Sample records for self-diffusion

  1. Fluid self-diffusion in Scots pine sapwood tracheid cells.

    PubMed

    Johannessen, Espen H; Hansen, Eddy W; Rosenholm, Jarl B

    2006-02-09

    The self-diffusion coefficients of water and toluene in Scots pine sapwood was measured using low field pulsed field gradient nuclear magnetic resonance (PFG-NMR). Wood chips of 8 mm diameter were saturated with the respective liquids, and liquid self-diffusion was then traced in one dimension orthogonal to the tracheid cell walls in the wood's radial direction. The experimental echo attenuation curves were exponential, and characteristic self-diffusion coefficients were produced for diffusion times spanning from very short times to times on the order of magnitude of seconds. Observed self-diffusion coefficients were decaying asymptotically as a function of diffusion time, an effect which was ascribed to the cell walls' restriction on confined liquid diffusion. The observed self-diffusion behavior in Scots pine sapwood was compared to self-diffusion coefficients obtained from simulations of diffusion in a square. Principles of molecular displacements in confined geometries were used for elucidating the wood's cellular structure from the observed diffusion coefficients. The results were compared with a mathematical model for diffusion between parallel planes.

  2. Large disparity between gallium and antimony self-diffusion in gallium antimonide.

    PubMed

    Bracht, H; Nicols, S P; Walukiewicz, W; Silveira, J P; Briones, F; Haller, E E

    2000-11-02

    The most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices. In the past few years, self-diffusion studies have been performed successfully with isotopically controlled semiconductor heterostructures of germanium, silicon, gallium arsenide and gallium phosphide. Self-diffusion studies with isotopically controlled GaAs and GaP have been restricted to Ga self-diffusion, as only Ga has two stable isotopes, 69Ga and 71Ga. Here we report self-diffusion studies with an isotopically controlled multilayer structure of crystalline GaSb. Two stable isotopes exist for both Ga and Sb, allowing the simultaneous study of diffusion on both sublattices. Our experiments show that near the melting temperature, Ga diffuses more rapidly than Sb by over three orders of magnitude. This surprisingly large difference in atomic mobility requires a physical explanation going beyond standard diffusion models. Combining our data for Ga and Sb diffusion with related results for foreign-atom diffusion in GaSb (refs 8, 9), we conclude that the unusually slow Sb diffusion in GaSb is a consequence of reactions between defects on the Ga and Sb sublattices, which suppress the defects that are required for Sb diffusion.

  3. Observation of silicon self-diffusion enhanced by the strain originated from end-of-range defects using isotope multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp

    2015-09-21

    Si self-diffusion in the presence of end-of-range (EOR) defects is investigated using {sup nat}Si/{sup 28}Si isotope multilayers. The isotope multilayers were amorphized by Ge ion implantation, and then annealed at 800–950 °C. The behavior of Si self-interstitials is investigated through the {sup 30}Si self-diffusion. The experimental {sup 30}Si profiles show further enhancement of Si self-diffusion at the EOR defect region, in addition to the transient enhanced diffusion via excess Si self-interstitials by EOR defects. To explain this additional enhanced diffusion, we propose a model which takes into account enhanced diffusion by tensile strain originated from EOR defects. The calculation results basedmore » on this model have well reproduced the experimental {sup 30}Si profiles.« less

  4. Self-diffusivity and interdiffusivity of molten aluminum-copper alloys under pressure, derived from molecular dynamics.

    PubMed

    Rudd, Robert E; Cabot, William H; Caspersen, Kyle J; Greenough, Jeffrey A; Richards, David F; Streitz, Frederick H; Miller, Paul L

    2012-03-01

    We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.

  5. Self-diffusivity and interdiffusivity of molten aluminum-copper alloys under pressure, derived from molecular dynamics

    NASA Astrophysics Data System (ADS)

    Rudd, Robert E.; Cabot, William H.; Caspersen, Kyle J.; Greenough, Jeffrey A.; Richards, David F.; Streitz, Frederick H.; Miller, Paul L.

    2012-03-01

    We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.

  6. Diffusion via space discretization method to study the concentration dependence of self-diffusivity under confinement

    NASA Astrophysics Data System (ADS)

    Sant, Marco; Papadopoulos, George K.; Theodorou, Doros N.

    2010-04-01

    The concentration dependence of self-diffusivity is investigated by means of a novel method, extending our previously developed second-order Markov process model to periodic media. Introducing the concept of minimum-crossing surface, we obtain a unique decomposition of the self-diffusion coefficient into two parameters with specific physical meanings. Two case studies showing a maximum in self-diffusivity as a function of concentration are investigated, along with two cases where such a maximum cannot be present. Subsequently, the method is applied to the large cavity pore network of the ITQ-1 (Mobil tWenty tWo, MWW) zeolite for methane (displaying a maximum in self-diffusivity) and carbon dioxide (no maximum), explaining the diffusivity trend on the basis of the evolution of the model parameters as a function of concentration.

  7. A novel approach to interpretation of the time-dependent self-diffusion coefficient as a probe of porous media geometry.

    PubMed

    Loskutov, V V; Sevriugin, V A

    2013-05-01

    This article presents a new approximation describing fluid diffusion in porous media. Time dependence of the self-diffusion coefficient D(t) in the permeable porous medium is studied based on the assumption that diffusant molecules move randomly. An analytical expression for time dependence of the self-diffusion coefficient was obtained in the following form: D(t)=(D0-D∞)exp(-D0t/λ)+D∞, where D0 is the self-diffusion coefficient of bulk fluid, D∞ is the asymptotic value of the self-diffusion coefficient in the limit of long time values (t→∞), λ is the characteristic parameter of this porous medium with dimensionality of length. Applicability of the solution obtained to the analysis of experimental data is shown. The possibility of passing to short-time and long-time regimes is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Self diffusion of alkaline-Earth in Ca-Mg-aluminosilicate melts: Experimental improvements on the determination of the self-diffusion coefficients

    NASA Technical Reports Server (NTRS)

    Paillat, O.; Wasserburg, G. J.

    1993-01-01

    Experimental studies of self-diffusion isotopes in silicate melts often have quite large uncertainties when comparing one study to another. We designed an experiment in order to improve the precision of the results by simultaneously studying several elements (Mg, Ca, Sr, Ba) during the same experiment thereby greatly reducing the relative experimental uncertainties. Results show that the uncertainties on the diffusion coefficients can be reduced to 10 percent, allowing a more reliable comparison of differences of self-diffusion coefficients of the elements. This type of experiment permits us to study precisely and simultaneously several elements with no restriction on any element. We also designed an experiment to investigate the possible effects of multicomponent diffusion during Mg self-diffusion experiments by comparing cases where the concentrations of the elements and the isotopic compositions are different. The results suggest that there are differences between the effective means of transport. This approach should allow us to investigate the importance of multicomponent diffusion in silicate melts.

  9. Self-crowding of AMPA receptors in the excitatory postsynaptic density can effectuate anomalous receptor sub-diffusion.

    PubMed

    Gupta, Rahul

    2018-02-01

    AMPA receptors (AMPARs) and their associations with auxiliary transmembrane proteins are bulky structures with large steric-exclusion volumes. Hence, self-crowding of AMPARs, depending on the local density, may affect their lateral diffusion in the postsynaptic membrane as well as in the highly crowded postsynaptic density (PSD) at excitatory synapses. Earlier theoretical studies considered only the roles of transmembrane obstacles and the AMPAR-binding submembranous scaffold proteins in shaping receptor diffusion within PSD. Using lattice model of diffusion, the present study investigates the additional impacts of self-crowding on the anomalousity and effective diffusion coefficient (Deff) of AMPAR diffusion. A recursive algorithm for avoiding false self-blocking during diffusion simulation is also proposed. The findings suggest that high density of AMPARs in the obstacle-free membrane itself engenders strongly anomalous diffusion and severe decline in Deff. Adding transmembrane obstacles to the membrane accentuates the anomalousity arising from self-crowding due to the reduced free diffusion space. Contrarily, enhanced AMPAR-scaffold binding, either through increase in binding strength or scaffold density or both, ameliorates the anomalousity resulting from self-crowding. However, binding has differential impacts on Deff depending on the receptor density. Increase in binding causes consistent decrease in Deff for low and moderate receptor density. For high density, binding increases Deff as long as it reduces anomalousity associated with intense self-crowding. Given a sufficiently strong binding condition when diffusion acquires normal behavior, further increase in binding causes decrease in Deff. Supporting earlier experimental observations are mentioned and implications of present findings to the experimental observations on AMPAR diffusion are also drawn.

  10. Radiation-enhanced self- and boron diffusion in germanium

    NASA Astrophysics Data System (ADS)

    Schneider, S.; Bracht, H.; Klug, J. N.; Hansen, J. Lundsgaard; Larsen, A. Nylandsted; Bougeard, D.; Haller, E. E.

    2013-03-01

    We report experiments on proton radiation-enhanced self- and boron (B) diffusion in germanium (Ge) for temperatures between 515 ∘C and 720 ∘C. Modeling of the experimental diffusion profiles measured by means of secondary ion mass spectrometry is achieved on the basis of the Frenkel pair reaction and the interstitialcy and dissociative diffusion mechanisms. The numerical simulations ascertain concentrations of Ge interstitials and B-interstitial pairs that deviate by several orders of magnitude from their thermal equilibrium values. The dominance of self-interstitial related defects under irradiation leads to an enhanced self- and B diffusion in Ge. Analysis of the experimental profiles yields data for the diffusion of self-interstitials (I) and the thermal equilibrium concentration of BI pairs in Ge. The temperature dependence of these quantities provides the migration enthalpy of I and formation enthalpy of BI that are compared with recent results of atomistic calculations. The behavior of self- and B diffusion in Ge under concurrent annealing and irradiation is strongly affected by the property of the Ge surface to hinder the annihilation of self-interstitials. The limited annihilation efficiency of the Ge surface can be caused by donor-type surface states favored under vacuum annealing, but the physical origin remains unsolved.

  11. Self-diffusion of Si and O in diopside-anorthite melt at high pressures

    NASA Astrophysics Data System (ADS)

    Tinker, David; Lesher, Charles E.; Hutcheon, Ian D.

    2003-01-01

    Self-diffusion coefficients for Si and O in Di 58An 42 liquid were measured from 1 to 4 GPa and temperatures from 1510 to 1764°C. Glass starting powders enriched in 18O and 28Si were mated to isotopically normal glass powders to form simple diffusion couples, and self-diffusion experiments were conducted in the piston cylinder device (1 and 2 GPa) and in the multianvil apparatus (3.5 and 4 GPa). Profiles of 18O/ 16O and 29,30Si/ 28Si were measured using secondary ion mass spectrometry. Self-diffusion coefficients for O (D(O)) are slightly greater than self-diffusion coefficients for Si (D(Si)) and are often the same within error. For example, D(O) = 4.20 ± 0.42 × 10 -11 m 2/s and D(Si) = 3.65 ± 0.37 × 10 -11 m 2/s at 1 GPa and 1662°C. Activation energies for self-diffusion are 215 ± 13 kJ/mol for O and 227 ± 13 kJ/mol for Si. Activation volumes for self-diffusion are -2.1 ± 0.4 cm 3/mol and -2.3 ± 0.4 cm 3/mol for O and Si, respectively. The similar self-diffusion coefficients for Si and O, similar activation energies, and small, negative activation volumes are consistent with Si and O transport by a cooperative diffusion mechanism, most likely involving the formation and disassociation of a high-coordinated intermediate species. The small absolute magnitudes of the activation volumes imply that Di 58An 42 liquid is close to a transition from negative to positive activation volume, and Adam-Gibbs theory suggests that this transition is linked to the existence of a critical fraction (˜0.6) of bridging oxygen.

  12. Mass transport in polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Schipper, F. J. M.; Leyte, J. C.

    1999-02-01

    The self-diffusion coefficients of the three components of a salt-free heavy-water solution of polymethacrylic acid, completely neutralized with tetra-methylammonium hydroxide, were measured over a broad concentration range. Three concentration regions were observed for the self-diffusion of both the polyions and the counterions. At polyion concentrations below 0.01 mol monomer kg-1, the dilute concentration regime for the polymer, the polyion self-diffusion coefficient approaches the self-diffusion coefficient of a freely diffusing rod upon dilution. At polyelectrolyte concentrations above 0.1 mol monomer kg-1, the self-diffusion coefficients of the solvent, the counterions and the polymer decreased with concentration, suggesting that this decrease is due to a topological constraint on the motions of the components. In the intermediate-concentration region, the self-diffusion coefficients of the polyions and the counterions are independent of the concentration. The polyion dynamic behaviour is, in the intermediate- and high-concentration regions, reasonably well described by that of a hard sphere, with a radius of 3.7 nm. A correct prediction for the solvent dynamics is given by the obstruction effect of this hard sphere on the solvent. The relative counterion self-diffusion coefficient is predicted almost quantitatively over the entire concentration range with the Poisson-Boltzmann-Smoluchowski model for the spherical cell, provided that the sphere radius and the number of charges are chosen appropriately (approximately the number of charges in a persistence length). Using this model, the dependence of the counterion self-diffusion coefficient on the ionic strength, polyion concentration and counterion radius is calculated quantitatively over a large concentration range.

  13. Self-crowding of AMPA receptors in the excitatory postsynaptic density can effectuate anomalous receptor sub-diffusion

    PubMed Central

    Gupta, Rahul

    2018-01-01

    AMPA receptors (AMPARs) and their associations with auxiliary transmembrane proteins are bulky structures with large steric-exclusion volumes. Hence, self-crowding of AMPARs, depending on the local density, may affect their lateral diffusion in the postsynaptic membrane as well as in the highly crowded postsynaptic density (PSD) at excitatory synapses. Earlier theoretical studies considered only the roles of transmembrane obstacles and the AMPAR-binding submembranous scaffold proteins in shaping receptor diffusion within PSD. Using lattice model of diffusion, the present study investigates the additional impacts of self-crowding on the anomalousity and effective diffusion coefficient (Deff) of AMPAR diffusion. A recursive algorithm for avoiding false self-blocking during diffusion simulation is also proposed. The findings suggest that high density of AMPARs in the obstacle-free membrane itself engenders strongly anomalous diffusion and severe decline in Deff. Adding transmembrane obstacles to the membrane accentuates the anomalousity arising from self-crowding due to the reduced free diffusion space. Contrarily, enhanced AMPAR-scaffold binding, either through increase in binding strength or scaffold density or both, ameliorates the anomalousity resulting from self-crowding. However, binding has differential impacts on Deff depending on the receptor density. Increase in binding causes consistent decrease in Deff for low and moderate receptor density. For high density, binding increases Deff as long as it reduces anomalousity associated with intense self-crowding. Given a sufficiently strong binding condition when diffusion acquires normal behavior, further increase in binding causes decrease in Deff. Supporting earlier experimental observations are mentioned and implications of present findings to the experimental observations on AMPAR diffusion are also drawn. PMID:29444074

  14. Diffusion in the system K2O-SrO-SiO2. II - Cation self-diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Varshneya, A. K.; Cooper, A. R.

    1972-01-01

    The self-diffusion coefficients were measured by introducing a slab of glass previously irradiated in a reactor between two slabs of unirradiated glass. By heating the specimens, etching them sequentially and determining the radioactivity, self-diffusion coefficients for K and Sr were measured. It is pointed out that the results obtained in the investigations appear to support the proposal that the network of the base glass predominantly controls the activation energy for the diffusion of ions.

  15. Self-diffusion and conductivity in an ultracold strongly coupled plasma: Calculation by the method of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Zelener, B. B.; Zelener, B. V.; Manykin, E. A.; Bronin, S. Ya; Bobrov, A. A.; Khikhlukha, D. R.

    2018-01-01

    We present results of calculations by the method of molecular dynamics of self-diffusion and conductivity of electron and ion components of ultracold plasma in a comparison with available theoretical and experimental data. For the ion self-diffusion coefficient, good agreement was obtained with experiments on ultracold plasma. The results of the calculation of self-diffusion also agree well with other calculations performed for the same values of the coupling parameter, but at high temperatures. The difference in the results of the conductivity calculations on the basis of the current autocorrelation function and on the basis of the diffusion coefficient is discussed.

  16. Position-Dependent Dynamics Explain Pore-Averaged Diffusion in Strongly Attractive Adsorptive Systems.

    PubMed

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-12-12

    Using molecular simulations, we investigate the relationship between the pore-averaged and position-dependent self-diffusivity of a fluid adsorbed in a strongly attractive pore as a function of loading. Previous work (Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Connection between thermodynamics and dynamics of simple fluids in highly attractive pores. Langmuir 2013, 29, 14527-14535, doi: 10.1021/la4037327) established that pore-averaged self-diffusivity in the multilayer adsorption regime, where the fluid exhibits a dense film at the pore surface and a lower density interior pore region, is nearly constant as a function of loading. Here we show that this puzzling behavior can be understood in terms of how loading affects the fraction of particles that reside in the film and interior pore regions as well as their distinct dynamics. Specifically, the insensitivity of pore-averaged diffusivity to loading arises from the approximate cancellation of two factors: an increase in the fraction of particles in the higher diffusivity interior pore region with loading and a corresponding decrease in the particle diffusivity in that region. We also find that the position-dependent self-diffusivities scale with the position-dependent density. We present a model for predicting the pore-average self-diffusivity based on the position-dependent self-diffusivity, which captures the unusual characteristics of pore-averaged self-diffusivity in strongly attractive pores over several orders of magnitude.

  17. Modelling oxygen self-diffusion in UO 2 under pressure

    DOE PAGES

    Cooper, Michael William D.; Grimes, R. W.; Fitzpatrick, M. E.; ...

    2015-10-22

    Access to values for oxygen self-diffusion over a range of temperatures and pressures in UO 2 is important to nuclear fuel applications. Here, elastic and expansivity data are used in the framework of a thermodynamic model, the cBΩ model, to derive the oxygen self-diffusion coefficient in UO 2 over a range of pressures (0–10 GPa) and temperatures (300–1900 K). Furthermore, the significant reduction in oxygen self-diffusion as a function of increasing hydrostatic pressure, and the associated increase in activation energy, is identified.

  18. Mechanism of anisotropic surface self-diffusivity at the prismatic ice-vapor interface.

    PubMed

    Gladich, Ivan; Oswald, Amrei; Bowens, Natalie; Naatz, Sam; Rowe, Penny; Roeselova, Martina; Neshyba, Steven

    2015-09-21

    Predictive theoretical models for mesoscopic roughening of ice require improved understanding of attachment kinetics occurring at the ice-vapor interface. Here, we use classical molecular dynamics to explore the generality and mechanics of a transition from anisotropic to isotropic self-diffusivity on exposed prismatic surfaces. We find that self-diffusion parallel to the crystallographic a-axis is favored over the c-axis at sub-melt temperatures below about -35 °C, for three different representations of the water-water intermolecular potential. In the low-temperature anisotropic regime, diffusion results from interstitial admolecules encountering entropically distinct barriers to diffusion in the two in-plane directions. At higher temperatures, isotropic self-diffusion occurring deeper within the quasi-liquid layer becomes the dominant mechanism, owing to its larger energy of activation.

  19. Analysis of mass incident diffusion in Weibo based on self-organization theory

    NASA Astrophysics Data System (ADS)

    Pan, Jun; Shen, Huizhang

    2018-02-01

    This study introduces some theories and methods of self-organization system to the research of the diffusion mechanism of mass incidents in Weibo (Chinese Twitter). Based on the analysis on massive Weibo data from Songjiang battery factory incident happened in 2013 and Jiiangsu Qidong OJI PAPER incident happened in 2012, we find out that diffusion system of mass incident in Weibo satisfies Power Law, Zipf's Law, 1/f noise and Self-similarity. It means this system is the self-organization criticality system and dissemination bursts can be understood as one kind of Self-organization behavior. As the consequence, self-organized criticality (SOC) theory can be used to explain the evolution of mass incident diffusion and people may come up with the right strategy to control such kind of diffusion if they can handle the key ingredients of Self-organization well. Such a study is of practical importance which can offer opportunities for policy makers to have good management on these events.

  20. Self-Diffusion in Amorphous Silicon by Local Bond Rearrangements

    NASA Astrophysics Data System (ADS)

    Kirschbaum, J.; Teuber, T.; Donner, A.; Radek, M.; Bougeard, D.; Böttger, R.; Hansen, J. Lundsgaard; Larsen, A. Nylandsted; Posselt, M.; Bracht, H.

    2018-06-01

    Experiments on self-diffusion in amorphous silicon (Si) were performed at temperatures between 460 to 600 ° C . The amorphous structure was prepared by Si ion implantation of single crystalline Si isotope multilayers epitaxially grown on a silicon-on-insulator wafer. The Si isotope profiles before and after annealing were determined by means of secondary ion mass spectrometry. Isothermal diffusion experiments reveal that structural relaxation does not cause any significant intermixing of the isotope interfaces whereas self-diffusion is significant before the structure recrystallizes. The temperature dependence of self-diffusion is described by an Arrhenius law with an activation enthalpy Q =(2.70 ±0.11 ) eV and preexponential factor D0=(5.5-3.7+11.1)×10-2 cm2 s-1 . Remarkably, Q equals the activation enthalpy of hydrogen diffusion in amorphous Si, the migration of bond defects determining boron diffusion, and the activation enthalpy of solid phase epitaxial recrystallization reported in the literature. This close agreement provides strong evidence that self-diffusion is mediated by local bond rearrangements rather than by the migration of extended defects as suggested by Strauß et al. (Phys. Rev. Lett. 116, 025901 (2016), 10.1103/PhysRevLett.116.025901).

  1. A theoretical model of grain boundary self-diffusion in metals with phase transitions (case study into titanium and zirconium)

    NASA Astrophysics Data System (ADS)

    Semenycheva, Alexandra V.; Chuvil'deev, Vladimir N.; Nokhrin, Aleksey V.

    2018-05-01

    The paper offers a model describing the process of grain boundary self-diffusion in metals with phase transitions in the solid state. The model is based on ideas and approaches found in the theory of non-equilibrium grain boundaries. The range of application of basic relations contained in this theory is shown to expand, as they can be used to calculate the parameters of grain boundary self-diffusion in high-temperature and low-temperature phases of metals with a phase transition. The model constructed is used to calculate grain boundary self-diffusion activation energy in titanium and zirconium and an explanation is provided as to their abnormally low values in the low-temperature phase. The values of grain boundary self-diffusion activation energy are in good agreement with the experiment.

  2. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    DOE PAGES

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less

  3. Nature of self-diffusion in two-dimensional fluids

    NASA Astrophysics Data System (ADS)

    Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Kidera, Akinori; Lee, Eok Kyun

    2017-12-01

    Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. We numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(t\\sqrt{{ln}t}), however with a rescaled time.

  4. Diffusion in thorium carbide: A first-principles study

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2015-12-01

    The prediction of the behavior of Th compounds under irradiation is an important issue for the upcoming Generation-IV nuclear reactors. The study of self-diffusion and hetero-diffusion is a central key to fulfill this goal. As a first approach, we obtained, by means of first-principles methods, migration and activation energies of Th and C atoms self-diffusion and diffusion of He atoms in ThC. We also calculate diffusion coefficients as a function of temperature.

  5. Short-time self-diffusion coefficient of a particle in a colloidal suspension bounded by a microchannel: Virial expansions and simulation

    NASA Astrophysics Data System (ADS)

    Kȩdzierski, Marcin; Wajnryb, Eligiusz

    2011-10-01

    Self-diffusion of colloidal particles confined to a cylindrical microchannel is considered theoretically and numerically. Virial expansion of the self-diffusion coefficient is performed. Two-body and three-body hydrodynamic interactions are evaluated with high precision using the multipole method. The multipole expansion algorithm is also used to perform numerical simulations of the self-diffusion coefficient, valid for all possible particle packing fractions. Comparison with earlier results shows that the widely used method of reflections is insufficient for calculations of hydrodynamic interactions even for small packing fractions and small particles radii, contrary to the prevalent opinion.

  6. The influence of screening of the polyion electrostatic potential on the counterion dynamics in polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Schipper, F. J. M.; Hollander, J. G.; Leyte, J. C.

    1998-10-01

    The self-diffusion coefficient of tetra-methylammonium counterion in solutions of polymethacrylic acid in 0953-8984/10/41/004/img1 has been measured over a broad polyion concentration range at a constant degree of neutralization and at different ratios of added monovalent or bivalent salt to polyions. A maximum counterion self-diffusion coefficient was observed as a function of polyion concentration. The value of the self-diffusion coefficient at the maximum did not depend on the valency of the added salt. The maximum was found at lower polymer concentrations and with a higher value, when the ratio of added salt to polyions was increased, as predicted by the Poisson-Boltzmann-Smoluchowski equation in the cylindrical cell model for polyelectrolytes. At higher polyion concentrations a maximum counterion self-diffusion coefficient against the ratio of added salt and polyions was observed, which has not been reported before. Upon increasing this ratio the electrostatic potential of the polyelectrolyte gets screened, leading to an increase of the counterion self-diffusion coefficient. Concentration effects of the added salt on the other hand ultimately lead to a decrease of the counterion self-diffusion coefficient, which explains the occurrence of a maximum.

  7. Self diffusion of interacting membrane proteins.

    PubMed Central

    Abney, J R; Scalettar, B A; Owicki, J C

    1989-01-01

    A two-dimensional version of the generalized Smoluchowski equation is used to analyze the time (or distance) dependent self diffusion of interacting membrane proteins in concentrated membrane systems. This equation provides a well established starting point for descriptions of the diffusion of particles that interact through both direct and hydrodynamic forces; in this initial work only the effects of direct interactions are explicitly considered. Data describing diffusion in the presence of hard-core repulsions, soft repulsions, and soft repulsions with weak attractions are presented. The effect that interactions have on the self-diffusion coefficient of a real protein molecule from mouse liver gap junctions is also calculated. The results indicate that self diffusion is always inhibited by direct interactions; this observation is interpreted in terms of the caging that will exist at finite protein concentration. It is also noted that, over small distance scales, the diffusion coefficient is determined entirely by the very strong Brownian forces; therefore, as a function of displacement the self-diffusion coefficient decays (rapidly) from its value at infinite dilution to its steady-state interaction-averaged value. The steady-state self-diffusion coefficient describes motion over distance scales that range from approximately 10 nm to cellular dimensions and is the quantity measured in fluorescence recovery after photobleaching experiments. The short-ranged behavior of the diffusion coefficient is important on the interparticle-distance scale and may therefore influence the rate at which nearest-neighbor collisional processes take place. The hard-disk theoretical results presented here are in excellent agreement with lattice Monte-Carlo results obtained by other workers. The concentration dependence of experimentally measured diffusion coefficients of antibody-hapten complexes bound to the membrane surface is consistent with that predicted by the theory. The variation in experimental diffusion coefficients of integral membrane proteins is greater than that predicted by the theory, and may also reflect protein-induced perturbations in membrane viscosity. PMID:2720077

  8. Diffusion of multi-isotopic chemical species in molten silicates

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Liang, Yan; Richter, Frank; Ryerson, Frederick J.; DePaolo, Donald J.

    2014-08-01

    Diffusion experiments in a simplified Na2O-CaO-SiO2 liquid system are used to develop a general formulation for the fractionation of Ca isotopes during liquid-phase diffusion. Although chemical diffusion is a well-studied process, the mathematical description of the effects of diffusion on the separate isotopes of a chemical element is surprisingly underdeveloped and uncertain. Kinetic theory predicts a mass dependence on isotopic mobility, but it is unknown how this translates into a mass dependence on effective binary diffusion coefficients, or more generally, the chemical diffusion coefficients that are housed in a multicomponent diffusion matrix. Our experiments are designed to measure Ca mobility, effective binary diffusion coefficients, the multicomponent diffusion matrix, and the effects of chemical diffusion on Ca isotopes in a liquid of single composition. We carried out two chemical diffusion experiments and one self-diffusion experiment, all at 1250 °C and 0.7 GPa and using a bulk composition for which other information is available from the literature. The self-diffusion experiment is used to determine the mobility of Ca in the absence of diffusive fluxes of other liquid components. The chemical diffusion experiments are designed to determine the effect on Ca isotope fractionation of changing the counter-diffusing component from fast-diffusing Na2O to slow-diffusing SiO2. When Na2O is the main counter-diffusing species, CaO diffusion is fast and larger Ca isotopic effects are generated. When SiO2 is the main counter-diffusing species, CaO diffusion is slow and smaller Ca isotopic effects are observed. In both experiments, the liquid is initially isotopically homogeneous, and during the experiment Ca isotopes become fractionated by diffusion. The results are used as a test of a new general expression for the diffusion of isotopes in a multicomponent liquid system that accounts for both self diffusion and the effects of counter-diffusing species. Our results show that (1) diffusive isotopic fractionations depend on the direction of diffusion in composition space, (2) diffusive isotopic fractionations scale with effective binary diffusion coefficient, as previously noted by Watkins et al. (2011), (3) self-diffusion is not decoupled from chemical diffusion, (4) self diffusion can be faster than or slower than chemical diffusion and (5) off-diagonal terms in the chemical diffusion matrix have isotopic mass-dependence. The results imply that relatively large isotopic fractionations can be generated by multicomponent diffusion even in the absence of large concentration gradients of the diffusing element. The new formulations for isotope diffusion can be tested with further experimentation and provide an improved framework for interpreting mass-dependent isotopic variations in natural liquids.

  9. Arrhenius analysis of anisotropic surface self-diffusion on the prismatic facet of ice.

    PubMed

    Gladich, Ivan; Pfalzgraff, William; Maršálek, Ondřej; Jungwirth, Pavel; Roeselová, Martina; Neshyba, Steven

    2011-11-28

    We present an Arrhenius analysis of self-diffusion on the prismatic surface of ice calculated from molecular dynamics simulations. The six-site water model of Nada and van der Eerden was used in combination with a structure-based criterion for determining the number of liquid-like molecules in the quasi-liquid layer. Simulated temperatures range from 230 K-287 K, the latter being just below the melting temperature of the model, 289 K. Calculated surface diffusion coefficients agree with available experimental data to within quoted precision. Our results indicate a positive Arrhenius curvature, implying a change in the mechanism of self-diffusion from low to high temperature, with a concomitant increase in energy of activation from 29.1 kJ mol(-1) at low temperature to 53.8 kJ mol(-1) close to the melting point. In addition, we find that the surface self-diffusion is anisotropic at lower temperatures, transitioning to isotropic in the temperature range of 240-250 K. We also present a framework for self-diffusion in the quasi-liquid layer on ice that aims to explain these observations.

  10. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    PubMed

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. A model for self-diffusion of guanidinium-based ionic liquids: a molecular simulation study.

    PubMed

    Klähn, Marco; Seduraman, Abirami; Wu, Ping

    2008-11-06

    We propose a novel self-diffusion model for ionic liquids on an atomic level of detail. The model is derived from molecular dynamics simulations of guanidinium-based ionic liquids (GILs) as a model case. The simulations are based on an empirical molecular mechanical force field, which has been developed in our preceding work, and it relies on the charge distribution in the actual liquid. The simulated GILs consist of acyclic and cyclic cations that were paired with nitrate and perchlorate anions. Self-diffusion coefficients are calculated at different temperatures from which diffusive activation energies between 32-40 kJ/mol are derived. Vaporization enthalpies between 174-212 kJ/mol are calculated, and their strong connection with diffusive activation energies is demonstrated. An observed formation of cavities in GILs of up to 6.5% of the total volume does not facilitate self-diffusion. Instead, the diffusion of ions is found to be determined primarily by interactions with their immediate environment via electrostatic attraction between cation hydrogen and anion oxygen atoms. The calculated average time between single diffusive transitions varies between 58-107 ps and determines the speed of diffusion, in contrast to diffusive displacement distances, which were found to be similar in all simulated GILs. All simulations indicate that ions diffuse by using a brachiation type of movement: a diffusive transition is initiated by cleaving close contacts to a coordinated counterion, after which the ion diffuses only about 2 A until new close contacts are formed with another counterion in its vicinity. The proposed diffusion model links all calculated energetic and dynamic properties of GILs consistently and explains their molecular origin. The validity of the model is confirmed by providing an explanation for the variation of measured ratios of self-diffusion coefficients of cations and paired anions over a wide range of values, encompassing various ionic liquid classes as well as the simulated GILs. The proposed diffusion model facilitates the qualitative a priori prediction of the impact of ion modifications on the diffusive characteristics of new ionic liquids.

  12. Self-diffusion of magnesium in spinel and in equilibrium melts - Constraints on flash heating of silicates

    NASA Technical Reports Server (NTRS)

    Sheng, Y. J.; Wasserburg, G. J.; Hutcheon, I. D.

    1992-01-01

    An isotopic tracer is used to measure Mg self-diffusion in spinel and coexisting melt at bulk chemical equilibrium. The diffusion coefficients were calculated from the measured isotope profiles using a model that includes the complementary diffusion of Mg-24, Mg-25, and Mg-26 in both phases with the constraint that the Mg content of each phase is constant. The activation energy and preexponential factor for Mg self-diffusion in spinel are, respectively, 384 +/- 7 kJ and 74.6 +/- 1.1 sq cm/s. These data indicate Mg diffusion in spinel is much slower than previous estimates. The activation energy for Mg self-diffusion in coexisting melt is 343 +/- 25 kJ and the preexponential factor is 7791.9 +/- 1.3 sq cm/s. These results are used to evaluate cooling rates of plagioclase-olivine inclusions (POIs) in the Allende meteorite. Given a maximum melting temperature for POIs of about 1500 C, these results show that a 1-micron radius spinel would equilibrate isotopically with a melt within about 60 min.

  13. NMR Water Self-Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions.

    PubMed

    Bai, Ruiliang; Basser, Peter J; Briber, Robert M; Horkay, Ferenc

    2014-03-15

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca 2+ and Na + . Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na + on the mobility of water molecules was practically undetectable. By contrast, addition of Ca 2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced.

  14. Self-thermophoresis and thermal self-diffusion in liquids and gases.

    PubMed

    Brenner, Howard

    2010-09-01

    This paper demonstrates the existence of self-thermophoresis, a phenomenon whereby a virtual thermophoretic force arising from a temperature gradient in a quiescent single-component liquid or gas acts upon an individual molecule of that fluid in much the same manner as a "real" thermophoretic force acts upon a macroscopic, non-Brownian body immersed in that same fluid. In turn, self-thermophoresis acting in concert with Brownian self-diffusion gives rise to the phenomenon of thermal self-diffusion in single-component fluids. The latter furnishes quantitative explanations of both thermophoresis in pure fluids and thermal diffusion in binary mixtures (the latter composed of a dilute solution of a physicochemically inert solute whose molecules are large compared with those of the solvent continuum). Explicitly, the self-thermophoretic theory furnishes a simple expression for both the thermophoretic velocity U of a macroscopic body in a single-component fluid subjected to a temperature gradient ∇T , and the intimately related binary thermal diffusion coefficient D{T} for a two-component colloidal or macromolecular mixture. The predicted expressions U=-D{T}∇T≡-βD{S}∇T and D{T}=βD{S} (with β and D{S} the pure solvent's respective thermal expansion and isothermal self-diffusion coefficients) are each noted to accord reasonably well with experimental data for both liquids and gases. The likely source of systematic deviations of the predicted values of D{T} from these data is discussed. This appears to be the first successful thermodiffusion theory applicable to both liquids and gases, a not insignificant achievement considering that the respective thermal diffusivities and thermophoretic velocities of these two classes of fluids differ by as much as six orders of magnitude.

  15. Dissipative particle dynamics study of velocity autocorrelation function and self-diffusion coefficient in terms of interaction potential strength

    NASA Astrophysics Data System (ADS)

    Zohravi, Elnaz; Shirani, Ebrahim; Pishevar, Ahmadreza; Karimpour, Hossein

    2018-07-01

    This research focuses on numerically investigating the self-diffusion coefficient and velocity autocorrelation function (VACF) of a dissipative particle dynamics (DPD) fluid as a function of the conservative interaction strength. Analytic solutions to VACF and self-diffusion coefficients in DPD were obtained by many researchers in some restricted cases including ideal gases, without the account of conservative force. As departure from the ideal gas conditions are accentuated with increasing the relative proportion of conservative force, it is anticipated that the VACF should gradually deviate from its normally expected exponentially decay. This trend is confirmed through numerical simulations and an expression in terms of the conservative force parameter, density and temperature is proposed for the self-diffusion coefficient. As it concerned the VACF, the equivalent Langevin equation describing Brownian motion of particles with a harmonic potential is adapted to the problem and reveals an exponentially decaying oscillatory pattern influenced by the conservative force parameter, dissipative parameter and temperature. Although the proposed model for obtaining the self-diffusion coefficient with consideration of the conservative force could not be verified due to computational complexities, nonetheless the Arrhenius dependency of the self-diffusion coefficient to temperature and pressure permits to certify our model over a definite range of DPD parameters.

  16. Nature of self-diffusion in two-dimensional fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho

    Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. Here, we numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(more » $$t\\sqrt{In t)}$$ however with a rescaled time.« less

  17. Nature of self-diffusion in two-dimensional fluids

    DOE PAGES

    Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; ...

    2017-12-18

    Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. Here, we numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(more » $$t\\sqrt{In t)}$$ however with a rescaled time.« less

  18. Self-diffusion of protons in H{sub 2}O ice VII at high pressures: Anomaly around 10 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noguchi, Naoki, E-mail: noguchi-n@okayama-u.ac.jp; Okuchi, Takuo

    2016-06-21

    The self-diffusion of ice VII in the pressure range of 5.5–17 GPa and temperature range of 400–425 K was studied using micro Raman spectroscopy and a diamond anvil cell. The diffusion was monitored by observing the distribution of isotope tracers: D{sub 2}O and H{sub 2}{sup 18}O. The diffusion coefficient of hydrogen reached a maximum value around 10 GPa. It was two orders of magnitude greater at 10 GPa than at 6 GPa. Hydrogen diffusion was much faster than oxygen diffusion, which indicates that protonic diffusion is the dominant mechanism for the diffusion of hydrogen in ice VII. This mechanism ismore » in remarkable contrast to the self-diffusion in ice I{sub h} that is dominated by an interstitial mechanism for the whole water molecule. An anomaly around 10 GPa in ice VII indicates that the rate-determining process for the proton diffusion changes from the diffusion of ionic defects to the diffusion of rotational defects, which was suggested by proton conductivity measurements and molecular dynamics simulations.« less

  19. Effects of molecular size and structure on self-diffusion coefficient and viscosity for saturated hydrocarbons having six carbon atoms.

    PubMed

    Iwahashi, Makio; Kasahara, Yasutoshi

    2007-01-01

    Self-diffusion coefficients and viscosities for the saturated hydrocarbons having six carbon atoms such as hexane, 2-methylpentane (2MP), 3-methylpentane (3MP), 2,2-dimethylbutane (22DMB), 2,3-dimethylbutane (23DMB), methylcyclopentane (McP) and cyclohexane (cH) were measured at various constant temperatures; obtained results were discussed in connection with their molar volumes, molecular structures and thermodynamic properties. The values of self-diffusion coefficients as the microscopic property were inversely proportional to those of viscosities as the macroscopic property. The order of their viscosities was almost same to those of their melting temperatures and enthalpies of fusion, which reflect the attractive interactions among their molecules. On the other hand, the order of the self-diffusion coefficients inversely related to the order of the melting temperatures and the enthalpies of the fusion. Namely, the compound having the larger attractive interaction mostly shows the less mobility in its liquid state, e.g., cyclohexane (cH), having the largest attractive interaction and the smallest molar volume exhibits an extremely large viscosity and small self-diffusion coefficient comparing with other hydrocarbons. However, a significant exception was 22DMB, being most close to a sphere: In spite of the smallest attractive interaction and the largest molar volume of 22DMB in the all samples, it has the thirdly larger viscosity and the thirdly smaller self-diffusion coefficient. Consequently, the dynamical properties such as self-diffusion and viscosity for the saturated hydrocarbons are determined not only by their attractive interactions but also by their molecular structures.

  20. Secondary Ion Mass Spectrometry for Mg Tracer Diffusion: Issues and Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuggle, Jay; Giordani, Andrew; Kulkarni, Nagraj S

    2014-01-01

    A Secondary Ion Mass Spectrometry (SIMS) method has been developed to measure stable Mg isotope tracer diffusion. This SIMS method was then used to calculate Mg self- diffusivities and the data was verified against historical data measured using radio tracers. The SIMS method has been validated as a reliable alternative to the radio-tracer technique for the measurement of Mg self-diffusion coefficients and can be used as a routine method for determining diffusion coefficients.

  1. Calibration-free concentration analysis for an analyte prone to self-association.

    PubMed

    Imamura, Hiroshi; Honda, Shinya

    2017-01-01

    Calibration-free concentration analysis (CFCA) based on surface plasmon resonance uses the diffusion coefficient of an analyte to determine the concentration of that analyte in a bulk solution. In general, CFCA is avoided when investigating analytes prone to self-association, as the heterogeneous diffusion coefficient results in a loss of precision. The derivation for self-association of the analyte was presented here. By using the diffusion coefficient for the monomeric state, CFCA provides the lowest possible concentration even though the analyte is self-associated. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Effect of Hydrodynamic Interactions on Self-Diffusion of Quasi-Two-Dimensional Colloidal Hard Spheres.

    PubMed

    Thorneywork, Alice L; Rozas, Roberto E; Dullens, Roel P A; Horbach, Jürgen

    2015-12-31

    We compare experimental results from a quasi-two-dimensional colloidal hard sphere fluid to a Monte Carlo simulation of hard disks with small particle displacements. The experimental short-time self-diffusion coefficient D(S) scaled by the diffusion coefficient at infinite dilution, D(0), strongly depends on the area fraction, pointing to significant hydrodynamic interactions at short times in the experiment, which are absent in the simulation. In contrast, the area fraction dependence of the experimental long-time self-diffusion coefficient D(L)/D(0) is in quantitative agreement with D(L)/D(0) obtained from the simulation. This indicates that the reduction in the particle mobility at short times due to hydrodynamic interactions does not lead to a proportional reduction in the long-time self-diffusion coefficient. Furthermore, the quantitative agreement between experiment and simulation at long times indicates that hydrodynamic interactions effectively do not affect the dependence of D(L)/D(0) on the area fraction. In light of this, we discuss the link between structure and long-time self-diffusion in terms of a configurational excess entropy and do not find a simple exponential relation between these quantities for all fluid area fractions.

  3. Oxygen self-diffusion mechanisms in monoclinic Zr O2 revealed and quantified by density functional theory, random walk analysis, and kinetic Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Youssef, Mostafa; Yildiz, Bilge

    2018-01-01

    In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.

  4. Self-diffusion in compressively strained Ge

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoko; Uematsu, Masashi; Hoshi, Yusuke; Sawano, Kentarou; Myronov, Maksym; Shiraki, Yasuhiro; Haller, Eugene E.; Itoh, Kohei M.

    2011-08-01

    Under a compressive biaxial strain of ˜ 0.71%, Ge self-diffusion has been measured using an isotopically controlled Ge single-crystal layer grown on a relaxed Si0.2Ge0.8 virtual substrate. The self-diffusivity is enhanced by the compressive strain and its behavior is fully consistent with a theoretical prediction of a generalized activation volume model of a simple vacancy mediated diffusion, reported by Aziz et al. [Phys. Rev. B 73, 054101 (2006)]. The activation volume of (-0.65±0.21) times the Ge atomic volume quantitatively describes the observed enhancement due to the compressive biaxial strain very well.

  5. Determination of Physical Properties of Energetic Ionic Liquids Using Molecular Simulations

    DTIC Science & Technology

    2006-12-31

    respose , trrncdu g the time for revienig istions, searc g exsting data sources. gathering and rrivntaWii thedata nestedad std comgteltng and rvedng...measure self -diffusivities for three ionic liquid systems. We then compared our calculated self -diffusivities against these data. 3.2.2 Summary of...useful measure of liquid dynamics that is amenable to both experimental and computational determination is the self -diffusivity, D,, defined as l-lim ,!Ir

  6. Oxygen self-diffusion in ThO 2 under pressure: Connecting point defect parameters with bulk properties

    DOE PAGES

    Cooper, Michael William D.; Fitzpatrick, M. E.; Tsoukalas, L. H.; ...

    2016-06-06

    ThO 2 is a candidate material for use in nuclear fuel applications and as such it is important to investigate its materials properties over a range of temperatures and pressures. In the present study molecular dynamics calculations are used to calculate elastic and expansivity data. These are used in the framework of a thermodynamic model, the cBΩ model, to calculate the oxygen self-diffusion coefficient in ThO 2 over a range of pressures (–10–10 GPa) and temperatures (300–1900 K). As a result, increasing the hydrostatic pressure leads to a significant reduction in oxygen self-diffusion. Conversely, negative hydrostatic pressure significantly enhances oxygenmore » self-diffusion.« less

  7. Pulsed field gradient magic angle spinning NMR self-diffusion measurements in liquids

    NASA Astrophysics Data System (ADS)

    Viel, Stéphane; Ziarelli, Fabio; Pagès, Guilhem; Carrara, Caroline; Caldarelli, Stefano

    2008-01-01

    Several investigations have recently reported the combined use of pulsed field gradient (PFG) with magic angle spinning (MAS) for the analysis of molecular mobility in heterogeneous materials. In contrast, little attention has been devoted so far to delimiting the role of the extra force field induced by sample rotation on the significance and reliability of self-diffusivity measurements. The main purpose of this work is to examine this phenomenon by focusing on pure liquids for which its impact is expected to be largest. Specifically, we show that self-diffusion coefficients can be accurately determined by PFG MAS NMR diffusion measurements in liquids, provided that specific experimental conditions are met. First, the methodology to estimate the gradient uniformity and to properly calibrate its absolute strength is briefly reviewed and applied on a MAS probe equipped with a gradient coil aligned along the rotor spinning axis, the so-called 'magic angle gradient' coil. Second, the influence of MAS on the outcome of PFG MAS diffusion measurements in liquids is investigated for two distinct typical rotors of different active volumes, 12 and 50 μL. While the latter rotor led to totally unreliable results, especially for low viscosity compounds, the former allowed for the determination of accurate self-diffusion coefficients both for fast and slowly diffusing species. Potential implications of this work are the possibility to measure accurate self-diffusion coefficients of sample-limited mixtures or to avoid radiation damping interferences in NMR diffusion measurements. Overall, the outlined methodology should be of interest to anyone who strives to improve the reliability of MAS diffusion studies, both in homogeneous and heterogeneous media.

  8. Diffusion coefficients of rare earth elements in fcc Fe: A first-principles study

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Gao, Xueyun; Ren, Huiping; Chen, Shuming; Yao, Zhaofeng

    2018-01-01

    The diffusion data and corresponding detailed insights are particularly important for the understanding of the related kinetic processes in Fe based alloys, e.g. solute strengthening, phase transition, solution treatment etc. We present a density function theory study of the diffusivity of self and solutes (La, Ce, Y and Nb) in fcc Fe. The five-frequency model was employed to calculate the microscopic parameters in the correlation factors of the solute diffusion. The interactions of the solutes with the first nearest-neighbor vacancy (1nn) are all attractive, and can be well understood on the basis of the combination of the strain-relief effects and the electronic effects. It is found that among the investigated species, Ce is the fastest diffusing solute in fcc Fe matrix followed by Nb, and the diffusion coefficients of these two solutes are about an order of magnitude higher than that of Fe self-diffusion. And the results show that the diffusion coefficient of La is slightly higher than that of Y, and both species are comparable to that of Fe self-diffusion.

  9. Counterion self-diffusion in polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Schipper, F. J. M.; Hollander, J. G.; Leyte, J. C.

    1997-12-01

    The self-diffusion coefficient of 0953-8984/9/50/019/img1, tetra-methylammonium 0953-8984/9/50/019/img2, tetra-ethylammonium 0953-8984/9/50/019/img3, tetra-propylammonium 0953-8984/9/50/019/img4 and tetra-butylammonium 0953-8984/9/50/019/img5 in solutions of the weak polymethacrylic acid (PMA) were measured with PFG NMR. No additional salt was present in any of the experiments. The polyion concentration and degree of neutralization were varied. The maximum relative counterion self-diffusion coefficient against polyion concentration, that was reported earlier, was observed for both alkali and tetra-alkylammonium 0953-8984/9/50/019/img6 counterions. We propose that the maximum is due to the combination of the obstruction by the polyion and the changing counterion distribution at increasing polyion concentration. An explanation of this proposal is offered in terms of the Poisson - Boltzmann - Smoluchowski (PBS) model for polyelectrolytes. Qualitative agreement of this model with experiment was found for the dependence of the counterion self-diffusion coefficient on the degree of neutralization of the polyion, on counterion radius and on polyion concentration, over a concentration range from 0.01 to 1 0953-8984/9/50/019/img7. Adaption of the theoretical obstruction, to fit the self-diffusion data of the solvent, also greatly improves the model predictions on the counterion self-diffusion.

  10. Theoretical and experimental studies of water interaction in acetate based ionic liquids.

    PubMed

    Shi, Wei; Damodaran, Krishnan; Nulwala, Hunaid B; Luebke, David R

    2012-12-05

    Water interactions in 1-ethyl-3-methylimidazolium acetate ([emim][CH(3)COO]) were studied utilizing classical and ab initio simulation methods. The self-diffusivities for water and the ionic liquid (IL) were studied experimentally using pulse field gradient NMR spectroscopy and correlated with computational results. Water forms hydrogen bonding networks with the ionic liquid, and depending on the concentration of water, there are profound effects on the self-diffusivities of the various species. Both simulation and experiments show that the self-diffusivities for species in the water-[emim][CH(3)COO] system exhibit minima at 40-50 mol% water. Water interaction with the [CH(3)COO](-) anion predominates over the water-water and water-cation interactions at most water concentrations. Simulations further indicate that decreasing water-[CH(3)COO](-) interaction will increase the IL and water self-diffusivities. Self-diffusivities in the water-IL systems are dependent upon the cation in a complex way. Water interactions with [P(4444)][CH(3)COO] are reduced compared to [emim][CH(3)COO]. The [P(4444)](+) cation is bulkier than the [emim](+) cation and has a smaller self-diffusivity, but when water was introduced to [P(4444)] [CH(3)COO], the water-[CH(3)COO](-) hydrogen bonding network in the [P(4444)][CH(3)COO] was much smaller than the one observed in [emim][CH(3)COO].

  11. Self-diffusion of electrolyte species in model battery electrodes using Magic Angle Spinning and Pulsed Field Gradient Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Tambio, Sacris Jeru; Deschamps, Michaël; Sarou-Kanian, Vincent; Etiemble, Aurélien; Douillard, Thierry; Maire, Eric; Lestriez, Bernard

    2017-09-01

    Lithium-ion batteries are electrochemical storage devices using the electrochemical activity of the lithium ion in relation to intercalation compounds owing to mass transport phenomena through diffusion. Diffusion of the lithium ion in the electrode pores has been poorly understood due to the lack of experimental techniques for measuring its self-diffusion coefficient in porous media. Magic-Angle Spinning, Pulsed Field Gradient, Stimulated-Echo Nuclear Magnetic Resonance (MAS-PFG-STE NMR) was used here for the first time to measure the self-diffusion coefficients of the electrolyte species in the LP30 battery electrolyte (i.e. a 1 M solution of LiPF6 dissolved in 1:1 Ethylene Carbonate - Dimethyl Carbonate) in model composites. These composite electrodes were made of alumina, carbon black and PVdF-HFP. Alumina's magnetic susceptibility is close to the measured magnetic susceptibility of the LP30 electrolyte thereby limiting undesirable internal field gradients. Interestingly, the self-diffusion coefficient of lithium ions decreases with increasing carbon content. FIB-SEM was used to describe the 3D geometry of the samples. The comparison between the reduction of self-diffusion coefficients as measured by PFG-NMR and as geometrically derived from FIB/SEM tortuosity values highlights the contribution of specific interactions at the material/electrolyte interface on the lithium transport properties.

  12. Isotope fractionation by multicomponent diffusion (Invited)

    NASA Astrophysics Data System (ADS)

    Watkins, J. M.; Liang, Y.; Richter, F. M.; Ryerson, F. J.; DePaolo, D. J.

    2013-12-01

    Isotope fractionation by multicomponent diffusion The isotopic composition of mineral phases can be used to probe the temperatures and rates of mineral formation as well as the degree of post-mineralization alteration. The ability to interpret stable isotope variations is limited by our knowledge of three key parameters and their relative importance in determining the composition of a mineral grain and its surroundings: (1) thermodynamic (equilibrium) partitioning, (2) mass-dependent diffusivities, and (3) mass-dependent reaction rate coefficients. Understanding the mechanisms of diffusion and reaction in geological liquids, and how these mass transport processes discriminate between isotopes, represents an important problem that is receiving considerable attention in the geosciences. Our focus in this presentation will be isotope fractionation by chemical diffusion. Previous studies have documented that diffusive isotope effects vary depending on the cation as well as the liquid composition, but the ability to predict diffusive isotope effects from theory is limited; for example, it is unclear whether the magnitude of diffusive isotopic fractionations might also vary with the direction of diffusion in composition space. To test this hypothesis and to further guide the theoretical treatment of isotope diffusion, two chemical diffusion experiments and one self diffusion experiment were conducted at 1250°C and 0.7 GPa. In one experiment (A-B), CaO and Na2O counter-diffuse rapidly in the presence of a small SiO2 gradient. In the other experiment (D-E), CaO and SiO2 counter-diffuse more slowly in a small Na2O gradient. In both chemical diffusion experiments, Ca isotopes become fractionated by chemical diffusion but by different amounts, documenting for the first time that the magnitude of isotope fractionation by diffusion depends on the direction of diffusion in composition space. The magnitude of Ca isotope fractionation that develops is positively correlated with the rate of CaO diffusion; in A-B, the total variation is 2.5‰ whereas in D-E it is only 1.3‰. The diffusion of isotopes in a multicomponent system is modeled using a new expression for the isotope-specific diffusive flux that includes self diffusion terms in addition to the multicomponent chemical diffusion matrix. Kinetic theory predicts a mass dependence on isotopic mobility, i.e., self diffusivity, but it is unknown whether or how the mass dependence on self diffusivity translates into a mass dependence on chemical diffusion coefficients. The new experimental results allow us to assess several empirical expressions relating the self diffusivity and its mass dependence to the elements of the diffusion matrix and their mass dependence. Several plausible theoretical treatments can fit the data equally well. We are currently at the stage where experiments are guiding the theoretical treatment of the isotope fractionation by diffusion problem, underscoring the importance of experiments for aiding interpretations of isotopic variations in nature.

  13. Investigating the validity of the Knudsen prescription for diffusivities in a mesoporous covalent organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, Rajamani; van Baten, Jasper M.

