale turbulence field. Classical and modern theories are discussed.

  13. The Psychobiological Theory of Temperament and Character: Comment on Farmer and Goldberg (2008)

    ERIC Educational Resources Information Center

    Cloninger, C. Robert

    2008-01-01

    The revised Temperament and Character Inventory (TCI-R) is the third stage of development of a widely used multiscale personality inventory that began with the Tridimensional Personality Questionnaire (TPQ) and then the Temperament and Character Inventory (TCI). The author describes the third stage of the psychobiological theory of temperament and…

  14. A multiscale simulation technique for molecular electronics: design of a directed self-assembled molecular n-bit shift register memory device.

    PubMed

    Lambropoulos, Nicholas A; Reimers, Jeffrey R; Crossley, Maxwell J; Hush, Noel S; Silverbrook, Kia

    2013-12-20

    A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and μ-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology.

  15. A multiscale simulation technique for molecular electronics: design of a directed self-assembled molecular n-bit shift register memory device

    NASA Astrophysics Data System (ADS)

    Lambropoulos, Nicholas A.; Reimers, Jeffrey R.; Crossley, Maxwell J.; Hush, Noel S.; Silverbrook, Kia

    2013-12-01

    A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and μ-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology.

  16. A multi-scale study of the adsorption of lanthanum on the (110) surface of tungsten

    NASA Astrophysics Data System (ADS)

    Samin, Adib J.; Zhang, Jinsuo

    2016-07-01

    In this study, we utilize a multi-scale approach to studying lanthanum adsorption on the (110) plane of tungsten. The energy of the system is described from density functional theory calculations within the framework of the cluster expansion method. It is found that including two-body figures up to the sixth nearest neighbor yielded a reasonable agreement with density functional theory calculations as evidenced by the reported cross validation score. The results indicate that the interaction between the adsorbate atoms in the adlayer is important and cannot be ignored. The parameterized cluster expansion expression is used in a lattice gas Monte Carlo simulation in the grand canonical ensemble at 773 K and the adsorption isotherm is recorded. Implications of the obtained results for the pyroprocessing application are discussed.

  17. Data fusion of multi-scale representations for structural damage detection

    NASA Astrophysics Data System (ADS)

    Guo, Tian; Xu, Zili

    2018-01-01

    Despite extensive researches into structural health monitoring (SHM) in the past decades, there are few methods that can detect multiple slight damage in noisy environments. Here, we introduce a new hybrid method that utilizes multi-scale space theory and data fusion approach for multiple damage detection in beams and plates. A cascade filtering approach provides multi-scale space for noisy mode shapes and filters the fluctuations caused by measurement noise. In multi-scale space, a series of amplification and data fusion algorithms are utilized to search the damage features across all possible scales. We verify the effectiveness of the method by numerical simulation using damaged beams and plates with various types of boundary conditions. Monte Carlo simulations are conducted to illustrate the effectiveness and noise immunity of the proposed method. The applicability is further validated via laboratory cases studies focusing on different damage scenarios. Both results demonstrate that the proposed method has a superior noise tolerant ability, as well as damage sensitivity, without knowing material properties or boundary conditions.

  18. Non-classic multiscale modeling of manipulation based on AFM, in aqueous and humid ambient

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Homayooni, A.; Hefzabad, R. N.

    2018-05-01

    To achieve a precise manipulation, it is important that an accurate model consisting the size effect and environmental conditions be employed. In this paper, the non-classical multiscale modeling is developed to investigate the manipulation in a vacuum, aqueous and humid ambient. The manipulation structure is considered into two parts as a macro-field (MF) and a nano-field (NF). The governing equations of the AFM components (consist of the cantilever and tip) in the MF are derived based on the modified couple stress theory. The material length scale parameter is used to study the size effect. The fluid flow in the MF is assumed as the Couette and Creeping flows. Moreover, the NF is modeled using the molecular dynamics. The Electro-Based (ELBA) model is considered to model the ambient condition in the NF. The nanoparticle in the different conditions is taken into account to study the manipulation. The results of the manipulation indicate that the predicted deflection of the non-classical model is less than the classical one. Comparison of the nanoparticle travelled distance on substrate shows that the manipulation in the submerged condition is close to the ideal manipulation. The results of humid condition illustrate that by increasing the relative humidity (RH) the manipulation force decreases. Furthermore, Root Mean Square (RMS) as a criterion of damage demonstrates that the submerged nanoparticle has the minimum damage, however, the minimum manipulation force occurs in superlative humid ambient.

  19. The multiscale expansions of difference equations in the small lattice spacing regime, and a vicinity and integrability test: I

    NASA Astrophysics Data System (ADS)

    Santini, Paolo Maria

    2010-01-01

    We propose an algorithmic procedure (i) to study the 'distance' between an integrable PDE and any discretization of it, in the small lattice spacing epsilon regime, and, at the same time, (ii) to test the (asymptotic) integrability properties of such discretization. This method should provide, in particular, useful and concrete information on how good is any numerical scheme used to integrate a given integrable PDE. The procedure, illustrated on a fairly general ten-parameter family of discretizations of the nonlinear Schrödinger equation, consists of the following three steps: (i) the construction of the continuous multiscale expansion of a generic solution of the discrete system at all orders in epsilon, following Degasperis et al (1997 Physica D 100 187-211) (ii) the application, to such an expansion, of the Degasperis-Procesi (DP) integrability test (Degasperis A and Procesi M 1999 Asymptotic integrability Symmetry and Perturbation Theory, SPT98, ed A Degasperis and G Gaeta (Singapore: World Scientific) pp 23-37 Degasperis A 2001 Multiscale expansion and integrability of dispersive wave equations Lectures given at the Euro Summer School: 'What is integrability?' (Isaac Newton Institute, Cambridge, UK, 13-24 August); Integrability (Lecture Notes in Physics vol 767) ed A Mikhailov (Berlin: Springer)), to test the asymptotic integrability properties of the discrete system and its 'distance' from its continuous limit; (iii) the use of the main output of the DP test to construct infinitely many approximate symmetries and constants of motion of the discrete system, through novel and simple formulas.

  20. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    PubMed

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  1. Multiscale Pressure-Balanced Structures in Three-dimensional Magnetohydrodynamic Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Liping; Zhang, Lei; Feng, Xueshang

    2017-02-10

    Observations of solar wind turbulence indicate the existence of multiscale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multiscale PBSs and in particular their formation in compressive magnetohydrodynamic turbulence. By the use of the higher-order Godunov code Athena, a driven compressible turbulence with an imposed uniform guide field is simulated. The simulation results show that both the magnetic pressure and the thermal pressure exhibit a turbulent spectrum with a Kolmogorov-like power law, and that in many regions of the simulation domain they are anticorrelated. The computed wavelet cross-coherence spectra of themore » magnetic pressure and the thermal pressure, as well as their space series, indicate the existence of multiscale PBSs, with the small PBSs being embedded in the large ones. These multiscale PBSs are likely to be related to the highly oblique-propagating slow-mode waves, as the traced multiscale PBS is found to be traveling in a certain direction at a speed consistent with that predicted theoretically for a slow-mode wave propagating in the same direction.« less

  2. The regulatory function of self-esteem: testing the epistemic and acceptance signaling systems.

    PubMed

    Stinson, Danu Anthony; Logel, Christine; Holmes, John G; Wood, Joanne V; Forest, Amanda L; Gaucher, Danielle; Fitzsimons, Grainné M; Kath, Jennifer

    2010-12-01

    The authors draw on sociometer theory (e.g., Leary, 2004) and self-verification theory (e.g., Swann, 1997) to propose an expanded model of the regulatory function of self-esteem. The model suggests that people not only possess an acceptance signaling system that indicates whether relational value is high or low but also possess an epistemic signaling system that indicates whether social feedback is consistent or inconsistent with chronic perceived relational value (i.e., global self-esteem). One correlational study and 5 experiments, with diverse operationalizations of social feedback, demonstrated that the epistemic signaling system responds to self-esteem consistent or inconsistent relational-value feedback with increases or deceases in epistemic certainty. Moreover, Studies 3-6 demonstrated that the acceptance and epistemic signaling systems respond uniquely to social feedback. Finally, Studies 5 and 6 provide evidence that the epistemic signaling system is part of a broader self-regulatory system: Self-esteem inconsistent feedback caused cognitive efforts to decrease the discrepancy between self-views and feedback and caused depleted self-regulatory capacity on a subsequent self-control task. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  3. Investigation of toilet activities in elderly patients with dementia from the viewpoint of motivation and self-awareness.

    PubMed

    Uchimoto, Kazuki; Yokoi, Teruo; Yamashita, Teruo; Okamura, Hitoshi

    2013-08-01

    Toilet activities of the elderly patients with dementia were observed focusing on care conditions and investigated based on Hull's drive reduction theory (behavior = drive × habit × incentive) and our self-awareness model (consisting of theory of mind, self-evaluation, and self-consciousness) to evaluate the association between self-awareness and toilet activities in patients with dementia and to explain the time when and the reason why a series of toilet activities as habit once acquired become unfeasible. If theory of mind is lost, awareness of one's desire and intention becomes vague, and toilet activities begin to collapse. Furthermore, if incentive disappears, one's intention hardly arises and toilet activities further collapse. If self-evaluation is lost, time sense fades, future goals based on the present time cannot exist, and behavior loses directivity. As a result, toilet activities collapse, and with a decrease in drive toilet activities cease.

  4. Antiplane shear wave propagation in fiber-reinforced composites.

    PubMed

    Kim, Jin-Yeon

    2003-05-01

    A self-consistent method for analyzing antiplane shear wave propagation in two-dimensional inhomogeneous media is presented. For applications in the high-frequency range, the self-consistent condition for the effective medium is solved being supplemented with the theory of quasidynamic effective density. Comparisons with other theoretical calculations and experimental data for fiber-reinforced composites demonstrate the merits of using the present method.

  5. Self-consistent DFT +U method for real-space time-dependent density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Tancogne-Dejean, Nicolas; Oliveira, Micael J. T.; Rubio, Angel

    2017-12-01

    We implemented various DFT+U schemes, including the Agapito, Curtarolo, and Buongiorno Nardelli functional (ACBN0) self-consistent density-functional version of the DFT +U method [Phys. Rev. X 5, 011006 (2015), 10.1103/PhysRevX.5.011006] within the massively parallel real-space time-dependent density functional theory (TDDFT) code octopus. We further extended the method to the case of the calculation of response functions with real-time TDDFT+U and to the description of noncollinear spin systems. The implementation is tested by investigating the ground-state and optical properties of various transition-metal oxides, bulk topological insulators, and molecules. Our results are found to be in good agreement with previously published results for both the electronic band structure and structural properties. The self-consistent calculated values of U and J are also in good agreement with the values commonly used in the literature. We found that the time-dependent extension of the self-consistent DFT+U method yields improved optical properties when compared to the empirical TDDFT+U scheme. This work thus opens a different theoretical framework to address the nonequilibrium properties of correlated systems.

  6. Data-driven reduced order models for effective yield strength and partitioning of strain in multiphase materials

    NASA Astrophysics Data System (ADS)

    Latypov, Marat I.; Kalidindi, Surya R.

    2017-10-01

    There is a critical need for the development and verification of practically useful multiscale modeling strategies for simulating the mechanical response of multiphase metallic materials with heterogeneous microstructures. In this contribution, we present data-driven reduced order models for effective yield strength and strain partitioning in such microstructures. These models are built employing the recently developed framework of Materials Knowledge Systems that employ 2-point spatial correlations (or 2-point statistics) for the quantification of the heterostructures and principal component analyses for their low-dimensional representation. The models are calibrated to a large collection of finite element (FE) results obtained for a diverse range of microstructures with various sizes, shapes, and volume fractions of the phases. The performance of the models is evaluated by comparing the predictions of yield strength and strain partitioning in two-phase materials with the corresponding predictions from a classical self-consistent model as well as results of full-field FE simulations. The reduced-order models developed in this work show an excellent combination of accuracy and computational efficiency, and therefore present an important advance towards computationally efficient microstructure-sensitive multiscale modeling frameworks.

  7. Pressure-induced metallization of condensed phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multi-scale shock technique.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Zhao, Feng; Chen, Xiang-Rong; Ji, Guang-Fu

    2014-07-01

    The electronic structure and initial decomposition in high explosive HMX under conditions of shock loading are examined. The simulation is performed using quantum molecular dynamics in conjunction with multi-scale shock technique (MSST). A self-consistent charge density-functional tight-binding (SCC-DFTB) method is adapted. The results show that the N-N-C angle has a drastic change under shock wave compression along lattice vector b at shock velocity 11 km/s, which is the main reason that leads to an insulator-to-metal transition for the HMX system. The metallization pressure (about 130 GPa) of condensed-phase HMX is predicted firstly. We also detect the formation of several key products of condensed-phase HMX decomposition, such as NO2, NO, N2, N2O, H2O, CO, and CO2, and all of them have been observed in previous experimental studies. Moreover, the initial decomposition products include H2 due to the C-H bond breaking as a primary reaction pathway at extreme condition, which presents a new insight into the initial decomposition mechanism of HMX under shock loading at the atomistic level.

  8. Self-consistent hybrid functionals for solids: a fully-automated implementation

    NASA Astrophysics Data System (ADS)

    Erba, A.

    2017-08-01

    A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.

  9. The Landau-de Gennes approach revisited: A minimal self-consistent microscopic theory for spatially inhomogeneous nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Gârlea, Ioana C.; Mulder, Bela M.

    2017-12-01

    We design a novel microscopic mean-field theory of inhomogeneous nematic liquid crystals formulated entirely in terms of the tensor order parameter field. It combines the virtues of the Landau-de Gennes approach in allowing both the direction and magnitude of the local order to vary, with a self-consistent treatment of the local free-energy valid beyond the small order parameter limit. As a proof of principle, we apply this theory to the well-studied problem of a colloid dispersed in a nematic liquid crystal by including a tunable wall coupling term. For the two-dimensional case, we investigate the organization of the liquid crystal and the position of the point defects as a function of the strength of the coupling constant.

  10. Self-verification and depression among youth psychiatric inpatients.

    PubMed

    Joiner, T E; Katz, J; Lew, A S

    1997-11-01

    According to self-verification theory (e.g., W.B. Swann, 1983), people are motivated to preserve stable self-concepts by seeking self-confirming interpersonal responses, even if the responses are negative. In the current study of 72 youth psychiatric inpatients (36 boys; 36 girls; ages 7-17, M = 13.18; SD = 2.59), the authors provide the 1st test of self-verification theory among a youth sample. Participants completed self-report questionnaires on depression, self-esteem, anxiety, negative and positive affect, and interest in negative feedback from others. The authors made chart diagnoses available, and they collected peer rejection ratings. Consistent with hypotheses, the authors found that interest in negative feedback was associated with depression, was predictive of peer rejection (but only within relatively longer peer relationships), was more highly related to cognitive than emotional aspects of depression, and was specifically associated with depression, rather than being generally associated with emotional distress. The authors discuss implications for self-verification theory and for the phenomenology of youth depression.

  11. Infrared modified gravity with propagating torsion: Instability of torsionfull de Sitter-like solutions

    NASA Astrophysics Data System (ADS)

    Nikiforova, Vasilisa; Damour, Thibault

    2018-06-01

    We continue the exploration of the consistency of a modified-gravity theory that generalizes general relativity by including a dynamical torsion in addition to the dynamical metric. The six-parameter theory we consider was found to be consistent around arbitrary torsionless Einstein backgrounds, in spite of its containing a (notoriously delicate) massive spin-2 excitation. At zero bare cosmological constant, this theory was found to admit a self-accelerating solution whose exponential expansion is sustained by a nonzero torsion background. The scalar-type perturbations of the latter torsionfull self-accelerating solution were recently studied and were found to preserve the number of propagating scalar degrees of freedom, but to exhibit, for some values of the torsion background, some exponential instabilities (of a rather mild type). Here, we study the tensor-type and vector-type perturbations of the torsionfull self-accelerating solution, and of its deformation by a nonzero bare cosmological constant. We find strong, "gradient" instabilities in the vector sector. No tuning of the parameters of the theory can kill these instabilities without creating instabilities in the other sectors. Further work is needed to see whether generic torsionfull backgrounds are prone to containing gradient instabilities, or if the instabilities we found are mainly due to the (generalized) self-accelerating nature of the special de Sitter backgrounds we considered.

  12. Phase-field based Multiscale Modeling of Heterogeneous Solid Electrolytes: Applications to Nanoporous Li 3 PS 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou

    Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li 3PS 4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functionalmore » theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10 -3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10 -7 S/cm) of β-Li 3PS 4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10 -4 S/cm) that is in good agreement with experimental data (1.64×10 -4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less

  13. Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models

    PubMed Central

    Goodpaster, Jason D.; Weber, Adam Z.

    2017-01-01

    Electrochemical reduction of CO2 using renewable sources of electrical energy holds promise for converting CO2 to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in the reaction. Moreover, cathode polarization can influence the kinetics of CO2 reduction. Here, we present a multiscale framework for ab initio simulation of the electrochemical reduction of CO2 over an Ag(110) surface. A continuum model for species transport is combined with a microkinetic model for the cathode reaction dynamics. Free energies of activation for all elementary reactions are determined from density functional theory calculations. Using this approach, three alternative mechanisms for CO2 reduction were examined. The rate-limiting step in each mechanism is **COOH formation at higher negative potentials. However, only via the multiscale simulation was it possible to identify the mechanism that leads to a dependence of the rate of CO formation on the partial pressure of CO2 that is consistent with experiments. Simulations based on this mechanism also describe the dependence of the H2 and CO current densities on cathode voltage that are in strikingly good agreement with experimental observation. PMID:28973926

  14. Phase-field based Multiscale Modeling of Heterogeneous Solid Electrolytes: Applications to Nanoporous Li 3 PS 4

    DOE PAGES

    Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou; ...

    2017-09-07

    Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li 3PS 4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functionalmore » theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10 -3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10 -7 S/cm) of β-Li 3PS 4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10 -4 S/cm) that is in good agreement with experimental data (1.64×10 -4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less

  15. Multiscale modeling and general theory of non-equilibrium plasma-assisted ignition and combustion

    NASA Astrophysics Data System (ADS)

    Yang, Suo; Nagaraja, Sharath; Sun, Wenting; Yang, Vigor

    2017-11-01

    A self-consistent framework for modeling and simulations of plasma-assisted ignition and combustion is established. In this framework, a ‘frozen electric field’ modeling approach is applied to take advantage of the quasi-periodic behaviors of the electrical characteristics to avoid the re-calculation of electric field for each pulse. The correlated dynamic adaptive chemistry (CO-DAC) method is employed to accelerate the calculation of large and stiff chemical mechanisms. The time-step is dynamically updated during the simulation through a three-stage multi-time scale modeling strategy, which utilizes the large separation of time scales in nanosecond pulsed plasma discharges. A general theory of plasma-assisted ignition and combustion is then proposed. Nanosecond pulsed plasma discharges for ignition and combustion can be divided into four stages. Stage I is the discharge pulse, with time scales of O (1-10 ns). In this stage, input energy is coupled into electron impact excitation and dissociation reactions to generate charged/excited species and radicals. Stage II is the afterglow during the gap between two adjacent pulses, with time scales of O (1 0 0 ns). In this stage, quenching of excited species dissociates O2 and fuel molecules, and provides fast gas heating. Stage III is the remaining gap between pulses, with time scales of O (1-100 µs). The radicals generated during Stages I and II significantly enhance exothermic reactions in this stage. The cumulative effects of multiple pulses is seen in Stage IV, with time scales of O (1-1000 ms), which include preheated gas temperatures and a large pool of radicals and fuel fragments to trigger ignition. For flames, plasma could significantly enhance the radical generation and gas heating in the pre-heat zone, thereby enhancing the flame establishment.

  16. A practical guide to density matrix embedding theory in quantum chemistry

    DOE PAGES

    Wouters, Sebastian; Jimenez-Hoyos, Carlos A.; Sun, Qiming; ...

    2016-05-09

    Density matrix embedding theory (DMET) (Knizia, G.; Chan, G. K.-L. Phys. Rev. Lett. 2012, 109, 186404) provides a theoretical framework to treat finite fragments in the presence of a surrounding molecular or bulk environment, even when there is significant correlation or entanglement between the two. In this work, we give a practically oriented and explicit description of the numerical and theoretical formulation of DMET. Here, we also describe in detail how to perform self-consistent DMET optimizations. We explore different embedding strategies with and without a self-consistency condition in hydrogen rings, beryllium rings, and a sample SN2 reaction.

  17. Periodic Pulay method for robust and efficient convergence acceleration of self-consistent field iterations

    DOE PAGES

    Banerjee, Amartya S.; Suryanarayana, Phanish; Pask, John E.

    2016-01-21

    Pulay's Direct Inversion in the Iterative Subspace (DIIS) method is one of the most widely used mixing schemes for accelerating the self-consistent solution of electronic structure problems. In this work, we propose a simple generalization of DIIS in which Pulay extrapolation is performed at periodic intervals rather than on every self-consistent field iteration, and linear mixing is performed on all other iterations. Lastly, we demonstrate through numerical tests on a wide variety of materials systems in the framework of density functional theory that the proposed generalization of Pulay's method significantly improves its robustness and efficiency.

  18. The phonon-coupling model for Skyrme forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyutorovich, N.; Tselyaev, V.; Speth, J., E-mail: J.Speth@fz-juelich.de

    2016-11-15

    A short review on the self-consistent RPA based on the energy-density functional of the Skyrme type is given. We also present an extension of the RPA where the coupling of phonons to the single-particle states is considered. Within this approach we present numerical results which are compared with data. The self-consistent approach is compared with the Landau–Migdal theory. Here we derive from the self-consistent ph interaction, the Landau–Migdal parameters as well as their density dependence. In the Appendix a new derivation of the reduced matrix elements of the ph interaction is presented.

  19. Macroscopic Quantum-Type Potentials in Theoretical Systems Biology

    PubMed Central

    Nottale, Laurent

    2014-01-01

    We review in this paper the use of the theory of scale relativity and fractal space-time as a tool particularly well adapted to the possible development of a future genuine systems theoretical biology. We emphasize in particular the concept of quantum-type potentials, since, in many situations, the effect of the fractality of space—or of the underlying medium—can be reduced to the addition of such a potential energy to the classical equations of motion. Various equivalent representations—geodesic, quantum-like, fluid mechanical, stochastic—of these equations are given, as well as several forms of generalized quantum potentials. Examples of their possible intervention in high critical temperature superconductivity and in turbulence are also described, since some biological processes may be similar in some aspects to these physical phenomena. These potential extra energy contributions could have emerged in biology from the very fractal nature of the medium, or from an evolutive advantage, since they involve spontaneous properties of self-organization, morphogenesis, structuration and multi-scale integration. Finally, some examples of applications of the theory to actual biological-like processes and functions are also provided. PMID:24709901

  20. Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling

    NASA Astrophysics Data System (ADS)

    Pulido-Mancera, Laura; Bowen, Patrick T.; Imani, Mohammadreza F.; Kundtz, Nathan; Smith, David

    2017-12-01

    We consider the design and modeling of metasurfaces that couple energy from guided waves to propagating wave fronts. To this purpose, we develop a comprehensive, multiscale dipolar interpretation for large arrays of complementary metamaterial elements embedded in a waveguide structure. Within this modeling technique, the detailed electromagnetic response of each metamaterial element is replaced by a polarizable dipole, described by means of an effective polarizability. In this paper, we present two methods to extract this effective polarizability. The first method invokes surface equivalence principles, averaging over the effective surface currents and charges induced in the element's surface in order to obtain the effective dipole moments, from which the effective polarizability can be inferred. The second method is based in the coupled-mode theory, from which a direct relationship between the effective polarizability and the amplitude coefficients of the scattered waves can be deduced. We demonstrate these methods on several variants of waveguide-fed metasurface elements (both one- and two-dimensional waveguides), finding excellent agreement between the two, as well as with the analytical expressions derived for circular and elliptical irises. With the effective polarizabilities of the metamaterial elements accurately determined, the radiated fields generated by a waveguide-fed metasurface can be found self-consistently by including the interactions between polarizable dipoles. The dipole description provides an effective perspective and computational framework for engineering metasurface structures such as holograms, lenses, and beam-forming arrays, among others.

  1. A multi-scale study of the adsorption of lanthanum on the (110) surface of tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samin, Adib J.; Zhang, Jinsuo

    In this study, we utilize a multi-scale approach to studying lanthanum adsorption on the (110) plane of tungsten. The energy of the system is described from density functional theory calculations within the framework of the cluster expansion method. It is found that including two-body figures up to the sixth nearest neighbor yielded a reasonable agreement with density functional theory calculations as evidenced by the reported cross validation score. The results indicate that the interaction between the adsorbate atoms in the adlayer is important and cannot be ignored. The parameterized cluster expansion expression is used in a lattice gas Monte Carlomore » simulation in the grand canonical ensemble at 773 K and the adsorption isotherm is recorded. Implications of the obtained results for the pyroprocessing application are discussed.« less

  2. Retinex enhancement of infrared images.

    PubMed

    Li, Ying; He, Renjie; Xu, Guizhi; Hou, Changzhi; Sun, Yunyan; Guo, Lei; Rao, Liyun; Yan, Weili

    2008-01-01

    With the ability of imaging the temperature distribution of body, infrared imaging is promising in diagnostication and prognostication of diseases. However the poor quality of the raw original infrared images prevented applications and one of the essential problems is the low contrast appearance of the imagined object. In this paper, the image enhancement technique based on the Retinex theory is studied, which is a process that automatically retrieve the visual realism to images. The algorithms, including Frackle-McCann algorithm, McCann99 algorithm, single-scale Retinex algorithm, multi-scale Retinex algorithm and multi-scale Retinex algorithm with color restoration, are experienced to the enhancement of infrared images. The entropy measurements along with the visual inspection were compared and results shown the algorithms based on Retinex theory have the ability in enhancing the infrared image. Out of the algorithms compared, MSRCR demonstrated the best performance.

  3. Psychosocial Predictors for Cancer Prevention Behaviors in Workplace Using Protection Motivation Theory.

    PubMed

    Zare Sakhvidi, Mohammad Javad; Zare, Maryam; Mostaghaci, Mehrdad; Mehrparvar, Amir Houshang; Morowatisharifabad, Mohammad Ali; Naghshineh, Elham

    2015-01-01

    Backgrounds. The aim of this study was to describe the preventive behaviors of industrial workers and factors influencing occupational cancer prevention behaviors using protection motivation theory. Methods. A self-administered questionnaire was completed by 161 petrochemical workers in Iran in 2014 which consisted of three sections: background information, protection motivation theory measures, and occupational cancers preventive behaviors. Results. A statistically significant positive correlation was found between PM and self-efficacy, response efficacy, and the cancer preventive behaviors. Meanwhile, statistically significant negative correlations were found between PM, cost, and reward. Conclusions. Among available PMT constructs, only self-efficacy and cost were significant predictors of preventive behaviors. Protection motivation model based health promotion interventions with focus on self-efficacy and cost would be desirable in the case of occupational cancers prevention.

  4. Psychosocial Predictors for Cancer Prevention Behaviors in Workplace Using Protection Motivation Theory

    PubMed Central

    Zare Sakhvidi, Mohammad Javad; Zare, Maryam; Mehrparvar, Amir Houshang; Morowatisharifabad, Mohammad Ali; Naghshineh, Elham

    2015-01-01

    Backgrounds. The aim of this study was to describe the preventive behaviors of industrial workers and factors influencing occupational cancer prevention behaviors using protection motivation theory. Methods. A self-administered questionnaire was completed by 161 petrochemical workers in Iran in 2014 which consisted of three sections: background information, protection motivation theory measures, and occupational cancers preventive behaviors. Results. A statistically significant positive correlation was found between PM and self-efficacy, response efficacy, and the cancer preventive behaviors. Meanwhile, statistically significant negative correlations were found between PM, cost, and reward. Conclusions. Among available PMT constructs, only self-efficacy and cost were significant predictors of preventive behaviors. Protection motivation model based health promotion interventions with focus on self-efficacy and cost would be desirable in the case of occupational cancers prevention. PMID:26543649

  5. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    DOE PAGES

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; ...

    2015-06-05

    The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less

  6. Registration algorithm of point clouds based on multiscale normal features

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua

    2015-01-01

    The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.

  7. A multi-scale cardiovascular system model can account for the load-dependence of the end-systolic pressure-volume relationship

    PubMed Central

    2013-01-01

    Background The end-systolic pressure-volume relationship is often considered as a load-independent property of the heart and, for this reason, is widely used as an index of ventricular contractility. However, many criticisms have been expressed against this index and the underlying time-varying elastance theory: first, it does not consider the phenomena underlying contraction and second, the end-systolic pressure volume relationship has been experimentally shown to be load-dependent. Methods In place of the time-varying elastance theory, a microscopic model of sarcomere contraction is used to infer the pressure generated by the contraction of the left ventricle, considered as a spherical assembling of sarcomere units. The left ventricle model is inserted into a closed-loop model of the cardiovascular system. Finally, parameters of the modified cardiovascular system model are identified to reproduce the hemodynamics of a normal dog. Results Experiments that have proven the limitations of the time-varying elastance theory are reproduced with our model: (1) preload reductions, (2) afterload increases, (3) the same experiments with increased ventricular contractility, (4) isovolumic contractions and (5) flow-clamps. All experiments simulated with the model generate different end-systolic pressure-volume relationships, showing that this relationship is actually load-dependent. Furthermore, we show that the results of our simulations are in good agreement with experiments. Conclusions We implemented a multi-scale model of the cardiovascular system, in which ventricular contraction is described by a detailed sarcomere model. Using this model, we successfully reproduced a number of experiments that have shown the failing points of the time-varying elastance theory. In particular, the developed multi-scale model of the cardiovascular system can capture the load-dependence of the end-systolic pressure-volume relationship. PMID:23363818

  8. Multiscale modeling and simulation of brain blood flow

    NASA Astrophysics Data System (ADS)

    Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em

    2016-02-01

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  9. School bullying, low self-control, and opportunity.

    PubMed

    Moon, Byongook; Alarid, Leanne Fiftal

    2015-03-01

    The theory of low self-control has been shown to be a valid predictor of a wide variety of criminal and deviant behaviors. However, a limited number of studies were conducted to understand the relationship between low self-control and bullying and the effects of opportunity factors (i.e., parental supervision, association with other bullies, negative school environment, and disciplinary measures used by teachers) on bullying in the context of low self-control theory. The present study, using a sample of nearly 300 youths, examined the effects of low self-control and opportunity factors on various types of bullying behaviors. Results indicated that youths with low self-control were likely to physically and psychologically bully, consistent with the theory's prediction. When opportunity measures were introduced, they were stronger explanations of bullying than low self-control, especially association with other bullies and youth who experienced disciplinary measures by their teacher. Negative school environment was a significant predictor of psychological bullying but not for physical bullying. Theoretical and policy implications are discussed. © The Author(s) 2014.

  10. Self adaptive multi-scale morphology AVG-Hat filter and its application to fault feature extraction for wheel bearing

    NASA Astrophysics Data System (ADS)

    Deng, Feiyue; Yang, Shaopu; Tang, Guiji; Hao, Rujiang; Zhang, Mingliang

    2017-04-01

    Wheel bearings are essential mechanical components of trains, and fault detection of the wheel bearing is of great significant to avoid economic loss and casualty effectively. However, considering the operating conditions, detection and extraction of the fault features hidden in the heavy noise of the vibration signal have become a challenging task. Therefore, a novel method called adaptive multi-scale AVG-Hat morphology filter (MF) is proposed to solve it. The morphology AVG-Hat operator not only can suppress the interference of the strong background noise greatly, but also enhance the ability of extracting fault features. The improved envelope spectrum sparsity (IESS), as a new evaluation index, is proposed to select the optimal filtering signal processed by the multi-scale AVG-Hat MF. It can present a comprehensive evaluation about the intensity of fault impulse to the background noise. The weighted coefficients of the different scale structural elements (SEs) in the multi-scale MF are adaptively determined by the particle swarm optimization (PSO) algorithm. The effectiveness of the method is validated by analyzing the real wheel bearing fault vibration signal (e.g. outer race fault, inner race fault and rolling element fault). The results show that the proposed method could improve the performance in the extraction of fault features effectively compared with the multi-scale combined morphological filter (CMF) and multi-scale morphology gradient filter (MGF) methods.

  11. Self-consistent core-pedestal transport simulations with neural network accelerated models

    DOE PAGES

    Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.; ...