    2011-04-27

    Molecular dynamics (MD) simulations were performed to determine the self-diffusivity (D i,self) and the Maxwell–Stefan diffusivity (Ð I) of hydrogen, argon, carbon dioxide, methane, ethane, propane, n-butane, n-pentane, and n-hexane in BTP-COF, which is a covalent organic framework (COF) that has one-dimensional 3.4-nm-sized channels. The MD simulations show that the zero-loading diffusivity (Ð I(0)) is consistently lower, by up to a factor of 10, than the Knudsen diffusivity (D i,Kn) values. The ratio Ð I(0)/D i,Kn is found to correlate with the isosteric heat of adsorption, which, in turn, is a reflection of the binding energy for adsorption on themore » pore walls: the stronger the binding energy, the lower the ratio Ð I(0)/D i,Kn. The diffusion selectivity, which is defined by the ratio D 1,self/D 2,self for binary mixtures, was determined to be significantly different from the Knudsen selectivity (M 2/M 1) 1/2, where M I is the molar mass of species i. For mixtures in which component 2 is more strongly adsorbed than component 1, the expression (D 1,self/D 2,self)/(M 2/M 1)1/2 has values in the range of 1–10; the departures from the Knudsen selectivity increased with increasing differences in adsorption strengths of the constituent species. The results of this study have implications in the modeling of diffusion within mesoporous structures, such as MCM-41 and SBA-15.« less

  14. Ionic conduction and self-diffusion near infinitesimal concentration in lithium salt-organic solvent electrolytes

    NASA Astrophysics Data System (ADS)

    Aihara, Yuichi; Sugimoto, Kyoko; Price, William S.; Hayamizu, Kikuko

    2000-08-01

    The Debye-Hückel-Onsager and Nernst-Einstein equations, which are based on two different conceptual approaches, constitute the most widely used equations for relating ionic conduction to ionic mobility. However, both of these classical (simple) equations are predictive of ionic conductivity only at very low salt concentrations. In the present work the ionic conductivity of four organic solvent-lithium salt-based electrolytes were measured. These experimental conductivity values were then contrasted with theoretical values calculated using the translational diffusion (also known as self-diffusion or intradiffusion) coefficients of all of the species present obtained using pulsed-gradient spin-echo (1H, 19F and 7Li) nuclear magnetic resonance self-diffusion measurements. The experimental results verified the applicability of both theoretical approaches at very low salt concentrations for these particular systems as well as helping to clarify the reasons for the divergence between theory and experiment. In particular, it was found that the correspondence between the Debye-Hückel-Onsager equation and experimental values could be improved by using the measured solvent self-diffusion values to correct for salt-induced changes in the solution viscosity. The concentration dependence of the self-diffusion coefficients is discussed in terms of the Jones-Dole equation.

  15. Self-Diffusion of Drops in a Dilute Sheared Emulsion

    NASA Technical Reports Server (NTRS)

    Loewenberg, Michael; Hinch, E. J.

    1996-01-01

    Self-diffusion coefficients that describe cross-flow migration of non-Brownian drops in a dilute sheared emulsion were obtained by trajectory calculations. A boundary integral formulation was used to describe pairwise interactions between deformable drops; interactions between undeformed drops were described with mobility functions for spherical drops. The results indicate that drops have large anisotropic self-diffusivities which depend strongly on the drop viscosity and modestly on the shear-rate. Pairwise interactions between drops in shear-flow do not appreciably promote drop breakup.

  16. NMR Water Self–Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions

    PubMed Central

    Bai, Ruiliang; Basser, Peter J.; Briber, Robert M.; Horkay, Ferenc

    2013-01-01

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca2+ and Na+. Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na+ on the mobility of water molecules was practically undetectable. By contrast, addition of Ca2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced. PMID:24409001

  17. Imaging energy landscapes with concentrated diffusing colloidal probes

    NASA Astrophysics Data System (ADS)

    Bahukudumbi, Pradipkumar; Bevan, Michael A.

    2007-06-01

    The ability to locally interrogate interactions between particles and energetically patterned surfaces provides essential information to design, control, and optimize template directed self-assembly processes. Although numerous techniques are capable of characterizing local physicochemical surface properties, no current method resolves interactions between colloids and patterned surfaces on the order of the thermal energy kT, which is the inherent energy scale of equilibrium self-assembly processes. Here, the authors describe video microscopy measurements and an inverse Monte Carlo analysis of diffusing colloidal probes as a means to image three dimensional free energy and potential energy landscapes due to physically patterned surfaces. In addition, they also develop a consistent analysis of self-diffusion in inhomogeneous fluids of concentrated diffusing probes on energy landscapes, which is important to the temporal imaging process and to self-assembly kinetics. Extension of the concepts developed in this work suggests a general strategy to image multidimensional and multiscale physical, chemical, and biological surfaces using a variety of diffusing probes (i.e., molecules, macromolecules, nanoparticles, and colloids).

  18. Self-diffusion in 69Ga121Sb/71Ga123Sb isotope heterostructures

    NASA Astrophysics Data System (ADS)

    Bracht, H.; Nicols, S. P.; Haller, E. E.; Silveira, J. P.; Briones, F.

    2001-05-01

    Gallium and antimony self-diffusion experiments have been performed in undoped 69Ga121Sb/71Ga123Sb isotope heterostructures at temperatures between 571 and 708 °C under Sb- and Ga-rich ambients. Ga and Sb profiles measured with secondary ion mass spectrometry reveal that Ga diffuses faster than Sb by several orders of magnitude. This strongly suggests that the two self-atom species diffuse independently on their own sublattices. Experimental results lead us to conclude that Ga and Sb diffusion are mediated by Ga vacancies and Sb interstitials, respectively, and not by the formation of a triple defect proposed earlier by Weiler and Mehrer [Philos. Mag. A 49, 309 (1984)]. The extremely slow diffusion of Sb up to the melting temperature of GaSb is proposed to be a consequence of amphoteric transformations between native point defects which suppress the formation of those native defects which control Sb diffusion. Preliminary experiments exploring the effect of Zn indiffusion at 550 °C on Ga and Sb diffusion reveal an enhanced intermixing of the Ga isotope layers compared to undoped GaSb. However, under the same conditions the diffusion of Sb was not significantly affected.

  19. Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties

    NASA Astrophysics Data System (ADS)

    Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.

    2014-11-01

    We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013), 10.1103/PhysRevLett.111.110601]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self- and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self- and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1 /L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.

  20. Diffusion in confinement: kinetic simulations of self- and collective diffusion behavior of adsorbed gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abouelnasr, MKF; Smit, B

    2012-01-01

    The self- and collective-diffusion behaviors of adsorbed methane, helium, and isobutane in zeolite frameworks LTA, MFI, AFI, and SAS were examined at various concentrations using a range of molecular simulation techniques including Molecular Dynamics (MD), Monte Carlo (MC), Bennett-Chandler (BC), and kinetic Monte Carlo (kMC). This paper has three main results. (1) A novel model for the process of adsorbate movement between two large cages was created, allowing the formulation of a mixing rule for the re-crossing coefficient between two cages of unequal loading. The predictions from this mixing rule were found to agree quantitatively with explicit simulations. (2) Amore » new approach to the dynamically corrected Transition State Theory method to analytically calculate self-diffusion properties was developed, explicitly accounting for nanoscale fluctuations in concentration. This approach was demonstrated to quantitatively agree with previous methods, but is uniquely suited to be adapted to a kMC simulation that can simulate the collective-diffusion behavior. (3) While at low and moderate loadings the self- and collective-diffusion behaviors in LTA are observed to coincide, at higher concentrations they diverge. A change in the adsorbate packing scheme was shown to cause this divergence, a trait which is replicated in a kMC simulation that explicitly models this behavior. These phenomena were further investigated for isobutane in zeolite MFI, where MD results showed a separation in self- and collective-diffusion behavior that was reproduced with kMC simulations.« less

  1. Diffusion in confinement: kinetic simulations of self- and collective diffusion behavior of adsorbed gases.

    PubMed

    Abouelnasr, Mahmoud K F; Smit, Berend

    2012-09-07

    The self- and collective-diffusion behaviors of adsorbed methane, helium, and isobutane in zeolite frameworks LTA, MFI, AFI, and SAS were examined at various concentrations using a range of molecular simulation techniques including Molecular Dynamics (MD), Monte Carlo (MC), Bennett-Chandler (BC), and kinetic Monte Carlo (kMC). This paper has three main results. (1) A novel model for the process of adsorbate movement between two large cages was created, allowing the formulation of a mixing rule for the re-crossing coefficient between two cages of unequal loading. The predictions from this mixing rule were found to agree quantitatively with explicit simulations. (2) A new approach to the dynamically corrected Transition State Theory method to analytically calculate self-diffusion properties was developed, explicitly accounting for nanoscale fluctuations in concentration. This approach was demonstrated to quantitatively agree with previous methods, but is uniquely suited to be adapted to a kMC simulation that can simulate the collective-diffusion behavior. (3) While at low and moderate loadings the self- and collective-diffusion behaviors in LTA are observed to coincide, at higher concentrations they diverge. A change in the adsorbate packing scheme was shown to cause this divergence, a trait which is replicated in a kMC simulation that explicitly models this behavior. These phenomena were further investigated for isobutane in zeolite MFI, where MD results showed a separation in self- and collective- diffusion behavior that was reproduced with kMC simulations.

  2. Investigation of the abnormal Zn diffusion phenomenon in III-V compound semiconductors induced by the surface self-diffusion of matrix atoms

    NASA Astrophysics Data System (ADS)

    Tang, Liangliang; Xu, Chang; Liu, Zhuming

    2017-01-01

    Zn diffusion in III-V compound semiconductorsare commonly processed under group V-atoms rich conditions because the vapor pressure of group V-atoms is relatively high. In this paper, we found that group V-atoms in the diffusion sources would not change the shaped of Zn profiles, while the Zn diffusion would change dramatically undergroup III-atoms rich conditions. The Zn diffusions were investigated in typical III-V semiconductors: GaAs, GaSb and InAs. We found that under group V-atoms rich or pure Zn conditions, the double-hump Zn profiles would be formed in all materials except InAs. While under group III-atoms rich conditions, single-hump Zn profiles would be formed in all materials. Detailed diffusion models were established to explain the Zn diffusion process; the surface self-diffusion of matrix atoms is the origin of the abnormal Zn diffusion phenomenon.

  3. Transition from diffuse to self-organized discharge in a high frequency dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Belinger, Antoine; Naudé, Nicolas; Gherardi, Nicolas

    2017-05-01

    Depending on the operating conditions, different regimes can be obtained in a dielectric barrier discharge (DBD): filamentary, diffuse (also called homogeneous) or self-organized. For a plane-to-plane DBD operated at high frequency (160 kHz) and at atmospheric pressure in helium gas, we show that the addition of a small amount of nitrogen induces a transition from the diffuse regime to a self-organized regime characterized by the appearance of filaments at the exit of the discharge. In this paper, we detail mechanisms that could be responsible of the transition from diffuse mode to this self-organized mode. We point out the critical role of the power supply and the importance of the gas memory effect from one discharge to the following one on the transition to the self-organised mode. The self-organized mode is usually attributed to a surface memory effect. In this work, we show an additional involvement of the gas memory effect on the self-organized mode. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  4. Memory effects in funnel ratchet of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Hu, Cai-Tian; Wu, Jian-Chun; Ai, Bao-Quan

    2017-05-01

    The transport of self-propelled particles with memory effects is investigated in a two-dimensional periodic channel. Funnel-shaped barriers are regularly arrayed in the channel. Due to the asymmetry of the barriers, the self-propelled particles can be rectified. It is found that the memory effects of the rotational diffusion can strongly affect the rectified transport. The memory effects do not always break the rectified transport, and there exists an optimal finite value of correlation time at which the rectified efficiency takes its maximal value. We also find that the optimal values of parameters (the self-propulsion speed, the translocation diffusion coefficient, the rotational noise intensity, and the self-rotational diffusion coefficient) can facilitate the rectified transport. When introducing a finite load, particles with different self-propulsion speeds move to different directions and can be separated.

  5. Modified free volume theory of self-diffusion and molecular theory of shear viscosity of liquid carbon dioxide.

    PubMed

    Nasrabad, Afshin Eskandari; Laghaei, Rozita; Eu, Byung Chan

    2005-04-28

    In previous work on the density fluctuation theory of transport coefficients of liquids, it was necessary to use empirical self-diffusion coefficients to calculate the transport coefficients (e.g., shear viscosity of carbon dioxide). In this work, the necessity of empirical input of the self-diffusion coefficients in the calculation of shear viscosity is removed, and the theory is thus made a self-contained molecular theory of transport coefficients of liquids, albeit it contains an empirical parameter in the subcritical regime. The required self-diffusion coefficients of liquid carbon dioxide are calculated by using the modified free volume theory for which the generic van der Waals equation of state and Monte Carlo simulations are combined to accurately compute the mean free volume by means of statistical mechanics. They have been computed as a function of density along four different isotherms and isobars. A Lennard-Jones site-site interaction potential was used to model the molecular carbon dioxide interaction. The density and temperature dependence of the theoretical self-diffusion coefficients are shown to be in excellent agreement with experimental data when the minimum critical free volume is identified with the molecular volume. The self-diffusion coefficients thus computed are then used to compute the density and temperature dependence of the shear viscosity of liquid carbon dioxide by employing the density fluctuation theory formula for shear viscosity as reported in an earlier paper (J. Chem. Phys. 2000, 112, 7118). The theoretical shear viscosity is shown to be robust and yields excellent density and temperature dependence for carbon dioxide. The pair correlation function appearing in the theory has been computed by Monte Carlo simulations.

  6. Self-diffusion in MgO--a density functional study.

    PubMed

    Runevall, Odd; Sandberg, Nils

    2011-08-31

    Density functional theory calculations have been performed to study self-diffusion in magnesium oxide, a model material for a wide range of ionic compounds. Formation energies and entropies of Schottky defects and divacancies were obtained by means of total energy and phonon calculations in supercell configurations. Transition state theory was used to estimate defect migration rates, with migration energies taken from static calculations, and the corresponding frequency factors estimated from the phonon spectrum. In all static calculations we corrected for image effects using either a multipole expansion or an extrapolation to the low concentration limit. It is shown that both methods give similar results. The results for self-diffusion of Mg and O confirm the previously established picture, namely that in materials of nominal purity, Mg diffuses extrinsically by a single vacancy mechanism, while O diffuses intrinsically by a divacancy mechanism. Quantitatively, the current results are in very good agreement with experiments concerning O diffusion, while for Mg the absolute diffusion rate is generally underestimated by a factor of 5-10. The reason for this discrepancy is discussed.

  7. NMR investigation of the short-chain ionic surfactant-water systems.

    PubMed

    Popova, M V; Tchernyshev, Y S; Michel, D

    2004-02-03

    The structure and dynamics of surfactant molecules [CH3(CH2)7COOK] in heavy water solutions were investigated by 1H and 2H NMR. A double-exponential attenuation of the spin-echo amplitude in a Carr-Purcell-Meiboom-Gill experiment was found. We expect correspondence to both bounded and monomeric states. At high concentrations in the NMR self-diffusion measurements also a double-exponential decay of the spin-echo signal versus the square of the dc magnetic gradient was observed. The slow component of the diffusion process is caused by micellar aggregates, while the fast component is the result of the self-diffusion of the monomers through the micelles. The self-diffusion studies indicate that the form of micelles changes with increasing total surfactant concentration. The critical temperature range for self-association is reflected in the 1H transverse relaxation.

  8. Using Global Invariant Manifolds to Understand Metastability in the Burgers Equation With Small Viscosity

    NASA Astrophysics Data System (ADS)

    Beck, Margaret; Wayne, C. Eugene

    2009-01-01

    The large-time behavior of solutions to the Burgers equation with small viscosity is described using invariant manifolds. In particular, a geometric explanation is provided for a phenomenon known as metastability, which in the present context means that solutions spend a very long time near the family of solutions known as diffusive N-waves before finally converging to a stable self-similar diffusion wave. More precisely, it is shown that in terms of similarity, or scaling, variables in an algebraically weighted L^2 space, the self-similar diffusion waves correspond to a one-dimensional global center manifold of stationary solutions. Through each of these fixed points there exists a one-dimensional, global, attractive, invariant manifold corresponding to the diffusive N-waves. Thus, metastability corresponds to a fast transient in which solutions approach this metastable manifold of diffusive N-waves, followed by a slow decay along this manifold, and, finally, convergence to the self-similar diffusion wave.

  9. Relationship of Self-Efficacy to Stages of Concern in the Adoption of Innovation in Higher Education

    ERIC Educational Resources Information Center

    Marcu, Amber Diane

    2013-01-01

    In this research, it was proposed that self-efficacy is the missing underlying psychological factor in innovation diffusion models of higher education. This is based upon research conducted in the fields of innovation-diffusion in higher education, technology adoption, self-efficacy, health and behavioral change. It was theorized that if…

  10. System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: The case of CO2, n-alkanes, and poly(ethylene glycol) dimethyl ethers

    NASA Astrophysics Data System (ADS)

    Moultos, Othonas A.; Zhang, Yong; Tsimpanogiannis, Ioannis N.; Economou, Ioannis G.; Maginn, Edward J.

    2016-08-01

    Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO2, methane, propane, n-hexane, n-hexadecane, and various poly(ethylene glycol) dimethyl ethers (glymes in short, CH3O-(CH2CH2O)n-CH3 with n = 1, 2, 3, and 4, labeled as G1, G2, G3, and G4, respectively) at different conditions. Various system sizes were examined. The widely used Yeh and Hummer [J. Phys. Chem. B 108, 15873 (2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size. The magnitude of correction, in all cases examined, is significant, with the smallest systems examined giving for some cases a self-diffusion coefficient approximately 15% lower than the infinite system-size extrapolated value. The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results.

  11. Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system.

    PubMed

    Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine

    2017-06-21

    The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive MD simulations.

  12. Current understanding of point defects and diffusion processes in silicon

    NASA Technical Reports Server (NTRS)

    Tan, T. Y.; Goesele, U.

    1985-01-01

    The effects of oxidation of Si which established that vacancies (V) and Si self interstitials (I) coexist in Si at high temperatures under thermal equilibrium and oxidizing conditions are discussed. Some essential points associated with Au diffusion in Si are then discussed. Analysis of Au diffusion results allowed a determination of the I component and an estimate of the V component of the Si self diffusion coefficient. A discussion of theories on high concentration P diffusion into Si is then presented. Although presently there still is no theory that is completely satisfactory, significant progresses are recently made in treating some essential aspects of this subject.

  13. Class of self-limiting growth models in the presence of nonlinear diffusion

    NASA Astrophysics Data System (ADS)

    Kar, Sandip; Banik, Suman Kumar; Ray, Deb Shankar

    2002-06-01

    The source term in a reaction-diffusion system, in general, does not involve explicit time dependence. A class of self-limiting growth models dealing with animal and tumor growth and bacterial population in a culture, on the other hand, are described by kinetics with explicit functions of time. We analyze a reaction-diffusion system to study the propagation of spatial front for these models.

  14. Self-Diffusion of small Ag and Ni islands on Ag(111) and Ni(111) using the self-learning kinetic Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Islamuddin Shah, Syed; Nandipati, Giridhar; Kara, Abdelkader; Rahman, Talat S.

    2012-02-01

    We have applied a modified Self-Learning Kinetic Monte Carlo (SLKMC) method [1] to examine the self-diffusion of small Ag and Ni islands, containing up to 10 atom, on the (111) surface of the respective metal. The pattern recognition scheme in this new SLKMC method allows occupancy of the fcc, hcp and top sites on the fcc(111) surface and employs them to identify the local neighborhood around a central atom. Molecular static calculations with semi empirical interatomic potential and reliable techniques for saddle point search revealed several new diffusion mechanisms that contribute to the diffusion of small islands. For comparison we have also evaluated the diffusion characteristics of Cu clusters on Cu(111) and compared results with previous findings [2]. Our results show a linear increase in effective energy barriers scaling almost as 0.043, 0.051 and 0.064 eV/atom for the Cu/Cu(111), Ag/Ag(111), and Ni/Ni(111) systems, respectively. For all three systems, diffusion of small islands proceeds mainly through concerted motion, although several multiple and single atom processes also contribute. [1] Oleg Trushin et al. Phys. Rev. B 72, 115401 (2005) [2] Altaf Karim et al. Phys. Rev. B 73, 165411 (2006)

  15. Vacancies and Vacancy-Mediated Self Diffusion in Cr 2 O 3 : A First-Principles Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medasani, Bharat; Sushko, Maria L.; Rosso, Kevin M.

    Charged and neutral vacancies and vacancy mediated self diffusion in alpha-Cr2O3 were investigated using first principles density functional theory (DFT) and periodic supercell formalism. The vacancy formation energies of charged defects were calculated using the electrostatic finite-size corrections to account for electrostatic interactions between supercells and the corrections for the bandgap underestimation in DFT. Calculations predict that neutral oxygen (O) vacancies are predominant in chromium (Cr)-rich conditions and Cr vacancies with -2 charge state are the dominant defects in O-rich conditions. The charge transition levels of both O and Cr vacancies are deep within the bandgap indicating the stability ofmore » these defects. Transport calculations indicate that vacancy mediated diffusion along the basal plane has lower energy barriers for both O and Cr ions. The most favorable vacancy mediated self diffusion processes correspond to the diffusion of Cr ion in 3+ charge state and O ion in 2- state, respectively. Our calculations reveal that Cr triple defects comprised of Cr in octahedral interstitial sites with two adjacent Cr vacancies along the c-axis have a lower formation energy compared to that of charged Cr vacancies. The formation of such triple defects facilitate Cr self diffusion along the c-axis.« less

  16. Self-trapping limited exciton diffusion in a monomeric perylene crystal as revealed by femtosecond transient absorption microscopy.

    PubMed

    Yago, Tomoaki; Tamaki, Yoshiaki; Furube, Akihiro; Katoh, Ryuzi

    2008-08-14

    Self-trapping and singlet-singlet annihilation of the free excitons in a monomeric (beta) perylene crystal were studied by using femtosecond transient absorption microscopy. The free exciton generated by the photo-excitation of the beta-perylene crystal relaxed to the self-trapped exciton with a rate constant of 7 x 10(10) s(-1). The singlet-singlet annihilation of the free exciton observed under the high excitation density conditions was competed with the self-trapping of the free exciton; we estimated the annihilation rate constant for the free exciton to be 1 x 10(-8) cm(3) s(-1) from the excitation density dependence of the free exciton decay. After self-trapping of the free exciton, no annihilation was observed in the 100 ps time range, suggesting that the diffusion coefficient was reduced drastically by self-trapping. The results show that the major factor limiting the exciton diffusion in the beta-perylene crystal is a relaxation of the free exciton to the self-trapped exciton, and not the lifetime of the exciton. Though the singlet-singlet annihilation rate constants and fluorescence lifetime of the beta-perylene crystal are similar to those of the anthracene crystal, the estimated exciton diffusion length (2 nm) in the beta-perylene crystal is much smaller than that (100 nm) in the anthracene crystal as a result of the exciton self-trapping.

  17. Persistent-random-walk approach to anomalous transport of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Sadjadi, Zeinab; Shaebani, M. Reza; Rieger, Heiko; Santen, Ludger

    2015-06-01

    The motion of self-propelled particles is modeled as a persistent random walk. An analytical framework is developed that allows the derivation of exact expressions for the time evolution of arbitrary moments of the persistent walk's displacement. It is shown that the interplay of step length and turning angle distributions and self-propulsion produces various signs of anomalous diffusion at short time scales and asymptotically a normal diffusion behavior with a broad range of diffusion coefficients. The crossover from the anomalous short-time behavior to the asymptotic diffusion regime is studied and the parameter dependencies of the crossover time are discussed. Higher moments of the displacement distribution are calculated and analytical expressions for the time evolution of the skewness and the kurtosis of the distribution are presented.

  18. Application of the compensated Arrhenius formalism to self-diffusion: implications for ionic conductivity and dielectric relaxation.

    PubMed

    Petrowsky, Matt; Frech, Roger

    2010-07-08

    Self-diffusion coefficients are measured from -5 to 80 degrees C in a series of linear alcohols using pulsed field gradient NMR. The temperature dependence of these data is studied using a compensated Arrhenius formalism that assumes an Arrhenius-like expression for the diffusion coefficient; however, this expression includes a dielectric constant dependence in the exponential prefactor. Scaling temperature-dependent diffusion coefficients to isothermal diffusion coefficients so that the exponential prefactors cancel results in calculated energies of activation E(a). The exponential prefactor is determined by dividing the temperature-dependent diffusion coefficients by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the dielectric constant places the data on a single master curve. This procedure is identical to that previously used to study the temperature dependence of ionic conductivities and dielectric relaxation rate constants. The energies of activation determined from self-diffusion coefficients in the series of alcohols are strikingly similar to those calculated for the same series of alcohols from both dielectric relaxation rate constants and ionic conductivities of dilute electrolytes. The experimental results are described in terms of an activated transport mechanism that is mediated by relaxation of the solution molecules. This microscopic picture of transport is postulated to be common to diffusion, dielectric relaxation, and ionic transport.

  19. Diffusion of flexible, charged, nanoscopic molecules in solution: Size and pH dependence for PAMAM dendrimer

    NASA Astrophysics Data System (ADS)

    Maiti, Prabal K.; Bagchi, Biman

    2009-12-01

    In order to understand self-diffusion (D) of a charged, flexible, and porous nanoscopic molecule in water, we carry out very long, fully atomistic molecular dynamics simulation of PAMAM dendrimer up to eight generations in explicit salt water under varying pH. We find that while the radius of gyration (Rg) varies as N1/3, the self-diffusion constant (D ) scales, surprisingly, as N-α, with α =0.39 at high pH and 0.5 at neutral pH, indicating a dramatic breakdown of Stokes-Einstein relation for diffusion of charged nanoscopic molecules. The variation in D as a function of radius of gyration demonstrates the importance of treating water and ions explicitly in the diffusion process of a flexible nanoscopic molecule. In agreement with recent experiments, the self-diffusion constant increases with pH, revealing the importance of dielectric friction in the diffusion process. The shape of a dendrimer is found to fluctuate on a nanosecond time scale. We argue that this flexibility (and also the porosity) of the dendrimer may play an important role in determining the mean square displacement of the dendrimer and the breakdown of the Stokes-Einstein relation between diffusion constant and the radius.

  20. Macromolecular Crowding Studies of Amino Acids Using NMR Diffusion Measurements and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Virk, Amninder; Stait-Gardner, Timothy; Willis, Scott; Torres, Allan; Price, William

    2015-02-01

    Molecular crowding occurs when the total concentration of macromolecular species in a solution is so high that a considerable proportion of the volume is physically occupied and therefore not accessible to other molecules. This results in significant changes in the solution properties of the molecules in such systems. Macromolecular crowding is ubiquitous in biological systems due to the generally high intracellular protein concentrations. The major hindrance to understanding crowding is the lack of direct comparison of experimental data with theoretical or simulated data. Self-diffusion is sensitive to changes in the molecular weight and shape of the diffusing species, and the available diffusion space (i.e., diffusive obstruction). Consequently, diffusion measurements are a direct means for probing crowded systems including the self-association of molecules. In this work, nuclear magnetic resonance measurements of the self-diffusion of four amino acids (glycine, alanine, valine and phenylalanine) up to their solubility limit in water were compared directly with molecular dynamics simulations. The experimental data were then analyzed using various models of aggregation and obstruction. Both experimental and simulated data revealed that the diffusion of both water and the amino acids were sensitive to the amino acid concentration. The direct comparison of the simulated and experimental data afforded greater insights into the aggregation and obstruction properties of each amino acid.

  1. Expanding the calculation of activation volumes: Self-diffusion in liquid water

    NASA Astrophysics Data System (ADS)

    Piskulich, Zeke A.; Mesele, Oluwaseun O.; Thompson, Ward H.

    2018-04-01

    A general method for calculating the dependence of dynamical time scales on macroscopic thermodynamic variables from a single set of simulations is presented. The approach is applied to the pressure dependence of the self-diffusion coefficient of liquid water as a particularly useful illustration. It is shown how the activation volume associated with diffusion can be obtained directly from simulations at a single pressure, avoiding approximations that are typically invoked.

  2. The Harrison Diffusion Kinetics Regimes in Solute Grain Boundary Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belova, Irina; Fiedler, T; Kulkarni, Nagraj S

    2012-01-01

    Knowledge of the limits of the principal Harrison kinetics regimes (Type-A, B and C) for grain boundary diffusion is very important for the correct analysis of the depth profiles in a tracer diffusion experiment. These regimes for self-diffusion have been extensively studied in the past by making use of the phenomenological Lattice Monte Carlo (LMC) method with the result that the limits are now well established. The relationship of those self-diffusion limits to the corresponding ones for solute diffusion in the presence of solute segregation to the grain boundaries remains unclear. In the present study, the influence of solute segregationmore » on the limits is investigated with the LMC method for the well-known parallel grain boundary slab model by showing the equivalence of two diffusion models. It is shown which diffusion parameters are useful for identifying the limits of the Harrison kinetics regimes for solute grain boundary diffusion. It is also shown how the measured segregation factor from the diffusion experiment in the Harrison Type-B kinetics regime may differ from the global segregation factor.« less

  3. Multi-charge-state molecular dynamics and self-diffusion coefficient in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Fu, Yongsheng; Hou, Yong; Kang, Dongdong; Gao, Cheng; Jin, Fengtao; Yuan, Jianmin

    2018-01-01

    We present a multi-ion molecular dynamics (MIMD) simulation and apply it to calculating the self-diffusion coefficients of ions with different charge-states in the warm dense matter (WDM) regime. First, the method is used for the self-consistent calculation of electron structures of different charge-state ions in the ion sphere, with the ion-sphere radii being determined by the plasma density and the ion charges. The ionic fraction is then obtained by solving the Saha equation, taking account of interactions among different charge-state ions in the system, and ion-ion pair potentials are computed using the modified Gordon-Kim method in the framework of temperature-dependent density functional theory on the basis of the electron structures. Finally, MIMD is used to calculate ionic self-diffusion coefficients from the velocity correlation function according to the Green-Kubo relation. A comparison with the results of the average-atom model shows that different statistical processes will influence the ionic diffusion coefficient in the WDM regime.

  4. Application of a self-supporting microporous layer to gas diffusion layers of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Heo, Yun; Ishida, Masayoshi; Nakano, Akihiro; Someya, Satoshi; Munakata, Tetsuo

    2017-02-01

    The intrinsic effect of properties of a self-supporting microporous layer (MPL) on the performance of proton exchange membrane fuel cells (PEMFCs) is identified. First, a self-supporting MPL is fabricated and applied to a gas diffusion layer (GDL) of a PEMFC, when the GDL is either an integrated sample composed of a gas diffusion backing (GDB, i.e., carbon paper) combined with MPL or a sample with only MPL. Cell performance tests reveal that, the same as the MPL fabricated by the coating method, the self-supporting MPL on the GDB improves the cell performance at high current density. Furthermore, the GDL composed only of the MPL (i.e., GDB-free GDL) shows better performance than does the integrated GDB/MPL GDL. These results along with literature data strongly suggest that the low thermal conductivity of MPL induces a high temperature throughout the GDL, and thus vapor diffusion is dominant in the transport of product water through the MPL.

  5. Self-diffusion Coefficient and Structure of Binary n-Alkane Mixtures at the Liquid-Vapor Interfaces.

    PubMed

    Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku

    2015-10-15

    The self-diffusion coefficient and molecular-scale structure of several binary n-alkane liquid mixtures in the liquid-vapor interface regions have been examined using molecular dynamics simulations. It was observed that in hexane-tetracosane mixture hexane molecules are accumulated in the liquid-vapor interface region and the accumulation intensity decreases with increase in a molar fraction of hexane in the examined range. Molecular alignment and configuration in the interface region of the liquid mixture change with a molar fraction of hexane. The self-diffusion coefficient in the direction parallel to the interface of both tetracosane and hexane in their binary mixture increases in the interface region. It was found that the self-diffusion coefficient of both tetracosane and hexane in their binary mixture is considerably higher in the vapor side of the interface region as the molar fraction of hexane goes lower, which is mostly due to the increase in local free volume caused by the local structure of the liquid in the interface region.

  6. Water has no effect on oxygen self-diffusion rate in forsterite

    NASA Astrophysics Data System (ADS)

    Fei, H.; Yamazaki, D.; Wiedenbeck, M.; Katsura, T.

    2014-12-01

    Water is thought to play an essential role in dynamical processes in the Earth's interior. Even several tens wt. ppm of water may enhance the creep rates in olivine by orders of magnitude based on deformation experiments [1, 2]. High temperature creep in olivine is believed to be controlled by self-diffusion of the slowest species, which is silicon in olivine. However, silicon self-diffusion experiments suggest that the role of water on olivine rheology is overestimated in previous deformation studies because of the experimental difficulties [3].On the other hand, oxygen is the second slowest species with similar diffusion rate as silicon. It may also play an essential role in olivine creep. By comparing the oxygen self-diffusion coefficient (DO) in olivine at ambient pressure and dry conditions [4] with those at 2 GPa and hydrous conditions, it is found that even 30-50 wt. ppm of water could enhance DO by one order of magnitude [5]. However, comparison of experimental results obtained at different pressures could lead to misinterpretations because different experimental setups have different error sources [6]. In this study, we systematically measured DO in an iron-free olivine, namely, forsterite, at 8 GPa and 1600-1800 K over a wide range of water content (CH2O) from <1 up to 800 wt. ppm. Our results show that DO∝(CH2O)0.05±0.06≈(CH2O)0. Thus, water has no significant effect on oxygen self-diffusion rate in forsterite. Since the water content dependence of silicon self-diffusion rate is also very small [3], the role of water on olivine rheology is not as significant as previously thought by assuming the diffusion controlled creep mechanism. [1] Karato &Jung (2003), Philosophical Mag. 83, 401-414.[2] Hirth & Kohlstedt (2003) Geophys. Monogr. 138, 83-105.[3] Fei et al. (2013), Nature 498, 213-215.[4] Dohmen et al. (2002), GRL 29, 2030.[5] Costa & Chakraborty (2008), PEPI 166, 11-29.[6] Fei et al. (2012), EPSL 345, 95-103.

  7. System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: The case of CO{sub 2}, n-alkanes, and poly(ethylene glycol) dimethyl ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moultos, Othonas A.; Economou, Ioannis G.; Zhang, Yong

    Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO{sub 2}, methane, propane, n-hexane, n-hexadecane, and various poly(ethylene glycol) dimethyl ethers (glymes in short, CH{sub 3}O–(CH{sub 2}CH{sub 2}O){sub n}–CH{sub 3} with n = 1, 2, 3, and 4, labeled as G1, G2, G3, and G4, respectively) at different conditions. Various system sizes were examined. The widely used Yeh and Hummer [J. Phys. Chem. B 108, 15873 (2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size. Themore » magnitude of correction, in all cases examined, is significant, with the smallest systems examined giving for some cases a self-diffusion coefficient approximately 15% lower than the infinite system-size extrapolated value. The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results.« less

  8. Modeling of aluminum/gallium interdiffusion in aluminum gallium arsenide/gallium arsenide heterostructure materials

    NASA Astrophysics Data System (ADS)

    Tai, Cheng-Yu

    There is considerable interest in interdiffusion in III-IV based structures, such as AlGaAs/GaAs heterojunctions and superlattices (SL). This topic is of practical and fundamental interest since it relates to the stability of devices based on superlattices and heterojunctions, as well as to fundamental diffusion theory. The main goals of this study are to obtain the Al/Ga interdiffusivity, to understand Al/Ga interdiffusion behavior, and to understand how Si doping enhances the diffusion in AlGaAs/GaAs structures. Our first approach entails experimental studies of Al/Ga interdiffusion using Molecular Beam Epitaxy (MBE) samples of AlGaAs/GaAs structures, with or without Si doping. SUPREM-IV.GS was used to model the Fermi-level dependencies and extract the diffusivities. The experimental results show that Al/Ga interdiffusion in undoped AlGaAs/GaAs structures is small, but can be greatly enhanced in doped materials. The extracted Al/Ga interdiffusivity values match well with the Al/Ga interdiffusivity values reported by other groups, and they appear to be composition-independent. The interdiffusivity values are smaller than published Ga self-diffusivity values which are often mistakenly assumed to be equivalent to the interdiffusivity. Another set of Al/Ga interdiffusion experiments using AlAs/GaAs SL were performed to study Al/Ga interdiffusion. The experimental results are consistent with the previously discussed heterostructure results. Using Darken's analysis and treating the AlAs/GaAs SL material as a non-ideal solution, ALAMODE was used to model our SL disordering results explicitly. Assuming that the Al/Ga interdiffusivity is different from the Ga and Al self-diffusivities, we extracted the Al self-diffusivity and the Al activity coefficient as a function of composition using published Ga self-diffusivity values. The simulation results fit well with the experimental results. The extracted Al self-diffusivity value is close to the extracted Al/Ga interdiffusivity but different from the Ga self-diffusivity. The last part of this thesis focuses on modeling localized Al/Ga disordering in AlGaAs/GaAs devices. We present a localized disordering process as a solution to controlling the lateral oxidation process in AlGaAs/GaAs materials. SUPREM can predict these localized disordering results and can help to design an annealing process corresponding to the required aperture size in devices.

  9. Self-averaging and weak ergodicity breaking of diffusion in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Russian, Anna; Dentz, Marco; Gouze, Philippe

    2017-08-01

    Diffusion in natural and engineered media is quantified in terms of stochastic models for the heterogeneity-induced fluctuations of particle motion. However, fundamental properties such as ergodicity and self-averaging and their dependence on the disorder distribution are often not known. Here, we investigate these questions for diffusion in quenched disordered media characterized by spatially varying retardation properties, which account for particle retention due to physical or chemical interactions with the medium. We link self-averaging and ergodicity to the disorder sampling efficiency Rn, which quantifies the number of disorder realizations a noise ensemble may sample in a single disorder realization. Diffusion for disorder scenarios characterized by a finite mean transition time is ergodic and self-averaging for any dimension. The strength of the sample to sample fluctuations decreases with increasing spatial dimension. For an infinite mean transition time, particle motion is weakly ergodicity breaking in any dimension because single particles cannot sample the heterogeneity spectrum in finite time. However, even though the noise ensemble is not representative of the single-particle time statistics, subdiffusive motion in q ≥2 dimensions is self-averaging, which means that the noise ensemble in a single realization samples a representative part of the heterogeneity spectrum.

  10. Self-organization principles of intracellular pattern formation.

    PubMed

    Halatek, J; Brauns, F; Frey, E

    2018-05-26

    Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli , Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as 'activators', 'inhibitors' or 'substrate depletion'. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction-diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Authors.

  11. Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Schnell, Sondre K.; Simon, Jean-Marc; Krüger, Peter; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J. H.

    2013-07-01

    Multicomponent diffusion in liquids is ubiquitous in (bio)chemical processes. It has gained considerable and increasing interest as it is often the rate limiting step in a process. In this paper, we review methods for calculating diffusion coefficients from molecular simulation and predictive engineering models. The main achievements of our research during the past years can be summarized as follows: (1) we introduced a consistent method for computing Fick diffusion coefficients using equilibrium molecular dynamics simulations; (2) we developed a multicomponent Darken equation for the description of the concentration dependence of Maxwell-Stefan diffusivities. In the case of infinite dilution, the multicomponent Darken equation provides an expression for [InlineEquation not available: see fulltext.] which can be used to parametrize the generalized Vignes equation; and (3) a predictive model for self-diffusivities was proposed for the parametrization of the multicomponent Darken equation. This equation accurately describes the concentration dependence of self-diffusivities in weakly associating systems. With these methods, a sound framework for the prediction of mutual diffusion in liquids is achieved.

  12. Spectral separation of gaseous fluorocarbon mixtures and measurement of diffusion constants by 19F gas phase DOSY NMR.

    PubMed

    Marchione, Alexander A; McCord, Elizabeth F

    2009-11-01

    Diffusion-ordered (DOSY) NMR techniques have for the first time been applied to the spectral separation of mixtures of fluorinated gases by diffusion rates. A mixture of linear perfluoroalkanes from methane to hexane was readily separated at 25 degrees C in an ordinary experimental setup with standard DOSY pulse sequences. Partial separation of variously fluorinated ethanes was also achieved. The constants of self-diffusion of a set of pure perfluoroalkanes were obtained at pressures from 0.25 to 1.34 atm and temperatures from 20 to 122 degrees C. Under all conditions there was agreement within 20% of experimental self-diffusion constant D and values calculated by the semiempirical Fuller method.

  13. Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities

    PubMed Central

    Vázquez, J. L.

    2010-01-01

    The goal of this paper is to state the optimal decay rate for solutions of the nonlinear fast diffusion equation and, in self-similar variables, the optimal convergence rates to Barenblatt self-similar profiles and their generalizations. It relies on the identification of the optimal constants in some related Hardy–Poincaré inequalities and concludes a long series of papers devoted to generalized entropies, functional inequalities, and rates for nonlinear diffusion equations. PMID:20823259

  14. Fluid transport in partially filled porous sol-gel silica glass

    NASA Astrophysics Data System (ADS)

    D'orazio, Franco; Bhattacharja, Sankar; Halperin, William P.; Gerhardt, Rosario

    1990-10-01

    Measurements of low-frequency ac electrical conductivity of a porous glass filled with different amounts of a saline solution are compared with the self-diffusion coefficient of water measured in the same sample, reported previously [F. D'Orazio et al., Phys. Rev. Lett. 63, 43 (1989)]. The two transport parameters are consistently related through the Einstein relation under saturation conditions. A more complex picture is revealed for the unsaturated sample, since the presence of a vapor phase enhances the self-diffusion coefficient. Conductivity experiments allow an independent assessment of the contribution to self-diffusion from the liquid phase. However, a comparison between the two experiments indicates that the role of the vapor phase is not well understood.

  15. Active Brownian motion in a narrow channel

    NASA Astrophysics Data System (ADS)

    Ao, X.; Ghosh, P. K.; Li, Y.; Schmid, G.; Hänggi, P.; Marchesoni, F.

    2014-12-01

    We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero torque (propulsion chirality). We first summarize the effects of chirality on the autonomous current of microswimmers freely diffusing in channels of different geometries. In particular, left-right and upside-down asymmetric channels are shown to exhibit different transport properties. We then report new results on the dependence of the diffusivity of chiral microswimmers on the channel geometry and their own self-propulsion mechanism. The self-propulsion torque turns out to play a key role as a transport control parameter.

  16. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold

    PubMed Central

    Koutsopoulos, Sotirios; Unsworth, Larry D.; Nagai, Yusuke; Zhang, Shuguang

    2009-01-01

    The release kinetics for a variety of proteins of a wide range of molecular mass, hydrodynamic radii, and isoelectric points through a nanofiber hydrogel scaffold consisting of designer self-assembling peptides were studied by using single-molecule fluorescence correlation spectroscopy (FCS). In contrast to classical diffusion experiments, the single-molecule approach allowed for the direct determination of diffusion coefficients for lysozyme, trypsin inhibitor, BSA, and IgG both inside the hydrogel and after being released into the solution. The results of the FCS analyses and the calculated pristine in-gel diffusion coefficients were compared with the values obtained from the Stokes–Einstein equation, Fickian diffusion models, and the literature. The release kinetics suggested that protein diffusion through nanofiber hydrogels depended primarily on the size of the protein. Protein diffusivities decreased, with increasing hydrogel nanofiber density providing a means of controlling the release kinetics. Secondary and tertiary structure analyses and biological assays of the released proteins showed that encapsulation and release did not affect the protein conformation and functionality. Our results show that this biocompatible and injectable designer self-assembling peptide hydrogel system may be useful as a carrier for therapeutic proteins for sustained release applications. PMID:19273853

  17. A New Technique for Measuring Concentration Dependence of Self and Collective Diffusivity by using a Single Sample

    NASA Astrophysics Data System (ADS)

    Sirorattanakul, Krittanon; Shen, Chong; Ou-Yang, Daniel

    Diffusivity governs the dynamics of interacting particles suspended in a solvent. At high particle concentration, the interactions between particles become non-negligible, making the values of self and collective diffusivity diverge and concentration-dependent. Conventional methods for measuring this dependency, such as forced Rayleigh scattering, fluorescence correlation spectroscopy (FCS), and dynamic light scattering (DLS) require preparation of multiple samples. We present a new technique to measure this dependency by using only a single sample. Dielectrophoresis (DEP) is used to create concentration gradient in the solution. Across this concentration distribution, we use FCS to measure the concentration-dependent self diffusivity. Then, we switch off DEP to allow the particles to diffuse back to equilibrium. We obtain the time series of concentration distribution from fluorescence microscopy and use them to determine the concentration-dependent collective diffusivity. We compare the experimental results with computer simulations to verify the validity of this technique. Time and spatial resolution limits of FCS and imaging are also analyzed to estimate the limitation of the proposed technique. NSF DMR-0923299, Lehigh College of Arts and Sciences Undergraduate Research Grant, Lehigh Department of Physics, Emulsion Polymers Institute.

  18. Quantum fluctuations increase the self-diffusive motion of para-hydrogen in narrow carbon nanotubes.

    PubMed

    Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P; Furmaniak, Sylwester

    2011-05-28

    Quantum fluctuations significantly increase the self-diffusive motion of para-hydrogen adsorbed in narrow carbon nanotubes at 30 K comparing to its classical counterpart. Rigorous Feynman's path integral calculations reveal that self-diffusive motion of para-hydrogen in a narrow (6,6) carbon nanotube at 30 K and pore densities below ∼29 mmol cm(-3) is one order of magnitude faster than the classical counterpart. We find that the zero-point energy and tunneling significantly smoothed out the free energy landscape of para-hydrogen molecules adsorbed in a narrow (6,6) carbon nanotube. This promotes a delocalization of the confined para-hydrogen at 30 K (i.e., population of unclassical paths due to quantum effects). Contrary the self-diffusive motion of classical para-hydrogen molecules in a narrow (6,6) carbon nanotube at 30 K is very slow. This is because classical para-hydrogen molecules undergo highly correlated movement when their collision diameter approached the carbon nanotube size (i.e., anomalous diffusion in quasi-one dimensional pores). On the basis of current results we predict that narrow single-walled carbon nanotubes are promising nanoporous molecular sieves being able to separate para-hydrogen molecules from mixtures of classical particles at cryogenic temperatures. This journal is © the Owner Societies 2011

  19. Self-diffusion in the non-Newtonian regime of shearing liquid crystal model systems based on the Gay-Berne potential

    NASA Astrophysics Data System (ADS)

    Sarman, Sten; Wang, Yong-Lei; Laaksonen, Aatto

    2016-02-01

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlines and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.

  20. Quasisolitons in self-diffusive excitable systems, or Why asymmetric diffusivity obeys the Second Law

    PubMed Central

    Biktashev, V. N.; Tsyganov, M. A.

    2016-01-01

    Solitons, defined as nonlinear waves which can reflect from boundaries or transmit through each other, are found in conservative, fully integrable systems. Similar phenomena, dubbed quasi-solitons, have been observed also in dissipative, “excitable” systems, either at finely tuned parameters (near a bifurcation) or in systems with cross-diffusion. Here we demonstrate that quasi-solitons can be robustly observed in excitable systems with excitable kinetics and with self-diffusion only. This includes quasi-solitons of fixed shape (like KdV solitons) or envelope quasi-solitons (like NLS solitons). This can happen in systems with more than two components, and can be explained by effective cross-diffusion, which emerges via adiabatic elimination of a fast but diffusing component. We describe here a reduction procedure can be used for the search of complicated wave regimes in multi-component, stiff systems by studying simplified, soft systems. PMID:27491430

  1. Molecular dynamics simulation of self-diffusion processes in titanium in bulk material, on grain junctions and on surface.

    PubMed

    Sushko, Gennady B; Verkhovtsev, Alexey V; Yakubovich, Alexander V; Schramm, Stefan; Solov'yov, Andrey V

    2014-08-21

    The process of self-diffusion of titanium atoms in a bulk material, on grain junctions and on surface is explored numerically in a broad temperature range by means of classical molecular dynamics simulation. The analysis is carried out for a nanoscale cylindrical sample consisting of three adjacent sectors and various junctions between nanocrystals. The calculated diffusion coefficient varies by several orders of magnitude for different regions of the sample. The calculated values of the bulk diffusion coefficient correspond reasonably well to the experimental data obtained for solid and molten states of titanium. Investigation of diffusion in the nanocrystalline titanium is of a significant importance because of its numerous technological applications. This paper aims to reduce the lack of data on diffusion in titanium and describe the processes occurring in bulk, at different interfaces and on surface of the crystalline titanium.

  2. Anatomy of particle diffusion

    NASA Astrophysics Data System (ADS)

    Bringuier, E.

    2009-11-01

    The paper analyses particle diffusion from a thermodynamic standpoint. The main goal of the paper is to highlight the conceptual connection between particle diffusion, which belongs to non-equilibrium statistical physics, and mechanics, which deals with particle motion, at the level of third-year university courses. We start out from the fact that, near equilibrium, particle transport should occur down the gradient of the chemical potential. This yields Fick's law with two additional advantages. First, splitting the chemical potential into 'mechanical' and 'chemical' contributions shows how transport and mechanics are linked through the diffusivity-mobility relationship. Second, splitting the chemical potential into entropic and energetic contributions discloses the respective roles of entropy maximization and energy minimization in driving diffusion. The paper addresses first unary diffusion, where there is only one mobile species in an immobile medium, and next turns to binary diffusion, where two species are mobile with respect to each other in a fluid medium. The interrelationship between unary and binary diffusivities is brought out and it is shown how binary diffusion reduces to unary diffusion in the limit of high dilution of one species amidst the other one. Self- and mutual diffusion are considered and contrasted within the thermodynamic framework; self-diffusion is a time-dependent manifestation of the Gibbs paradox of mixing.

  3. Theory and Simulation of Self- and Mutual-Diffusion of Carrier Density and Temperature in Semiconductor Lasers

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.

    2001-01-01

    Carrier diffusion and thermal conduction play a fundamental role in the operation of high-power, broad-area semiconductor lasers. Restricted geometry, high pumping level and dynamic instability lead to inhomogeneous spatial distribution of plasma density, temperature, as well as light field, due to strong light-matter interaction. Thus, modeling and simulation of such optoelectronic devices rely on detailed descriptions of carrier dynamics and energy transport in the system. A self-consistent description of lasing and heating in large-aperture, inhomogeneous edge- or surface-emitting lasers (VCSELs) require coupled diffusion equations for carrier density and temperature. In this paper, we derive such equations from the Boltzmann transport equation for the carrier distributions. The derived self- and mutual-diffusion coefficients are in general nonlinear functions of carrier density and temperature including many-body interactions. We study the effects of many-body interactions on these coefficients, as well as the nonlinearity of these coefficients for large-area VCSELs. The effects of mutual diffusions on carrier and temperature distributions in gain-guided VCSELs will be also presented.

  4. Study on the effect of Cd-diffusion annealing on the electrical properties of CdZnTe

    NASA Astrophysics Data System (ADS)

    Wanwan, Li; Zechun, Cao; Bin, Zhang; Feng, Zhan; Hongtao, Liu; Wenbin, Sang; Jiahua, Min; Kang, Sun

    2006-06-01

    In order to meet the requirements for the device design of radiation detectors, CdZnTe (or Cd 1-xZn xTe) crystals grown by Vertical Bridgman Method often need subsequent annealing to increase their resistivity. The nature of this treatment is a diffusion process. Thus, it is meaningful to relate the change of resistivity to the diffusion parameters. A model correlating resistivity and conduction type of CdZnTe with the main diffusion parameter—diffusion coefficient—is put forward in this paper. Combining the model with the analysis of our experimental data, DCd=1.464×10 -10, 1.085×10 -11 and 4.167×10 -13 cm 2/s are the values of Cd self-diffusion coefficient in Cd 0.9Zn 0.1Te at 1073, 973 and 873 K, respectively. The data coincide closely with the Cd self-diffusion coefficient in CdTe provided by different authors [E.D. Jones, N.M. Stewart, Self-diffusion of cadmium in cadmium telluride, J. Crystal Growth 84 (1987) 289-294; P.M. Borsenberger, D.A. Stevenson, J. Phys. Chem. Solids 29 (1968) 1277; R.C. Whelan, D. Shaw, in: D.G. Thomas (Ed.), II -VI Semiconductor Compounds, Benjamin, New York, 1967, p. 451]. With the data, the effects of annealing time on the change of resistivity and conduction type for Cd 0.9Zn 0.1Te wafers, which are annealed in saturated Cd vapor at 1073, 973 and 873 K, were simulated, and good consistency was found. This work suggests an alternative way to obtain the diffusion coefficient in semiconductor materials and also enables ones to analyze the diffusion process quantitatively and predict the annealing results.

  5. Free-standing supramolecular hydrogel objects by reaction-diffusion

    PubMed Central

    Lovrak, Matija; Hendriksen, Wouter E. J.; Maity, Chandan; Mytnyk, Serhii; van Steijn, Volkert; Eelkema, Rienk; van Esch, Jan H.

    2017-01-01

    Self-assembly provides access to a variety of molecular materials, yet spatial control over structure formation remains difficult to achieve. Here we show how reaction–diffusion (RD) can be coupled to a molecular self-assembly process to generate macroscopic free-standing objects with control over shape, size, and functionality. In RD, two or more reactants diffuse from different positions to give rise to spatially defined structures on reaction. We demonstrate that RD can be used to locally control formation and self-assembly of hydrazone molecular gelators from their non-assembling precursors, leading to soft, free-standing hydrogel objects with sizes ranging from several hundred micrometres up to centimeters. Different chemical functionalities and gradients can easily be integrated in the hydrogel objects by using different reactants. Our methodology, together with the vast range of organic reactions and self-assembling building blocks, provides a general approach towards the programmed fabrication of soft microscale objects with controlled functionality and shape. PMID:28580948

  6. Fast self-diffusion of ions in CH 3 NH 3 PbI 3 : the interstiticaly mechanism versus vacancy-assisted mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang

    2016-01-01

    The stability of organic-inorganic halide perovskites is a major challenge for their applications and has been extensively studied. Among the possible underlying reasons, ion self-diffusion has been inferred to play important roles. While theoretical studies congruously support that iodine is more mobile, experimental studies only observe the direct diffusion of the MA ion and possible diffusion of iodine. The discrepancy may result from the incomplete understanding of ion diffusion mechanisms. With the help of first-principles calculations, we studied ion diffusion in CH3NH3PbI3 (MAPbI3) through not only the vacancy-assisted mechanisms presumed in previous theoretical studies, but also the neglected interstiticaly mechanisms.more » We found that compared to the diffusion through the vacancy-assisted mechanism, MA ion diffusion through the interstiticaly mechanism has a much smaller barrier which could explain experimental observations. For iodine diffusion, both mechanisms can yield relatively small barriers. Depending on the growth conditions, defect densities of vacancies and interstitials can vary and so do the diffusion species as well as diffusion mechanisms. Our work thus supports that both MA and iodine ion diffusion could contribute to the performance instability of MAPbI3. While being congruous with experimental results, our work fills the research gap by providing a full understanding of ion diffusion in halide perovskites.« less

  7. Perfluoroalkyl phosphonic and phosphinic acids as proton conductors for anhydrous proton-exchange membranes.

    PubMed

    Herath, Mahesha B; Creager, Stephen E; Kitaygorodskiy, Alex; DesMarteau, Darryl D

    2010-09-10

    A study of proton-transport rates and mechanisms under anhydrous conditions using a series of acid model compounds, analogous to comb-branch perfluorinated ionomers functionalized with phosphonic, phosphinic, sulfonic, and carboxylic acid protogenic groups, is reported. Model compounds are characterized with respect to proton conductivity, viscosity, proton, and anion (conjugate base) self-diffusion coefficients, and Hammett acidity. The highest conductivities, and also the highest viscosities, are observed for the phosphonic and phosphinic acid model compounds. Arrhenius analysis of conductivity and viscosity for these two acids reveals much lower activation energies for ion transport than for viscous flow. Additionally, the proton self-diffusion coefficients are much higher than the conjugate-base self-diffusion coefficients for these two acids. Taken together, these data suggest that anhydrous proton transport in the phosphonic and phosphinic acid model compounds occurs primarily by a structure-diffusion, hopping-based mechanism rather than a vehicle mechanism. Further analysis of ionic conductivity and ion self-diffusion rates by using the Nernst-Einstein equation reveals that the phosphonic and phosphinic acid model compounds are relatively highly dissociated even under anhydrous conditions. In contrast, sulfonic and carboxylic acid-based systems exhibit relatively low degrees of dissociation under anhydrous conditions. These findings suggest that fluoroalkyl phosphonic and phosphinic acids are good candidates for further development as anhydrous, high-temperature proton conductors.

  8. The molecular basis of the solution properties of hyaluronan investigated by confocal fluorescence recovery after photobleaching.

    PubMed Central

    Gribbon, P; Heng, B C; Hardingham, T E

    1999-01-01

    Hyaluronan (HA) is a highly hydrated polyanion, which is a network-forming and space-filling component in the extracellular matrix of animal tissues. Confocal fluorescence recovery after photobleaching (confocal-FRAP) was used to investigate intramolecular hydrogen bonding and electrostatic interactions in hyaluronan solutions. Self and tracer lateral diffusion coefficients within hyaluronan solutions were measured over a wide range of concentrations (c), with varying electrolyte and at neutral and alkaline pH. The free diffusion coefficient of fluoresceinamine-labeled HA of 500 kDa in PBS was 7.9 x 10(-8) cm(2) s(-1) and of 830 kDa HA was 5.6 x 10(-8) cm(2) s(-1). Reductions in self- and tracer-diffusion with c followed a stretched exponential model. Electrolyte-induced polyanion coil contraction and destiffening resulted in a 2.8-fold increase in self-diffusion between 0 and 100 mM NaCl. Disruption of hydrogen bonds by strong alkali (0.5 M NaOH) resulted in further larger increases in self- and tracer-diffusion coefficients, consistent with a more dynamic and permeable network. Concentrated hyaluronan solution properties were attributed to hydrodynamic and entanglement interactions between domains. There was no evidence of chain-chain associations. At physiological electrolyte concentration and pH, the greatest contribution to the intrinsic stiffness of hyaluronan appeared to be due to hydrogen bonds between adjacent saccharides. PMID:10512840

  9. Reaction-diffusion processes at the nano- and microscales

    NASA Astrophysics Data System (ADS)

    Epstein, Irving R.; Xu, Bing

    2016-04-01

    The bottom-up fabrication of nano- and microscale structures from primary building blocks (molecules, colloidal particles) has made remarkable progress over the past two decades, but most research has focused on structural aspects, leaving our understanding of the dynamic and spatiotemporal aspects at a relatively primitive stage. In this Review, we draw inspiration from living cells to argue that it is now time to move beyond the generation of structures and explore dynamic processes at the nanoscale. We first introduce nanoscale self-assembly, self-organization and reaction-diffusion processes as essential features of cells. Then, we highlight recent progress towards designing and controlling these fundamental features of life in abiological systems. Specifically, we discuss examples of reaction-diffusion processes that lead to such outcomes as self-assembly, self-organization, unique nanostructures, chemical waves and dynamic order to illustrate their ubiquity within a unifying context of dynamic oscillations and energy dissipation. Finally, we suggest future directions for research on reaction-diffusion processes at the nano- and microscales that we find hold particular promise for a new understanding of science at the nanoscale and the development of new kinds of nanotechnologies for chemical transport, chemical communication and integration with living systems.

  10. Kinetics of self-interstitial migration in bcc and fcc transition metals

    NASA Astrophysics Data System (ADS)

    Bukkuru, S.; Bhardwaj, U.; Srinivasa Rao, K.; Rao, A. D. P.; Warrier, M.; Valsakumar, M. C.

    2018-03-01

    Radiation damage is a multi-scale phenomenon. A thorough understanding of diffusivities and the migration energies of defects is a pre-requisite to quantify the after-effects of irradiation. We investigate the thermally activated mobility of self-interstitial atom (SIA) in bcc transition metals Fe, Mo, Nb and fcc transition metals Ag, Cu, Ni, Pt using molecular dynamics (MD) simulations. The self-interstitial diffusion involves various mechanisms such as interstitialcy, dumbbell or crowdion mechanisms. Max-Space Clustering (MSC) method has been employed to identify the interstitial and its configuration over a wide range of temperature. The self-interstitial diffusion is Arrhenius like, however, there is a slight deviation at high temperatures. The migration energies, pre-exponential factors of diffusion and jump-correlation factors, obtained from these simulations can be used as inputs to Monte Carlo simulations of defect transport. The jump-correlation factor shows the degree of preference of rectilinear or rotational jumps. We obtain the average jump-correlation factor of 1.4 for bcc metals and 0.44 for fcc metals. It indicates that rectilinear jumps are preferred in bcc metals and rotational jumps are preferred in fcc metals.

  11. Osmotic propulsion: the osmotic motor.

    PubMed

    Córdova-Figueroa, Ubaldo M; Brady, John F

    2008-04-18

    A model for self-propulsion of a colloidal particle--the osmotic motor--immersed in a dispersion of "bath" particles is presented. The nonequilibrium concentration of bath particles induced by a surface chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of these features for different bath particle volume fractions and motor sizes are discussed. Theoretical predictions are compared with Brownian dynamics simulations.

  12. Osmotic Propulsion: The Osmotic Motor

    NASA Astrophysics Data System (ADS)

    Córdova-Figueroa, Ubaldo M.; Brady, John F.

    2008-04-01

    A model for self-propulsion of a colloidal particle—the osmotic motor—immersed in a dispersion of “bath” particles is presented. The nonequilibrium concentration of bath particles induced by a surface chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of these features for different bath particle volume fractions and motor sizes are discussed. Theoretical predictions are compared with Brownian dynamics simulations.

  13. Activation volumes of oxygen self-diffusion in fluorite structured oxides

    DOE PAGES

    Christopoulos, S-R G.; Kordatos, A.; Cooper, Michael William D.; ...

    2016-10-27

    In this study, fluorite structured oxides are used in numerous applications and as such it is necessary to determine their materials properties over a range of conditions. In the present study we employ molecular dynamics calculations to calculate the elastic and expansivity data, which are then used in a thermodynamic model (the cBΩ model) to calculate the activation volumes of oxygen self-diffusion coefficient in ThO 2, UO 2 and PuO 2 fluorite structured oxides over a wide temperature range. We present relations to calculate the activation volumes of oxygen self-diffusion coefficient in ThO 2, UO 2 and PuO 2 formore » a wide range of temperature (300–1700 K) and pressure (–7.5 to 7.5 GPa).« less

  14. Interaction and coexistence with self-regulating species

    NASA Astrophysics Data System (ADS)

    Zhu, Haoqi; Wang, Maoxiang; Hu, Fenglan

    2018-07-01

    Based on Lotka-Volterra (LV) system with spatial diffusion we study a self-regulating species, whose interactions can change with the other's population size. These interactions can be divided into four types described by the interaction portrait. The activity of self-regulation in population also depends on the opposite species, when the opposite species is strong competitive, the self-regulating species cannot adjust its population actively until the roles reverse. Furthermore the way of coexistence with self-regulating system, including competition-coexistence and parasitism-coexistence is discussed; it suggests that proper competition is better to acquire larger total population than a single sacrifice as a host. Moreover both self-regulation and spatial diffusion may be opportunities to switch the final surviving species, but self-regulation can result into stable situation and promote the diversity, in accordance with Darwin's theory of evolution.

  15. Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics

    PubMed Central

    Jakse, Noel; Pasturel, Alain

    2013-01-01

    We present a study of dynamic properties of liquid aluminum using density-functional theory within the local-density (LDA) and generalized gradient (GGA) approximations. We determine the temperature dependence of the self-diffusion coefficient as well the viscosity using direct methods. Comparisons with experimental data favor the LDA approximation to compute dynamic properties of liquid aluminum. We show that the GGA approximation induce more important backscattering effects due to an enhancement of the icosahedral short range order (ISRO) that impact directly dynamic properties like the self-diffusion coefficient. All these results are then used to test the Stokes-Einstein relation and the universal scaling law relating the diffusion coefficient and the excess entropy of a liquid. PMID:24190311

  16. Plasma Diffusion in Self-Consistent Fluctuations

    NASA Technical Reports Server (NTRS)

    Smets, R.; Belmont, G.; Aunai, N.

    2012-01-01

    The problem of particle diffusion in position space, as a consequence ofeleclromagnetic fluctuations is addressed. Numerical results obtained with a self-consistent hybrid code are presented, and a method to calculate diffusion coefficient in the direction perpendicular to the mean magnetic field is proposed. The diffusion is estimated for two different types of fluctuations. The first type (resuiting from an agyrotropic in itiai setting)is stationary, wide band white noise, and associated to Gaussian probability distribution function for the magnetic fluctuations. The second type (result ing from a Kelvin-Helmholtz instability) is non-stationary, with a power-law spectrum, and a non-Gaussian probabi lity distribution function. The results of the study allow revisiting the question of loading particles of solar wind origin in the Earth magnetosphere.

  17. Do TFSA anions slither? Pressure exposes the role of TFSA conformational exchange in self-diffusion

    DOE PAGES

    Suarez, Sophia N.; Wishart, James F.; Rua, Armando; ...

    2015-10-28

    Multi-nuclear ( 1H, 2H, and 19F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent 2H T 1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, asmore » shown by their respective activation volumes (28.8 ± 2.5 cm³/mol for TFSA vs. 14.6 ± 1.3 cm³/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV ‡) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis.« less

  18. Do TFSA anions slither? Pressure exposes the role of TFSA conformational exchange in self-diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suarez, Sophia N.; Wishart, James F.; Rua, Armando

    Multi-nuclear ( 1H, 2H, and 19F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent 2H T 1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, asmore » shown by their respective activation volumes (28.8 ± 2.5 cm³/mol for TFSA vs. 14.6 ± 1.3 cm³/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV ‡) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis.« less

  19. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles

    NASA Astrophysics Data System (ADS)

    Banchio, Adolfo J.; Heinen, Marco; Holmqvist, Peter; Nägele, Gerhard

    2018-04-01

    We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in concentrated suspensions of charge-stabilized colloidal spheres. In theory and simulation, the spheres are assumed to interact directly by a hard-core plus screened Coulomb effective pair potential. The intermediate scattering function, fc(q, t), is calculated by elaborate accelerated Stokesian dynamics (ASD) simulations for Brownian systems where many-particle hydrodynamic interactions (HIs) are fully accounted for, using a novel extrapolation scheme to a macroscopically large system size valid for all correlation times. The study spans the correlation time range from the colloidal short-time to the long-time regime. Additionally, Brownian Dynamics (BD) simulation and mode-coupling theory (MCT) results of fc(q, t) are generated where HIs are neglected. Using these results, the influence of HIs on collective and self-diffusion and the accuracy of the MCT method are quantified. It is shown that HIs enhance collective and self-diffusion at intermediate and long times. At short times self-diffusion, and for wavenumbers outside the structure factor peak region also collective diffusion, are slowed down by HIs. MCT significantly overestimates the slowing influence of dynamic particle caging. The dynamic scattering functions obtained in the ASD simulations are in overall good agreement with our dynamic light scattering (DLS) results for a concentration series of charged silica spheres in an organic solvent mixture, in the experimental time window and wavenumber range. From the simulation data for the time derivative of the width function associated with fc(q, t), there is indication of long-time exponential decay of fc(q, t), for wavenumbers around the location of the static structure factor principal peak. The experimental scattering functions in the probed time range are consistent with a time-wavenumber factorization scaling behavior of fc(q, t) that was first reported by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)] for suspensions of hard spheres. Our BD simulation and MCT results predict a significant violation of exact factorization scaling which, however, is approximately restored according to the ASD results when HIs are accounted for, consistent with the experimental findings for fc(q, t). Our study of collective diffusion is amended by simulation and theoretical results for the self-intermediate scattering function, fs(q, t), and its non-Gaussian parameter α2(t) and for the particle mean squared displacement W(t) and its time derivative. Since self-diffusion properties are not assessed in standard DLS measurements, a method to deduce W(t) approximately from fc(q, t) is theoretically validated.

  20. Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells.

    PubMed

    Doster, Wolfgang; Longeville, Stéphane

    2007-08-15

    The cytoplasm of red blood cells is congested with the oxygen storage protein hemoglobin occupying a quarter of the cell volume. The high protein concentration leads to a reduced mobility; the self-diffusion coefficient of hemoglobin in blood cells is six times lower than in dilute solution. This effect is generally assigned to excluded volume effects in crowded media. However, the collective or gradient diffusion coefficient of hemoglobin is only weakly dependent on concentration, suggesting the compensation of osmotic and friction forces. This would exclude hydrodynamic interactions, which are of dynamic origin and do not contribute to the osmotic pressure. Hydrodynamic coupling between protein molecules is dominant at short time- and length scales before direct interactions are fully established. Employing neutron spin-echo-spectroscopy, we study hemoglobin diffusion on a nanosecond timescale and protein displacements on the scale of a few nanometers. A time- and wave-vector dependent diffusion coefficient is found, suggesting the crossover of self- and collective diffusion. Moreover, a wave-vector dependent friction function is derived, which is a characteristic feature of hydrodynamic interactions. The wave-vector and concentration dependence of the long-time self-diffusion coefficient of hemoglobin agree qualitatively with theoretical results on hydrodynamics in hard spheres suspensions. Quantitative agreement requires us to adjust the volume fraction by including part of the hydration shell: Proteins exhibit a larger surface/volume ratio compared to standard colloids of much larger size. It is concluded that hydrodynamic and not direct interactions dominate long-range molecular transport at high concentration.

  1. Empirical correlations between the arrhenius' parameters of impurities' diffusion coefficients in CdTe crystals

    DOE PAGES

    Shcherbak, L.; Kopach, O.; Fochuk, P.; ...

    2015-01-21

    Understanding of self- and dopant-diffusion in semiconductor devices is essential to our being able to assure the formation of well-defined doped regions. In this paper, we compare obtained in the literature up to date the Arrhenius’ parameters (D=D 0exp(–ΔE a/kT)) of point-defect diffusion coefficients and the I-VII groups impurities in CdTe crystals and films. We found that in the diffusion process there was a linear dependence between the pre-exponential factor, D 0, and the activation energy, ΔE a, of different species: This was evident in the self-diffusivity and isovalent impurity Hg diffusivity as well as for the dominant IIIA andmore » IVA groups impurities and Chlorine, except for the fast diffusing elements (e.g., Cu and Ag), chalcogens O, S, and Se, halogens I and Br as well as the transit impurities Mn, Co, Fe. As a result, reasons of the lack of correspondence of the data to compensative dependence are discussed.« less

  2. Formation of amorphous materials

    DOEpatents

    Johnson, William L.; Schwarz, Ricardo B.

    1986-01-01

    Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.

  3. Nonequilibrium transition and pattern formation in a linear reaction-diffusion system with self-regulated kinetics

    NASA Astrophysics Data System (ADS)

    Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar

    2018-02-01

    We consider a reaction-diffusion system with linear, stochastic activator-inhibitor kinetics where the time evolution of concentration of a species at any spatial location depends on the relative average concentration of its neighbors. This self-regulating nature of kinetics brings in spatial correlation between the activator and the inhibitor. An interplay of this correlation in kinetics and disparity of diffusivities of the two species leads to symmetry breaking non-equilibrium transition resulting in stationary pattern formation. The role of initial noise strength and the linear reaction terms has been analyzed for pattern selection.

  4. Suppression of transient enhanced diffusion in sub-micron patterned silicon template by dislocation loops formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Kuan-Kan; Woon, Wei Yen; Chang, Ruey-Dar

    We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.

  5. Suppression of transient enhanced diffusion in sub-micron patterned silicon template by dislocation loops formation

    NASA Astrophysics Data System (ADS)

    Hu, Kuan-Kan; Chang, Ruey-Dar; Woon, Wei Yen

    2015-10-01

    We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.

  6. Thermodynamic calculations of oxygen self-diffusion in mixed-oxide nuclear fuels

    DOE PAGES

    Parfitt, David C.; Cooper, Michael William; Rushton, Michael J.D.; ...

    2016-07-29

    Mixed-oxide fuels containing uranium with thorium and/or plutonium may play an important part in future nuclear fuel cycles. There are, however, significantly less data available for these materials than conventional uranium dioxide fuel. In the present study, we employ molecular dynamics calculations to simulate the elastic properties and thermal expansivity of a range of mixed oxide compositions. These are then used to support equations of state and oxygen self-diffusion models to provide a self-consistent prediction of the behaviour of these mixed oxide fuels at arbitrary compositions.

  7. Thermodynamic assessment of oxygen diffusion in non-stoichiometric UO2±x from experimental data and Frenkel pair modeling

    NASA Astrophysics Data System (ADS)

    Berthinier, C.; Rado, C.; Chatillon, C.; Hodaj, F.

    2013-02-01

    The self and chemical diffusion of oxygen in the non-stoichiometric domain of the UO2 compound is analyzed from the point of view of experimental determinations and modeling from Frenkel pair defects. The correlation between the self-diffusion and the chemical diffusion coefficients is analyzed using the Darken coefficient calculated from a thermodynamic description of the UO2±x phase. This description was obtained from an optimization of thermodynamic and phase diagram data and modeling with different point defects, including the Frenkel pair point defects. The proposed diffusion coefficients correspond to the 300-2300 K temperature range and to the full composition range of the non stoichiometric UO2 compound. These values will be used for the simulation of the oxidation and ignition of the uranium carbide in different oxygen atmospheres that starts at temperatures as low as 400 K.

  8. Diffusion of Super-Gaussian Profiles

    ERIC Educational Resources Information Center

    Rosenberg, C.-J.; Anderson, D.; Desaix, M.; Johannisson, P.; Lisak, M.

    2007-01-01

    The present analysis describes an analytically simple and systematic approximation procedure for modelling the free diffusive spreading of initially super-Gaussian profiles. The approach is based on a self-similar ansatz for the evolution of the diffusion profile, and the parameter functions involved in the modelling are determined by suitable…

  9. Concentration dependence of lipopolymer self-diffusion in supported bilayer membranes

    PubMed Central

    Zhang, Huai-Ying; Hill, Reghan J.

    2011-01-01

    Self-diffusion coefficients of poly(ethylene glycol)2k-derivatized lipids (DSPE-PEG2k-CF) in glass-supported DOPC phospholipid bilayers are ascertained from quantitative fluorescence recovery after photobleaching (FRAP). We developed a first-order reaction–diffusion model to ascertain the bleaching constant, mobile fraction and lipopolymer self-diffusion coefficient Ds at concentrations in the range c ≈ 0.5–5 mol%. In contrast to control experiments with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (DOPE-NBD) in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the lipopolymer self-diffusion coefficient decreases monotonically with increasing concentration, without a distinguishing mushroom-to-brush transition. Our data yield a correlation Ds = D0/(1 + αc), where D0 ≈ 3.36 µm2 s−1 and α ≈ 0.56 (with c expressed as a mole percent). Interpreting the dilute limit with the Scalettar–Abney–Owicki statistical mechanical theory for transmembrane proteins yields an effective disc radius ae ≈ 2.41 nm. On the other hand, the Bussell–Koch–Hammer theory, which includes hydrodynamic interactions, yields ae ≈ 2.92 nm. As expected, both measures are smaller than the Flory radius of the 2 kDa poly(ethylene glycol) (PEG) chains, RF ≈ 3.83 nm, and significantly larger than the nominal radius of the phospholipid heads, al ≈ 0.46 nm. The diffusion coefficient at infinite dilution D0 was interpreted using the Evans–Sackmann theory, furnishing an inter-leaflet frictional drag coefficient bs ≈ 1.33 × 108 N s m−3. Our results suggest that lipopolymer interactions are dominated by the excluded volume of the PEG-chain segments, with frictional drag dominated by the two-dimensional bilayer hydrodynamics. PMID:20504804

  10. Overview of SIMS-Based Experimental Studies of Tracer Diffusion in Solids and Application to Mg Self-Diffusion

    DOE PAGES

    Kulkarni, Nagraj S.; Bruce Warmack, Robert J.; Radhakrishnan, Bala; ...

    2014-09-23

    Tracer diffusivities provide the most fundamental information on diffusion in materials and are the foundation of robust diffusion databases. Compared to traditional radiotracer techniques that utilize radioactive isotopes, the secondary ion mass spectrometry (SIMS) based thin-film technique for tracer diffusion is based on the use of enriched stable isotopes that can be accurately profiled using SIMS. Experimental procedures & techniques that are utilized for the measurement of tracer diffusion coefficients are presented for pure magnesium, which presents some unique challenges due to the ease of oxidation. The development of a modified Shewmon-Rhines diffusion capsule for annealing Mg and an ultra-highmore » vacuum (UHV) system for sputter deposition of Mg isotopes are discussed. Optimized conditions for accurate SIMS depth profiling in polycrystalline Mg are provided. An automated procedure for the correction of heat-up and cool-down times during tracer diffusion annealing is discussed. The non-linear fitting of a SIMS depth profile data using the thin film Gaussian solution to obtain the tracer diffusivity along with the background tracer concentration and tracer film thickness is discussed. An Arrhenius fit of the Mg self-diffusion data obtained using the low-temperature SIMS measurements from this study and the high-temperature radiotracer measurements of Shewmon and Rhines (1954) was found to be a good representation of both types of diffusion data that cover a broad range of temperatures between 250 - 627° C (523 900 K).« less

  11. Molecular dynamics simulation of the diffusion of uranium species in clay pores.

    PubMed

    Liu, Xiao-yu; Wang, Lu-hua; Zheng, Zhong; Kang, Ming-liang; Li, Chun; Liu, Chun-li

    2013-01-15

    Molecular dynamics simulations were carried out to investigate the diffusive behavior of aqueous uranium species in montmorillonite pores. Three uranium species (UO(2)(2+), UO(2)CO(3), UO(2)(CO(3))(2)(2-)) were confirmed in both the adsorbed and diffuse layers. UO(2)(CO(3))(3)(4-) was neglected in the subsequent analysis due to its scare occurrence. The species-based diffusion coefficients in montmorillonite pores were then calculated, and compared with the water mobility and their diffusivity in aqueous solution/feldspar nanosized fractures. Three factors were considered that affected the diffusive behavior of the uranium species: the mobility of water, the self-diffusion coefficient of the aqueous species, and the electrostatic forces between the negatively charged surface and charged molecules. The mobility of U species in the adsorbed layer decreased in the following sequence: UO(2)(2+)>UO(2)CO(3)>UO(2)(CO(3))(2)(2-). In the diffuse layer, we obtained the highest diffusion coefficient for UO(2)(CO(3))(2)(2-) with the value of 5.48×10(-10) m(2) s(-1), which was faster than UO(2)(2+). For these two charged species, the influence of electrostatic forces on the diffusion of solutes in the diffuse layer is overwhelming, whereas the influence of self-diffusion and water mobility is minor. Our study demonstrated that the negatively charged uranyl carbonate complex must be addressed in the safety assessment of potential radioactive waste disposal systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Charge and spin diffusion on the metallic side of the metal-insulator transition: A self-consistent approach

    NASA Astrophysics Data System (ADS)

    Wellens, Thomas; Jalabert, Rodolfo A.

    2016-10-01

    We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarman, Sten, E-mail: sarman@ownit.nu; Wang, Yong-Lei; Laaksonen, Aatto

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlinesmore » and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.« less

  14. Downstream boundary effects on the frequency of self-excited oscillations in transonic diffuser flows

    NASA Astrophysics Data System (ADS)

    Hsieh, T.

    1986-10-01

    Investigation of downstream boundary effects on the frequency of self-excited oscillations in two-dimensional, separated transonic diffuser flows were conducted numerically by solving the compressible, Reynolds-averaged, thin-layer Navier-Stokes equation with two equation turbulence models. It was found that the flow fields are very sensitive to the location of the downstream boundary. Extension of the diffuser downstream boundary significantly reduces the frequency and amplitude of oscillations for pressure, velocity, and shock. The existence of a suction slot in the experimental setpup obscures the physical downstream boundary and therefore presents a difficulty for quantitative comparisons between computation and experiment.

  15. Oxygen self-diffusion in diopside with application to cooling rate determinations

    NASA Astrophysics Data System (ADS)

    Farver, John R.

    1989-04-01

    The kinetics of oxygen self-diffusion in a natural diopside have been measured over the temperature range 700-1250°C. Experiments were run under hydrothermal conditions using 18O-enriched water. Profiles of 18O/( 16O+ 18O) versus depth into the crystal were obtained using an ion microprobe. At 1000 bars (100 MPa) confining pressure, the Arrhenius relation for diffusion parallel to the c crystallographic direction yields a pre-exponential factor ( D0) = 1.5 × 10 -6 cm 2/s and an activation energy ( Q) = 54 ± 5 kcal/g-atom O (226 kJ/g-atom O) over the temperature range of the experiments. Diffusion coefficients parallel to the c crystallographic direction are ≈ 100 times greater than perpendicular to c. The oxygen self-diffusion coefficient obtained for diopside is ≈ 1000 times less than that for diffusion in feldspars, and ≈ 100 times less than that for quartz at 800°C, transport parallel to the c axis. Closure temperatures calculated for oxygen diffusional exchange in natural diopside are significantly higher than for quartz or feldspars. Measurable oxygen isotope exchange in diopside by diffusion would require geological settings with very high temperatures maintained for very long durations. The oxygen diffusional exchange kinetics in diopside presented in this paper find important applications in studies of meteoric hydrothermal circulation systems and the time-temperature history of high-grade regionally metamorphosed terrains. Examples considered include the Outer Unlayered Gabbro, Cuillins Gabbro Complex, Isle of Skye, Scotland, and the granulite-grade Turpentine Hill Metamorphics near Einasleigh, Queensland, Australia.

  16. High-throughput ab-initio dilute solute diffusion database.

    PubMed

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-07-19

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.

  17. Roles of Segmental and Oligomeric Diffusion on the Gel Effect in Free Radical Polymerization

    NASA Astrophysics Data System (ADS)

    Wisnudel, M. B.; Torkelson, J. M.

    1996-03-01

    Termination between radicals has been simulated by phosphorescence quenching, showing strong roles for segmental and oligomeric radical self-diffusion in the origin of the gel effect. Quenching rate constants (k_q) were measured between benzil-terminated polymer as a function of anthracene-terminated polymer in polymer solutions. In dilute solution, interactions between 10k or 73k MW benzil-terminated polystyrene (PS- B) and anthracence-terminated polystyrene (PS-A) of varying MW, the MW effect is weaker than the Smoluchowski eq. prediction (kq MW^- 0.5). At higher concentration, interactions of PS-B and PS-A of like MW show only weak dependence of kq on MW and a concentration dependence similar to that of segmental mobility, indicating that segmental diffusion is important in termination. Finally, with interactions between 73k MW PS-B and PS-A of varying MW at 35 wt% PS, kq decreases by a factor of 10 in going from MW's of 100 to 1000 g/mol; beyond 1000 g/mol, kq is MW independent. Such effects cannot be explained by polymer-radical self-diffusion. However, they support the notion that the gel effect onset is associated with the concentration dependence of oligomeric radical self-diffusion and polymer radical chain-end segmental mobility.

  18. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals.

    PubMed

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-04-08

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems.

  19. Product interactions and feedback in diffusion-controlled reactions

    NASA Astrophysics Data System (ADS)

    Roa, Rafael; Siegl, Toni; Kim, Won Kyu; Dzubiella, Joachim

    2018-02-01

    Steric or attractive interactions among reactants or between reactants and inert crowders can substantially influence the total rate of a diffusion-influenced reaction in the liquid phase. However, the role of the product species, which has typically different physical properties than the reactant species, has been disregarded so far. Here we study the effects of reactant-product and product-product interactions as well as asymmetric diffusion properties on the rate of diffusion-controlled reactions in the classical Smoluchowski-setup for chemical transformations at a perfect catalytic sphere. For this, we solve the diffusion equation with appropriate boundary conditions coupled by a mean-field approach on the second virial level to account for the particle interactions. We find that all particle spatial distributions and the total rate can change significantly, depending on the diffusion and interaction properties of the accumulated products. Complex competing and self-regulating (homeostatic) or self-amplifying effects are observed for the system, leading to both decrease and increase in the rates, as the presence of interacting products feeds back to the reactant flux and thus the rate with which the products are generated.

  20. Self-diffusion in a system of interacting Langevin particles

    NASA Astrophysics Data System (ADS)

    Dean, D. S.; Lefèvre, A.

    2004-06-01

    The behavior of the self-diffusion constant of Langevin particles interacting via a pairwise interaction is considered. The diffusion constant is calculated approximately within a perturbation theory in the potential strength about the bare diffusion constant. It is shown how this expansion leads to a systematic double expansion in the inverse temperature β and the particle density ρ . The one-loop diagrams in this expansion can be summed exactly and we show that this result is exact in the limit of small β and ρβ constants. The one-loop result can also be resummed using a semiphenomenological renormalization group method which has proved useful in the study of diffusion in random media. In certain cases the renormalization group calculation predicts the existence of a diverging relaxation time signaled by the vanishing of the diffusion constant, possible forms of divergence coming from this approximation are discussed. Finally, at a more quantitative level, the results are compared with numerical simulations, in two dimensions, of particles interacting via a soft potential recently used to model the interaction between coiled polymers.

  1. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals

    PubMed Central

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-01-01

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems. DOI: http://dx.doi.org/10.7554/eLife.14022.001 PMID:27058171

  2. Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko, Yuri E.; Fichtner, Horst; Walter, Dominik

    2017-05-20

    We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatmentmore » of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.« less

  3. O(minus 2) grain boundary diffusion and grain growth in pure dense MgO

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Grain growth behavior in fully dense compacts of MgO of very high purity was studied, and the results compared with other similar behaving materials. The activation energy for the intrinsic self-diffusion of Mg(2minus) is discussed along with the grain boundary diffusion of O(2minus). Grain boundary diffusion of O(2minus) is proposed as the controlling mechanism for grain growth.

  4. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.

    PubMed

    Banchio, Adolfo J; Heinen, Marco; Holmqvist, Peter; Nägele, Gerhard

    2018-04-07

    We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in concentrated suspensions of charge-stabilized colloidal spheres. In theory and simulation, the spheres are assumed to interact directly by a hard-core plus screened Coulomb effective pair potential. The intermediate scattering function, f c (q, t), is calculated by elaborate accelerated Stokesian dynamics (ASD) simulations for Brownian systems where many-particle hydrodynamic interactions (HIs) are fully accounted for, using a novel extrapolation scheme to a macroscopically large system size valid for all correlation times. The study spans the correlation time range from the colloidal short-time to the long-time regime. Additionally, Brownian Dynamics (BD) simulation and mode-coupling theory (MCT) results of f c (q, t) are generated where HIs are neglected. Using these results, the influence of HIs on collective and self-diffusion and the accuracy of the MCT method are quantified. It is shown that HIs enhance collective and self-diffusion at intermediate and long times. At short times self-diffusion, and for wavenumbers outside the structure factor peak region also collective diffusion, are slowed down by HIs. MCT significantly overestimates the slowing influence of dynamic particle caging. The dynamic scattering functions obtained in the ASD simulations are in overall good agreement with our dynamic light scattering (DLS) results for a concentration series of charged silica spheres in an organic solvent mixture, in the experimental time window and wavenumber range. From the simulation data for the time derivative of the width function associated with f c (q, t), there is indication of long-time exponential decay of f c (q, t), for wavenumbers around the location of the static structure factor principal peak. The experimental scattering functions in the probed time range are consistent with a time-wavenumber factorization scaling behavior of f c (q, t) that was first reported by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)] for suspensions of hard spheres. Our BD simulation and MCT results predict a significant violation of exact factorization scaling which, however, is approximately restored according to the ASD results when HIs are accounted for, consistent with the experimental findings for f c (q, t). Our study of collective diffusion is amended by simulation and theoretical results for the self-intermediate scattering function, f s (q, t), and its non-Gaussian parameter α 2 (t) and for the particle mean squared displacement W(t) and its time derivative. Since self-diffusion properties are not assessed in standard DLS measurements, a method to deduce W(t) approximately from f c (q, t) is theoretically validated.

  5. An approximate analysis of the diffusing flow in a self-controlled heat pipe.

    NASA Technical Reports Server (NTRS)

    Somogyi, D.; Yen, H. H.

    1973-01-01

    Constant-density two-dimensional axisymmetric equations are presented for the diffusing flow of a class of self-controlled heat pipes. The analysis is restricted to the vapor space. Condensation of the vapor is related to its mass fraction at the wall by the gas kinetic formula. The Karman-Pohlhausen integral method is applied to obtain approximate solutions. Solutions are presented for a water heat pipe with neon control gas.

  6. Numerical convergence of the self-diffusion coefficient and viscosity obtained with Thomas-Fermi-Dirac molecular dynamics.

    PubMed

    Danel, J-F; Kazandjian, L; Zérah, G

    2012-06-01

    Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.

  7. Numerical convergence of the self-diffusion coefficient and viscosity obtained with Thomas-Fermi-Dirac molecular dynamics

    NASA Astrophysics Data System (ADS)

    Danel, J.-F.; Kazandjian, L.; Zérah, G.

    2012-06-01

    Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.

  8. Numerical simulations of unsteady transonic flow in diffusers

    NASA Technical Reports Server (NTRS)

    Liou, M.-S.; Coakley, T. J.

    1982-01-01

    Forced and naturally occurring, self-sustaining oscillations of transonic flows in two-dimensional diffusers were computed using MacCormack's hybrid method. Depending upon the shock strengths and the area ratios, the flow was fully attached or separated by either the shock or the adverse pressure gradient associated with the enlarging diffuser area. In the case of forced oscillations, a sinusoidal plane pressure wave at frequency 300 Hz was prescribed at the exit. A sufficiently large amount of data were acquired and Fourier analyzed. The distrbutions of time-mean pressures, the power spectral density, and the amplitude with phase angle along the top wall and in the core region were determined. Comparison with experimental results for the forced oscillation generally gave very good agreement; some success was achieved for the case of self-sustaining oscillation despite substantial three-dimensionality in the test. An observation of the sequence of self-sustaining oscillations was given.

  9. Lithium Transport in an Amorphous Li xSi Anode Investigated by Quasi-elastic Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacci, Robert L.; Lehmann, Michelle L.; Diallo, Souleymane O.

    Here, we demonstrate the room temperature mechanochemical synthesis of highly defective Li xSi anode materials and characterization of the Li transport. We probed the Li + self-diffusion using quasi-elastic neutron scattering (QENS) to measure the Li self-diffusion in the alloy. Li diffusion was found to be significantly greater (3.0 × 10 –6 cm 2 s –1) than previously measured crystalline and electrochemically made Li–Si alloys; the energy of activation was determined to be 0.20 eV (19 kJ mol –1). Amorphous Li–Si structures are known to have superior Li diffusion to their crystalline counterparts; therefore, the isolation and stabilization of defectivemore » Li–Si structures may improve the utility of Si anodes for Li-ion batteries.« less

  10. Lithium Transport in an Amorphous Li xSi Anode Investigated by Quasi-elastic Neutron Scattering

    DOE PAGES

    Sacci, Robert L.; Lehmann, Michelle L.; Diallo, Souleymane O.; ...

    2017-04-27

    Here, we demonstrate the room temperature mechanochemical synthesis of highly defective Li xSi anode materials and characterization of the Li transport. We probed the Li + self-diffusion using quasi-elastic neutron scattering (QENS) to measure the Li self-diffusion in the alloy. Li diffusion was found to be significantly greater (3.0 × 10 –6 cm 2 s –1) than previously measured crystalline and electrochemically made Li–Si alloys; the energy of activation was determined to be 0.20 eV (19 kJ mol –1). Amorphous Li–Si structures are known to have superior Li diffusion to their crystalline counterparts; therefore, the isolation and stabilization of defectivemore » Li–Si structures may improve the utility of Si anodes for Li-ion batteries.« less

  11. Cromolyn as surface active drug (surfadrug): Effect of the self-association on diffusion and percutaneous permeation.

    PubMed

    Tavano, Lorena; Nicoletta, Fiore Pasquale; Picci, Nevio; Muzzalupo, Rita

    2016-03-01

    Cromolyn sodium, or disodium cromoglycate (CS), is a surface active drug: a pharmacologically active compound with an amphiphilic nature. At certain conditions it is able to self-associate in several kind of supramolecular aggregates. Since CS could play the role of both carrier and drug, bypassing the use of additional excipients and increasing the system biocompatibility, the effects of cromolyn self-aggregates on diffusion and percutaneous permeation across rabbit ear skin were investigated. Niosomes (vesicular systems, 0.5wt% of CS), monomeric and isotropic solutions (0.5 and 5wt% of CS), nematic (15wt% of CS) and hexagonal phases (30wt% of CS) were selected as supramolecular systems and tested as transdermal delivery systems. Results demonstrated that CS was able to form vesicular structures of about 500nm of diameter and this formulation gave the higher percutaneous permeation profile (systemic action), while isotropic solution and liquid crystals mesophases acted as slower release reservoir of drug on the skin surface (local action), as confirmed by diffusion coefficients. Diffusion rates through a synthetic membrane were dependent both on CS concentration present into the formulations and on its structural organization: maximum diffusion was noticed with isotropic solution, a lower amount of diffused cromolyn sodium was achieved by hexagonal phase. Consequently, CS appears as a versatile surfadrug as, depending on the disease degree, it is possible to modulate its permeation profile by choosing the most appropriate formulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effect of component substitution on the atomic dynamics in glass-forming binary metallic melts

    NASA Astrophysics Data System (ADS)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Evenson, Z.; Hansen, T. C.; Meyer, A.

    2017-08-01

    We investigate the substitution of early transition metals (Zr, Hf, and Nb) in Ni-based binary glass-forming metallic melts and the impact on structural and dynamical properties by using a combination of neutron scattering, electrostatic levitation (ESL), and isotopic substitution. The self-diffusion coefficients measured by quasielastic neutron scattering (QENS) identify a sluggish diffusion as well as an increased activation energy by almost a factor of 2 for Hf35Ni65 compared to Zr36Ni64 . This finding can be explained by the locally higher packing density of Hf atoms in Hf35Ni65 compared to Zr atoms in Zr36Ni64 , which has been derived from interatomic distances by analyzing the measured partial structure factors. Furthermore, QENS measurements of liquid Hf35Ni65 prepared with 60Ni , which has a vanishing incoherent scattering cross section, have demonstrated that self-diffusion of Hf is slowed down compared to the concentration weighted self-diffusion of Hf and Ni. This implies a dynamical decoupling between larger Hf and smaller Ni atoms, which can be related to a saturation effect of unequal atomic nearest-neighbor pairs, that was observed recently for Ni-rich compositions in Zr-Ni metallic melts. In order to establish a structure-dynamics relation, measured partial structure factors have been used as an input for mode-coupling theory (MCT) of the glass transition to calculate self-diffusion coefficients for the different atomic components. Remarkably, MCT can reproduce the increased activation energy for Hf35Ni65 as well as the dynamical decoupling between Hf and Ni atoms.

  13. Evaporation, diffusion and self-assembly at drying interfaces.

    PubMed

    Roger, K; Sparr, E; Wennerström, H

    2018-04-18

    Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.

  14. Percolation Diffusion into Self-Assembled Mesoporous Silica Microfibres

    PubMed Central

    Canning, John; Huyang, George; Ma, Miles; Beavis, Alison; Bishop, David; Cook, Kevin; McDonagh, Andrew; Shi, Dongqi; Peng, Gang-Ding; Crossley, Maxwell J.

    2014-01-01

    Percolation diffusion into long (11.5 cm) self-assembled, ordered mesoporous microfibres is studied using optical transmission and laser ablation inductive coupled mass spectrometry (LA-ICP-MS). Optical transmission based diffusion studies reveal rapid penetration (<5 s, D > 80 μm2∙s−1) of Rhodamine B with very little percolation of larger molecules such as zinc tetraphenylporphyrin (ZnTPP) observed under similar loading conditions. The failure of ZnTPP to enter the microfibre was confirmed, in higher resolution, using LA-ICP-MS. In the latter case, LA-ICP-MS was used to determine the diffusion of zinc acetate dihydrate, D~3 × 10−4 nm2∙s−1. The large differences between the molecules are accounted for by proposing ordered solvent and structure assisted accelerated diffusion of the Rhodamine B based on its hydrophilicity relative to the zinc compounds. The broader implications and applications for filtration, molecular sieves and a range of devices and uses are described. PMID:28348290

  15. Breaking through the glass ceiling: The correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films

    NASA Astrophysics Data System (ADS)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-01

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  16. Breaking through the glass ceiling: the correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2010-03-28

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, T(g) (103 K). Layered films, consisting of CH(3)OH and CD(3)OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above T(g). The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  17. Diffuse gamma-ray emission from self-confined cosmic rays around Galactic sources

    NASA Astrophysics Data System (ADS)

    D'Angelo, Marta; Morlino, Giovanni; Amato, Elena; Blasi, Pasquale

    2018-02-01

    The propagation of particles accelerated at supernova remnant shocks and escaping the parent remnants is likely to proceed in a strongly non-linear regime, due to the efficient self-generation of Alfvén waves excited through streaming instability near the sources. Depending on the amount of neutral hydrogen present in the regions around the sites of supernova explosions, cosmic rays may accumulate an appreciable grammage in the same regions and get self-confined for non-negligible times, which in turn results in an enhanced rate of production of secondaries. Here we calculate the contribution to the diffuse gamma-ray background due to the overlap along lines of sight of several of these extended haloes as due to pion production induced by self-confined cosmic rays. We find that if the density of neutrals is low, the haloes can account for a substantial fraction of the diffuse emission observed by Fermi-Large Area Telescope (LAT), depending on the orientation of the line of sight with respect to the direction of the Galactic Centre.

  18. Can phoretic particles swim in two dimensions?

    NASA Astrophysics Data System (ADS)

    Sondak, David; Hawley, Cory; Heng, Siyu; Vinsonhaler, Rebecca; Lauga, Eric; Thiffeault, Jean-Luc

    2016-12-01

    Artificial phoretic particles swim using self-generated gradients in chemical species (self-diffusiophoresis) or charges and currents (self-electrophoresis). These particles can be used to study the physics of collective motion in active matter and might have promising applications in bioengineering. In the case of self-diffusiophoresis, the classical physical model relies on a steady solution of the diffusion equation, from which chemical gradients, phoretic flows, and ultimately the swimming velocity may be derived. Motivated by disk-shaped particles in thin films and under confinement, we examine the extension to two dimensions. Because the two-dimensional diffusion equation lacks a steady state with the correct boundary conditions, Laplace transforms must be used to study the long-time behavior of the problem and determine the swimming velocity. For fixed chemical fluxes on the particle surface, we find that the swimming velocity ultimately always decays logarithmically in time. In the case of finite Péclet numbers, we solve the full advection-diffusion equation numerically and show that this decay can be avoided by the particle moving to regions of unconsumed reactant. Finite advection thus regularizes the two-dimensional phoretic problem.

  19. High-throughput ab-initio dilute solute diffusion database

    PubMed Central

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  20. Diffusion models for innovation: s-curves, networks, power laws, catastrophes, and entropy.

    PubMed

    Jacobsen, Joseph J; Guastello, Stephen J

    2011-04-01

    This article considers models for the diffusion of innovation would be most relevant to the dynamics of early 21st century technologies. The article presents an overview of diffusion models and examines the adoption S-curve, network theories, difference models, influence models, geographical models, a cusp catastrophe model, and self-organizing dynamics that emanate from principles of network configuration and principles of heat diffusion. The diffusion dynamics that are relevant to information technologies and energy-efficient technologies are compared. Finally, principles of nonlinear dynamics for innovation diffusion that could be used to rehabilitate the global economic situation are discussed.

  1. On Large Time Behavior and Selection Principle for a Diffusive Carr-Penrose Model

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph G.; Dabkowski, Michael; Wu, Jingchen

    2016-04-01

    This paper is concerned with the study of a diffusive perturbation of the linear LSW model introduced by Carr and Penrose. A main subject of interest is to understand how the presence of diffusion acts as a selection principle, which singles out a particular self-similar solution of the linear LSW model as determining the large time behavior of the diffusive model. A selection principle is rigorously proven for a model which is a semiclassical approximation to the diffusive model. Upper bounds on the rate of coarsening are also obtained for the full diffusive model.

  2. Single ion dynamics in molten sodium bromide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcaraz, O.; Trullas, J.; Demmel, F.

    We present a study on the single ion dynamics in the molten alkali halide NaBr. Quasielastic neutron scattering was employed to extract the self-diffusion coefficient of the sodium ions at three temperatures. Molecular dynamics simulations using rigid and polarizable ion models have been performed in parallel to extract the sodium and bromide single dynamics and ionic conductivities. Two methods have been employed to derive the ion diffusion, calculating the mean squared displacements and the velocity autocorrelation functions, as well as analysing the increase of the line widths of the self-dynamic structure factors. The sodium diffusion coefficients show a remarkable goodmore » agreement between experiment and simulation utilising the polarisable potential.« less

  3. Plasma Membrane is Compartmentalized by a Self-Similar Cortical Actin Meshwork

    NASA Astrophysics Data System (ADS)

    Sadegh, Sanaz; Higgins, Jenny L.; Mannion, Patrick C.; Tamkun, Michael M.; Krapf, Diego

    2017-01-01

    A broad range of membrane proteins display anomalous diffusion on the cell surface. Different methods provide evidence for obstructed subdiffusion and diffusion on a fractal space, but the underlying structure inducing anomalous diffusion has never been visualized because of experimental challenges. We addressed this problem by imaging the cortical actin at high resolution while simultaneously tracking individual membrane proteins in live mammalian cells. Our data confirm that actin introduces barriers leading to compartmentalization of the plasma membrane and that membrane proteins are transiently confined within actin fences. Furthermore, superresolution imaging shows that the cortical actin is organized into a self-similar meshwork. These results present a hierarchical nanoscale picture of the plasma membrane.

  4. Effect of natural convection in a horizontally oriented cylinder on NMR imaging of the distribution of diffusivity

    PubMed

    Mohoric; Stepisnik

    2000-11-01

    This paper describes the influence of natural convection on NMR measurement of a self-diffusion constant of fluid in the earth's magnetic field. To get an estimation of the effect, the Lorenz model of natural convection in a horizontally oriented cylinder, heated from below, is derived. Since the Lorenz model of natural convection is derived for the free boundary condition, its validity is of a limited value for the natural no-slip boundary condition. We point out that even a slight temperature gradient can cause significant misinterpretation of measurements. The chaotic nature of convection enhances the apparent self-diffusion constant of the liquid.

  5. Ideal square quantum wells achieved in AlGaN/GaN superlattices using ultrathin blocking-compensation pair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaohong; Xu, Hongmei; Xu, Fuchun

    A technique for achieving square-shape quantum wells (QWs) against the intrinsic polar discontinuity and interfacial diffusion through self-compensated pair interlayers is reported. Ultrathin low-and-high % pair interlayers that have diffusion-blocking and self-compensation capacities is proposed to resist the elemental diffusion at nanointerfaces and to grow the theoretically described abrupt rectangular AlGaN/GaN superlattices by metal-organic chemical vapor deposition. Light emission efficiency in such nanostructures is effectively enhanced and the quantum-confined Stark effect could be partially suppressed. This concept could effectively improve the quality of ultrathin QWs in functional nanostructures with other semiconductors or through other growth methods.

  6. Ellipsoidal Brownian self-driven particles in a magnetic field

    NASA Astrophysics Data System (ADS)

    Fan, Wai-Tong Louis; Pak, On Shun; Sandoval, Mario

    2017-03-01

    We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at a low Reynolds number and subject to a magnetic field. Its corresponding mean-square displacement, showing the effect of a particles's shape, activity, and magnetic field on the microswimmer's diffusion, is analytically obtained. Comparison between analytical and computational results shows good agreement. In addition, the effect of self-propulsion on the transition time from anisotropic to isotropic diffusion of the ellipse is investigated.

  7. Relationships between self-diffusivity, packing fraction, and excess entropy in simple bulk and confined fluids.

    PubMed

    Mittal, Jeetain; Errington, Jeffrey R; Truskett, Thomas M

    2007-08-30

    Static measures such as density and entropy, which are intimately connected to structure, have featured prominently in modern thinking about the dynamics of the liquid state. Here, we explore the connections between self-diffusivity, density, and excess entropy for two of the most widely used model "simple" liquids, the equilibrium Lennard-Jones and square-well fluids, in both bulk and confined environments. We find that the self-diffusivity data of the Lennard-Jones fluid can be approximately collapsed onto a single curve (i) versus effective packing fraction and (ii) in appropriately reduced form versus excess entropy, as suggested by two well-known scaling laws. Similar data collapse does not occur for the square-well fluid, a fact that can be understood on the basis of the nontrivial effects that temperature has on its static structure. Nonetheless, we show that the implications of confinement for the self-diffusivity of both of these model fluids, over a broad range of equilibrium conditions, can be predicted on the basis of knowledge of the bulk fluid behavior and either the effective packing fraction or the excess entropy of the confined fluid. Excess entropy is perhaps the most preferable route due to its superior predictive ability and because it is a standard, unambiguous thermodynamic quantity that can be readily predicted via classical density functional theories of inhomogeneous fluids.

  8. Li diffusion and the effect of local structure on Li mobility in Li2O-SiO2 glasses.

    PubMed

    Bauer, Ute; Welsch, Anna-Maria; Behrens, Harald; Rahn, Johanna; Schmidt, Harald; Horn, Ingo

    2013-12-05

    Aimed to improve the understanding of lithium migration mechanisms in ion conductors, this study focuses on Li dynamics in binary Li silicate glasses. Isotope exchange experiments and conductivity measurements were carried out to determine self-diffusion coefficients and activation energies for Li migration in Li2Si3O7 and Li2Si6O13 glasses. Samples of identical composition but different isotope content were combined for diffusion experiments in couples or triples. Diffusion profiles developed between 511 and 664 K were analyzed by femtosecond laser ablation combined with multiple collector inductively coupled plasma mass spectrometry (fs LA-MC-ICP-MS) and secondary ion mass spectrometry (SIMS). Analyses of diffusion profiles and comparison of diffusion data reveal that the isotope effect of lithium diffusion in silicate glasses is rather small, consistent with classical diffusion behavior. Ionic conductivity of glasses was measured between 312 and 675 K. The experimentally obtained self-diffusion coefficient, D(IE), and ionic diffusion coefficient, D(σ), derived from specific DC conductivity provided information about correlation effects during Li diffusion. The D(IE)/D(σ) is higher for the trisilicate (0.27 ± 0.05) than that for the hexasilicate (0.17 ± 0.02), implying that increasing silica content reduces the efficiency of Li jumps in terms of long-range movement. This trend can be rationalized by structural concepts based on nuclear magnetic resonance (NMR) and Raman spectroscopy as well as molecular dynamic simulations, that is, lithium is percolating in low-dimensional, alkali-rich regions separated by a silica-rich matrix.

  9. Self-healing of optical functions by molecular metabolism in a swollen elastomer

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Nishimura, Tatsuya; Sakiyama, Kohei; Inagaki, Sota

    2012-12-01

    Optical functions of organic dyes, e.g., fluorescence or photochromism, tend to degrade by light irradiation, which causes a short lifetime of photonic devices. Self-healing of optical functions is attainable by metabolizing bleached molecules with nonirradiated ones. A polydimethylsiloxane elastomer provides a useful matrix for dye molecules, since its flexible structure with nano-sized intermolecular spaces allows dye diffusion from a reservoir to an operation region. Swelling the elastomer with a suitable solvent promotes both dissolution and diffusion of dye molecules. This self-healing function was demonstrated by an experiment in which a photochromic elastomer exhibited improved durability against a repeated coloring-decoloring process.

  10. The role played by self-orientational properties in nematics of colloids with molecules axially symmetric.

    PubMed

    Alarcón-Waess, O

    2010-04-14

    The self-orientational structure factor as well as the short-time self-orientational diffusion coefficient is computed for colloids composed by nonspherical molecules. To compute the short-time dynamics the hydrodynamic interactions are not taken into account. The hard molecules with at least one symmetry axis considered are: rods, spherocylinders, and tetragonal parallelepipeds. Because both orientational properties in study are written in terms of the second and fourth order parameters, these automatically hold the features of the order parameters. That is, they present a discontinuity for first order transitions, determining in this way the spinodal line. In order to analyze the nematic phase only, we choose the appropriate values for the representative quantities that characterize the molecules. Different formalisms are used to compute the structural properties: de Gennes-Landau approach, Smoluchowski equation and computer simulations. Some of the necessary inputs are taken from literature. Our results show that the self-orientational properties play an important role in the characterization and the localization of axially symmetric phases. While the self-structure decreases throughout the nematics, the short-time self-diffusion does not decrease but rather increases. We study the evolution of the second and fourth order parameters; we find different responses for axial and biaxial nematics, predicting the possibility of a biaxial nematics in tetragonal parallelepiped molecules. By considering the second order in the axial-biaxial phase transition, with the support of the self-orientational structure factor, we are able to propose the density at which this occurs. The short-time dynamics is able to predict a different value in the axial and the biaxial phases. Because the different behavior of the fourth order parameter, the diffusion coefficient is lower for a biaxial phase than for an axial one. Therefore the self-structure factor is able to localize continuous phase transitions involving axially symmetric phases and the short-time self-orientational diffusion is able to distinguish the ordered phase by considering the degree of alignment, that is, axial or biaxial.

  11. Nonequilibrium Self-Assembly of π-Conjugated Oligopeptides in Solution.

    PubMed

    Li, Bo; Li, Songsong; Zhou, Yuecheng; Ardoña, Herdeline Ann M; Valverde, Lawrence R; Wilson, William L; Tovar, John D; Schroeder, Charles M

    2017-02-01

    Supramolecular assembly is a powerful method that can be used to generate materials with well-defined structures across multiple length scales. Supramolecular assemblies consisting of biopolymer-synthetic polymer subunits are specifically known to exhibit exceptional structural and functional diversity as well as programmable control of noncovalent interactions through hydrogen bonding in biopolymer subunits. Despite recent progress, there is a need to control and quantitatively understand assembly under nonequilibrium conditions. In this work, we study the nonequilibrium self-assembly of π-conjugated synthetic oligopeptides using a combination of experiments and analytical modeling. By isolating an aqueous peptide solution droplet within an immiscible organic layer, the rate of peptide assembly in the aqueous solution can be controlled by tuning the transport rate of acid that is used to trigger assembly. Using this approach, peptides are guided to assemble under reaction-dominated and diffusion-dominated conditions, with results showing a transition from a diffusion-limited reaction front to spatially homogeneous assembly as the transport rate of acid decreases. Interestingly, our results show that the morphology of self-assembled peptide fibers is controlled by the assembly kinetics such that increasingly homogeneous structures of self-assembled synthetic oligopeptides were generally obtained using slower rates of assembly. We further developed an analytical reaction-diffusion model to describe oligopeptide assembly, and experimental results are compared to the reaction-diffusion model across a range of parameters. Overall, this work highlights the importance of molecular self-assembly under nonequilibrium conditions, specifically showing that oligopeptide assembly is governed by a delicate balance between reaction kinetics and transport processes.