    2017-07-12

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less

  12. Self-consistent core-pedestal transport simulations with neural network accelerated models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less

  13. Self-consistent core-pedestal transport simulations with neural network accelerated models

    NASA Astrophysics Data System (ADS)

    Meneghini, O.; Smith, S. P.; Snyder, P. B.; Staebler, G. M.; Candy, J.; Belli, E.; Lao, L.; Kostuk, M.; Luce, T.; Luda, T.; Park, J. M.; Poli, F.

    2017-08-01

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflow that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. The NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.

  14. Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer.

    PubMed

    Kurashige, Yuki; Yanai, Takeshi

    2011-09-07

    We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics

  15. Older adults' exercise behavior: roles of selected constructs of social-cognitive theory.

    PubMed

    Umstattd, M Renée; Hallam, Jeffrey

    2007-04-01

    Exercise is consistently related to physical and psychological health benefits in older adults. Bandura's social-cognitive theory (SCT) is one theoretical perspective on understanding and predicting exercise behavior. Thus, the authors examined whether three SCT variables-self-efficacy, self-regulation, and outcome-expectancy value-predicted older adults' (N = 98) exercise behavior. Bivariate analyses revealed that regular exercise was associated with being male, White, and married; having higher income, education, and self-efficacy; using self-regulation skills; and having favorable outcome-expectancy values (p < .05). In a simultaneous multivariate model, however, self-regulation (p = .0097) was the only variable independently associated with regular exercise. Thus, exercise interventions targeting older adults should include components aimed at increasing the use of self-regulation strategies.

  16. Sources of Writing Self-Efficacy Beliefs of Elementary, Middle, and High School Students

    ERIC Educational Resources Information Center

    Pajares, Frank; Johnson, Margaret J.; Usher, Ellen L.

    2007-01-01

    The purpose of this study was to examine the influence of Albert Bandura's four hypothesized sources of self-efficacy on students' writing self-efficacy beliefs (N = 1256) and to explore how these sources differ as a function of gender and academic level (elementary, middle, high). Consistent with the tenets of self-efficacy theory, each of the…

  17. Progress of plasma wakefield self-modulation experiments at FACET

    NASA Astrophysics Data System (ADS)

    Adli, E.; Berglyd Olsen, V. K.; Lindstrøm, C. A.; Muggli, P.; Reimann, O.; Vieira, J. M.; Amorim, L. D.; Clarke, C. I.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; O`Shea, B. D.; Yakimenko, V.; Clayton, C.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Williams, O.

    2016-09-01

    Simulations and theory predict that long electron and positron beams may under favorable conditions self-modulate in plasmas. We report on the progress of experiments studying the self-modulation instability in plasma wakefield experiments at FACET. The experimental results obtained so far, while not being fully conclusive, appear to be consistent with the presence of the self-modulation instability.

  18. The contributions of interpersonal trauma exposure and world assumptions to predicting dissociation in undergraduates.

    PubMed

    Lilly, Michelle M

    2011-01-01

    This study examines the relationship between world assumptions and trauma history in predicting symptoms of dissociation. It was proposed that cognitions related to the safety and benevolence of the world, as well as self-worth, would be related to the presence of dissociative symptoms, the latter of which were theorized to defend against threats to one's sense of safety, meaningfulness, and self-worth. Undergraduates from a midwestern university completed the Multiscale Dissociation Inventory, World Assumptions Scale, and Traumatic Life Events Questionnaire. Consistent with the hypotheses, world assumptions were related to the extent of trauma exposure and interpersonal trauma exposure in the sample but were not significantly related to non-interpersonal trauma exposure. World assumptions acted as a significant partial mediator of the relationship between trauma exposure and dissociation, and this relationship held when interpersonal trauma exposure specifically was considered. The factor structures of dissociation and world assumptions were also examined using principal component analysis, with the benevolence and self-worth factors of the World Assumptions Scale showing the strongest relationships with trauma exposure and dissociation. Clinical implications are discussed.

  19. Self-consistent conversion of a viscous fluid to particles

    NASA Astrophysics Data System (ADS)

    Molnar, Denes; Wolff, Zack

    2017-02-01

    Comparison of hydrodynamic and "hybrid" hydrodynamics+transport calculations with heavy-ion data inevitably requires the conversion of the fluid to particles. For dissipative fluids the conversion is ambiguous without additional theory input complementing hydrodynamics. We obtain self-consistent shear viscous phase-space corrections from linearized Boltzmann transport theory for a gas of hadrons. These corrections depend on the particle species, and incorporating them in Cooper-Frye freeze-out affects identified particle observables. For example, with additive quark model cross sections, proton elliptic flow is larger than pion elliptic flow at moderately high pT in Au+Au collisions at the BNL Relativistic Heavy Ion Collider. This is in contrast to Cooper-Frye freeze-out with the commonly used "democratic Grad" ansatz that assumes no species dependence. Various analytic and numerical results are also presented for massless and massive two-component mixtures to better elucidate how species dependence arises. For convenient inclusion in pure hydrodynamic and hybrid calculations, Appendix G contains self-consistent viscous corrections for each species both in tabulated and parametrized form.

  20. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    PubMed

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.

  1. Spinning fluids in general relativity. II - Self-consistent formulation

    NASA Technical Reports Server (NTRS)

    Ray, John R.; Smalley, Larry, L.; Krisch, Jean P.

    1987-01-01

    Methods used earlier to derive the equations of motion for a spinning fluid in the Einstein-Cartan theory are specialized to the case of general relativity. The main idea is to include the spin as a thermodynamic variable in the theory.

  2. Towards a unification of the hierarchical reference theory and the self-consistent Ornstein-Zernike approximation.

    PubMed

    Reiner, A; Høye, J S

    2005-12-01

    The hierarchical reference theory and the self-consistent Ornstein-Zernike approximation are two liquid state theories that both furnish a largely satisfactory description of the critical region as well as phase coexistence and the equation of state in general. Furthermore, there are a number of similarities that suggest the possibility of a unification of both theories. As a first step towards this goal, we consider the problem of combining the lowest order gamma expansion result for the incorporation of a Fourier component of the interaction with the requirement of consistency between internal and free energies, leaving aside the compressibility relation. For simplicity, we restrict ourselves to a simplified lattice gas that is expected to display the same qualitative behavior as more elaborate models. It turns out that the analytically tractable mean spherical approximation is a solution to this problem, as are several of its generalizations. Analysis of the characteristic equations shows the potential for a practical scheme and yields necessary conditions that any closure to the Ornstein-Zernike relation must fulfill for the consistency problem to be well posed and to have a unique differentiable solution. These criteria are expected to remain valid for more general discrete and continuous systems, even if consistency with the compressibility route is also enforced where possible explicit solutions will require numerical evaluations.

  3. Applicability of Kerker preconditioning scheme to the self-consistent density functional theory calculations of inhomogeneous systems

    NASA Astrophysics Data System (ADS)

    Zhou, Yuzhi; Wang, Han; Liu, Yu; Gao, Xingyu; Song, Haifeng

    2018-03-01

    The Kerker preconditioner, based on the dielectric function of homogeneous electron gas, is designed to accelerate the self-consistent field (SCF) iteration in the density functional theory calculations. However, a question still remains regarding its applicability to the inhomogeneous systems. We develop a modified Kerker preconditioning scheme which captures the long-range screening behavior of inhomogeneous systems and thus improves the SCF convergence. The effectiveness and efficiency is shown by the tests on long-z slabs of metals, insulators, and metal-insulator contacts. For situations without a priori knowledge of the system, we design the a posteriori indicator to monitor if the preconditioner has suppressed charge sloshing during the iterations. Based on the a posteriori indicator, we demonstrate two schemes of the self-adaptive configuration for the SCF iteration.

  4. Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics

    NASA Astrophysics Data System (ADS)

    Rangan, Aaditya V.; Cai, David; Tao, Louis

    2007-02-01

    Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of integrate-and-fire neuronal networks.

  5. Multiscale Multiphysics and Multidomain Models I: Basic Theory

    PubMed Central

    Wei, Guo-Wei

    2013-01-01

    This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent-solute interactions are considered in the present modeling. We demonstrate the consistency between the non-equilibrium charge transport model and the equilibrium solvation model by showing the systematical reduction of the former to the latter at equilibrium. This paper also offers a brief review of the field. PMID:25382892

  6. Multiscale Multiphysics and Multidomain Models I: Basic Theory.

    PubMed

    Wei, Guo-Wei

    2013-12-01

    This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent-solute interactions are considered in the present modeling. We demonstrate the consistency between the non-equilibrium charge transport model and the equilibrium solvation model by showing the systematical reduction of the former to the latter at equilibrium. This paper also offers a brief review of the field.

  7. Self-Reorientation Following Colorectal Cancer Treatment - A Grounded Theory Study.

    PubMed

    Johansson, Ann-Caroline B; Axelsson, Malin; Berndtsson, Ina; Brink, Eva

    2015-01-01

    After colorectal cancer (CRC) treatment, people reorganize life in ways that are consistent with their understanding of the illness and their expectations for recovery. Incapacities and abilities that have been lost can initiate a need to reorient the self. To the best of our knowledge, no studies have explicitly focused on the concept of self-reorientation after CRC treatment. The aim of the present study was therefore to explore self-reorientation in the early recovery phase after CRC surgery. Grounded theory analysis was undertaken, using the method presented by Charmaz. The present results explained self-reorientation as the individual attempting to achieve congruence in self-perception. A congruent self-perception meant bringing together the perceived self and the self that was mirrored in the near environs. The results showed that societal beliefs and personal explanations are essential elements of self-reorientation, and that it is therefore important to make them visible.

  8. Constructive tensorial group field theory II: the {U(1)-T^4_4} model

    NASA Astrophysics Data System (ADS)

    Lahoche, Vincent

    2018-05-01

    In this paper, we continue our program of non-pertubative constructions of tensorial group field theories (TGFT). We prove analyticity and Borel summability in a suitable domain of the coupling constant of the simplest super-renormalizable TGFT which contains some ultraviolet divergencies, namely the color-symmetric quartic melonic rank-four model with Abelian gauge invariance, nicknamed . We use a multiscale loop vertex expansion. It is an extension of the loop vertex expansion (the basic constructive technique for non-local theories) which is required for theories that involve non-trivial renormalization.

  9. Age-related variation in EEG complexity to photic stimulation: A multiscale entropy analysis

    PubMed Central

    Takahashi, Tetsuya; Cho, Raymond Y.; Murata, Tetsuhito; Mizuno, Tomoyuki; Kikuchi, Mitsuru; Mizukami, Kimiko; Kosaka, Hirotaka; Takahashi, Koichi; Wada, Yuji

    2010-01-01

    Objective This study was intended to examine variations in electroencephalographic (EEG) complexity in response to photic stimulation (PS) during aging to test the hypothesis that the aging process reduces physiologic complexity and functional responsiveness. Methods Multiscale entropy (MSE), an estimate of time-series signal complexity associated with long-range temporal correlation, is used as a recently proposed method for quantifying EEG complexity with multiple coarse-grained sequences. We recorded EEG in 13 healthy elderly subjects and 12 healthy young subjects during pre-PS and post-PS conditions and estimated their respective MSE values. Results For the pre-PS condition, no significant complexity difference was found between the groups. However, a significant MSE change (complexity increase) was found post-PS only in young subjects, thereby revealing a power-law scaling property, which means long-range temporal correlation. Conclusions Enhancement of long-range temporal correlation in young subjects after PS might reflect a cortical response to stimuli, which was absent in elderly subjects. These results are consistent with the general “loss of complexity/diminished functional response to stimuli” theory of aging. Significance Our findings demonstrate that application of MSE analysis to EEG is a powerful approach for studying age-related changes in brain function. PMID:19231279

  10. Raychaudhuri equation in the self-consistent Einstein-Cartan theory with spin-density

    NASA Technical Reports Server (NTRS)

    Fennelly, A. J.; Krisch, Jean P.; Ray, John R.; Smalley, Larry L.

    1988-01-01

    The physical implications of the Raychaudhuri equation for a spinning fluid in a Riemann-Cartan spacetime is developed and discussed using the self-consistent Lagrangian based formulation for the Einstein-Cartan theory. It was found that the spin-squared terms contribute to expansion (inflation) at early times and may lead to a bounce in the final collapse. The relationship between the fluid's vorticity and spin angular velocity is clarified and the effect of the interaction terms between the spin angular velocity and the spin in the Raychaudhuri equation investigated. These results should prove useful for studies of systems with an intrinsic spin angular momentum in extreme astrophysical or cosmological problems.

  11. Pressure calculation in hybrid particle-field simulations

    NASA Astrophysics Data System (ADS)

    Milano, Giuseppe; Kawakatsu, Toshihiro

    2010-12-01

    In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials.

  12. Predicting the nonlinear optical response in the resonant region from the linear characterization: a self-consistent theory for the first-, second-, and third-order (non)linear optical response

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2010-08-01

    We introduce a self-consistent theory for the description of the optical linear and nonlinear response of molecules that is based strictly on the results of the experimental characterization. We show how the Thomas-Kuhn sum-rules can be used to eliminate the dependence of the nonlinear response on parameters that are not directly measurable. Our approach leads to the successful modeling of the dispersion of the nonlinear response of complex molecular structures with different geometries (dipolar and octupolar), and can be used as a guide towards the modeling in terms of fundamental physical parameters.

  13. Mechanics of a granular skin

    NASA Astrophysics Data System (ADS)

    Karmakar, Somnath; Sane, Anit; Bhattacharya, S.; Ghosh, Shankar

    2017-04-01

    Magic sand, a hydrophobic toy granular material, is widely used in popular science instructions because of its nonintuitive mechanical properties. A detailed study of the failure of an underwater column of magic sand shows that these properties can be traced to a single phenomenon: the system self-generates a cohesive skin that encapsulates the material inside. The skin, consisting of pinned air-water-grain interfaces, shows multiscale mechanical properties: they range from contact-line dynamics in the intragrain roughness scale, to plastic flow at the grain scale, all the way to sample-scale mechanical responses. With decreasing rigidity of the skin, the failure mode transforms from brittle to ductile (both of which are collective in nature) to a complete disintegration at the single-grain scale.

  14. On the Theory and Numerical Simulation of Cohesive Crack Propagation with Application to Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Rudraraju, Siva Shankar; Garikipati, Krishna; Waas, Anthony M.; Bednarcyk, Brett A.

    2013-01-01

    The phenomenon of crack propagation is among the predominant modes of failure in many natural and engineering structures, often leading to severe loss of structural integrity and catastrophic failure. Thus, the ability to understand and a priori simulate the evolution of this failure mode has been one of the cornerstones of applied mechanics and structural engineering and is broadly referred to as "fracture mechanics." The work reported herein focuses on extending this understanding, in the context of through-thickness crack propagation in cohesive materials, through the development of a continuum-level multiscale numerical framework, which represents cracks as displacement discontinuities across a surface of zero measure. This report presents the relevant theory, mathematical framework, numerical modeling, and experimental investigations of through-thickness crack propagation in fiber-reinforced composites using the Variational Multiscale Cohesive Method (VMCM) developed by the authors.

  15. Multiscale Sediment-Laden Flow Theory and Its Application in Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Cao, Z. X.; Pender, G.; Hu, P.

    2011-09-01

    Sediment-laden flows over erodible bed normally feature multiple time scales. The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity regime in line with local flow scenario and the bed deforms as compared to the flow, which literally dictate if a capacity based and/or decoupled model is justified. This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed, with bed load and suspended load transport respectively. It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable, whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity. Physically coupled modeling is critical for cases characterized by rapid bed variation. Applications are outlined on flash floods and landslide dam break floods.

  16. Extended Lagrangian Excited State Molecular Dynamics

    DOE PAGES

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei; ...

    2018-01-09

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  17. Extended Lagrangian Excited State Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  18. Extended Lagrangian Excited State Molecular Dynamics.

    PubMed

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  19. A Novel Multiscale Physics Based Progressive Failure Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.

    2008-01-01

    A variable fidelity, multiscale, physics based finite element procedure for predicting progressive damage and failure of laminated continuous fiber reinforced composites is introduced. At every integration point in a finite element model, progressive damage is accounted for at the lamina-level using thermodynamically based Schapery Theory. Separate failure criteria are applied at either the global-scale or the microscale in two different FEM models. A micromechanics model, the Generalized Method of Cells, is used to evaluate failure criteria at the micro-level. The stress-strain behavior and observed failure mechanisms are compared with experimental results for both models.

  20. Transitioning NWChem to the Next Generation of Manycore Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J.; Apra, E; Kowalski, Karol

    The NorthWest chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers [1-3]. It contains an umbrella of modules that today includes self-consistent eld (SCF), second order Møller-Plesset perturbation theory (MP2), coupled cluster (CC), multiconguration self-consistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real-time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics (AIMD), Car-Parrinello molecular dynamics (MD), classical MD, hybrid quantum mechanicsmore » molecular mechanics (QM/MM), hybrid ab initio molecular dynamics molecular mechanics (AIMD/MM), gauge independent atomic orbital nuclear magnetic resonance (GIAO NMR), conductor like screening solvation model (COSMO), conductor-like screening solvation model based on density (COSMO-SMD), and reference interaction site model (RISM) solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities [4]. Moreover, new capabilities continue to be added with each new release.« less

  1. Understanding Sources of Self-Efficacy of Chinese Students Learning English in an American Institution

    ERIC Educational Resources Information Center

    Zuo, Huifang; Wang, Chuang

    2016-01-01

    This qualitative study explores the sources of the self-efficacy development of five Chinese doctoral students' use of English as a second language in a southeastern university in the United Sates. Although individual differences were reported, common themes were also recognized. Consistent with the self-efficacy theory and previous studies in…

  2. Nonequilibrium self-energy functional theory

    NASA Astrophysics Data System (ADS)

    Hofmann, Felix; Eckstein, Martin; Arrigoni, Enrico; Potthoff, Michael

    2013-10-01

    The self-energy functional theory (SFT) is generalized to describe the real-time dynamics of correlated lattice-fermion models far from thermal equilibrium. This is achieved by starting from a reformulation of the original equilibrium theory in terms of double-time Green's functions on the Keldysh-Matsubara contour. With the help of a generalized Luttinger-Ward functional, we construct a functional Ω̂[Σ] which is stationary at the physical (nonequilibrium) self-energy Σ and which yields the grand potential of the initial thermal state Ω at the physical point. Nonperturbative approximations can be defined by specifying a reference system that serves to generate trial self-energies. These self-energies are varied by varying the reference system's one-particle parameters on the Keldysh-Matsubara contour. In the case of thermal equilibrium, this approach reduces to the conventional SFT. Contrary to the equilibrium theory, however, “unphysical” variations, i.e., variations that are different on the upper and the lower branches of the Keldysh contour, must be considered to fix the time dependence of the optimal physical parameters via the variational principle. Functional derivatives in the nonequilibrium SFT Euler equation are carried out analytically to derive conditional equations for the variational parameters that are accessible to a numerical evaluation via a time-propagation scheme. Approximations constructed by means of the nonequilibrium SFT are shown to be inherently causal, internally consistent, and to respect macroscopic conservation laws resulting from gauge symmetries of the Hamiltonian. This comprises the nonequilibrium dynamical mean-field theory but also dynamical-impurity and variational-cluster approximations that are specified by reference systems with a finite number of degrees of freedom. In this way, nonperturbative and consistent approximations can be set up, the numerical evaluation of which is accessible to an exact-diagonalization approach.

  3. Conditions associated with wandering in people with dementia from the viewpoint of self-awareness: five case reports.

    PubMed

    Yokoi, Teruo; Aoyama, Keiji; Ishida, Kie; Okamura, Hitoshi

    2012-05-01

    The conditions associated with wandering in people with dementia include purposeless activity, purposeful actions, irritation, and symptoms of depression. The words and actions of 5 people admitted to long-term health care facilities who often exhibited wandering behavior were observed, and the above conditions were studied based on our self-awareness model (consisting of "theory of mind," "self-evaluation," and "self-consciousness"). One person who had not passed the theory of mind task but had passed the self-evaluation task was aware of her wandering. However, she could not understand where she wanted to go or for what purpose. Four persons who had not passed the self-evaluation tasks were not aware of their wandering and had no purpose for their wandering.

  4. Failure causes fear: the effect of self-esteem threat on death-anxiety.

    PubMed

    Routledge, Clay

    2012-01-01

    According to terror management theory (TMT; Greenberg, Pyszczynski, 1986), self-esteem protects people from anxiety associated with the knowledge of certain mortality. A number of studies provide evidence consistent with this assertion, but no studies have experimentally examined the effect of threatened self-esteem on death-anxiety. In the current study, self-esteem was manipulated and death-anxiety measured. A self-esteem threat increased death-anxiety relative to a self-esteem boost and non-self threat control condition.

  5. Anomalous electron transport in Hall-effect thrusters: Comparison between quasi-linear kinetic theory and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Martorelli, R.; Chabert, P.; Bourdon, A.

    2018-06-01

    Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E × B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to "anomalous" electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasi-linear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 2-4 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed.

  6. Scale Interactions in the Tropics from a Simple Multi-Cloud Model

    NASA Astrophysics Data System (ADS)

    Niu, X.; Biello, J. A.

    2017-12-01

    Our lack of a complete understanding of the interaction between the moisture convection and equatorial waves remains an impediment in the numerical simulation of large-scale organization, such as the Madden-Julian Oscillation (MJO). The aim of this project is to understand interactions across spatial scales in the tropics from a simplified framework for scale interactions while a using a simplified framework to describe the basic features of moist convection. Using multiple asymptotic scales, Biello and Majda[1] derived a multi-scale model of moist tropical dynamics (IMMD[1]), which separates three regimes: the planetary scale climatology, the synoptic scale waves, and the planetary scale anomalies regime. The scales and strength of the observed MJO would categorize it in the regime of planetary scale anomalies - which themselves are forced from non-linear upscale fluxes from the synoptic scales waves. In order to close this model and determine whether it provides a self-consistent theory of the MJO. A model for diabatic heating due to moist convection must be implemented along with the IMMD. The multi-cloud parameterization is a model proposed by Khouider and Majda[2] to describe the three basic cloud types (congestus, deep and stratiform) that are most responsible for tropical diabatic heating. We implement a simplified version of the multi-cloud model that is based on results derived from large eddy simulations of convection [3]. We present this simplified multi-cloud model and show results of numerical experiments beginning with a variety of convective forcing states. Preliminary results on upscale fluxes, from synoptic scales to planetary scale anomalies, will be presented. [1] Biello J A, Majda A J. Intraseasonal multi-scale moist dynamics of the tropical atmosphere[J]. Communications in Mathematical Sciences, 2010, 8(2): 519-540. [2] Khouider B, Majda A J. A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis[J]. Journal of the atmospheric sciences, 2006, 63(4): 1308-1323. [3] Dorrestijn J, Crommelin D T, Biello J A, et al. A data-driven multi-cloud model for stochastic parametrization of deep convection[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2013, 371(1991): 20120374.

  7. Collaborative Simulation Grid: Multiscale Quantum-Mechanical/Classical Atomistic Simulations on Distributed PC Clusters in the US and Japan

    NASA Technical Reports Server (NTRS)

    Kikuchi, Hideaki; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; Iyetomi, Hiroshi; Ogata, Shuji; Kouno, Takahisa; Shimojo, Fuyuki; Tsuruta, Kanji; Saini, Subhash; hide

    2002-01-01

    A multidisciplinary, collaborative simulation has been performed on a Grid of geographically distributed PC clusters. The multiscale simulation approach seamlessly combines i) atomistic simulation backed on the molecular dynamics (MD) method and ii) quantum mechanical (QM) calculation based on the density functional theory (DFT), so that accurate but less scalable computations are performed only where they are needed. The multiscale MD/QM simulation code has been Grid-enabled using i) a modular, additive hybridization scheme, ii) multiple QM clustering, and iii) computation/communication overlapping. The Gridified MD/QM simulation code has been used to study environmental effects of water molecules on fracture in silicon. A preliminary run of the code has achieved a parallel efficiency of 94% on 25 PCs distributed over 3 PC clusters in the US and Japan, and a larger test involving 154 processors on 5 distributed PC clusters is in progress.

  8. A non-statistical regularization approach and a tensor product decomposition method applied to complex flow data

    NASA Astrophysics Data System (ADS)

    von Larcher, Thomas; Blome, Therese; Klein, Rupert; Schneider, Reinhold; Wolf, Sebastian; Huber, Benjamin

    2016-04-01

    Handling high-dimensional data sets like they occur e.g. in turbulent flows or in multiscale behaviour of certain types in Geosciences are one of the big challenges in numerical analysis and scientific computing. A suitable solution is to represent those large data sets in an appropriate compact form. In this context, tensor product decomposition methods currently emerge as an important tool. One reason is that these methods often enable one to attack high-dimensional problems successfully, another that they allow for very compact representations of large data sets. We follow the novel Tensor-Train (TT) decomposition method to support the development of improved understanding of the multiscale behavior and the development of compact storage schemes for solutions of such problems. One long-term goal of the project is the construction of a self-consistent closure for Large Eddy Simulations (LES) of turbulent flows that explicitly exploits the tensor product approach's capability of capturing self-similar structures. Secondly, we focus on a mixed deterministic-stochastic subgrid scale modelling strategy currently under development for application in Finite Volume Large Eddy Simulation (LES) codes. Advanced methods of time series analysis for the databased construction of stochastic models with inherently non-stationary statistical properties and concepts of information theory based on a modified Akaike information criterion and on the Bayesian information criterion for the model discrimination are used to construct surrogate models for the non-resolved flux fluctuations. Vector-valued auto-regressive models with external influences form the basis for the modelling approach [1], [2], [4]. Here, we present the reconstruction capabilities of the two modeling approaches tested against 3D turbulent channel flow data computed by direct numerical simulation (DNS) for an incompressible, isothermal fluid at Reynolds number Reτ = 590 (computed by [3]). References [1] I. Horenko. On identification of nonstationary factor models and its application to atmospherical data analysis. J. Atm. Sci., 67:1559-1574, 2010. [2] P. Metzner, L. Putzig and I. Horenko. Analysis of persistent non-stationary time series and applications. CAMCoS, 7:175-229, 2012. [3] M. Uhlmann. Generation of a temporally well-resolved sequence of snapshots of the flow-field in turbulent plane channel flow. URL: http://www-turbul.ifh.unikarlsruhe.de/uhlmann/reports/produce.pdf, 2000. [4] Th. von Larcher, A. Beck, R. Klein, I. Horenko, P. Metzner, M. Waidmann, D. Igdalov, G. Gassner and C.-D. Munz. Towards a Framework for the Stochastic Modelling of Subgrid Scale Fluxes for Large Eddy Simulation. Meteorol. Z., 24:313-342, 2015.

  9. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system

    PubMed Central

    Li, Xin; Liu, Shaomin; Xiao, Qin; Ma, Mingguo; Jin, Rui; Che, Tao; Wang, Weizhen; Hu, Xiaoli; Xu, Ziwei; Wen, Jianguang; Wang, Liangxu

    2017-01-01

    We introduce a multiscale dataset obtained from Heihe Watershed Allied Telemetry Experimental Research (HiWATER) in an oasis-desert area in 2012. Upscaling of eco-hydrological processes on a heterogeneous surface is a grand challenge. Progress in this field is hindered by the poor availability of multiscale observations. HiWATER is an experiment designed to address this challenge through instrumentation on hierarchically nested scales to obtain multiscale and multidisciplinary data. The HiWATER observation system consists of a flux observation matrix of eddy covariance towers, large aperture scintillometers, and automatic meteorological stations; an eco-hydrological sensor network of soil moisture and leaf area index; hyper-resolution airborne remote sensing using LiDAR, imaging spectrometer, multi-angle thermal imager, and L-band microwave radiometer; and synchronical ground measurements of vegetation dynamics, and photosynthesis processes. All observational data were carefully quality controlled throughout sensor calibration, data collection, data processing, and datasets generation. The data are freely available at figshare and the Cold and Arid Regions Science Data Centre. The data should be useful for elucidating multiscale eco-hydrological processes and developing upscaling methods. PMID:28654086

  10. Multi-scale streamflow variability responses to precipitation over the headwater catchments in southern China

    NASA Astrophysics Data System (ADS)

    Niu, Jun; Chen, Ji; Wang, Keyi; Sivakumar, Bellie

    2017-08-01

    This paper examines the multi-scale streamflow variability responses to precipitation over 16 headwater catchments in the Pearl River basin, South China. The long-term daily streamflow data (1952-2000), obtained using a macro-scale hydrological model, the Variable Infiltration Capacity (VIC) model, and a routing scheme, are studied. Temporal features of streamflow variability at 10 different timescales, ranging from 6 days to 8.4 years, are revealed with the Haar wavelet transform. The principal component analysis (PCA) is performed to categorize the headwater catchments with the coherent modes of multi-scale wavelet spectra. The results indicate that three distinct modes, with different variability distributions at small timescales and seasonal scales, can explain 95% of the streamflow variability. A large majority of the catchments (i.e. 12 out of 16) exhibit consistent mode feature on multi-scale variability throughout three sub-periods (1952-1968, 1969-1984, and 1985-2000). The multi-scale streamflow variability responses to precipitation are identified to be associated with the regional flood and drought tendency over the headwater catchments in southern China.

  11. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.

    PubMed

    Coriani, Sonia; Høst, Stinne; Jansík, Branislav; Thøgersen, Lea; Olsen, Jeppe; Jørgensen, Poul; Reine, Simen; Pawłowski, Filip; Helgaker, Trygve; Sałek, Paweł

    2007-04-21

    A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for the calculation of frequency-dependent molecular response properties and excitation energies is presented, based on a nonredundant exponential parametrization of the one-electron density matrix in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory. Important features of the subspace method are the use of paired trial vectors (to preserve the algebraic structure of the response equations), a nondiagonal preconditioner (for rapid convergence), and the generation of good initial guesses (for robust solution). As a result, the performance of the iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides containing up to 1400 atoms.

  12. Ground-state energies and highest occupied eigenvalues of atoms in exchange-only density-functional theory

    NASA Astrophysics Data System (ADS)

    Li, Yan; Harbola, Manoj K.; Krieger, J. B.; Sahni, Viraht

    1989-11-01

    The exchange-correlation potential of the Kohn-Sham density-functional theory has recently been interpreted as the work required to move an electron against the electric field of its Fermi-Coulomb hole charge distribution. In this paper we present self-consistent results for ground-state total energies and highest occupied eigenvalues of closed subshell atoms as obtained by this formalism in the exchange-only approximation. The total energies, which are an upper bound, lie within 50 ppm of Hartree-Fock theory for atoms heavier than Be. The highest occupied eigenvalues, as a consequence of this interpretation, approximate well the experimental ionization potentials. In addition, the self-consistently calculated exchange potentials are very close to those of Talman and co-workers [J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976); K. Aashamar, T. M. Luke, and J. D. Talman, At. Data Nucl. Data Tables 22, 443 (1978)].

  13. Hidden Fermi liquid: Self-consistent theory for the normal state of high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Casey, Philip A.

    The anomalous "strange metal" properties of the normal, non-superconducting state of the high-Tc cuprate superconductors have been extensively studied for over two decades. The resistivity is robustly T-linear at high temperatures, while at low T it appears to maintain linearity near optimal doping and is T2 at higher doping. The inverse Hall angle is strictly T2 and hence has a distinct scattering lifetime from the resistivity. The transport scattering lifetime is highly anisotropic as directly measured by angle-dependent magnetoresistance (ADMR) and indirectly in more traditional transport experiments. The IR conductivity exhibits a non-integer power-law in frequency, which we take as a defining characteristic of the "strange metal". A phenomenological theory of the transport and spectroscopic properties at a self-consistent and predictive level has been much sought after, yet elusive. Hidden Fermi liquid theory (HFL) explicitly accounts for the effects of Gutzwiller projection in the t-J Hamiltonian, widely believed to contain the essential physics of the high-Tc superconductors. We show this theory to be the first self-consistent description for the normal state of the cuprates based on transparent, fundamental assumptions. Our well-defined formalism also serves as a guide for further experimental confirmation. Chapter 1 reviews the "strange metal" properties and the relevant aspects of competing models. Chapter 2 presents the theoretical foundations of the formalism. Chapters 3 and 4 derive expressions for the entire normal state relating many of the properties, for example: angle-resolved photoemission, IR conductivity, resistivity, Hall angle, and by generalizing the formalism to include the Fermi surface topology---ADMR. Self-consistency is demonstrated with experimental comparisons, including the most recent laser-ARPES and ADMR. Chapter 5 discusses entropy transport, as in the thermal conductivity, thermal Hall conductivity, and consequent metrics of non-Fermi liquid behavior such as the Wiedemann-Franz and Kadowaki-Woods ratios.