  12. Study of diffusion coefficient of anhydrous trehalose glasses by using PFG-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Joung; Takekawa, Reiji; Kawamura, Junichi; Tokuyama, Michio

    2013-02-01

    We investigated the temperature dependent long time self-diffusion coefficient of the anhydrous trehalose supercooled liquids by using pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. At the same temperature ranges, the diffusion coefficient convoluted from the α-relaxation time as Einstein-Smoluchowski relaxation, measured by using the dielectric loss spectroscopy are well overlapped with diffusion coefficients within experimental error. The temperature dependent diffusion coefficients obtained from different methods are normalized by fictive temperature and well satisfied the single master curve, proposed by Tokuyama.

  13. Large size self-assembled quantum rings: quantum size effect and modulation on the surface diffusion.

    PubMed

    Tong, Cunzhu; Yoon, Soon Fatt; Wang, Lijun

    2012-09-24

    We demonstrate experimentally the submicron size self-assembled (SA) GaAs quantum rings (QRs) by quantum size effect (QSE). An ultrathin In0.1 Ga0.9As layer with different thickness is deposited on the GaAs to modulate the surface nucleus diffusion barrier, and then the SA QRs are grown. It is found that the density of QRs is affected significantly by the thickness of inserted In0.1 Ga0.9As, and the diffusion barrier modulation reflects mainly on the first five monolayer . The physical mechanism behind is discussed. The further analysis shows that about 160 meV decrease in diffusion barrier can be achieved, which allows the SA QRs with density of as low as one QR per 6 μm2. Finally, the QRs with diameters of 438 nm and outer diameters of 736 nm are fabricated using QSE.

  14. Thermophysical properties of liquid Ni around the melting temperature from molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozas, R. E.; Department of Physics, University of Bío-Bío, Av. Collao 1202, P.O. Box 5C, Concepción; Demiraǧ, A. D.

    Thermophysical properties of liquid nickel (Ni) around the melting temperature are investigated by means of classical molecular dynamics (MD) simulation, using three different embedded atom method potentials to model the interactions between the Ni atoms. Melting temperature, enthalpy, static structure factor, self-diffusion coefficient, shear viscosity, and thermal diffusivity are compared to recent experimental results. Using ab initio MD simulation, we also determine the static structure factor and the mean-squared displacement at the experimental melting point. For most of the properties, excellent agreement is found between experiment and simulation, provided the comparison relative to the corresponding melting temperature. We discuss themore » validity of the Hansen-Verlet criterion for the static structure factor as well as the Stokes-Einstein relation between self-diffusion coefficient and shear viscosity. The thermal diffusivity is extracted from the autocorrelation function of a wavenumber-dependent temperature fluctuation variable.« less

  15. Diffusion of neon in white dwarf stars.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2010-12-01

    Sedimentation of the neutron rich isotope 22Ne may be an important source of gravitational energy during the cooling of white dwarf stars. This depends on the diffusion constant for 22Ne in strongly coupled plasma mixtures. We calculate self-diffusion constants D(i) from molecular dynamics simulations of carbon, oxygen, and neon mixtures. We find that D(i) in a mixture does not differ greatly from earlier one component plasma results. For strong coupling (coulomb parameter Γ> few), D(i) has a modest dependence on the charge Z(i) of the ion species, D(i)∝Z(i)(-2/3). However, D(i) depends more strongly on Z(i) for weak coupling (smaller Γ). We conclude that the self-diffusion constant D(Ne) for 22Ne in carbon, oxygen, and neon plasma mixtures is accurately known so that uncertainties in D(Ne) should be unimportant for simulations of white dwarf cooling.

  16. Investigation of microstructure and properties of ultrathin graded ZrNx self-assembled diffusion barrier in deep nano-vias prepared by plasma ion immersion implantation

    NASA Astrophysics Data System (ADS)

    Zou, Jianxiong; Liu, Bo; Lin, Liwei; Lu, Yuanfu; Dong, Yuming; Jiao, Guohua; Ma, Fei; Li, Qiran

    2018-01-01

    Ultrathin graded ZrNx self-assembled diffusion barriers with controllable stoichiometry was prepared in Cu/p-SiOC:H interfaces by plasma immersion ion implantation (PIII) with dynamic regulation of implantation fluence. The fundamental relationship between the implantation fluence of N+ and the stoichiometry and thereby the electrical properties of the ZrNx barrier was established. The optimized fluence of a graded ZrN thin film with gradually decreased Zr valence was obtained with the best electrical performance as well. The Cu/p-SiOC:H integration is thermally stable up to 500 °C due to the synergistic effect of Cu3Ge and ZrNx layers. Accordingly, the PIII process was verified in a 100-nm-thick Cu dual-damascene interconnect, in which the ZrNx diffusion barrier of 1 nm thick was successfully self-assembled on the sidewall without barrier layer on the via bottom. In this case, the via resistance was reduced by approximately 50% in comparison with Ta/TaN barrier. Considering the results in this study, ultrathin ZrNx conformal diffusion barrier can be adopted in the sub-14 nm technology node.

  17. Dynamics of proteins: Light scattering study of dilute and dense colloidal suspensions of eye lens homogenates

    NASA Astrophysics Data System (ADS)

    Giannopoulou, A.; Aletras, A. J.; Pharmakakis, N.; Papatheodorou, G. N.; Yannopoulos, S. N.

    2007-11-01

    We report a dynamic light scattering study on protein suspensions of bovine lens homogenates at conditions (pH and ionic strength) similar to the physiological ones. Light scattering data were collected at two temperatures, 20 and 37°C, over a wide range of concentrations from the very dilute limit up to the dense regime approaching the physiological lens concentration. A comparison with experimental data from intact bovine lenses was advanced, revealing differences between dispersions and lenses at similar concentrations. In the dilute regime, two scattering entities were detected and identified with the long-time self-diffusion modes of α-crystallins and their aggregates, which naturally exist in lens nucleus. Upon increasing protein concentration, significant changes in time correlation function were observed starting at ˜75mgml-1, where a new mode originating from collective diffusive motions becomes visible. Self-diffusion coefficients are temperature insensitive, whereas the collective diffusion coefficient depends strongly on temperature revealing a reduction of the net repulsive interparticle forces with decreasing temperature. While there are no rigorous theoretical approaches on particle diffusion properties for multicomponent, nonideal hard sphere polydispersed systems, as the suspensions studied here, a discussion of the volume fraction dependence of the long-time self-diffusion coefficient in the context of existing theoretical approaches was undertaken. This study is purported to provide some insight into the complex light scattering pattern of intact lenses and the interactions between the constituent proteins that are responsible for lens transparency. This would lead to understand basic mechanisms of specific protein interactions that lead to lens opacification (cataract) under pathological conditions.

  18. Ellipsoidal Brownian self-driven particles in a magnetic field

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Wai-Tong, Fan; Shun Pak, On

    We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at low Reynolds number and subject to a magnetic field. Its corresponding mean-square displacement showing the effect of particles's shape, activity, and magnetic field on the microswimmer's diffusion is analytically obtained. A comparison among analytical and computational results is also made and we obtain good agreement. Additionally, the effect of self-propulsion on the transition time from anisotropic to isotropic diffusion of the ellipse is also elucidated. CONACYT GRANT: CB 2014/237848.

  19. Molecular-dynamics simulation of mutual diffusion in nonideal liquid mixtures

    NASA Astrophysics Data System (ADS)

    Rowley, R. L.; Stoker, J. M.; Giles, N. F.

    1991-05-01

    The mutual-diffusion coefficients, D 12, of n-hexane, n-heptane, and n-octane in chloroform were modeled using equilibrium molecular-dynamics (MD) simulations of simple Lennard-Jones (LJ) fluids. Pure-component LJ parameters were obtained by comparison of simulations to experimental self-diffusion coefficients. While values of “effective” LJ parameters are not expected to simulate accurately diverse thermophysical properties over a wide range of conditions, it was recently shown that effective parameters obtained from pure self-diffusion coefficients can accurately model mutual diffusion in ideal, liquid mixtures. In this work, similar simulations are used to model diffusion in nonideal mixtures. The same combining rules used in the previous study for the cross-interaction parameters were found to be adequate to represent the composition dependence of D 12. The effect of alkane chain length on D 12 is also correctly predicted by the simulations. A commonly used assumption in empirical correlations of D 12, that its kinetic portion is a simple, compositional average of the intradiffusion coefficients, is inconsistent with the simulation results. In fact, the value of the kinetic portion of D 12 was often outside the range of values bracketed by the two intradiffusion coefficients for the nonideal system modeled here.

  20. Understanding of Relationship between Phospholipid Membrane Permeability and Self-Diffusion Coefficients of Some Drugs and Biologically Active Compounds in Model Solvents.

    PubMed

    Blokhina, Svetlana V; Volkova, Tatyana V; Golubev, Vasiliy A; Perlovich, German L

    2017-10-02

    In this work we measured self-diffusion coefficients of 5 drugs (aspirin, caffeine, ethionamide, salicylic acid, and paracetamol) and 11 biologically active compounds of similar structure in deuterated water and 1-octanol by NMR. It has been found that an increase in the van der Waals volume of the molecules of the studied substances result in reduction of their diffusion mobility in both solvents. The analysis of the experimental data showed the influence of chemical nature and structural isomerization of the molecules on the diffusion mobility. Apparent permeability coefficients of the studied compounds were determined using an artificial phospholipid membrane made of egg lecithin as a model of in vivo absorption. Distribution coefficients in 1-octanol/buffer pH 7.4 system were measured. For the first time the model of the passive diffusion through the phospholipid membrane was validated based on the experimental data. To this end, the passive diffusion was considered as an additive process of molecule passage through the aqueous boundary layer before the membrane and 1-octanol barrier simulating the lipid layer of the membrane.

  1. Penetration of Cosmic Rays into Dense Molecular Clouds: Role of Diffuse Envelopes

    NASA Astrophysics Data System (ADS)

    Ivlev, A. V.; Dogiel, V. A.; Chernyshov, D. O.; Caselli, P.; Ko, C.-M.; Cheng, K. S.

    2018-03-01

    A flux of cosmic rays (CRs) propagating through a diffuse ionized gas can excite MHD waves, thus generating magnetic disturbances. We propose a generic model of CR penetration into molecular clouds through their diffuse envelopes, and identify the leading physical processes controlling their transport on the way from a highly ionized interstellar medium to the dense interior of the cloud. The model allows us to describe a transition between a free streaming of CRs and their diffusive propagation, determined by the scattering on the self-generated disturbances. A self-consistent set of equations, governing the diffusive transport regime in an envelope and the MHD turbulence generated by the modulated CR flux, is characterized by two dimensionless numbers. We demonstrate a remarkable mutual complementarity of different mechanisms leading to the onset of the diffusive regime, which results in a universal energy spectrum of the modulated CRs. In conclusion, we briefly discuss implications of our results for several fundamental astrophysical problems, such as the spatial distribution of CRs in the Galaxy as well as the ionization, heating, and chemistry in dense molecular clouds. This paper is dedicated to the memory of Prof. Vadim Tsytovich.

  2. Calculation of Transport Coefficients in Dense Plasma Mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, T.; Cabot, W. H.; Caspersen, K. J.; Greenough, J.; Miller, P. L.; Rudd, R. E.; Schwegler, E. R.

    2011-10-01

    We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  3. Viscosity and diffusivity in melts: from unary to multicomponent systems

    NASA Astrophysics Data System (ADS)

    Chen, Weimin; Zhang, Lijun; Du, Yong; Huang, Baiyun

    2014-05-01

    Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay's viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al-Cu, Al-Ni and Al-Ce-Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al-Ni alloys with the increasing temperature is also discussed. What's more, the calculated inter-diffusivities in liquid Al-Cu, Al-Ni and Al-Ag-Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al-Cu, Al-Ce-Ni and Al-Ag-Cu melts are further used to validate the present calculation method.

  4. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.

    PubMed

    Hughes, Eric; Maan, Abid Aslam; Acquistapace, Simone; Burbidge, Adam; Johns, Michael L; Gunes, Deniz Z; Clausen, Pascal; Syrbe, Axel; Hugo, Julien; Schroen, Karin; Miralles, Vincent; Atkins, Tim; Gray, Richard; Homewood, Philip; Zick, Klaus

    2013-01-01

    Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The effect of diffusion induced lattice stress on the open-circuit voltage in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Godlewski, M. P.

    1984-01-01

    It is demonstrated that diffusion induced stresses in low resistivity silicon solar cells can significantly reduce both the open-circuit voltage and collection efficiency. The degradation mechanism involves stress induced changes in both the minority carrier mobility and the diffusion length. Thermal recovery characteristics indicate that the stresses are relieved at higher temperatures by divacancy flow (silicon self diffusion). The level of residual stress in as-fabricated cells was found to be negligible in the cells tested.

  6. Self-diffusion in dense granular shear flows.

    PubMed

    Utter, Brian; Behringer, R P

    2004-03-01

    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.

  7. Diffusion pump modification promotes self-cleansing and high efficiency

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1975-01-01

    Modifications eliminate contaminant substances from pump fluid during operation, which are principal causes of torpidity on evaporative surface. Diffusion pump is also acting as still. Resulting 100 percent vigorous working surface provides much greater molecular throughput and greatly improved efficiency.

  8. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-09-01

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  9. Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth’s mantle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novella, Davide; Jacobsen, Benjamin; Weber, Peter K.

    Nominally anhydrous minerals formed deep in the mantle and transported to the Earth’s surface contain tens to hundreds of ppm wt H 2O, providing evidence for the presence of dissolved water in the Earth’s interior. Even at these low concentrations, H 2O greatly affects the physico-chemical properties of mantle materials, governing planetary dynamics and evolution. The diffusion of hydrogen (H) controls the transport of H 2O in the Earth’s upper mantle, but is not fully understood for olivine ((Mg, Fe) 2SiO 4) the most abundant mineral in this region. Here we present new hydrogen self-diffusion coefficients in natural olivine singlemore » crystals that were determined at upper mantle conditions (2 GPa and 750–900 °C). Hydrogen self-diffusion is highly anisotropic, with values at 900 °C of 10 -10.9, 10 -12.8 and 10 -11.9 m 2/s along [100], [010] and [001] directions, respectively. Combined with the Nernst-Einstein relation, these diffusion results constrain the contribution of H to the electrical conductivity of olivine to be σH = 10 2.12S/m·C H2O·exp -187kJ/mol/(RT). Comparisons between the model presented in this study and magnetotelluric measurements suggest that plausible H 2O concentrations in the upper mantle (≤250 ppm wt) can account for high electrical conductivity values (10 -2–10 -1 S/m) observed in the asthenosphere.« less

  10. Levitation effect: Distinguishing anomalous from linear regime of guests sorbed in zeolites through the decay of intermediate scattering function and wavevector dependence of self-diffusivity.

    PubMed

    Ghorai, Pradip Kr; Yashonath, S

    2005-03-10

    Previous work investigating the dependence of self-diffusivity, D, on the size of the guest diffusing within the porous solid such as zeolite has reported the existence of an anomalous maximum in the diffusion coefficient (J. Phys. Chem. 1994, 98, 6368). Two distinct regimes of dependence of D on sigma(gg), diameter of the guest were reported. D proportional to 1/sigma(gg)2, often referred to as linear regime (LR), is found when sigma(gg) is smaller than sigma(v), the diameter of the void. A maximum in D has been observed when sigma(gg) is comparable to sigma(v) and this regime is referred to as anomalous regime (AR). Here we report the intermediate scattering function for a particle from LR and AR in zeolite faujasite. A particle from LR exhibits a biexponential decay while a particle from AR exhibits a single-exponential decay at small k. Variation with k of the full width at half-maximum of the self-part of the dynamic structure factor is nonmonotonic for a particle in the linear regime. In contrast, this variation is monotonic for a particle in the anomalous regime. These results can be understood in terms of the existence of energetic barrier at the bottleneck, the 12-ring window, in the path of diffusion. They provide additional signatures for the linear regime and anomalous regimes and therefore for levitation effect (LE).

  11. Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth’s mantle

    DOE PAGES

    Novella, Davide; Jacobsen, Benjamin; Weber, Peter K.; ...

    2017-07-13

    Nominally anhydrous minerals formed deep in the mantle and transported to the Earth’s surface contain tens to hundreds of ppm wt H 2O, providing evidence for the presence of dissolved water in the Earth’s interior. Even at these low concentrations, H 2O greatly affects the physico-chemical properties of mantle materials, governing planetary dynamics and evolution. The diffusion of hydrogen (H) controls the transport of H 2O in the Earth’s upper mantle, but is not fully understood for olivine ((Mg, Fe) 2SiO 4) the most abundant mineral in this region. Here we present new hydrogen self-diffusion coefficients in natural olivine singlemore » crystals that were determined at upper mantle conditions (2 GPa and 750–900 °C). Hydrogen self-diffusion is highly anisotropic, with values at 900 °C of 10 -10.9, 10 -12.8 and 10 -11.9 m 2/s along [100], [010] and [001] directions, respectively. Combined with the Nernst-Einstein relation, these diffusion results constrain the contribution of H to the electrical conductivity of olivine to be σH = 10 2.12S/m·C H2O·exp -187kJ/mol/(RT). Comparisons between the model presented in this study and magnetotelluric measurements suggest that plausible H 2O concentrations in the upper mantle (≤250 ppm wt) can account for high electrical conductivity values (10 -2–10 -1 S/m) observed in the asthenosphere.« less

  12. Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth's mantle.

    PubMed

    Novella, Davide; Jacobsen, Benjamin; Weber, Peter K; Tyburczy, James A; Ryerson, Frederick J; Du Frane, Wyatt L

    2017-07-13

    Nominally anhydrous minerals formed deep in the mantle and transported to the Earth's surface contain tens to hundreds of ppm wt H 2 O, providing evidence for the presence of dissolved water in the Earth's interior. Even at these low concentrations, H 2 O greatly affects the physico-chemical properties of mantle materials, governing planetary dynamics and evolution. The diffusion of hydrogen (H) controls the transport of H 2 O in the Earth's upper mantle, but is not fully understood for olivine ((Mg, Fe) 2 SiO 4 ) the most abundant mineral in this region. Here we present new hydrogen self-diffusion coefficients in natural olivine single crystals that were determined at upper mantle conditions (2 GPa and 750-900 °C). Hydrogen self-diffusion is highly anisotropic, with values at 900 °C of 10 -10.9 , 10 -12.8 and 10 -11.9 m 2 /s along [100], [010] and [001] directions, respectively. Combined with the Nernst-Einstein relation, these diffusion results constrain the contribution of H to the electrical conductivity of olivine to be σ H  = 10 2.12 S/m·C H2O ·exp -187kJ/mol/(RT) . Comparisons between the model presented in this study and magnetotelluric measurements suggest that plausible H 2 O concentrations in the upper mantle (≤250 ppm wt) can account for high electrical conductivity values (10 -2 -10 -1  S/m) observed in the asthenosphere.

  13. Feedback, Lineages and Self-Organizing Morphogenesis

    PubMed Central

    Calof, Anne L.; Lowengrub, John S.; Lander, Arthur D.

    2016-01-01

    Feedback regulation of cell lineage progression plays an important role in tissue size homeostasis, but whether such feedback also plays an important role in tissue morphogenesis has yet to be explored. Here we use mathematical modeling to show that a particular feedback architecture in which both positive and negative diffusible signals act on stem and/or progenitor cells leads to the appearance of bistable or bi-modal growth behaviors, ultrasensitivity to external growth cues, local growth-driven budding, self-sustaining elongation, and the triggering of self-organization in the form of lamellar fingers. Such behaviors arise not through regulation of cell cycle speeds, but through the control of stem or progenitor self-renewal. Even though the spatial patterns that arise in this setting are the result of interactions between diffusible factors with antagonistic effects, morphogenesis is not the consequence of Turing-type instabilities. PMID:26989903

  14. Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α-Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.; Mathaudhu, Suveen; Rohatgi, Aashish

    2018-01-01

    Diffusion of Si atom and vacancy in the A2-phase of α-Fe-Si alloys in the ferromagnetic state, with and without magnetic order and in various temperature ranges, are studied using AKSOME, an on-lattice self-learning KMC code. Diffusion of the Si atom and the vacancy are studied in the dilute limit and up to 12 at.% Si, respectively, in the temperature range 350-700 K. Local Si neighborhood dependent activation energies for vacancy hops were calculated on-the-fly using a broken-bond model based on pairwise interaction. The migration barrier and prefactor for the Si diffusion in the dilute limit were obtained and found to agree with published data within the limits of uncertainty. Simulations results show that the prefactor and the migration barrier for the Si diffusion are approximately an order of magnitude higher, and a tenth of an electron-volt higher, respectively, in the magnetic disordered state than in the fully ordered state. However, the net result is that magnetic disorder does not have a significant effect on Si diffusivity within the range of parameters studied in this work. Nevertheless, with increasing temperature, the magnetic disorder increases and its effect on the Si diffusivity also increases. In the case of vacancy diffusion, with increasing Si concentration, its diffusion prefactor decreases while the migration barrier more or less remained constant and the effect of magnetic disorder increases with Si concentration. Important vacancy-Si/Fe atom exchange processes and their activation barriers were identified, and the effect of energetics on ordered phase formation in Fe-Si alloys are discussed.

  15. Diffusion coefficients of nitric oxide in water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Pokharel, Sunil; Pantha, Nurapati; Adhikari, N. P.

    2016-09-01

    Self-diffusion coefficients along with the mutual diffusion coefficients of nitric oxide (NO) and SPC/E water (H2O) as solute and solvent of the mixture, have been studied within the framework of classical molecular dynamics level of calculations using GROMACS package. The radial distribution function (RDF) of the constituent compounds are calculated to study solute-solute, solute-solvent and solvent-solvent molecular interactions as a function of temperature. A dilute solution of five NO molecules (mole fraction 0.018) and 280 H2O molecules (mole fraction 0.982) has been taken as the sample. The self-diffusion coefficient of the solvent is calculated by using mean square displacement (MSD) where as that for solute (NO) is calculated by using MSD and velocity auto-correlation function (VACF). The results are then compared with the available experimental values. The results from the present work for water come in good agreement, very precise at low temperatures, with the experimental values. The diffusion coefficients of NO, on the other hands, agree well with the available theoretical studies, and also with experiment at low temperatures (up to 310 K). The results at the higher temperatures (up to 333 K), however, deviate significantly with the experimental observations. Also, the mutual diffusion coefficients of NO in water have been calculated by using Darken’s relation. The temperature dependence of the calculated diffusion coefficients follow the Arrhenius behavior.

  16. Influence of Structural Heterogeneity on Diffusion of CH4 and CO2 in Silicon Carbide-Derived Nanoporous Carbon

    PubMed Central

    2015-01-01

    We investigate the influence of structural heterogeneity on the transport properties of simple gases in a Hybrid Reverse Monte Carlo (HRMC) constructed model of silicon carbide-derived carbon (SiC-DC). The energy landscape of the system is determined based on free energy analysis of the atomistic model. The overall energy barriers of the system for different gases are computed along with important properties, such as Henry constant and differential enthalpy of adsorption at infinite dilution, and indicate hydrophobicity of the SiC-DC structure and its affinity for CO2 and CH4 adsorption. We also study the effect of molecular geometry, pore structure and energy heterogeneity considering different hopping scenarios for diffusion of CO2 and CH4 through ultramicropores using the Nudged Elastic Band (NEB) method. It is shown that the energy barrier of a hopping molecule is very sensitive to the shape of the pore entry. We provide evidence for the influence of structural heterogeneity on self-diffusivity of methane and carbon dioxide using molecular dynamics simulation, based on a maximum in the variation of self-diffusivity with loading. A comparison of the MD simulation results with self-diffusivities from quasi-elastic neutron scattering (QENS) measurements and, with macroscopic uptake-based low-density transport coefficients, reveals the existence of internal barriers not captured in MD simulation and QENS experiments. Nevertheless, the simulation and macroscopic uptake-based diffusion coefficients agree within a factor of 2–3, indicating that our HRMC model structure captures most of the important energy barriers affecting the transport of CH4 in the nanostructure of SiC-DC. PMID:24932319

  17. Influence of Structural Heterogeneity on Diffusion of CH4 and CO2 in Silicon Carbide-Derived Nanoporous Carbon.

    PubMed

    Farmahini, Amir H; Shahtalebi, Ali; Jobic, Hervé; Bhatia, Suresh K

    2014-06-05

    We investigate the influence of structural heterogeneity on the transport properties of simple gases in a Hybrid Reverse Monte Carlo (HRMC) constructed model of silicon carbide-derived carbon (SiC-DC). The energy landscape of the system is determined based on free energy analysis of the atomistic model. The overall energy barriers of the system for different gases are computed along with important properties, such as Henry constant and differential enthalpy of adsorption at infinite dilution, and indicate hydrophobicity of the SiC-DC structure and its affinity for CO 2 and CH 4 adsorption. We also study the effect of molecular geometry, pore structure and energy heterogeneity considering different hopping scenarios for diffusion of CO 2 and CH 4 through ultramicropores using the Nudged Elastic Band (NEB) method. It is shown that the energy barrier of a hopping molecule is very sensitive to the shape of the pore entry. We provide evidence for the influence of structural heterogeneity on self-diffusivity of methane and carbon dioxide using molecular dynamics simulation, based on a maximum in the variation of self-diffusivity with loading. A comparison of the MD simulation results with self-diffusivities from quasi-elastic neutron scattering (QENS) measurements and, with macroscopic uptake-based low-density transport coefficients, reveals the existence of internal barriers not captured in MD simulation and QENS experiments. Nevertheless, the simulation and macroscopic uptake-based diffusion coefficients agree within a factor of 2-3, indicating that our HRMC model structure captures most of the important energy barriers affecting the transport of CH 4 in the nanostructure of SiC-DC.

  18. N vacancy, self-interstitial diffusion, and Frenkel-pair formation/dissociation in TiN studied by ab-initio and classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sangiovanni, Davide G.; Alling, Björn; Hultman, Lars; Abrikosov, Igor A.

    2015-03-01

    We use ab-initio and classical molecular dynamics (AIMD, CMD) to simulate diffusion of N vacancy and N self-interstitial point-defects in B1 TiN. The physical properties of TiN, important material system for thin film and coatings applications, are largely dictated by concentration and mobility of point defects. We determine N dilute-point-defect diffusion pathways, activation energies, attempt frequencies, and diffusion coefficients as a function of temperature. In addition, MD simulations reveal an unanticipated atomistic process, which controls the spontaneous formation of N-self-interstitial/N-vacancy pairs (Frenkel pairs) in defect-free TiN. This entails that a N lattice atom leaves its bulk position and bonds to a neighboring N lattice atom. In most cases, Frenkel-pair NI and NV recombine within a fraction of ns; 50% of these processes result in the exchange of two nitrogen lattice atoms. Occasionally, however, Frenkel-pair N-interstitial atoms permanently escape from the anion vacancy site, thus producing unpaired NI and NV point defects. The Knut and Alice Wallenberg foundation (Isotope Project, 2011.0094), the Swedish Research Council (VR) Linköping Linnaeus Initiative LiLi-NFM (Grant 2008-6572), and the Swedish Government Strategic Research (Grant MatLiU 2009-00971).

  19. Surface sealing using self-assembled monolayers and its effect on metal diffusion in porous low-k dielectrics studied using monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, Akira; Armini, Silvia; Zhang, Yu; Kakizaki, Takeaki; Krause-Rehberg, Reinhard; Anwand, Wolfgang; Wagner, Andreas

    2016-04-01

    Surface sealing effects on the diffusion of metal atoms in porous organosilicate glass (OSG) films were studied by monoenergetic positron beams. For a Cu(5 nm)/MnN(3 nm)/OSG(130 nm) sample fabricated with pore stuffing, C4F8 plasma etch, unstuffing, and a self-assembled monolayer (SAM) sealing process, it was found that pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the OSG film. For the sample without the SAM sealing process, metal (Cu and Mn) atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. As a result, almost all pore interiors were covered with those metals. For the sample damaged by an Ar/C4F8 plasma etch treatment before the SAM sealing process, SAMs diffused into the OSG film, and they were preferentially trapped by larger pores. The cubic pore side length in these pores containing self-assembled molecules was estimated to be 0.7 nm. Through this work, we have demonstrated that monoenergetic positron beams are a powerful tool for characterizing capped porous films and the trapping of atoms and molecules by pores.

  20. Selectivity and self-diffusion of CO2 and H2 in a mixture on a graphite surface

    PubMed Central

    Trinh, Thuat T.; Vlugt, Thijs J. H.; Hägg, May-Britt; Bedeaux, Dick; Kjelstrup, Signe

    2013-01-01

    We performed classical molecular dynamics (MD) simulations to understand the mechanism of adsorption from a gas mixture of CO2 and H2 (mole fraction of CO2 = 0.30) and diffusion along a graphite surface, with the aim to help enrich industrial off-gases in CO2, separating out H2. The temperature of the system in the simulation covered typical industrial conditions for off-gas treatment (250–550 K). The interaction energy of single molecules CO2 or H2 on graphite surface was calculated with classical force fields (FFs) and with Density Functional Theory (DFT). The results were in good agreement. The binding energy of CO2 on graphite surface is three times larger than that of H2. At lower temperatures, the selectivity of CO2 over H2 is five times larger than at higher temperatures. The position of the dividing surface was used to explain how the adsorption varies with pore size. In the temperature range studied, the self-diffusion coefficient of CO2 is always smaller than of H2. The temperature variation of the selectivities and the self-diffusion coefficient imply that the carbon molecular sieve membrane can be used for gas enrichment of CO2. PMID:24790965

  1. Nitrogen vacancy, self-interstitial diffusion, and Frenkel-pair formation/dissociation in B 1 TiN studied by ab initio and classical molecular dynamics with optimized potentials

    NASA Astrophysics Data System (ADS)

    Sangiovanni, D. G.; Alling, B.; Steneteg, P.; Hultman, L.; Abrikosov, I. A.

    2015-02-01

    We use ab initio and classical molecular dynamics (AIMD and CMD) based on the modified embedded-atom method (MEAM) potential to simulate diffusion of N vacancy and N self-interstitial point defects in B 1 TiN. TiN MEAM parameters are optimized to obtain CMD nitrogen point-defect jump rates in agreement with AIMD predictions, as well as an excellent description of Ti Nx(˜0.7

  2. SELF-ESTEEM AND THE DIFFUSION OF LEADERSHIP STYLE

    DTIC Science & Technology

    such cognitive process, the self - esteem of the lower-level supervisor, is studied in the context of an organization in which no formal human relations...training had taken place. A series of hypotheses relate supportiveness of the foreman’s supervisor to the foreman’s self - esteem , and its attendant

  3. Oxygen concentration dependence of silicon oxide dynamical properties

    NASA Astrophysics Data System (ADS)

    Yajima, Yuji; Shiraishi, Kenji; Endoh, Tetsuo; Kageshima, Hiroyuki

    2018-06-01

    To understand oxidation in three-dimensional silicon, dynamic characteristics of a SiO x system with various stoichiometries were investigated. The calculated results show that the self-diffusion coefficient increases as oxygen density decreases, and the increase is large when the temperature is low. It also shows that the self-diffusion coefficient saturates, when the number of removed oxygen atoms is sufficiently large. Then, approximate analytical equations are derived from the calculated results, and the previously reported expression is confirmed in the extremely low-SiO-density range.

  4. Characteristics of Matrix Metals in Which Fast Diffusion of Foreign Metallic Elements Occurs

    NASA Astrophysics Data System (ADS)

    Mae, Yoshiharu

    2018-04-01

    A few foreign elements are known to diffuse faster than the self-diffusion of the matrix metal. However, the characteristics of the matrix metal, which contribute to such fast diffusion remain unknown. In this study, the diffusion coefficients of various elements were plotted on a TC-YM diagram. The matrix metals that show fast diffusion are located in the low thermal conductivity range of the TC-YM diagram, while diffuser elements that undergo fast diffusion are mainly gulf elements such as Fe, Ni, Co, Cr, and Cu. The gulf elements are those that show the largest combination of thermal conductivity and Young's modulus. The great difference in the electron mobility between the matrix metal and diffuser elements generates a repulsive force between them, and the repulsive force—acting between the soft and large atoms of the matrix metal and the hard and small atoms of the diffuser elements—deforms the atoms of the matrix metal to open passageways for fast diffusion of diffuser elements.

  5. The Plasma Membrane is Compartmentalized by a Self-Similar Cortical Actin Fractal

    NASA Astrophysics Data System (ADS)

    Sadegh, Sanaz; Higgin, Jenny; Mannion, Patrick; Tamkun, Michael; Krapf, Diego

    A broad range of membrane proteins display anomalous diffusion on the cell surface. Different methods provide evidence for obstructed subdiffusion and diffusion on a fractal space, but the underlying structure inducing anomalous diffusion has never been visualized due to experimental challenges. We addressed this problem by imaging the cortical actin at high resolution while simultaneously tracking individual membrane proteins in live mammalian cells. Our data show that actin introduces barriers leading to compartmentalization of the plasma membrane and that membrane proteins are transiently confined within actin fences. Furthermore, superresolution imaging shows that the cortical actin is organized into a self-similar fractal. These results present a hierarchical nanoscale picture of the plasma membrane and demonstrate direct interactions between the actin cortex and the cell surface.

  6. Fluorescence Correlation Spectroscopy to Study Diffusion of Polymer Chains within Layered Hydrogen-Bonded Polymer Films

    NASA Astrophysics Data System (ADS)

    Pristinski, Denis; Kharlampieva, Evguenia; Sukhishvili, Svetlana

    2002-03-01

    Fluorescence Correlation Spectroscopy (FCS) has been used to probe molecular motions within polymer multilayers formed by hydrogen-bonding sequential self-assembly. Polyethylene glycol (PEG) molecules were end-labeled with the fluorescent tags, and self-assembled with polymethacrylic acid (PMAA) using layer-by-layer deposition. We have found that molecules included in the top adsorbed layer have significant mobility at the millisecond time scale, probably due to translational diffusion. However, their dynamics deviate from classical Brownian motion with a single diffusion time. Possible reasons for the deviation are discussed. We found that motions were significantly slowed with increasing depth within the PEG/PMAA multilayer. This phenomena occured in a narrow pH range around 4.0 in which intermolecular interactions were relatively weak.

  7. Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Shinatora, E-mail: choh.shinatora@jaxa.jp; Kubota, Kenichi; Funaki, Ikkoh

    2015-10-15

    Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models;more » the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.« less

  8. Self-diffusion of charged colloidal tracer spheres in transparent porous glass media: Effect of ionic strength and pore size

    NASA Astrophysics Data System (ADS)

    Kluijtmans, Sebastiaan G. J. M.; de Hoog, Els H. A.; Philipse, Albert P.

    1998-05-01

    The influence of charge on diffusion in porous media was studied for fluorescent colloidal silica spheres diffusing in a porous glass medium. The bicontinuous porous silica glasses were optically matched with an organic solvent mixture in which both glass and tracers are negatively charged. Using fluorescence recovery after photobleaching, the long-time self-diffusion coefficient DSL of the confined silica particles was monitored in situ as a function of the ionic strength and particle to pore size ratio. At high salt concentration DSL reaches a relatively high plateau value, which depends on the particle to pore size ratio. This plateau value is unexpectedly higher than the value found for uncharged silica spheres in these porous glasses, but still significantly smaller than the free particle bulk diffusion coefficient of the silica spheres. At low salt concentration DSL reduces markedly, up to the point where colloids are nearly immobilized. This peculiar retardation probably originates from potential traps and barriers at pore intersections due to deviations from cylinder symmetry in the double layer interactions between tracers and pore walls. This indicates that diffusion of charged particles in tortuous porous media may be very different from transport in long capillaries without such intersections.

  9. Ion conduction mechanisms and thermal properties of hydrated and anhydrous phosphoric acids studied with 1H, 2H, and 31P NMR.

    PubMed

    Aihara, Yuichi; Sonai, Atsuo; Hattori, Mineyuki; Hayamizu, Kikuko

    2006-12-14

    To understand the behaviors of phosphoric acids in fuel cells, the ion conduction mechanisms of phosphoric acids in condensed states without free water and in a monomer state with water were studied by measuring the ionic conductivity (sigma) using AC impedance, thermal properties, and self-diffusion coefficients (D) and spin-lattice relaxation times (T1) with multinuclear NMR. The self-diffusion coefficient of the protons (H+ or H3O+), H2O, and H located around the phosphate were always larger than the diffusion coefficients of the phosphates and the disparity increased with increasing phosphate concentration. The diffusion coefficients of the samples containing D2O paralleled those in the protonated samples. Since the 1H NMR T1 values exhibited a minimum with temperature, it was possible to determine the correlation times and they were found to be of nanosecond order for a distance of nanometer order for a flip. The agreement of the ionic conductivities measured directly and those calculated from the diffusion coefficients indicates that the ion conduction obeys the Nernst-Einstein equation in the condensed phosphoric acids. The proton diffusion plays a dominant role in the ion conduction, especially in the condensed phosphoric acids.

  10. Beyond self-serving bias: diffusion of responsibility reduces sense of agency and outcome monitoring

    PubMed Central

    Sidarus, Nura; Bonicalzi, Sofia; Haggard, Patrick

    2017-01-01

    Abstract Diffusion of responsibility across agents has been proposed to underlie decreased helping and increased aggression in group behaviour. However, few studies have directly investigated effects of the presence of other people on how we experience the consequences of our actions. This EEG study investigated whether diffusion of responsibility simply reflects a post-hoc self-serving bias, or rather has direct effects on how we process the outcomes of our actions, and our experience of agency over them. Participants made voluntary actions whose outcomes were more or less negative. Presence of another potential agent reduced participants’ sense of agency over those outcomes, even though it was always obvious who caused each outcome. Further, presence of another agent reduced the amplitude of feedback-related negativity evoked by outcome stimuli, suggesting reduced outcome monitoring. The presence of other agents may lead to diffusion of responsibility by weakening the neural linkage between one’s actions and their outcomes. PMID:27803288

  11. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesh, P.; Kim, Jeongnim; Park, Changwon

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmore » point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less

  12. Modeling the suppression of boron transient enhanced diffusion in silicon by substitutional carbon incorporation

    NASA Astrophysics Data System (ADS)

    Ngau, Julie L.; Griffin, Peter B.; Plummer, James D.

    2001-08-01

    Recent work has indicated that the suppression of boron transient enhanced diffusion (TED) in carbon-rich Si is caused by nonequilibrium Si point defect concentrations, specifically the undersaturation of Si self-interstitials, that result from the coupled out-diffusion of carbon interstitials via the kick-out and Frank-Turnbull reactions. This study of boron TED reduction in Si1-x-yGexCy during 750 °C inert anneals has revealed that the use of an additional reaction that further reduces the Si self-interstitial concentration is necessary to describe accurately the time evolved diffusion behavior of boron. In this article, we present a comprehensive model which includes {311} defects, boron-interstitial clusters, a carbon kick-out reaction, a carbon Frank-Turnbull reaction, and a carbon interstitial-carbon substitutional (CiCs) pairing reaction that successfully simulates carbon suppression of boron TED at 750 °C for anneal times ranging from 10 s to 60 min.

  13. Investigation of oxygen self-diffusion in PuO 2 by combining molecular dynamics with thermodynamic calculations

    DOE PAGES

    Saltas, V.; Chroneos, A.; Cooper, Michael William D.; ...

    2016-01-01

    In the present work, the defect properties of oxygen self-diffusion in PuO 2 are investigated over a wide temperature (300–1900 K) and pressure (0–10 GPa) range, by combining molecular dynamics simulations and thermodynamic calculations. Based on the well-established cBΩ thermodynamic model which connects the activation Gibbs free energy of diffusion with the bulk elastic and expansion properties, various point defect parameters such as activation enthalpy, activation entropy, and activation volume were calculated as a function of T and P. Molecular dynamics calculations provided the necessary bulk properties for the proper implementation of the thermodynamic model, in the lack of anymore » relevant experimental data. The estimated compressibility and the thermal expansion coefficient of activation volume are found to be more than one order of magnitude greater than the corresponding values of the bulk plutonia. As a result, the diffusion mechanism is discussed in the context of the temperature and pressure dependence of the activation volume.« less

  14. Beyond self-serving bias: diffusion of responsibility reduces sense of agency and outcome monitoring.

    PubMed

    Beyer, Frederike; Sidarus, Nura; Bonicalzi, Sofia; Haggard, Patrick

    2017-01-01

    Diffusion of responsibility across agents has been proposed to underlie decreased helping and increased aggression in group behaviour. However, few studies have directly investigated effects of the presence of other people on how we experience the consequences of our actions. This EEG study investigated whether diffusion of responsibility simply reflects a post-hoc self-serving bias, or rather has direct effects on how we process the outcomes of our actions, and our experience of agency over them. Participants made voluntary actions whose outcomes were more or less negative. Presence of another potential agent reduced participants' sense of agency over those outcomes, even though it was always obvious who caused each outcome. Further, presence of another agent reduced the amplitude of feedback-related negativity evoked by outcome stimuli, suggesting reduced outcome monitoring. The presence of other agents may lead to diffusion of responsibility by weakening the neural linkage between one's actions and their outcomes. © The Author (2016). Published by Oxford University Press.

  15. Diffusion in silicate melts: III. Empirical models for multicomponent diffusion

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Richter, Frank M.; Chamberlin, Laurinda

    1997-12-01

    Empirical models for multicomponent diffusion in an isotropic fluid were derived by splitting the component's dispersion velocity into two parts: (a) an intrinsic velocity which is proportional to each component's electrochemical potential gradient and independent of reference frame and (b) a net interaction velocity which is both model and reference frame dependent. Simple molecules (e.g., M pO q) were chosen as endmember components. The interaction velocity is assumed to be either the same for each component (leading to a common relaxation velocity U) or proportional to a common interaction force ( F). U or F is constrained by requiring no local buildup in either volume or charge. The most general form of the model-derived diffusion matrix [ D] can be written as a product of a model-dependent kinetic matrix [ L] and a model independent thermodynamic matrix [ G], [ D] = [ L] · [ G]. The elements of [ G] are functions of derivatives of chemical potential with respect to concentration. The elements of [ L] are functions of concentration and partial molar volume of the endmember components, Cio and Vio, and self diffusivity Di, and charge number zi of individual diffusing species. When component n is taken as the dependent variable they can be written in a common form L ij = D jδ ij + C io[V noD n - V joD j)A i + (p nz nD n - p jz jD j)B i] where the functional forms of the scaling factors Ai and Bi depend on the model considered. The off-diagonal element Lij ( i ≠ j) is directly proportional to the concentration of component i, and thus negligible when i is a dilute component. The salient feature of kinetic interaction or relaxation is to slow down larger (volume or charge) and faster diffusing components and to speed up smaller (volume or charge) and slower moving species, in order to prevent local volume or charge buildup. Empirical models for multicomponent diffusion were tested in the ternary system CaOAl 2O 3SiO 2 at 1500°C and 1 GPa over a large range of melt compositions. Model-derived diffusion matrices calculated using measured self diffusivities (Ca, Al, Si, and O), partial molar volumes, and activities were compared with experimentally derived diffusion matrices at two melt compositions. Chemical diffusion profiles computed using the model-derived diffusion matrices, accounting for the compositional dependency of self diffusivities and activity coefficients, were also compared with the experimentally measured ones. Good agreement was found between the ionic common-force model derived diffusion profiles and the experimentally measured ones. Secondary misfits could result from either inadequacies of the model or inaccuracies in activity-composition relationship. The results show that both kinetic interactions and thermodynamic nonideality contribute significantly to the observed diffusive coupling in the molten CaOAl 2O 3SiO 2.

  16. The role of intra-NAPL diffusion on mass transfer from MGP residuals

    NASA Astrophysics Data System (ADS)

    Shafieiyoun, Saeid; Thomson, Neil R.

    2018-06-01

    An experimental and computational study was performed to investigate the role of multi-component intra-NAPL diffusion on NAPL-water mass transfer. Molecular weight and the NAPL component concentrations were determined to be the most important parameters affecting intra-NAPL diffusion coefficients. Four NAPLs with different viscosities but the same quantified mass were simulated. For a spherical NAPL body, a combination of NAPL properties and interphase mass transfer rate can result in internal diffusion limitations. When the main intra-NAPL diffusion coefficients are in the range of self-diffusion coefficients (10-5 to 10-6 cm2/s), dissolution is not limited by internal diffusion except for high mass transfer rate coefficients (>180 cm/day). For a complex and relatively high viscous NAPL (>50 g/(cm s)), smaller intra-NAPL diffusion coefficients (<10-8) are expected and even low mass transfer rate coefficients ( 6 cm/day) can result in diffusion-limited dissolution.

  17. Determination of the diffusion coefficient of hydrogen ion in hydrogels.

    PubMed

    Schuszter, Gábor; Gehér-Herczegh, Tünde; Szűcs, Árpád; Tóth, Ágota; Horváth, Dezső

    2017-05-17

    The role of diffusion in chemical pattern formation has been widely studied due to the great diversity of patterns emerging in reaction-diffusion systems, particularly in H + -autocatalytic reactions where hydrogels are applied to avoid convection. A custom-made conductometric cell is designed to measure the effective diffusion coefficient of a pair of strong electrolytes containing sodium ions or hydrogen ions with a common anion. This together with the individual diffusion coefficient for sodium ions, obtained from PFGSE-NMR spectroscopy, allows the determination of the diffusion coefficient of hydrogen ions in hydrogels. Numerical calculations are also performed to study the behavior of a diffusion-migration model describing ionic diffusion in our system. The method we present for one particular case may be extended for various hydrogels and diffusing ions (such as hydroxide) which are relevant e.g. for the development of pH-regulated self-healing mechanisms and hydrogels used for drug delivery.

  18. Self-diffusion and microscopic dynamics in a gold-silicon liquid investigated with quasielastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evenson, Zach, E-mail: Zachary.Evenson@frm2.tum.de; Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt; Yang, Fan

    2016-03-21

    We use incoherent quasielastic neutron scattering to study the atomic dynamics of gold in a eutectic Au{sub 81}Si{sub 19} melt. Despite the glass-forming nature of this system, the gold self-diffusivity displays an Arrhenius behavior with a low activation energy characteristic of simple liquids. At high temperatures, long-range transport of gold atoms is well described by hydrodynamic theory with a simple exponential decay of the self-correlation function. On cooling towards the melting temperature, structural relaxation crosses over to a highly stretched exponential behavior. This suggests the onset of a heterogeneous dynamics, even in the equilibrium melt, and is indicative of amore » very fragile liquid.« less

  19. Linking actin networks and cell membrane via a reaction-diffusion-elastic description of nonlinear filopodia initiation.

    PubMed

    Ben Isaac, Eyal; Manor, Uri; Kachar, Bechara; Yochelis, Arik; Gov, Nir S

    2013-08-01

    Reaction-diffusion models have been used to describe pattern formation on the cellular scale, and traditionally do not include feedback between cellular shape changes and biochemical reactions. We introduce here a distinct reaction-diffusion-elasticity approach: The reaction-diffusion part describes bistability between two actin orientations, coupled to the elastic energy of the cell membrane deformations. This coupling supports spatially localized patterns, even when such solutions do not exist in the uncoupled self-inhibited reaction-diffusion system. We apply this concept to describe the nonlinear (threshold driven) initiation mechanism of actin-based cellular protrusions and provide support by several experimental observations.

  20. Theory and modeling of particles with DNA-mediated interactions

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas A.

    In recent years significant attention has been attracted to proposals which utilize DNA for nanotechnological applications. Potential applications of these ideas range from the programmable self-assembly of colloidal crystals, to biosensors and nanoparticle based drug delivery platforms. In Chapter I we introduce the system, which generically consists of colloidal particles functionalized with specially designed DNA markers. The sequence of bases on the DNA markers determines the particle type. Due to the hybridization between complementary single-stranded DNA, specific, type-dependent interactions can be introduced between particles by choosing the appropriate DNA marker sequences. In Chapter II we develop a statistical mechanical description of the aggregation and melting behavior of particles with DNA-mediated interactions. A quantitative comparison between the theory and experiments is made by calculating the experimentally observed melting profile. In Chapter III a model is proposed to describe the dynamical departure and diffusion of particles which form reversible key-lock connections. The model predicts a crossover from localized to diffusive behavior. The random walk statistics for the particles' in plane diffusion is discussed. The lateral motion is analogous to dispersive transport in disordered semiconductors, ranging from standard diffusion with a renormalized diffusion coefficient to anomalous, subdiffusive behavior. In Chapter IV we propose a method to self-assemble nanoparticle clusters using DNA scaffolds. An optimal concentration ratio is determined for the experimental implementation of our self-assembly proposal. A natural extension is discussed in Chapter V, the programmable self-assembly of nanoparticle clusters where the desired cluster geometry is encoded using DNA-mediated interactions. We determine the probability that the system self-assembles the desired cluster geometry, and discuss the connections to jamming in granular and colloidal systems. In Chapter VI we consider a nanoparticle based drug delivery platform for targeted, cell specific chemotherapy. A key-lock model is proposed to describe the results of in-vitro experiments, and the situation in-vivo is discussed. The cooperative binding, and hence the specificity to cancerous cells, is kinetically limited. The implications for optimizing the design of nanoparticle based drug delivery platforms is discussed. In Chapter VII we present prospects for future research: the connection between DNA-mediated colloidal crystallization and jamming, and the inverse problem in self-assembly.

  1. Polymer diffusion in the interphase between surface and solution.

    PubMed

    Weger, Lukas; Weidmann, Monika; Ali, Wael; Hildebrandt, Marcus; Gutmann, Jochen Stefan; Hoffmann-Jacobsen, Kerstin

    2018-05-22

    Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) is applied to study the self-diffusion of polyethylene glycol solutions in the presence of weakly attractive interfaces. Glass coverslips modified with aminopropyl- and propyl-terminated silanes are used to study the influence of solid surfaces on polymer diffusion. A model of three phases of polymer diffusion allows to describe the experimental fluorescence autocorrelation functions. Besides the two-dimensional diffusion of adsorbed polymer on the substrate and three-dimensional free diffusion in bulk solution, a third diffusion time scale is observed with intermediate diffusion times. This retarded three-dimensional diffusion in solution is assigned to long range effects of solid surfaces on diffusional dynamics of polymers. The respective diffusion constants show Rouse scaling (D~N -1 ) indicating a screening of hydrodynamic interactions by the presence of the surface. Hence, the presented TIR-FCS method proves to be a valuable tool to investigate the effect of surfaces on polymer diffusion beyond the first adsorbed polymer layer on the 100 nm length scale.

  2. Extensions to the instantaneous normal mode analysis of cluster dynamics: Diffusion constants and the role of rotations in clusters

    NASA Astrophysics Data System (ADS)

    Adams, John E.; Stratt, Richard M.

    1990-08-01

    For the instantaneous normal mode analysis method to be generally useful in studying the dynamics of clusters of arbitrary size, it ought to yield values of atomic self-diffusion constants which agree with those derived directly from molecular dynamics calculations. The present study proposes that such agreement indeed can be obtained if a sufficiently sophisticated formalism for computing the diffusion constant is adopted, such as the one suggested by Madan, Keyes, and Seeley [J. Chem. Phys. 92, 7565 (1990)]. In order to implement this particular formalism, however, we have found it necessary to pay particular attention to the removal from the computed spectra of spurious rotational contributions. The utility of the formalism is demonstrated via a study of small argon clusters, for which numerous results generated using other approaches are available. We find the same temperature dependence of the Ar13 self-diffusion constant that Beck and Marchioro [J. Chem. Phys. 93, 1347 (1990)] do from their direct calculation of the velocity autocorrelation function: The diffusion constant rises quickly from zero to a liquid-like value as the cluster goes through (the finite-size equivalent of) the melting transition.

  3. Self-learning kinetic Monte Carlo simulations of Al diffusion in Mg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Govind, Niranjan; Andersen, Amity

    2016-03-16

    Atomistic on-lattice self-learning kinetic Monte Carlo (SLKMC) method was used to examine the vacancy-mediated diffusion of an Al atom in pure hcp Mg. Local atomic environment dependent activation barriers for vacancy-atom exchange processes were calculated on-the-fly using climbing image nudged-elastic band method (CI-NEB) and using a Mg-Al binary modified embedded-atom method (MEAM) interatomic potential. Diffusivities of vacancy and Al atom in pure Mg were obtained from SLKMC simulations and are compared with values available in the literature that are obtained from experiments and first-principle calculations. Al Diffusivities obtained from SLKMC simulations are lower, due to larger activation barriers and lowermore » diffusivity prefactors, than those available in the literature but have same order of magnitude. We present all vacancy-Mg and vacancy-Al atom exchange processes and their activation barriers that were identified in SLKMC simulations. We will describe a simple mapping scheme to map a hcp lattice on to a simple cubic lattice that would enable hcp lattices to be simulated in an on-lattice KMC framework. We also present the pattern recognition scheme used in SLKMC simulations.« less

  4. Translational and Rotational Diffusion in Water in the Gigapascal Range

    NASA Astrophysics Data System (ADS)

    Bove, L. E.; Klotz, S.; Strässle, Th.; Koza, M.; Teixeira, J.; Saitta, A. M.

    2013-11-01

    First measurements of the self-dynamics of liquid water in the GPa range are reported. The GPa range has here become accessible through a new setup for the Paris-Edinburgh press specially conceived for quasielastic neutron scattering studies. A direct measurement of both the translational and rotational diffusion coefficients of water along the 400 K isotherm up to 3 GPa, corresponding to the melting point of ice VII, is provided and compared with molecular dynamics simulations. The translational diffusion is observed to strongly decrease with pressure, though its variation slows down for pressures higher than 1 GPa and decouples from that of the shear viscosity. The rotational diffusion turns out to be insensitive to pressure. Through comparison with structural data and molecular dynamics simulations, we show that this is a consequence of the rigidity of the first neighbors shell and of the invariance of the number of hydrogen bonds of a water molecule under high pressure. These results show the inadequacy of the Stokes-Einstein-Debye equations to predict the self-diffusive behavior of water at high temperature and high pressure, and challenge the usual description of hot dense water behaving as a simple liquid.

  5. Self-Learning Off-Lattice Kinetic Monte Carlo method as applied to growth on metal surfaces

    NASA Astrophysics Data System (ADS)

    Trushin, Oleg; Kara, Abdelkader; Rahman, Talat

    2007-03-01

    We propose a new development in the Self-Learning Kinetic Monte Carlo (SLKMC) method with the goal of improving the accuracy with which atomic mechanisms controlling diffusive processes on metal surfaces may be identified. This is important for diffusion of small clusters (2 - 20 atoms) in which atoms may occupy Off-Lattice positions. Such a procedure is also necessary for consideration of heteroepitaxial growth. The new technique combines an earlier version of SLKMC [1] with the inclusion of off-lattice occupancy. This allows us to include arbitrary positions of adatoms in the modeling and makes the simulations more realistic and reliable. We have tested this new approach for the case of the diffusion of small 2D Cu clusters diffusion on Cu(111) and found good performance and satisfactory agreement with results obtained from previous version of SLKMC. The new method also helped reveal a novel atomic mechanism contributing to cluster migration. We have also applied this method to study the diffusion of Cu clusters on Ag(111), and find that Cu atoms generally prefer to occupy off-lattice sites. [1] O. Trushin, A. Kara, A. Karim, T.S. Rahman Phys. Rev B 2005

  6. Self and transport diffusivity of CO2 in the metal-organic framework MIL-47(V) explored by quasi-elastic neutron scattering experiments and molecular dynamics simulations.