  14. Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells.

    PubMed

    Boccard, Mathieu; Battaglia, Corsin; Hänni, Simon; Söderström, Karin; Escarré, Jordi; Nicolay, Sylvain; Meillaud, Fanny; Despeisse, Matthieu; Ballif, Christophe

    2012-03-14

    The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance. © 2012 American Chemical Society

  15. Mechanistic insights into electrochemical reduction of CO 2 over Ag using density functional theory and transport models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Meenesh R.; Goodpaster, Jason D.; Weber, Adam Z.

    Electrochemical reduction of CO 2 using renewable sources of electrical energy holds promise for converting CO 2 to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in themore » reaction. Moreover, cathode polarization can influence the kinetics of CO 2 reduction. Here in this work, we present a multiscale framework for ab initio simulation of the electrochemical reduction of CO 2 over an Ag(110) surface. A continuum model for species transport is combined with a microkinetic model for the cathode reaction dynamics. Free energies of activation for all elementary reactions are determined from density functional theory calculations. Using this approach, three alternative mechanisms for CO 2 reduction were examined. The rate-limiting step in each mechanism is **COOH formation at higher negative potentials. However, only via the multiscale simulation was it possible to identify the mechanism that leads to a dependence of the rate of CO formation on the partial pressure of CO 2 that is consistent with experiments. Additionally, simulations based on this mechanism also describe the dependence of the H 2 and CO current densities on cathode voltage that are in strikingly good agreement with experimental observation.« less

  16. Mechanistic insights into electrochemical reduction of CO 2 over Ag using density functional theory and transport models

    DOE PAGES

    Singh, Meenesh R.; Goodpaster, Jason D.; Weber, Adam Z.; ...

    2017-10-02

    Electrochemical reduction of CO 2 using renewable sources of electrical energy holds promise for converting CO 2 to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in themore » reaction. Moreover, cathode polarization can influence the kinetics of CO 2 reduction. Here in this work, we present a multiscale framework for ab initio simulation of the electrochemical reduction of CO 2 over an Ag(110) surface. A continuum model for species transport is combined with a microkinetic model for the cathode reaction dynamics. Free energies of activation for all elementary reactions are determined from density functional theory calculations. Using this approach, three alternative mechanisms for CO 2 reduction were examined. The rate-limiting step in each mechanism is **COOH formation at higher negative potentials. However, only via the multiscale simulation was it possible to identify the mechanism that leads to a dependence of the rate of CO formation on the partial pressure of CO 2 that is consistent with experiments. Additionally, simulations based on this mechanism also describe the dependence of the H 2 and CO current densities on cathode voltage that are in strikingly good agreement with experimental observation.« less

  17. Self-consistent linear response for the spin-orbit interaction related properties

    NASA Astrophysics Data System (ADS)

    Solovyev, I. V.

    2014-07-01

    In many cases, the relativistic spin-orbit (SO) interaction can be regarded as a small perturbation to the electronic structure of solids and treated using regular perturbation theory. The major obstacle on this route comes from the fact that the SO interaction can also polarize the electron system and produce some additional contributions to the perturbation theory expansion, which arise from the electron-electron interactions in the same order of the SO coupling. In electronic structure calculations, it may even lead to the necessity of abandoning the perturbation theory and returning to the original self-consistent solution of Kohn-Sham-like equations with the effective potential v̂, incorporating simultaneously the effects of the electron-electron interactions and the SO coupling, even though the latter is small. In this work, we present the theory of self-consistent linear response (SCLR), which allows us to get rid of numerical self-consistency and formulate the last step fully analytically in the first order of the SO coupling. This strategy is applied to the unrestricted Hartree-Fock solution of an effective Hubbard-type model, derived from the first-principles electronic structure calculations in the basis of Wannier functions for the magnetically active states. We show that by using v̂, obtained in SCLR, one can successfully reproduce results of ordinary self-consistent calculations for the orbital magnetization and other properties, which emerge in the first order of the SO coupling. Particularly, SCLR appears to be an extremely useful approach for calculations of antisymmetric Dzyaloshinskii-Moriya (DM) interactions based on the magnetic force theorem, where only by using the total perturbation one can make a reliable estimate for the DM parameters. Furthermore, due to the powerful 2n+1 theorem, the SCLR theory allows us to obtain the total energy change up to the third order of the SO coupling, which can be used in calculations of magnetic anisotropy of compounds with low crystal symmetry. The fruitfulness of this approach for the analysis of complex magnetic structures is illustrated in a number of examples, including the quantitative description of the spin canting in YTiO3 and LaMnO3, formation of the spin-spiral order in BiFeO3, and the magnetic inversion symmetry breaking in BiMnO3, which gives rise to both ferroelectric activity and DM interactions, responsible for the ferromagnetism. In all these cases, the use of SCLR tremendously reduces the computational efforts related to the search for noncollinear magnetic structures in the ground state.

  18. Nonequilibrium fixed points in longitudinally expanding scalar theories: Infrared cascade, Bose condensation and a challenge for kinetic theory

    DOE PAGES

    Berges, J.; Schlichting, S.; Boguslavski, K.; ...

    2015-11-05

    In [Phys. Rev. Lett. 114, 061601 (2015)], we reported on a new universality class for longitudinally expanding systems, encompassing strongly correlated non-Abelian plasmas and N-component self-interacting scalar field theories. Using classical-statistical methods, we showed that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Here we significantly expand on our previous work and delineate two further self-similar regimes. One of these occurs in the deep infrared (IR) regime of very high occupancies, where the nonequilibrium dynamics leads to the formation of amore » Bose-Einstein condensate. The universal IR scaling exponents and the spectral index characterizing the isotropic IR distributions are described by an effective theory derived from a systematic large-N expansion at next-to-leading order. Remarkably, this effective theory can be cast as a vertex-resummed kinetic theory. The other novel self-similar regime occurs close to the hard physical scale of the theory, and sets in only at later times. In this study, we argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks.« less

  19. Nonequilibrium fixed points in longitudinally expanding scalar theories: Infrared cascade, Bose condensation and a challenge for kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berges, J.; Schlichting, S.; Boguslavski, K.

    In [Phys. Rev. Lett. 114, 061601 (2015)], we reported on a new universality class for longitudinally expanding systems, encompassing strongly correlated non-Abelian plasmas and N-component self-interacting scalar field theories. Using classical-statistical methods, we showed that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Here we significantly expand on our previous work and delineate two further self-similar regimes. One of these occurs in the deep infrared (IR) regime of very high occupancies, where the nonequilibrium dynamics leads to the formation of amore » Bose-Einstein condensate. The universal IR scaling exponents and the spectral index characterizing the isotropic IR distributions are described by an effective theory derived from a systematic large-N expansion at next-to-leading order. Remarkably, this effective theory can be cast as a vertex-resummed kinetic theory. The other novel self-similar regime occurs close to the hard physical scale of the theory, and sets in only at later times. In this study, we argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks.« less

  20. Motivation in later life: theory and assessment.

    PubMed

    Vallerand, R J; O'Connor, B P; Hamel, M

    1995-01-01

    A framework that has been found useful in research on young adults, Deci and Ryan's self-determination theory [1, 2], is suggested as a promising direction for research on motivation in later life. The theory proposes the existence of four types of motivation (intrinsic, self-determined extrinsic, nonself-determined extrinsic, and amotivation) which are assumed to have varying consequences for adaptation and well-being. A previously published French measure of motivational styles which is known to be reliable and valid was translated into English and was tested on seventy-seven nursing home residents (aged 60 to 98 years). It was found that the four motivational styles can be reliably measured; that the intercorrelations between the motivational styles are consistent with theoretical predictions; and that the four types of motivation are related to other important aspects of the lives of elderly people in a theoretically meaningful manner. Suggestions are made for further research using self-determination theory and the present scales.

  1. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.

    PubMed

    May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe

    2011-10-01

    Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Fractal analysis of multiscale spatial autocorrelation among point data

    USGS Publications Warehouse

    De Cola, L.

    1991-01-01

    The analysis of spatial autocorrelation among point-data quadrats is a well-developed technique that has made limited but intriguing use of the multiscale aspects of pattern. In this paper are presented theoretical and algorithmic approaches to the analysis of aggregations of quadrats at or above a given density, in which these sets are treated as multifractal regions whose fractal dimension, D, may vary with phenomenon intensity, scale, and location. The technique is illustrated with Matui's quadrat house-count data, which yield measurements consistent with a nonautocorrelated simulated Poisson process but not with an orthogonal unit-step random walk. The paper concludes with a discussion of the implications of such analysis for multiscale geographic analysis systems. -Author

  3. Non-suicidal self-injury and other self-directed violent behaviors in India: A review of definitions and research.

    PubMed

    Gandhi, Amarendra; Luyckx, Koen; Maitra, Shubhada; Claes, Laurence

    2016-08-01

    The interpersonal theory of suicide suggests that most forms of self-directed violent behaviors lie on a continuum, with each behavior successively increasing the capability of committing suicide. There is increasing evidence to suggest that the continuum may begin with Non-Suicidal Self-Injury (NSSI). This theory can be important in developing interventions for suicide prevention. However, in India, consistent usage of definitions of various forms of self-directed violent behaviors is lacking. In the present study, we reviewed definitions of various forms of self-directed violent behaviors that have been investigated in India. Further, we compared the usage of these definitions with the usage by WHO. Additionally, we reviewed NSSI research in India. Thirty-eight publications were identified by a comprehensive electronic search undertaken in Indian psychiatry, psychology, and mental health-related databases. Inconsistent definitions of eight self-directed violent behaviors were observed in Indian literature. Agreement on consistent definitions of various forms of self-directed behaviors is essential. Based on the findings of the current review, it can be suggested that culturally relevant large-scale research on NSSI in India is required to confirm the limited evidence that suggests high prevalence of NSSI in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Views of the self and others at different ages: utility of repertory grid technique in detecting the positivity effect in aging.

    PubMed

    Williams, Ben D; Harter, Stephanie Lewis

    2010-01-01

    Socioemotional selectivity theory (Carstensen, 1995) posits a "positivity effect" in older adults, describing an increasing tendency to attend to, process, interpret, and remember events and others in life in a positive fashion as one ages. Drawing on personal construct theory, Viney (1993) observes increasing integration of constructions of self with others across the lifespan. The current study extends assessment of the positivity effect, integrating it with personal construct theory, by use of Repertory Grid (RepGrid) analysis. Consistent with the positivity effect, older adults (ages 54-86) described others more positively on RepGrid measures in comparison to younger adults (ages 18-25). Older adults also described the self as more similar to others and tended to describe the self more positively. The age groups did not differ in measures of psychological distress or well being with the exception of older adults describing more autonomy.

  5. Self-image resilience and dissonance: the role of affirmational resources.

    PubMed

    Steele, C M; Spencer, S J; Lynch, M

    1993-06-01

    It was predicted that high self-esteem Ss (HSEs) would rationalize an esteem-threatening decision less than low self-esteem Ss (LSEs), because HSEs presumably had more favorable self-concepts with which to affirm, and thus repair, their overall sense of self-integrity. This prediction was supported in 2 experiments within the "free-choice" dissonance paradigm--one that manipulated self-esteem through personality feedback and the other that varied it through selection of HSEs and LSEs, but only when Ss were made to focus on their self-concepts. A 3rd experiment countered an alternative explanation of the results in terms of mood effects that may have accompanied the experimental manipulations. The results were discussed in terms of the following: (a) their support for a resources theory of individual differences in resilience to self-image threats--an extension of self-affirmation theory, (b) their implications for self-esteem functioning, and (c) their implications for the continuing debate over self-enhancement versus self-consistency motivation.

  6. The motivation for drug abuse treatment: testing cognitive and 12-step theories.

    PubMed

    Bell, D C; Montoya, I D; Richard, A J; Dayton, C A

    1998-11-01

    The purpose of this paper is to evaluate two models of behavior change: cognitive theory and 12-step theory. Research subjects were drawn from three separate, but parallel, samples of adults. The first sample consisted of out-of-treatment chronic drug users, the second consisted of drug users who had applied for treatment at a publicly funded multiple-provider drug treatment facility, and the third consisted of drug users who had applied for treatment at an intensive outpatient program for crack cocaine users. Cognitive theory was supported. Study participants applying for drug abuse treatment reported a higher level of perceived problem severity and a higher level of cognitive functioning than out-of-treatment drug users. Two hypotheses drawn from 12-step theory were not supported. Treatment applicants had more positive emotional functioning than out-of-treatment drug users, and one treatment-seeking sample had higher self-esteem.

  7. Behavioral change in patients with severe self-injurious behavior: a patient's perspective.

    PubMed

    Kool, Nienke; van Meijel, Berno; Bosman, Maartje

    2009-02-01

    Semistructured interviews were conducted with 12 women who had successfully stopped self-injuring to gain an understanding of the process of stopping self-injury. The data were analyzed based on the grounded theory method. The researchers found that the process of stopping self-injury consists of six phases. Connection was identified as key to all phases of the process. Nursing interventions should focus on forging a connection, encouraging people who self-injure to develop a positive self-image and learn alternative behavior.

  8. Density functional theory for polymeric systems in 2D.

    PubMed

    Słyk, Edyta; Roth, Roland; Bryk, Paweł

    2016-06-22

    We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.

  9. Hypnosis in the Treatment of Alcoholism: A Theoretical Perspective.

    ERIC Educational Resources Information Center

    Steffenhagen, R. A.

    1983-01-01

    Reviews the history and theory of alcoholism and hypnosis and proposes a theoretical model of alcholism based on self-esteem. Suggets that hypnosis may be an effective tool in the treatment of alcoholism with cure as the goal, and calls for more consistency in theory and practice. (JAC)

  10. Telescopic multi-resolution augmented reality

    NASA Astrophysics Data System (ADS)

    Jenkins, Jeffrey; Frenchi, Christopher; Szu, Harold

    2014-05-01

    To ensure a self-consistent scaling approximation, the underlying microscopic fluctuation components can naturally influence macroscopic means, which may give rise to emergent observable phenomena. In this paper, we describe a consistent macroscopic (cm-scale), mesoscopic (micron-scale), and microscopic (nano-scale) approach to introduce Telescopic Multi-Resolution (TMR) into current Augmented Reality (AR) visualization technology. We propose to couple TMR-AR by introducing an energy-matter interaction engine framework that is based on known Physics, Biology, Chemistry principles. An immediate payoff of TMR-AR is a self-consistent approximation of the interaction between microscopic observables and their direct effect on the macroscopic system that is driven by real-world measurements. Such an interdisciplinary approach enables us to achieve more than multiple scale, telescopic visualization of real and virtual information but also conducting thought experiments through AR. As a result of the consistency, this framework allows us to explore a large dimensionality parameter space of measured and unmeasured regions. Towards this direction, we explore how to build learnable libraries of biological, physical, and chemical mechanisms. Fusing analytical sensors with TMR-AR libraries provides a robust framework to optimize testing and evaluation through data-driven or virtual synthetic simulations. Visualizing mechanisms of interactions requires identification of observable image features that can indicate the presence of information in multiple spatial and temporal scales of analog data. The AR methodology was originally developed to enhance pilot-training as well as `make believe' entertainment industries in a user-friendly digital environment We believe TMR-AR can someday help us conduct thought experiments scientifically, to be pedagogically visualized in a zoom-in-and-out, consistent, multi-scale approximations.

  11. Perceptions of Self-Testing for Chlamydia: Understanding and Predicting Self-Test Use.

    PubMed

    Powell, Rachael; Pattison, Helen M; Marriott, John F

    2016-05-10

    Self-testing technology allows people to test themselves for chlamydia without professional support. This may result in reassurance and wider access to chlamydia testing, but anxiety could occur on receipt of positive results. This study aimed to identify factors important in understanding self-testing for chlamydia outside formal screening contexts, to explore the potential impacts of self-testing on individuals, and to identify theoretical constructs to form a Framework for future research and intervention development. Eighteen university students participated in semi-structured interviews; eleven had self-tested for chlamydia. Data were analysed thematically usingaFrameworkapproach. Perceivedbenefitsofself-testingincludeditsbeingconvenient, anonymousandnotrequiringphysicalexamination. Therewasconcernabouttestaccuracyandsome participants lacked confidence in using vulvo-vaginal swabs. While some participants expressed concern about the absence of professional support, all said they would seek help on receiving a positive result. Factors identified in Protection Motivation Theory and the Theory of Planned Behaviour, such as response efficacy and self-efficacy, were found to be highly salient to participants in thinking about self-testing. These exploratory findings suggest that self-testing independentlyofformalhealthcaresystemsmaynomorenegativelyimpactpeoplethanbeingtested by health care professionals. Participants' perceptions about self-testing behaviour were consistent with psychological theories. Findings suggest that interventions which increase confidence in using self-tests and that provide reassurance of test accuracy may increase self-test intentions.

  12. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.

    PubMed

    Ismail-Beigi, Sohrab

    2017-09-27

    The question of which non-interacting Green's function 'best' describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green's function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green's functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.

  13. Self-consistent approach to many-body localization and subdiffusion

    NASA Astrophysics Data System (ADS)

    Prelovšek, P.; Herbrych, J.

    2017-07-01

    An analytical theory, based on the perturbative treatment of the disorder and extended into a self-consistent set of equations for the dynamical density correlations, is developed and applied to the prototype one-dimensional model of many-body localization. Results show a qualitative agreement with the numerically obtained dynamical structure factor in the whole range of frequencies and wave vectors, as well as across the transition to nonergodic behavior. The theory reveals the singular nature of the one-dimensional problem, whereby on the ergodic side the dynamics is subdiffusive with dynamical conductivity σ (ω ) ∝|ω| α , i.e., with vanishing dc limit σ0=0 and α <1 varying with disorder, while we get α >1 in the localized phase.

  14. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp; Institute of Transformative Bio-Molecules

    2016-09-07

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

  15. Panarchy use in environmental science for risk and resilience planning

    EPA Science Inventory

    Environmental sciences have an important role in informing sustainable management of built environments by providing insights about the drivers and potentially negative impacts of global environmental change. Here, we discuss panarchy theory, a multi-scale hierarchical concept th...

  16. Examining the impact of harmonic correlation on vibrational frequencies calculated in localized coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson-Heine, Magnus W. D., E-mail: magnus.hansonheine@nottingham.ac.uk

    Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach ismore » found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.« less

  17. Multiscale connectivity and graph theory highlight critical areas for conservation under climate change.

    PubMed

    Dilt, Thomas E; Weisberg, Peter J; Leitner, Philip; Matocq, Marjorie D; Inman, Richard D; Nussear, Kenneth E; Esque, Todd C

    2016-06-01

    Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multiscale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods, including graph theory, circuit theory, and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this threatened Californian species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously distributed habitat and should be applicable across a broad range of taxa.

  18. A self-consistency check for unitary propagation of Hawking quanta

    NASA Astrophysics Data System (ADS)

    Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng

    2017-11-01

    The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.

  19. Acoustics of multiscale sorptive porous materials

    NASA Astrophysics Data System (ADS)

    Venegas, R.; Boutin, C.; Umnova, O.

    2017-08-01

    This paper investigates sound propagation in multiscale rigid-frame porous materials that support mass transfer processes, such as sorption and different types of diffusion, in addition to the usual visco-thermo-inertial interactions. The two-scale asymptotic method of homogenization for periodic media is successively used to derive the macroscopic equations describing sound propagation through the material. This allowed us to conclude that the macroscopic mass balance is significantly modified by sorption, inter-scale (micro- to/from nanopore scales) mass diffusion, and inter-scale (pore to/from micro- and nanopore scales) pressure diffusion. This modification is accounted for by the dynamic compressibility of the effective saturating fluid that presents atypical properties that lead to slower speed of sound and higher sound attenuation, particularly at low frequencies. In contrast, it is shown that the physical processes occurring at the micro-nano-scale do not affect the macroscopic fluid flow through the material. The developed theory is exemplified by introducing an analytical model for multiscale sorptive granular materials, which is experimentally validated by comparing its predictions with acoustic measurements on granular activated carbons. Furthermore, we provide empirical evidence supporting an alternative method for measuring sorption and mass diffusion properties of multiscale sorptive materials using sound waves.

  20. Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Achim, C. V.; Ala-Nissila, T.

    2012-09-01

    Electrostatic correlation effects in inhomogeneous symmetric electrolytes are investigated within a previously developed electrostatic self-consistent theory [R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003)], 10.1140/epje/i2002-10159-0. To this aim, we introduce two computational approaches that allow to solve the self-consistent equations beyond the loop expansion. The first method is based on a perturbative Green's function technique, and the second one is an extension of a previously introduced semiclassical approximation for single dielectric interfaces to the case of slit nanopores. Both approaches can handle the case of dielectrically discontinuous boundaries where the one-loop theory is known to fail. By comparing the theoretical results obtained from these schemes with the results of the Monte Carlo simulations that we ran for ions at neutral single dielectric interfaces, we first show that the weak coupling Debye-Huckel theory remains quantitatively accurate up to the bulk ion density ρb ≃ 0.01 M, whereas the self-consistent theory exhibits a good quantitative accuracy up to ρb ≃ 0.2 M, thus improving the accuracy of the Debye-Huckel theory by one order of magnitude in ionic strength. Furthermore, we compare the predictions of the self-consistent theory with previous Monte Carlo simulation data for charged dielectric interfaces and show that the proposed approaches can also accurately handle the correlation effects induced by the surface charge in a parameter regime where the mean-field result significantly deviates from the Monte Carlo data. Then, we derive from the perturbative self-consistent scheme the one-loop theory of asymmetrically partitioned salt systems around a dielectrically homogeneous charged surface. It is shown that correlation effects originate in these systems from a competition between the salt screening loss at the interface driving the ions to the bulk region, and the interfacial counterion screening excess attracting them towards the surface. This competition can be quantified in terms of the characteristic surface charge σ _s^*=√{2ρ _b/(π ℓ _B)}, where ℓB = 7 Å is the Bjerrum length. In the case of weak surface charges σ _s≪ σ _s^* where counterions form a diffuse layer, the interfacial salt screening loss is the dominant effect. As a result, correlation effects decrease the mean-field density of both coions and counterions. With an increase of the surface charge towards σ _s^*, the surface-attractive counterion screening excess starts to dominate, and correlation effects amplify in this regime the mean-field density of both type of ions. However, in the regime σ _s>σ _s^*, the same counterion screening excess also results in a significant decrease of the electrostatic mean-field potential. This reduces in turn the mean-field counterion density far from the charged surface. We also show that for σ _s≫ σ _s^*, electrostatic correlations result in a charge inversion effect. However, the electrostatic coupling regime where this phenomenon takes place should be verified with Monte Carlo simulations since this parameter regime is located beyond the validity range of the one-loop theory.

  1. Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion.

    PubMed

    Buyukdagli, Sahin; Achim, C V; Ala-Nissila, T

    2012-09-14

    Electrostatic correlation effects in inhomogeneous symmetric electrolytes are investigated within a previously developed electrostatic self-consistent theory [R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003)]. To this aim, we introduce two computational approaches that allow to solve the self-consistent equations beyond the loop expansion. The first method is based on a perturbative Green's function technique, and the second one is an extension of a previously introduced semiclassical approximation for single dielectric interfaces to the case of slit nanopores. Both approaches can handle the case of dielectrically discontinuous boundaries where the one-loop theory is known to fail. By comparing the theoretical results obtained from these schemes with the results of the Monte Carlo simulations that we ran for ions at neutral single dielectric interfaces, we first show that the weak coupling Debye-Huckel theory remains quantitatively accurate up to the bulk ion density ρ(b) ≃ 0.01 M, whereas the self-consistent theory exhibits a good quantitative accuracy up to ρ(b) ≃ 0.2 M, thus improving the accuracy of the Debye-Huckel theory by one order of magnitude in ionic strength. Furthermore, we compare the predictions of the self-consistent theory with previous Monte Carlo simulation data for charged dielectric interfaces and show that the proposed approaches can also accurately handle the correlation effects induced by the surface charge in a parameter regime where the mean-field result significantly deviates from the Monte Carlo data. Then, we derive from the perturbative self-consistent scheme the one-loop theory of asymmetrically partitioned salt systems around a dielectrically homogeneous charged surface. It is shown that correlation effects originate in these systems from a competition between the salt screening loss at the interface driving the ions to the bulk region, and the interfacial counterion screening excess attracting them towards the surface. This competition can be quantified in terms of the characteristic surface charge σ(s)*=√(2ρ(b)/(πl(B)), where l(B) = 7 Å is the Bjerrum length. In the case of weak surface charges σ(s)≪σ(s)* where counterions form a diffuse layer, the interfacial salt screening loss is the dominant effect. As a result, correlation effects decrease the mean-field density of both coions and counterions. With an increase of the surface charge towards σ(s)*, the surface-attractive counterion screening excess starts to dominate, and correlation effects amplify in this regime the mean-field density of both type of ions. However, in the regime σ(s)>σ(s)*, the same counterion screening excess also results in a significant decrease of the electrostatic mean-field potential. This reduces in turn the mean-field counterion density far from the charged surface. We also show that for σ(s)≫σ(s)*, electrostatic correlations result in a charge inversion effect. However, the electrostatic coupling regime where this phenomenon takes place should be verified with Monte Carlo simulations since this parameter regime is located beyond the validity range of the one-loop theory.

  2. Developing a supportive-educative program for patients with advanced heart failure within Orem's general theory of nursing.

    PubMed

    Jaarsma, T; Halfens, R; Senten, M; Abu Saad, H H; Dracup, K

    1998-01-01

    Recovery from heart failure and coping with the effects of this serious condition has a major impact on the self-care demand of patients with heart failure. To prevent potential self-care deficits, education and support are important issues in nursing care. The purpose of this article is to describe the development of a supportive-educative program that is designed to enhance self-care abilities of patients with heart failure. To structure nursing care for these patients and their families in a consistent systematized way, Orem's general theory of nursing is used as a frame of reference.

  3. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  4. Self-stress control of real civil engineering tensegrity structures

    NASA Astrophysics Data System (ADS)

    Kłosowska, Joanna; Obara, Paulina; Gilewski, Wojciech

    2018-01-01

    The paper introduces the impact of the self-stress level on the behaviour of the tensegrity truss structures. Displacements for real civil engineering tensegrity structures are analysed. Full-scale tensegrity tower Warnow Tower which consists of six Simplex trusses is considered in this paper. Three models consisting of one, two and six modules are analysed. The analysis is performed by the second and third order theory. Mathematica software and Sofistik programme is applied to the analysis.

  5. The effects of feedback self-consistency, therapist status, and attitude toward therapy on reaction to personality feedback.

    PubMed

    Collins, David R; Stukas, Arthur A

    2006-08-01

    Individuals' reactions to interpersonal feedback may depend on characteristics of the feedback and the feedback source. The present authors examined the effects of experimentally manipulated personality feedback that they--in the guise of therapists--e-mailed to participants on the degree of their acceptance of the feedback. Consistent with Self-Verification Theory (W. B. Swann Jr., 1987), participants accepted feedback that was consistent with their self-views more readily than they did feedback that was inconsistent with their self-views. Furthermore, the authors found main effects for therapist's status and participant's attitude toward therapy. Significant interactions showed effects in which high-status therapists and positive client attitudes increased acceptance of self-inconsistent feedback, effects that were only partially mediated by clients' perceptions of therapist competence. The present results indicate the possibility that participants may be susceptible to self-concept change or to self-fulfilling prophecy effects in therapy when they have a positive attitude toward therapy or are working with a high-status therapist.

  6. Multi-scale modeling of spin transport in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Hemmatiyan, Shayan; Souza, Amaury; Kordt, Pascal; McNellis, Erik; Andrienko, Denis; Sinova, Jairo

    In this work, we present our theoretical framework to simulate simultaneously spin and charge transport in amorphous organic semiconductors. By combining several techniques e.g. molecular dynamics, density functional theory and kinetic Monte Carlo, we are be able to study spin transport in the presence of anisotropy, thermal effects, magnetic and electric field effects in a realistic morphologies of amorphous organic systems. We apply our multi-scale approach to investigate the spin transport in amorphous Alq3 (Tris(8-hydroxyquinolinato)aluminum) and address the underlying spin relaxation mechanism in this system as a function of temperature, bias voltage, magnetic field and sample thickness.

  7. MUSIC: MUlti-Scale Initial Conditions

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Abel, Tom

    2013-11-01

    MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10-4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.

  8. Computational Design of Materials: Planetary Entry to Electric Aircraft and Beyond

    NASA Technical Reports Server (NTRS)

    Thompson, Alexander; Lawson, John W.

    2014-01-01

    NASA's projects and missions push the bounds of what is possible. To support the agency's work, materials development must stay on the cutting edge in order to keep pace. Today, researchers at NASA Ames Research Center perform multiscale modeling to aid the development of new materials and provide insight into existing ones. Multiscale modeling enables researchers to determine micro- and macroscale properties by connecting computational methods ranging from the atomic level (density functional theory, molecular dynamics) to the macroscale (finite element method). The output of one level is passed on as input to the next level, creating a powerful predictive model.

  9. Social orientation and the social self-esteem of gifted and talented female adolescents.

    PubMed

    Hollinger, C L; Fleming, E S

    1985-03-01

    Carlson's developmental theory of self-concept provides a theoretical explanation for equivalent levels of self-esteem among both sexes, despite sex differences in self-concept. The present study tests the applicability of Carlson's theory for a sample of gifted and talented female adolescents by examining three dimensions of possible self-esteem antecedents: actual talent ratings, self-perceptions of talent, and personality attributes. According to Carlson, talent ratings, self-perceptions, and personality attributes consistent with the feminine gender-role stereotype and a social orientation should emerge as positive predictors of the female adolescent's social self-esteem. Results of the regression analyses indicate that the best prediction of the social self-esteem of gifted and talented female adolescents is obtained from a combination of stereotypic feminine socially oriented and stereotypic masculine personally oriented predictor variables. For this sample, constructs such as androgyny appear to be more relevant to the understanding of social self-esteem than dichotomies such as personal-social orientation.

  10. Observations of kinetic scale magnetic holes in terrestrial space

    NASA Astrophysics Data System (ADS)

    Shutao, Y.; Shi, Q.; Wang, X.; Zong, Q.; Tian, A.; Yao, Z.; Hamrin, M.; Pitkänen, T.; Pu, Z.; Xiao, C.; Fu, S.; Zhang, H.; Giles, B. L.; Russell, C. T.; Guo, R.; Sun, W. J.; Li, W.; Zhou, X.; De Spiegeleer, A.

    2017-12-01

    Plasma is a macroscopically neutral system. It contains a mass of interacting ionized particles. Because of the much higher mass ratio between ions and electrons, plasma is a complicated multiple characteristic scales system with complicated properties. Thus it is necessary to carefully choose different models corresponding to the relevant scale when analyzing magnetic holes (MHs). Although there are many studies for the magnetohydrodynamics (MHD) scale MHs, few of them are for kinetic scale MHs (KSMHs). In this study, several multi-point spacecraft techniques are used to determine the propagating velocity of plasma sheet KSMHs. Based on the electronmagnetohydrodynamics (EMHD) theory, the width, depth and propagating velocity of electron solitary wave are calculated and compared to the observations. Furthermore, we report a series of the KSMHs in the magnetosheath whereby we use measurements from the Magnetospheric Multiscale (MMS) mission. The KSMHs have been observed with a scale of 10-20 ρe (electron gyroradii) and lasted 0.1-0.3 s. Distinctive electron dynamics features are observed. We find that at the 90° pitch angle, the flux of electrons with energy 34-66 eV decreased, while for electrons of energy 109-1024 eV increased inside the KSMHs. We also find the electron flow vortex perpendicular to the magnetic field, a feature self-consistent with the magnetic depression. The calculated current density is mainly contributed by the electron diamagnetic drift. Test particle is used to simulate the electron acceleration of the KSMHs.

  11. Predicting Self-Management Behaviors in Familial Hypercholesterolemia Using an Integrated Theoretical Model: the Impact of Beliefs About Illnesses and Beliefs About Behaviors.

    PubMed

    Hagger, Martin S; Hardcastle, Sarah J; Hingley, Catherine; Strickland, Ella; Pang, Jing; Watts, Gerald F

    2016-06-01

    Patients with familial hypercholesterolemia (FH) are at markedly increased risk of coronary artery disease. Regular participation in three self-management behaviors, physical activity, healthy eating, and adherence to medication, can significantly reduce this risk in FH patients. We aimed to predict intentions to engage in these self-management behaviors in FH patients using a multi-theory, integrated model that makes the distinction between beliefs about illness and beliefs about self-management behaviors. Using a cross-sectional, correlational design, patients (N = 110) diagnosed with FH from a clinic in Perth, Western Australia, self-completed a questionnaire that measured constructs from three health behavior theories: the common sense model of illness representations (serious consequences, timeline, personal control, treatment control, illness coherence, emotional representations); theory of planned behavior (attitudes, subjective norms, perceived behavioral control); and social cognitive theory (self-efficacy). Structural equation models for each self-management behavior revealed consistent and statistically significant effects of attitudes on intentions across the three behaviors. Subjective norms predicted intentions for health eating only and self-efficacy predicted intentions for physical activity only. There were no effects for the perceived behavioral control and common sense model constructs in any model. Attitudes feature prominently in determining intentions to engage in self-management behaviors in FH patients. The prominence of these attitudinal beliefs about self-management behaviors, as opposed to illness beliefs, suggest that addressing these beliefs may be a priority in the management of FH.

  12. Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan

    1997-01-01

    A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.

  13. A Comparative Study of Nucleation Parameterizations: 2. Three-Dimensional Model Application and Evaluation

    EPA Science Inventory

    Following the examination and evaluation of 12 nucleation parameterizations presented in part 1, 11 of them representing binary, ternary, kinetic, and cluster‐activated nucleation theories are evaluated in the U.S. Environmental Protection Agency Community Multiscale Air Quality ...

  14. W and X Photoluminescence Centers in Crystalline Si: Chasing Candidates at Atomic Level Through Multiscale Simulations

    NASA Astrophysics Data System (ADS)

    Aboy, María; Santos, Iván; López, Pedro; Marqués, Luis A.; Pelaz, Lourdes

    2018-04-01

    Several atomistic techniques have been combined to identify the structure of defects responsible for X and W photoluminescence lines in crystalline Si. We used kinetic Monte Carlo simulations to reproduce irradiation and annealing conditions used in photoluminescence experiments. We found that W and X radiative centers are related to small Si self-interstitial clusters but coexist with larger Si self-interstitials clusters that can act as nonradiative centers. We used molecular dynamics simulations to explore the many different configurations of small Si self-interstitial clusters, and selected those having symmetry compatible with W and X photoluminescence centers. Using ab initio simulations, we calculated their formation energy, donor levels, and energy of local vibrational modes. On the basis of photoluminescence experiments and our multiscale theoretical calculations, we discuss the possible atomic configurations responsible for W and X photoluminescence centers in Si. Our simulations also reveal that the intensity of photoluminescence lines is the result of competition between radiative centers and nonradiative competitors, which can explain the experimental quenching of W and X lines even in the presence of the photoluminescence centers.

  15. Performance and Self-Consistency of the Generalized Dielectric Dependent Hybrid Functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brawand, Nicholas P.; Govoni, Marco; Vörös, Márton

    Here, we analyze the performance of the recently proposed screened exchange constant functional (SX) on the GW100 test set, and we discuss results obtained at different levels of self-consistency. The SX functional is a generalization of dielectric dependent hybrid functionals to finite systems; it is nonempirical and depends on the average screening of the exchange interaction. We compare results for ionization potentials obtained with SX to those of CCSD(T) calculations and experiments, and we find excellent agreement, on par with recent state of the art methods based on many body perturbation theory. Applying SX perturbatively to correct PBE eigenvalues yieldsmore » improved results in most cases, except for ionic molecules, for which wave function self-consistency is instead crucial. Calculations where wave functions and the screened exchange constant (α SX) are determined self-consistently, and those where α SX is fixed to the value determined within PBE, yield results of comparable accuracy. Perturbative G 0W 0 corrections of eigenvalues obtained with self-consistent αSX are small on average, for all molecules in the GW100 test set.« less

  16. Performance and Self-Consistency of the Generalized Dielectric Dependent Hybrid Functional

    DOE PAGES

    Brawand, Nicholas P.; Govoni, Marco; Vörös, Márton; ...

    2017-05-24

    Here, we analyze the performance of the recently proposed screened exchange constant functional (SX) on the GW100 test set, and we discuss results obtained at different levels of self-consistency. The SX functional is a generalization of dielectric dependent hybrid functionals to finite systems; it is nonempirical and depends on the average screening of the exchange interaction. We compare results for ionization potentials obtained with SX to those of CCSD(T) calculations and experiments, and we find excellent agreement, on par with recent state of the art methods based on many body perturbation theory. Applying SX perturbatively to correct PBE eigenvalues yieldsmore » improved results in most cases, except for ionic molecules, for which wave function self-consistency is instead crucial. Calculations where wave functions and the screened exchange constant (α SX) are determined self-consistently, and those where α SX is fixed to the value determined within PBE, yield results of comparable accuracy. Perturbative G 0W 0 corrections of eigenvalues obtained with self-consistent αSX are small on average, for all molecules in the GW100 test set.« less

  17. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins.

    PubMed

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-05

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  18. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-01

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  19. Bauschinger Effect in an Austenitic Steel: Neutron Diffraction and a Multiscale Approach

    NASA Astrophysics Data System (ADS)

    Fajoui, Jamal; Gloaguen, David; Legrand, Vincent; Oum, Guy; Kelleher, Joe; Kockelmann, Winfried

    2016-05-01

    The generation of internal stresses/strains arising from mechanical deformations in single-phase engineering materials was studied. Neutron diffraction measurements were performed to study the evolution of intergranular strains in austenitic steel during sequential loadings. Intergranular strains expand due to incompatibilities between grains and also resulting from single-crystal elastic and plastic anisotropy. A two-level homogenization approach was adopted in order to predict the mechanical state of deformed polycrystals in relation to the microstructure during Bauschinger tests. A mechanical description of the grain was developed through a micro-meso transition based on the Kröner model. The meso-macro transition using a self-consistent approach was applied to deduce the global behavior. Mechanical tests and neutron diffraction measurements were used to validate and assess the model.

  20. Tomorrow I'll Be Me: The Effect of Time Perspective on the Activation of Idealistic versus Pragmatic Selves

    ERIC Educational Resources Information Center

    Kivetz, Yifat; Tyler, Tom R.

    2007-01-01

    It is widely accepted that the self-system is dynamic and consists of multiple selves that emerge under different contexts. The present research describes two types of diverging self-conceptions, the idealistic and pragmatic selves. Building on a synthesis of construal level theory with research on the self, we propose that a more distal time…

  1. Self-consistent field theory of tethered polymers: one dimensional, three dimensional, strong stretching theories and the effects of excluded-volume-only interactions.

    PubMed

    Suo, Tongchuan; Whitmore, Mark D

    2014-11-28

    We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a "mushroom" regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the other limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ(1/3) scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ(1/3). In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ(1/3). We also compare the results for two different solvents with each other, and with earlier Θ solvent results.

  2. Family Influence on Teenage Participation in School Activities.

    ERIC Educational Resources Information Center

    Cashion, Barbara G.; Dager, Edward Z.

    This paper is concerned with the relationship between social participation and family structure. A theory is developed in the framework of George Herbert Mead's analysis on the development of a consistent self in response to a generalized other. According to this theory, the influence of the family is implicated as one of the social-psychological…

  3. High School Physical Education: What Contributes to the Experience of Flow?

    ERIC Educational Resources Information Center

    Stormoen, Sidsel; Urke, Helga Bjørnøy; Tjomsland, Hege Eikeland; Wold, Bente; Diseth, Åge

    2016-01-01

    This study seeks to identify factors that promote positive experiences in high school physical education (PE). The study combines elements of Self-determination Theory (SDT) with the theory of "flow". Special attention is given to gender differences. The study sample consisted of 167 Norwegian senior high school students (78 females and…

  4. Improving Students' Predisposition towards Physical Education by Optimizing Their Motivational Processes in an Acrosport Unit

    ERIC Educational Resources Information Center

    Abós, Ángel; Sevil, Javier; Julián, José Antonio; Abarca-Sos, Alberto; García-González, Luis

    2017-01-01

    Grounded in self-determination theory and achievement goal theory, this quasi-experimental study evaluated the effectiveness of a teaching intervention programme to improve predisposition towards physical education based on developing a task-oriented motivational climate and supporting basic psychological needs. The final sample consisted of 35…

  5. Efficient algorithm for multiconfiguration pair-density functional theory with application to the heterolytic dissociation energy of ferrocene

    NASA Astrophysics Data System (ADS)

    Sand, Andrew M.; Truhlar, Donald G.; Gagliardi, Laura

    2017-01-01

    The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.

  6. Efficient algorithm for multiconfiguration pair-density functional theory with application to the heterolytic dissociation energy of ferrocene.

    PubMed

    Sand, Andrew M; Truhlar, Donald G; Gagliardi, Laura

    2017-01-21

    The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H 2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.

  7. Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.

    PubMed

    Shin, Homin; Schweizer, Kenneth S

    2013-02-28

    We propose an Einstein-solid, self-consistent phonon theory for the crystal phase of hard spheres that interact via short-range attractions. The approach is first tested against the known behavior of hard spheres, and then applied to homogeneous particles that interact via short-range square well attractions and the Baxter adhesive hard sphere model. Given the crystal symmetry, packing fraction, and strength and range of attractive interactions, an effective harmonic potential experienced by a particle confined to its Wigner-Seitz cell and corresponding mean square vibrational amplitude are self-consistently calculated. The crystal free energy is then computed and, using separate information about the fluid phase free energy, phase diagrams constructed, including a first-order solid-solid phase transition and its associated critical point. The simple theory qualitatively captures all the many distinctive features of the phase diagram (critical and triple point, crystal-fluid re-entrancy, low-density coexistence curve) as a function of attraction range, and overall is in good semi-quantitative agreement with simulation. Knowledge of the particle localization length allows the crystal shear modulus to be estimated based on elementary ideas. Excellent predictions are obtained for the hard sphere crystal. Expanded and condensed face-centered cubic crystals are found to have qualitatively different elastic responses to varying attraction strength or temperature. As temperature increases, the expanded entropic solid stiffens, while the energy-controlled, fully-bonded dense solid softens.

  8. Share, steal, or buy? A social cognitive perspective of music downloading.

    PubMed

    LaRose, Robert; Kim, Junghyun

    2007-04-01

    The music downloading phenomenon presents a unique opportunity to examine normative influences on media consumption behavior. Downloaders face moral, legal, and ethical quandaries that can be conceptualized as normative influences within the self-regulatory mechanism of social cognitive theory. The music industry hopes to eliminate illegal file sharing and to divert illegal downloaders to pay services by asserting normative influence through selective prosecutions and public information campaigns. However the deficient self-regulation of downloaders counters these efforts maintaining file sharing as a persistent habit that defies attempts to establish normative control. The present research tests and extends the social cognitive theory of downloading on a sample of college students. The expected outcomes of downloading behavior and deficient self-regulation of that behavior were found to be important determinants of intentions to continue downloading. Consistent with social cognitive theory but in contrast to the theory of planned behavior, it was found that descriptive and prescriptive norms influenced deficient self-regulation but had no direct impact on behavioral intentions. Downloading intentions also had no direct relationship to either compact disc purchases or to subscription to online pay music services.

  9. Coarse-Graining Polymer Field Theory for Fast and Accurate Simulations of Directed Self-Assembly

    NASA Astrophysics Data System (ADS)

    Liu, Jimmy; Delaney, Kris; Fredrickson, Glenn

    To design effective manufacturing processes using polymer directed self-assembly (DSA), the semiconductor industry benefits greatly from having a complete picture of stable and defective polymer configurations. Field-theoretic simulations are an effective way to study these configurations and predict defect populations. Self-consistent field theory (SCFT) is a particularly successful theory for studies of DSA. Although other models exist that are faster to simulate, these models are phenomenological or derived through asymptotic approximations, often leading to a loss of accuracy relative to SCFT. In this study, we employ our recently-developed method to produce an accurate coarse-grained field theory for diblock copolymers. The method uses a force- and stress-matching strategy to map output from SCFT simulations into parameters for an optimized phase field model. This optimized phase field model is just as fast as existing phenomenological phase field models, but makes more accurate predictions of polymer self-assembly, both in bulk and in confined systems. We study the performance of this model under various conditions, including its predictions of domain spacing, morphology and defect formation energies. Samsung Electronics.

  10. Understanding multi-scale structural evolution in granular systems through gMEMS

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Tordesillas, Antoinette

    2013-06-01

    We show how the rheological response of a material to applied loads can be systematically coded, analyzed and succinctly summarized, according to an individual grain's property (e.g. kinematics). Individual grains are considered as their own smart sensor akin to microelectromechanical systems (e.g. gyroscopes, accelerometers), each capable of recognizing their evolving role within self-organizing building block structures (e.g. contact cycles and force chains). A symbolic time series is used to represent their participation in such self-assembled building blocks and a complex network summarizing their interrelationship with other grains is constructed. In particular, relationships between grain time series are determined according to the information theory Hamming distance or the metric Euclidean distance. We then use topological distance to find network communities enabling groups of grains at remote physical metric distances in the material to share a classification. In essence grains with similar structural and functional roles at different scales are identified together. This taxonomy distills the dissipative structural rearrangements of grains down to its essential features and thus provides pointers for objective physics-based internal variable formalisms used in the construction of robust predictive continuum models.

  11. Self-consistent field theory and numerical scheme for calculating the phase diagram of wormlike diblock copolymers

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Chen, Jeff Z. Y.

    2013-10-01

    This paper concerns establishing a theoretical basis and numerical scheme for studying the phase behavior of AB diblock copolymers made of wormlike chains. The general idea of a self-consistent field theory is the combination of the mean-field approach together with a statistical weight that describes the configurational properties of a polymer chain. In recent years, this approach has been extensively used for structural prediction of block copolymers, based on the Gaussian-model description of a polymer chain. The wormlike-chain model has played an important role in the description of polymer systems, covering the semiflexible-to-rod crossover of the polymer properties and the highly stretching regime, which the Gaussian-chain model has difficulties to describe. Although the idea of developing a self-consistent field theory for wormlike chains could be traced back to early development in polymer physics, the solution of such a theory has been limited due to technical difficulties. In particular, a challenge has been to develop a numerical algorithm enabling the calculation of the phase diagram containing three-dimensional structures for wormlike AB diblock copolymers. This paper describes a computational algorithm that combines a number of numerical tricks, which can be used for such a calculation. A phase diagram covering major parameter areas was constructed for the wormlike-chain system and reported by us, where the ratio between the total length and the persistence length of a constituent polymer is suggested as another tuning parameter for the microphase-separated structures; all detailed technical issues are carefully addressed in the current paper.

  12. Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes

    NASA Astrophysics Data System (ADS)

    Zito, Gianluigi; Rusciano, Giulia; Vecchione, Antonio; Pesce, Giuseppe; di Girolamo, Rocco; Malafronte, Anna; Sasso, Antonio

    2016-08-01

    In this work, atomic force microscopy probes are functionalized by virtue of self-assembling monolayers of block copolymer (BCP) micelles loaded either with clusters of silver nanoparticles or bimetallic heterostructures consisting of mixed species of silver and gold nanoparticles. The resulting self-organized patterns allow coating the tips with a sort of nanometal skin made of geometrically confined nanoislands. This approach favors the reproducible engineering and tuning of the plasmonic properties of the resulting structured tip by varying the nanometal loading of the micelles. The newly conceived tips are applied for experiments of tip-enhanced Raman scattering (TERS) spectroscopy and scattering-type scanning near-field optical microscopy (s-SNOM). TERS and s-SNOM probe characterizations on several standard Raman analytes and patterned nanostructures demonstrate excellent enhancement factor with the possibility of fast scanning and spatial resolution <12 nm. In fact, each metal nanoisland consists of a multiscale heterostructure that favors large scattering and near-field amplification. Then, we verify the tips to allow challenging nongap-TER spectroscopy on thick biosamples. Our approach introduces a synergistic chemical functionalization of the tips for versatile inclusion and delivery of plasmonic nanoparticles at the tip apex, which may promote the tuning of the plasmonic properties, a large enhancement, and the possibility of adding new degrees of freedom for tip functionalization.

  13. Automated retina identification based on multiscale elastic registration.

    PubMed

    Figueiredo, Isabel N; Moura, Susana; Neves, Júlio S; Pinto, Luís; Kumar, Sunil; Oliveira, Carlos M; Ramos, João D

    2016-12-01

    In this work we propose a novel method for identifying individuals based on retinal fundus image matching. The method is based on the image registration of retina blood vessels, since it is known that the retina vasculature of an individual is a signature, i.e., a distinctive pattern of the individual. The proposed image registration consists of a multiscale affine registration followed by a multiscale elastic registration. The major advantage of this particular two-step image registration procedure is that it is able to account for both rigid and non-rigid deformations either inherent to the retina tissues or as a result of the imaging process itself. Afterwards a decision identification measure, relying on a suitable normalized function, is defined to decide whether or not the pair of images belongs to the same individual. The method is tested on a data set of 21721 real pairs generated from a total of 946 retinal fundus images of 339 different individuals, consisting of patients followed in the context of different retinal diseases and also healthy patients. The evaluation of its performance reveals that it achieves a very low false rejection rate (FRR) at zero FAR (the false acceptance rate), equal to 0.084, as well as a low equal error rate (EER), equal to 0.053. Moreover, the tests performed by using only the multiscale affine registration, and discarding the multiscale elastic registration, clearly show the advantage of the proposed approach. The outcome of this study also indicates that the proposed method is reliable and competitive with other existing retinal identification methods, and forecasts its future appropriateness and applicability in real-life applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Derivation of the cut-off length from the quantum quadratic enhancement of a mass in vacuum energy constant Lambda

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika; Sato, Hikaru

    2018-04-01

    Ultraviolet self-interaction energies in field theory sometimes contain meaningful physical quantities. The self-energies in such as classical electrodynamics are usually subtracted from the rest mass. For the consistent treatment of energies as sources of curvature in the Einstein field equations, this study includes these subtracted self-energies into vacuum energy expressed by the constant Lambda (used in such as Lambda-CDM). In this study, the self-energies in electrodynamics and macroscopic classical Einstein field equations are examined, using the formalisms with the ultraviolet cut-off scheme. One of the cut-off formalisms is the field theory in terms of the step-function-type basis functions, developed by the present authors. The other is a continuum theory of a fundamental particle with the same cut-off length. Based on the effectiveness of the continuum theory with the cut-off length shown in the examination, the dominant self-energy is the quadratic term of the Higgs field at a quantum level (classical self-energies are reduced to logarithmic forms by quantum corrections). The cut-off length is then determined to reproduce today's tiny value of Lambda for vacuum energy. Additionally, a field with nonperiodic vanishing boundary conditions is treated, showing that the field has no zero-point energy.

  15. Fabricating Superhydrophobic and Superoleophobic Surfaces with Multiscale Roughness Using Airbrush and Electrospray

    NASA Astrophysics Data System (ADS)

    AL-Milaji, Karam N.

    Examples of superhydrophobic surfaces found in nature such as self-cleaning property of lotus leaf and walking on water ability of water strider have led to an extensive investigation in this area over the past few decades. When a water droplet rests on a textured surface, it may either form a liquid-solid-vapor composite interface by which the liquid droplet partially sits on air pockets or it may wet the surface in which the water replaces the trapped air depending on the surface roughness and the surface chemistry. Super water repellent surfaces have numerous applications in our daily life such as drag reduction, anti-icing, anti-fogging, energy conservation, noise reduction, and self-cleaning. In fact, the same concept could be applied in designing and producing surfaces that repel organic contaminations (e.g. low surface tension liquids). However, superoleophobic surfaces are more challenging to fabricate than superhydrophobic surfaces since the combination of multiscale roughness with re-entrant or overhang structure and surface chemistry must be provided. In this study, simple, cost-effective and potentially scalable techniques, i.e., airbrush and electrospray, were employed for the sake of making superhydrophobic and superoleophobic coatings with random and patterned multiscale surface roughness. Different types of silicon dioxide were utilized in this work to in order to study and to characterize the effect of surface morphology and surface roughness on surface wettability. The experimental findings indicated that super liquid repellent surfaces with high apparent contact angles and extremely low sliding angles were successfully fabricated by combining re-entrant structure, multiscale surface roughness, and low surface energy obtained from chemically treating the fabricated surfaces. In addition to that, the experimental observations regarding producing textured surfaces in mask-assisted electrospray were further validated by simulating the actual working conditions and geometries using COMSOL Multiphysics.

  16. MuSCoWERT: multi-scale consistence of weighted edge Radon transform for horizon detection in maritime images.

    PubMed

    Prasad, Dilip K; Rajan, Deepu; Rachmawati, Lily; Rajabally, Eshan; Quek, Chai

    2016-12-01

    This paper addresses the problem of horizon detection, a fundamental process in numerous object detection algorithms, in a maritime environment. The maritime environment is characterized by the absence of fixed features, the presence of numerous linear features in dynamically changing objects and background and constantly varying illumination, rendering the typically simple problem of detecting the horizon a challenging one. We present a novel method called multi-scale consistence of weighted edge Radon transform, abbreviated as MuSCoWERT. It detects the long linear features consistent over multiple scales using multi-scale median filtering of the image followed by Radon transform on a weighted edge map and computing the histogram of the detected linear features. We show that MuSCoWERT has excellent performance, better than seven other contemporary methods, for 84 challenging maritime videos, containing over 33,000 frames, and captured using visible range and near-infrared range sensors mounted onboard, onshore, or on floating buoys. It has a median error of about 2 pixels (less than 0.2%) from the center of the actual horizon and a median angular error of less than 0.4 deg. We are also sharing a new challenging horizon detection dataset of 65 videos of visible, infrared cameras for onshore and onboard ship camera placement.

  17. Homelessness in Modern Society: An Integration of Mead and Berger and Implications for a Paradigm of Mass Communication.

    ERIC Educational Resources Information Center

    Jones, Charlotte

    George Herbert Mead's theory of mind, self, and society is synthesized in this paper, as is the extension of that basic theory by Peter Berger and Thomas Luckmann. The paper argues that Mead's functionalist perspective, while rich and internally consistent, is naive in that it lacks a theory of institutions, and it shows how Berger and Luckmann's…

  18. Using Omega and NIF to Advance Theories of High-Pressure, High-Strain-Rate Tantalum Plastic Flow

    NASA Astrophysics Data System (ADS)

    Rudd, R. E.; Arsenlis, A.; Barton, N. R.; Cavallo, R. M.; Huntington, C. M.; McNaney, J. M.; Orlikowski, D. A.; Park, H.-S.; Prisbrey, S. T.; Remington, B. A.; Wehrenberg, C. E.

    2015-11-01

    Precisely controlled plasmas are playing an important role as both pump and probe in experiments to understand the strength of solid metals at high energy density (HED) conditions. In concert with theory, these experiments have enabled a predictive capability to model material strength at Mbar pressures and high strain rates. Here we describe multiscale strength models developed for tantalum and vanadium starting with atomic bonding and extending up through the mobility of individual dislocations, the evolution of dislocation networks and so on up to full scale. High-energy laser platforms such as the NIF and the Omega laser probe ramp-compressed strength to 1-5 Mbar. The predictions of the multiscale model agree well with the 1 Mbar experiments without tuning. The combination of experiment and theory has shown that solid metals can behave significantly differently at HED conditions; for example, the familiar strengthening of metals as the grain size is reduced has been shown not to occur in the high pressure experiments. Work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Lab under contract DE-AC52-07NA273.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perdikaris, Paris, E-mail: parisp@mit.edu; Grinberg, Leopold, E-mail: leopoldgrinberg@us.ibm.com; Karniadakis, George Em, E-mail: george-karniadakis@brown.edu

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process takingmore » place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.« less

  20. Dynamics and Thermodynamics of Quantum Crystals Near the Instability Point in the Self-Consistent Phonon Theory

    DTIC Science & Technology

    2001-01-01

    Buckingham (B), Lennard - Jones (LI ) and Morse (M) potential energy parameters of solid helium and neon calculated with the help of experimental data for the...Using the values of potential energy parameters given in Table 1 for the Buckingham (Eq.(3)), Lennard - Jones (Eq.(4)) and the Morse (Eq.(5)) s.c...calculations are performed in terms of the (expm) Buckingham, the (n,m) Lennard - Jones and the (expexp) Morse self-consistent potentials as

  1. Self-consistent approximation beyond the CPA: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, T.; Gray, L.J.

    1981-08-01

    In Part I, Professor Leath has described the substantial efforts to generalize the CPA. In this second part, a particular self-consistent approximation for random alloys developed by Kaplan, Leath, Gray, and Diehl is described. This approximation is applicable to diagonal, off-diagonal and environmental disorder, includes cluster scattering, and yields a translationally invariant and analytic (Herglotz) average Green's function. Furthermore Gray and Kaplan have shown that an approximation for alloys with short-range order can be constructed from this theory.

  2. The Influence of Parenting Styles, Achievement Motivation, and Self-Efficacy on Academic Performance in College Students

    ERIC Educational Resources Information Center

    Turner, Erlanger A.; Chandler, Megan; Heffer, Robert W.

    2009-01-01

    Parenting styles have consistently been shown to relate to various outcomes such as youth psychopathology, behavior problems, and academic performance. Building on the research in the parenting style literature, along with examining components of self-determination theory, the present study examined the relations among authoritative parenting…

  3. Cultural bases for self-evaluation: seeing oneself positively in different cultural contexts.

    PubMed

    Becker, Maja; Vignoles, Vivian L; Owe, Ellinor; Easterbrook, Matthew J; Brown, Rupert; Smith, Peter B; Bond, Michael Harris; Regalia, Camillo; Manzi, Claudia; Brambilla, Maria; Aldhafri, Said; González, Roberto; Carrasco, Diego; Paz Cadena, Maria; Lay, Siugmin; Schweiger Gallo, Inge; Torres, Ana; Camino, Leoncio; Özgen, Emre; Güner, Ülkü E; Yamakoğlu, Nil; Silveira Lemos, Flávia Cristina; Trujillo, Elvia Vargas; Balanta, Paola; Macapagal, Ma Elizabeth J; Cristina Ferreira, M; Herman, Ginette; de Sauvage, Isabelle; Bourguignon, David; Wang, Qian; Fülöp, Márta; Harb, Charles; Chybicka, Aneta; Mekonnen, Kassahun Habtamu; Martin, Mariana; Nizharadze, George; Gavreliuc, Alin; Buitendach, Johanna; Valk, Aune; Koller, Silvia H

    2014-05-01

    Several theories propose that self-esteem, or positive self-regard, results from fulfilling the value priorities of one's surrounding culture. Yet, surprisingly little evidence exists for this assertion, and theories differ about whether individuals must personally endorse the value priorities involved. We compared the influence of four bases for self-evaluation (controlling one's life, doing one's duty, benefitting others, achieving social status) among 4,852 adolescents across 20 cultural samples, using an implicit, within-person measurement technique to avoid cultural response biases. Cross-sectional and longitudinal analyses showed that participants generally derived feelings of self-esteem from all four bases, but especially from those that were most consistent with the value priorities of others in their cultural context. Multilevel analyses confirmed that the bases of positive self-regard are sustained collectively: They are predictably moderated by culturally normative values but show little systematic variation with personally endorsed values.

  4. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Michael P.; Goldsmith, C. Franklin; Klippenstein, Stephen J.

    2015-07-16

    We have developed a multi-scale approach (Burke, M. P.; Klippenstein, S. J.; Harding, L. B. Proc. Combust. Inst. 2013, 34, 547–555.) to kinetic model formulation that directly incorporates elementary kinetic theories as a means to provide reliable, physics-based extrapolation to unexplored conditions. Here, we extend and generalize the multi-scale modeling strategy to treat systems of considerable complexity – involving multi-well reactions, potentially missing reactions, non-statistical product branching ratios, and non-Boltzmann (i.e. non-thermal) reactant distributions. The methodology is demonstrated here for a subsystem of low-temperature propane oxidation, as a representative system for low-temperature fuel oxidation. A multi-scale model is assembled andmore » informed by a wide variety of targets that include ab initio calculations of molecular properties, rate constant measurements of isolated reactions, and complex systems measurements. Active model parameters are chosen to accommodate both “parametric” and “structural” uncertainties. Theoretical parameters (e.g. barrier heights) are included as active model parameters to account for parametric uncertainties in the theoretical treatment; experimental parameters (e.g. initial temperatures) are included to account for parametric uncertainties in the physical models of the experiments. RMG software is used to assess potential structural uncertainties due to missing reactions. Additionally, branching ratios among product channels are included as active model parameters to account for structural uncertainties related to difficulties in modeling sequences of multiple chemically activated steps. The approach is demonstrated here for interpreting time-resolved measurements of OH, HO2, n-propyl, i-propyl, propene, oxetane, and methyloxirane from photolysis-initiated low-temperature oxidation of propane at pressures from 4 to 60 Torr and temperatures from 300 to 700 K. In particular, the multi-scale informed model provides a consistent quantitative explanation of both ab initio calculations and time-resolved species measurements. The present results show that interpretations of OH measurements are significantly more complicated than previously thought – in addition to barrier heights for key transition states considered previously, OH profiles also depend on additional theoretical parameters for R + O2 reactions, secondary reactions, QOOH + O2 reactions, and treatment of non-Boltzmann reaction sequences. Extraction of physically rigorous information from those measurements may require more sophisticated treatment of all of those model aspects, as well as additional experimental data under more conditions, to discriminate among possible interpretations and ensure model reliability. Keywords: Optimization, Uncertainty quantification, Chemical mechanism, Low-Temperature Oxidation, Non-Boltzmann« less

  5. Gate-controlled current and inelastic electron tunneling spectrum of benzene: a self-consistent study.

    PubMed

    Liang, Y Y; Chen, H; Mizuseki, H; Kawazoe, Y

    2011-04-14

    We use density functional theory based nonequilibrium Green's function to self-consistently study the current through the 1,4-benzenedithiol (BDT). The elastic and inelastic tunneling properties through this Au-BDT-Au molecular junction are simulated, respectively. For the elastic tunneling case, it is found that the current through the tilted molecule can be modulated effectively by the external gate field, which is perpendicular to the phenyl ring. The gate voltage amplification comes from the modulation of the interaction between the electrodes and the molecules in the junctions. For the inelastic case, the electron tunneling scattered by the molecular vibrational modes is considered within the self-consistent Born approximation scheme, and the inelastic electron tunneling spectrum is calculated.

  6. From morbid obesity to a healthy weight using cognitive-behavioral methods: a woman's three-year process with one and one-half years of weight maintenance.

    PubMed

    Annesi, James J; Tennant, Gisèle A

    2012-01-01

    Obesity is a national health problem regularly confronting medical professionals. Although reduced-energy (kilocalorie [kcal]) eating and increased exercise will reliably reduce weight, these behaviors have been highly resistant to sustained change. To control eating using theory-based cognitive-behavioral methods that leverage the positive psychosocial effects of newly initiated exercise as an alternate to typical approaches of education about appropriate nutrition. A woman, age 48 years, with morbid obesity initiated exercise through a 6-month exercise support protocol based on social cognitive and self-efficacy theory (The Coach Approach). This program was followed by periodic individual meetings with a wellness professional intended to transfer behavioral skills learned to adapt to regular exercise, to then control eating. There was consistent recording of exercises completed, foods consumed, various psychosocial and lifestyle factors, and weight. Over the 4.4 years reported, weight decreased from 117.6 kg to 59.0 kg, and body mass index (BMI) decreased from 43.1 kg/m(2) to 21.6 kg/m(2). Mean energy intake initially decreased to 1792 kcal/day and further dropped to 1453 kcal/day by the end of the weight-loss phase. Consistent with theory, use of self-regulatory skills, self-efficacy, and overall mood significantly predicted both increased exercise and decreased energy intake. Morbid obesity was reduced to a healthy weight within 3.1 years, and weight was maintained in the healthy range through the present (1.3 years later). This case supports theory-based propositions that exercise-induced changes in self-regulation, self-efficacy, and mood transfer to and reinforce improvements in corresponding psychosocial factors related to controlled eating.