    PubMed

    Salles, Fabrice; Jobic, Hervé; Devic, Thomas; Llewellyn, Philip L; Serre, Christian; Férey, Gérard; Maurin, Guillaume

    2010-01-26

    Quasi-elastic neutron scattering measurements are combined with molecular dynamics simulations to determine the self-diffusivity, corrected diffusivity, and transport diffusivity of CO(2) in the metal-organic framework MIL-47(V) (MIL = Materials Institut Lavoisier) over a wide range of loading. The force field used for describing the host/guest interactions is first validated on the thermodynamics of the MIL-47(V)/CO(2) system, prior to being transferred to the investigations of the dynamics. A decreasing profile is then deduced for D(s) and D(o) whereas D(t) presents a non monotonous evolution with a slight decrease at low loading followed by a sharp increase at higher loading. Such decrease of D(t) which has never been evidenced in any microporous systems comes from the atypical evolution of the thermodynamic correction factor that reaches values below 1 at low loading. This implies that, due to intermolecular interactions, the CO(2) molecules in MIL-47(V) do not behave like an ideal gas. Further, molecular simulations enabled us to elucidate unambiguously a 3D diffusion mechanism within the pores of MIL-47(V).

  7. Active colloidal propulsion over a crystalline surface

    NASA Astrophysics Data System (ADS)

    Choudhury, Udit; Straube, Arthur V.; Fischer, Peer; Gibbs, John G.; Höfling, Felix

    2017-12-01

    We study both experimentally and theoretically the dynamics of chemically self-propelled Janus colloids moving atop a two-dimensional crystalline surface. The surface is a hexagonally close-packed monolayer of colloidal particles of the same size as the mobile one. The dynamics of the self-propelled colloid reflects the competition between hindered diffusion due to the periodic surface and enhanced diffusion due to active motion. Which contribution dominates depends on the propulsion strength, which can be systematically tuned by changing the concentration of a chemical fuel. The mean-square displacements (MSDs) obtained from the experiment exhibit enhanced diffusion at long lag times. Our experimental data are consistent with a Langevin model for the effectively two-dimensional translational motion of an active Brownian particle in a periodic potential, combining the confining effects of gravity and the crystalline surface with the free rotational diffusion of the colloid. Approximate analytical predictions are made for the MSD describing the crossover from free Brownian motion at short times to active diffusion at long times. The results are in semi-quantitative agreement with numerical results of a refined Langevin model that treats translational and rotational degrees of freedom on the same footing.

  8. Racial Inequality and Self-Image: Identity Maintenance as Identity Diffusion

    ERIC Educational Resources Information Center

    Hunt, Janet G.; Hunt, Larry L.

    1977-01-01

    Exploring "interpersonal mediation" interpretations of self-image maintenance in low-status circumstances, this analysis indicates black boys hold higher levels of self-regard in terms of esteem and sex-role identification than their white counterparts but have lower senses of personal efficacy in the early (but not later) school years. (Author/JC)

  9. Modeling of diffusive plasmas in local thermodynamic equilibrium with integral constraints: application to mercury-free high pressure discharge lamp mixtures

    NASA Astrophysics Data System (ADS)

    Janssen, J. F. J.; Suijker, J. L. G.; Peerenboom, K. S. C.; van Dijk, J.

    2017-03-01

    The mercury free lamp model previously discussed in Gnybida et al (2014 J. Phys. D: Appl. Phys. 47 125201) did not account for self-consistent diffusion and only included two molecular transitions. In this paper we apply, for the first time, a self-consistent diffusion algorithm that features (1) species/mass conservation up to machine accuracy and (2) an arbitrary mix of integral (total mass) and local (cold spot) constraints on the composition. Another advantage of this model is that the total pressure of the gas is calculated self consistently. Therefore, the usage of a predetermined pressure is no longer required. Additionally, the number of association processes has been increased from 2 to 6. The population as a function of interatomic separation determines the spectrum of the emitted continuum radiation. Previously, this population was calculated using the limit of low densities. In this work an expression is used that removes this limitation. The result of these improvements is that the agreement between the simulated and measured spectra has improved considerably.

  10. Diffusion anisotropy of poor metal solute atoms in hcp-Ti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scotti, Lucia, E-mail: lxs234@bham.ac.uk; Mottura, Alessandro, E-mail: a.mottura@bham.ac.uk

    2015-05-28

    Atom migration mechanisms influence a wide range of phenomena: solidification kinetics, phase equilibria, oxidation kinetics, precipitation of phases, and high-temperature deformation. In particular, solute diffusion mechanisms in α-Ti alloys can help explain their excellent high-temperature behaviour. The purpose of this work is to study self- and solute diffusion in hexagonal close-packed (hcp)-Ti, and its anisotropy, from first-principles using the 8-frequency model. The calculated diffusion coefficients show that diffusion energy barriers depend more on bonding characteristics of the solute rather than the size misfit with the host, while the extreme diffusion anisotropy of some solute elements in hcp-Ti is a resultmore » of the bond angle distortion.« less

  11. Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid-solution alloys

    DOE PAGES

    Jin, Ke; Zhang, Chuan; Zhang, Fan; ...

    2018-03-07

    To investigate the compositional effects on thermal-diffusion kinetics in concentrated solid-solution alloys, interdiffusion in seven diffusion couples with alloys from binary to quinary is systematically studied. The alloys with higher compositional complexity exhibit in general lower diffusion coefficients against homologous temperature, however, an exception is found that diffusion in NiCoFeCrPd is faster than in NiCoFeCr and NiCoCr. While the derived diffusion parameters suggest that diffusion in medium and high entropy alloys is overall more retarded than in pure metals and binary alloys, they strongly depend on specific constituents. The comparative features are captured by computational thermodynamics approaches using a self-consistentmore » database.« less

  12. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K [Albuquerque, NM

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  13. Normal versus anomalous self-diffusion in two-dimensional fluids: memory function approach and generalized asymptotic Einstein relation.

    PubMed

    Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun

    2014-12-07

    Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.

  14. Normal versus anomalous self-diffusion in two-dimensional fluids: Memory function approach and generalized asymptotic Einstein relation

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun

    2014-12-01

    Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.

  15. Mechanically Assisted Self-Healing of Ultrathin Gold Nanowires.

    PubMed

    Wang, Binjun; Han, Ying; Xu, Shang; Qiu, Lu; Ding, Feng; Lou, Jun; Lu, Yang

    2018-04-17

    As the critical feature sizes of integrated circuits approaching sub-10 nm, ultrathin gold nanowires (diameter <10 nm) have emerged as one of the most promising candidates for next-generation interconnects in nanoelectronics. Also due to their ultrasmall dimensions, however, the structures and morphologies of ultrathin gold nanowires are more prone to be damaged during practical services, for example, Rayleigh instability can significantly alter their morphologies upon Joule heating, hindering their applications as interconnects. Here, it is shown that upon mechanical perturbations, predamaged, nonuniform ultrathin gold nanowires can quickly recover into uniform diameters and restore their smooth surfaces, via a simple mechanically assisted self-healing process. By examining the local self-healing process through in situ high-resolution transmission electron microscopy, the underlying mechanism is believed to be associated with surface atomic diffusion as evidenced by molecular dynamics simulations. In addition, mechanical manipulation can assist the atoms to overcome the diffusion barriers, as suggested by ab initio calculations, to activate more surface adatoms to diffuse and consequently speed up the self-healing process. This result can provide a facile method to repair ultrathin metallic nanowires directly in functional devices, and quickly restore their microstructures and morphologies by simple global mechanical perturbations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Diffusion heterogeneity tensor MRI (?-Dti): mathematics and initial applications in spinal cord regeneration after trauma - biomed 2009.

    PubMed

    Ellington, Benjamin M; Schmit, Brian D; Gourab, Krishnaj; Sieber-Blum, Maya; Hu, Yao F; Schmainda, Kathleen M

    2009-01-01

    Diffusion weighted magnetic resonance imaging (DWI) is a powerful tool for evaluation of microstructural anomalies in numerous central nervous system pathologies. Diffusion tensor imaging (DTI) allows for the magnitude and direction of water self diffusion to be estimated by sampling the apparent diffusion coefficient (ADC) in various directions. Clinical DWI and DTI performed at a single level of diffusion weighting, however, does not allow for multiple diffusion compartments to be elicited. Furthermore, assumptions made regarding the precise number of diffusion compartments intrinsic to the tissue of interest have resulted in a lack of consensus between investigations. To overcome these challenges, a stretched-exponential model of diffusion was applied to examine the diffusion coefficient and "heterogeneity index" within highly compartmentalized brain tumors. The purpose of the current study is to expand on the stretched-exponential model of diffusion to include directionality of both diffusion heterogeneity and apparent diffusion coefficient. This study develops the mathematics of this new technique along with an initial application in quantifying spinal cord regeneration following acute injection of epidermal neural crest stem cell (EPI-NCSC) grafts.

  17. Effects of awareness diffusion and self-initiated awareness behavior on epidemic spreading - An approach based on multiplex networks

    NASA Astrophysics Data System (ADS)

    Kan, Jia-Qian; Zhang, Hai-Feng

    2017-03-01

    In this paper, we study the interplay between the epidemic spreading and the diffusion of awareness in multiplex networks. In the model, an infectious disease can spread in one network representing the paths of epidemic spreading (contact network), leading to the diffusion of awareness in the other network (information network), and then the diffusion of awareness will cause individuals to take social distances, which in turn affects the epidemic spreading. As for the diffusion of awareness, we assume that, on the one hand, individuals can be informed by other aware neighbors in information network, on the other hand, the susceptible individuals can be self-awareness induced by the infected neighbors in the contact networks (local information) or mass media (global information). Through Markov chain approach and numerical computations, we find that the density of infected individuals and the epidemic threshold can be affected by the structures of the two networks and the effective transmission rate of the awareness. However, we prove that though the introduction of the self-awareness can lower the density of infection, which cannot increase the epidemic threshold no matter of the local information or global information. Our finding is remarkably different to many previous results on single-layer network: local information based behavioral response can alter the epidemic threshold. Furthermore, our results indicate that the nodes with more neighbors (hub nodes) in information networks are easier to be informed, as a result, their risk of infection in contact networks can be effectively reduced.

  18. NMR investigations of self-aggregation characteristics of SDS in a model assembled tri-block copolymer solution.

    PubMed

    Kumar, B V N Phani; Priyadharsini, S Umayal; Prameela, G K S; Mandal, Asit Baran

    2011-08-01

    The present work was undertaken with a view to understand the influence of a model non-ionic tri-block copolymer PEO-PPO-PEO (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)) with molecular weight 5800 i.e., P123 [(EO)(20)-(PO)(70)-(EO)(20)] on the self-aggregation characteristics of the anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution (D(2)O) using NMR chemical shift, self-diffusion and nuclear spin-relaxation as suitable experimental probes. In addition, polymer diffusion has been monitored as a function of SDS concentration. The concentration-dependent chemical shift, diffusion data and relaxation data indicated the significant interaction of polymeric micelles with SDS monomers and micelles at lower and intermediate concentrations of SDS, whereas the weak interaction of the polymer with SDS micelles at higher concentrations of SDS. It has been observed that SDS starts aggregating on the polymer at a lower concentration i.e., critical aggregation concentration (cac=1.94 mM) compared to polymer-free situation, and the onset of secondary micelle concentration (C(2)=27.16 mM) points out the saturation of the 0.2 wt% polymer or free SDS monomers/micelles at higher concentrations of SDS. It has also been observed that the parameter cac is almost independent in the polymer concentrations of study. The TMS (tetramethylsilane) has been used as a solubilizate to measure the bound diffusion coefficient of SDS-polymer mixed system. The self-diffusion data were analyzed using two-site exchange model and the obtained information on aggregation dynamics was commensurate with that inferred from chemical shift and relaxation data. The information on slow motions of polymer-SDS system was also extracted using spin-spin and spin-lattice relaxation rate measurements. The relaxation data points out the disintegration of polymer network at higher concentrations of SDS. The present NMR investigations have been well corroborated by surface tension and conductivity measurements. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Light-induced Self-Assembly and Diffusion of Nanoclusters

    NASA Astrophysics Data System (ADS)

    Lian, Wenxuan

    Novel methods to build multiple types of three-dimensional structures from various nanoscale components are the most exciting and challenging questions in nano-science. The properties of the assembled structures can be potentially and designed, but the development of such approaches is challenging. In order to realize such rational assembly, a tunable interaction medium is often introduced into the system. Soft matter, such as polymers, surfactants and biomolecules are used to modify the surfaces of the nanoscale building blocks. Deoxyribonucleic acid (DNA) strands are known as polynucleotides since they are composed of simpler units called nucleotides. There are unique base pairing rules that are predictable and programmable, which can be used to regulate self-assembly process with high degree of control. Besides controlling static structure, it is important to develop methods for controlling systems in dynamic matter, with chemical stimuli or external fields. For example, here we study the use of azobezene-trimethylammonium bromide (AzoTAB) as a molecular agent that can control self-assembly via light excitation. In this thesis, DNA assisted self-assembly was conducted. The ability of AzoTAB as a light induced surfactant to control DNA assisted self-assembly was confirmed. The mechanism of AzoTAB as a light controlled self-assembly promoter was studied. In the second project, diffusion of nanoclusters was studied. The presence of polymers brings strong entanglement with nanoclusters. This entanglement is more obvious when the nanocluster is a framed structure like the octahedron in the study. The diffusion coefficient of the octahedron becomes larger during traveling. The following up studies are required to elucidate the origin of the observed effect.

  20. Effect of the computational domain size and shape on the self-diffusion coefficient in a Lennard-Jones liquid.

    PubMed

    Kikugawa, Gota; Ando, Shotaro; Suzuki, Jo; Naruke, Yoichi; Nakano, Takeo; Ohara, Taku

    2015-01-14

    In the present study, molecular dynamics (MD) simulations on the monatomic Lennard-Jones liquid in a periodic boundary system were performed in order to elucidate the effect of the computational domain size and shape on the self-diffusion coefficient measured by the system. So far, the system size dependence in cubic computational domains has been intensively investigated and these studies showed that the diffusion coefficient depends linearly on the inverse of the system size, which is theoretically predicted based on the hydrodynamic interaction. We examined the system size effect not only in the cubic cell systems but also in rectangular cell systems which were created by changing one side length of the cubic cell with the system density kept constant. As a result, the diffusion coefficient in the direction perpendicular to the long side of the rectangular cell significantly increases more or less linearly with the side length. On the other hand, the diffusion coefficient in the direction along the long side is almost constant or slightly decreases. Consequently, anisotropy of the diffusion coefficient emerges in a rectangular cell with periodic boundary conditions even in a bulk liquid simulation. This unexpected result is of critical importance because rectangular fluid systems confined in nanospace, which are present in realistic nanoscale technologies, have been widely studied in recent MD simulations. In order to elucidate the underlying mechanism for this serious system shape effect on the diffusion property, the correlation structures of particle velocities were examined.

  1. Moral disengagement in the perpetration of inhumanities.

    PubMed

    Bandura, A

    1999-01-01

    Moral agency is manifested in both the power to refrain from behaving inhumanely and the proactive power to behave humanely. Moral agency is embedded in a broader sociocognitive self theory encompassing self-organizing, proactive, self-reflective, and self-regulatory mechanisms rooted in personal standards linked to self-sanctions. The self-regulatory mechanisms governing moral conduct do not come into play unless they are activated, and there are many psychosocial maneuvers by which moral self-sanctions are selectively disengaged from inhumane conduct. The moral disengagement may center on the cognitive restructuring of inhumane conduct into a benign or worthy one by moral justification, sanitizing language, and advantageous comparison; disavowal of a sense of personal agency by diffusion or displacement of responsibility; disregarding or minimizing the injurious effects of one's actions; and attribution of blame to, and dehumanization of, those who are victimized. Many inhumanities operate through a supportive network of legitimate enterprises run by otherwise considerate people who contribute to destructive activities by disconnected subdivision of functions and diffusion of responsibility. Given the many mechanisms for disengaging moral control, civilized life requires, in addition to humane personal standards, safeguards built into social systems that uphold compassionate behavior and renounce cruelty.

  2. Spatiotemporal chaos of self-replicating spots in reaction-diffusion systems.

    PubMed

    Wang, Hongli; Ouyang, Qi

    2007-11-23

    The statistical properties of self-replicating spots in the reaction-diffusion Gray-Scott model are analyzed. In the chaotic regime of the system, the spots that dominate the spatiotemporal chaos grow and divide in two or decay into the background randomly and continuously. The rates at which the spots are created and decay are observed to be linearly dependent on the number of spots in the system. We derive a probabilistic description of the spot dynamics based on the statistical independence of spots and thus propose a characterization of the spatiotemporal chaos dominated by replicating spots.

  3. Self-Diffusion and Heteroassociation in an Acetone-Chloroform Mixture at 298 K

    NASA Astrophysics Data System (ADS)

    Golubev, V. A.; Gurina, D. L.; Kumeev, R. S.

    2018-01-01

    The self-diffusion coefficients of acetone and chloroform in a binary acetone-chloroform mixture at 298 K are determined via pulsed field gradient NMR spectroscopy. It is estimated that the hydrodynamic radii of the mixture's components, calculated using the Stokes-Einstein equation, grow as the concentrations of the components fall. It is shown that such behavior of hydrodynamic radii is due to acetone-chloroform heteroassociation. The hydrodynamic radii of monomers and heteroassociates in a 1: 1 ratio are determined along with the constant of heteroassociation, using the proposed model of an associated solution.

  4. Ab initio modeling of point defects, self-diffusion, and incorporation of impurities in thorium

    NASA Astrophysics Data System (ADS)

    Daroca, D. Pérez

    2017-02-01

    Research on Generation-IV nuclear reactors has boosted the investigation of thorium as nuclear fuel. By means of first-principles calculations within the framework of density functional theory, structural properties and phonon dispersion curves of Th are obtained. These results agreed very well with previous ones. The stability and formation energies of vacancies, interstitial and divacancies are studied. It is found that vacancies are the energetically preferred defects. The incorporation energies of He, Xe, and Kr atoms in Th defects are analyzed. Self-diffusion, migration paths and activation energies are also calculated.

  5. Experimental Investigations on Two Potential Sound Diffuseness Measures in Enclosures

    NASA Astrophysics Data System (ADS)

    Bai, Xin

    This study investigates two different approaches to measure sound field diffuseness in enclosures from monophonic room impulse responses. One approach quantifies sound field diffuseness in enclosures by calculating the kurtosis of the pressure samples of room impulse responses. Kurtosis is a statistical measure that is known to describe the peakedness or tailedness of the distribution of a set of data. High kurtosis indicates low diffuseness of the sound field of interest. The other one relies on multifractal detrended fluctuation analysis which is a way to evaluate the statistical self-affinity of a signal to measure diffuseness. To test these two approaches, room impulse responses are obtained under varied room-acoustic diffuseness configurations, achieved by using varied degrees of diffusely reflecting interior surfaces. This paper will analyze experimentally measured monophonic room impulse responses, and discuss results from these two approaches.

  6. Solar Wind Strahl Broadening by Self-Generated Plasma Waves

    NASA Technical Reports Server (NTRS)

    Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.

    2013-01-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  7. Reconciling phase diffusion and Hartree-Fock approximation in condensate systems

    NASA Astrophysics Data System (ADS)

    Giorgi, Gian Luca; de Pasquale, Ferdinando

    2012-01-01

    Despite the weakly interacting regime, the physics of Bose-Einstein condensates is widely affected by particle-particle interactions. They determine quantum phase diffusion, which is known to be the main cause of loss of coherence. Studying a simple model of two interacting Bose systems, we show how to predict the appearance of phase diffusion beyond the Bogoliubov approximation, providing a self-consistent treatment in the framework of a generalized Hartree-Fock-Bogoliubov perturbation theory.

  8. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    PubMed

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  9. Diffusion in different models of active Brownian motion

    NASA Astrophysics Data System (ADS)

    Lindner, B.; Nicola, E. M.

    2008-04-01

    Active Brownian particles (ABP) have served as phenomenological models of self-propelled motion in biology. We study the effective diffusion coefficient of two one-dimensional ABP models (simplified depot model and Rayleigh-Helmholtz model) differing in their nonlinear friction functions. Depending on the choice of the friction function the diffusion coefficient does or does not attain a minimum as a function of noise intensity. We furthermore discuss the case of an additional bias breaking the left-right symmetry of the system. We show that this bias induces a drift and that it generally reduces the diffusion coefficient. For a finite range of values of the bias, both models can exhibit a maximum in the diffusion coefficient vs. noise intensity.

  10. Diffusion and the Thermal Stability of Amorphous Copper-Zirconium

    NASA Astrophysics Data System (ADS)

    Stelter, Eric Carl

    Measurements have been made of diffusion and thermal relaxation in amorphous Cu(,50)Zr(,50). Samples were prepared by melt-spinning under vacuum. Diffusion measurements were made over the temperature range from 317 to 385 C, using Ag and Au as substitutional impurities, by means of Auger electron spectrometry (AES) and Rutherford backscattering spectrometry (RBS). Thermal measurements were made by differential scanning calorimetry (DSC) up to 550 C. The diffusion coefficients of Ag and Au in amorphous Cu(,50)Zr(,50) are found to be somewhat higher than, but very close in magnitude to the coefficient of self-diffusion in crystalline Cu at the same temperatures. The activation energies for diffusion in the amorphous alloy are 0.72 to 1.55 eV/atom, much closer to the activation energy for self-diffusion in liquid Cu, 0.42 eV/atom, than that for the crystalline solid, 2.19 eV/atom. The mechanism for diffusion in the amorphous metal is presumably quite different from the monovacancy mechanism dominant in the crystalline solid. The pre-exponential terms are found to be extremely small, on the order of 10('-10) to 10('-11) cm('2)/sec for Ag diffusion. This indicates that diffusion in amorphous Cu(,50)Zr(,50) may involve an extended defect of 10 or more atoms. Analysis of the data in terms of the free -volume model also lends strength to this conclusion and indicates that the glass is composed of liquid-like clusters of 15 to 20 atoms. The initial stage of relaxation in amorphous CuZr occurs with a spectrum of activation energies. The lowest activation energy involved, 0.78 eV/atom, is almost identical to the average activation energy of Ag diffusion in the glass, 0.77 eV/atom, indicating that relaxation occurs primarily through diffusion. The activation energy of crystallization, determined by Kissinger's method, is 3.10 eV/atom. The large difference, on the order of 2.3 eV/atom, between the activation energies of crystallization and diffusion is attributed to the energy required to nucleate the crystalline phase.

  11. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks

    NASA Astrophysics Data System (ADS)

    Levis, Demian; Berthier, Ludovic

    2014-06-01

    We introduce a kinetic Monte Carlo model for self-propelled hard disks to capture with minimal ingredients the interplay between thermal fluctuations, excluded volume, and self-propulsion in large assemblies of active particles. We analyze in detail the resulting (density, self-propulsion) nonequilibrium phase diagram over a broad range of parameters. We find that purely repulsive hard disks spontaneously aggregate into fractal clusters as self-propulsion is increased and rationalize the evolution of the average cluster size by developing a kinetic model of reversible aggregation. As density is increased, the nonequilibrium clusters percolate to form a ramified structure reminiscent of a physical gel. We show that the addition of a finite amount of noise is needed to trigger a nonequilibrium phase separation, showing that demixing in active Brownian particles results from a delicate balance between noise, interparticle interactions, and self-propulsion. We show that self-propulsion has a profound influence on the dynamics of the active fluid. We find that the diffusion constant has a nonmonotonic behavior as self-propulsion is increased at finite density and that activity produces strong deviations from Fickian diffusion that persist over large time scales and length scales, suggesting that systems of active particles generically behave as dynamically heterogeneous systems.

  12. Carbon, oxygen and their interaction with intrinsic point defects in solar silicon ribbon material: A speculative approach

    NASA Technical Reports Server (NTRS)

    Goesele, U.; Ast, D. G.

    1983-01-01

    Some background information on intrinsic point defects is provided and on carbon and oxygen in silicon in so far as it may be relevant for the efficiency of solar cells fabricated from EFG ribbon material. The co-precipitation of carbon and oxygen and especially of carbon and silicon self interstitials are discussed. A simple model for the electrical activity of carbon-self-interstitial agglomerates is presented. The self-interstitial content of these agglomerates is assumed to determine their electrical activity and that both compressive stresses (high self-interstitial content) and tensile stresses (low self-interstitial content) give rise to electrical activity of the agglomerates. The self-interstitial content of these carbon-related agglomerates may be reduced by an appropriate high temperature treatment and enhanced by a supersaturation of self-interstitials generated during formation of the p-n junction of solar cells. Oxygen present in supersaturation in carbon-rich silicon may be induced to form SiO, precipitates by self-interstitials generated during phosphorus diffusion. It is proposed that the SiO2-Si interface of the precipates gives rise to a continuum of donor stables and that these interface states are responsible for at least part of the light inhancement effects observed in oxygen containing EFG silicon after phosphorus diffusion.

  13. Application of pulsed-gradient Fourier transform nuclear magnetic resonance to the study of self-diffusion of phospholipid vesicles.

    PubMed

    McDonald, G G; Vanderkooi, J M

    1975-05-20

    A pulsed-gradient Fourier transform nuclear magnetic resonance (NMR) technique was appplied to the study of diffusion of phospholipid vesicles. The diffusion coefficient of dimyristoyllecithin vesicles (DML) in a D2O-phospahte buffer at 37 degrees is D = 1.9 TIMES 10(-6) cm2/sec. In a solution made viscous by DNA addition, the diffusion coefficient of DML vesicles was 3.5 times 10(-7) cm2/sec. These values compare favorably with the diffusion rate for liposomes as determined by ultracentrifugation and by Stokes law calculation. The data suggest that DML diffusion is controlled primarily by whole liposome migration as opposed to movement of individual molecules within the liposome, liposome rotation, or fast exchange between lecithin molecules in solution and in vesicles.

  14. Ion-Exchanged Waveguides for Signal Processing Applications - A Novel Electrolytic Process.

    DTIC Science & Technology

    1987-03-07

    were constructed of aluminium : the thermo- limitations in the melt are not expected to dominate couple sheath was stainless steel. the exchange rate...silver ion, D is its T, C0 , and t) with Schott 8011 glass (left) and a Fisher self-diffusion coefficient, and t is the time of diffusion. microscope

  15. Enhanced diffusion of pollutants by self-propulsion.

    PubMed

    Zhao, Guanjia; Stuart, Emma J E; Pumera, Martin

    2011-07-28

    Current environmental models mostly account for the passive participation of pollutants in their environmental propagation. Here we demonstrate the paradigm-changing concept that pollutants can propagate themselves with a rate that is greater than the rate for standard molecular diffusion by five orders of magnitude. This journal is © the Owner Societies 2011

  16. Tailorable Exciton Transport in Doped Peptide–Amphiphile Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Lee A.; Sykes, Matthew E.; Wu, Yimin A.

    Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrinmore » molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.« less

  17. Cell adhesion and mechanics as drivers of tissue organization and differentiation: local cues for large scale organization.

    PubMed

    Wickström, Sara A; Niessen, Carien M

    2018-06-01

    Biological patterns emerge through specialization of genetically identical cells to take up distinct fates according to their position within the organism. How initial symmetry is broken to give rise to these patterns remains an intriguing open question. Several theories of patterning have been proposed, most prominently Turing's reaction-diffusion model of a slowly diffusing activator and a fast diffusing inhibitor generating periodic patterns. Although these reaction-diffusion systems can generate diverse patterns, it is becoming increasingly evident that cell shape and tension anisotropies, mediated via cell-cell and/or cell-matrix contacts, also facilitate symmetry breaking and subsequent self-organized tissue patterning. This review will highlight recent studies that implicate local changes in adhesion and/or tension as key drivers of cell rearrangements. We will also discuss recent studies on the role of cadherin and integrin adhesive receptors in mediating and responding to local tissue tension asymmetries to coordinate cell fate, position and behavior essential for tissue self-organization and maintenance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Diffusion in liquid Germanium using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.

    1996-03-01

    We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.

  19. Tailorable Exciton Transport in Doped Peptide-Amphiphile Assemblies.

    PubMed

    Solomon, Lee A; Sykes, Matthew E; Wu, Yimin A; Schaller, Richard D; Wiederrecht, Gary P; Fry, H Christopher

    2017-09-26

    Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrin molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.

  20. Molecular model for the diffusion of associating telechelic polymer networks

    NASA Astrophysics Data System (ADS)

    Ramirez, Jorge; Dursch, Thomas; Olsen, Bradley

    Understanding the mechanisms of motion and stress relaxation of associating polymers at the molecular level is critical for advanced technological applications such as enhanced oil-recovery, self-healing materials or drug delivery. In associating polymers, the strength and rates of association/dissociation of the reversible physical crosslinks govern the dynamics of the network and therefore all the macroscopic properties, like self-diffusion and rheology. Recently, by means of forced Rayleigh scattering experiments, we have proved that associating polymers of different architectures show super-diffusive behavior when the free motion of single molecular species is slowed down by association/dissociation kinetics. Here we discuss a new molecular picture for unentangled associating telechelic polymers that considers concentration, molecular weight, number of arms of the molecules and equilibrium and rate constants of association/dissociation. The model predicts super-diffusive behavior under the right combination of values of the parameters. We discuss some of the predictions of the model using scaling arguments, show detailed results from Brownian dynamics simulations of the FRS experiments, and attempt to compare the predictions of the model to experimental data.

  1. A spin echo sequence with a single-sided bipolar diffusion gradient pulse to obtain snapshot diffusion weighted images in moving media

    NASA Astrophysics Data System (ADS)

    Freidlin, R. Z.; Kakareka, J. W.; Pohida, T. J.; Komlosh, M. E.; Basser, P. J.

    2012-08-01

    In vivo MRI data can be corrupted by motion. Motion artifacts are particularly troublesome in Diffusion Weighted MRI (DWI), since the MR signal attenuation due to Brownian motion can be much less than the signal loss due to dephasing from other types of complex tissue motion, which can significantly degrade the estimation of self-diffusion coefficients, diffusion tensors, etc. This paper describes a snapshot DWI sequence, which utilizes a novel single-sided bipolar diffusion sensitizing gradient pulse within a spin echo sequence. The proposed method shortens the diffusion time by applying a single refocused bipolar diffusion gradient on one side of a refocusing RF pulse, instead of a set of diffusion sensitizing gradients, separated by a refocusing RF pulse, while reducing the impact of magnetic field inhomogeneity by using a spin echo sequence. A novel MRI phantom that can exhibit a range of complex motions was designed to demonstrate the robustness of the proposed DWI sequence.

  2. Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients.

    PubMed

    Fei, Hongzhan; Wiedenbeck, Michael; Yamazaki, Daisuke; Katsura, Tomoo

    2013-06-13

    Water has been thought to affect the dynamical processes in the Earth's interior to a great extent. In particular, experimental deformation results suggest that even only a few tens of parts per million of water by weight enhances the creep rates in olivine by orders of magnitude. However, those deformation studies have limitations, such as considering only a limited range of water concentrations and very high stresses, which might affect the results. Rock deformation can also be understood as an effect of silicon self-diffusion, because the creep rates of minerals at temperatures as high as those in the Earth's interior are limited by self-diffusion of the slowest species. Here we experimentally determine the silicon self-diffusion coefficient DSi in forsterite at 8 GPa and 1,600 K to 1,800 K as a function of water content CH2O from less than 1 to about 800 parts per million of water by weight, yielding the relationship, DSi ≈ (CH2O)(1/3). This exponent is strikingly lower than that obtained by deformation experiments (1.2; ref. 7). The high nominal creep rates in the deformation studies under wet conditions may be caused by excess grain boundary water. We conclude that the effect of water on upper-mantle rheology is very small. Hence, the smooth motion of the Earth's tectonic plates cannot be caused by mineral hydration in the asthenosphere. Also, water cannot cause the viscosity minimum zone in the upper mantle. And finally, the dominant mechanism responsible for hotspot immobility cannot be water content differences between their source and surrounding regions.

  3. Temperature Dependence of Diffusivities in Liquid Elements (LMD)

    NASA Technical Reports Server (NTRS)

    Banish, R. Michael; Rosenberger, Franz

    1998-01-01

    This research was to advance the understanding of diffusion mechanisms in liquid metals and alloys through accurate diffusivity measurements over a wide range of temperatures, including the proximity of the materials melting points. Specifically, it was driven towards developing a methodology (and subsequent flight hardware) to enable several diffusion coefficient measurements (i.e., at several different temperatures) to be performed using a single sample. The Liquid Metal Diffusion (LMD) was funded as a Flight Definition Project in February 1993 in response to NRA 91-OSSA-20 (Microgravity Science and Applications Division). The Science Concept Review for LAID was held during April 1994. In January 1995 we were informed that we had failed this review and the project was change to ground-based activities only. A new proposal was submitted for the next NRA addressing the panels concerns. As part of NASA's Risk Mitigation program, a scaled-down version of the hardware was funded in July of 1995 for a flight opportunity utilizing experiment on the Microgravity Isolation Mount. This experiment was to determine the self-diffusivity of indium at 185 C. The LMD was transferred to the Mir Space Station in STS-81 and returned on STS-84 (January - May 1997). Three, out of five, self-diffusion data sets were returned. A description of this experiment/hardware is included below. This summary is only intended to give the reader an overview of the results obtained for the tasks outlined in the original proposal. Research that was not published is explained in more detail. At the end of this report is a list of refereed publications and invited talks that were given as a result of this work. The reader is directed to these for further details. Attachment: Real-time diffusivity measurements in liquids at several temperatures with one sample, On the insensitivity of liquid diffusivity measurements to deviations from 1D transport, and Numerical simulations of the convective contamination of diffusivity measurements in liquids.

  4. On the use of (3-trimethoxysilylpropyl)diethylenetriamine self-assembled monolayers as seed layers for the growth of Mn based copper diffusion barrier layers

    NASA Astrophysics Data System (ADS)

    Brady-Boyd, A.; O'Connor, R.; Armini, S.; Selvaraju, V.; Hughes, G.; Bogan, J.

    2018-01-01

    In this work x-ray photoelectron spectroscopy is used to investigate in-vacuo, the interaction of metallic manganese with a (3-trimethoxysilylpropyl)diethylenetriamine (DETA) self-assembled monolayer (SAM) on SiO2 and non-porous low-k dielectric materials. Subsequent deposition of a ∼0.5 nm thick Mn, followed by a 200 °C anneal results in the Mn diffusing through the SAM to interact with the underlying SiO2 layer to form a Mn-silicate layer. Furthermore, there is evidence that the Mn interacts with the carbon and nitrogen within the SAM to form Mn-carbide and Mn-nitride, respectively. When deposited on low-k materials the Mn is found to diffuse through to the SAM on deposition and interact both with the SAM and the underlying substrate in a similar fashion.

  5. Dynamics of associating networks

    NASA Astrophysics Data System (ADS)

    Tang, Shengchang; Habicht, Axel; Wang, Muzhou; Li, Shuaili; Seiffert, Sebastian; Olsen, Bradley

    Associating polymers offer important technological solutions to renewable and self-healing materials, conducting electrolytes for energy storage and transport, and vehicles for cell and protein deliveries. The interplay between polymer topologies and association chemistries warrants new interesting physics from associating networks, yet poses significant challenges to study these systems over a wide range of time and length scales. In a series of studies, we explored self-diffusion mechanisms of associating polymers above the percolation threshold, by combining experimental measurements using forced Rayleigh scattering and analytical insights from a two-state model. Despite the differences in molecular structures, a universal super-diffusion phenomenon is observed when diffusion of molecular species is hindered by dissociation kinetics. The molecular dissociation rate can be used to renormalize shear rheology data, which yields an unprecedented time-temperature-concentration superposition. The obtained shear rheology master curves provide experimental evidence of the relaxation hierarchy in associating networks.

  6. Following fluctuating signs: Anomalous active superdiffusion of swimmers in anisotropic media

    NASA Astrophysics Data System (ADS)

    Toner, John; Löwen, Hartmut; Wensink, Henricus H.

    2016-06-01

    Active (i.e., self-propelled or swimming) particles moving through an isotropic fluid exhibit conventional diffusive behavior. We report anomalous diffusion of an active particle moving in an anisotropic nematic background. While the translational motion parallel to the nematic director shows ballistic behavior, the long-time transverse motion is superdiffusive, with an anomalous scaling proportional to t lnt of the mean-square displacement with time t . This behavior is predicted by an analytical theory that we present here and is corroborated by numerical simulation of active particle diffusion in a simple lattice model for a nematic liquid crystal. It is universal for any collection of self-propelled elements (e.g., bacteria or active rods) moving in a nematic background, provided only that the swimmers are sufficiently dilute that their interactions with each other can be neglected and that they do not perform hairpin turns.

  7. Stokes-Einstein relation and excess entropy in Al-rich Al-Cu melts

    NASA Astrophysics Data System (ADS)

    Pasturel, A.; Jakse, N.

    2016-07-01

    We investigate the conditions for the validity of the Stokes-Einstein relation that connects diffusivity to viscosity in melts using entropy-scaling relationships developed by Rosenfeld. Employing ab initio molecular dynamics simulations to determine transport and structural properties of liquid Al1-xCux alloys (with composition x ≤ 0.4), we first show that reduced self-diffusion coefficients and viscosities, according to Rosenfeld's formulation, scale with the two-body approximation of the excess entropy except the reduced viscosity for x = 0.4. Then, we use our findings to evidence that the Stokes-Einstein relation using effective atomic radii is not valid in these alloys while its validity can be related to the temperature dependence of the partial pair-excess entropies of both components. Finally, we derive a relation between the ratio of the self-diffusivities of the components and the ratio of their pair excess entropies.

  8. Modeling viscosity and diffusion of plasma mixtures across coupling regimes

    NASA Astrophysics Data System (ADS)

    Arnault, Philippe

    2014-10-01

    Viscosity and diffusion of plasma for pure elements and multicomponent mixtures are modeled from the high-temperature low-density weakly coupled regime to the low-temperature high-density strongly coupled regime. Thanks to an atom in jellium modeling, the effect of electron screening on the ion-ion interaction is incorporated through a self-consistent definition of the ionization. This defines an effective One Component Plasma, or an effective Binary Ionic Mixture, that is representative of the strength of the interaction. For the viscosity and the interdiffusion of mixtures, approximate kinetic expressions are supplemented by mixing laws applied to the excess viscosity and self-diffusion of pure elements. The comparisons with classical and quantum molecular dynamics results reveal deviations in the range 20--40% on average with almost no predictions further than a factor of 2 over many decades of variation. Applications in the inertial confinement fusion context could help in predicting the growth of hydrodynamic instabilities.

  9. Effects of Surface Structure and of Embedded-Atom Pair Functionals on Adatom Diffusion on FCC Metallic Surfaces

    DTIC Science & Technology

    1992-11-01

    total-energy calculations that this complex mechanism for diffusion can be invoked for surface self-diffusion on the (100) surface ( Kellog and...Woodland Hills, CA 91364 National Science Foundation 3 SRI International ATIN: A.B. Harvey ATIN: G. Smith Washington, DC 20550 D. Crosley D. Golden...Aeronautics and Astronautics ATTN: H. Krier ATfN: J.R. Osborn 144MEB, 1206 W. Green St. Grissom Hall Urbana, IL 61801 West Lafayette, IN 47906 The Johns

  10. Compulsive procrastination: some self-reported characteristics.

    PubMed

    Ferrari, J R

    1991-04-01

    In Sample 1, 46 procrastinators compared with 52 nonprocrastinators claimed lower self-esteem, greater public self-consciousness and social anxiety, and a stronger tendency toward self-handicapping. In Sample 2, 48 procrastinators compared with 54 nonprocrastinators reported a weaker tendency toward seeking self-identity information but a stronger tendency toward a diffuse-identity style, yet there were no significant differences in verbal and abstract thinking abilities. Further research must provide evidence for persistent procrastination as a personality disorder that includes anxiety, avoidance, and a fear of evaluation of ability.

  11. Experimental and Numerical Study of Ammonium Perchlorate Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Smooke, M. D.; Yetter, R. A.; Parr, T. P.; Hanson-Parr, D. M.; Tanoff, M. A.

    1999-01-01

    Many solid rocket propellants are based on a composite mixture of ammonium perchlorate (AP) oxidizer and polymeric binder fuels. In these propellants, complex three-dimensional diffusion flame structures between the AP and binder decomposition products, dependent upon the length scales of the heterogeneous mixture, drive the combustion via heat transfer back to the surface. Changing the AP crystal size changes the burn rate of such propellants. Large AP crystals are governed by the cooler AP self-deflagration flame and burn slowly, while small AP crystals are governed more by the hot diffusion flame with the binder and burn faster. This allows control of composite propellant ballistic properties via particle size variation. Previous measurements on these diffusion flames in the planar two-dimensional sandwich configuration yielded insight into controlling flame structure, but there are several drawbacks that make comparison with modeling difficult. First, the flames are two-dimensional and this makes modeling much more complex computationally than with one-dimensional problems, such as RDX self- and laser-supported deflagration. In addition, little is known about the nature, concentration, and evolution rates of the gaseous chemical species produced by the various binders as they decompose. This makes comparison with models quite difficult. Alternatively, counterflow flames provide an excellent geometric configuration within which AP/binder diffusion flames can be studied both experimentally and computationally.

  12. Elucidating dominant pathways of the nano-particle self-assembly process.

    PubMed

    Zeng, Xiangze; Li, Bin; Qiao, Qin; Zhu, Lizhe; Lu, Zhong-Yuan; Huang, Xuhui

    2016-09-14

    Self-assembly processes play a key role in the fabrication of functional nano-structures with widespread application in drug delivery and micro-reactors. In addition to the thermodynamics, the kinetics of the self-assembled nano-structures also play an important role in determining the formed structures. However, as the self-assembly process is often highly heterogeneous, systematic elucidation of the dominant kinetic pathways of self-assembly is challenging. Here, based on mass flow, we developed a new method for the construction of kinetic network models and applied it to identify the dominant kinetic pathways for the self-assembly of star-like block copolymers. We found that the dominant pathways are controlled by two competing kinetic parameters: the encounter time Te, characterizing the frequency of collision and the transition time Tt for the aggregate morphology change from rod to sphere. Interestingly, two distinct self-assembly mechanisms, diffusion of an individual copolymer into the aggregate core and membrane closure, both appear at different stages (with different values of Tt) of a single self-assembly process. In particular, the diffusion mechanism dominates the middle-sized semi-vesicle formation stage (with large Tt), while the membrane closure mechanism dominates the large-sized vesicle formation stage (with small Tt). Through the rational design of the hydrophibicity of the copolymer, we successfully tuned the transition time Tt and altered the dominant self-assembly pathways.

  13. Molecular dynamic simulations of selective self-diffusion of CH4/CO2/H2O/N2 in coal

    NASA Astrophysics Data System (ADS)

    Song, Y.; Jiang, B.; Li, F. L.

    2017-06-01

    The self-diffusion coefficients (D) of CH4/CO2/H2O/N2 at a relatively broad range of temperatures(298.15∼ 458.15K)and pressures (1∼6MPa) under the NPT, NPH, NVE, and NVT ensembles were obtained after the calculations of molecular mechanics(MM), annealing kinetics(AK), giant canonical Monte Carlo(GCMC), and molecular dynamics (MD) based on Wiser bituminous coal model (WM). The Ds of the adsorbates at the saturated adsorption configurations are D CH4418K. The average swelling ratios manifest as H2O (14.7∼35.18%)>CO2 (13.38∼32.25%)>CH4 (15.35∼23.71%)> N2 (11.47∼22.14%) (NPH, 1∼6MPa). There exits differences in D, swelling ratios and E among various ensembles, indicating that the selection of ensembles has an important influence on the MD calculations for self-diffusion coefficients.

  14. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection.

    PubMed

    Xu, Wen-Tao; Peng, Hong-Jie; Huang, Jia-Qi; Zhao, Chen-Zi; Cheng, Xin-Bing; Zhang, Qiang

    2015-09-07

    The self-discharge of a lithium-sulfur cell decreases the shelf-life of the battery and is one of the bottlenecks that hinders its practical applications. New insights into both the internal chemical reactions in a lithium-sulfur system and effective routes to retard self-discharge for highly stable batteries are crucial for the design of lithium-sulfur cells. Herein, a lithium-sulfur cell with a carbon nanotube/sulfur cathode and lithium-metal anode in lithium bis(trifluoromethanesulfonyl)imide/1,3-dioxolane/dimethyl ether electrolyte was selected as the model system to investigate the self-discharge behavior. Both lithium anode passivation and polysulfide anion diffusion suppression strategies are applied to reduce self-discharge of the lithium-sulfur cell. When the lithium-metal anode is protected by a high density passivation layer induced by LiNO3 , a very low shuttle constant of 0.017 h(-1) is achieved. The diffusion of the polysulfides is retarded by an ion-selective separator, and the shuttle constants decreased. The cell with LiNO3 additive maintained a discharge capacity of 97 % (961 mAh g(-1) ) of the initial capacity after 120 days at open circuit, which was around three times higher than the routine cell (32 % of initial capacity, corresponding to 320 mAh g(-1) ). It is expected that lithium-sulfur batteries with ultralow self-discharge rates may be fabricated through a combination of anode passivation and polysulfide shuttle control, as well as optimization of the lithium-sulfur cell configuration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Theoretical and Experimental Investigation of the Translational Diffusion of Proteins in the Vicinity of Temperature-Induced Unfolding Transition.

    PubMed

    Molchanov, Stanislav; Faizullin, Dzhigangir A; Nesmelova, Irina V

    2016-10-06

    Translational diffusion is the most fundamental form of transport in chemical and biological systems. The diffusion coefficient is highly sensitive to changes in the size of the diffusing species; hence, it provides important information on the variety of macromolecular processes, such as self-assembly or folding-unfolding. Here, we investigate the behavior of the diffusion coefficient of a macromolecule in the vicinity of heat-induced transition from folded to unfolded state. We derive the equation that describes the diffusion coefficient of the macromolecule in the vicinity of the transition and use it to fit the experimental data from pulsed-field-gradient nuclear magnetic resonance (PFG NMR) experiments acquired for two globular proteins, lysozyme and RNase A, undergoing temperature-induced unfolding. A very good qualitative agreement between the theoretically derived diffusion coefficient and experimental data is observed.

  16. Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth S.

    2015-10-01

    We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.

  17. Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rui; Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu

    2015-10-14

    We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratiomore » for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.« less

  18. Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α -Fe–Si alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.

    Diffusion in α-Fe-Si alloys is studied using AKSOME, an on-lattice self-learning KMC code, in the ferromagnetic state. Si diffusivity in the α-Fe matrix were obtained with and without the magnetic disorder in various temperature ranges. In addition we studied vacancy diffusivity in ferromagnetic α-Fe at various Si concentrations up to 12.5at.% in the temperature range of 350–550 K. The results were compared with available experimental and theoretical values in the literature. Local Si-atom dependent activation energies for vacancy hops were calculated using a broken-model and were stored in a database. The migration barrier and prefactors for Si-diffusivity were found tomore » be in reasonable agreement with available modeling results in the literature. Magnetic disorder has a larger effect on the prefactor than on the migration barrier. Prefactor was approximately an order of magnitude and the migration barrier a tenth of an electron-volt higher with magnetic disorder when compared to a fully ferromagnetic ordered state. In addition, the correlation between various have a larger effect on the Si-diffusivity extracted in various temperature range than the magnetic disorder. In the case of vacancy diffusivity, the migration barrier more or less remained constant while the prefactor decreased with increasing Si concentration in the disordered or A2-phase of Fe-Si alloy. Important vacancy-Si/Fe atom exchange processes and their activation barriers were also identified and discuss the effect of energetics on the formation of ordered phases in Fe-Si alloys.« less

  19. Analysis of Critical Mass in Threshold Model of Diffusion

    NASA Astrophysics Data System (ADS)

    Kim, Jeehong; Hur, Wonchang; Kang, Suk-Ho

    2012-04-01

    Why does diffusion sometimes show cascade phenomena but at other times is impeded? In addressing this question, we considered a threshold model of diffusion, focusing on the formation of a critical mass, which enables diffusion to be self-sustaining. Performing an agent-based simulation, we found that the diffusion model produces only two outcomes: Almost perfect adoption or relatively few adoptions. In order to explain the difference, we considered the various properties of network structures and found that the manner in which thresholds are arrayed over a network is the most critical factor determining the size of a cascade. On the basis of the results, we derived a threshold arrangement method effective for generation of a critical mass and calculated the size required for perfect adoption.

  20. Novel surface diffusion characteristics for a robust pentacene derivative on Au(1 1 1) surfaces

    NASA Astrophysics Data System (ADS)

    Miller, Ryan A.; Larson, Amanda; Pohl, Karsten

    2017-06-01

    Molecular dynamics simulations have been performed in both the ab initio and classical mechanics frameworks of 5,6,7-trithiapentacene-13-one (TTPO) molecules on flat Au(1 1 1) surfaces. Results show new surface diffusion characteristics including a strong preference for the molecule to align its long axis parallel to the sixfold Au(1 1 1) symmetry directions and subsequently diffuse along these close-packed directions, and a calculated activation energy for diffusion of 0.142 eV, about four times larger than that for pure pentacene on Au. The temperature-dependent diffusion coefficients were calculated to help quantify the molecular mobility during the experimentally observed process of forming self-assembled monolayers on gold electrodes.

  1. Simulation of stationary glow patterns in dielectric barrier discharges at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fucheng, E-mail: hdlfc@hbu.cn; He, Yafeng; Dong, Lifang

    2014-12-15

    Self-organized stationary patterns in dielectric barrier discharges operating in glow regime at atmospheric pressure are investigated by a self-consistent two-dimensional fluid model. The simulation results show that two different modes, namely, the diffuse mode and the static patterned mode, can be formed in different ranges of the driving frequency. The discharge operates in Townsend regime in the diffuse mode, while it operates in a glow regime inside the filaments and in a Townsend regime outside the filaments in the stable pattered mode. The forming process of the stationary filaments can be divided into three stages, namely, destabilizing stage, self-assembling stage,more » and stable stage. The space charge associated with residual electron density and surface charge is responsible for the formation of these stationary glow patterns.« less

  2. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room-Temperature Ionic Liquids. 1. Variation of Anionic Species.

    PubMed

    Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F

    2015-12-03

    A series of room temperature ionic liquids (RTILs) based on 1-ethyl-3-methylimidazolium ([emim](+)) with different aprotic heterocyclic anions (AHAs) were synthesized and characterized as potential electrolyte candidates for lithium ion batteries. The density and transport properties of these ILs were measured over the temperature range between 283.15 and 343.15 K at ambient pressure. The temperature dependence of the transport properties (viscosity, ionic conductivity, self-diffusion coefficient, and molar conductivity) is fit well by the Vogel-Fulcher-Tamman (VFT) equation. The best-fit VFT parameters, as well as linear fits to the density, are reported. The ionicity of these ILs was quantified by the ratio of the molar conductivity obtained from the ionic conductivity and molar concentration to that calculated from the self-diffusion coefficients using the Nernst-Einstein equation. The results of this study, which is based on ILs composed of both a planar cation and planar anions, show that many of the [emim][AHA] ILs exhibit very good conductivity for their viscosities and provide insight into the design of ILs with enhanced dynamics that may be suitable for electrolyte applications.

  3. Microdefects and self-interstitial diffusion in crystalline silicon

    NASA Astrophysics Data System (ADS)

    Knowlton, William Barthelemy

    In this thesis, a study is presented of D-defects and self-interstitial diffusion in silicon using Li ion (Lisp+) drifting in an electric field and transmission electron microscopy (TEM). Obstruction of Lisp+ drifting has been found in wafers from certain but not all FZ p-type Si. Incomplete Lisp+ drifting always occurs in the central region of the wafers. This work established that interstitial oxygen is not responsible for hindering Lisp+ drifting. The Osb i concentration was measured ({˜}2× 10sp{15}\\ cmsp{-3}) by local vibrational mode Fourier transform infrared spectroscopy and did not vary radially across the wafer. TEM was performed on a samples from the partially Lisp+ drifted area and compared to regions without D-defects. Precipitates were found only in the region containing D-defects that had partially Lisp+ drifted. This result indicates D-defects are responsible for the precipitation that halts the Lisp+ drift process. The precipitates were characterized using selected area diffraction (SAD) and image contrast analysis. The results suggested that the precipitates may cause stacking faults and their identity may be lithium silicides such as Lisb{21}Sisb5\\ and\\ Lisb{13}Sisb4. TEM revealed a decreasing distribution of Li precipitates as a function of Lisp+ drift depth along the growth direction. A preliminary model is presented that simulates Lisp+ drifting. The objective of the model is to incorporate the Li precipitate density distribution and Lisp+ drift depth to extract the size and capture cross-section of the D-defects. Nitrogen (N) doping has been shown to eliminate D-defects as measured by conventional techniques. However, Lisp+ drifting has shown that D-defects are indeed still present. Lisp+ drifting is able to detect D-defects at concentrations lower than conventional techniques. Lisp+ drifting and D-defects provide a useful means to study Si self-interstitial diffusion. The process modeling program SUPREM-IV was used to simulate the results of Si self-interstitial diffusion obtained from Lisp+ drifting experiments. Anomalous results from the Si self-interstitial diffusion experiments forced a re-examination of the possibility of thermal dissociation of D-defects. Thermal annealing experiments that were performed support this possibility. A review of the current literature illustrates the need for more research on the effects of thermal processing on FZ Si to understand the dissolution kinetics of D-defects.

  4. Noise-induced symmetry breaking far from equilibrium and the emergence of biological homochirality

    NASA Astrophysics Data System (ADS)

    Jafarpour, Farshid; Biancalani, Tommaso; Goldenfeld, Nigel

    2017-03-01

    The origin of homochirality, the observed single-handedness of biological amino acids and sugars, has long been attributed to autocatalysis, a frequently assumed precursor for early life self-replication. However, the stability of homochiral states in deterministic autocatalytic systems relies on cross-inhibition of the two chiral states, an unlikely scenario for early life self-replicators. Here we present a theory for a stochastic individual-level model of autocatalytic prebiotic self-replicators that are maintained out of thermal equilibrium. Without chiral inhibition, the racemic state is the global attractor of the deterministic dynamics, but intrinsic multiplicative noise stabilizes the homochiral states. Moreover, we show that this noise-induced bistability is robust with respect to diffusion of molecules of opposite chirality, and systems of diffusively coupled autocatalytic chemical reactions synchronize their final homochiral states when the self-replication is the dominant production mechanism for the chiral molecules. We conclude that nonequilibrium autocatalysis is a viable mechanism for homochirality, without imposing additional nonlinearities such as chiral inhibition.

  5. A Molecular Dynamics Simulation of the Molten Ternary System (Li, K, Cs)Cl

    NASA Astrophysics Data System (ADS)

    Matsumiya, Masahiko; Takagi, Ryuzo

    2000-12-01

    The self-exchange velocity (SEV) of neighboring unlike ions, has been evaluated by molecular dynamics simulations of molten CsCl, (Li, K)C1 and (Li, K, Cs)Cl at 673 K. From the increase of the SEV's in the same order as the internal mobilities it is conjectured that there is a strong correlation between these two properties. The pair correlation functions, and the self-diffusion coefficients and the SEV's of Li+, K+, and Cs+ with reference to Cl- have also been calculated. The results allow to conclude that the self-exchange velocity of the cations become vCs < vK < vLi at xCs =0.1 and vLi < vK < vCs at xCs > 0.4. The sequence of the self-diffusion coefficients agrees with that of the SEV's. The results enable to conclude that it is possible to enrich Cs at up to xCs ~ 0.3 - 0.4 in the molten LiCl-KCl eutectic system.