  7. Multiscale physics of rubber-ice friction

    NASA Astrophysics Data System (ADS)

    Tuononen, Ari J.; Kriston, András; Persson, Bo

    2016-09-01

    Ice friction plays an important role in many engineering applications, e.g., tires on icy roads, ice breaker ship motion, or winter sports equipment. Although numerous experiments have already been performed to understand the effect of various conditions on ice friction, to reveal the fundamental frictional mechanisms is still a challenging task. This study uses in situ white light interferometry to analyze ice surface topography during linear friction testing with a rubber slider. The method helps to provide an understanding of the link between changes in the surface topography and the friction coefficient through direct visualization and quantitative measurement of the morphologies of the ice surface at different length scales. Besides surface polishing and scratching, it was found that ice melts locally even after one sweep showing the refrozen droplets. A multi-scale rubber friction theory was also applied to study the contribution of viscoelasticity to the total friction coefficient, which showed a significant level with respect to the smoothness of the ice; furthermore, the theory also confirmed the possibility of local ice melting.

  8. Extended Gravity: State of the Art and Perspectives

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; de Laurentis, Mariafelicia

    2015-01-01

    Several issues coming from Cosmology, Astrophysics and Quantum Field Theory suggest to extend the General Relativity in order to overcome several shortcomings emerging at conceptual and experimental level. From one hand, standard Einstein theory fails as soon as one wants to achieve a full quantum description of space-time. In fact, the lack of a final self-consistent Quantum Gravity Theory can be considered one of the starting points for alternative theories of gravity. Specifically, the approach based on corrections and enlargements of the Einstein scheme, have become a sort of paradigm in the study of gravitational interaction. On the other hand, such theories have acquired great interest in cosmology since they "naturally" exhibit inflationary behaviours which can overcome the shortcomings of standard cosmology. From an astrophysical point of view, Extended Theories of Gravity do not require to find candidates for dark energy and dark matter at fundamental level; the approach starts from taking into account only the "observed" ingredients (i.e., gravity, radiation and baryonic matter); it is in full agreement with the early spirit of General Relativity but one has to relax the strong hypothesis that gravity acts at same way at all scales. Several scalar-tensor and f(R)-models agree with observed cosmology, extragalactic and galactic observations and Solar System tests, and give rise to new effects capable of explaining the observed acceleration of cosmic fluid and the missing matter effect of self-gravitating structures. Despite these preliminary results, no final model addressing all the open issues is available at the moment, however the paradigm seems promising in order to achieve a complete and self-consistent theory working coherently at all interaction scales.

  9. A self-consistent density based embedding scheme applied to the adsorption of CO on Pd(111)

    NASA Astrophysics Data System (ADS)

    Lahav, D.; Klüner, T.

    2007-06-01

    We derive a variant of a density based embedded cluster approach as an improvement to a recently proposed embedding theory for metallic substrates (Govind et al 1999 J. Chem. Phys. 110 7677; Klüner et al 2001 Phys. Rev. Lett. 86 5954). In this scheme, a local region in space is represented by a small cluster which is treated by accurate quantum chemical methodology. The interaction of the cluster with the infinite solid is taken into account by an effective one-electron embedding operator representing the surrounding region. We propose a self-consistent embedding scheme which resolves intrinsic problems of the former theory, in particular a violation of strict density conservation. The proposed scheme is applied to the well-known benchmark system CO/Pd(111).

  10. Anharmonic frequencies of CX2Y2 (X, Y = O, N, F, H, D) isomers and related systems obtained from vibrational multiconfiguration self-consistent field theory.

    PubMed

    Pfeiffer, Florian; Rauhut, Guntram

    2011-10-13

    Accurate anharmonic frequencies are provided for molecules of current research, i.e., diazirines, diazomethane, the corresponding fluorinated and deuterated compounds, their dioxygen analogs, and others. Vibrational-state energies were obtained from state-specific vibrational multiconfiguration self-consistent field theory (VMCSCF) based on multilevel potential energy surfaces (PES) generated from explicitly correlated coupled cluster, CCSD(T)-F12a, and double-hybrid density functional calculations, B2PLYP. To accelerate the vibrational structure calculations, a configuration selection scheme as well as a polynomial representation of the PES have been exploited. Because experimental data are scarce for these systems, many calculated frequencies of this study are predictions and may guide experiments to come.

  11. Torsion as a source of expansion in a Bianchi type-I universe in the self-consistent Einstein-Cartan theory of a perfect fluid with spin density

    NASA Technical Reports Server (NTRS)

    Bradas, James C.; Fennelly, Alphonsus J.; Smalley, Larry L.

    1987-01-01

    It is shown that a generalized (or 'power law') inflationary phase arises naturally and inevitably in a simple (Bianchi type-I) anisotropic cosmological model in the self-consistent Einstein-Cartan gravitation theory with the improved stress-energy-momentum tensor with the spin density of Ray and Smalley (1982, 1983). This is made explicit by an analytical solution of the field equations of motion of the fluid variables. The inflation is caused by the angular kinetic energy density due to spin. The model further elucidates the relationship between fluid vorticity, the angular velocity of the inertially dragged tetrads, and the precession of the principal axes of the shear ellipsoid. Shear is not effective in damping the inflation.

  12. Quasiparticle self-consistent GW study of cuprates: electronic structure, model parameters, and the two-band theory for Tc

    PubMed Central

    Jang, Seung Woo; Kotani, Takao; Kino, Hiori; Kuroki, Kazuhiko; Han, Myung Joon

    2015-01-01

    Despite decades of progress, an understanding of unconventional superconductivity still remains elusive. An important open question is about the material dependence of the superconducting properties. Using the quasiparticle self-consistent GW method, we re-examine the electronic structure of copper oxide high-Tc materials. We show that QSGW captures several important features, distinctive from the conventional LDA results. The energy level splitting between and is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission experiments. This agreement with the experiments supports the previously suggested two-band theory for the material dependence of the superconducting transition temperature, Tc. PMID:26206417

  13. Stage call: Cardiovascular reactivity to audition stress in musicians

    PubMed Central

    Chanwimalueang, Theerasak; Aufegger, Lisa; Adjei, Tricia; Wasley, David; Cruder, Cinzia; Mandic, Danilo P.

    2017-01-01

    Auditioning is at the very center of educational and professional life in music and is associated with significant psychophysical demands. Knowledge of how these demands affect cardiovascular responses to psychosocial pressure is essential for developing strategies to both manage stress and understand optimal performance states. To this end, we recorded the electrocardiograms (ECGs) of 16 musicians (11 violinists and 5 flutists) before and during performances in both low- and high-stress conditions: with no audience and in front of an audition panel, respectively. The analysis consisted of the detection of R-peaks in the ECGs to extract heart rate variability (HRV) from the notoriously noisy real-world ECGs. Our data analysis approach spanned both standard (temporal and spectral) and advanced (structural complexity) techniques. The complexity science approaches—namely, multiscale sample entropy and multiscale fuzzy entropy—indicated a statistically significant decrease in structural complexity in HRV from the low- to the high-stress condition and an increase in structural complexity from the pre-performance to performance period, thus confirming the complexity loss theory and a loss in degrees of freedom due to stress. Results from the spectral analyses also suggest that the stress responses in the female participants were more parasympathetically driven than those of the male participants. In conclusion, our findings suggest that interventions to manage stress are best targeted at the sensitive pre-performance period, before an audition begins. PMID:28437466

  14. The topology of the cosmic web in terms of persistent Betti numbers

    NASA Astrophysics Data System (ADS)

    Pranav, Pratyush; Edelsbrunner, Herbert; van de Weygaert, Rien; Vegter, Gert; Kerber, Michael; Jones, Bernard J. T.; Wintraecken, Mathijs

    2017-03-01

    We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.

  15. PHYSICAL MODEL FOR RECOGNITION TUNNELING

    PubMed Central

    Krstić, Predrag; Ashcroft, Brian; Lindsay, Stuart

    2015-01-01

    Recognition tunneling (RT) identifies target molecules trapped between tunneling electrodes functionalized with recognition molecules that serve as specific chemical linkages between the metal electrodes and the trapped target molecule. Possible applications include single molecule DNA and protein sequencing. This paper addresses several fundamental aspects of RT by multiscale theory, applying both all-atom and coarse-grained DNA models: (1) We show that the magnitude of the observed currents are consistent with the results of non-equilibrium Green's function calculations carried out on a solvated all-atom model. (2) Brownian fluctuations in hydrogen bond-lengths lead to current spikes that are similar to what is observed experimentally. (3) The frequency characteristics of these fluctuations can be used to identify the trapped molecules with a machine-learning algorithm, giving a theoretical underpinning to this new method of identifying single molecule signals. PMID:25650375

  16. Quantum resource theories in the single-shot regime

    NASA Astrophysics Data System (ADS)

    Gour, Gilad

    2017-06-01

    One of the main goals of any resource theory such as entanglement, quantum thermodynamics, quantum coherence, and asymmetry, is to find necessary and sufficient conditions that determine whether one resource can be converted to another by the set of free operations. Here we find such conditions for a large class of quantum resource theories which we call affine resource theories. Affine resource theories include the resource theories of athermality, asymmetry, and coherence, but not entanglement. Remarkably, the necessary and sufficient conditions can be expressed as a family of inequalities between resource monotones (quantifiers) that are given in terms of the conditional min-entropy. The set of free operations is taken to be (1) the maximal set (i.e., consists of all resource nongenerating quantum channels) or (2) the self-dual set of free operations (i.e., consists of all resource nongenerating maps for which the dual map is also resource nongenerating). As an example, we apply our results to quantum thermodynamics with Gibbs preserving operations, and several other affine resource theories. Finally, we discuss the applications of these results to resource theories that are not affine and, along the way, provide the necessary and sufficient conditions that a quantum resource theory consists of a resource destroying map.

  17. Conformal higher spin theory and twistor space actions

    NASA Astrophysics Data System (ADS)

    Hähnel, Philipp; McLoughlin, Tristan

    2017-12-01

    We consider the twistor description of conformal higher spin theories and give twistor space actions for the self-dual sector of theories with spin greater than two that produce the correct flat space-time spectrum. We identify a ghost-free subsector, analogous to the embedding of Einstein gravity with cosmological constant in Weyl gravity, which generates the unique spin-s three-point anti-MHV amplitude consistent with Poincaré invariance and helicity constraints. By including interactions between the infinite tower of higher-spin fields we give a geometric interpretation to the twistor equations of motion as the integrability condition for a holomorphic structure on an infinite jet bundle. Finally, we conjecture anti-self-dual interaction terms which give an implicit definition of a twistor action for the full conformal higher spin theory.

  18. The dynamic interplay between perceived true self-knowledge and decision satisfaction.

    PubMed

    Schlegel, Rebecca J; Hicks, Joshua A; Davis, William E; Hirsch, Kelly A; Smith, Christina M

    2013-03-01

    The present research used multiple methods to examine the hypothesis that perceived true self-knowledge and decision satisfaction are inextricably linked together by a widely held "true-self-as-guide" lay theory of decision making. Consistent with this proposition, Study 1 found that participants rated using the true self as a guide as more important for achieving personal satisfaction than a variety of other potential decision-making strategies. After establishing the prevalence of this lay theory, the remaining studies then focused on examining the proposed consequent relationship between perceived true self-knowledge and decision satisfaction. Consistent with hypotheses, 2 cross-sectional correlational studies (Studies 2 and 3) found a positive relationship between perceived true self-knowledge and decision satisfaction for different types of major decisions. Study 4 used daily diary methods to demonstrate that fluctuations in perceived true self-knowledge reliably covary with fluctuations in decision satisfaction. Finally, 2 studies directly examined the causal direction of this relationship through experimental manipulation and revealed that the relationship is truly bidirectional. More specifically, Study 5 showed that manipulating perceived knowledge of the true self (but not other self-concepts) directly affects decision satisfaction. Study 6 showed that this effect also works in reverse by manipulating feelings of decision satisfaction, which directly affected perceived knowledge of the true self (but not other self-concepts). Taken together, these studies suggest that people believe the true self should be used as a guide when making major life decisions and that this belief has observable consequences for the self and decision making. PsycINFO Database Record (c) 2013 APA, all rights reserved

  19. Multiscale Methods for Nuclear Reactor Analysis

    NASA Astrophysics Data System (ADS)

    Collins, Benjamin S.

    The ability to accurately predict local pin powers in nuclear reactors is necessary to understand the mechanisms that cause fuel pin failure during steady state and transient operation. In the research presented here, methods are developed to improve the local solution using high order methods with boundary conditions from a low order global solution. Several different core configurations were tested to determine the improvement in the local pin powers compared to the standard techniques, that use diffusion theory and pin power reconstruction (PPR). Two different multiscale methods were developed and analyzed; the post-refinement multiscale method and the embedded multiscale method. The post-refinement multiscale methods use the global solution to determine boundary conditions for the local solution. The local solution is solved using either a fixed boundary source or an albedo boundary condition; this solution is "post-refinement" and thus has no impact on the global solution. The embedded multiscale method allows the local solver to change the global solution to provide an improved global and local solution. The post-refinement multiscale method is assessed using three core designs. When the local solution has more energy groups, the fixed source method has some difficulties near the interface: however the albedo method works well for all cases. In order to remedy the issue with boundary condition errors for the fixed source method, a buffer region is used to act as a filter, which decreases the sensitivity of the solution to the boundary condition. Both the albedo and fixed source methods benefit from the use of a buffer region. Unlike the post-refinement method, the embedded multiscale method alters the global solution. The ability to change the global solution allows for refinement in areas where the errors in the few group nodal diffusion are typically large. The embedded method is shown to improve the global solution when it is applied to a MOX/LEU assembly interface, the fuel/reflector interface, and assemblies where control rods are inserted. The embedded method also allows for multiple solution levels to be applied in a single calculation. The addition of intermediate levels to the solution improves the accuracy of the method. Both multiscale methods considered here have benefits and drawbacks, but both can provide improvements over the current PPR methodology.

  20. Aberrant pain perception in direct and indirect non-suicidal self-injury: an empirical test of Joiner's interpersonal theory.

    PubMed

    St Germain, Sarah A; Hooley, Jill M

    2013-08-01

    Using a community sample (N=148) we examined pressure pain perception in 3 study groups--people who engaged in non-suicidal self-injury, people who engaged in indirect forms of self-injury, and non-self-injuring controls. In so doing we tested hypotheses derived from Joiner's (2005) interpersonal theory of suicide. Consistent with previous studies and with Joiner's model, people who engaged in NSSI endured pain for significantly longer than non-self-injuring controls. Importantly, pain endurance in the Indirect self-injury group was comparable to that found in the NSSI group and significantly elevated relative to controls. This pattern of results suggests that abnormal pain perception may not be specific to forms of self-injury (e.g., NSSI) that involve immediate physical pain (e.g., cutting). Our findings further suggest that the concept of acquired capability for suicide might have relevance for both direct and indirect forms of self-injurious behavior. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Anharmonic vibrational spectra and mode-mode couplings analysis of 2-aminopyridine

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Bhat, Sheeraz Ahmad; Ahmad, Shabbir

    2018-01-01

    Vibrational spectra of 2-aminopyridine (2AP) have been analyzed using the vibrational self-consistence field theory (VSCF), correlated corrected vibrational self-consistence field theory (CC-VSCF) and vibrational perturbation theory (VPT2) at B3LYP/6-311G(d,p) framework. The mode-mode couplings affect the vibrational frequencies and intensities. The coupling integrals between pairs of normal modes have been obtained on the basis of quartic force field (2MR-QFF) approximation. The overtone and combination bands are also assigned in the FTIR spectrum with the help of anharmonic calculation at VPT2 method. A statistical analysis of deviations shows that estimated anharmonic frequencies are closer to the experiment over harmonic approximation. Furthermore, the anharmonic correction has also been carried out for the dimeric structure of 2AP. The fundamental vibration bands have been assigned on the basis of potential energy distribution (PED) and visual look over the animated modes. Other important molecular properties such as frontier molecular orbitals and molecular electrostatics potential mapping have also been analyzed.

  2. Adapting Poisson-Boltzmann to the self-consistent mean field theory: Application to protein side-chain modeling

    NASA Astrophysics Data System (ADS)

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2011-08-01

    We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.

  3. The Discontinuous Galerkin Method for the Multiscale Modeling of Dynamics of Crystalline Solids

    DTIC Science & Technology

    2007-08-26

    number. 1. REPORT DATE 26 AUG 2007 2 . REPORT TYPE 3. DATES COVERED 00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE The Discontinuous Galerkin...Dynamics method (MAAD) [ 2 ], the bridging scale method [47], the bridging domain methods [48], the heterogeneous multiscale method (HMM) [23, 36, 24], and...method consists of three components, 1. a macro solver for the continuum model, 2 . a micro solver to equilibrate the atomistic system locally to the appro

  4. Multiscale modeling of the human arterial tree on the TeraGrid.

    NASA Astrophysics Data System (ADS)

    Karniadakis, Gerorge

    2009-03-01

    A multiscale model of the human arterial tree will be presented consisting of the macrovascular network (MaN, arteries above 1-2 mm), the mesovascular network (MeN, arterioles above 10 micro-m) and the microvascular network (MiN, capillaries). Coupling conditions between the MaN-MeN-MiN will be discussed and three different methods in modeling each network will be presented. Specific examples will be shown for the intracranial arterial tree for healthy subjects but also for patients with hydrocephalus.

  5. To have or to be? A comparison of materialism-based theories and self-determination theory as explanatory frameworks of prejudice.

    PubMed

    Van Hiel, Alain; Cornelis, Ilse; Roets, Arne

    2010-06-01

    The present study aimed to delineate the psychological structure of materialism and intrinsic and extrinsic value pursuit. Moreover, we compared models based on self-determination theory (SDT), Fromm's marketing character, and Inglehart's theory of social change to account for racial prejudice. In a sample of undergraduate students (n=131) and adults (n=176) it was revealed that the extrinsic value pursuit Financial Success/Materialism could be distinguished from the extrinsic value scales Physical Appeal and Social Recognition, and Community Concern could be distinguished from the intrinsic value pursuit scales Self-acceptance and Affiliation. Moreover, Financial Success/Materialism and Community Concern were consistently and significantly related to prejudice, whereas the other SDT facet scales yielded weaker relationships with prejudice. Structural models based on SDT and Inglehart were not corroborated, but instead the present data supported a mediation model based on Fromm's work in which the effect of Community Concern was mediated by Financial Success/Materialism. Broader implications for SDT are critically assessed.

  6. The relevance of self-esteem and self-schemas to persecutory delusions: a systematic review.

    PubMed

    Kesting, Marie-Luise; Lincoln, Tania Marie

    2013-10-01

    Self-esteem is frequently targeted in psychological approaches to persecutory delusions (PD). However, its precise role in the formation and maintenance of PD is unclear and has been subject to a number of theories: It has been hypothesized that PD function to enhance self-esteem, that they directly reflect negative conceptualizations of the self, that self-esteem follows from the perceived deservedness of the persecution (poor-me versus bad-me-paranoia) and that the temporal instability of self-esteem is relevant to PD. In order to increase our understanding of the relevance of self-esteem to PD, this article systematically reviews the existing research on self-esteem in PD in the light of the existing theories. We performed a literature search on studies that investigated self-esteem in PD. We included studies that either investigated self-esteem a) within patients with PD or compared to controls or b) along the continuum of subclinical paranoia in the general population. We used a broad concept of self-esteem and included paradigms that assessed implicit self-esteem, specific self-schemas and dynamic aspects of self-esteem. The literature search identified 317 studies of which 52 met the inclusion criteria. The reviewed studies consistently found low global explicit self-esteem and negative self-schemas in persons with PD. The studies therefore do not support the theory that PD serve to enhance self-esteem but underline the theory that they directly reflect specific negative self-schemas. There is evidence that low self-esteem is associated with higher perceived deservedness of the persecution and that PD are associated with instable self-esteem. Only few studies investigated implicit self-esteem and the results of these studies were inconsistent. We conclude by proposing an explanatory model of how self-esteem and PD interact from which we derive clinical implications. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Multiscale assembly for tissue engineering and regenerative medicine

    PubMed Central

    Inci, Fatih; Tasoglu, Savas; Erkmen, Burcu; Demirci, Utkan

    2015-01-01

    Our understanding of cell biology and its integration with materials science has led to technological innovations in the bioengineering of tissue-mimicking grafts that can be utilized in clinical and pharmaceutical applications. Bio-engineering of native-like multiscale building blocks provides refined control over the cellular microenvironment, thus enabling functional tissues. In this review, we focus on assembling building blocks from the biomolecular level to the millimeter scale. We also provide an overview of techniques for assembling molecules, cells, spheroids, and microgels and achieving bottom-up tissue engineering. Additionally, we discuss driving mechanisms for self- and guided assembly to create micro-to-macro scale tissue structures. PMID:25796488

  8. Fear of self-annihilation and existential uncertainty as predictors of worldview defense: Comparing terror management and uncertainty theories.

    PubMed

    Rubin, Mark

    2018-01-01

    Terror management theory (TMT) proposes that thoughts of death trigger a concern about self-annihilation that motivates the defense of cultural worldviews. In contrast, uncertainty theorists propose that thoughts of death trigger feelings of uncertainty that motivate worldview defense. University students (N = 414) completed measures of the chronic fear of self-annihilation and existential uncertainty as well as the need for closure. They then evaluated either a meaning threat stimulus or a control stimulus. Consistent with TMT, participants with a high fear of self-annihilation and a high need for closure showed the greatest dislike of the meaning threat stimulus, even after controlling for their existential uncertainty. Contrary to the uncertainty perspective, fear of existential uncertainty showed no significant effects.

  9. Learning "A La Carte": A Theory-Based Tool for Maximizing Student Engagement

    ERIC Educational Resources Information Center

    Sibold, Jeremy

    2016-01-01

    It is well-established that motivation is a critical component of one's best performance of a task. A primary model in the field of motivation is the self-determination theory (SDT). The three pillars of SDT include competency, autonomy, and relatedness; when supported these have been shown to improve the quality, consistency, and persistence of…

  10. Multiscale analysis of potential fields by a ridge consistency criterion: the reconstruction of the Bishop basement

    NASA Astrophysics Data System (ADS)

    Fedi, M.; Florio, G.; Cascone, L.

    2012-01-01

    We use a multiscale approach as a semi-automated interpreting tool of potential fields. The depth to the source and the structural index are estimated in two steps: first the depth to the source, as the intersection of the field ridges (lines built joining the extrema of the field at various altitudes) and secondly, the structural index by the scale function. We introduce a new criterion, called 'ridge consistency' in this strategy. The criterion is based on the principle that the structural index estimations on all the ridges converging towards the same source should be consistent. If these estimates are significantly different, field differentiation is used to lessen the interference effects from nearby sources or regional fields, to obtain a consistent set of estimates. In our multiscale framework, vertical differentiation is naturally joint to the low-pass filtering properties of the upward continuation, so is a stable process. Before applying our criterion, we studied carefully the errors on upward continuation caused by the finite size of the survey area. To this end, we analysed the complex magnetic synthetic case, known as Bishop model, and evaluated the best extrapolation algorithm and the optimal width of the area extension, needed to obtain accurate upward continuation. Afterwards, we applied the method to the depth estimation of the whole Bishop basement bathymetry. The result is a good reconstruction of the complex basement and of the shape properties of the source at the estimated points.

  11. Global self-esteem, goal achievement orientations, and self-determined behavioural regulations in a physical education setting.

    PubMed

    Hein, Vello; Hagger, Martin S

    2007-01-15

    We examined a theoretical model of global self-esteem that incorporated constructs from achievement goal and self-determination theories. The model hypothesized that self-determined or autonomous motives would mediate the influence of achievement goal orientation on global self-esteem. The adapted version of the Behavioural Regulation in Exercise Questionnaire (Mullan et al., 1997), the Perception of Success Questionnaire (Roberts & Balague, 1991), and Rosenberg's (1965) self-esteem scales were administered to 634 high school students aged 11 - 15 years. A structural equation model supported the hypotheses and demonstrated that autonomous motives mediated the effect of goal orientations on global self-esteem. The results suggest that generalized motivational orientations influence self-esteem by affecting autonomous motivation and is consistent with theory that suggests that experiences relating to intrinsic motivation are the mechanism by which global motivational orientations are translated into adaptive outcomes like self-esteem. The findings suggest that physical activity interventions that target autonomous motives in physical activity contexts are likely to enhance young people's general self-esteem.

  12. A pre-registered naturalistic observation of within domain mental fatigue and domain-general depletion of self-control

    PubMed Central

    Harlow, Iain; Inzlicht, Michael

    2017-01-01

    Self-control is often believed to operate as if it were a finite, domain-general resource. However, recent attempts to demonstrate this under transparent conditions have failed to yield positive results. In the current study, we monitor two groups of students (N1 = 8,867, N2 = 8,754) over separate 17-week intervals with 24-hour coverage, as they engage in voluntary learning and self-testing using an online program. We use daily behavior to assess whether time-of-day effects support domain-general theories of self-control. Additionally, we assess whether mental fatigue emerges within task during prolonged persistent effort. Results reveal within-task fatigue emerges within an hour on-task. However, there is a negligible effect on ability throughout the day. Additionally, time-of-day has no detrimental effect on motivation; rather there is a strong tendency to increase learning time at night. Results are consistent with theories indicating people lose motivation within a specific task, but at odds with theories that argue for a domain-general self-control resource. PMID:28931013

  13. Multi-scale evaporator architectures for geothermal binary power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Nejad, Ali; Klett, James William

    2016-01-01

    In this paper, novel geometries of heat exchanger architectures are proposed for evaporators that are used in Organic Rankine Cycles. A multi-scale heat exchanger concept was developed by employing successive plenums at several length-scale levels. Flow passages contain features at both macro-scale and micro-scale, which are designed from Constructal Theory principles. Aside from pumping power and overall thermal resistance, several factors were considered in order to fully assess the performance of the new heat exchangers, such as weight of metal structures, surface area per unit volume, and total footprint. Component simulations based on laminar flow correlations for supercritical R134a weremore » used to obtain performance indicators.« less

  14. Comparing online and offline self-disclosure: a systematic review.

    PubMed

    Nguyen, Melanie; Bin, Yu Sun; Campbell, Andrew

    2012-02-01

    Disclosure of personal information is believed to be more frequent in online compared to offline communication. However, this assumption is both theoretically and empirically contested. This systematic review examined existing research comparing online and offline self-disclosure to ascertain the evidence for current theories of online communication. Studies that compared online and offline disclosures in dyadic interactions were included for review. Contrary to expectations, disclosure was not consistently found to be greater in online contexts. Factors such as the relationship between the communicators, the specific mode of communication, and the context of the interaction appear to moderate the degree of disclosure. In relation to the theories of online communication, there is support for each theory. It is argued that the overlapping predictions of each theory and the current state of empirical research highlights a need for an overarching theory of communication that can account for disclosure in both online and offline interactions.

  15. Multi-scale connectivity and graph theory highlight critical areas for conservation under climate change

    USGS Publications Warehouse

    Dilts, Thomas E.; Weisberg, Peter J.; Leitner, Phillip; Matocq, Marjorie D.; Inman, Richard D.; Nussear, Ken E.; Esque, Todd C.

    2016-01-01

    Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land-use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multi-scale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods including graph theory, circuit theory and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this California threatened species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American Southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously-distributed habitat, and should be applicable across a broad range of taxa.

  16. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    NASA Astrophysics Data System (ADS)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M. N.; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-01

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  17. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory.

    PubMed

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M N; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  18. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE PAGES

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; ...

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  19. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  20. Multiscale Information Transfer in Functional Corticomuscular Coupling Estimation Following Stroke: A Pilot Study

    PubMed Central

    Chen, Xiaoling; Xie, Ping; Zhang, Yuanyuan; Chen, Yuling; Yang, Fangmei; Zhang, Litai; Li, Xiaoli

    2018-01-01

    Recently, functional corticomuscular coupling (FCMC) between the cortex and the contralateral muscle has been used to evaluate motor function after stroke. As we know, the motor-control system is a closed-loop system that is regulated by complex self-regulating and interactive mechanisms which operate in multiple spatial and temporal scales. Multiscale analysis can represent the inherent complexity. However, previous studies in FCMC for stroke patients mainly focused on the coupling strength in single-time scale, without considering the changes of the inherently directional and multiscale properties in sensorimotor systems. In this paper, a multiscale-causal model, named multiscale transfer entropy, was used to quantify the functional connection between electroencephalogram over the scalp and electromyogram from the flexor digitorum superficialis (FDS) recorded simultaneously during steady-state grip task in eight stroke patients and eight healthy controls. Our results showed that healthy controls exhibited higher coupling when the scale reached up to about 12, and the FCMC in descending direction was stronger at certain scales (1, 7, 12, and 14) than that in ascending direction. Further analysis showed these multi-time scale characteristics mainly focused on the beta1 band at scale 11 and beta2 band at scale 9, 11, 13, and 15. Compared to controls, the multiscale properties of the FCMC for stroke were changed, the strengths in both directions were reduced, and the gaps between the descending and ascending directions were disappeared over all scales. Further analysis in specific bands showed that the reduced FCMC mainly focused on the alpha2 at higher scale, beta1 and beta2 across almost the entire scales. This study about multi-scale confirms that the FCMC between the brain and muscles is capable of complex and directional characteristics, and these characteristics in functional connection for stroke are destroyed by the structural lesion in the brain that might disrupt coordination, feedback, and information transmission in efferent control and afferent feedback. The study demonstrates for the first time the multiscale and directional characteristics of the FCMC for stroke patients, and provides a preliminary observation for application in clinical assessment following stroke. PMID:29765351

  1. Self-consistent description of a system of interacting phonons

    NASA Astrophysics Data System (ADS)

    Poluektov, Yu. M.

    2015-11-01

    A proposal for a method of self-consistent description of phonon systems. This method generalizes the Debye model to account for phonon-phonon interaction. The idea of "self-consistent" phonons is introduced; their speed depends on the temperature and is determined by solving a non-linear equation. The Debye energy is also a function of the temperature within the framework of the proposed approach. The thermodynamics of "self-consistent" phonon gas are built. It is shown that at low temperatures the cubic law temperature dependence of specific heat acquires an additional term that is proportional to the seventh power of the temperature. This seems to explain the reason why the cubic law for specific heat is observed only at relatively low temperatures. At high temperatures, the theory predicts a linear deviation with respect to temperature from the Dulong-Petit law, which is observed experimentally. A modification to the melting criteria is considered, to account for the phonon-phonon interaction.

  2. Congruency between Occupational Daydreams and Self Directed Search (SDS) Scores among College Students

    ERIC Educational Resources Information Center

    Miller, Mark J.; Springer, Thomas P.; Tobacyk, Jerome; Wells, Don

    2004-01-01

    In this study, the relationship of expressed occupational daydreams and scores on the Self-Directed Search (SDS) were examined. Results were consistent with Holland's theory of careers. Implications for career counselors are discussed. Students were asked to provide specific biographical data (i. e., age, gender, race) and to write down their…

  3. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. CASL has endeavored to improve upon this approach by incorporating a microstructurally-based, atomistically-informed, zirconium alloy mechanical deformation analysis capability into the BISON-CASL engineering scale fuel performance code. Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed bymore » Lebensohn and Tome´ [2], has been coupled with BISON-CASL to represent the mechanistic material processes controlling the deformation behavior of the cladding. A critical component of VPSC is the representation of the crystallographic orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON-CASL and provides initial results utilizing the coupled functionality.« less

  4. Monocular precrash vehicle detection: features and classifiers.

    PubMed

    Sun, Zehang; Bebis, George; Miller, Ronald

    2006-07-01

    Robust and reliable vehicle detection from images acquired by a moving vehicle (i.e., on-road vehicle detection) is an important problem with applications to driver assistance systems and autonomous, self-guided vehicles. The focus of this work is on the issues of feature extraction and classification for rear-view vehicle detection. Specifically, by treating the problem of vehicle detection as a two-class classification problem, we have investigated several different feature extraction methods such as principal component analysis, wavelets, and Gabor filters. To evaluate the extracted features, we have experimented with two popular classifiers, neural networks and support vector machines (SVMs). Based on our evaluation results, we have developed an on-board real-time monocular vehicle detection system that is capable of acquiring grey-scale images, using Ford's proprietary low-light camera, achieving an average detection rate of 10 Hz. Our vehicle detection algorithm consists of two main steps: a multiscale driven hypothesis generation step and an appearance-based hypothesis verification step. During the hypothesis generation step, image locations where vehicles might be present are extracted. This step uses multiscale techniques not only to speed up detection, but also to improve system robustness. The appearance-based hypothesis verification step verifies the hypotheses using Gabor features and SVMs. The system has been tested in Ford's concept vehicle under different traffic conditions (e.g., structured highway, complex urban streets, and varying weather conditions), illustrating good performance.

  5. Neural Responses to Heartbeats in the Default Network Encode the Self in Spontaneous Thoughts.

    PubMed

    Babo-Rebelo, Mariana; Richter, Craig G; Tallon-Baudry, Catherine

    2016-07-27

    The default network (DN) has been consistently associated with self-related cognition, but also to bodily state monitoring and autonomic regulation. We hypothesized that these two seemingly disparate functional roles of the DN are functionally coupled, in line with theories proposing that selfhood is grounded in the neural monitoring of internal organs, such as the heart. We measured with magnetoencephalograhy neural responses evoked by heartbeats while human participants freely mind-wandered. When interrupted by a visual stimulus at random intervals, participants scored the self-relatedness of the interrupted thought. They evaluated their involvement as the first-person perspective subject or agent in the thought ("I"), and on another scale to what degree they were thinking about themselves ("Me"). During the interrupted thought, neural responses to heartbeats in two regions of the DN, the ventral precuneus and the ventromedial prefrontal cortex, covaried, respectively, with the "I" and the "Me" dimensions of the self, even at the single-trial level. No covariation between self-relatedness and peripheral autonomic measures (heart rate, heart rate variability, pupil diameter, electrodermal activity, respiration rate, and phase) or alpha power was observed. Our results reveal a direct link between selfhood and neural responses to heartbeats in the DN and thus directly support theories grounding selfhood in the neural monitoring of visceral inputs. More generally, the tight functional coupling between self-related processing and cardiac monitoring observed here implies that, even in the absence of measured changes in peripheral bodily measures, physiological and cognitive functions have to be considered jointly in the DN. The default network (DN) has been consistently associated with self-processing but also with autonomic regulation. We hypothesized that these two functions could be functionally coupled in the DN, inspired by theories according to which selfhood is grounded in the neural monitoring of internal organs. Using magnetoencephalography, we show that heartbeat-evoked responses (HERs) in the DN covary with the self-relatedness of ongoing spontaneous thoughts. HER amplitude in the ventral precuneus covaried with the "I" self-dimension, whereas HER amplitude in the ventromedial prefrontal cortex encoded the "Me" self-dimension. Our experimental results directly support theories rooting selfhood in the neural monitoring of internal organs. We propose a novel functional framework for the DN, where self-processing is coupled with physiological monitoring. Copyright © 2016 Babo-Rebelo et al.

  6. Neural Responses to Heartbeats in the Default Network Encode the Self in Spontaneous Thoughts

    PubMed Central

    Babo-Rebelo, Mariana; Richter, Craig G.

    2016-01-01

    The default network (DN) has been consistently associated with self-related cognition, but also to bodily state monitoring and autonomic regulation. We hypothesized that these two seemingly disparate functional roles of the DN are functionally coupled, in line with theories proposing that selfhood is grounded in the neural monitoring of internal organs, such as the heart. We measured with magnetoencephalograhy neural responses evoked by heartbeats while human participants freely mind-wandered. When interrupted by a visual stimulus at random intervals, participants scored the self-relatedness of the interrupted thought. They evaluated their involvement as the first-person perspective subject or agent in the thought (“I”), and on another scale to what degree they were thinking about themselves (“Me”). During the interrupted thought, neural responses to heartbeats in two regions of the DN, the ventral precuneus and the ventromedial prefrontal cortex, covaried, respectively, with the “I” and the “Me” dimensions of the self, even at the single-trial level. No covariation between self-relatedness and peripheral autonomic measures (heart rate, heart rate variability, pupil diameter, electrodermal activity, respiration rate, and phase) or alpha power was observed. Our results reveal a direct link between selfhood and neural responses to heartbeats in the DN and thus directly support theories grounding selfhood in the neural monitoring of visceral inputs. More generally, the tight functional coupling between self-related processing and cardiac monitoring observed here implies that, even in the absence of measured changes in peripheral bodily measures, physiological and cognitive functions have to be considered jointly in the DN. SIGNIFICANCE STATEMENT The default network (DN) has been consistently associated with self-processing but also with autonomic regulation. We hypothesized that these two functions could be functionally coupled in the DN, inspired by theories according to which selfhood is grounded in the neural monitoring of internal organs. Using magnetoencephalography, we show that heartbeat-evoked responses (HERs) in the DN covary with the self-relatedness of ongoing spontaneous thoughts. HER amplitude in the ventral precuneus covaried with the “I” self-dimension, whereas HER amplitude in the ventromedial prefrontal cortex encoded the “Me” self-dimension. Our experimental results directly support theories rooting selfhood in the neural monitoring of internal organs. We propose a novel functional framework for the DN, where self-processing is coupled with physiological monitoring. PMID:27466329

  7. An item response theory analysis of Harter's Self-Perception Profile for children or why strong clinical scales should be distrusted.

    PubMed

    Egberink, Iris J L; Meijer, Rob R

    2011-06-01

    The authors investigated the psychometric properties of the subscales of the Self-Perception Profile for Children with item response theory (IRT) models using a sample of 611 children. Results from a nonparametric Mokken analysis and a parametric IRT approach for boys (n = 268) and girls (n = 343) were compared. The authors found that most scales formed weak scales and that measurement precision was relatively low and only present for latent trait values indicating low self-perception. The subscales Physical Appearance and Global Self-Worth formed one strong scale. Children seem to interpret Global Self-Worth items as if they measure Physical Appearance. Furthermore, the authors found that strong Mokken scales (such as Global Self-Worth) consisted mostly of items that repeat the same item content. They conclude that researchers should be very careful in interpreting the total scores on the different Self-Perception Profile for Children scales. Finally, implications for further research are discussed.

  8. The Helpfulness of Spiritually Influenced Group Work in Developing Self-Awareness and Self-Esteem: A Preliminary Investigation

    PubMed Central

    Coholic, Diana

    2005-01-01

    This paper discusses an exploratory study that investigated the helpfulness of spiritually influenced group work with eight adult women who shared a history of substance abuse. The overall purpose of the group was to help participants develop their self-awareness and self-esteem. The group, which was contextualized in transpersonal theory, was organized around the following themes and experiential exercises: meditation, mindfulness practice, dream work, stream of consciousness writing, the shadow self, and other arts-based processes. Grounded-theory analysis of group sessions and individual interviews with the participants found that the participants perceived the group to be helpful in developing their self-awareness and self-esteem. While the participants identified different aspects of the group as spiritual, making-meaning was one practice that was consistently described as a spiritually sensitive process. The results of this study in this emergent field are promising and suggestions are provided for future research. PMID:16200326

  9. Application of a theoretical framework to foster a cardiac-diabetes self-management programme.

    PubMed

    Wu, C-J Jo; Chang, A M

    2014-09-01

    This paper analyses and illustrates the application of Bandura's self-efficacy construct to an innovative self-management programme for patients with both type 2 diabetes and coronary heart disease. Using theory as a framework for any health intervention provides a solid and valid foundation for aspects of planning and delivering such an intervention; however, it is reported that many health behaviour intervention programmes are not based upon theory and are consequently limited in their applicability to different populations. The cardiac-diabetes self-management programme has been specifically developed for patients with dual conditions with the strategies for delivering the programme based upon Bandura's self-efficacy theory. This patient group is at greater risk of negative health outcomes than that with a single chronic condition and therefore requires appropriate intervention programmes with solid theoretical foundations that can address the complexity of care required. The cardiac-diabetes self-management programme has been developed incorporating theory, evidence and practical strategies. This paper provides explicit knowledge of the theoretical basis and components of a cardiac-diabetes self-management programme. Such detail enhances the ability to replicate or adopt the intervention in similar or differing populations and/or cultural contexts as it provides in-depth understanding of each element within the intervention. Knowledge of the concepts alone is not sufficient to deliver a successful health programme. Supporting patients to master skills of self-care is essential in order for patients to successfully manage two complex, chronic illnesses. Valuable information has been provided to close the theory-practice gap for more consistent health outcomes, engaging with patients for promoting holistic care within organizational and cultural contexts. © 2014 International Council of Nurses.

  10. Physically based multiscale-viscoplastic model for metals and steel alloys: Theory and computation

    NASA Astrophysics Data System (ADS)

    Abed, Farid H.

    The main requirement of large deformation problems such as high-speed machining, impact, and various primarily metal forming, is to develop constitutive relations which are widely applicable and capable of accounting for complex paths of deformation. Achieving such desirable goals for material like metals and steel alloys involves a comprehensive study of their microstructures and experimental observations under different loading conditions. In general, metal structures display a strong rate- and temperature-dependence when deformed non-uniformly into the inelastic range. This effect has important implications for an increasing number of applications in structural and engineering mechanics. The mechanical behavior of these applications cannot be characterized by classical (rate-independent) continuum theories because they incorporate no 'material length scales'. It is therefore necessary to develop a rate-dependent (viscoplasticity) continuum theory bridging the gap between the classical continuum theories and the microstructure simulations. Physically based vicoplasticity models for different types of metals (body centered cubic, face centered cubic and hexagonal close-packed) and steel alloys are derived in this work for this purpose. We adopt a multi-scale, hierarchical thermodynamic consistent framework to construct the material constitutive relations for the rate-dependent behavior. The concept of thermal activation energy, dislocations interactions mechanisms and the role of dislocations dynamics in crystals are used in the derivation process taking into consideration the contribution of the plastic strain evolution of dislocation density to the flow stress of polycrystalline metals. Material length scales are implicitly introduced into the governing equations through material rate-dependency (viscosity). The proposed framework is implemented into the commercially well-known finite element software ABAQUS. The finite element simulations of material instability problems converge to meaningful results upon further refinement of the finite element mesh due to the successful incorporation of the material length scale in the model formulations. It is shown that the model predicted results compare very well with different experimental data over a wide range of temperatures (77K°-1000K°) and strain rates (10-3-10 4s-1). It is also concluded from this dissertation that the width of localization zone (shear band) exhibits tremendous changes with different initial temperatures (i.e., different initial viscosities and accordingly different length scales).

  11. Multiscale Roughness Influencing on Transport Behavior of Passive Solute through a Single Self-affine Fracture

    NASA Astrophysics Data System (ADS)

    Dou, Z.

    2017-12-01

    In this study, the influence of multi-scale roughness on transport behavior of the passive solute through the self-affine fracture was investigated. The single self-affine fracture was constructed by the successive random additions (SRA) and the fracture roughness was decomposed into two different scales (i.e. large-scale primary roughness and small-scale secondary roughness) by the Wavelet analysis technique. The fluid flow in fractures, which was characterized by the Forchheimer's law, showed the non-linear flow behaviors such as eddies and tortuous streamlines. The results indicated that the small-scale secondary roughness was primarily responsible for the non-linear flow behaviors. The direct simulations of asymptotic passive solute transport represented the Non-Fickian transport characteristics (i.e. early arrivals and long tails) in breakthrough curves (BTCs) and residence time distributions (RTDs) with and without consideration of the secondary roughness. Analysis of multiscale BTCs and RTDs showed that the small-scale secondary roughness played a significant role in enhancing the Non-Fickian transport characteristics. We found that removing small-scale secondary roughness led to the lengthening arrival and shortening tail. The peak concentration in BTCs decreased as the secondary roughness was removed, implying that the secondary could also enhance the solute dilution. The estimated BTCs by the Fickian advection-dispersion equation (ADE) yielded errors which decreased with the small-scale secondary roughness being removed. The mobile-immobile model (MIM) was alternatively implemented to characterize the Non-Fickian transport. We found that the MIM was more capable of estimating Non-Fickian BTCs. The small-scale secondary roughness resulted in the decreasing mobile domain fraction and the increasing mass exchange rate between immobile and mobile domains. The estimated parameters from the MIM could provide insight into the inherent mechanism of roughness-induced Non-Fickian transport behaviors.

  12. What is a photon?

    NASA Astrophysics Data System (ADS)

    Kracklauer, A. F.

    2015-09-01

    The linguistic and epistemological constraints on finding and expressing an answer to the title question are reviewed. First, it is recalled that "fields" are defined in terms of their effect on "test charges" and not in terms of any, even idealistically considered, primary, native innate qualities of their own. Thus, before fields can be discussed, the theorist has to have already available a defined "test particle" and field source. Clearly, neither the test nor the engendering particles can be defined as elements of the considered field without redefining the term "field." Further, the development of a theory as a logical structure (i.e., an internally self consistent conceptual complex) entails that the subject(s) of the theory (the primitive elements) and the rules governing their interrelationships (axioms) cannot be deduced by any logical procedure. They are always hypothesized on the basis of intuition supported by empirical experience. Given hypothesized primitive elements and axioms it is possible, in principle, to test for the 'completion' of the axiom set (i.e., any addition introduces redundancy) and for self consistency. Thus, theory building is limited to establishing the self consistency of a theory's mathematical expression and comparing that with the external, ontic world. Finally, a classical model with an event-by-event simulation of an EPR-B experiment to test a Bell Inequality is described. This model leads to a violation of Bell's limit without any quantum input (no nonlocal interaction nor entanglement), thus substantiating previous critical analysis of the derivation of Bell inequalities. On the basis of this result, it can be concluded that the electromagnetic interaction possesses no preternatural aspects, and that the usual models in terms of waves, fields and photons are all just imaginary constructs with questionable relation to a presumed reality.

  13. Quasiparticle self-consistent GW study of cuprates: electronic structure, model parameters, and the two-band theory for Tc.

    PubMed

    Jang, Seung Woo; Kotani, Takao; Kino, Hiori; Kuroki, Kazuhiko; Han, Myung Joon

    2015-07-24

    Despite decades of progress, an understanding of unconventional superconductivity still remains elusive. An important open question is about the material dependence of the superconducting properties. Using the quasiparticle self-consistent GW method, we re-examine the electronic structure of copper oxide high-Tc materials. We show that QSGW captures several important features, distinctive from the conventional LDA results. The energy level splitting between d(x(2)-y(2)) and d(3z(2)-r(2)) is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission experiments. This agreement with the experiments supports the previously suggested two-band theory for the material dependence of the superconducting transition temperature, Tc.

  14. Multiscale deformation behavior for multilayered steel by in-situ FE-SEM

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Kishimoto, S.; Yin, F.; Kobayashi, M.; Tomimatsu, T.; Kagawa, K.

    2010-03-01

    The multi-scale deformation behavior of multi-layered steel during tensile loading was investigated by in-situ FE-SEM observation coupled with multi-scale pattern. The material used was multi-layered steel sheet consisting of martensitic and austenitic stainless steel layers. Prior to in-situ tensile testing, the multi-scale pattern combined with a grid and random dots were fabricated by electron beam lithography on the polished surface in the area of 1 mm2 to facilitate direct observation of multi-scale deformation. Both of the grids with pitches of 10 μm and a random speckle pattern ranging from 200 nm to a few μm sizes were drawn onto the specimen surface at same location. The electron moiré method was applied to measure the strain distribution in the deformed specimens at a millimeter scale and digital images correlation method was applied to measure the in-plane deformation and strain distribution at a micron meter scale acquired before and after at various increments of straining. The results showed that the plastic deformation in the austenitic stainless steel layer was larger than the martensitic steel layer at millimeter scale. However, heterogeneous intrinsic grain-scale plastic deformation was clearly observed and it increased with increasing the plastic deformation.

  15. Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey; Lodestro, Lynda; Told, Daniel; Merlo, Gabriele; Ricketson, Lee; Campos, Alejandro; Jenko, Frank; Hittinger, Jeffrey

    2017-10-01

    Predictive whole-device simulation models will play an increasingly important role in ensuring the success of fusion experiments and accelerating the development of fusion energy. In the core of tokamak plasmas, a separation of timescales between turbulence and transport makes a single direct simulation of both processes computationally expensive. We present the first demonstration of a multiple-timescale method coupling global gyrokinetic simulations with a transport solver to calculate the self-consistent, steady-state temperature profile. Initial results are highly encouraging, with the coupling method appearing robust to the difficult problem of turbulent fluctuations. The method holds potential for integrating first-principles turbulence simulations into whole-device models and advancing the understanding of global plasma behavior. Work supported by US DOE under Contract DE-AC52-07NA27344 and the Exascale Computing Project (17-SC-20-SC).

  16. Multiscale Capability in Rattlesnake using Contiguous Discontinuous Discretization of Self-Adjoint Angular Flux Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Weixiong; Wang, Yaqi; DeHart, Mark D.

    2016-09-01

    In this report, we present a new upwinding scheme for the multiscale capability in Rattlesnake, the MOOSE based radiation transport application. Comparing with the initial implementation of multiscale utilizing Lagrange multipliers to impose strong continuity of angular flux on interface of in-between subdomains, this scheme does not require the particular domain partitioning. This upwinding scheme introduces discontinuity of angular flux and resembles the classic upwinding technique developed for solving first order transport equation using discontinuous finite element method (DFEM) on the subdomain interfaces. Because this scheme restores the causality of radiation streaming on the interfaces, significant accuracy improvement can bemore » observed with moderate increase of the degrees of freedom comparing with the continuous method over the entire solution domain. Hybrid SN-PN is implemented and tested with this upwinding scheme. Numerical results show that the angular smoothing required by Lagrange multiplier method is not necessary for the upwinding scheme.« less

  17. The Effectiveness of the Harm Reduction Group Therapy Based on Bandura's Self-Efficacy Theory on Risky Behaviors of Drug-Dependent Sex Worker Women.

    PubMed

    Rabani-Bavojdan, Marjan; Rabani-Bavojdan, Mozhgan; Rajabizadeh, Ghodratollah; Kaviani, Nahid; Bahramnejad, Ali; Ghaffari, Zohreh; Shafiei-Bafti, Mehdi

    2017-07-01

    The aim of this study was to investigate the effectiveness of the harm reduction group therapy based on Bandura's self-efficacy theory on risky behaviors of sex workers in Kerman, Iran. A quasi-experimental two-group design (a random selection with pre-test and post-test) was used. A risky behaviors questionnaire was used to collect. The sample was selected among sex workers referring to drop-in centers in Kerman. Subjects were allocated to two groups and were randomly classified into two experimental and control groups. The sample group consisted of 56 subjects. The experimental design was carried out during 12 sessions, and the post-test was performed one month and two weeks after the completion of the sessions. The results were analyzed statistically. By reducing harm based on Bandura's self-efficacy theory, the risky behaviors of the experimental group, including injection behavior, sexual behavior, violence, and damage to the skin, were significantly reduced in the pre-test compared to the post-test (P < 0.010). The harm reduction group therapy based on Bandura's self-efficacy theory can reduce the risky behaviors of sex workers.

  18. Multiscale spatial and temporal estimation of the b-value

    NASA Astrophysics Data System (ADS)

    García-Hernández, R.; D'Auria, L.; Barrancos, J.; Padilla, G.

    2017-12-01

    The estimation of the spatial and temporal variations of the Gutenberg-Richter b-value is of great importance in different seismological applications. One of the problems affecting its estimation is the heterogeneous distribution of the seismicity which makes its estimate strongly dependent upon the selected spatial and/or temporal scale. This is especially important in volcanoes where dense clusters of earthquakes often overlap the background seismicity. Proposed solutions for estimating temporal variations of the b-value include considering equally spaced time intervals or variable intervals having an equal number of earthquakes. Similar approaches have been proposed to image the spatial variations of this parameter as well.We propose a novel multiscale approach, based on the method of Ogata and Katsura (1993), allowing a consistent estimation of the b-value regardless of the considered spatial and/or temporal scales. Our method, named MUST-B (MUltiscale Spatial and Temporal characterization of the B-value), basically consists in computing estimates of the b-value at multiple temporal and spatial scales, extracting for a give spatio-temporal point a statistical estimator of the value, as well as and indication of the characteristic spatio-temporal scale. This approach includes also a consistent estimation of the completeness magnitude (Mc) and of the uncertainties over both b and Mc.We applied this method to example datasets for volcanic (Tenerife, El Hierro) and tectonic areas (Central Italy) as well as an example application at global scale.

  19. Nonadiabatic Dynamics for Electrons at Second-Order: Real-Time TDDFT and OSCF2.

    PubMed

    Nguyen, Triet S; Parkhill, John

    2015-07-14

    We develop a new model to simulate nonradiative relaxation and dephasing by combining real-time Hartree-Fock and density functional theory (DFT) with our recent open-systems theory of electronic dynamics. The approach has some key advantages: it has been systematically derived and properly relaxes noninteracting electrons to a Fermi-Dirac distribution. This paper combines the new dissipation theory with an atomistic, all-electron quantum chemistry code and an atom-centered model of the thermal environment. The environment is represented nonempirically and is dependent on molecular structure in a nonlocal way. A production quality, O(N(3)) closed-shell implementation of our theory applicable to realistic molecular systems is presented, including timing information. This scaling implies that the added cost of our nonadiabatic relaxation model, time-dependent open self-consistent field at second order (OSCF2), is computationally inexpensive, relative to adiabatic propagation of real-time time-dependent Hartree-Fock (TDHF) or time-dependent density functional theory (TDDFT). Details of the implementation and numerical algorithm, including factorization and efficiency, are discussed. We demonstrate that OSCF2 approaches the stationary self-consistent field (SCF) ground state when the gap is large relative to k(b)T. The code is used to calculate linear-response spectra including the effects of bath dynamics. Finally, we show how our theory of finite-temperature relaxation can be used to correct ground-state DFT calculations.

  20. Effective Contraceptive Use: An Exploration of Theory-Based Influences

    ERIC Educational Resources Information Center

    Peyman, N.; Oakley, D.

    2009-01-01

    The purpose of this study was to explore factors that influence oral contraceptive (OC) use among women in Iran using the Theory of Planned Behavior (TPB) and concept of self-efficacy (SE). The study sample consisted of 360 married OC users, aged 18-49 years recruited at public health centers of Mashhad, 900 km east of Tehran. SE had the strongest…

  1. Multiple Intelligences: Theory to Practice in New York City Schools. Grades K-5. [Manual and Video Guide].

    ERIC Educational Resources Information Center

    Leopold, Marjorie

    This program is a self-guided professional development experience that explains how to use multiple intelligences (MI) theory to improve teaching, learning, and achievement in elementary classrooms and schools. The program consists of one manual and six VHS videos, each of which corresponds to one of the six modules listed in the table of…

  2. Microscopic theory of topologically entangled fluids of rigid macromolecules

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.; Schweizer, Kenneth S.

    2011-06-01

    We present a first-principles theory for the slow dynamics of a fluid of entangling rigid crosses of zero excluded volume based on a generalization of the dynamic mean-field approach of Szamel for infinitely thin nonrotating rods. The latter theory exactly includes topological constraints at the two-body collision level and self-consistently renormalizes an effective diffusion tensor to account for many-body effects. Remarkably, it predicts scaling laws consistent with the phenomenological reptation-tube predictions of Doi and Edwards for the long-time diffusion and the localization length in the heavily entangled limit. We generalize this approach to a different macromolecular architecture, infinitely thin three-dimensional crosses, and also extend the range of densities over which a dynamic localization length can be calculated for rods. Ideal gases of nonrotating crosses have recently received attention in computer simulations and are relevant as a simple model of both a strong-glass former and entangling star-branched polymers. Comparisons of our theory with these simulations reveal reasonable agreement for the magnitude and reduced density dependence of the localization length and also the self-diffusion constant if the consequences of local density fluctuations are taken into account.

  3. Gyrokinetic predictions of multiscale transport in a DIII-D ITER baseline discharge

    NASA Astrophysics Data System (ADS)

    Holland, C.; Howard, N. T.; Grierson, B. A.

    2017-06-01

    New multiscale gyrokinetic simulations predict that electron energy transport in a DIII-D ITER baseline discharge with dominant electron heating and low input torque is multiscale in nature, with roughly equal amounts of the electron energy flux Q e coming from long wavelength ion-scale (k y ρ s  <  1) and short wavelength electron-scale (k y ρ s  >  1) fluctuations when the gyrokinetic results match independent power balance calculations. Corresponding conventional ion-scale simulations are able to match the power balance ion energy flux Q i, but systematically underpredict Q e when doing so. Significant nonlinear cross-scale couplings are observed in the multiscale simulations, but the exact simulation predictions are found to be extremely sensitive to variations of model input parameters within experimental uncertainties. Most notably, depending upon the exact value of the equilibrium E  ×  B shearing rate γ E×B used, either enhancement or suppression of the long-wavelength turbulence and transport levels in the multiscale simulations is observed relative to what is predicted by ion-scale simulations. While the enhancement of the long wavelength fluctuations by inclusion of the short wavelength turbulence was previously observed in similar multiscale simulations of an Alcator C-Mod L-mode discharge, these new results show for the first time a complete suppression of long-wavelength turbulence in a multiscale simulation, for parameters at which conventional ion-scale simulation predicts small but finite levels of low-k turbulence and transport consistent with the power balance Q i. Although computational resource limitations prevent a fully rigorous validation assessment of these new results, they provide significant new evidence that electron energy transport in burning plasmas is likely to have a strong multiscale character, with significant nonlinear cross-scale couplings that must be fully understood to predict the performance of those plasmas with confidence.

  4. Differentiating between self and others: an ALE meta-analysis of fMRI studies of self-recognition and theory of mind.

    PubMed

    van Veluw, Susanne J; Chance, Steven A

    2014-03-01

    The perception of self and others is a key aspect of social cognition. In order to investigate the neurobiological basis of this distinction we reviewed two classes of task that study self-awareness and awareness of others (theory of mind, ToM). A reliable task to measure self-awareness is the recognition of one's own face in contrast to the recognition of others' faces. False-belief tasks are widely used to identify neural correlates of ToM as a measure of awareness of others. We performed an activation likelihood estimation meta-analysis, using the fMRI literature on self-face recognition and false-belief tasks. The brain areas involved in performing false-belief tasks were the medial prefrontal cortex (MPFC), bilateral temporo-parietal junction, precuneus, and the bilateral middle temporal gyrus. Distinct self-face recognition regions were the right superior temporal gyrus, the right parahippocampal gyrus, the right inferior frontal gyrus/anterior cingulate cortex, and the left inferior parietal lobe. Overlapping brain areas were the superior temporal gyrus, and the more ventral parts of the MPFC. We confirmed that self-recognition in contrast to recognition of others' faces, and awareness of others involves a network that consists of separate, distinct neural pathways, but also includes overlapping regions of higher order prefrontal cortex where these processes may be combined. Insights derived from the neurobiology of disorders such as autism and schizophrenia are consistent with this notion.

  5. Epitaxially Self-Assembled Alkane Layers for Graphene Electronics.

    PubMed

    Yu, Young-Jun; Lee, Gwan-Hyoung; Choi, Ji Il; Shim, Yoon Su; Lee, Chul-Ho; Kang, Seok Ju; Lee, Sunwoo; Rim, Kwang Taeg; Flynn, George W; Hone, James; Kim, Yong-Hoon; Kim, Philip; Nuckolls, Colin; Ahn, Seokhoon

    2017-02-01

    The epitaxially grown alkane layers on graphene are prepared by a simple drop-casting method and greatly reduce the environmentally driven doping and charge impurities in graphene. Multiscale simulation studies show that this enhancement of charge homogeneity in graphene originates from the lifting of graphene from the SiO 2 surface toward the well-ordered and rigid alkane self-assembled layers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Non-Markovian properties and multiscale hidden Markovian network buried in single molecule time series

    NASA Astrophysics Data System (ADS)

    Sultana, Tahmina; Takagi, Hiroaki; Morimatsu, Miki; Teramoto, Hiroshi; Li, Chun-Biu; Sako, Yasushi; Komatsuzaki, Tamiki

    2013-12-01

    We present a novel scheme to extract a multiscale state space network (SSN) from single-molecule time series. The multiscale SSN is a type of hidden Markov model that takes into account both multiple states buried in the measurement and memory effects in the process of the observable whenever they exist. Most biological systems function in a nonstationary manner across multiple timescales. Combined with a recently established nonlinear time series analysis based on information theory, a simple scheme is proposed to deal with the properties of multiscale and nonstationarity for a discrete time series. We derived an explicit analytical expression of the autocorrelation function in terms of the SSN. To demonstrate the potential of our scheme, we investigated single-molecule time series of dissociation and association kinetics between epidermal growth factor receptor (EGFR) on the plasma membrane and its adaptor protein Ash/Grb2 (Grb2) in an in vitro reconstituted system. We found that our formula successfully reproduces their autocorrelation function for a wide range of timescales (up to 3 s), and the underlying SSNs change their topographical structure as a function of the timescale; while the corresponding SSN is simple at the short timescale (0.033-0.1 s), the SSN at the longer timescales (0.1 s to ˜3 s) becomes rather complex in order to capture multiscale nonstationary kinetics emerging at longer timescales. It is also found that visiting the unbound form of the EGFR-Grb2 system approximately resets all information of history or memory of the process.

  7. Multiscale modeling of lithium ion batteries: thermal aspects

    PubMed Central

    Zausch, Jochen

    2015-01-01

    Summary The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory. PMID:25977870

  8. Health care mergers and acquisitions: implications of robbers cave realistic conflict theory and prisoner's dilemma game theory.

    PubMed

    Creasy, Todd; Kinard, Jerry

    2013-01-01

    Many health care mergers and acquisitions have proven highly successful because of the geographic proximity of the institutions, coalignment strategies, complementary services, and improved financial performance. Other health care mergers and acquisitions, however, have been dismal failures. This article seeks to explain a primary cause of less successful mergers or acquisitions through the prism of a multiscale, iterative prisoner's dilemma that occurs between department managers. Aspects of "Coping Theory," "Resource (Conservation) Theory," and "Social Comparison Theory" are used to analyze the experience of employees charged with making mergers or acquisitions successful. Lastly, this article suggests possible culture clash remedies drawn from the realistic conflict experiment conducted by Muzafer Sherif near Robbers Cave State Park in Oklahoma.

  9. Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems

    NASA Astrophysics Data System (ADS)

    Kovalenko, Andriy

    2014-08-01

    Cellulose Nanocrysals (CNC) is a renewable biodegradable biopolymer with outstanding mechanical properties made from highly abundant natural source, and therefore is very attractive as reinforcing additive to replace petroleum-based plastics in biocomposite materials, foams, and gels. Large-scale applications of CNC are currently limited due to its low solubility in non-polar organic solvents used in existing polymerization technologies. The solvation properties of CNC can be improved by chemical modification of its surface. Development of effective surface modifications has been rather slow because extensive chemical modifications destabilize the hydrogen bonding network of cellulose and deteriorate the mechanical properties of CNC. We employ predictive multiscale theory, modeling, and simulation to gain a fundamental insight into the effect of CNC surface modifications on hydrogen bonding, CNC crystallinity, solvation thermodynamics, and CNC compatibilization with the existing polymerization technologies, so as to rationally design green nanomaterials with improved solubility in non-polar solvents, controlled liquid crystal ordering and optimized extrusion properties. An essential part of this multiscale modeling approach is the statistical- mechanical 3D-RISM-KH molecular theory of solvation, coupled with quantum mechanics, molecular mechanics, and multistep molecular dynamics simulation. The 3D-RISM-KH theory provides predictive modeling of both polar and non-polar solvents, solvent mixtures, and electrolyte solutions in a wide range of concentrations and thermodynamic states. It properly accounts for effective interactions in solution such as steric effects, hydrophobicity and hydrophilicity, hydrogen bonding, salt bridges, buffer, co-solvent, and successfully predicts solvation effects and processes in bulk liquids, solvation layers at solid surface, and in pockets and other inner spaces of macromolecules and supramolecular assemblies. This methodology enables rational design of CNC-based bionanocomposite materials and systems. Furthermore, the 3D-RISM-KH based multiscale modeling addresses the effect of hemicellulose and lignin composition on nanoscale forces that control cell wall strength towards overcoming plant biomass recalcitrance. It reveals molecular forces maintaining the cell wall structure and provides directions for genetic modulation of plants and pretreatment design to render biomass more amenable to processing. We envision integrated biomass valorization based on extracting and decomposing the non-cellulosic components to low molecular weight chemicals and utilizing the cellulose microfibrils to make CNC. This is an important alternative to approaches of full conversion of lignocellulose to biofuels that face challenges arising from the deleterious impact of cellulose crystallinity on enzymatic processing.