  6. Conjugate gradient filtering of instantaneous normal modes, saddles on the energy landscape, and diffusion in liquids.

    PubMed

    Chowdhary, J; Keyes, T

    2002-02-01

    Instantaneous normal modes (INM's) are calculated during a conjugate-gradient (CG) descent of the potential energy landscape, starting from an equilibrium configuration of a liquid or crystal. A small number (approximately equal to 4) of CG steps removes all the Im-omega modes in the crystal and leaves the liquid with diffusive Im-omega which accurately represent the self-diffusion constant D. Conjugate gradient filtering appears to be a promising method, applicable to any system, of obtaining diffusive modes and facilitating INM theory of D. The relation of the CG-step dependent INM quantities to the landscape and its saddles is discussed.

  7. Mass Transfer in a Nanoscale Material Enhanced by an Opposing Flux

    NASA Astrophysics Data System (ADS)

    Chmelik, Christian; Bux, Helge; Caro, Jürgen; Heinke, Lars; Hibbe, Florian; Titze, Tobias; Kärger, Jörg

    2010-02-01

    Diffusion is known to be quantified by measuring the rate of molecular fluxes in the direction of falling concentration. In contrast with intuition, considering methanol diffusion in a novel type of nanoporous material (MOF ZIF-8), this rate has now been found to be enhanced rather than slowed down by an opposing flux of labeled molecules. In terms of the key quantities of random particle movement, this result means that the self-diffusivity exceeds the transport diffusivity. It is rationalized by considering the strong intermolecular interaction and the dominating role of intercage hopping in mass transfer in the systems under study.

  8. Self-diffusion in a stochastically heated two-dimensional dusty plasma

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.

    2016-09-01

    Diffusion in a two-dimensional dusty plasma liquid (i.e., a Yukawa liquid) is studied experimentally. The dusty plasma liquid is heated stochastically by a surrounding three-dimensional toroidal dusty plasma gas which acts as a thermal reservoir. The measured dust velocity distribution functions are isotropic Maxwellians, giving a well-defined kinetic temperature. The mean-square displacement for dust particles is found to increase linearly with time, indicating normal diffusion. The measured diffusion coefficients increase approximately linearly with temperature. The effective collision rate is dominated by collective dust-dust interactions rather than neutral gas drag, and is comparable to the dusty-plasma frequency.

  9. Spiral diffusion of rotating self-propellers with stochastic perturbation

    NASA Astrophysics Data System (ADS)

    Nourhani, Amir; Ebbens, Stephen J.; Gibbs, John G.; Lammert, Paul E.

    2016-09-01

    Translationally diffusive behavior arising from the combination of orientational diffusion and powered motion at microscopic scales is a known phenomenon, but the peculiarities of the evolution of expected position conditioned on initial position and orientation have been neglected. A theory is given of the spiral motion of the mean trajectory depending upon propulsion speed, angular velocity, orientational diffusion, and rate of random chirality reversal. We demonstrate the experimental accessibility of this effect using both tadpole-like and Janus sphere dimer rotating motors. Sensitivity of the mean trajectory to the kinematic parameters suggest that it may be a useful way to determine those parameters.

  10. On the diffusion and self-trapping of surface dimers

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    The theory of elastic interactions between surface atoms which are caused by substrate strains is applied to the interaction of dimers on the (211) surface of tungsten. From the comparison of theoretical and experimental interactions which were derived from the diffusion behaviour of dimers, conclusions are drawn on the nature of the adatom-substrate bond.

  11. On the diffusion and self-trapping of surface dimers

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    1982-03-01

    The theory of elastic interactions between surface atoms which are caused by substrate strains is applied to the interaction of dimers on the (211) surface of tungsten. From the comparison of theoretical and experimental interactions which were derived from the diffusion behaviour of dimers, conclusions are drawn on the nature of the adatom-substrate bond.

  12. Teaching the Growth, Ripening, and Agglomeration of Nanostructures in Computer Experiments

    ERIC Educational Resources Information Center

    Meyburg, Jan Philipp; Diesing, Detlef

    2017-01-01

    This article describes the implementation and application of a metal deposition and surface diffusion Monte Carlo simulation in a physical chemistry lab course. Here the self-diffusion of Ag atoms on a Ag(111) surface is modeled and compared to published experimental results. Both the thin-film homoepitaxial growth during adatom deposition onto a…

  13. Better vacuum by removal of diffusion-pump-oil contaminants

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1975-01-01

    The complex problem of why large space simulation chambers do not realize true ultimate vacuum was investigated. Some contaminating factors affecting diffusion pump performance were identified, and some advances in vacuum distillation-fractionation technology were achieved which resulted in a two-decade-or-more lower ultimate pressure. Data are presented to show the overall or individual contaminating effects of commonly used phthalate ester plasticizers of 390 to 530 molecular weight on diffusion pump performance. Methods for removing contaminants from diffusion pump silicone oil during operation and for reclaiming contaminated oil by high-vacuum molecular distillation are described. Conceptual self-cleansing designs and operating procedures are proposed for modifying large diffusion pumps into high-efficiency distillation devices. The potential exists for application of these technological advancements to other disciplines, such as medicine, biomedical materials, metallurgy, refining, and chemical (diffusion-enrichment) processing.

  14. Self-similar space-time evolution of an initial density discontinuity

    NASA Astrophysics Data System (ADS)

    Rekaa, V. L.; Pécseli, H. L.; Trulsen, J. K.

    2013-07-01

    The space-time evolution of an initial step-like plasma density variation is studied. We give particular attention to formulate the problem in a way that opens for the possibility of realizing the conditions experimentally. After a short transient time interval of the order of the electron plasma period, the solution is self-similar as illustrated by a video where the space-time evolution is reduced to be a function of the ratio x/t. Solutions of this form are usually found for problems without characteristic length and time scales, in our case the quasi-neutral limit. By introducing ion collisions with neutrals into the numerical analysis, we introduce a length scale, the collisional mean free path. We study the breakdown of the self-similarity of the solution as the mean free path is made shorter than the system length. Analytical results are presented for charge exchange collisions, demonstrating a short time collisionless evolution with an ensuing long time diffusive relaxation of the initial perturbation. For large times, we find a diffusion equation as the limiting analytical form for a charge-exchange collisional plasma, with a diffusion coefficient defined as the square of the ion sound speed divided by the (constant) ion collision frequency. The ion-neutral collision frequency acts as a parameter that allows a collisionless result to be obtained in one limit, while the solution of a diffusion equation is recovered in the opposite limit of large collision frequencies.

  15. Resonant thickening of self-gravitating discs: imposed or self-induced orbital diffusion in the tightly wound limit

    NASA Astrophysics Data System (ADS)

    Fouvry, Jean-Baptiste; Pichon, Christophe; Chavanis, Pierre-Henri; Monk, Laura

    2017-11-01

    The secular thickening of a self-gravitating stellar galactic disc is investigated using the dressed collisionless Fokker-Planck equation and the inhomogeneous multicomponent Balescu-Lenard equation. The thick WKB limits for the diffusion fluxes are found using the epicyclic approximation, while assuming that only radially tightly wound transient spirals are sustained by the disc. This yields simple quadratures for the drift and diffusion coefficients, providing a clear understanding of the positions of maximum vertical orbital diffusion within the disc, induced by fluctuations either external or due to the finite number of particles. These thick limits also offer a consistent derivation of a thick disc Toomre parameter, which is shown to be exponentially boosted by the ratio of the vertical to radial scaleheights. Dressed potential fluctuations within the disc statistically induce a vertical bending of a subset of resonant orbits, triggering the corresponding increase in vertical velocity dispersion. When applied to a tepid stable tapered disc perturbed by shot noise, these two frameworks reproduce qualitatively the formation of ridges of resonant orbits towards larger vertical actions, as found in direct numerical simulations, but overestimates the time-scale involved in their appearance. Swing amplification is likely needed to resolve this discrepancy, as demonstrated in the case of razor-thin discs. Other sources of thickening are also investigated, such as fading sequences of slowing bars, or the joint evolution of a population of giant molecular clouds within the disc.

  16. MUTUAL DIFFUSION OF PAIRS OF RARE GASES AT DIFFERENT TEMPERATURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, B.N.; Srivastava, K.P.

    1959-04-01

    The eoefficient of mutual diffusion of the binary gas mixtures Ne--Ar, Ar--Krs and Ne--Kr has been determined at 0, 15, 30s and 45 C. Diffusion is allowed to take place between two diffusion bulbs through a precision capillary tube and samples of gas are withdrawn from one bulb at different times and analyzed by a differential conductivity analyzer. From the experimentally determined values of the diffusion coefficient at different temperatures the unlike interaction parameters for the above gas pairs have been calculated by two different methods on the Lennard-Jones I2:6 model. These values of the force parameters are found tomore » be in good agreement with those obtained from the usual combination rules and also from the thermal diffusion data following the method of Srivastava and Madan. These values are found to reproduce the experimental data on mutual diffusion quite satisfactorily. With Kelvin's method, these data have also been utilized to calculate the self-diffusion coefficient of neon, argons and krypton. (auth)« less

  17. Diffusion mechanism in the sodium-ion battery material sodium cobaltate.

    PubMed

    Willis, T J; Porter, D G; Voneshen, D J; Uthayakumar, S; Demmel, F; Gutmann, M J; Roger, M; Refson, K; Goff, J P

    2018-02-16

    High performance batteries based on the movement of Li ions in Li x CoO 2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteries, including structurally-related Na x CoO 2 . Here we have determined the diffusion mechanism for Na 0.8 CoO 2 using diffuse x-ray scattering, quasi-elastic neutron scattering and ab-initio molecular dynamics simulations, and we find that the sodium ordering provides diffusion pathways and governs the diffusion rate. Above T ~ 290 K the so-called partially disordered stripe superstructure provides channels for quasi-1D diffusion, and melting of the sodium ordering leads to 2D superionic diffusion above T ~ 370 K. We obtain quantitative agreement between our microscopic study of the hopping mechanism and bulk self-diffusion measurements. Our approach can be applied widely to other Na- or Li-ion battery materials.

  18. The Shape of Protein Crowders is a Major Determinant of Protein Diffusion

    PubMed Central

    Balbo, Jessica; Mereghetti, Paolo; Herten, Dirk-Peter; Wade, Rebecca C.

    2013-01-01

    As a model for understanding how molecular crowding influences diffusion and transport of proteins in cellular environments, we combined experimental and theoretical approaches to study the diffusion of proteins in highly concentrated protein solutions. Bovine serum albumin and γ-Globulin were chosen as molecular crowders and as tracers. These two proteins are representatives of the main types of plasma protein and have different shapes and sizes. Solutions consisting of one or both proteins were studied. The self-diffusion coefficients of the fluorescently labeled tracer proteins were measured by means of fluorescence correlation spectroscopy at a total protein concentration of up to 400 g/L. γ-Globulin is found to have a stronger influence as a crowder on the tracer self-diffusion coefficient than Bovine serum albumin. Brownian dynamics simulations show that the excluded volume and the shape of the crowding protein have a significantly stronger influence on translational and rotational diffusion coefficients, as well as transient oligomerization, than hydrodynamic or direct interactions. Anomalous subdiffusion, which is not observed at the experimental fluorescence correlation spectroscopy timescales (>100 μs), appears only at very short timescales (<1 μs) in the simulations due to steric effects of the proteins. We envision that the combined experimental and computational approach employed here can be developed to unravel the different biophysical contributions to protein motion and interaction in cellular environments by systematically varying protein properties such as molecular weight, size, shape, and electrostatic interactions. PMID:23561534

  19. Nuclear magnetic resonance relaxation and diffusion measurements as a proxy for soil properties

    NASA Astrophysics Data System (ADS)

    Duschl, Markus; Pohlmeier, Andreas; Galvosas, Petrik; Vereecken, Harry

    2013-04-01

    Nuclear Magnetic Resonance (NMR) relaxation and NMR diffusion measurements are two of a series of fast and non-invasive NMR applications widely used e.g. as well logging tools in petroleum exploration [1]. For experiments with water, NMR relaxation measures the relaxation behaviour of former excited water molecules, and NMR diffusion evaluates the self-diffusion of water. Applied in porous media, both relaxation and diffusion measurements depend on intrinsic properties of the media like pore size distribution, connectivity and tortuosity of the pores, and water saturation [2, 3]. Thus, NMR can be used to characterise the pore space of porous media not only in consolidated sediments but also in soil. The physical principle behind is the relaxation of water molecules in an external magnetic field after excitation. In porous media water molecules in a surface layer of the pores relax faster than the molecules in bulk water because of interactions with the pore wall. Thus, the relaxation in smaller pores is generally faster than in bigger pores resulting in a relaxation time distribution for porous media with a range of pore sizes like soil [4]. In NMR diffusion experiments, there is an additional encoding of water molecules by application of a magnetic field gradient. Subsequent storage of the magnetization and decoding enables the determination of the mean square displacement and therefore of the self-diffusion of the water molecules [5]. Employing various relaxation and diffusion experiments, we get a measure of the surface to volume ratio of the pores and the tortuosity of the media. In this work, we show the characterisation of a set of sand and soil samples covering a wide range of textural classes by NMR methods. Relaxation times were monitored by the Carr-Purcell-Meiboom-Gill sequence and analysed using inverse Laplace transformation. Apparent self-diffusion constants were detected by a 13-intervall pulse sequence and variation of the storage time. We correlated the results with various soil properties like texture, water retention parameters, and hydraulic conductivity. This way we show that we can predict soil properties by NMR measurements and that we are able use results of NMR measurements as a proxy without the need of direct measurements. [1] Song, Y.-Q., Vadose Zone Journal, 9 (2010) [2] Stingaciu, L. R., et al., Water Resources Research, 46 (2010) [3] Vogt, C., et al., Journal of Applied Geophysics, 50 (2002) [4] Barrie, P. J., Annual Reports on NMR Spectroscopy, 41 (2000) [5] Stallmach, F., Galvosas, P., Annual Reports on NMR Spectroscopy, 61 (2007)

  20. Elastic stress transfer as a diffusive process due to aseismic fault slip in response to fluid injection

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.

    2015-12-01

    Subsurface fluid injection is often followed by observations of an enlarging cloud of microseismicity. The cloud's diffusive growth is thought to be a direct response to the diffusion of elevated pore fluid pressure reaching pre-stressed faults, triggering small instabilities; the observed high rates of this growth are interpreted to reflect a relatively high permeability of a fractured subsurface [e.g., Shapiro, GJI 1997]. We investigate an alternative mechanism for growing a microseismic cloud: the elastic transfer of stress due to slow, aseismic slip on a subset of the pre-existing faults in this damaged subsurface. We show that the growth of the slipping region of the fault may be self-similar in a diffusive manner. While this slip is driven by fluid injection, we show that, for critically stressed faults, the apparent diffusion of this slow slip may quickly exceed the poroelastically driven diffusion of the elevated pore fluid pressure. Under these conditions, microseismicity can be first triggered by the off-fault stress perturbation due to the expanding region of slip on principal faults. This provides an alternative interpretation of diffusive growth rates in terms of the subsurface stress state rather than an enhanced hydraulic diffusivity. That such aseismic slip may occur, outpace fluid diffusion, and in turn trigger microseismic events, is also suggested by on- and near-fault observations in past and recently reported fluid injection experiments [e.g., Cornet et al., PAGEOPH 1997; Guglielmi et al., Science 2015]. The model of injection-induced slip assumes elastic off-fault behavior and a fault strength determined by the product of a constant friction coefficient and the local effective normal stress. The sliding region is enlarged by the pore pressure increase resolved on the fault plane. Remarkably, the rate of self-similar expansion may be determined by a single parameter reflecting both the initial stress state and the magnitude of the pore pressure increase.

  1. Diffusion of Innovation: A Plea for Indigenous Models

    ERIC Educational Resources Information Center

    Rubdy, Rani

    2008-01-01

    Much of curriculum innovation in English language teaching in the context of former colonial countries has been derivative rather than generative, imitative rather than self-initiated or self-regulatory. This trend is in part the result of historical exigencies that made the importation of ELT approaches, methods, and techniques for classroom…

  2. Sub-Fickean Diffusion in a One-Dimensional Plasma Ring

    NASA Astrophysics Data System (ADS)

    Theisen, W. L.

    2013-12-01

    A one-dimensional dusty plasma ring is formed in a strongly-coupled complex plasma. The dust particles in the ring can be characterized as a one-dimensional system where the particles cannot pass each other. The particles perform random walks due to thermal motions. This single-file self diffusion is characterized by the mean-squared displacement (msd) of the individual particles which increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^(1/2). Particle position data from the dusty plasma ring is analyzed to determine the scaling of the msd with time. Results are compared with predictions of single-file diffusion theory.

  3. A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers: Microscopic Approach

    NASA Technical Reports Server (NTRS)

    Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)

    2001-01-01

    Starting from the microscopic semiconductor Bloch equations (SBEs) including the Boltzmann transport terms in the distribution function equations for electrons and holes, we derived a closed set of diffusion equations for carrier densities and temperatures with self-consistent coupling to Maxwell's equation and to an effective optical polarization equation. The coherent many-body effects are included within the screened Hartree-Fock approximation, while scatterings are treated within the second Born approximation including both the in- and out-scatterings. Microscopic expressions for electron-hole (e-h) and carrier-LO (c-LO) phonon scatterings are directly used to derive the momentum and energy relaxation rates. These rates expressed as functions of temperatures and densities lead to microscopic expressions for self- and mutual-diffusion coefficients in the coupled density-temperature diffusion equations. Approximations for reducing the general two-component description of the electron-hole plasma (EHP) to a single-component one are discussed. In particular, we show that a special single-component reduction is possible when e-h scattering dominates over c-LO phonon scattering. The ambipolar diffusion approximation is also discussed and we show that the ambipolar diffusion coefficients are independent of e-h scattering, even though the diffusion coefficients of individual components depend sensitively on the e-h scattering rates. Our discussions lead to new perspectives into the roles played in the single-component reduction by the electron-hole correlation in momentum space induced by scatterings and the electron-hole correlation in real space via internal static electrical field. Finally, the theory is completed by coupling the diffusion equations to the lattice temperature equation and to the effective optical polarization which in turn couples to the laser field.

  4. Molecular dynamics simulations of propane in slit shaped silica nano-pores: direct comparison with quasielastic neutron scattering experiments.

    PubMed

    Gautam, Siddharth; Le, Thu; Striolo, Alberto; Cole, David

    2017-12-13

    Molecular motion under confinement has important implications for a variety of applications including gas recovery and catalysis. Propane confined in mesoporous silica aerogel as studied using quasielastic neutron scattering (QENS) showed anomalous pressure dependence in its diffusion coefficient (J. Phys. Chem. C, 2015, 119, 18188). Molecular dynamics (MD) simulations are often employed to complement the information obtained from QENS experiments. Here, we report an MD simulation study to probe the anomalous pressure dependence of propane diffusion in silica aerogel. Comparison is attempted based on the self-diffusion coefficients and on the time scales of the decay of the simulated intermediate scattering functions. While the self-diffusion coefficients obtained from the simulated mean squared displacement profiles do not exhibit the anomalous pressure dependence observed in the experiments, the time scales of the decay of the intermediate scattering functions calculated from the simulation data match the corresponding quantities obtained in the QENS experiment and thus confirm the anomalous pressure dependence of the diffusion coefficient. The origin of the anomaly in pressure dependence lies in the presence of an adsorbed layer of propane molecules that seems to dominate the confined propane dynamics at low pressure, thereby lowering the diffusion coefficient. Further, time scales for rotational motion obtained from the simulations explain the absence of rotational contribution to the QENS spectra in the experiments. In particular, the rotational motion of the simulated propane molecules is found to exhibit large angular jumps at lower pressure. The present MD simulation work thus reveals important new insights into the origin of anomalous pressure dependence of propane diffusivity in silica mesopores and supplements the information obtained experimentally by QENS data.

  5. Surface mass diffusion over an extended temperature range on Pt(111)

    NASA Astrophysics Data System (ADS)

    Rajappan, M.; Swiech, W.; Ondrejcek, M.; Flynn, C. P.

    2007-06-01

    Surface mass diffusion is investigated on Pt(111) at temperatures in the range 710-1220 K. This greatly extends the range over which diffusion is known from step fluctuation spectroscopy (SFS). In the present research, a beam of Pt- self-ions is employed to create a suitable structure on step edges. The surface mass diffusion coefficients then follow from the decay of Fourier components observed by low-energy electron microscopy (LEEM) at selected annealing temperatures. The results agree with SFS values where they overlap, and continue smoothly to low temperature. This makes it unlikely that diffusion along step edges plays a major role in step edge relaxation through the temperature range studied. The surface mass diffusion coefficient for the range 710-1520 K deduced from the present work, together with previous SFS data, is Ds = 4 × 10-3 exp(-1.47 eV/kBT) cm2 s-1.

  6. Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.

    PubMed

    Bendahmane, Mostafa; Ruiz-Baier, Ricardo; Tian, Canrong

    2016-05-01

    In this paper we analyze the effects of introducing the fractional-in-space operator into a Lotka-Volterra competitive model describing population super-diffusion. First, we study how cross super-diffusion influences the formation of spatial patterns: a linear stability analysis is carried out, showing that cross super-diffusion triggers Turing instabilities, whereas classical (self) super-diffusion does not. In addition we perform a weakly nonlinear analysis yielding a system of amplitude equations, whose study shows the stability of Turing steady states. A second goal of this contribution is to propose a fully adaptive multiresolution finite volume method that employs shifted Grünwald gradient approximations, and which is tailored for a larger class of systems involving fractional diffusion operators. The scheme is aimed at efficient dynamic mesh adaptation and substantial savings in computational burden. A numerical simulation of the model was performed near the instability boundaries, confirming the behavior predicted by our analysis.

  7. Mechanisms of high-temperature, solid-state flow in minerals and ceramics and their bearing on the creep behavior of the mantle

    USGS Publications Warehouse

    Kirby, S.H.; Raleigh, C.B.

    1973-01-01

    The problem of applying laboratory silicate-flow data to the mantle, where conditions can be vastly different, is approached through a critical review of high-temperature flow mechanisms in ceramics and their relation to empirical flow laws. The intimate association of solid-state diffusion and high-temperature creep in pure metals is found to apply to ceramics as well. It is shown that in ceramics of moderate grain size, compared on the basis of self-diffusivity and elastic modulus, normalized creep rates compare remarkably well. This comparison is paralleled by the near universal occurrence of similar creep-induced structures, and it is thought that the derived empirical flow laws can be associated with dislocation creep. Creep data in fine-grained ceramics, on the other hand, are found to compare poorly with theories involving the stress-directed diffusion of point defects and have not been successfully correlated by self-diffusion rates. We conclude that these fine-grained materials creep primarily by a quasi-viscous grain-boundary sliding mechanism which is unlikely to predominate in the earth's deep interior. Creep predictions for the mantle reveal that under most conditions the empirical dislocation creep behavior predominates over the mechanisms involving the stress-directed diffusion of point defects. The probable role of polymorphic transformations in the transition zone is also discussed. ?? 1973.

  8. Self-organization across scales: from molecules to organisms.

    PubMed

    Saha, Tanumoy; Galic, Milos

    2018-05-26

    Creating ordered structures from chaotic environments is at the core of biological processes at the subcellular, cellular and organismic level. In this perspective, we explore the physical as well as biological features of two prominent concepts driving self-organization, namely phase transition and reaction-diffusion, before closing with a discussion on open questions and future challenges associated with studying self-organizing systems.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  9. Unusual properties of aqueous solutions of L-proline: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Civera, Monica; Sironi, Maurizio; Fornili, Sandro L.

    2005-11-01

    Aqueous solutions of the bioprotectant proline are simulated for solute molar fractions ranging from 2.0 × 10 -3 to 2.3 × 10 -1. Statistical analyses show that proline affects the water structure more strongly than glycine betaine and trimethylamine- N-oxide, two of the most effective bioprotectants widely diffuse in nature, and as strongly as tert-butyl alcohol, a protein denaturant which at high concentration self-aggregates. No evidence is found, however, that proline self-aggregates as it has been previously suggested to explain experimental findings on concentrated proline solutions. Nevertheless, the behavior of the diffusion coefficients of proline and water vs. solute concentration qualitatively agrees with such results.

  10. External self-gettering of nickel in float zone silicon wafers

    NASA Astrophysics Data System (ADS)

    Gay, N.; Martinuzzi, S.

    1997-05-01

    During indiffusion of Ni atoms in silicon crystals at 950 °C from a nickel layer source, Ni-Si alloys can be formed close to the surface. Metal solubility in these alloys is higher than in silicon, which induces a marked segregation gettering of the Ni atoms which have diffused in the bulk of the wafers. Consequently, the regions of the wafers covered with the Ni layer are less contaminated than adjacent regions in which Ni atoms have also penetrated, as shown by the absence of precipitates and the higher diffusion length of minority carriers. The results suggest the existence of external self-gettering of Ni atoms by the nickel source.

  11. Entropy and caloric curve for mononuclei considering both surface diffuseness and self-similar expansion degrees of freedom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobotka, L.G.; Department of Physics, Washington University, St. Louis, Missouri 63130; Charity, R.J.

    2006-01-15

    The caloric curve for mononuclear configurations is studied with a model that allows for both increased surface diffusness and self-similar expansion. The evolution of the effective mass with density and excitation is included in a schematic fashion. The entropies, extracted in a local-density approximation, confirm that nuclei posess a soft mode that is predominately a surface expansion. We also find that the mononuclear caloric curve (temperature versus excitation energy) exhibits a plateau. Thus a plateau should be the expectation with or without a multifragmentationlike phase transition. This conclusion is relevant only for reactions that populate the mononuclear region of phasemore » space.« less

  12. Helium self-trapping and diffusion behaviors in deformed 316L stainless steel exposed to high flux and low energy helium plasma

    NASA Astrophysics Data System (ADS)

    Gong, Yihao; Jin, Shuoxue; Zhu, Te; Cheng, Long; Cao, Xingzhong; You, Li; Lu, Guanghong; Guo, Liping; Wang, Baoyi

    2018-04-01

    A large number of dislocation networks were introduced in to 316L stainless steel by cold rolling. Subsequently, low energy (40 eV) helium ions were implanted by exposing the steel to helium plasma. Thermal desorption and positron annihilation spectroscopy were used to study the behavior of helium in the presence of dislocations, with emphasis on helium self-trapping and migration behaviors. Helium desorption behaviour from different helium trapping states was measured by the thermal desorption spectroscopy. Most of the helium desorbed from the He m V n clusters, and the corresponding desorption peak is located at ~650 K. The desorption peak from helium-dislocation clusters (He m D) is at approximately 805 K. The effect of annealing on the defect evolution was investigated by positron annihilation spectroscopy. For the specimen exposed to helium plasma without displacement damage, the increment of S parameter meant the existence of helium self-trapping behavior (He m V n ). Helium atoms could diffuse two to three orders of magnitude deeper than the implantation depth calculated by SRIM. The diffusing helium atoms were gradually trapped by dislocation lines and formed He m D. Elevated temperatures enhance the self-trapping behavior and cause helium atoms to dissociate/desorb from the He m V n clusters, increasing the S parameters at 473-673 K. The gradual recovery of vacancies in the He m V n clusters decreased the S parameter above 673 K.

  13. Brownian self-driven particles on the surface of a sphere

    NASA Astrophysics Data System (ADS)

    Apaza, Leonardo; Sandoval, Mario

    2017-08-01

    We present the dynamics of overdamped Brownian self-propelled particles moving on the surface of a sphere. The effect of self-propulsion on the diffusion of these particles is elucidated by determining their angular (azimuthal and polar) mean-square displacement. Short- and long-times analytical expressions for their angular mean-square displacement are offered. Finally, the particles' steady marginal angular probability density functions are also elucidated.

  14. Exploring the Complex Pattern of Information Spreading in Online Blog Communities

    PubMed Central

    Pei, Sen; Muchnik, Lev; Tang, Shaoting; Zheng, Zhiming; Makse, Hernán A.

    2015-01-01

    Information spreading in online social communities has attracted tremendous attention due to its utmost practical values in applications. Despite that several individual-level diffusion data have been investigated, we still lack the detailed understanding of the spreading pattern of information. Here, by comparing information flows and social links in a blog community, we find that the diffusion processes are induced by three different spreading mechanisms: social spreading, self-promotion and broadcast. Although numerous previous studies have employed epidemic spreading models to simulate information diffusion, we observe that such models fail to reproduce the realistic diffusion pattern. In respect to users behaviors, strikingly, we find that most users would stick to one specific diffusion mechanism. Moreover, our observations indicate that the social spreading is not only crucial for the structure of diffusion trees, but also capable of inducing more subsequent individuals to acquire the information. Our findings suggest new directions for modeling of information diffusion in social systems, and could inform design of efficient propagation strategies based on users behaviors. PMID:25985081

  15. Exploring the complex pattern of information spreading in online blog communities.

    PubMed

    Pei, Sen; Muchnik, Lev; Tang, Shaoting; Zheng, Zhiming; Makse, Hernán A

    2015-01-01

    Information spreading in online social communities has attracted tremendous attention due to its utmost practical values in applications. Despite that several individual-level diffusion data have been investigated, we still lack the detailed understanding of the spreading pattern of information. Here, by comparing information flows and social links in a blog community, we find that the diffusion processes are induced by three different spreading mechanisms: social spreading, self-promotion and broadcast. Although numerous previous studies have employed epidemic spreading models to simulate information diffusion, we observe that such models fail to reproduce the realistic diffusion pattern. In respect to users behaviors, strikingly, we find that most users would stick to one specific diffusion mechanism. Moreover, our observations indicate that the social spreading is not only crucial for the structure of diffusion trees, but also capable of inducing more subsequent individuals to acquire the information. Our findings suggest new directions for modeling of information diffusion in social systems, and could inform design of efficient propagation strategies based on users behaviors.

  16. Venus' superrotation, mixing length theory and eddy diffusion - A parametric study

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Schatten, K. H.; Stevens-Rayburn, D. R.; Chan, K. L.

    1988-01-01

    The concept of the Hadley mechanism is adopted to describe the axisymmetric circulation of the Venus atmosphere. It is shown that, for the atmosphere of a slowly rotating planet such as Venus, a form of the nonliner 'closure' (self-consistent solution) of the fluid dynamics system which constrains the magnitude of the eddy diffusion coefficients can be postulated. A nonlinear one-layer spectral model of the zonally symmetric circulation was then used to establish the relationship between the heat source, the meridional circulation, and the eddy diffusion coefficients, yielding large zonal velocities. Computer experiments indicated that proportional changes in the heat source and eddy diffusion coefficients do not significantly change the zonal velocities. It was also found that, for large eddy diffusion coefficients, the meridional velocity is virtually constant; below a threshold in the diffusion rate, the meridional velocity decreases; and, for large eddy diffusion and small heating rates, the zonal velocities decrease with decreasing planetary rotation rates.

  17. Charge Effect on the Formation of Polyoxometalate-Based Supramolecular Polygons Driven by Metal Coordination.

    PubMed

    Piot, Madeleine; Hupin, Sébastien; Lavanant, Hélène; Afonso, Carlos; Bouteiller, Laurent; Proust, Anna; Izzet, Guillaume

    2017-07-17

    The metal-driven self-assembly of a Keggin-based hybrid bearing two remote pyridine units was investigated. The resulting supramolecular species were identified by combination of 2D diffusion NMR spectroscopy (DOSY) and electrospray ionization mass spectrometry (ESI-MS) as a mixture of molecular triangles and squares. This behavior is different from that of the structural analogue Dawson-based hybrid displaying a higher charge, which only led to the formation of molecular triangles. This study highlights the decisive effect of the charge of the POMs in their self-assembly processes that disfavors the formation of large assemblies. An isothermal titration calorimetry (ITC) experiment confirmed the stronger binding in the case of the Keggin hybrids. A correlation between the diffusion coefficient D and the molecular mass M of the POM-based building block and its coordination oligomers was also observed. We show that the diffusion coefficient of these compounds is mainly determined by their occupied volume rather than by their shape.

  18. Self Diffusion in Nano Filled Polymer Melts: a Molecular Dynamics Simulation Study

    NASA Astrophysics Data System (ADS)

    Desai, Tapan; Keblinski, Pawel

    2003-03-01

    SELF DIFFUSION IN NANO FILLED POLYMER MELTS: A MOLECULAR DYNAMICS SIMULATION STUDY* T. G. Desai,P. Keblinski, Material Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY. Using molecular dynamics simulations, we studied the dynamics of the polymeric systems containing immobile and analytically smooth spherical nanoparticles. Each chain consisted of N monomers connected by an anharmonic springs described by the finite extendible nonlinear elastic, FENE potential. The system comprises of 3nanoparticles and the rest by freely rotating but not overlapping chains. The longest chain studied has a Radius of gyration equal to particle size radius and comparable to inter-particle distance. There is no effect on the structural characteristics such as Radius of gyration or end to end distance due to the nanoparticles. Diffusion of polymeric chains is not affected by the presence of either attractive or repulsive nanoparticles. In all cases Rouse dynamics is observed for short chains with a crossover to reptation dynamics for longer chains.

  19. Stokes–Einstein relation and excess entropy in Al-rich Al-Cu melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasturel, A.; Jakse, N.

    We investigate the conditions for the validity of the Stokes-Einstein relation that connects diffusivity to viscosity in melts using entropy-scaling relationships developed by Rosenfeld. Employing ab initio molecular dynamics simulations to determine transport and structural properties of liquid Al{sub 1−x}Cu{sub x} alloys (with composition x ≤ 0.4), we first show that reduced self-diffusion coefficients and viscosities, according to Rosenfeld's formulation, scale with the two-body approximation of the excess entropy except the reduced viscosity for x = 0.4. Then, we use our findings to evidence that the Stokes-Einstein relation using effective atomic radii is not valid in these alloys while its validity can be relatedmore » to the temperature dependence of the partial pair-excess entropies of both components. Finally, we derive a relation between the ratio of the self-diffusivities of the components and the ratio of their pair excess entropies.« less

  20. Brownian motion of a self-propelled particle.

    PubMed

    ten Hagen, B; van Teeffelen, S; Löwen, H

    2011-05-18

    Overdamped Brownian motion of a self-propelled particle is studied by solving the Langevin equation analytically. On top of translational and rotational diffusion, in the context of the presented model, the 'active' particle is driven along its internal orientation axis. We calculate the first four moments of the probability distribution function for displacements as a function of time for a spherical particle with isotropic translational diffusion, as well as for an anisotropic ellipsoidal particle. In both cases the translational and rotational motion is either unconfined or confined to one or two dimensions. A significant non-Gaussian behaviour at finite times t is signalled by a non-vanishing kurtosis γ(t). To delimit the super-diffusive regime, which occurs at intermediate times, two timescales are identified. For certain model situations a characteristic t(3) behaviour of the mean-square displacement is observed. Comparing the dynamics of real and artificial microswimmers, like bacteria or catalytically driven Janus particles, to our analytical expressions reveals whether their motion is Brownian or not.

  1. Salt-Induced Universal Slowing Down of the Short-Time Self-Diffusion of a Globular Protein in Aqueous Solution

    DOE PAGES

    Grimaldo, Marco; Roosen-Runge, Felix; Hennig, Marcus; ...

    2015-06-17

    The short-time self-diffusion D of the globular model protein bovine serum albumin in aqueous (D 2O) solutions has been measured comprehensively as a function of the protein and trivalent salt (YCl 3) concentration, noted c p and c s, respectively. We observe that D follows a universal master curve D(c s,c p) = D(c s = 0,c p) g(c s/c p), where D(c s= 0,c p) is the diffusion coefficient in the absence of salt and g(c s/c p) is a scalar function solely depending on the ratio of the salt and protein concentration. This observation is consistent with amore » universal scaling of the bonding probability in a picture of cluster formation of patchy particles. In conclusion, the finding corroborates the predictive power of the description of proteins as colloids with distinct attractive ion-activated surface patches.« less

  2. Chemotaxis of artificial microswimmers in active density waves

    NASA Astrophysics Data System (ADS)

    Geiseler, Alexander; Hänggi, Peter; Marchesoni, Fabio; Mulhern, Colm; Savel'ev, Sergey

    2016-07-01

    Living microorganisms are capable of a tactic response to external stimuli by swimming toward or away from the stimulus source; they do so by adapting their tactic signal transduction pathways to the environment. Their self-motility thus allows them to swim against a traveling tactic wave, whereas a simple fore-rear asymmetry argument would suggest the opposite. Their biomimetic counterpart, the artificial microswimmers, also propel themselves by harvesting kinetic energy from an active medium, but, in contrast, lack the adaptive capacity. Here we investigate the transport of artificial swimmers subject to traveling active waves and show, by means of analytical and numerical methods, that self-propelled particles can actually diffuse in either direction with respect to the wave, depending on its speed and waveform. Moreover, chiral swimmers, which move along spiraling trajectories, may diffuse preferably in a direction perpendicular to the active wave. Such a variety of tactic responses is explained by the modulation of the swimmer's diffusion inside traveling active pulses.

  3. Primary radiation damage of Zr-0.5%Nb binary alloy: atomistic simulation by molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Tikhonchev, M.; Svetukhin, V.; Kapustin, P.

    2017-09-01

    Ab initio calculations predict high positive binding energy (˜1 eV) between niobium atoms and self-interstitial configurations in hcp zirconium. It allows the expectation of increased niobium fraction in self-interstitials formed under neutron irradiation in atomic displacement cascades. In this paper, we report the results of molecular dynamics simulation of atomic displacement cascades in Zr-0.5%Nb binary alloy and pure Zr at the temperature of 300 K. Two sets of n-body interatomic potentials have been used for the Zr-Nb system. We consider a cascade energy range of 2-20 keV. Calculations show close estimations of the average number of produced Frenkel pairs in the alloy and pure Zr. A high fraction of Nb is observed in the self-interstitial configurations. Nb is mainly detected in single self-interstitial configurations, where its fraction reaches tens of percent, i.e. more than its tenfold concentration in the matrix. The basic mechanism of this phenomenon is the trapping of mobile self-interstitial configurations by niobium. The diffusion of pure zirconium and mixed zirconium-niobium self-interstitial configurations in the zirconium matrix at 300 K has been simulated. We observe a strong dependence of the estimated diffusion coefficients and fractions of Nb in self-interstitials produced in displacement cascades on the potential.

  4. Dilution effects on combined magnetic and electric dipole interactions: A study of ferromagnetic cobalt nanoparticles with tuneable interactions

    NASA Astrophysics Data System (ADS)

    Hod, M.; Dobroserdova, A.; Samin, S.; Dobbrow, C.; Schmidt, A. M.; Gottlieb, M.; Kantorovich, S.

    2017-08-01

    Improved understanding of complex interactions between nanoparticles will facilitate the control over the ensuing self-assembled structures. In this work, we consider the dynamic changes occurring upon dilution in the self-assembly of a system of ferromagnetic cobalt nanoparticles that combine magnetic, electric, and steric interactions. The systems examined here vary in the strength of the magnetic dipole interactions and the amount of point charges per particle. Scattering techniques are employed for the characterization of the self-assembly aggregates, and zeta-potential measurements are employed for the estimation of surface charges. Our experiments show that for particles with relatively small initial number of surface electric dipoles, an increase in particle concentration results in an increase in diffusion coefficients; whereas for particles with relatively high number of surface dipoles, no effect is observed upon concentration changes. We attribute these changes to a shift in the adsorption/desorption equilibrium of the tri-n-octylphosphine oxide (TOPO) molecules on the particle surface. We put forward an explanation, based on the combination of two theoretical models. One predicts that the growing concentration of electric dipoles, stemming from the addition of tri-n-octylphosphine oxide (TOPO) as co-surfactant during particle synthesis, on the surface of the particles results in the overall repulsive interaction. Secondly, using density functional theory, we explain that the observed behaviour of the diffusion coefficient can be treated as a result of the concentration dependent nanoparticle self-assembly: additional repulsion leads to the reduction in self-assembled aggregate size despite the shorter average interparticle distances, and as such provides the growth of the diffusion coefficient.

  5. Dilution effects on combined magnetic and electric dipole interactions: A study of ferromagnetic cobalt nanoparticles with tuneable interactions.

    PubMed

    Hod, M; Dobroserdova, A; Samin, S; Dobbrow, C; Schmidt, A M; Gottlieb, M; Kantorovich, S

    2017-08-28

    Improved understanding of complex interactions between nanoparticles will facilitate the control over the ensuing self-assembled structures. In this work, we consider the dynamic changes occurring upon dilution in the self-assembly of a system of ferromagnetic cobalt nanoparticles that combine magnetic, electric, and steric interactions. The systems examined here vary in the strength of the magnetic dipole interactions and the amount of point charges per particle. Scattering techniques are employed for the characterization of the self-assembly aggregates, and zeta-potential measurements are employed for the estimation of surface charges. Our experiments show that for particles with relatively small initial number of surface electric dipoles, an increase in particle concentration results in an increase in diffusion coefficients; whereas for particles with relatively high number of surface dipoles, no effect is observed upon concentration changes. We attribute these changes to a shift in the adsorption/desorption equilibrium of the tri-n-octylphosphine oxide (TOPO) molecules on the particle surface. We put forward an explanation, based on the combination of two theoretical models. One predicts that the growing concentration of electric dipoles, stemming from the addition of tri-n-octylphosphine oxide (TOPO) as co-surfactant during particle synthesis, on the surface of the particles results in the overall repulsive interaction. Secondly, using density functional theory, we explain that the observed behaviour of the diffusion coefficient can be treated as a result of the concentration dependent nanoparticle self-assembly: additional repulsion leads to the reduction in self-assembled aggregate size despite the shorter average interparticle distances, and as such provides the growth of the diffusion coefficient.

  6. Diffusion of macromolecules in self-assembled cellulose/hemicellulose hydrogels.

    PubMed

    Lopez-Sanchez, Patricia; Schuster, Erich; Wang, Dongjie; Gidley, Michael J; Strom, Anna

    2015-05-28

    Cellulose hydrogels are extensively applied in many biotechnological fields and are also used as models for plant cell walls. We synthesised model cellulosic hydrogels containing hemicelluloses, as a biomimetic of plant cell walls, in order to study the role of hemicelluloses on their mass transport properties. Microbial cellulose is able to self-assemble into composites when hemicelluloses, such as xyloglucan and arabinoxylan, are present in the incubation media, leading to hydrogels with different nano and microstructures. We investigated the diffusivities of a series of fluorescently labelled dextrans, of different molecular weight, and proteins, including a plant pectin methyl esterase (PME), using fluorescence recovery after photobleaching (FRAP). The presence of xyloglucan, known to be able to crosslink cellulose fibres, confirmed by scanning electron microscopy (SEM) and (13)C NMR, reduced mobility of macromolecules of molecular weight higher than 10 kDa, reflected in lower diffusion coefficients. Furthermore PME diffusion was reduced in composites containing xyloglucan, despite the lack of a particular binding motif in PME for this polysaccharide, suggesting possible non-specific interactions between PME and this hemicellulose. In contrast, hydrogels containing arabinoxylan coating cellulose fibres showed enhanced diffusivity of the molecules studied. The different diffusivities were related to the architectural features found in the composites as a function of polysaccharide composition. Our results show the effect of model hemicelluloses in the mass transport properties of cellulose networks in highly hydrated environments relevant to understanding the role of hemicelluloses in the permeability of plant cell walls and aiding design of plant based materials with tailored properties.

  7. Computer simulations of adsorption and diffusion for binary mixtures of methane and hydrogen in titanosilicates.

    PubMed

    Mitchell, Martha C; Gallo, Marco; Nenoff, Tina M

    2004-07-22

    Equilibrium molecular dynamics (MD) simulations of equimolar mixtures of hydrogen and methane were performed in three different titanosilicates: naturally occurring zorite and two synthetic titanosilicates, ETS-4 and ETS-10. In addition, single-component MD simulations and adsorption isotherms generated using grand canonical Monte Carlo simulations were performed to support the mixture simulations. The goal of this study was to determine the best membrane material to carry out hydrogen/methane separations. ETS-10 has a three-dimensional pore network. ETS-4 and zorite have two-dimensional pore networks. The simulations carried out in this study show that the increased porosity of ETS-10 results in self-diffusion coefficients for both hydrogen and methane that are higher in ETS-10 than in either ETS-4 or zorite. Methane only showed appreciable displacement in ETS-10. The ability of the methane molecules to move in all three directions in ETS-10 was demonstrated by the high degree of isotropy shown in the values of the x, y, and z components of the self-diffusion coefficient for methane in ETS-10. From our simulations we conclude that ETS-10 would be better suited for fast industrial separations of hydrogen and methane. However, the separation would not result in a pure hydrogen stream. In contrast, ETS-4 and zorite would act as true molecular sieves for separations of hydrogen and methane, as the methane would not move through membranes made of these materials. This was indicated by the near-zero self-diffusion coefficient of methane in ETS-4 and zorite.

  8. Computer simulations of adsorption and diffusion for binary mixtures of methane and hydrogen in titanosilicates

    NASA Astrophysics Data System (ADS)

    Mitchell, Martha C.; Gallo, Marco; Nenoff, Tina M.

    2004-07-01

    Equilibrium molecular dynamics (MD) simulations of equimolar mixtures of hydrogen and methane were performed in three different titanosilicates: naturally occurring zorite and two synthetic titanosilicates, ETS-4 and ETS-10. In addition, single-component MD simulations and adsorption isotherms generated using grand canonical Monte Carlo simulations were performed to support the mixture simulations. The goal of this study was to determine the best membrane material to carry out hydrogen/methane separations. ETS-10 has a three-dimensional pore network. ETS-4 and zorite have two-dimensional pore networks. The simulations carried out in this study show that the increased porosity of ETS-10 results in self-diffusion coefficients for both hydrogen and methane that are higher in ETS-10 than in either ETS-4 or zorite. Methane only showed appreciable displacement in ETS-10. The ability of the methane molecules to move in all three directions in ETS-10 was demonstrated by the high degree of isotropy shown in the values of the x, y, and z components of the self-diffusion coefficient for methane in ETS-10. From our simulations we conclude that ETS-10 would be better suited for fast industrial separations of hydrogen and methane. However, the separation would not result in a pure hydrogen stream. In contrast, ETS-4 and zorite would act as true molecular sieves for separations of hydrogen and methane, as the methane would not move through membranes made of these materials. This was indicated by the near-zero self-diffusion coefficient of methane in ETS-4 and zorite.

  9. A Least-Squares Transport Equation Compatible with Voids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Jon; Peterson, Jacob; Morel, Jim

    Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transportmore » equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares S n formulation represents an excellent alternative to existing second-order S n transport formulations« less

  10. Responses to a Self-Presented Suicide Attempt in Social Media

    PubMed Central

    Fu, King-wa; Cheng, Qijin; Wong, Paul W.C.; Yip, Paul S. F.

    2014-01-01

    Background The self-presentation of suicidal acts in social media has become a public health concern. Aims This article centers on a Chinese microblogger who posted a wrist-cutting picture that was widely circulated in Chinese social media in 2011. This exploratory study examines written reactions of a group of Chinese microbloggers exposed to the post containing a self-harming message and photo. In addition, we investigate the pattern of information diffusion via a social network. Methods We systematically collected and analyzed 5,971 generated microblogs and the network of information diffusion. Results We found that a significant portion of written responses (36.6%) could help vulnerable netizens by providing peer-support and calls for help. These responses were reposted and diffused via an online social network with markedly more clusters of users – and at a faster pace – than a set of randomly generated networks. Conclusions We conclude that social media can be a double-edged sword: While it may contagiously affect others by spreading suicidal thoughts and acts, it may also play a positive role by assisting people at risk for suicide, providing rescue or support. More research is needed to learn how suicidally vulnerable people interact with online suicide information, and how we can effectively intervene. PMID:23871954

  11. Responses to a self-presented suicide attempt in social media: a social network analysis.

    PubMed

    Fu, King-Wa; Cheng, Qijin; Wong, Paul W C; Yip, Paul S F

    2013-01-01

    The self-presentation of suicidal acts in social media has become a public health concern. This article centers on a Chinese microblogger who posted a wrist-cutting picture that was widely circulated in Chinese social media in 2011. This exploratory study examines written reactions of a group of Chinese microbloggers exposed to the post containing a self-harming message and photo. In addition, we investigate the pattern of information diffusion via a social network. We systematically collected and analyzed 5,971 generated microblogs and the network of information diffusion. We found that a significant portion of written responses (36.6%) could help vulnerable netizens by providing peer-support and calls for help. These responses were reposted and diffused via an online social network with markedly more clusters of users--and at a faster pace-- than a set of randomly generated networks. We conclude that social media can be a double-edged sword: While it may contagiously affect others by spreading suicidal thoughts and acts, it may also play a positive role by assisting people at risk for suicide, providing rescue or support. More research is needed to learn how suicidally vulnerable people interact with online suicide information, and how we can effectively intervene.

  12. A first-principles study of elastic and diffusion properties of magnesium based alloys

    NASA Astrophysics Data System (ADS)

    Ganeshan, Swetha

    2011-12-01

    In this thesis, the influence of alloying elements on the elastic and diffusion properties of Magnesium (Mg) has been studied based on first-principles density functional theory. The stress-strain method has been used to predict the elastic constants of the Mg based alloys studied herein. This method involves calculating the resultant change in stress due to application of strain. The validity of this method has been successfully tested for both 0K as well as at finite temperatures. The elastic constants predicted in this work have been correlated to ductility, fracture toughness, stiffness, elastic anisotropy and bond directionality, thus providing a better understanding of the influence of alloying elements on the mechanical and physical properties of Mg. Elastic constants, as a function of temperature have been predicted using first-principles quasi-static approximation. In this approach elastic stiffness coefficients calculated with respect to volume (cij( V)) have been correlated to the equilibrium volume as a function of temperature V(T) from phonon calculations to obtain temperature dependence of elastic stiffness coefficients cij(T). To compare our calculated temperature dependent elastic constants with that of experiments an isentropic correction term has been introduced. It is seen that the influence of this isentropic correction term on the elastic constants becomes significant at high temperatures. The quasi-static approximation has been primarily applied to calculate temperature dependent elastic constants of Mg2Ge, Mg2Si, Mg 2Sn and Mg2Pb. In the case of dilute Mg alloys, a 36 atom supercell with 35 atoms of Mg and one atom of the alloying impurity has been used for calculating the corresponding elastic constants. It is seen that there is a direct correspondence between the trends in the elastic constants and the lattice parameters of all the Mg based alloys studied herein. Elements that cause a decrease (increase) in the lattice constants result in an increase (decrease) in the bulk modulus. Self-diffusion calculations of Mg have been performed within both LDA and GGA. It is seen that, in the absence of surface corrections, while results of the two approximations (i.e. LDA and GGA) bound experimental data, better agreement is seen with respect to results from LDA, in comparison with experimental measurements. The effect of thermal expansion on the diffusivity of Mg has been studied using both HA and QHA. It is seen that the influence of anharmonicity on the diffusivity of Mg is negligible. Self-diffusion of Mg is faster in the basal plane than between adjacent basal planes. Partial correlation factors corresponding to the diffusion of a Mg atom from one basal plane to the adjacent basal plane, i.e. fBx and fBz, decrease with temperature whereas the partial correlation factor corresponding to the diffusion of Mg atom within the basal plane, i.e. fAx , increases with temperature. The ratio of jump frequencies w⊥/w∥ for self-diffusion of Mg increase with increase in temperature. The method used to calculate self-diffusion coefficients has been extended to compute impurity diffusion coefficients of Al, Ca, Sn and Zn in Mg. For these calculations, a 36 atom supercell with 1 vacant site and 1 impurity has been used. The 8-frequencey model has been implemented to obtain the different atom jump frequencies in order to calculate impurity diffusion coefficients in Mg. The trend in the impurity diffusion coefficients, with the exception of DZn-Mg is as follows: D Mg-Ca>DMg>DMg-Sn> DMg-Al. For impurity diffusion of Zn in Mg, at high temperatures DMg-Zn overlaps with that of DMg-Al , while at low temperatures it overlaps with that of D Mg-Sn. The different atom jump frequencies computed during the diffusion calculations are seen to be temperature dependent, increasing with increase in temperature. The correlation factors for all the alloy systems considered herein, is close to 1. This is expected to be due to the close packing of Mg lattice. (Abstract shortened by UMI.)

  13. Augmentation of oxygen transport by various hemoglobins as determined by pulsed field gradient NMR.

    PubMed

    Budhiraja, Vikas; Hellums, J David; Post, Jan F M

    2002-11-01

    Diffusion of oxyhemoglobin has been shown to augment the oxygen transport inside the red blood cells. Measurement of hemoglobin diffusion coefficients by pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) technique can be used for estimating this augmentation effect. Self-diffusion coefficients of polymerized and unpolymerized bovine hemoglobin (Hb) and several other proteins were measured using this technique. The Hb diffusion coefficient was used to determine the effective permeability of oxygen and augmentation of oxygen transport through samples of Hb solutions due to diffusion of oxyhemoglobin. The values compared well with our previous diffusion cell measurements of effective diffusivity and augmentation. Our NMR studies show that even at low concentrations the augmentation of oxygen transport due to diffusion can be significant. The PFG NMR technique can thus provide an accurate and easy method for measuring augmentation of oxygen transport, especially in dilute samples of Hb. The results on polyhemoglobin and high-molecular-weight hemoglobin are of both basic interest and practical value in assessing the promise and performance of hemoglobin-based blood substitutes.

  14. Anomalous Diffusion of Water in Lamellar Membranes Formed by Pluronic Polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Ohl, Michael; Han, Youngkyu; Smith, Gregory; Do, Changwoo; Biology; Soft-Matter Division, Oak Ridge National Laboratory Team; Julich CenterNeutron Science Team

    Water diffusion is playing an important role in polymer systems. We calculated the water diffusion coefficient at different layers along z-direction which is perpendicular to the lamellar membrane formed by Pluronic block copolymers (L62: (EO6-PO34-EO6)) with the molecular dynamics simulation trajectories. Water molecules at bulk layers are following the normal diffusion, while that at hydration layers formed by polyethylene oxide (PEO) and hydrophobic layers formed by polypropylene oxide (PPO) are following anomalous diffusion. We find that although the subdiffusive regimes at PEO layers and PPO layers are the same, which is the fractional Brownian motion, however, the dynamics are different, i.e. diffusion at the PEO layers is much faster than that at the PPO layers, and meanwhile it exhibits a normal diffusive approximation within a short time period which is governed by the localized free self-diffusion, but becomes subdiffusive after t >8 ps, which is governed by the viscoelastic medium. The Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; and Zhe Zhang gratefully acknowledges financial support from Julich Center for Neutron Science.