  10. Does teacher evaluation based on student performance predict motivation, well-being, and ill-being?

    PubMed

    Cuevas, Ricardo; Ntoumanis, Nikos; Fernandez-Bustos, Juan G; Bartholomew, Kimberley

    2018-06-01

    This study tests an explanatory model based on self-determination theory, which posits that pressure experienced by teachers when they are evaluated based on their students' academic performance will differentially predict teacher adaptive and maladaptive motivation, well-being, and ill-being. A total of 360 Spanish physical education teachers completed a multi-scale inventory. We found support for a structural equation model that showed that perceived pressure predicted teacher autonomous motivation negatively, predicted amotivation positively, and was unrelated to controlled motivation. In addition, autonomous motivation predicted vitality positively and exhaustion negatively, whereas controlled motivation and amotivation predicted vitality negatively and exhaustion positively. Amotivation significantly mediated the relation between pressure and vitality and between pressure and exhaustion. The results underline the potential negative impact of pressure felt by teachers due to this type of evaluation on teacher motivation and psychological health. Copyright © 2018 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  11. Multiscale Region-Level VHR Image Change Detection via Sparse Change Descriptor and Robust Discriminative Dictionary Learning

    PubMed Central

    Xu, Yuan; Ding, Kun; Huo, Chunlei; Zhong, Zisha; Li, Haichang; Pan, Chunhong

    2015-01-01

    Very high resolution (VHR) image change detection is challenging due to the low discriminative ability of change feature and the difficulty of change decision in utilizing the multilevel contextual information. Most change feature extraction techniques put emphasis on the change degree description (i.e., in what degree the changes have happened), while they ignore the change pattern description (i.e., how the changes changed), which is of equal importance in characterizing the change signatures. Moreover, the simultaneous consideration of the classification robust to the registration noise and the multiscale region-consistent fusion is often neglected in change decision. To overcome such drawbacks, in this paper, a novel VHR image change detection method is proposed based on sparse change descriptor and robust discriminative dictionary learning. Sparse change descriptor combines the change degree component and the change pattern component, which are encoded by the sparse representation error and the morphological profile feature, respectively. Robust change decision is conducted by multiscale region-consistent fusion, which is implemented by the superpixel-level cosparse representation with robust discriminative dictionary and the conditional random field model. Experimental results confirm the effectiveness of the proposed change detection technique. PMID:25918748

  12. Effects of Computer Support, Collaboration, and Time Lag on Performance Self-Efficacy and Transfer of Training: A Longitudinal Meta-Analysis

    ERIC Educational Resources Information Center

    Gegenfurtner, Andreas; Veermans, Koen; Vauras, Marja

    2013-01-01

    This meta-analysis (29 studies, k = 33, N = 4158) examined the longitudinal development of the relationship between performance self-efficacy and transfer before and after training. A specific focus was on training programs that afforded varying degrees of computer-supported collaborative learning (CSCL). Consistent with social cognitive theory,…

  13. Trainee Teachers' Mental Effort in Learning Spreadsheet through Self-Instructional Module Based on Cognitive Load Theory

    ERIC Educational Resources Information Center

    Tasir, Zaidatun; Pin, Ong Chiek

    2012-01-01

    A printed module should consist of media elements, namely text and pictures, which are self-instructional and could cater to the needs of the user. However, the typical platform of such visualization frequently overloads the limited working memory causing split attention and redundancy effects. The purpose of this study is to design and develop a…

  14. Development and study of the displaced foam dispersion methodology for the manufacture of multiscale/hybrid composites

    NASA Astrophysics Data System (ADS)

    McCrary-Dennis, Micah C. L.

    Incorporating nanostructured functional constituents within polymers has become extensive in processes and products for manufacturing composites. The conception of carbon nanotubes (CNTs) and their heralded attributes yielding property enhancements to the carrier system is leading many industries and research endeavors. Displaced Foam Dispersion (DFD) methodology is a novel and effective approach to facilitating the incorporation of CNTs within fiber reinforced polymer composites (FRPC). The methodology consists of six separate solubility phases that lead to the manufacture of CNT-FRPCs (also termed hybrid/multiscale composites). This study was primarily initiated to characterize the interaction parameters of nanomaterials (multiwall carbon nanotubes), polymers (polystyrene), and solvents (dimethyl formamide (DMF) and acetone) in the current paradigm of the DFD materials manufacture. Secondly, we sought to illustrate the theoretical potential for the methodology to be used in conjunction with other nanomaterial-polymer-solvent systems. Herein, the theory of Hansen's solubility parameters (HSP) is employed to explain the DFD constituents manufacturing combination parameters and aid in the explanation of the experimental results. The results illustrate quantitative values for the relative energy differences between each polymer-solvent system. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used to characterize the multiwalled carbon nanotubes (MWCNTs) in each of the solubility stages and culminates with an indication of good dispersion potential in the final multiscale composite. Additionally, acetone absorption, evaporation mass loss and retention are reported for the sorbed plasticized PS-CNT (CNTaffy) nanocomposites that has successfully achieved up through approximately 60 weight percent loading. The findings indicate that as CNT loading percentage increases the acetone absorbency also increases, but the materials retention of acetone over time decreases. This directly influences the manufacturability of the porous polymer nanocomposite (P-PNC) in the DFD methodology. Localized interlaminar CNT enrichment was achieved through 60 wt. % loading within the P-PNC and verified under two-electrode electrical conductivity testing of the final multiscale composite. The electrical properties of low weight percent (approximately 0.15 - 2.5 wt. %) nanomaterials show a decreasing trend in the materials' resistivity that indicates the ability to become increasingly conductive with increasing CNT loadings. Finally, the mechanical properties will show evidence of toughness, increased strain to failure, and the potential for greater energy absorption.

  15. Using Item Response Theory to Develop Measures of Acquisitive and Protective Self-Monitoring From the Original Self-Monitoring Scale.

    PubMed

    Wilmot, Michael P; Kostal, Jack W; Stillwell, David; Kosinski, Michal

    2017-07-01

    For the past 40 years, the conventional univariate model of self-monitoring has reigned as the dominant interpretative paradigm in the literature. However, recent findings associated with an alternative bivariate model challenge the conventional paradigm. In this study, item response theory is used to develop measures of the bivariate model of acquisitive and protective self-monitoring using original Self-Monitoring Scale (SMS) items, and data from two large, nonstudent samples ( Ns = 13,563 and 709). Results indicate that the new acquisitive (six-item) and protective (seven-item) self-monitoring scales are reliable, unbiased in terms of gender and age, and demonstrate theoretically consistent relations to measures of personality traits and cognitive ability. Additionally, by virtue of using original SMS items, previously collected responses can be reanalyzed in accordance with the alternative bivariate model. Recommendations for the reanalysis of archival SMS data, as well as directions for future research, are provided.

  16. GW and Bethe-Salpeter study of small water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blase, Xavier, E-mail: xavier.blase@neel.cnrs.fr; Boulanger, Paul; Bruneval, Fabien

    We study within the GW and Bethe-Salpeter many-body perturbation theories the electronic and optical properties of small (H{sub 2}O){sub n} water clusters (n = 1-6). Comparison with high-level CCSD(T) Coupled-Cluster at the Single Double (Triple) levels and ADC(3) Green’s function third order algebraic diagrammatic construction calculations indicates that the standard non-self-consistent G{sub 0}W{sub 0}@PBE or G{sub 0}W{sub 0}@PBE0 approaches significantly underestimate the ionization energy by about 1.1 eV and 0.5 eV, respectively. Consequently, the related Bethe-Salpeter lowest optical excitations are found to be located much too low in energy when building transitions from a non-self-consistent G{sub 0}W{sub 0} description ofmore » the quasiparticle spectrum. Simple self-consistent schemes, with update of the eigenvalues only, are shown to provide a weak dependence on the Kohn-Sham starting point and a much better agreement with reference calculations. The present findings rationalize the theory to experiment possible discrepancies observed in previous G{sub 0}W{sub 0} and Bethe-Salpeter studies of bulk water. The increase of the optical gap with increasing cluster size is consistent with the evolution from gas to dense ice or water phases and results from an enhanced screening of the electron-hole interaction.« less

  17. Motivation in rehabilitation and acquired brain injury: can theory help us understand it?

    PubMed

    Kusec, Andrea; Velikonja, Diana; DeMatteo, Carol; Harris, Jocelyn E

    2018-04-25

    In acquired brain injury (ABI) populations, low motivation to engage in rehabilitation is associated with poor rehabilitation outcomes. Motivation in ABI is thought to be influenced by internal and external factors. This is consistent with Self-determination Theory, which posits that motivation is intrinsic and extrinsic. This paper discusses the benefit of using Self-determination Theory to guide measurement of motivation in ABI. Using a narrative review of the Self-determination Theory literature and clinical rehabilitation research, this paper discusses the unique role intrinsic and extrinsic motivation has in healthcare settings and the importance of understanding both when providing rehabilitation in ABI. Based on the extant literature, it is possible that two independently developed measures of motivation for ABI populations, the Brain Injury Rehabilitation Trust Motivation Questionnaire-Self and the Motivation for Traumatic Brain Injury Rehabilitation Questionnaire, may assess intrinsic and extrinsic motivation, respectively. Intrinsic and extrinsic motivation in ABI may be two equally important but independent factors that could provide a comprehensive understanding of motivation in individuals with ABI. This increased understanding could help facilitate behavioural approaches in rehabilitation. Implications for Rehabilitation Conceptualization of motivation in ABI would benefit from drawing upon Self-determination Theory. External factors of motivation such as the therapeutic environment or social support should be carefully considered in rehabilitation in order to increase engagement. Assessing motivation as a dual rather than a global construct may provide more precise information about the extent to which a patient is motivated.

  18. Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations

    PubMed Central

    Brocke, Ekaterina; Bhalla, Upinder S.; Djurfeldt, Mikael; Hellgren Kotaleski, Jeanette; Hanke, Michael

    2016-01-01

    Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience. PMID:27672364

  19. Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations.

    PubMed

    Brocke, Ekaterina; Bhalla, Upinder S; Djurfeldt, Mikael; Hellgren Kotaleski, Jeanette; Hanke, Michael

    2016-01-01

    Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience.

  20. Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers

    PubMed Central

    Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J.

    2013-01-01

    Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior. PMID:24062459

  1. Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers.

    PubMed

    Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J

    2013-10-08

    Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior.

  2. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States.

    PubMed

    Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao

    2017-09-21

    To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.

  3. Nonperturbative finite-temperature Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Cyrol, Anton K.; Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils

    2018-03-01

    We present nonperturbative correlation functions in Landau-gauge Yang-Mills theory at finite temperature. The results are obtained from the functional renormalisation group within a self-consistent approximation scheme. In particular, we compute the magnetic and electric components of the gluon propagator, and the three- and four-gluon vertices. We also show the ghost propagator and the ghost-gluon vertex at finite temperature. Our results for the propagators are confronted with lattice simulations and our Debye mass is compared to hard thermal loop perturbation theory.

  4. A Matter of Scale: Multi-Scale Ethnographic Research on Education in the United States

    ERIC Educational Resources Information Center

    Eisenhart, Margaret

    2017-01-01

    In recent years, cultural anthropologists conducting educational ethnographies in the US have pursued some new methodological approaches. These new approaches can be attributed to advances in cultural theory, evolving norms of research practice, and the affordances of new technologies. In this article, I review three such approaches under the…

  5. Using an Ecological Land Hierarchy to Predict Seasonal-Wetland Abundance in Upland Forests

    Treesearch

    Brian J. Palik; Richard Buech; Leanne Egeland

    2003-01-01

    Hierarchy theory, when applied to landscapes, predicts that broader-scale ecosystems constrain the development of finer-scale, nested ecosystems. This prediction finds application in hierarchical land classifications. Such classifications typically apply to physiognomically similar ecosystems, or ecological land units, e.g., a set of multi-scale forest ecosystems. We...

  6. Spatial vision processes: From the optical image to the symbolic structures of contour information

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1988-01-01

    The significance of machine and natural vision is discussed together with the need for a general approach to image acquisition and processing aimed at recognition. An exploratory scheme is proposed which encompasses the definition of spatial primitives, intrinsic image properties and sampling, 2-D edge detection at the smallest scale, the construction of spatial primitives from edges, and the isolation of contour information from textural information. Concepts drawn from or suggested by natural vision at both perceptual and physiological levels are relied upon heavily to guide the development of the overall scheme. The scheme is intended to provide a larger context in which to place the emerging technology of detector array focal-plane processors. The approach differs from many recent efforts in edge detection and image coding by emphasizing smallest scale edge detection as a foundation for multi-scale symbolic processing while diminishing somewhat the importance of image convolutions with multi-scale edge operators. Cursory treatments of information theory illustrate that the direct application of this theory to structural information in images could not be realized.

  7. Multiscale Electrodynamics/Time-Dependent Density Functional Theory Modeling of Coupled Plasmon/Molecule Excitations

    NASA Astrophysics Data System (ADS)

    Lopata, Kenneth; Smith, Holden

    The coupled dynamics of molecular chromophores and plasmons at surface of metal nanostructures are important for a range of processes such as molecular sensing, light harvesting, and near-field photochemistry. Modeling these dynamics from first principles, however, is challenging, as the large system sizes precludes a purely quantum mechanical treatment. In this talk I will present an approach based on propagating the plasmonic currents and fields using electrodynamics (finite-difference time-domain) with each chromophore described using an isolated quantum sub-region embedded in the overall classical background. This approach can be readily parallelized over these quantum regions, which enables large multiscale simulations of tens or hundreds of dyes, each of which is described individually by real-time time-dependent density functional theory. Application to gold nanoparticles coated with malachite green and rhodamine 6G monolayers shows good agreement with experimentally measured coupling spectra, including the polariton peaks, as well as the plasmon and molecular depletions. This research was supported by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  8. Multiscale Homogenization Theory: An Analysis Tool for Revealing Mechanical Design Principles in Bone and Bone Replacement Materials

    NASA Astrophysics Data System (ADS)

    Hellmich, Christian; Fritsch, Andreas; Dormieux, Luc

    Biomimetics deals with the application of nature-made "design solutions" to the realm of engineering. In the quest to understand mechanical implications of structural hierarchies found in biological materials, multiscale mechanics may hold the key to understand "building plans" inherent to entire material classes, here bone and bone replacement materials. Analyzing a multitude of biophysical hierarchical and biomechanical experiments through homogenization theories for upscaling stiffness and strength properties reveals the following design principles: The elementary component "collagen" induces, right at the nanolevel, the mechanical anisotropy of bone materials, which is amplified by fibrillar collagen-based structures at the 100-nm scale, and by pores in the micrometer-to-millimeter regime. Hydroxyapatite minerals are poorly organized, and provide stiffness and strength in a quasi-brittle manner. Water layers between hydroxyapatite crystals govern the inelastic behavior of the nanocomposite, unless the "collagen reinforcement" breaks. Bone replacement materials should mimic these "microstructural mechanics" features as closely as possible if an imitation of the natural form of bone is desired (Gebeshuber et al., Adv Mater Res 74:265-268, 2009).

  9. A simple derivation of the exact quasiparticle theory and its extension to arbitrary initial excited eigenstates.

    PubMed

    Ohno, Kaoru; Ono, Shota; Isobe, Tomoharu

    2017-02-28

    The quasiparticle (QP) energies, which are minus of the energies required by removing or produced by adding one electron from/to the system, corresponding to the photoemission or inverse photoemission (PE/IPE) spectra, are determined together with the QP wave functions, which are not orthonormal and even not linearly independent but somewhat similar to the normal spin orbitals in the theory of the configuration interaction, by self-consistently solving the QP equation coupled with the equation for the self-energy. The electron density, kinetic, and all interaction energies can be calculated using the QP wave functions. We prove in a simple way that the PE/IPE spectroscopy and therefore this QP theory can be applied to an arbitrary initial excited eigenstate. In this proof, we show that the energy-dependence of the self-energy is not an essential difficulty, and the QP picture holds exactly if there is no relaxation mechanism in the system. The validity of the present theory for some initial excited eigenstates is tested using the one-shot GW approximation for several atoms and molecules.

  10. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields.

    PubMed

    Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F; Harger, Matthew; Torabifard, Hedieh; Cisneros, G Andrés; Schnieders, Michael J; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y; Ponder, Jay W; Piquemal, Jean-Philip

    2018-01-28

    We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed.

  11. The ideas behind self-consistent expansion

    NASA Astrophysics Data System (ADS)

    Schwartz, Moshe; Katzav, Eytan

    2008-04-01

    In recent years we have witnessed a growing interest in various non-equilibrium systems described in terms of stochastic nonlinear field theories. In some of those systems, like KPZ and related models, the interesting behavior is in the strong coupling regime, which is inaccessible by traditional perturbative treatments such as dynamical renormalization group (DRG). A useful tool in the study of such systems is the self-consistent expansion (SCE), which might be said to generate its own 'small parameter'. The self-consistent expansion (SCE) has the advantage that its structure is just that of a regular expansion, the only difference is that the simple system around which the expansion is performed is adjustable. The purpose of this paper is to present the method in a simple and understandable way that hopefully will make it accessible to a wider public working on non-equilibrium statistical physics.

  12. [Effects of a Multi-disciplinary Approached, Empowerment Theory Based Self-management Intervention in Older Adults with Chronic Illness].

    PubMed

    Park, Chorong; Song, Misoon; Cho, Belong; Lim, Jaeyoung; Song, Wook; Chang, Heekyung; Park, Yeon-Hwan

    2015-04-01

    The purpose of this study was to develop a multi-disciplinary self-management intervention based on empowerment theory and to evaluate the effectiveness of the intervention for older adults with chronic illness. A randomized controlled trial design was used with 43 Korean older adults with chronic illness (Experimental group=22, Control group=21). The intervention consisted of two phases: (1) 8-week multi-disciplinary, team guided, group-based health education, exercise session, and individual empowerment counseling, (2) 16-week self-help group activities including weekly exercise and group discussion to maintain acquired self-management skills and problem-solving skills. Baseline, 8-week, and 24-week assessments measured health empowerment, exercise self-efficacy, physical activity, and physical function. Health empowerment, physical activity, and physical function in the experimental group increased significantly compared to the control group over time. Exercise self-efficacy significantly increased in experimental group over time but there was no significant difference between the two groups. The self-management program based on empowerment theory improved health empowerment, physical activity, and physical function in older adults. The study finding suggests that a health empowerment strategy may be an effective approach for older adults with multiple chronic illnesses in terms of achieving a sense of control over their chronic illness and actively engaging self-management.

  13. Self-Consistent Field Theory of Gaussian Ring Polymers

    NASA Astrophysics Data System (ADS)

    Kim, Jaeup; Yang, Yong-Biao; Lee, Won Bo

    2012-02-01

    Ring polymers, being free from chain ends, have fundamental importance in understanding the polymer statics and dynamics which are strongly influenced by the chain end effects. At a glance, their theoretical treatment may not seem particularly difficult, but the absence of chain ends and the topological constraints make the problem non-trivial, which results in limited success in the analytical or semi-analytical formulation of ring polymer theory. Here, I present a self-consistent field theory (SCFT) formalism of Gaussian (topologically unconstrained) ring polymers for the first time. The resulting static property of homogeneous and inhomogeneous ring polymers are compared with the random phase approximation (RPA) results. The critical point for ring homopolymer system is exactly the same as the linear polymer case, χN = 2, since a critical point does not depend on local structures of polymers. The critical point for ring diblock copolymer melts is χN 17.795, which is approximately 1.7 times of that of linear diblock copolymer melts, χN 10.495. The difference is due to the ring structure constraint.

  14. Self-consistent Green's function embedding for advanced electronic structure methods based on a dynamical mean-field concept

    NASA Astrophysics Data System (ADS)

    Chibani, Wael; Ren, Xinguo; Scheffler, Matthias; Rinke, Patrick

    2016-04-01

    We present an embedding scheme for periodic systems that facilitates the treatment of the physically important part (here a unit cell or a supercell) with advanced electronic structure methods, that are computationally too expensive for periodic systems. The rest of the periodic system is treated with computationally less demanding approaches, e.g., Kohn-Sham density-functional theory, in a self-consistent manner. Our scheme is based on the concept of dynamical mean-field theory formulated in terms of Green's functions. Our real-space dynamical mean-field embedding scheme features two nested Dyson equations, one for the embedded cluster and another for the periodic surrounding. The total energy is computed from the resulting Green's functions. The performance of our scheme is demonstrated by treating the embedded region with hybrid functionals and many-body perturbation theory in the GW approach for simple bulk systems. The total energy and the density of states converge rapidly with respect to the computational parameters and approach their bulk limit with increasing cluster (i.e., computational supercell) size.

  15. Computational aspects in mechanical modeling of the articular cartilage tissue.

    PubMed

    Mohammadi, Hadi; Mequanint, Kibret; Herzog, Walter

    2013-04-01

    This review focuses on the modeling of articular cartilage (at the tissue level), chondrocyte mechanobiology (at the cell level) and a combination of both in a multiscale computation scheme. The primary objective is to evaluate the advantages and disadvantages of conventional models implemented to study the mechanics of the articular cartilage tissue and chondrocytes. From monophasic material models as the simplest form to more complicated multiscale theories, these approaches have been frequently used to model articular cartilage and have contributed significantly to modeling joint mechanics, addressing and resolving numerous issues regarding cartilage mechanics and function. It should be noted that attentiveness is important when using different modeling approaches, as the choice of the model limits the applications available. In this review, we discuss the conventional models applicable to some of the mechanical aspects of articular cartilage such as lubrication, swelling pressure and chondrocyte mechanics and address some of the issues associated with the current modeling approaches. We then suggest future pathways for a more realistic modeling strategy as applied for the simulation of the mechanics of the cartilage tissue using multiscale and parallelized finite element method.

  16. Multiple Intelligences: Theory to Practice in New York City Schools. Middle School/High School. [Manual and Video Guide].

    ERIC Educational Resources Information Center

    Leopold, Marjorie

    This program is a self-guided professional development experience that explains how to use multiple intelligences (MI) theory to improve teaching, learning, and achievement in middle and high school classrooms. The program consists of one manual and six VHS videos, each of which corresponds to one of the six modules listed in the table of…

  17. Personal investment, culture and learning: insights into school achievement across Anglo, Aboriginal, Asian and Lebanese students in Australia.

    PubMed

    McInerney, Dennis M

    2008-10-01

    Personal investment theory is a multifaceted theory of motivation, in which three key components: achievement goals (mastery, performance, social, and extrinsic), sense of self (sense of purpose, self-reliance, negative self-concept, positive self-concept), and facilitating conditions (parent support, teacher support, peer support), engage students in the process of learning. Four cultural groups (Anglo Australian, n = 852, Aboriginal Australian, n = 343, Lebanese Australian, n = 372, and Asian Australian, n = 283) of students were compared on these personal investment components and on several outcome measures (engagement, affect, achievement, participation). A series of MANOVAs, followed up by univariate tests, indicated ethnic differences and similarities in the endorsement of the personal investment theory components as well as in the outcome measures. Multiple regression analyses showed that each of the three sets of predictors (achievement goals, sense of self, facilitating conditions) explained a significant amount of the variance in almost all of the outcome measures. Across cultural groups, students' mastery goal and sense of purpose were consistently found to be significant predictors of their intention for further education, positive affect for schooling, and valuing of schooling.

  18. UCLA IGPP Space Plasma Simulation Group

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the past 10 years the UCLA IGPP Space Plasma Simulation Group has pursued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: the solar wind, the low- and high-latitude magnetospheric boundary, the near-Earth and distant magnetotail, and the auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations.

  19. Influence of Chirality in Ordered Block Copolymer Phases

    NASA Astrophysics Data System (ADS)

    Prasad, Ishan; Grason, Gregory

    2015-03-01

    Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.

  20. Multi-scale gyrokinetic simulations of an Alcator C-Mod, ELM-y H-mode plasma

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Rodriguez-Fernandez, P.; Candy, J.; Creely, A. J.

    2018-01-01

    High fidelity, multi-scale gyrokinetic simulations capable of capturing both ion ({k}θ {ρ }s∼ { O }(1.0)) and electron-scale ({k}θ {ρ }e∼ { O }(1.0)) turbulence were performed in the core of an Alcator C-Mod ELM-y H-mode discharge which exhibits reactor-relevant characteristics. These simulations, performed with all experimental inputs and realistic ion to electron mass ratio ({({m}i/{m}e)}1/2=60.0) provide insight into the physics fidelity that may be needed for accurate simulation of the core of fusion reactor discharges. Three multi-scale simulations and series of separate ion and electron-scale simulations performed using the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) are presented. As with earlier multi-scale results in L-mode conditions (Howard et al 2016 Nucl. Fusion 56 014004), both ion and multi-scale simulations results are compared with experimentally inferred ion and electron heat fluxes, as well as the measured values of electron incremental thermal diffusivities—indicative of the experimental electron temperature profile stiffness. Consistent with the L-mode results, cross-scale coupling is found to play an important role in the simulation of these H-mode conditions. Extremely stiff ion-scale transport is observed in these high-performance conditions which is shown to likely play and important role in the reproduction of measurements of perturbative transport. These results provide important insight into the role of multi-scale plasma turbulence in the core of reactor-relevant plasmas and establish important constraints on the the fidelity of models needed for predictive simulations.

  1. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-13

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  2. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  3. Deep Spatial-Temporal Joint Feature Representation for Video Object Detection.

    PubMed

    Zhao, Baojun; Zhao, Boya; Tang, Linbo; Han, Yuqi; Wang, Wenzheng

    2018-03-04

    With the development of deep neural networks, many object detection frameworks have shown great success in the fields of smart surveillance, self-driving cars, and facial recognition. However, the data sources are usually videos, and the object detection frameworks are mostly established on still images and only use the spatial information, which means that the feature consistency cannot be ensured because the training procedure loses temporal information. To address these problems, we propose a single, fully-convolutional neural network-based object detection framework that involves temporal information by using Siamese networks. In the training procedure, first, the prediction network combines the multiscale feature map to handle objects of various sizes. Second, we introduce a correlation loss by using the Siamese network, which provides neighboring frame features. This correlation loss represents object co-occurrences across time to aid the consistent feature generation. Since the correlation loss should use the information of the track ID and detection label, our video object detection network has been evaluated on the large-scale ImageNet VID dataset where it achieves a 69.5% mean average precision (mAP).

  4. Algebraic diagrammatic construction formalism with three-body interactions

    NASA Astrophysics Data System (ADS)

    Raimondi, Francesco; Barbieri, Carlo

    2018-05-01

    Background: Self-consistent Green's function theory has recently been extended to the basic formalism needed to account for three-body interactions [Carbone, Cipollone, Barbieri, Rios, and Polls, Phys. Rev. C 88, 054326 (2013), 10.1103/PhysRevC.88.054326]. The contribution of three-nucleon forces has so far been included in ab initio calculations on nuclear matter and finite nuclei only as averaged two-nucleon forces. Purpose: We derive the working equations for all possible two- and three-nucleon terms that enter the expansion of the self-energy up to the third order, thus including the interaction-irreducible (i.e., not averaged) diagrams with three-nucleon forces that have been previously neglected. Methods: We employ the algebraic diagrammatic construction up to the third order as an organization scheme for generating a nonperturbative self-energy, in which ring (particle-hole) and ladder (particle-particle) diagrams are resummed to all orders. Results: We derive expressions of the static and dynamic self-energy up to the third order, by taking into account the set of diagrams required when either the skeleton or nonskeleton expansions of the single-particle propagator are assumed. A hierarchy of importance among different diagrams is revealed, and a particular emphasis is given to a third-order diagram [see Fig. 2(c)] that is expected to play a significant role among those featuring an interaction-irreducible three-nucleon force. Conclusion: A consistent formalism to resum at infinite order correlations induced by three-nucleon forces in the self-consistent Green's function theory is now available and ready to be implemented in the many-body solvers.

  5. Interventions based on self-management of well-being theory: pooling data to demonstrate mediation and ceiling effects, and to compare formats.

    PubMed

    Goedendorp, M M; Steverink, N

    2017-09-01

    Interventions based on self-management of well-being (SMW) theory have shown positive effects, but additional questions remain: (1) Are improvements in well-being, as induced by the interventions, mediated by improved self-management ability (SMA)? (2) Do the interventions show ceiling effects? (3) Is a particular format of SMW intervention (individual, group, or self-help) more effective? Data of three randomized controlled trials were pooled. The greater part of the sample (N = 445) consisted of single older females. A bootstrap analysis was performed to test for mediation. Regression analyses with interaction effects were performed to test for ceiling effects. Controlled and transformed effect sizes (proportion of maximum change) were calculated to compare formats. There was a full significant mediation of well-being by SMA. A significant interaction (ceiling) effect was found on well-being, but not on SMA. The controlled effect sizes of the raw scores were small to medium (.04-.49), and were small to large after transformation (.41-.73). None of the intervention formats was more effective. Support for SMW theory was found, i.e. increasing self-management ability lead to improved well-being. Some ceiling effect was found. We conclude that various SMW interventions formats can improve self-management abilities and well-being with medium effects.

  6. Cognitive vulnerabilities and depression versus other psychopathology symptoms and diagnoses in early adolescence.

    PubMed

    Alloy, Lauren B; Black, Shimrit K; Young, Mathew E; Goldstein, Kim E; Shapero, Benjamin G; Stange, Jonathan P; Boccia, Angelo S; Matt, Lindsey M; Boland, Elaine M; Moore, Lauren C; Abramson, Lyn Y

    2012-01-01

    We examined the concurrent associations between multiple cognitive vulnerabilities to depression featured in hopelessness theory, Beck's theory, and response styles theory and depressive symptoms and diagnoses in a sample of early adolescents. We also examined the specificity of these cognitive vulnerabilities to depression versus anxiety and externalizing psychopathology, controlling for co-occurring symptoms and diagnoses. Male and female, Caucasian and African American, 12- to 13-year-old adolescents were assessed in a cross-sectional design. Cognitive vulnerabilities of hopelessness, inferential style, rumination, and self-referent information processing were assessed with self-reports and behavioral tasks. Symptoms and diagnoses of depressive, anxiety, and externalizing disorders were assessed with self-report questionnaires and diagnostic interviews. Hopelessness exhibited the greatest specificity to depressive symptoms and diagnoses, whereas negative inferential styles, rumination, and negative self-referent information processing were associated with both depressive and anxiety symptoms and diagnoses and, in some cases, with externalizing disorders. Consistent with cognitive theories of depression, hopelessness, negative inferential styles, rumination, and negative self-referent information processing were associated with depressive symptoms and diagnoses. However, with the exception of hopelessness, most of the remaining cognitive vulnerabilities were not specific to depression. With further maturation of our sample, these cognitive vulnerabilities may become more specific to depression as cognitive styles further develop and consolidate, the rates of depression increase, and individuals' presentations of psychopathology become more differentiated.

  7. Cognitive Vulnerabilities and Depression versus Other Psychopathology Symptoms and Diagnoses in Early Adolescence

    PubMed Central

    Alloy, Lauren B.; Black, Shimrit K.; Young, Mathew E.; Goldstein, Kim E.; Shapero, Benjamin G.; Stange, Jonathan P.; Boccia, Angelo S.; Matt, Lindsey M.; Boland, Elaine M.; Moore, Lauren C.; Abramson, Lyn Y.

    2012-01-01

    Objective We examined the concurrent associations between multiple cognitive vulnerabilities to depression featured in Hopelessness Theory, Beck’s Theory, and Response Styles Theory and depressive symptoms and diagnoses in a sample of early adolescents. We also examined the specificity of these cognitive vulnerabilities to depression versus anxiety and externalizing psychopathology, controlling for co-occurring symptoms and diagnoses. Method Male and female, Caucasian and African-American, 12–13 year old adolescents were assessed in a cross-sectional design. Cognitive vulnerabilities of hopelessness, inferential style, rumination, and self-referent information processing were assessed with self-reports and behavioral tasks. Symptoms and diagnoses of depressive, anxiety, and externalizing disorders were assessed with self-report questionnaires and diagnostic interviews. Results Hopelessness exhibited the greatest specificity to depressive symptoms and diagnoses, whereas negative inferential styles, rumination, and negative self-referent information processing were associated with both depressive and anxiety symptoms and diagnoses and, in some cases, with externalizing disorders. Conclusions Consistent with cognitive theories of depression, hopelessness, negative inferential styles, rumination, and negative self-referent information processing were associated with depressive symptoms and diagnoses. However, with the exception of hopelessness, most of the remaining cognitive vulnerabilities were not specific to depression. With further maturation of our sample, these cognitive vulnerabilities may become more specific to depression as cognitive styles further develop and consolidate, the rates of depression increase, and individuals’ presentations of psychopathology become more differentiated. PMID:22853629

  8. Multiscale equation-free algorithms for molecular dynamics

    NASA Astrophysics Data System (ADS)

    Abi Mansour, Andrew

    Molecular dynamics is a physics-based computational tool that has been widely employed to study the dynamics and structure of macromolecules and their assemblies at the atomic scale. However, the efficiency of molecular dynamics simulation is limited because of the broad spectrum of timescales involved. To overcome this limitation, an equation-free algorithm is presented for simulating these systems using a multiscale model cast in terms of atomistic and coarse-grained variables. Both variables are evolved in time in such a way that the cross-talk between short and long scales is preserved. In this way, the coarse-grained variables guide the evolution of the atom-resolved states, while the latter provide the Newtonian physics for the former. While the atomistic variables are evolved using short molecular dynamics runs, time advancement at the coarse-grained level is achieved with a scheme that uses information from past and future states of the system while accounting for both the stochastic and deterministic features of the coarse-grained dynamics. To complete the multiscale cycle, an atom-resolved state consistent with the updated coarse-grained variables is recovered using algorithms from mathematical optimization. This multiscale paradigm is extended to nanofluidics using concepts from hydrodynamics, and it is demonstrated for macromolecular and nanofluidic systems. A toolkit is developed for prototyping these algorithms, which are then implemented within the GROMACS simulation package and released as an open source multiscale simulator.