  15. Preparation and characterization of self-crosslinked organic/inorganic proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Zhong, Shuangling; Cui, Xuejun; Dou, Sen; Liu, Wencong

    A series of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) nanoparticles are successfully synthesized via simple emulsion polymerization method. The Si-sPS/A latexes show good film-forming capability and the self-crosslinked organic/inorganic proton exchange membranes are prepared by pouring the Si-sPS/A nanoparticle latexes into glass plates and drying at 60 °C for 10 h and 120 °C for 2 h. The potential of the membranes in direct methanol fuel cells (DMFCs) is characterized preliminarily by studying their thermal stability, ion-exchange capacity, water uptake, methanol diffusion coefficient, proton conductivity and selectivity (proton conductivity/methanol diffusion coefficient). The results indicate that these membranes possess excellent thermal stability and methanol barrier due to the existence of self-crosslinked silica network. In addition, the proton conductivity of the membranes is in the range of 10 -3-10 -2 S cm -1 and all the membranes show much higher selectivity in comparison with Nafion ® 117. These results suggest that the self-crosslinked organic/inorganic proton exchange membranes are particularly promising in DMFC applications.

  16. Bulk dynamics of Brownian hard disks: Dynamical density functional theory versus experiments on two-dimensional colloidal hard spheres

    NASA Astrophysics Data System (ADS)

    Stopper, Daniel; Thorneywork, Alice L.; Dullens, Roel P. A.; Roth, Roland

    2018-03-01

    Using dynamical density functional theory (DDFT), we theoretically study Brownian self-diffusion and structural relaxation of hard disks and compare to experimental results on quasi two-dimensional colloidal hard spheres. To this end, we calculate the self-van Hove correlation function and distinct van Hove correlation function by extending a recently proposed DDFT-approach for three-dimensional systems to two dimensions. We find that the theoretical results for both self-part and distinct part of the van Hove function are in very good quantitative agreement with the experiments up to relatively high fluid packing fractions of roughly 0.60. However, at even higher densities, deviations between the experiment and the theoretical approach become clearly visible. Upon increasing packing fraction, in experiments, the short-time self-diffusive behavior is strongly affected by hydrodynamic effects and leads to a significant decrease in the respective mean-squared displacement. By contrast, and in accordance with previous simulation studies, the present DDFT, which neglects hydrodynamic effects, shows no dependence on the particle density for this quantity.

  17. Assessment of identity development and identity diffusion in adolescence - Theoretical basis and psychometric properties of the self-report questionnaire AIDA.

    PubMed

    Goth, Kirstin; Foelsch, Pamela; Schlüter-Müller, Susanne; Birkhölzer, Marc; Jung, Emanuel; Pick, Oliver; Schmeck, Klaus

    2012-07-19

    In the continuing revision of Diagnostic and Statistical Manual (DSM-V) "identity" is integrated as a central diagnostic criterion for personality disorders (self-related personality functioning). According to Kernberg, identity diffusion is one of the core elements of borderline personality organization. As there is no elaborated self-rating inventory to assess identity development in healthy and disturbed adolescents, we developed the AIDA (Assessment of Identity Development in Adolescence) questionnaire to assess this complex dimension, varying from "Identity Integration" to "Identity Diffusion", in a broad and substructured way and evaluated its psychometric properties in a mixed school and clinical sample. Test construction was deductive, referring to psychodynamic as well as social-cognitive theories, and led to a special item pool, with consideration for clarity and ease of comprehension. Participants were 305 students aged 12-18 attending a public school and 52 adolescent psychiatric inpatients and outpatients with diagnoses of personality disorders (N = 20) or other mental disorders (N = 32). Convergent validity was evaluated by covariations with personality development (JTCI 12-18 R scales), criterion validity by differences in identity development (AIDA scales) between patients and controls. AIDA showed excellent total score (Diffusion: α = .94), scale (Discontinuity: α = .86; Incoherence: α = .92) and subscale (α = .73-.86) reliabilities. High levels of Discontinuity and Incoherence were associated with low levels in Self Directedness, an indicator of maladaptive personality functioning. Both AIDA scales were significantly different between PD-patients and controls with remarkable effect sizes (d) of 2.17 and 1.94 standard deviations. AIDA is a reliable and valid instrument to assess normal and disturbed identity in adolescents. Studies for further validation and for obtaining population norms are in progress and may provide insight in the relevant aspects of identity development in differentiating specific psychopathology and therapeutic focus and outcome.

  18. Carbon diffusion in molten uranium: an ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.; Henson, Neil J.; Devanathan, Ram; Schwantes, Jon M.; Reilly, Dallas D.

    2018-04-01

    In this work we used ab initio molecular dynamics within the framework of density functional theory and the projector-augmented wave method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activation energy for carbon was nearly twice that of uranium: 0.55 ± 0.03 eV for carbon compared to 0.32 ± 0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.

  19. Levitation effect in zeolites: Quasielastic neutron scattering and molecular dynamics study of pentane isomers in zeolite NaY.

    PubMed

    Borah, Bhaskar J; Jobic, H; Yashonath, S

    2010-04-14

    We report the quasielastic neutron scattering (QENS) and molecular dynamics (MD) investigations into diffusion of pentane isomers in zeolite NaY. The molecular cross section perpendicular to the long molecular axis varies for the three isomers while the mass and the isomer-zeolite interaction remains essentially unchanged. Both QENS and MD results show that the branched isomers neopentane and isopentane have higher self-diffusivities as compared with n-pentane at 300 K in NaY zeolite. This result provides direct experimental evidence for the existence of nonmonotonic, anomalous dependence of self-diffusivity on molecular diameter known as the levitation effect. The energetic barrier at the bottleneck derived from MD simulations exists for n-pentane which lies in the linear regime while no such barrier is seen for neopentane which is located clearly in the anomalous regime. Activation energy is in the order E(a)(n-pentane)>E(a)(isopentane)>E(a)(neopentane) consistent with the predictions of the levitation effect. In the liquid phase, it is seen that D(n-pentane)>D(isopentane)>D(neopentane) and E(a)(n-pentane)

  20. Levitation effect in zeolites: Quasielastic neutron scattering and molecular dynamics study of pentane isomers in zeolite NaY

    NASA Astrophysics Data System (ADS)

    Borah, Bhaskar J.; Jobic, H.; Yashonath, S.

    2010-04-01

    We report the quasielastic neutron scattering (QENS) and molecular dynamics (MD) investigations into diffusion of pentane isomers in zeolite NaY. The molecular cross section perpendicular to the long molecular axis varies for the three isomers while the mass and the isomer-zeolite interaction remains essentially unchanged. Both QENS and MD results show that the branched isomers neopentane and isopentane have higher self-diffusivities as compared with n-pentane at 300 K in NaY zeolite. This result provides direct experimental evidence for the existence of nonmonotonic, anomalous dependence of self-diffusivity on molecular diameter known as the levitation effect. The energetic barrier at the bottleneck derived from MD simulations exists for n-pentane which lies in the linear regime while no such barrier is seen for neopentane which is located clearly in the anomalous regime. Activation energy is in the order Ea(n-pentane)>Ea(isopentane)>Ea(neopentane) consistent with the predictions of the levitation effect. In the liquid phase, it is seen that D(n-pentane)>D(isopentane)>D(neopentane) and Ea(n-pentane)

  1. Diffusion of Sticky Nanoparticles in a Polymer Melt: Crossover from Suppressed to Enhanced Transport

    DOE PAGES

    Carroll, Bobby; Bocharova, Vera; Carrillo, Jan-Michael Y.; ...

    2018-03-09

    The self-diffusion of a single large particle in a fluid is usually described by the classic Stokes–Einstein (SE) hydrodynamic relation. However, there are many fluids where the SE prediction for nanoparticles diffusion fails. These systems include diffusion of nanoparticles in porous media, in entangled and unentangled polymer melts and solutions, and protein diffusion in biological environments. A fundamental understanding of the microscopic parameters that govern nanoparticle diffusion is relevant to a wide range of applications. Here in this work, we present experimental measurements of the tracer diffusion coefficient of small and large nanoparticles that experience strong attractions with unentangled andmore » entangled polymer melt matrices. For the small nanoparticle system, a crossover from suppressed to enhanced diffusion is observed with increasing polymer molecular weight. We interpret these observations based on our theoretical and simulation insights of the preceding article (paper 1) as a result of a crossover from an effective hydrodynamic core–shell to a nonhydrodynamic vehicle mechanism of transport, with the latter strongly dependent on polymer–nanoparticle desorption time. In conclusion, a general zeroth-order qualitative picture for small sticky nanoparticle diffusion in polymer melts is proposed.« less

  2. Diffusion of Sticky Nanoparticles in a Polymer Melt: Crossover from Suppressed to Enhanced Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Bobby; Bocharova, Vera; Carrillo, Jan-Michael Y.

    The self-diffusion of a single large particle in a fluid is usually described by the classic Stokes–Einstein (SE) hydrodynamic relation. However, there are many fluids where the SE prediction for nanoparticles diffusion fails. These systems include diffusion of nanoparticles in porous media, in entangled and unentangled polymer melts and solutions, and protein diffusion in biological environments. A fundamental understanding of the microscopic parameters that govern nanoparticle diffusion is relevant to a wide range of applications. Here in this work, we present experimental measurements of the tracer diffusion coefficient of small and large nanoparticles that experience strong attractions with unentangled andmore » entangled polymer melt matrices. For the small nanoparticle system, a crossover from suppressed to enhanced diffusion is observed with increasing polymer molecular weight. We interpret these observations based on our theoretical and simulation insights of the preceding article (paper 1) as a result of a crossover from an effective hydrodynamic core–shell to a nonhydrodynamic vehicle mechanism of transport, with the latter strongly dependent on polymer–nanoparticle desorption time. In conclusion, a general zeroth-order qualitative picture for small sticky nanoparticle diffusion in polymer melts is proposed.« less

  3. Communication: Relationship between solute localization and diffusion in a dynamically constrained polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saylor, David M.; Jawahery, Sudi; Silverstein, Joshua S.

    2016-07-21

    We investigate the link between dynamic localization, characterized by the Debye–Waller factor, 〈u{sup 2}〉, and solute self-diffusivity, D, in a polymer system using atomistic molecular dynamics simulations and vapor sorption experiments. We find a linear relationship between lnD and 1/〈u{sup 2}〉 over more than four decades of D, encompassing most of the glass formation regime. The observed linearity is consistent with the Langevin dynamics in a periodically varying potential field and may offer a means to rapidly assess diffusion based on the characterization of dynamic localization.

  4. Self-assembled formation and transformation of In/CdZnTe(110) nano-rings into camel-humps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen-Taguri, G.; Ruzin, A.; Goldfarb, I.

    2012-05-21

    We used in situ scanning tunneling microscopy to monitor in real time the formation of nano-rings at the molecular beam epitaxially grown In/CdZnTe(110) surface, and Auger electron spectroscopy to explore the corresponding compositional changes. In-diffusion of In and segregation of Cd to the surface in course of annealing lead to a formation of elliptically distorted nano-rings, elongated along the fast [110] diffusion direction. Exacerbated diffusion anisotropy in the liquid state, at temperatures above the melting point of In, further distorts the nano-rings into a camel-hump shape.

  5. Removing the barrier to the calculation of activation energies: Diffusion coefficients and reorientation times in liquid water.

    PubMed

    Piskulich, Zeke A; Mesele, Oluwaseun O; Thompson, Ward H

    2017-10-07

    General approaches for directly calculating the temperature dependence of dynamical quantities from simulations at a single temperature are presented. The method is demonstrated for self-diffusion and OH reorientation in liquid water. For quantities which possess an activation energy, e.g., the diffusion coefficient and the reorientation time, the results from the direct calculation are in excellent agreement with those obtained from an Arrhenius plot. However, additional information is obtained, including the decomposition of the contributions to the activation energy. These results are discussed along with prospects for additional applications of the direct approach.

  6. Self-Healing of Unentangled Polymer Networks with Reversible Bonds

    PubMed Central

    Stukalin, Evgeny B.; Cai, Li-Heng; Kumar, N. Arun; Leibler, Ludwik; Rubinstein, Michael

    2013-01-01

    Self-healing polymeric materials are systems that after damage can revert to their original state with full or partial recovery of mechanical strength. Using scaling theory we study a simple model of autonomic self-healing of unentangled polymer networks. In this model one of the two end monomers of each polymer chain is fixed in space mimicking dangling chains attachment to a polymer network, while the sticky monomer at the other end of each chain can form pairwise reversible bond with the sticky end of another chain. We study the reaction kinetics of reversible bonds in this simple model and analyze the different stages in the self-repair process. The formation of bridges and the recovery of the material strength across the fractured interface during the healing period occur appreciably faster after shorter waiting time, during which the fractured surfaces are kept apart. We observe the slowest formation of bridges for self-adhesion after bringing into contact two bare surfaces with equilibrium (very low) density of open stickers in comparison with self-healing. The primary role of anomalous diffusion in material self-repair for short waiting times is established, while at long waiting times the recovery of bonds across fractured interface is due to hopping diffusion of stickers between different bonded partners. Acceleration in bridge formation for self-healing compared to self-adhesion is due to excess non-equilibrium concentration of open stickers. Full recovery of reversible bonds across fractured interface (formation of bridges) occurs after appreciably longer time than the equilibration time of the concentration of reversible bonds in the bulk. PMID:24347684

  7. Study of translational dynamics in molten polymer by variation of gradient pulse-width of PGSE.

    PubMed

    Stepišnik, Janez; Lahajnar, Gojmir; Zupančič, Ivan; Mohorič, Aleš

    2013-11-01

    Pulsed gradient spin echo is a method of measuring molecular translation. Changing Δ makes it sensitive to diffusion spectrum. Spin translation effects the buildup of phase structure during the application of gradient pulses as well. The time scale of the self-diffusion measurement shortens if this is taken into account. The method of diffusion spectrometry with variable δ is also less sensitive to artifacts caused by spin relaxation and internal gradient fields. Here the method is demonstrated in the case of diffusion spectrometry of molten polyethylene. The results confirm a model of constraint release in a system of entangled polymer chains as a sort of tube Rouse motion. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes

    NASA Astrophysics Data System (ADS)

    Berrod, Q.; Ferdeghini, F.; Judeinstein, P.; Genevaz, N.; Ramos, R.; Fournier, A.; Dijon, J.; Ollivier, J.; Rols, S.; Yu, D.; Mole, R. A.; Zanotti, J.-M.

    2016-04-01

    Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators.Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01445c

  9. Crossbar nanoarchitectonics of the crosslinked self-assembled monolayer

    PubMed Central

    2014-01-01

    A bottom-up approach was devised to build a crossbar device using the crosslinked SAM of the 5,5′-bis (mercaptomethyl)-2,2′-bipyridine-Ni2+ (BPD- Ni2+) on a gold surface. To avoid metal diffusion through the organic film, the author used (i) nanoscale bottom electrodes to reduce the probability of defects on the bottom electrodes and (ii) molecular crosslinked technology to avoid metal diffusion through the SAMs. The properties of the crosslinked self-assembled monolayer were determined by XPS. I-V characteristics of the device show thermally activated hopping transport. The implementation of this type of architecture will open up new vistas for a new class of devices for transport, storage, and computing. PMID:24994952

  10. Coupling of atom-by-atom calculations of extended defects with B kick-out equations: application to the simulation of boron ted

    NASA Astrophysics Data System (ADS)

    Lampin, E.; Cristiano, F.; Lamrani, Y.; Colombeau, B.

    2004-02-01

    We present simulations of B TED based on a complete calculation of the extended defect growth/shrinkage during annealing. The Si self-interstitial supersaturation calculated at the extended defect depth is coupled to the set of equations for the B kick-out diffusion through a generation/recombination term in the diffusion equation of the Si self-interstitials. The simulations are compared to the measurements performed on a Si wafer containing several B marker layers, where the amount of TED varies from one peak to the other. The good agreement obtained on this experiment is very promising for the application of these calculations to the case of ultra-shallow B + implants.

  11. Self-organized pattern formation at organic-inorganic interfaces during deposition: Experiment versus modeling

    NASA Astrophysics Data System (ADS)

    Szillat, F.; Mayr, S. G.

    2011-09-01

    Self-organized pattern formation during physical vapor deposition of organic materials onto rough inorganic substrates is characterized by a complex morphological evolution as a function of film thickness. We employ a combined experimental-theoretical study using atomic force microscopy and numerically solved continuum rate equations to address morphological evolution in the model system: poly(bisphenol A carbonate) on polycrystalline Cu. As the key ingredients for pattern formation, (i) curvature and interface potential driven surface diffusion, (ii) deposition noise, and (iii) interface boundary effects are identified. Good agreement of experiments and theory, fitting only the Hamaker constant and diffusivity within narrow physical parameter windows, corroborates the underlying physics and paves the way for computer-assisted interface engineering.

  12. A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits

    NASA Astrophysics Data System (ADS)

    Kittell, D. E.; Yarrington, C. D.; Hobbs, M. L.; Abere, M. J.; Adams, D. P.

    2018-04-01

    A diffusion-limited reaction model was calibrated for Al/Pt multilayers ignited on oxidized silicon, sapphire, and tungsten substrates, as well as for some Al/Pt multilayers ignited as free-standing foils. The model was implemented in a finite element analysis code and used to match experimental burn front velocity data collected from several years of testing at Sandia National Laboratories. Moreover, both the simulations and experiments reveal well-defined quench limits in the total Al + Pt layer (i.e., bilayer) thickness. At these limits, the heat generated from atomic diffusion is insufficient to support a self-propagating wave front on top of the substrates. Quench limits for reactive multilayers are seldom reported and are found to depend on the thermal properties of the individual layers. Here, the diffusion-limited reaction model is generalized to allow for temperature- and composition-dependent material properties, phase change, and anisotropic thermal conductivity. Utilizing this increase in model fidelity, excellent overall agreement is shown between the simulations and experimental results with a single calibrated parameter set. However, the burn front velocities of Al/Pt multilayers ignited on tungsten substrates are over-predicted. Possible sources of error are discussed and a higher activation energy (from 41.9 kJ/mol.at. to 47.5 kJ/mol.at.) is shown to bring the simulations into agreement with the velocity data observed on tungsten substrates. This higher activation energy suggests an inhibited diffusion mechanism present at lower heating rates.

  13. Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V., E-mail: aneimark@rutgers.edu

    2016-01-07

    Using dissipative particle dynamics (DPD), we simulate nanoscale segregation, water diffusion, and proton conductivity in hydrated sulfonated polystyrene (sPS). We employ a novel model [Lee et al. J. Chem. Theory Comput. 11(9), 4395-4403 (2015)] that incorporates protonation/deprotonation equilibria into DPD simulations. The polymer and water are modeled by coarse-grained beads interacting via short-range soft repulsion and smeared charge electrostatic potentials. The proton is introduced as a separate charged bead that forms dissociable Morse bonds with the base beads representing water and sulfonate anions. Morse bond formation and breakup artificially mimics the Grotthuss mechanism of proton hopping between the bases. Themore » DPD model is parameterized by matching the proton mobility in bulk water, dissociation constant of benzenesulfonic acid, and liquid-liquid equilibrium of water-ethylbenzene solutions. The DPD simulations semi-quantitatively predict nanoscale segregation in the hydrated sPS into hydrophobic and hydrophilic subphases, water self-diffusion, and proton mobility. As the hydration level increases, the hydrophilic subphase exhibits a percolation transition from isolated water clusters to a 3D network. The analysis of hydrophilic subphase connectivity and water diffusion demonstrates the importance of the dynamic percolation effect of formation and breakup of temporary junctions between water clusters. The proposed DPD model qualitatively predicts the ratio of proton to water self-diffusion and its dependence on the hydration level that is in reasonable agreement with experiments.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, D.; Akis, R.; Brinkman, D.

    An improved model of copper p-type doping in CdTe absorbers is proposed that accounts for the mechanisms related to tightly bound Cu(i)-Cu(Cd) and Cd(i)-Cu(Cd) complexes that both limit diffusion and cause self-compensation of Cu species. The new model explains apparent discrepancy between DFT-calculated and fitted diffusion parameters of Cu reported in our previous work, and allows for better understanding of performance and metastabilities in CdTe PV devices.

  15. Combined effects of the drug distribution and mucus diffusion properties of self-microemulsifying drug delivery systems on the oral absorption of fenofibrate.

    PubMed

    Sunazuka, Yushi; Ueda, Keisuke; Higashi, Kenjirou; Tanaka, Yusuke; Moribe, Kunikazu

    2018-05-24

    We present the absorption improvement mechanism of fenofibrate (FFB), a Biopharmaceutics Classification System (BCS) class II drug, from self-microemulsifying drug delivery systems (SMEDDS), centered on improving the diffusion of FFB through the unstirred water layer (UWL). Four SMEDDS formulations containing Labrafac™ lipophile WL 1349 (WL1349) or Labrafil ® M 1944CS (M1944) oils and NIKKOL HCO-40 (HCO40) or NIKKOL HCO-60 (HCO60) surfactants were prepared. Every SMEDDS formulation formed microemulsion droplets of approximately 30 nm. In vitro tests showed that the microemulsion droplets containing M1944 had relatively small FFB solubilization capacities, causing larger amounts of FFB to be dissolved in the bulk water phase, compared to the droplets containing WL1349. The diffusivity of the microemulsion droplets through the mucin solution layer was enhanced when using HCO40 compared to HCO60. The oral absorption in rats was the highest when using the SMEDDS formulation containing M1944 and HCO40. High FFB distribution in the bulk water phase and fast diffusion of microemulsion droplets through the mucus layer contributed to the efficient delivery of FFB molecules through the UWL to the epithelial cells, leading to enhanced FFB absorption. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The secular evolution of discrete quasi-Keplerian systems. II. Application to a multi-mass axisymmetric disc around a supermassive black hole

    NASA Astrophysics Data System (ADS)

    Fouvry, J.-B.; Pichon, C.; Chavanis, P.-H.

    2018-01-01

    A discrete self-gravitating quasi-Keplerian razor-thin axisymmetric stellar disc orbiting a massive black hole sees its orbital structure diffuse on secular timescales as a result of a self-induced resonant relaxation. In the absence of collective effects, such a process is described by the recently derived inhomogeneous multi-mass degenerate Landau equation. Relying on Gauss' method, we computed the associated drift and diffusion coefficients to characterise the properties of the resonant relaxation of razor-thin discs. For a disc-like configuration in our Galactic centre, we showed how this secular diffusion induces an adiabatic distortion of orbits and estimate the typical timescale of resonant relaxation. When considering a disc composed of multiple masses similarly distributed, we have illustrated how the population of lighter stars will gain eccentricity, driving it closer to the central black hole, provided the distribution function increases with angular momentum. The kinetic equation recovers as well the quenching of the resonant diffusion of a test star in the vicinity of the black hole (the "Schwarzschild barrier") as a result of the divergence of the relativistic precessions. The dual stochastic Langevin formulation yields consistent results and offers a versatile framework in which to incorporate other stochastic processes.

  17. Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk

    NASA Astrophysics Data System (ADS)

    Gorenflo, R.; Mainardi, F.

    A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By the space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order alpha in (0,2] and skewness theta (\\verttheta\\vertlemin \\{alpha ,2-alpha \\}), and the first-order time derivative with a Caputo derivative of order beta in (0,1] . The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process. We view it as a generalized diffusion process that we call fractional diffusion process, and present an integral representation of the fundamental solution. A more general approach to anomalous diffusion is however known to be provided by the master equation for a continuous time random walk (CTRW). We show how this equation reduces to our fractional diffusion equation by a properly scaled passage to the limit of compressed waiting times and jump widths. Finally, we describe a method of simulation and display (via graphics) results of a few numerical case studies.

  18. Diffusion of an e-Portfolio to Assist in the Self-Directed Learning of Physicians: An Exploratory Study

    ERIC Educational Resources Information Center

    Goliath, Cheryl Lynn

    2009-01-01

    Professional societies in the field of medicine have recommended that the traditional model for lifelong medical learning, which had previously focused on attendance at weeklong didactic continuing medical education (CME) courses, should be replaced by individualized study. Self-directed and practice-linked learning are well accepted in principle,…

  19. Infrared welding process on composite: Effect of interdiffusion at the welding interface

    NASA Astrophysics Data System (ADS)

    Asseko, André Chateau Akué; Lafranche, Éric; Cosson, Benoît; Schmidt, Fabrice; Le Maoult, Yannick

    2016-10-01

    In this study, the effects of the welding temperature field developed during the infrared assembly process on the joining properties of glass fibre reinforced polycarbonate/ unreinforced polycarbonate with carbon black were investigated. The temperature field and the contact time govern together the quality of the adhesion at the welding interface. The effect of the semi-transparent glass fibre reinforced polycarbonate composite / unreinforced polycarbonate composite with carbon black interface was quantified in term of quadratic distance of diffusion or diffusion depth through the welding interface. The microstructural characterizations were investigated in order to inspect the welding zones quality and to observe their failure modes. The diffusion theory has then been applied to calculate the variation of the quadratic distance of diffusion versus time at different locations. The complete self-diffusion is supposed occurring only at temperature above the polycarbonate glass transition temperature (140°C) and with a quadratic distance of diffusion superior to the mean square end-to-end distance.

  20. Quasilinear diffusion coefficients in a finite Larmor radius expansion for ion cyclotron heated plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jungpyo; Wright, John; Bertelli, Nicola

    In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less

  1. Quasilinear diffusion coefficients in a finite Larmor radius expansion for ion cyclotron heated plasmas

    DOE PAGES

    Lee, Jungpyo; Wright, John; Bertelli, Nicola; ...

    2017-04-24

    In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less

  2. Transient Infrared Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jones, Roger W.; McClelland, John F.

    1989-12-01

    Transient Infrared Emission Spectroscopy (TIRES) is a new technique that reduces the occurrence of self-absorption in optically thick solid samples so that analytically useful emission spectra may be observed. Conventional emission spectroscopy, in which the sample is held at an elevated, uniform temperature, is practical only for optically thin samples. In thick samples the emission from deep layers of the material is partially absorbed by overlying layers.1 This self-absorption results in emission spectra from most optically thick samples that closely resemble black-body spectra. The characteristic discrete emission bands are severely truncated and altered in shape. TIRES bypasses this difficulty by using a laser to heat only an optically thin surface layer. The increased temperature of the layer is transient since the layer will rapidly cool and thicken by thermal diffusion; hence the emission collection must be correlated with the laser heating. TIRES may be done with both pulsed and cw lasers.2,3 When a pulsed laser is used, the spectrometer sampling must be synchronized with the laser pulsing so that only emission during and immediately after each laser pulse is observed.3 If a cw laser is used, the sample must move rapidly through the beam. The hot, transient layer is then in the beam track on the sample at and immediately behind the beam position, so the spectrometer field of view must be limited to this region near the beam position.2 How much self-absorption the observed emission suffers depends on how thick the heated layer has grown by thermal diffusion when the spectrometer samples the emission. Use of a pulsed laser synchronized with the spectrometer sampling readily permits reduction of the time available for heat diffusion to about 100 acs .3 When a cw laser is used, the heat-diffusion time is controlled by how small the spectrometer field of view is and by how rapidly the sample moves past within this field. Both a very small field of view and a very high sample speed would be required to attain a diffusion time of 100 μs. Accordingly, pulsed-laser TIRES generally produces spectra suffering from less self-absorption than cw-laser TIRES does, but the cw-laser technique is technically much simpler since no synchronization is required.

  3. Morphological and chemical characterization of the dentin/resin cement interface produced with a self-etching primer.

    PubMed

    Walker, Mary P; Wang, Yong; Spencer, Paulette

    2002-01-01

    The purpose of this study was to analyze a resin cement/dentin interface by comparing the diffusion of a resin cement into dentin surfaces pretreated with a self-etching primer with or without pretreatment by conventional acid etching. Dentin surfaces of 8 unerupted human third molars were treated with a self-etch primer (Panavia 21) with or without conventional phosphoric acid pretreatment. Panavia 21 resin cement was applied according to manufacturer's instructions. Dentin/resin cement interface sections from each tooth were examined with scanning electron microscopy and micro-Raman spectroscopy. When the self-etch primer was used following conventional acid pretreatment, the resin cement did not penetrate to the depth of the zone of demineralized dentin, leaving a substantial area of exposed dentin matrix at the dentin/cement interface. In contrast, there was substantial resin cement diffusion throughout the demineralized dentin when the self-etch primer was used without acid etching pretreatment. The in vitro evaluation of resin cement penetration throughout the zone of demineralized dentin is an important step in identifying sites of exposed dentin matrix that may promote postoperative sensitivity and may leave the dentin/resin cement interface vulnerable to premature degradation under clinical conditions. In this study, the self-etch primer used alone produced substantial resin cement penetration and left no exposed dentin matrix at the dentin/resin cement interface.

  4. Thermodynamic properties and diffusion of water + methane binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methanemore » concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.« less

  5. Precise measurement of the self-diffusion coefficient for poly(ethylene glycol) in aqueous solution using uniform oligomers

    NASA Astrophysics Data System (ADS)

    Shimada, Kayori; Kato, Haruhisa; Saito, Takeshi; Matsuyama, Shigetomo; Kinugasa, Shinichi

    2005-06-01

    Uniform poly(ethylene glycol) (PEG) oligomers, with a degree of polymerization n =1-40, were separated by preparative supercritical fluid chromatography from commercial monodispersed samples. Diffusion coefficients, D, for separated uniform PEG oligomers were measured in dilute solutions of deuterium oxide (D2O) at 30 ° C, using pulsed-field gradient nuclear magnetic resonance. The measured D for each molecular weight was extrapolated to infinite dilution. Diffusion coefficients obtained at infinite dilution follow the scaling behavior of Zimm-type diffusion, even in the lower molecular weight range. Molecular-dynamics simulations for PEG in H2O also showed this scaling behavior, and reproduced close hydrodynamic interactions between PEG and water. These findings suggest that diffusion of PEG in water is dominated by hydrodynamic interaction over a wide molecular weight range, including at low molecular weights around 1000.

  6. Na Diffusion in Quasi One-Dimensional Ion Conductor NaMn2O4 Observed by μ+SR

    NASA Astrophysics Data System (ADS)

    Umegaki, Izumi; Nozaki, Hiroshi; Harada, Masashi; Månsson, Martin; Sakurai, Hiroya; Kawasaki, Ikuto; Watanabe, Isao; Sugiyama, Jun

    A quasi one-dimensional (1D) compound, NaMn2O4, in which Mn2O4 zigzag chains form a 1D channel along the b-axis and Na ions locate at the center of the channel, is thought to be a good Na ionic conductor. In order to study Na-ion diffusion, we have measured μ+SR spectra using a powder sample in the temperature range between 100 and 500 K. A diffusive behavior was clearly observed above 325 K. Assuming a thermal activate process for jump diffusion of Na-ion between two nearest neighboring sites, a self diffusion coefficient of Na ion (DNa) and its activation energy (Ea) were estimated as DNa = (3.1 ± 0.2) × 10 - 11 cm2/s at 350 K and Ea = 180(9) meV.

  7. Correlated diffusion of colloidal particles near a liquid-liquid interface.

    PubMed

    Zhang, Wei; Chen, Song; Li, Na; Zhang, Jia Zheng; Chen, Wei

    2014-01-01

    Optical microscopy and multi-particle tracking are used to investigate the cross-correlated diffusion of quasi two-dimensional colloidal particles near an oil-water interface. The behaviors of the correlated diffusion along longitudinal and transverse direction are asymmetric. It is shown that the characteristic length for longitudinal and transverse correlated diffusion are particle diameter d and the distance z from particle center to the interface, respectively, for large particle separation z. The longitudinal and transverse correlated diffusion coefficient D||(r) and D[perpendicular](r) are independent of the colloidal area fraction n when n < 0.3, which indicates that the hydrodynamic interactions(HIs) among the particles are dominated by HIs through the surrounding fluid for small n. For high area fraction n > 0.4 the power law exponent for the spatial decay of [Formula: see text] begins to decrease, which suggests the HIs are more contributed from the 2D particle monolayer self for large n.

  8. A combined kick-out and dissociative diffusion mechanism of grown-in Be in InGaAs and InGaAsP. A new finite difference-Bairstow method for solution of the diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koumetz, Serge D., E-mail: Serge.Koumetz@univ-rouen.fr; Martin, Patrick; Murray, Hugues

    Experimental results on the diffusion of grown-in beryllium (Be) in indium gallium arsenide (In{sub 0.53}Ga{sub 0.47}As) and indium gallium arsenide phosphide (In{sub 0.73}Ga{sub 0.27}As{sub 0.58}P{sub 0.42}) gas source molecular beam epitaxy alloys lattice-matched to indium phosphide (InP) can be successfully explained in terms of a combined kick-out and dissociative diffusion mechanism, involving neutral Be interstitials (Be{sub i}{sup 0}), singly positively charged gallium (Ga), indium (In) self-interstitials (I{sub III}{sup +}) and singly positively charged Ga, In vacancies (V{sub III}{sup +}). A new numerical method of solution to the system of diffusion equations, based on the finite difference approximations and Bairstow's method,more » is proposed.« less

  9. Nonequilibrium fluctuations during diffusion in liquid layers

    NASA Astrophysics Data System (ADS)

    Brogioli, Doriano; Vailati, Alberto

    2017-07-01

    Theoretical analysis and experiments have provided compelling evidence of the presence of long-range nonequilibrium concentration fluctuations during diffusion processes in fluids. In this paper, we investigate the dependence of the features of the fluctuations from the dimensionality of the system. In three-dimensional fluids the amplitude of nonequilibrium fluctuations can become several orders of magnitude larger than that of equilibrium fluctuations. Notwithstanding that, the amplitude of nonequilibrium fluctuations remains small with respect to the concentration difference driving the diffusion process. By extending the theory to two-dimensional systems, such as liquid monolayers and bilayers, we show that the amplitude of the fluctuations becomes much stronger than in three-dimensional systems. We investigate the properties of the fronts of diffusion and show that they have a self-affine structure characterized by a Hurst exponent H =1 . We discuss the implications of these results for diffusion in liquid crystals and in cellular membranes of living organisms.

  10. Nonequilibrium fluctuations during diffusion in liquid layers.

    PubMed

    Brogioli, Doriano; Vailati, Alberto

    2017-07-01

    Theoretical analysis and experiments have provided compelling evidence of the presence of long-range nonequilibrium concentration fluctuations during diffusion processes in fluids. In this paper, we investigate the dependence of the features of the fluctuations from the dimensionality of the system. In three-dimensional fluids the amplitude of nonequilibrium fluctuations can become several orders of magnitude larger than that of equilibrium fluctuations. Notwithstanding that, the amplitude of nonequilibrium fluctuations remains small with respect to the concentration difference driving the diffusion process. By extending the theory to two-dimensional systems, such as liquid monolayers and bilayers, we show that the amplitude of the fluctuations becomes much stronger than in three-dimensional systems. We investigate the properties of the fronts of diffusion and show that they have a self-affine structure characterized by a Hurst exponent H=1. We discuss the implications of these results for diffusion in liquid crystals and in cellular membranes of living organisms.

  11. Self-consistent molecular dynamics calculation of diffusion in higher n-alkanes.

    PubMed

    Kondratyuk, Nikolay D; Norman, Genri E; Stegailov, Vladimir V

    2016-11-28

    Diffusion is one of the key subjects of molecular modeling and simulation studies. However, there is an unresolved lack of consistency between Einstein-Smoluchowski (E-S) and Green-Kubo (G-K) methods for diffusion coefficient calculations in systems of complex molecules. In this paper, we analyze this problem for the case of liquid n-triacontane. The non-conventional long-time tails of the velocity autocorrelation function (VACF) are found for this system. Temperature dependence of the VACF tail decay exponent is defined. The proper inclusion of the long-time tail contributions to the diffusion coefficient calculation results in the consistency between G-K and E-S methods. Having considered the major factors influencing the precision of the diffusion rate calculations in comparison with experimental data (system size effects and force field parameters), we point to hydrogen nuclear quantum effects as, presumably, the last obstacle to fully consistent n-alkane description.

  12. Noteworthy fractal features and transport properties of Cantor tartans

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Golmankhaneh, Alireza K.; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel

    2018-06-01

    This Letter is focused on the impact of fractal topology on the transport processes governed by different kinds of random walks on Cantor tartans. We establish that the spectral dimension of the infinitely ramified Cantor tartan ds is equal to its fractal (self-similarity) dimension D. Consequently, the random walk on the Cantor tartan leads to a normal diffusion. On the other hand, the fractal geometry of Cantor tartans allows for a natural definition of power-law distributions of the waiting times and step lengths of random walkers. These distributions are Lévy stable if D > 1.5. Accordingly, we found that the random walk with rests leads to sub-diffusion, whereas the Lévy walk leads to ballistic diffusion. The Lévy walk with rests leads to super-diffusion, if D >√{ 3 }, or sub-diffusion, if 1.5 < D <√{ 3 }.

  13. Carbon diffusion in molten uranium: an ab initio molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.

    In this work we used ab initio molecular dynamics (AIMD) within the framework of density functional theory (DFT) and the projector-augmented wave (PAW) method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activationmore » energy for carbon was nearly twice that of uranium: 0.55±0.03 eV for carbon compared to 0.32±0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.« less

  14. Molecular dynamics simulation of real-fluid mutual diffusion coefficients with the Lennard-Jones potential model

    NASA Astrophysics Data System (ADS)

    Stoker, J. M.; Rowley, R. L.

    1989-09-01

    Mutual diffusion coefficients for selected alkanes in carbon tetrachloride were calculated using molecular dynamics and Lennard-Jones (LJ) potentials. Use of effective spherical LJ parameters is desirable when possible for two reasons: (i) computer time is saved due to the simplicity of the model and (ii) the number of parameters in the model is kept to a minimum. Results of this study indicate that mutual diffusivity is particularly sensitive to the molecular size cross parameter, σ12, and that the commonly used Lorentz-Berthelot rules are inadequate for mixtures in which the component structures differ significantly. Good agreement between simulated and experimental mutual diffusivities is obtained with a combining rule for σ12 which better represents these asymmetric mixtures using pure component LJ parameters obtained from self-diffusion coefficient data. The effect of alkane chain length on the mutual diffusion coefficient is correctly predicted. While the effects of alkane branching upon the diffusion coefficient are comparable in size to the uncertainty of these calculations, the qualitative trend due to branching is also correctly predicted by the MD results.

  15. The effect of shear flow on the rotational diffusivity of a single axisymmetric particle

    NASA Astrophysics Data System (ADS)

    Leahy, Brian; Koch, Donald; Cohen, Itai

    2014-11-01

    Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.

  16. Mechanistic insights of Li+ diffusion within doped LiFePO4 from Muon Spectroscopy.

    PubMed

    Johnson, Ian D; Ashton, Thomas E; Blagovidova, Ekaterina; Smales, Glen J; Lübke, Mechthild; Baker, Peter J; Corr, Serena A; Darr, Jawwad A

    2018-03-07

    The Li + ion diffusion characteristics of V- and Nb-doped LiFePO 4 were examined with respect to undoped LiFePO 4 using muon spectroscopy (µSR) as a local probe. As little difference in diffusion coefficient between the pure and doped samples was observed, offering D Li values in the range 1.8-2.3 × 10 -10  cm 2 s -1 , this implied the improvement in electrochemical performance observed within doped LiFePO 4 was not a result of increased local Li + diffusion. This unexpected observation was made possible with the µSR technique, which can measure Li + self-diffusion within LiFePO 4 , and therefore negated the effect of the LiFePO 4 two-phase delithiation mechanism, which has previously prevented accurate Li + diffusion comparison between the doped and undoped materials. Therefore, the authors suggest that µSR is an excellent technique for analysing materials on a local scale to elucidate the effects of dopants on solid-state diffusion behaviour.

  17. Diffusion of multiple species with excluded-volume effects.

    PubMed

    Bruna, Maria; Chapman, S Jonathan

    2012-11-28

    Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population level. Each individual is described as a finite-size hard core interacting particle undergoing brownian motion. The link between the discrete stochastic equations of motion and the continuum model is considered systematically using the method of matched asymptotic expansions. The system for two species leads to a nonlinear cross-diffusion system for each subpopulation, which captures the enhancement of the effective diffusion rate due to excluded-volume interactions between particles of the same species, and the diminishment due to particles of the other species. This model can explain two alternative notions of the diffusion coefficient that are often confounded, namely collective diffusion and self-diffusion. Simulations of the discrete system show good agreement with the analytic results.

  18. Understanding Anion, Water, and Methanol Transport in a Polyethylene- b -poly(vinylbenzyl trimethylammonium) Copolymer Anion-Exchange Membrane for Electrochemical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarode, Himanshu N.; Yang, Yuan; Motz, Andrew R.

    Herein, we report the anion and water transport properties of an anion-exchange membrane (AEM) comprising a block copolymer of polyethylene and poly- (vinylbenzyl trimethylammonium) (PE-b-PVBTMA) with an ion-exchange capacity (IEC) of 1.08 mequiv/g. The conductivity varied little among the anions CO3 2-, HCO3 -, and F-, with a value of Ea ≈ 20 kJ/mol and a maximum fluoride conductivity of 34 mS/cm at 90 °C and 95% relative humidity. The Br- conductivity showed a transition at 60 °C. Pulsed gradient stimulated spin echo nuclear magnetic resonance (PGSE NMR) experiments showed that water diffusion in this AEM is heterogeneous and ismore » affected by the anion present, being fastest in the presence of F-. We determined the methanol self-diffusion in this membrane and observed that it is lower than that in Nafion 117, because of the lower water uptake. This article reports the first measurements of 13C-labeled bicarbonate self-diffusion in an AEM using PGSE NMR spectrometry, which was found to be significantly slower than F- self-diffusion. Back-calculation of the bicarbonate conductivity using the Nernst-Einstein equation gave a value that was significantly lower than the measured value, implying that bicarbonate transport involves OH- in the transport mechanism. Fourier transform infrared spectroscopy, PGSE NMR spectrometry, and small-angle X-ray scattering (SAXS) indicated the presence of different types of waters present in the membrane at different length scales. The SAXS data indicated that there is a water-rich region within the hydrophilic domains of the polymer that has a temperature dependence in intensity at 95% relative humidity (RH).« less

  19. Peer HIV/AIDS education with volunteer trishaw drivers in Yaan, People's Republic of China: process evaluation.

    PubMed

    Shuguang, Wang; Van de Ven, Paul

    2003-08-01

    Peer-based HIV prevention education has become increasingly popular in China. Few studies have explored culturally appropriate strategies or the effectiveness of this approach among the growing population of Chinese self-employed young people--a group quite vulnerable to HIV and other sexually transmissible infections. The findings presented here are from a process evaluation of a peer-led demonstration project with self-employed trishaw drivers in Yaan, China. This study examines sexual health message diffusion from 150 volunteers in a direct training group to 705 peers in an indirect training group. A key finding was that success in diffusing sexual health messages was significantly related to drivers' attachment to their subculture. The successful elements of the project augur well for the development of HIV peer education in the broader arena of self-employed young people in China and pose a challenge to the traditional approach of "official-led" peer education with its uniform prescription of officially sanctioned printed materials.

  20. Transport of active ellipsoidal particles in ratchet potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, Bao-Quan, E-mail: aibq@scnu.edu.cn; Wu, Jian-Chun

    2014-03-07

    Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, whilemore » for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities)« less

  1. Development of self-healing polymers via amine-epoxy chemistry: I. Properties of healing agent carriers and the modelling of a two-part self-healing system

    NASA Astrophysics Data System (ADS)

    Zhang, He; Yang, Jinglei

    2014-06-01

    Two types of healing agent carriers (microcapsules containing epoxy solution, referred to as EP-capsules, and etched hollow glass bubbles (HGBs) loaded with amine solution, referred to as AM-HGBs) used in self-healing epoxy systems were prepared and characterized in this study. The core percentages were measured at about 80 wt% and 33 wt% for EP-capsules and AM-HGBs, respectively. The loaded amine in AM-HGB, after incorporation into the epoxy matrix, showed high stability at ambient temperature, but diffused out gradually during heat treatment at 80 °C. The amount and the mass ratio of the two released healants at the crack plane were correlated with the size, concentration, and core percentage of the healing agent carriers. A simplified cubic array model for randomly distributed healing agent carriers was adopted to depict the longest diffusion distance of the released healants, which is inversely proportional to the cubic root of the carrier concentration.

  2. Computation of shear-induced collective-diffusivity in emulsions

    NASA Astrophysics Data System (ADS)

    Malipeddi, Abhilash Reddy; Sarkar, Kausik

    2017-11-01

    The shear-induced collective-diffusivity of drops in an emulsion is calculated through simulation. A front-tracking finite difference method is used to integrate the Navier-Stokes equations. When a cloud of drops is subjected to shear flow, after a certain time, the width of the cloud increases with the 1/3 power of time. This scaling of drop-cloud-width with time is characteristic of (sub-)diffusion that arises from irreversible two-drop interactions. The collective diffusivity is calculated from this relationship. A feature of the procedure adopted here is the modest computational requirement, wherein, a few drops ( 70) in shear for short time ( 70 strain) is found to be sufficient to get a good estimate. As far as we know, collective-diffusivity has not been calculated for drops through simulation till now. The computed values match with experimental measurements reported in the literature. The diffusivity in emulsions is calculated for a range of Capillary (Ca) and Reynolds (Re) numbers. It is found to be a unimodal function of Ca , similar to self-diffusivity. A sub-linear increase of the diffusivity with Re is seen for Re < 5 . This work has been limited to a viscosity matched case.

  3. Self-diffusion on iridium (100). A structure investigation by field-ion microscopy

    NASA Astrophysics Data System (ADS)

    Friedl, A.; Schütz, O.; Müller, K.

    1992-04-01

    An iridium atom was thermally activated for diffusion on the (100) terrace of an Ir tip. The residence sites of the atom between diffusion cycles were recorded by means of a computer-controlled video system which generates a map of all occupied sites. For a field evaporated tip at low temperature this map is a c(2 × 2) grid indicating that only every other fourfold hollow in every other row of an undistor ted (100) surface can be occupied by a diffusing atom. This extraordinary behaviour was already reported by Chen and Tsong [Phys. Rev. Lett. 64 (1990) 3147]. The authors base their interpretation on an exchange diffusion mechanism. As an alternative explanation we propose a local adsorbate induced (2 × 2) reconstruction of the substrate. After heating the same terrace to temperatures above 500 K the residence map of the Ir atom indicates a (1 × 1) structure which, however, contains residues of a c(2 × 2) diffusion pattern: while the diffusion still takes place mainly on a c(2 × 2) sublattice, the diffusion path changes occasionally from one sublattice to the other. This can also be understood by local adsorbate induced distortions.

  4. Zinc diffusion in gallium arsenide and the properties of gallium interstitials

    NASA Astrophysics Data System (ADS)

    Bracht, H.; Brotzmann, S.

    2005-03-01

    We have performed zinc diffusion experiments in gallium arsenide at temperatures between 620°C and 870°C with a dilute Ga-Zn source. The low Zn partial pressure established during annealing realizes Zn surface concentrations of ⩽2×1019cm-3 , which lead to the formation of characteristic S-shaped diffusion profiles. Accurate modeling of the Zn profiles, which were measured by means of secondary ion mass spectroscopy, shows that Zn diffusion under the particular doping conditions is mainly mediated by neutral and singly positively charged Ga interstitials via the kick-out mechanism. We determined the temperature dependence of the individual contributions of neutral and positively charged Ga interstitials to Ga diffusion for electronically intrinsic conditions. The data are lower than the total Ga self-diffusion coefficient and hence consistent with the general interpretation that Ga diffusion under intrinsic conditions is mainly mediated by Ga vacancies. Our results disprove the general accepted interpretation of Zn diffusion in GaAs via doubly and triply positively charged Ga interstitials and solves the inconsistency related to the electrical compensation of the acceptor dopant Zn by the multiply charged Ga interstitials.

  5. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    PubMed Central

    Glade, Nicolas; Demongeot, Jacques; Tabony, James

    2004-01-01

    Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo. PMID:15176973

  6. Instability-driven interfacial dynamo in protoneutron stars

    NASA Astrophysics Data System (ADS)

    Mastrano, A.; Melatos, A.

    2011-10-01

    The existence of a tachocline in the Sun has been proven by helioseismology. It is unknown whether a similar shear layer, widely regarded as the seat of magnetic dynamo action, also exists in a protoneutron star. Sudden jumps in magnetic diffusivity η and turbulent vorticity α, for example at the interface between the neutron-finger and convective zones, are known to be capable of enhancing mean-field dynamo effects in a protoneutron star. Here, we apply the well-known, plane-parallel, MacGregor-Charbonneau analysis of the solar interfacial dynamo to the protoneutron star problem and analytically calculate the growth rate under a range of conditions. It is shown that, like the solar dynamo, it is impossible to achieve self-sustained growth if the discontinuities in α, η and shear are coincident and the magnetic diffusivity is isotropic. In contrast, when the jumps in η and α are situated away from the shear layer, self-sustained growth is possible for P≲ 49.8 ms (if the velocity shear is located at 0.3R) or P≲ 83.6 ms (if the velocity shear is located at 0.6R). This translates into stronger shear and/or α-effect than in the Sun. Self-sustained growth is also possible if the magnetic diffusivity is anisotropic, through the Ω×J effect, even when the α, η and shear discontinuities are coincident.

  7. Mass Transfer and Rheology of Fiber Suspensions

    NASA Astrophysics Data System (ADS)

    Wang, Jianghui

    Rheological and mass transfer properties of non-Brownian fiber suspensions are affected by fiber characteristics, fiber interactions, and processing conditions. In this thesis we develop several simulation methods to study the dynamics of single fibers in simple shear flow, as well as the rheology and mass transfer of fiber suspensions. Isolated, rigid, neutrally-buoyant, non-Brownian, slightly curved, nonchiral fibers in simple shear flow of an incompressible Newtonian fluid at low Reynolds number can drift steadily in the gradient direction without external forces or torques. The average drift velocity and direction depend on the fiber aspect ratio, curvature and initial orientation. The drift results from the coupling of rotational and translational dynamics, and the combined effects of flipping, scooping, and spinning motions of the fiber. Irreversible fiber collisions in the suspensions cause shear-induced diffusion. The shear-induced self-diffusivity of dilute suspensions of fibers increases with increasing concentration and increasing static friction between contacts. The diffusivities in both the gradient and vorticity directions are larger for suspensions of curved fibers than for suspensions of straight fibers. For suspensions of curved fibers, significant enhancements in the diffusivity in the gradient direction are attributed to fiber drift in the gradient direction. The shear-induced self-diffusivity of concentrated suspensions of fibers increases with increasing concentration before fiber networks or flocs are formed, after which the diffusivity decreases with increasing concentration. The diffusivity increases with increasing fiber equilibrium bending angle, effective stiffness, coefficient of static friction, and rate of collisions. The specific viscosity of fiber suspensions increases with increasing fiber curvature, friction coefficient between mechanical contacts, and solids concentration. The specific viscosity increases linearly with concentration in the dilute regime, and increases with the cube of the concentration in the semi-dilute regime. Concentrated fiber suspensions are highly viscous, shear thinning, and exhibit significant yield stresses and normal stress differences. Yield stresses scale with volume concentration and fiber aspect ratio in the same way as that observed in experiments. The first normal stress difference increases linearly with shear rate. The shear-induced diffusivity increases linearly with the derivative of the particle contribution to stress for dilute suspensions with respective to concentration. This correlation between rheology and shear-induced diffusion makes it possible to predict diffusivity from easily measured rheological properties.

  8. Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient.

    PubMed

    Kowsari, M H; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan

    2008-12-14

    Molecular dynamics simulations are used to study the dynamics and transport properties of 12 room-temperature ionic liquids of the 1-alkyl-3-methylimidazolium [amim](+) (alkyl = methyl, ethyl, propyl, and butyl) family with PF(6)(-), NO(3)(-), and Cl(-) counterions. The explicit atom transferable force field of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] is used in the simulations. In this first part, the dynamics of the ionic liquids are characterized by studying the mean-square displacement (MSD) and the velocity autocorrelation function (VACF) for the centers of mass of the ions at 400 K. Trajectory averaging was employed to evaluate the diffusion coefficients at two temperatures from the linear slope of MSD(t) functions in the range of 150-300 ps and from the integration of the VACF(t) functions at 400 K. Detailed comparisons are made between the diffusion results from the MSD and VACF methods. The diffusion coefficients from the integration of the VACFs are closer to experimental values than the diffusion coefficients calculated from the slope of MSDs. Both methods can show good agreement with experiment in predicting relative trends in the diffusion coefficients and determining the role of the cation and anion structures on the dynamical behavior of this family of ionic liquids. The MSD and self-diffusion of relatively heavier imidazolium cations are larger than those of the lighter anions from the Einstein results, except for the case of [bmim][Cl]. The cationic transference number generally decreases with temperature, in good agreement with experiments. For the same anion, the cationic transference numbers decrease with increasing length of the alkyl chain, and for the same cation, the trends in the cationic transference numbers are [NO(3)](-) < [Cl](-) < [PF(6)](-). The trends in the diffusion coefficient in the series of cations with identical anions are [emim](+) > [pmim](+) > [bmim](+) and those for anions with identical cations are [NO(3)](-) > [PF(6)](-) > [Cl](-). The [dmim](+) has a relatively low diffusion coefficient due to its symmetric structure and good packing in the liquid phase. The major factor for determining the magnitude of the self-diffusion is the geometric shape of the anion of the ionic liquid. Other important factors are the ion size and the charge delocalization in the anion.

  9. Participation and diffusion effects of a peer-intervention for HIV prevention among adults in rural Malawi.

    PubMed

    Crittenden, Kathleen S; Kaponda, Chrissie P N; Jere, Diana L; McCreary, Linda L; Norr, Kathleen F

    2015-05-01

    This paper examines whether a peer group intervention that reduced self-reported risky behaviors for rural adults in Malawi also had impacts on non-participants in the same communities. We randomly assigned two districts to the intervention and control conditions, and conducted surveys at baseline and 18 months post-intervention using unmatched independent random samples of intervention and control communities in 2003-2006. The six-session peer group intervention was offered to same-gender groups by trained volunteers. In this analysis, we divided the post-intervention sample into three exposure groups: 243 participants and 170 non-participants from the intervention district (total n = 415) and 413 control individuals. Controlling for demographics and participation, there were significant favorable diffusion effects on five partially overlapping behavioral outcomes: partner communication, ever used condoms, unprotected sex, recent HIV test, and a community HIV prevention index. Non-participants in the intervention district had more favorable outcomes on these behaviors than survey respondents in the control district. One behavioral outcome, community HIV prevention, showed both participation and diffusion effects. Participating in the intervention had a significant effect on six psychosocial outcomes: HIV knowledge (two measures), hope, condom attitudes, and self-efficacy for community HIV prevention and for safer sex; there were no diffusion effects. This pattern of results suggests that the behavioral changes promoted in the intervention spread to others in the same community, most likely through direct contact between participants and non-participants. These findings support the idea that diffusion of HIV-related behavior changes can occur for peer group interventions in communities, adding to the body of research supporting diffusion of innovations theory as a robust approach to accelerating change. If diffusion occurs, peer group intervention may be more cost-effective than previously realized. Wider implementation of peer group interventions can help meet the global goal of reducing new HIV infections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Participation and Diffusion Effects of a Peer-Intervention for HIV Prevention among Adults in Rural Malawi

    PubMed Central

    Crittenden, Kathleen S.; Kaponda, Chrissie P. N.; Jere, Diana L.; McCreary, Linda L.; Norr, Kathleen F.