  9. Towards Personalized Cardiology: Multi-Scale Modeling of the Failing Heart

    PubMed Central

    Amr, Ali; Neumann, Dominik; Georgescu, Bogdan; Seegerer, Philipp; Kamen, Ali; Haas, Jan; Frese, Karen S.; Irawati, Maria; Wirsz, Emil; King, Vanessa; Buss, Sebastian; Mereles, Derliz; Zitron, Edgar; Keller, Andreas; Katus, Hugo A.; Comaniciu, Dorin; Meder, Benjamin

    2015-01-01

    Background Despite modern pharmacotherapy and advanced implantable cardiac devices, overall prognosis and quality of life of HF patients remain poor. This is in part due to insufficient patient stratification and lack of individualized therapy planning, resulting in less effective treatments and a significant number of non-responders. Methods and Results State-of-the-art clinical phenotyping was acquired, including magnetic resonance imaging (MRI) and biomarker assessment. An individualized, multi-scale model of heart function covering cardiac anatomy, electrophysiology, biomechanics and hemodynamics was estimated using a robust framework. The model was computed on n=46 HF patients, showing for the first time that advanced multi-scale models can be fitted consistently on large cohorts. Novel multi-scale parameters derived from the model of all cases were analyzed and compared against clinical parameters, cardiac imaging, lab tests and survival scores to evaluate the explicative power of the model and its potential for better patient stratification. Model validation was pursued by comparing clinical parameters that were not used in the fitting process against model parameters. Conclusion This paper illustrates how advanced multi-scale models can complement cardiovascular imaging and how they could be applied in patient care. Based on obtained results, it becomes conceivable that, after thorough validation, such heart failure models could be applied for patient management and therapy planning in the future, as we illustrate in one patient of our cohort who received CRT-D implantation. PMID:26230546

  10. An equivalent potential vorticity theory applied to the analysis and prediction of severe storm dynamics

    NASA Technical Reports Server (NTRS)

    Paine, D. A.; Kaplan, M. L.

    1976-01-01

    Potential vorticity theory is developed in a description of an equivalent potential temperature topography, and a new theory suited to the description of scale interaction is elaborated. Macroscale triggering of ageostrophic flow fields at the mesoscale, in turn leading to release of convective instability along narrow zones at the microscale, is examined. Correlation of appreciable decrease in potential vorticity with such phenomena as cumulonimbi, tornados, and duststorms is examined. The relevance of a multiscale energy-momentum cascade in numerical prediction of severe mesoscale and microscale phenomena from radiosonde data is reviewed. Hypotheses for mesoscale dynamics are constructed.

  11. Development of a self-management program for employees with complaints of the arm, neck, and/or shoulder: an intervention mapping approach.

    PubMed

    Hutting, Nathan; Detaille, Sarah I; Engels, Josephine A; Heerkens, Yvonne F; Staal, J Bart; Nijhuis-van der Sanden, Maria Wg

    2015-01-01

    To develop a self-management program with an additional eHealth module, using the six steps of the intervention mapping (IM) protocol, to help employees with complaints of the arm, neck, and/or shoulder (CANS) cope with their problems. In Step 1 of the IM protocol, a needs assessment was performed consisting of a review of the Dutch multidisciplinary guidelines on CANS, and of focus group sessions with employees with CANS (n=15) and with relevant experts (n=17). After the needs assessment, the objectives of the intervention and the determinants of self-management at work were formulated (Step 2). Furthermore, theory-based intervention methods and practical strategies were selected (Step 3), and an intervention program (including the eHealth module) was developed (Step 4). Finally, plans for implementation and evaluation of the program were developed (Steps 5 and 6). Step 1 of the IM protocol revealed that employees with CANS should be stimulated to search for information about the cause of their complaints, about how to deal with their complaints, and in which manner they can influence their complaints themselves. In Step 2, the overall goal of the intervention was defined as "self-management behavior at work" with the aim to alleviate the perceived disability of the participants. Step 3 described how the intervention methods were translated into practical strategies, and goal setting was introduced as an important method for increasing self-efficacy. The product of Step 4 was the final program plan, consisting of 6-weekly group sessions of 2.5 hours each and an eHealth module. In Step 5, a recruitment plan and course materials were developed, a steering committee was set up, trainers were recruited, and the final program was tested. In Step 6, an evaluation plan was developed, which consists of a randomized controlled trial with a 12-month follow-up period and a qualitative evaluation (interviews) with some of the participants. This study resulted in a theory- and practice-based self-management program, based on behavioral change theories, guideline-related evidence, and practice-based knowledge that fits the needs of employees with CANS.

  12. Integrating simulated teaching/learning strategies in undergraduate nursing education.

    PubMed

    Sinclair, Barbara; Ferguson, Karen

    2009-01-01

    In this article, the results of a mixed-methods study integrating the use of simulations in a nursing theory course in order to assess students' perceptions of self-efficacy for nursing practice are presented. Nursing students in an intervention group were exposed to a combination of lecture and simulation, and then asked to rate their perceptions of self-efficacy, satisfaction and effectiveness of this combined teaching and learning strategy. Based on Bandura's (1977, 1986) theory of self-efficacy, this study provides data to suggest that students' self-confidence for nursing practice may be increased through the use of simulation as a method of teaching and learning. Students also reported higher levels of satisfaction, effectiveness and consistency with their learning style when exposed to the combination of lecture and simulation than the control group, who were exposed to lecture as the only method of teaching and learning.

  13. The self-perceived survival ability and reproductive fitness (SPFit) theory of substance use disorders.

    PubMed

    Newlin, David B

    2002-04-01

    A new theory of substance use disorders is proposed-the SPFit theory-that is based on evolutionary biology and adaptive systems. Self-perceived survival ability and reproductive fitness (SPFit) is proposed as a human psychobiological construct that prioritizes and organizes (i.e. motivates) behavior, but is highly vulnerable to temporary, artificial activation by drugs of abuse. Autoshaping/sign-tracking/feature positive phenomena are proposed to underlie the development of craving and expectations about drugs as the individual learns that abused drugs will easily and reliably inflate SPFit. The cortico-mesolimbic dopamine system and its modulating interconnections are viewed as the biological substrate of SPFit; it is proposed to be a survival and reproductive motivation system rather than a reward center or reward pathway. Finally, the concept of modularity of mind is applied to the SPFit construct. Although considerable empirical data are consistent with the theory, new research is needed to test specific hypotheses derived from SPFit theory.

  14. Mate value and self-esteem: evidence from eight cultural groups.

    PubMed

    Goodwin, Robin; Marshall, Tara; Fülöp, Marta; Adonu, Joseph; Spiewak, Slawomir; Neto, Felix; Hernandez Plaza, Sonia

    2012-01-01

    This paper explores self-perceived mate value (SPMV), and its association with self-esteem, in eight cultures. 1066 participants, from 8 cultural groups in 7 countries, rated themselves on 24 SPMVs and completed a measure of self-esteem. Consistent with evolutionary theory, women were more likely to emphasise their caring and passionate romantic nature. In line with previous cross-cultural research, characteristics indicating passion and romance and social attractiveness were stressed more by respondents from individualistic cultures, and those higher on self-expression (rather than survival) values; characteristics indicative of maturity and confidence were more likely to be mentioned by those from Traditional, rather than Secular, cultures. Contrary to gender role theory, societal equality had only limited interactions with sex and SPMV, with honesty of greater significance for male self-esteem in societies with unequal gender roles. These results point to the importance of cultural and environmental factors in influencing self-perceived mate qualities, and are discussed in relation to broader debates about the impact of gender role equality on sex differences in personality and mating strategies.

  15. Self-management improvement program combined with community involvement in Thai hypertensive population: an action research.

    PubMed

    Srichairattanakull, Jeamjai; Kaewpan, Wonpen; Powattana, Arpaporn; Pichayapinyo, Panan

    2014-04-01

    To investigate the effectiveness of a program that utilizes community involvement to improve the self-management strategies among people living with hypertension. Forty-four subjects, aged 35 to 59-year-old, with hypertension in Nakhon Pathom Province, Thailand, were randomly allocated to either an experimental group (n = 22) or a control group (n = 20). The experimental group attended a program to improve self-management methods based on social cognitive theory (SCT). The program lasted 12 weeks, consisted of 1 1/2 hours meeting once a week, including group meetings and home visit monitoring. Mann-Whitney U test and Friedman test were employed to analyze the program's effectiveness. After the program, the mean rank of the perceived self-efficacy for the self-management strategies was statistically different between the two groups (p = 0.023). In the experimental group, after the twelve week, the mean rank of perceived self-efficacy and outcome expectancy increased and diastolic blood pressure decreased after the eight week. The program applied social cognitive theory (SCT) to promote self-management techniques, increased the health promoting behavior among hypertensive people.

  16. Mate Value and Self-Esteem: Evidence from Eight Cultural Groups

    PubMed Central

    Goodwin, Robin; Marshall, Tara; Fülöp, Marta; Adonu, Joseph; Spiewak, Slawomir; Neto, Felix; Hernandez Plaza, Sonia

    2012-01-01

    This paper explores self-perceived mate value (SPMV), and its association with self-esteem, in eight cultures. 1066 participants, from 8 cultural groups in 7 countries, rated themselves on 24 SPMVs and completed a measure of self-esteem. Consistent with evolutionary theory, women were more likely to emphasise their caring and passionate romantic nature. In line with previous cross-cultural research, characteristics indicating passion and romance and social attractiveness were stressed more by respondents from individualistic cultures, and those higher on self-expression (rather than survival) values; characteristics indicative of maturity and confidence were more likely to be mentioned by those from Traditional, rather than Secular, cultures. Contrary to gender role theory, societal equality had only limited interactions with sex and SPMV, with honesty of greater significance for male self-esteem in societies with unequal gender roles. These results point to the importance of cultural and environmental factors in influencing self-perceived mate qualities, and are discussed in relation to broader debates about the impact of gender role equality on sex differences in personality and mating strategies. PMID:22558347

  17. Conceptual strategies and inter-theory relations: The case of nanoscale cracks

    NASA Astrophysics Data System (ADS)

    Bursten, Julia R.

    2018-05-01

    This paper introduces a new account of inter-theory relations in physics, which I call the conceptual strategies account. Using the example of a multiscale computer simulation model of nanoscale crack propagation in silicon, I illustrate this account and contrast it with existing reductive, emergent, and handshaking approaches. The conceptual strategies account develops the notion that relations among physical theories, and among their models, are constrained but not dictated by limitations from physics, mathematics, and computation, and that conceptual reasoning within those limits is required both to generate and to understand the relations between theories. Conceptual strategies result in a variety of types of relations between theories and models. These relations are themselves epistemic objects, like theories and models, and as such are an under-recognized part of the epistemic landscape of science.

  18. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    NASA Astrophysics Data System (ADS)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  19. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  20. A grain boundary damage model for delamination

    NASA Astrophysics Data System (ADS)

    Messner, M. C.; Beaudoin, A. J.; Dodds, R. H.

    2015-07-01

    Intergranular failure in metallic materials represents a multiscale damage mechanism: some feature of the material microstructure triggers the separation of grain boundaries on the microscale, but the intergranular fractures develop into long cracks on the macroscale. This work develops a multiscale model of grain boundary damage for modeling intergranular delamination—a failure of one particular family of grain boundaries sharing a common normal direction. The key feature of the model is a physically-consistent and mesh independent, multiscale scheme that homogenizes damage at many grain boundaries on the microscale into a single damage parameter on the macroscale to characterize material failure across a plane. The specific application of the damage framework developed here considers delamination failure in modern Al-Li alloys. However, the framework may be readily applied to other metals or composites and to other non-delamination interface geometries—for example, multiple populations of material interfaces with different geometric characteristics.

  1. Multiscale modelling and nonlinear simulation of vascular tumour growth

    PubMed Central

    Macklin, Paul; Anderson, Alexander R. A.; Chaplain, Mark A. J.; Cristini, Vittorio

    2011-01-01

    In this article, we present a new multiscale mathematical model for solid tumour growth which couples an improved model of tumour invasion with a model of tumour-induced angiogenesis. We perform nonlinear simulations of the multi-scale model that demonstrate the importance of the coupling between the development and remodeling of the vascular network, the blood flow through the network and the tumour progression. Consistent with clinical observations, the hydrostatic stress generated by tumour cell proliferation shuts down large portions of the vascular network dramatically affecting the flow, the subsequent network remodeling, the delivery of nutrients to the tumour and the subsequent tumour progression. In addition, extracellular matrix degradation by tumour cells is seen to have a dramatic affect on both the development of the vascular network and the growth response of the tumour. In particular, the newly developing vessels tend to encapsulate, rather than penetrate, the tumour and are thus less effective in delivering nutrients. PMID:18781303

  2. Hybrid methods for simulating hydrodynamics and heat transfer in multiscale (1D-3D) models

    NASA Astrophysics Data System (ADS)

    Filimonov, S. A.; Mikhienkova, E. I.; Dekterev, A. A.; Boykov, D. V.

    2017-09-01

    The work is devoted to application of different-scale models in the simulation of hydrodynamics and heat transfer of large and/or complex systems, which can be considered as a combination of extended and “compact” elements. The model consisting of simultaneously existing three-dimensional and network (one-dimensional) elements is called multiscale. The paper examines the relevance of building such models and considers three main options for their implementation: the spatial and the network parts of the model are calculated separately; spatial and network parts are calculated simultaneously (hydraulically unified model); network elements “penetrate” the spatial part and are connected through the integral characteristics at the tube/channel walls (hydraulically disconnected model). Each proposed method is analyzed in terms of advantages and disadvantages. The paper presents a number of practical examples demonstrating the application of multiscale models.

  3. Branes in Extended Spacetime: Brane Worldvolume Theory Based on Duality Symmetry.

    PubMed

    Sakatani, Yuho; Uehara, Shozo

    2016-11-04

    We propose a novel approach to the brane worldvolume theory based on the geometry of extended field theories: double field theory and exceptional field theory. We demonstrate the effectiveness of this approach by showing that one can reproduce the conventional bosonic string and membrane actions, and the M5-brane action in the weak-field approximation. At a glance, the proposed 5-brane action without approximation looks different from the known M5-brane actions, but it is consistent with the known nonlinear self-duality relation, and it may provide a new formulation of a single M5-brane action. Actions for exotic branes are also discussed.

  4. SCF and CI calculations of the dipole moment function of ozone. [Self-Consistent Field and Configuration-Interaction

    NASA Technical Reports Server (NTRS)

    Curtiss, L. A.; Langhoff, S. R.; Carney, G. D.

    1979-01-01

    The constant and linear terms in a Taylor series expansion of the dipole moment function of the ground state of ozone are calculated with Cartesian Gaussian basis sets ranging in quality from minimal to double zeta plus polarization. Results are presented at both the self-consistent field and configuration-interaction levels. Although the algebraic signs of the linear dipole moment derivatives are all established to be positive, the absolute magnitudes of these quantities, as well as the infrared intensities calculated from them, vary considerably with the level of theory.

  5. The self-consistent dynamic pole tide in global oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1985-01-01

    The dynamic pole tide is characterized in a self-consistent manner by means of introducing a single nondifferential matrix equation compatible with the Liouville equation, modelling the ocean as global and of uniform depth. The deviations of the theory from the realistic ocean, associated with the nonglobality of the latter, are also given consideration, with an inference that in realistic oceans long-period modes of resonances would be increasingly likely to exist. The analysis of the nature of the pole tide and its effects on the Chandler wobble indicate that departures of the pole tide from the equilibrium may indeed be minimal.

  6. Tunable terahertz optical properties of graphene in dc electric fields

    NASA Astrophysics Data System (ADS)

    Dong, H. M.; Huang, F.; Xu, W.

    2018-03-01

    We develop a simple theoretical approach to investigate terahertz (THz) optical properties of monolayer graphene in the presence of an external dc electric field. The analytical results for optical coefficients such as the absorptance and reflectivity are obtained self-consistently on the basis of a diagrammatic self-consistent field theory and a Boltzmann equilibrium equation. It is found that the optical refractive index, reflectivity and conductivity can be effectively tuned by not only a gate voltage but also a driving dc electric field. This study is relevant to the applications of graphene as advanced THz optoelectronic devices.

  7. Youth physical activity self-efficacy: a concept analysis.

    PubMed

    Voskuil, Vicki R; Robbins, Lorraine B

    2015-09-01

    To report an analysis of the concept of youth physical activity self-efficacy. Physical activity self-efficacy is a concept that has been frequently examined as a key variable in research aimed at increasing physical activity among youth. Different conceptual definitions and empirical measures indicate the need for concept analysis to advance knowledge of the concept. Rodger's evolutionary method of concept analysis was used to collect and analyse the data. Social cognitive theory guided the analysis. The PubMed, Cumulative Index of Nursing and Allied Health Literature, PsychInfo, Educational Resources Information Center and Sociological Abstracts databases were searched for publications from 1990-2013. Search terms included self-efficacy, physical activity, youth, children, adolescent and teen. A total of 276 articles were identified. Fifty-five articles meeting inclusion criteria were included in the review. Data were analysed with particular focus on the attributes, antecedents and consequences of the concept. Defining attributes of physical activity self-efficacy were identified as personal cognition/perception, self-appraisal process, related action, power to choose physical activity, dynamic state and bi-dimensional nature. Antecedents and consequences were consistent with social cognitive theory. Youth physical activity self-efficacy is defined as a youth's belief in his/her capability to participate in physical activity and to choose physical activity despite existing barriers. This concept analysis provided an in-depth analysis and clarification of youth physical activity self-efficacy. Future research should be aimed at establishing consistency in conceptual definitions and empirical measurement to further develop the concept across disciplines. © 2015 John Wiley & Sons Ltd.

  8. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    NASA Astrophysics Data System (ADS)

    Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.

    2010-04-01

    Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a Critical Filtration Size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  9. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    NASA Astrophysics Data System (ADS)

    Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.

    2010-10-01

    Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a critical filtration size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  10. Self-similar Theory of Wind-driven Sea

    NASA Astrophysics Data System (ADS)

    Zakharov, V. E.

    2015-12-01

    More than two dozens field experiments performed in the ocean and on the lakes show that the fetch-limited growth of dimensionless energy and dimensionless peak frequency is described by powerlike functions of the dimensionless fetch. Moreover, the exponents of these two functions are connected with a proper accuracy by the standard "magic relation", 10q-2p=1. Recent massive numerical experiments as far as experiments in wave tanks also confirm this magic relation. All these experimental facts can be interpreted in a framework of the following simple theory. The wind-driven sea is described by the "conservative" Hasselmann kinetic equation. The source terms, wind input and white-capping dissipation, play a secondary role in comparison with the nonlinear term Snl that is responsible for the four-wave resonant interaction. This equation has four-parameter family of self-similar solutions. The magic relation holds for all numbers of this family. This fact gives strong hope that development of self-consistent analytic theory of wind-driven sea is quite realizable task.

  11. Multiscale simulation of DC corona discharge and ozone generation from nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Pengxiang

    Atmospheric direct current (dc) corona discharge from micro-sized objects has been widely used as an ion source in many devices, such as photocopiers, laser printers, and electronic air cleaners. Shrinking the size of the discharge electrode to the nanometer range (e.g., through the use of carbon nanotubes or CNTs) is expected to lead to a significant reduction in power consumption and detrimental ozone production in these devices. The objectives of this study are to unveil the fundamental physics of the nanoscale corona discharge and to evaluate its performance and ozone production through numerical models. The extremely small size of CNTs presents considerable complexity and challenges in modeling CNT corona discharges. A hybrid multiscale model, which combines a kinetic particle-in-cell plus Monte Carlo collision (PIC-MCC) model and a continuum model, is developed to simulate the corona discharge from nanostructures. The multiscale model is developed in several steps. First, a pure PIC-MCC model is developed and PIC-MCC simulations of corona plasma from micro-sized electrode with same boundary conditions as prior model are performed to validate the PIC-MCC scheme. The agreement between the PIC-MCC model and the prior continuum model indicates the validity of the PIC-MCC scheme. The validated PIC-MCC scheme is then coupled with a continuum model to simulate the corona discharge from a micro-sized electrode. Unlike the prior continuum model which only predicts the corona plasma region, the hybrid model successfully predicts the self-consistent discharge process in the entire corona discharge gap that includes both corona plasma region and unipolar ion region. The voltage-current density curves obtained by the hybrid model agree well with analytical prediction and experimental results. The hybrid modeling approach, which combines the accuracy of a kinetic model and the efficiency of a continuum model, is thus validated for modeling dc corona discharges. For simulation of corona discharges from nanostructures, a one-dimensional (1-D) multiscale model is used due to the prohibitive computational expense associated with two-dimensional (2-D) modeling. Near the nanoscale discharge electrode surface, a kinetic model based on PIC-MCC is used due to a relatively large Knudsen number in this region. Far away from the nanoscale discharge electrode, a continuum model is used since the Knudsen number is very small there. The multiscale modeling results are compared with experimental data. The quantitative agreement in positive discharges and qualitative agreement in negative discharges validate the modeling approach. The mechanism of sustaining the discharge process from nanostructures is revealed and is found to be different from that of discharge from micro- or macro-sized electrodes. Finally, the corona plasma model is combined with a plasma chemistry model and a transport model to predict the ozone production from the nanoscale corona. The dependence of ozone production on the applied potential and air velocity is studied. The electric field distribution in a 2-D multiscale domain (from nanoscale to microscale) is predicted by solving the Poisson's equation using a finite difference scheme. The discretized linear equations are solved using a multigrid method under the framework of PETSc on a paralleled supercomputer. Although the Poisson solver is able to resolve the multiscale field, the prohibitively long computation time limits the use of a 2-D solver in the current PIC-MCC scheme.

  12. Avoidant coping and self-efficacy mediate relationships between perceived social constraints and symptoms among long-term breast cancer survivors.

    PubMed

    Adams, Rebecca N; Mosher, Catherine E; Cohee, Andrea A; Stump, Timothy E; Monahan, Patrick O; Sledge, George W; Cella, David; Champion, Victoria L

    2017-07-01

    Many breast cancer survivors feel constrained in discussing their cancer experience with others. Limited evidence suggests that social constraints (e.g., avoidance and criticism) from loved ones may negatively impact breast cancer survivors' global health, but research has yet to examine relationships between social constraints and common physical symptoms. Informed by social cognitive processing theory, this study examined whether perceived social constraints from partners and healthcare providers (HCPs) were associated with fatigue, sleep disturbance, and attentional functioning among long-term breast cancer survivors (N = 1052). In addition, avoidant coping and self-efficacy for symptom management were examined as potential mediators of these relationships. Long-term breast cancer survivors (mean years since diagnosis = 6) completed questionnaires assessing social constraints from partners and HCPs, avoidant coping, self-efficacy for symptom management, and symptoms (i.e., fatigue, sleep disturbance, and attentional functioning). Structural equation modeling was used to evaluate the hypothesized relationships among variables in two models: one focused on social constraints from partners and one focused on social constraints from HCPs. Both models demonstrated good fit. Consistent with theory and prior research, greater social constraints from both partners and HCPs were associated with greater symptom burden (i.e., greater fatigue and sleep disturbance, poorer attentional functioning). In addition, all relationships were mediated by avoidant coping and self-efficacy for symptom management. Findings are consistent with social cognitive processing theory and suggest that symptom management interventions may be enhanced by addressing the impact of social constraints from survivors' partners and HCPs on their coping and self-efficacy. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Why do dementia patients become unable to lead a daily life with decreasing cognitive function?

    PubMed

    Yokoi, Teruo; Okamura, Hitoshi

    2013-09-01

    In order to understand the words and deeds of dementia patients that we find very hard to explain or understand, we have paid attention to the self-awareness ability of dementia patients, the intellectual subject that integrates their own intellectual functions, and created 'a model for interpreting puzzling words and deeds of dementia patients from the viewpoint of self-awareness'. The purpose of this study is to explain the reasons why dementia patients become unable to successfully perform activities of daily living (ADL) with advancement of dementia, using our model to present viewpoints understandable to caregivers. We classified dementia inpatients of a geriatric health services facility into four stages, using the model of self-awareness ability (consisting of 'theory of mind', 'self-evaluation' and 'self-consciousness') that was constructed by combining 'theory of mind' and Lewis's developmental model of cognition and emotion. Furthermore, we observed and documented scenes from daily life, and we interpreted the reasons why patients become unable to seek assistance from others for ADL, based on the model. We came to understand why the patients could not seek assistance from others, because the patients who failed in the task of 'theory of mind' were unable to self-assess their own mind and the minds of others, and those having failed in the task of 'self-evaluation' could not evaluate their own situation.

  14. The compulsion zone: a pharmacological theory of acquired cocaine self-administration.

    PubMed

    Norman, Andrew B; Tsibulsky, Vladimir L

    2006-10-20

    In rats trained to reliably self-administer cocaine, the cumulative drug level was calculated during sessions in which cocaine was administered either contingently or non-contingently. During both types of sessions a high rate of responding was observed only when cocaine levels were above the priming threshold but below the satiety threshold. When the levels of non-contingently administered cocaine were maintained between the priming and satiety thresholds for at least 5 h rats continuously maintained high rates of responding. Although it is generally assumed that rats are responding for cocaine during self-administration sessions, the persistence of responding during non-contingent administration is consistent with responding being induced by cocaine. Therefore, in contrast to the basic assumptions underlying the operant theory of self-administration behavior, choice, contingency and reinforcement are not necessary to explain acquired cocaine self-administration. The presented data demonstrate that there is no ascending limb of the dose-response curve and that the cocaine priming and satiety thresholds delineate the lower and upper limits, respectively, of a cocaine "compulsion zone". It is concluded that the self-administration paradigm is the sum of cocaine induced responding and cocaine induced satiety and which of these cocaine-induced effects occur at any time is dependent on the cocaine level. This novel pharmacokinetic/pharmacodynamic theory provides a basis for a comprehensive understanding of the cocaine self-administration paradigm.

  15. The compulsion zone: A pharmacological theory of acquired cocaine self-administration

    PubMed Central

    Norman, Andrew B.; Tsibulsky, Vladimir L.

    2010-01-01

    In rats trained to reliably self-administer cocaine, the cumulative drug level was calculated during sessions in which cocaine was administered either contingently or non-contingently. During both types of sessions a high rate of responding was observed only when cocaine levels were above the priming threshold but below the satiety threshold. When the levels of non-contingently administered cocaine were maintained between the priming and satiety thresholds for at least 5 h rats continuously maintained high rates of responding. Although it is generally assumed that rats are responding for cocaine during self-administration sessions, the persistence of responding during non-contingent administration is consistent with responding being induced by cocaine. Therefore, in contrast to the basic assumptions underlying the operant theory of self-administration behavior, choice, contingency and reinforcement are not necessary to explain acquired cocaine self-administration. The presented data demonstrate that there is no ascending limb of the dose-response curve and that the cocaine priming and satiety thresholds delineate the lower and upper limits, respectively, of a cocaine “compulsion zone”. It is concluded that the self-administration paradigm is the sum of cocaine induced responding and cocaine induced satiety and which of these cocaine-induced effects occur at any time is dependent on the cocaine level. This novel pharmacokinetic/pharmacodynamic theory provides a basis for a comprehensive understanding of the cocaine self-administration paradigm. PMID:16942754

  16. Striving for the moral self: the effects of recalling past moral actions on future moral behavior.

    PubMed

    Jordan, Jennifer; Mullen, Elizabeth; Murnighan, J Keith

    2011-05-01

    People's desires to see themselves as moral actors can contribute to their striving for and achievement of a sense of self-completeness. The authors use self-completion theory to predict (and show) that recalling one's own (im)moral behavior leads to compensatory rather than consistent moral action as a way of completing the moral self. In three studies, people who recalled their immoral behavior reported greater participation in moral activities (Study 1), reported stronger prosocial intentions (Study 2), and showed less cheating (Study 3) than people who recalled their moral behavior. These compensatory effects were related to the moral magnitude of the recalled event, but they did not emerge when people recalled their own positive or negative nonmoral behavior (Study 2) or others' (im)moral behavior (Study 3). Thus, the authors extend self-completion theory to the moral domain and use it to integrate the research on moral cleansing (remunerative moral strivings) and moral licensing (relaxed moral strivings).

  17. Attachment, self-esteem, worldviews, and terror management: evidence for a tripartite security system.

    PubMed

    Hart, Joshua; Shaver, Phillip R; Goldenberg, Jamie L

    2005-06-01

    On the basis of prior work integrating attachment theory and terror management theory, the authors propose a model of a tripartite security system consisting of dynamically interrelated attachment, self-esteem, and worldview processes. Four studies are presented that, combined with existing evidence, support the prediction derived from the model that threats to one component of the security system result in compensatory defensive activation of other components. Further, the authors predicted and found that individual differences in attachment style moderate the defenses. In Studies 1 and 2, attachment threats motivated worldview defense among anxiously attached participants and motivated self-enhancement (especially among avoidant participants), effects similar to those caused by mortality salience. In Studies 3 and 4, a worldview threat and a self-esteem threat caused attachment-related proximity seeking among fearful participants and avoidance of proximity among dismissing participants. The authors' model provides an overarching framework within which to study attachment, self-esteem, and worldviews.

  18. Manipulating the ABCs of self-assembly via low-χ block polymer design

    PubMed Central

    Chang, Alice B.; Lee, Byeongdu; Garland, Carol M.; Jones, Simon C.; Matsen, Mark W.

    2017-01-01

    Block polymer self-assembly typically translates molecular chain connectivity into mesoscale structure by exploiting incompatible blocks with large interaction parameters (χij). In this article, we demonstrate that the converse approach, encoding low-χ interactions in ABC bottlebrush triblock terpolymers (χAC ≲ 0), promotes organization into a unique mixed-domain lamellar morphology, which we designate LAMP. Transmission electron microscopy indicates that LAMP exhibits ACBC domain connectivity, in contrast to conventional three-domain lamellae (LAM3) with ABCB periods. Complementary small-angle X-ray scattering experiments reveal a strongly decreasing domain spacing with increasing total molar mass. Self-consistent field theory reinforces these observations and predicts that LAMP is thermodynamically stable below a critical χAC, above which LAM3 emerges. Both experiments and theory expose close analogies to ABA′ triblock copolymer phase behavior, collectively suggesting that low-χ interactions between chemically similar or distinct blocks intimately influence self-assembly. These conclusions provide fresh opportunities for block polymer design with potential consequences spanning all self-assembling soft materials. PMID:28588139

  19. A Mesoscopic Electromechanical Theory of Ferroelectric Films and Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jiangyu; Bhattacharya, Kaushik

    2002-08-01

    We present a multi-scale modelling framework to predict the effective electromechanical behavior of ferroelectric ceramics and thin films. This paper specifically focuses on the mesoscopic scale and models the effects of domains and domain switching taking into account intergranular constraints. Starting from the properties of the single crystal and the pre-poling granular texture, the theory predicts the domain patterns, the post-poling texture, the saturation polarization, saturation strain and the electromechanical moduli. We demonstrate remarkable agreement with experimental data. The theory also explains the superior electromechanical property of PZT at the morphotropic phase boundary. The paper concludes with the application of the theory to predict the optimal texture for enhanced electromechanical coupling factors and high-strain actuation in selected materials.

  20. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

Top