    2015-01-01

    This paper examines whether a peer group intervention that reduced self-reported risky behaviors for rural adults in Malawi also had impacts on non-participants in the same communities. We randomly assigned two districts to the intervention and control conditions, and conducted surveys at baseline and 18 months post-intervention using unmatched independent random samples of intervention and control communities in 2003-2006. The six-session peer group intervention was offered to same-gender groups by trained volunteers. In this analysis, we divided the post-intervention sample into three exposure groups: 243 participants and 170 non-participants from the intervention district (total n=415) and 413 control individuals. Controlling for demographics and participation, there were significant favorable diffusion effects on five partially overlapping behavioral outcomes: partner communication, ever used condoms, unprotected sex, recent HIV test, and a community HIV prevention index. Non-participants in the intervention district had more favorable outcomes on these behaviors than survey respondents in the control district. One behavioral outcome, community HIV prevention, showed both participation and diffusion effects. Participating in the intervention had a significant effect on six psychosocial outcomes: HIV knowledge (two measures), hope, condom attitudes, and self-efficacy for community HIV prevention and for safer sex; there were no diffusion effects. This pattern of results suggests that the behavioral changes promoted in the intervention spread to others in the same community, most likely through direct contact between participants and non-participants. These findings support the idea that diffusion of HIV-related behavior changes can occur for peer group interventions in communities, adding to the body of research supporting diffusion of innovations theory as a robust approach to accelerating change. If diffusion occurs, peer group intervention may be more cost-effective than previously realized. Wider implementation of peer group interventions can help meet the global goal of reducing new HIV infections. PMID:25864150

  11. Stokes-Einstein relation in liquid iron-nickel alloy up to 300 GPa

    NASA Astrophysics Data System (ADS)

    Cao, Q.-L.; Wang, P.-P.

    2017-05-01

    Molecular dynamic simulations were applied to investigate the Stokes-Einstein relation (SER) and the Rosenfeld entropy scaling law (ESL) in liquid Fe0.9Ni0.1 over a sufficiently broad range of temperatures (0.70 < T/Tm < 1.85 Tm is melting temperature) and pressures (from 50 GPa to 300 GPa). Our results suggest that the SER and ESL hold well in the normal liquid region and break down in the supercooled region under high-pressure conditions, and the deviation becomes larger with decreasing temperature. In other words, the SER can be used to calculate the viscosity of liquid Earth's outer core from the self-diffusion coefficients of iron/nickel and the ESL can be used to predict the viscosity and diffusion coefficients of liquid Earth's outer core form its structural properties. In addition, the pressure dependence of effective diameters cannot be ignored in the course of using the SER. Moreover, ESL provides a useful, structure-based probe for the validity of SER, while the ratio of the self-diffusion coefficients of the components cannot be used as a probe for the validity of SER.

  12. 4D Biofabrication of Branching Multicellular Structures: A Morphogenesis Simulation Based on Turing’s Reaction-Diffusion Dynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolu; Yang, Hao

    2017-12-01

    The recently emerged four-dimensional (4D) biofabrication technique aims to create dynamic three-dimensional (3D) biological structures that can transform their shapes or functionalities with time when an external stimulus is imposed or when cell postprinting self-assembly occurs. The evolution of 3D pattern of branching geometry via self-assembly of cells is critical for 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear that how the formation and evolution of these branching pattern are biologically encoded. We study the 4D fabrication of lung branching structures utilizing a simulation model on the reaction-diffusion mechanism, which is established using partial differential equations of four variables, describing the reaction and diffusion process of morphogens with time during the development process of lung branching. The simulation results present the forming process of 3D branching pattern, and also interpret the behaviors of side branching and tip splitting as the stalk growing, through 3D visualization of numerical simulation.

  13. Molecular Dynamics Simulation of the Cage Effect in a Wide Packing Fraction Range

    NASA Astrophysics Data System (ADS)

    Pestryaev, E. M.

    2018-07-01

    The self-diffusion coefficient and particle residence time in the first coordination shell of its neighbours were investigated by molecular dynamics simulation with the packing fraction of the model system ranging from 0.1 to 0.8. The residence time distribution spans several orders of magnitude and broadens with the system packing fraction. The distribution exhibits a maximum localized in the short residence time region. The average residence time correlates with the conventionally-used intermolecular correlation time governed by the mutual particle translational diffusion. It was shown that the use of the coordination number as an argument for all searched parameters is the obvious representation of the cage effect onset. The agreement of the self-diffusion coefficient with one of the recent theories is excellent in most of the density range, including the start of the glass transition, with the largest divergence only observed for the rare gas state. The same conclusion is true for the simulated and theoretical values of the caging number, which is nearly five, defining the start of the system liquefaction.

  14. Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Michael K.; Parish, Chad M.; Bei, Hongbin

    Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives themore » mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. Furthermore, the result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.« less

  15. Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy

    DOE PAGES

    Miller, Michael K.; Parish, Chad M.; Bei, Hongbin

    2014-12-18

    Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives themore » mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. Furthermore, the result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.« less

  16. Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Parish, C. M.; Bei, H.

    2015-07-01

    Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti-Y-O-enriched nanoclusters and solute clusters, which drives the mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. The result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.

  17. Self Regulating Fiber Fuel Cell

    DTIC Science & Technology

    2010-08-16

    12000 68.2 77.4 24/7 Extreme Rigid liquid hydrogen fuel cell Medis 68 X 97 X 57 20000 53.2 108.1 Fiber Fuel Cell Flexible Individual fiber Honeywell...which allows hydrogen and water vapor to permeate freely but prevents liquids from entering or fuel particles from escaping. The SPM permeability...S is the solubility and D is the diffusivity. Solubility and diffusivity data vs. pressure for hydrogen in Nafion is not available in the literature

  18. Enhanced Atom Mobility on the Surface of a Metastable Film

    NASA Astrophysics Data System (ADS)

    Picone, A.; Riva, M.; Fratesi, G.; Brambilla, A.; Bussetti, G.; Finazzi, M.; Duò, L.; Ciccacci, F.

    2014-07-01

    A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.

  19. Enhanced atom mobility on the surface of a metastable film.

    PubMed

    Picone, A; Riva, M; Fratesi, G; Brambilla, A; Bussetti, G; Finazzi, M; Duò, L; Ciccacci, F

    2014-07-25

    A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.

  20. In-pore exchange and diffusion of carbonate solvent mixtures in nanoporous carbon

    DOE PAGES

    Alam, Todd M.; Osborn Popp, Thomas M.

    2016-06-04

    High resolution magic angle spinning (HRMAS) 1H NMR spectroscopy has been used to resolve different surface and in-pore solvent environments of ethylene carbonate (EC) and dimethyl carbonate (DMC) mixtures absorbed within nanoporous carbon (NPC). Two dimensional (2D) 1H HRMAS NMR exchange measurements revealed that the inhomogeneous broadened in-pore resonances have pore-to-pore exchange rates on the millisecond timescale. Pulsed-field gradient (PFG) NMR diffusometry revealed the in-pore self-diffusion constants for both EC and DMC were reduced by up to a factor of five with respect to the diffusion in the non-absorbed solvent mixtures.

  1. A nonlinear equation for ionic diffusion in a strong binary electrolyte

    PubMed Central

    Ghosal, Sandip; Chen, Zhen

    2010-01-01

    The problem of the one-dimensional electro-diffusion of ions in a strong binary electrolyte is considered. The mathematical description, known as the Poisson–Nernst–Planck (PNP) system, consists of a diffusion equation for each species augmented by transport owing to a self-consistent electrostatic field determined by the Poisson equation. This description is also relevant to other important problems in physics, such as electron and hole diffusion across semiconductor junctions and the diffusion of ions in plasmas. If concentrations do not vary appreciably over distances of the order of the Debye length, the Poisson equation can be replaced by the condition of local charge neutrality first introduced by Planck. It can then be shown that both species diffuse at the same rate with a common diffusivity that is intermediate between that of the slow and fast species (ambipolar diffusion). Here, we derive a more general theory by exploiting the ratio of the Debye length to a characteristic length scale as a small asymptotic parameter. It is shown that the concentration of either species may be described by a nonlinear partial differential equation that provides a better approximation than the classical linear equation for ambipolar diffusion, but reduces to it in the appropriate limit. PMID:21818176

  2. Time delay can facilitate coherence in self-driven interacting-particle systems

    NASA Astrophysics Data System (ADS)

    Sun, Yongzheng; Lin, Wei; Erban, Radek

    2014-12-01

    Directional switching in a self-propelled particle model with delayed interactions is investigated. It is shown that the average switching time is an increasing function of time delay. The presented results are applied to studying collective animal behavior. It is argued that self-propelled particle models with time delays can explain the state-dependent diffusion coefficient measured in experiments with locust groups. The theory is further generalized to heterogeneous groups where each individual can respond to its environment with a different time delay.

  3. Observation of strong stimulated photorefractive scattering and self-pumped phase conjugation in LiNbO3:Mg in the ultraviolet

    NASA Astrophysics Data System (ADS)

    Qiao, Haijun; Tomita, Yasuo; Xu, Jingjun; Wu, Qiang; Zhang, Guoquan; Zhang, Guangyin

    2005-09-01

    We report on the observation of diffusion-dominant photorefraction and light-induced nonlinear forward and backward scattering in highly Mg-doped LiNbO3 at 351 nm. We also demonstrate what we believe to be the first continuous-wave self-pumped phase conjugation via stimulated photorefractive backscattering in the ultraviolet.

  4. An empirical relation between the limiting ionic molar conductivities and self-diffusion coefficients of pure solvents

    NASA Astrophysics Data System (ADS)

    Matsuyama, Hisashi; Motoyoshi, Kota

    2018-05-01

    The limiting ionic molar conductivity (λ∞) of an electrolyte solution depends on the self-diffusion coefficient (Ds) of the pure solvent when the temperature (T) changes. To study the Ds-dependence of λ∞, we proposed a new empirical relation λ∞ ∝(Ds / T) t , with a parameter t. The relation is applied to the λ∞ and Ds of alkali, tetra-alkyl ammonium, and halogen ions in water or methanol. All ions except for tetra-alkyl ammonium ions in water exhibit excellent linear relationships in their λ∞ ∝(Ds / T) t plots, with t in the range from 0.88 to 1.26. This is the first report showing an affirmative linear correlation between λ∞ and Ds.

  5. Plasma barodiffusion in inertial-confinement-fusion implosions: application to observed yield anomalies in thermonuclear fuel mixtures.

    PubMed

    Amendt, Peter; Landen, O L; Robey, H F; Li, C K; Petrasso, R D

    2010-09-10

    The observation of large, self-generated electric fields (≥10(9)  V/m) in imploding capsules using proton radiography has been reported [C. K. Li, Phys. Rev. Lett. 100, 225001 (2008)]. A model of pressure gradient-driven diffusion in a plasma with self-generated electric fields is developed and applied to reported neutron yield deficits for equimolar D3He [J. R. Rygg, Phys. Plasmas 13, 052702 (2006)] and (DT)3He [H. W. Herrmann, Phys. Plasmas 16, 056312 (2009)] fuel mixtures and Ar-doped deuterium fuels [J. D. Lindl, Phys. Plasmas 11, 339 (2004)]. The observed anomalies are explained as a mild loss of deuterium nuclei near capsule center arising from shock-driven diffusion in the high-field limit.

  6. Static and transport properties of alkyltrimethylammonium cation-based room-temperature ionic liquids.

    PubMed

    Seki, Shiro; Tsuzuki, Seiji; Hayamizu, Kikuko; Serizawa, Nobuyuki; Ono, Shimpei; Takei, Katsuhito; Doi, Hiroyuki; Umebayashi, Yasuhiro

    2014-05-01

    We have measured physicochemical properties of five alkyltrimethylammonium cation-based room-temperature ionic liquids and compared them with those obtained from computational methods. We have found that static properties (density and refractive index) and transport properties (ionic conductivity, self-diffusion coefficient, and viscosity) of these ionic liquids show close relations with the length of the alkyl chain. In particular, static properties obtained by experimental methods exhibit a trend complementary to that by computational methods (refractive index ∝ [polarizability/molar volume]). Moreover, the self-diffusion coefficient obtained by molecular dynamics (MD) simulation was consistent with the data obtained by the pulsed-gradient spin-echo nuclear magnetic resonance technique, which suggests that computational methods can be supplemental tools to predict physicochemical properties of room-temperature ionic liquids.

  7. Innovative self-drying concept for thermal insulation of cold piping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsgaard, V.

    1997-11-01

    In the paper an innovative Self-Drying concept, the Hygro-Wick concept, for thermal insulation of cold piping is described. The concept is based on the wicking action of certain fabrics to remove by capillary suction condensed water vapor from the pipe surface to the outer surface of the insulation/jacket, from whence it will evaporate/diffuse into the ambient air. Hence the concept will prevent long term accumulation of moisture in the insulation material. Theoretical and experimental results for two different embodiments of the concept is given: The Self-Drying system and the Self-Sealing system.

  8. Compositional and Ionic-Size Controls on the Diffusion of Divalent Cations in Garnet: Insights from Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Carlson, W. D.

    2012-12-01

    Divalent cations in garnet (Mg, Fe, Mn, Ca) diffuse at rates that depend strongly on the host-crystal composition and on the ionic radius of the diffusant. Understanding of the nanoscale basis for these behaviors comes from atomistic simulations that calculate energies in the static limit for the defects and transition-state configurations associated with each diffusive step. Diffusion of divalent cations requires (a) creation of a cation-vacancy defect in a dodecahedral site and of a charge-compensating oxygen-vacancy defect that may or may not be in close spatial association; (b) except in the case of self-diffusion, creation of an impurity defect in which a foreign atom replaces the normal atom in a dodecahedral site adjacent to the vacancy; and (c) during the diffusive process, motion of the diffusing atom to a 'saddlepoint' position that represents the transition-state configuration. Comparisons of the system's energy in these various states, in structures of different composition and for ions of different ionic size, allows assessment of the nanoscale controls on diffusion kinetics. Molecular-statics calculations quantify defect energies and identify the transition-state configuration: the maximum energy along the diffusion path between two adjacent dodecahedral sites results when the diffusing ion is surrounded symmetrically by the six oxygen atoms that lie between the two sites. Across the range of end-member compositions, self-diffusion coefficients measured at identical conditions, and the tracer diffusivity of a single ion measured at identical conditions, can each vary by five orders of magnitude or more. Measured activation energies for these motions, however, are all equivalent to within ±6%. Calculated activation energies are in agreement with observations, in that they vary by only ±10%. Calculated vacancy-formation energies, on the other hand, are significantly larger in expanded structures; for example, that energy is greater for Prp than for Grs by ~ 470 kJ/mol. Thus in expanded structures, much higher vacancy concentrations can be produced at the same energetic cost, greatly enhancing rates of diffusion. The primary explanation for the more rapid diffusion of divalent cations in structures with larger cell dimensions therefore comes not from reduced saddlepoint strain energies in more compliant structures, but instead from the smaller energy required to create vacancy defects. Diffusivities of divalent cations exhibit a curious parabolic dependence on ionic size: for each structure, an optimally-sized ion exists, close in size to the dominant ion, that exhibits the fastest diffusion. Larger ions — and enigmatically, smaller ions — both diffuse more slowly. Calculated impurity-defect energies show that undersized impurity ions are bound more tightly in their sites, but the effects are too small in comparison to corresponding reductions in strain energy for the transition-state configuration to account for observed rate differences. Calculated vacancy-association energies reveal a slight tendency for vacancies to associate preferentially with larger impurity ions, but again the effect appears to be too small to provide a full explanation for observed behaviors.

  9. Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramshaw, J.D.; Chang, C.H.

    Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain drivingmore » forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.« less

  10. Thermodynamics, Diffusion, and Structure of Mg2SiO4 forsterite grain boundaries from atomistic modeling

    NASA Astrophysics Data System (ADS)

    Adjaoud, O.; Marquardt, K.; Jahn, S.

    2011-12-01

    Most materials are not single crystals but consist of crystalline grains of various sizes, misorientated with respect to each other and joint by grain boundaries. The latter influence many of the material properties. For instance, grain boundaries are short circuits for diffusion and thus they strongly influence transport properties of materials such as electrical conductivity, or mineral growth rates, creep, or phase transform. Olivine is a major component of the Earth's upper mantle and therefore it is of considerable importance to study its physical and thermodynamic polycrystalline properties. In the present study, we have used molecular dynamics simulations to model thermodynamics, self-diffusion and structure of a series of [100] symmetric tilt grain boundaries in forsterite. The interactions between the atoms are modeled by an advanced ionic interaction potential (Jahn and Madden, 2007). The parameters of the potential are fitted to ab initio results. The model was optimized for the Ca-Mg-Al-Si-O system and shows good transferability in a wide range of pressures, temperatures, and compositions. Thermodynamics and structure were simulated at ambient conditions, and self-diffusion coefficients were determined at ambient pressure and temperatures of 1250, 1500, 1750, and 2000 K. We find that the energy and excess free volume of the grain boundaries in forsterite depend significantly on the misorientation angle of the grain boundary. One of our modeled structures is compared with an high-resolution transmission electron micrograph (HRTEM) (Heinemann et al., 2005). We relate our findings to previous studies of grain boundaries in ionic materials and in metals. For small misorientation angles (up to 22.1°), grain boundary structures consist of an array of c-edge dislocations as suggested by Heinemann et al. (2005) and their energies can be readily fit with the Read-Shockley dislocation model for grain boundaries. For high misorientation angles (32.1° and 60.8°), the cores of dislocations overlap and form repeated structural units. Similar to energies and excess free volumes, the self-diffusion coefficients of Mg and O depend significantly on the misorientation angle of the grain boundaries and they are well fitted with Arrhenius law. We compare our results to MgO grain boundary diffusion in forsterite derived from reaction rim growth experiments (Gardés and Heinrich, 2010).

  11. Molecular and ionic diffusion in aqueous - deep eutectic solvent mixtures: probing inter-molecular interactions using PFG NMR.

    PubMed

    D'Agostino, Carmine; Gladden, Lynn F; Mantle, Mick D; Abbott, Andrew P; Ahmed, Essa I; Al-Murshedi, Azhar Y M; Harris, Robert C

    2015-06-21

    Pulsed field gradient (PFG) NMR has been used to probe self-diffusion of molecular and ionic species in aqueous mixtures of choline chloride (ChCl) based deep eutectic solvents (DESs), in order to elucidate the effect of water on motion and inter-molecular interactions between the different species in the mixtures, namely the Ch(+) cation and hydrogen bond donor (HBD). The results reveal an interesting and complex behaviour of such mixtures at a molecular level. In general, it is observed that the hydroxyl protons ((1)H) of Ch(+) and the hydrogen bond donor have diffusion coefficients significantly different from those measured for their parent molecules when water is added. This indicates a clear and significant change in inter-molecular interactions. In aqueous Ethaline, the hydroxyl species of Ch(+) and HBD show a stronger interaction with water as water is added to the system. In the case of Glyceline, water has little effect on both hydroxyl proton diffusion of Ch(+) and HBD. In Reline, it is likely that water allows the formation of small amounts of ammonium hydroxide. The most surprising observation is from the self-diffusion of water, which is considerably higher that expected from a homogeneous liquid. This leads to the conclusion that Reline and Glyceline form mixtures that are inhomogeneous at a microscopic level despite the hydrophilicity of the salt and HBD. This work shows that PFG NMR is a powerful tool to elucidate both molecular dynamics and inter-molecular interactions in complex liquid mixtures, such as the aqueous DES mixtures.

  12. Molecular dynamics simulation of diffusion of gases in a carbon-nanotube-polymer composite

    NASA Astrophysics Data System (ADS)

    Lim, Seong Y.; Sahimi, Muhammad; Tsotsis, Theodore T.; Kim, Nayong

    2007-07-01

    Extensive molecular dynamics (MD) simulations were carried out to compute the solubilities and self-diffusivities of CO2 and CH4 in amorphous polyetherimide (PEI) and mixed-matrix PEI generated by inserting single-walled carbon nanotubes into the polymer. Atomistic models of PEI and its composites were generated using energy minimizations, MD simulations, and the polymer-consistent force field. Two types of polymer composite were generated by inserting (7,0) and (12,0) zigzag carbon nanotubes into the PEI structure. The morphologies of PEI and its composites were characterized by their densities, radial distribution functions, and the accessible free volumes, which were computed with probe molecules of different sizes. The distributions of the cavity volumes were computed using the Voronoi tessellation method. The computed self-diffusivities of the gases in the polymer composites are much larger than those in pure PEI. We find, however, that the increase is not due to diffusion of the gases through the nanotubes which have smooth energy surfaces and, therefore, provide fast transport paths. Instead, the MD simulations indicate a squeezing effect of the nanotubes on the polymer matrix that changes the composite polymers’ free-volume distributions and makes them more sharply peaked. The presence of nanotubes also creates several cavities with large volumes that give rise to larger diffusivities in the polymer composites. This effect is due to the repulsive interactions between the polymer and the nanotubes. The solubilities of the gases in the polymer composites are also larger than those in pure PEI, hence indicating larger gas permeabilities for mixed-matrix PEI than PEI itself.

  13. A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kittell, David E.; Yarrington, Cole D.; Hobbs, M. L.

    A diffusion-limited reaction model was calibrated for Al/Pt multilayers ignited on oxidized silicon, sapphire, and tungsten substrates, as well as for some Al/Pt multilayers ignited as free-standing foils. The model was implemented in a finite element analysis code and used to match experimental burn front velocity data collected from several years of testing at Sandia National Laboratories. Moreover, both the simulations and experiments reveal well-defined quench limits in the total Al + Pt layer (i.e., bilayer) thickness. At these limits, the heat generated from atomic diffusion is insufficient to support a self-propagating wave front on top of the substrates. Quenchmore » limits for reactive multilayers are seldom reported and are found to depend on the thermal properties of the individual layers. Here, the diffusion-limited reaction model is generalized to allow for temperature- and composition-dependent material properties, phase change, and anisotropic thermal conductivity. Utilizing this increase in model fidelity, excellent overall agreement is shown between the simulations and experimental results with a single calibrated parameter set. However, the burn front velocities of Al/Pt multilayers ignited on tungsten substrates are over-predicted. Finally, possible sources of error are discussed and a higher activation energy (from 41.9 kJ/mol.at. to 47.5 kJ/mol.at.) is shown to bring the simulations into agreement with the velocity data observed on tungsten substrates. Finally, this higher activation energy suggests an inhibited diffusion mechanism present at lower heating rates.« less

  14. A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits

    DOE PAGES

    Kittell, David E.; Yarrington, Cole D.; Hobbs, M. L.; ...

    2018-04-14

    A diffusion-limited reaction model was calibrated for Al/Pt multilayers ignited on oxidized silicon, sapphire, and tungsten substrates, as well as for some Al/Pt multilayers ignited as free-standing foils. The model was implemented in a finite element analysis code and used to match experimental burn front velocity data collected from several years of testing at Sandia National Laboratories. Moreover, both the simulations and experiments reveal well-defined quench limits in the total Al + Pt layer (i.e., bilayer) thickness. At these limits, the heat generated from atomic diffusion is insufficient to support a self-propagating wave front on top of the substrates. Quenchmore » limits for reactive multilayers are seldom reported and are found to depend on the thermal properties of the individual layers. Here, the diffusion-limited reaction model is generalized to allow for temperature- and composition-dependent material properties, phase change, and anisotropic thermal conductivity. Utilizing this increase in model fidelity, excellent overall agreement is shown between the simulations and experimental results with a single calibrated parameter set. However, the burn front velocities of Al/Pt multilayers ignited on tungsten substrates are over-predicted. Finally, possible sources of error are discussed and a higher activation energy (from 41.9 kJ/mol.at. to 47.5 kJ/mol.at.) is shown to bring the simulations into agreement with the velocity data observed on tungsten substrates. Finally, this higher activation energy suggests an inhibited diffusion mechanism present at lower heating rates.« less

  15. Multispecies diffusion models: A study of uranyl species diffusion

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-01

    Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A, where intragranular diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that had been previously described using a semiempirical, multirate model. Compared with the multirate model, the diffusion models have the advantage to provide spatiotemporal speciation evolution within the diffusion domains.

  16. Experimental Tests of Micro-concretion Nucleation in Porous Media: A Laboratory Analog for Formation of Hematite Concretions on Mars

    NASA Astrophysics Data System (ADS)

    Barge, L. M.; Petruska, J.

    2009-04-01

    We present the results of diffusion experiments in combined glass bead and gel media that produced silver chromate precipitates under a variety of conditions. Precipitates took various forms including finger fluid fronts, rhythmic (Liesegang) bands, and mm-size spheroidal "concretions". The silver chromate spherules produced in our experiments are morphologically similar to spheroidal HFO "mini-concretions" that are commonly found in the Jurassic Navajo Sandstone, Utah (USA), which are considered a terrestrial analog for the hematite concretions ("blueberries") discovered at Meridiani Planum, Mars (Chan et al. 2004, Nature). Like the Utah and Martian concretions, the spherules formed in our experiments exhibit a self-organized distribution, lack of an obvious macro nucleus, and ability to form "twin" morphologies. In all cases, the spheroidal precipitates nucleated under diffusion-controlled conditions, and some growth occurred although advection was not present. Other forms of precipitate such as periodic banding and fluid fronts were produced in our experiments as well, which also resemble types of iron mineral precipitation that are observed in the Navajo Sandstone, although thus far only spheroidal self-organized precipitates are seen on Mars. The presence of self-organized precipitates in the Utah and Martian environments most likely resulted from nucleation in a diffusion-controlled environment, and the specific morphology of iron oxide precipitates in porous and permeable systems is likely determined by chemical and physical parameters of the fluid environment in which they precipitated. Although the chemical conditions in our precipitation experiments are obviously very different from what would be expected in the Navajo Sandstone or on Mars, we show in this work how the morphology of self-organized mineral precipitates in a porous/permeable medium is affected by specific physical and chemical parameters.

  17. Diffusion-driven self-assembly of rodlike particles: Monte Carlo simulation on a square lattice

    NASA Astrophysics Data System (ADS)

    Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Gigiberiya, Volodymyr A.; Vygornitskii, Nikolai V.

    2017-05-01

    The diffusion-driven self-assembly of rodlike particles was studied by means of Monte Carlo simulation. The rods were represented as linear k -mers (i.e., particles occupying k adjacent sites). In the initial state, they were deposited onto a two-dimensional square lattice of size L ×L up to the jamming concentration using a random sequential adsorption algorithm. The size of the lattice, L , was varied from 128 to 2048, and periodic boundary conditions were applied along both x and y axes, while the length of the k -mers (determining the aspect ratio) was varied from 2 to 12. The k -mers oriented along the x and y directions (kx-mers and ky-mers, respectively) were deposited equiprobably. In the course of the simulation, the numbers of intraspecific and interspecific contacts between the same sort and between different sorts of k -mers, respectively, were calculated. Both the shift ratio of the actual number of shifts along the longitudinal or transverse axes of the k -mers and the electrical conductivity of the system were also examined. For the initial random configuration, quite different self-organization behavior was observed for short and long k -mers. For long k -mers (k ≥6 ), three main stages of diffusion-driven spatial segregation (self-assembly) were identified: the initial stage, reflecting destruction of the jamming state; the intermediate stage, reflecting continuous cluster coarsening and labyrinth pattern formation; and the final stage, reflecting the formation of diagonal stripe domains. Additional examination of two artificially constructed initial configurations showed that this pattern of diagonal stripe domains is an attractor, i.e., any spatial distribution of k -mers tends to transform into diagonal stripes. Nevertheless, the time for relaxation to the steady state essentially increases as the lattice size growth.

  18. Antifouling composites with self-adaptive controlled release based on an active compound intercalated into layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Yang, Miaosen; Gu, Lianghua; Yang, Bin; Wang, Li; Sun, Zhiyong; Zheng, Jiyong; Zhang, Jinwei; Hou, Jian; Lin, Cunguo

    2017-12-01

    This paper reports a novel method to prepare the antifouling composites with properties of self-adaptive controlled release (defined as control the release rate autonomously and adaptively according to the change of environmental conditions) by intercalation of sodium paeonolsilate (PAS) into MgAl and ZnAl layered double hydroxide (LDH) with the molar ratio (M2+/M3+) of 2:1 and 3:1, respectively. The powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) confirm the intercalation of PAS into the galleries of LDH. The controlled release behavior triggered by temperature for the PAS-LDH composites has been investigated, and the results show that the release rate of all PAS-LDH composites increases as the increase of temperature. However, the MgAl-PAS-LDH composites (Mg2Al-PAS-LDH and Mg3Al-PAS-LDH) exhibit the increased release rate of 0.21 ppm/°C from 15 to 30 °C in 3.5% NaCl solution, more than three times of the ZnAl-PAS-LDH composites (0.06 ppm/°C), owing to the confined microenvironment influenced by metal types in LDH layers. In addition, a possible diffusion-controlled process with surface diffusion, bulk diffusion and heterogeneous flat surface diffusion has been revealed via fitting four kinetic equations. Moreover, to verify the practical application of the PAS-LDH composites, a model coating denoted as Mg2Al-PAS-LDH coating was fabricated. The release result displays that the release rate increases or decreases as temperature altered at 15 and 25 °C alternately, indicating its self-adaptive controlled release behavior with temperature. Moreover, the superior resistance to the settlement of Ulva spores at 15 and 25 °C was observed for the Mg2Al-PAS-LDH coating, as a result of the controllable release of antifoulant. Therefore, this work provides a facile and effective method for the fabrication of antifouling composites with self-adaptive controlled release behavior in response to temperature, which can be used to prolong the lifetime of antifouling coatings.

  19. Enhanced gas absorption in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) confined in silica slit pores: a molecular simulation study.

    PubMed

    Shi, Wei; Luebke, David R

    2013-05-07

    Two-dimensional NPxyT and isostress-osmotic (N2PxyTf1) Monte Carlo simulations were used to compute the density and gas absorption properties of the ionic liquid (IL) 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) confined in silica slit pores (25-45 Å). Self-diffusivity values for both gas and IL were calculated from NVE molecular dynamics simulations using both smooth and atomistic potential models for silica. The simulations showed that the molar volume of [hmim][Tf2N] confined in 25-45-Å silica slit pores is 12-31% larger than that of the bulk IL at 313-573 K and 1 bar. The amounts of CO2, H2, and N2 absorbed in the confined IL are 1.1-3 times larger than those in the bulk IL because of the larger molar volume of the confined IL compared to the bulk IL. The CO2, N2, and H2 molecules are generally absorbed close to the silica wall where the IL density is very low. This arrangement causes the self-diffusivities of these gases in the confined IL to be 2-8 times larger than those in the bulk IL at 298-573 K. The solubilities of water in the confined and bulk ILs are similar, which is likely due to strong water interactions with [hmim][Tf2N] through hydrogen bonding, so that the molar volume of the confined IL plays a less important role in determining the H2O solubility. Water molecules are largely absorbed in the IL-rich region rather than close to the silica wall. The self-diffusivities of water correlate with those of the confined IL. The confined IL exhibits self-diffusivities larger than those of the bulk IL at lower temperatures, but smaller than those of the bulk IL at higher temperatures. The findings from our simulations are consistent with available experimental data for similar confined IL systems.

  20. Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Derek D.; Greenfield, Michael L., E-mail: greenfield@egr.uri.edu

    2014-01-21

    The dynamics properties of a new “next generation” model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxationmore » rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ∼42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.« less

  1. A novel model for smectic liquid crystals: Elastic anisotropy and response to a steady-state flow.

    PubMed

    Püschel-Schlotthauer, Sergej; Meiwes Turrión, Victor; Stieger, Tillmann; Grotjahn, Robin; Hall, Carol K; Mazza, Marco G; Schoen, Martin

    2016-10-28

    By means of a combination of equilibrium Monte Carlo and molecular dynamics simulations and nonequilibrium molecular dynamics we investigate the ordered, uniaxial phases (i.e., nematic and smectic A) of a model liquid crystal. We characterize equilibrium behavior through their diffusive behavior and elastic properties. As one approaches the equilibrium isotropic-nematic phase transition, diffusion becomes anisotropic in that self-diffusion D ⊥ in the direction orthogonal to a molecule's long axis is more hindered than self-diffusion D ∥ in the direction parallel to that axis. Close to nematic-smectic A phase transition the opposite is true, D ∥ < D ⊥ . The Frank elastic constants K 1 , K 2 , and K 3 for the respective splay, twist, and bend deformations of the director field n̂ are no longer equal and exhibit a temperature dependence observed experimentally for cyanobiphenyls. Under nonequilibrium conditions, a pressure gradient applied to the smectic A phase generates Poiseuille-like or plug flow depending on whether the convective velocity is parallel or orthogonal to the plane of smectic layers. We find that in Poiseuille-like flow the viscosity of the smectic A phase is higher than in plug flow. This can be rationalized via the velocity-field component in the direction of the flow. In a sufficiently strong flow these smectic layers are not destroyed but significantly bent.

  2. Directing three-dimensional multicellular morphogenesis by self-organization of vascular mesenchymal cells in hyaluronic acid hydrogels.

    PubMed

    Zhu, Xiaolu; Gojgini, Shiva; Chen, Ting-Hsuan; Fei, Peng; Dong, Siyan; Ho, Chih-Ming; Segura, Tatiana

    2017-01-01

    Physical scaffolds are useful for supporting cells to form three-dimensional (3D) tissue. However, it is non-trivial to develop a scheme that can robustly guide cells to self-organize into a tissue with the desired 3D spatial structures. To achieve this goal, the rational regulation of cellular self-organization in 3D extracellular matrix (ECM) such as hydrogel is needed. In this study, we integrated the Turing reaction-diffusion mechanism with the self-organization process of cells and produced multicellular 3D structures with the desired configurations in a rational manner. By optimizing the components of the hydrogel and applying exogenous morphogens, a variety of multicellular 3D architectures composed of multipotent vascular mesenchymal cells (VMCs) were formed inside hyaluronic acid (HA) hydrogels. These 3D architectures could mimic the features of trabecular bones and multicellular nodules. Based on the Turing reaction-diffusion instability of morphogens and cells, a theoretical model was proposed to predict the variations observed in 3D multicellular structures in response to exogenous factors. It enabled the feasibility to obtain diverse types of 3D multicellular structures by addition of Noggin and/or BMP2. The morphological consistency between the simulation prediction and experimental results probably revealed a Turing-type mechanism underlying the 3D self-organization of VMCs in HA hydrogels. Our study has provided new ways to create a variety of self-organized 3D multicellular architectures for regenerating biomaterial and tissues in a Turing mechanism-based approach.

  3. THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES OBSERVED WITH AIA/SDO: FRACTAL DIFFUSION, SUB-DIFFUSION, OR LOGISTIC GROWTH?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschwanden, Markus J., E-mail: aschwanden@lmsal.com

    2012-09-20

    We explore the spatio-temporal evolution of solar flares by fitting a radial expansion model r(t) that consists of an exponentially growing acceleration phase, followed by a deceleration phase that is parameterized by the generalized diffusion function r(t){proportional_to}{kappa}(t - t{sub 1}){sup {beta}/2}, which includes the logistic growth limit ({beta} = 0), sub-diffusion ({beta} = 0-1), classical diffusion ({beta} = 1), super-diffusion ({beta} = 1-2), and the linear expansion limit ({beta} = 2). We analyze all M- and X-class flares observed with Geostationary Operational Environmental Satellite and Atmospheric Imaging Assembly/Solar Dynamics Observatory (SDO) during the first two years of the SDO mission,more » amounting to 155 events. We find that most flares operate in the sub-diffusive regime ({beta} = 0.53 {+-} 0.27), which we interpret in terms of anisotropic chain reactions of intermittent magnetic reconnection episodes in a low plasma-{beta} corona. We find a mean propagation speed of v = 15 {+-} 12 km s{sup -1}, with maximum speeds of v{sub max} = 80 {+-} 85 km s{sup -1} per flare, which is substantially slower than the sonic speeds expected for thermal diffusion of flare plasmas. The diffusive characteristics established here (for the first time for solar flares) is consistent with the fractal-diffusive self-organized criticality model, which predicted diffusive transport merely based on cellular automaton simulations.« less

  4. Effects of motion and b-matrix correction for high resolution DTI with short-axis PROPELLER-EPI

    PubMed Central

    Aksoy, Murat; Skare, Stefan; Holdsworth, Samantha; Bammer, Roland

    2010-01-01

    Short-axis PROPELLER-EPI (SAP-EPI) has been proven to be very effective in providing high-resolution diffusion-weighted and diffusion tensor data. The self-navigation capabilities of SAP-EPI allow one to correct for motion, phase errors, and geometric distortion. However, in the presence of patient motion, the change in the effective diffusion-encoding direction (i.e. the b-matrix) between successive PROPELLER ‘blades’ can decrease the accuracy of the estimated diffusion tensors, which might result in erroneous reconstruction of white matter tracts in the brain. In this study, we investigate the effects of alterations in the b-matrix as a result of patient motion on the example of SAP-EPI DTI and eliminate these effects by incorporating our novel single-step non-linear diffusion tensor estimation scheme into the SAP-EPI post-processing procedure. Our simulations and in-vivo studies showed that, in the presence of patient motion, correcting the b-matrix is necessary in order to get more accurate diffusion tensor and white matter pathway reconstructions. PMID:20222149

  5. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  6. Measurement of Diffusion in Entangled Rod-Coil Triblock Copolymers

    NASA Astrophysics Data System (ADS)

    Olsen, B. D.; Wang, M.

    2012-02-01

    Although rod-coil block copolymers have attracted increasing attention for functional nanomaterials, their dynamics relevant to self-assembly and processing have not been widely investigated. Because the rod and coil blocks have different reptation behavior and persistence lengths, the mechanism by which block copolymers will diffuse is unclear. In order to understand the effect of the rigid block on reptation, tracer diffusion of a coil-rod-coil block copolymer through an entangled coil polymer matrix was experimentally measured. A monodisperse, high molecular weight coil-rod-coil triblock was synthesized using artificial protein engineering to prepare the helical rod and bioconjugaiton of poly(ethylene glycol) coils to produce the final triblock. Diffusion measurements were performed using Forced Rayleigh scattering (FRS), at varying ratios of the rod length to entanglement length, where genetic engineering is used to control the protein rod length and the polymer matrix concentration controls the entanglement length. As compared to PEO homopolymer tracers, the coil-rod-coil triblocks show markedly slower diffusion, suggesting that the mismatch between rod and coil reptation mechanisms results in hindered diffusion of these molecules in the entangled state.

  7. A calibration mechanism based on worm drive for space telescope

    NASA Astrophysics Data System (ADS)

    Chong, Yaqin; Li, Chuang; Xia, Siyu; Zhong, Peifeng; Lei, Wang

    2017-08-01

    In this paper, a new type of calibration mechanism based on worm drive is presented for a space telescope. This calibration mechanism based on worm drive has the advantages of compact size and self-lock. The mechanism mainly consists of thirty-six LEDs as the light source for flat calibration, a diffuse plate, a step motor, a worm gear reducer and a potentiometer. As the main part of the diffuse plate, a PTFE tablet is mounted in an aluminum alloy frame. The frame is fixed on the shaft of the worm gear, which is driven by the step motor through the worm. The shaft of the potentiometer is connected to that of the worm gear to measure the rotation angle of the diffuse plate through a flexible coupler. Firstly, the calibration mechanism is designed, which includes the LEDs assembly design, the worm gear reducer design and the diffuse plate assembly design. The counterweight blocks and two end stops are also designed for the diffuse plate assembly. Then a modal analysis with finite element method for the diffuse plate assembly is completed.

  8. Room-Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular Aggregate.

    PubMed

    Caram, Justin R; Doria, Sandra; Eisele, Dörthe M; Freyria, Francesca S; Sinclair, Timothy S; Rebentrost, Patrick; Lloyd, Seth; Bawendi, Moungi G

    2016-11-09

    We report 1.6 ± 1 μm exciton transport in self-assembled supramolecular light-harvesting nanotubes (LHNs) assembled from amphiphillic cyanine dyes. We stabilize LHNs in a sucrose glass matrix, greatly reducing light and oxidative damage and allowing the observation of exciton-exciton annihilation signatures under weak excitation flux. Fitting to a one-dimensional diffusion model, we find an average exciton diffusion constant of 55 ± 20 cm 2 /s, among the highest measured for an organic system. We develop a simple model that uses cryogenic measurements of static and dynamic energetic disorder to estimate a diffusion constant of 32 cm 2 /s, in agreement with experiment. We ascribe large exciton diffusion lengths to low static and dynamic energetic disorder in LHNs. We argue that matrix-stabilized LHNS represent an excellent model system to study coherent excitonic transport.

  9. Influence of water on clumped-isotope bond reordering kinetics in calcite

    NASA Astrophysics Data System (ADS)

    Brenner, Dana C.; Passey, Benjamin H.; Stolper, Daniel A.

    2018-03-01

    Oxygen self-diffusion in calcite and many other minerals is considerably faster under wet conditions relative to dry conditions. Here we investigate whether this "water effect" also holds true for solid-state isotope exchange reactions that alter the abundance of carbonate groups with multiple rare isotopes ('clumped' isotope groups) via the process of solid-state bond reordering. We present clumped-isotope reordering rates for optical calcite heated under wet, high-pressure (100 MPa) conditions. We observe only modest increases in reordering rates under such conditions compared with rates for the same material reacted in dry CO2 under low-pressure conditions. Activation energies under wet, high-pressure conditions are indistinguishable from those for dry, low-pressure conditions, while rate constants are resolvably higher (up to ∼3 times) for wet, high-pressure relative to dry, low-pressure conditions in most of our interpretations of experimental results. This contrasts with the water effect for oxygen self-diffusion in calcite, which is associated with lower activation energies, and diffusion coefficients that are ≥103 times higher compared with dry (pure CO2) conditions in the temperature range of this study (385-450 °C). The water effect for clumped-isotopes leads to calculated apparent equilibrium temperatures ("blocking temperatures") for typical geological cooling rates that are only a few degrees higher than those for dry conditions, while O self-diffusion blocking temperatures in calcite grains are ∼150-200 °C lower in wet conditions compared with dry conditions. Since clumped-isotope reordering is a distributed process that occurs throughout the mineral volume, our clumped-isotope results support the suggestion of Labotka et al. (2011) that the water effect in calcite does not involve major changes in bulk (volume) diffusivity, but rather is primarily a surface phenomenon that facilitates oxygen exchange between the calcite surface and external fluids. We explore the mechanism(s) by which clumped isotope reordering rates may be modestly increased under wet, high-pressure conditions, including changes in defect concentrations in the near surface environment due to reactions at the water-mineral interface, and lattice deformation resulting from pressurization of samples.

  10. Diffusion of Zr, Ru, Ce, Y, La, Sr and Ba fission products in UO 2

    DOE PAGES

    Perriot, R.; Liu, X. -Y.; Stanek, C. R.; ...

    2015-01-08

    The diffusivity of the solid fission products (FP) Zr (Zr 4+), Ru (Ru 4+, Ru 3+), Ce (Ce 4+), Y (Y 3+), La (La 3+), Sr (Sr 2+) and Ba (Ba 2+) by a vacancy mechanism has been calculated, using a combination of density functional theory (DFT) and empirical potential (EP) calculations. The activation energies for the solid fission products are compared to the activation energy for Xe fission gas atoms calculated previously. Apart from Ru, the solid fission products all exhibit higher activation energy than Xe. Furthermore, for all solid FPs except Y 3+, the migration of the FPmore » has lower barrier than the migration of a neighboring U atom, making the latter the rate limiting step for direct migration. An indirect mechanism, consisting of two successive migrations around the FP, is also investigated. The calculated diffusivities show that most solid fission products diffuse with rates similar to U self-diffusion. But, Ru, Ba and Sr exhibit faster diffusion than the other solid FPs, with Ru 3+ and Ru 4+ diffusing even faster than Xe for T < 1200 K. The diffusivities correlate with the observed fission product solubility in UO 2, and the tendency to form metallic and oxide second phase inclusions.« less

  11. A novel rumor diffusion model considering the effect of truth in online social media

    NASA Astrophysics Data System (ADS)

    Sun, Ling; Liu, Yun; Zeng, Qing-An; Xiong, Fei

    2015-12-01

    In this paper, we propose a model to investigate how truth affects rumor diffusion in online social media. Our model reveals a relation between rumor and truth — namely, when a rumor is diffusing, the truth about the rumor also diffuses with it. Two patterns of the agents used to identify rumor, self-identification and passive learning are taken into account. Combining theoretical proof and simulation analysis, we find that the threshold value of rumor diffusion is negatively correlated to the connectivity between nodes in the network and the probability β of agents knowing truth. Increasing β can reduce the maximum density of the rumor spreaders and slow down the generation speed of new rumor spreaders. On the other hand, we conclude that the best rumor diffusion strategy must balance the probability of forwarding rumor and the probability of agents losing interest in the rumor. High spread rate λ of rumor would lead to a surge in truth dissemination which will greatly limit the diffusion of rumor. Furthermore, in the case of unknown λ, increasing β can effectively reduce the maximum proportion of agents who do not know the truth, but cannot narrow the rumor diffusion range in a certain interval of β.

  12. In situ Raman spectroscopy of LiFePO4: size and morphology dependence during charge and self-discharge.

    PubMed

    Wu, Jing; Dathar, Gopi Krishna Phani; Sun, Chunwen; Theivanayagam, Murali G; Applestone, Danielle; Dylla, Anthony G; Manthiram, Arumugam; Henkelman, Graeme; Goodenough, John B; Stevenson, Keith J

    2013-10-25

    Previous studies of the size dependent properties of LiFePO4 have focused on the diffusion rate or phase transformation pathways by bulk analysis techniques such as x-ray diffraction (XRD), neutron diffraction and electrochemistry. In this work, in situ Raman spectroscopy was used to study the surface phase change during charge and self-discharge on a more localized scale for three morphologies of LiFePO4: (1) 25 ± 6 nm width nanorods, (2) 225 ± 6 nm width nanorods and (3) ∼2 μm porous microspheres. Both the large nanorod and microsphere geometries showed incomplete delithiation at the end of charge, which was most likely caused by anti-site defects along the 1D diffusion channels in the bulk of the larger particles. Based on the in situ Raman measurements, all of the morphologies studied exhibited self-discharge with time. Among them, the smallest FePO4 particles self-discharged (lithiated) the fastest. While nanostructuring LiFePO4 can offer advantages in terms of lowering anti-site defects within particles, it also creates new problems due to high surface energies that allow self-discharge. The in situ Raman spectroscopy also showed that carbon coating did not provide significant improvement to the stability of the lithiated particles.

  13. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  14. Observation of Li Diffusion in Cathode Sheets of Li-ion Battery by μ+SR

    NASA Astrophysics Data System (ADS)

    Umegaki, Izumi; Kawauchi, Shigehiro; Nozaki, Hiroshi; Sawada, Hiroshi; Nakano, Hiroyuki; Harada, Masashi; Cottrell, Stephen P.; Coomer, Fiona C.; Telling, Mark; Sugiyama, Jun

    In order to know the change in Li diffusion during the operation of Li-ion batteries, we have initiated to measure Li diffusion not only in a powder sample but also in a cathode sheet with μ+SR. As the first step, we have measured μ+SR spectra on a cathode sheet, in which a mixture of a cathode material Li(Ni, Co)O2, a binder, and conducting additives is coated on an Al foil. The zero-field μ+SR spectrum exhibited a typical Kubo-Toyabe (KT) type relaxation at 100 K. By subtracting the contribution of the muons stopped in the Al foil, we found that Li+ ion starts to diffuse above 100 K in the Li(Ni, Co)O2. A self diffusion coefficient (DLi) at 300 K was estimated as 10-11 (cm2/s), which comparable with DLi (300 K) in the cathode materials previously reported. This leads to the future "in operando" measurements of DLi in Li-ion batteries.

  15. Effect of nickel on point defects diffusion in Fe – Ni alloys

    DOE PAGES

    Anento, Napoleon; Serra, Anna; Osetsky, Yury N.

    2017-05-05

    Iron-Nickel alloys are perspective alloys as nuclear energy structural materials because of their good radiation damage tolerance and mechanical properties. Understanding of experimentally observed features such as the effect of Ni content to radiation defects evolution is essential for developing predictive models of radiation. Recently an atomic-scale modelling study has revealed one particular mechanism of Ni effect related to the reduced mobility of clusters of interstitial atoms in Fe-Ni alloys. In this paper we present results of the microsecond-scale molecular dynamics study of point defects, i.e. vacancies and self-interstitial atoms, diffusion in Fe-Ni alloys. It is found that the additionmore » of Ni atoms affects diffusion processes: diffusion of vacancies is enhanced in the presence of Ni, whereas diffusion of interstitials is reduced and these effects increase at high Ni concentration and low temperature. As a result, the role of Ni solutes in radiation damage evolution in Fe-Ni alloys is discussed.« less

  16. Molecular dynamics study of strain-induced diffusivity of nitrogen in pure iron nanocrystalline

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Roghayeh; Razmara, Naiyer; Razmara, Fereshteh

    2016-12-01

    In the present study, the self-diffusion process of nitrogen in pure iron nanocrystalline under strain conditions has been investigated by Molecular Dynamics (MD). The interactions between particles are modeled using Modified Embedded Atom Method (MEAM). Mean Square Displacement (MSD) of nitrogen in iron structure under strain is calculated. Strain is applied along [ 11 2 ¯ 0 ] and [ 0001 ] directions in both tensile and compression conditions. The activation energy and pre-exponential diffusion factor for nitrogen diffusion is comparatively high along [ 0001 ] direction of compressed structure of iron. The strain-induced diffusion coefficient at 973 K under the compression rate of 0.001 Å/ps along [ 0001 ] direction is about 6.72E-14 m2/s. The estimated activation energy of nitrogen under compression along [ 0001 ] direction is equal to 12.39 kcal/mol. The higher activation energy might be due to the fact that the system transforms into a more dense state when compressive stress is applied.

  17. Experimental detection of long-distance interactions between biomolecules through their diffusion behavior: numerical study.

    PubMed

    Nardecchia, Ilaria; Spinelli, Lionel; Preto, Jordane; Gori, Matteo; Floriani, Elena; Jaeger, Sebastien; Ferrier, Pierre; Pettini, Marco

    2014-08-01

    The dynamical properties and diffusive behavior of a collection of mutually interacting particles are numerically investigated for two types of long-range interparticle interactions: Coulomb-electrostatic and dipole-electrodynamic. It is shown that when the particles are uniformly distributed throughout the accessible space, the self-diffusion coefficient is always lowered by the considered interparticle interactions, irrespective of their attractive or repulsive character. This fact is also confirmed by a simple model to compute the correction to the Brownian diffusion coefficient due to the interactions among the particles. These interactions are also responsible for the onset of dynamical chaos and an associated chaotic diffusion which still follows an Einstein-Fick-like law for the mean-square displacement as a function of time. Transitional phenomena are observed for Coulomb-electrostatic (repulsive) and dipole-electrodynamic (attractive) interactions considered both separately and in competition. The outcomes reported in this paper clearly indicate a feasible experimental method to probe the activation of resonant electrodynamic interactions among biomolecules.

  18. Oxygen diffusion in alpha-Al2O3. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cawley, J. D.; Halloran, J. W.; Cooper, A. R.

    1984-01-01

    Oxygen self diffusion coefficients were determined in single crystal alpha-Al2O3 using the gas exchange technique. The samples were semi-infinite slabs cut from five different boules with varying background impurities. The diffusion direction was parallel to the c-axis. The tracer profiles were determined by two techniques, single spectrum proton activation and secondary ion mass spectrometry. The SIMS proved to be a more useful tool. The determined diffusion coefficients, which were insensitive to impurity levels and oxygen partial pressure, could be described by D = .00151 exp (-572kJ/RT) sq m/s. The insensitivities are discussed in terms of point defect clustering. Two independent models are consistent with the findings, the first considers the clusters as immobile point defect traps which buffer changes in the defect chemistry. The second considers clusters to be mobile and oxygen diffusion to be intrinsic behavior, the mechanism for oxygen transport involving neutral clusters of Schottky quintuplets.

  19. Interface Defect States and Charge Transport Properties in Low-Cost Photovoltaic Devices made from Scalable Deposition Methods

    NASA Astrophysics Data System (ADS)

    Marin, Andrew; Munoz-Rojas, David; Iza, Diana; Gershon, Talia; MacManus-Driscoll, Judith

    2011-03-01

    In-plane (parallel to the substrate) polymer diffusion at and near interfaces has significant implications for polymeric surfactants used in tertiary oil recovery, exfoliation of clay sheets in polymer nano-composites, and several other high technology applications. Here, we report a study on the in-plane diffusion of whole polymer chains confined between interfaces using fluorescence recovery after photobleaching. Adapted from quantitative biology, FRAP provides a platform to independently study the effect of temperature, molecular weight, and film thickness on in-plane diffusion of polymers confined between interfaces. Fluorescently labeled polymers were synthesized, spin coated onto quartz substrates and the self-diffusion coefficient was measured by irreversibly photobleaching fluorophores in a pre-defined pattern and monitoring recovery of fluorescence over time. Preliminary results indicate that for thick films the diffusion coefficient is consistent with bulk values. The authors would like to thank the Gates-Cambridge Trust and the International Copper Association.

  20. Impact of casein gel microstructure on self-diffusion coefficient of molecular probes measured by 1H PFG-NMR.

    PubMed

    Le Feunteun, Steven; Mariette, François

    2007-12-26

    The translational dynamics of poly(ethylene glycol) (PEG) polymers with molecular weights (Mw) varying from 6x10(2) to 5x10(5) were investigated by pulsed field gradient NMR in casein suspensions and in gels induced by acidification, enzyme action, and a combination of both. For molecules with Mwor=8000, there was strong dependence of diffusion on PEG size and on the casein network structure as revealed by scanning electron microscopy images. The diffusion coefficients of the two largest PEGs were increased after coagulation by amounts that depended on the internal structure of the gel. In addition, the 527,000 g/mol PEG was found to deviate from Gaussian diffusion behavior to greater or lesser extents according to the casein concentration and the sample microstructure. The results are discussed in terms of network rearrangements.

  1. Atomistic Modeling of Cation Diffusion in Transition Metal Perovskites La1-xSrxMnO3+/-δfor Solid Oxide Fuel Cell Cathodes Applications

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane; Sorescu, Dan; Abernathy, Harry

    Cation diffusion in La1-xSrxMnO3+/-δ (LSM) and in related perovskite materials play an important role in controlling long term performance and stability of solid oxide fuel cell (SOFCs) cathodes. Due to sluggish rates of cation diffusion and complex coupling between defect chemistry and cation diffusion pathways, currently there is still lack of quantitative theoretical model predictions on cation diffusivity vs. T and P(O2) to describe experimental cation tracer diffusivities. In this work, based on ab initio modeling of LSM defect chemistry and migration barriers of the possible cation diffusion pathways, we assess the rates of A-site and B-site cation diffusion in a wide range of T and P(O2) at x =0.0 and 0.2 for SOFC applications. We demonstrate the active cation diffusion pathways in LSM involve cation defect clusters as cation transport carriers, where reduction in the cation migration barriers, which are governed by the steric effect associated with the metal-oxygen cage in the perovskite lattice, is much greater than the penalty of repulsive interaction in the A-site and B-site cation vacancy clusters, leading to higher cation diffusion rates as compared to those of single cation vacancy hopping mechanisms. The predicted Mn and La/Sr cation self-diffusion coefficients of LSM at at x =0.0 and 0.2 along with their 1/T and P(O2) dependences, are in good agreement with the experimental tracer diffusion coefficients.

  2. Dichotomous-noise-induced pattern formation in a reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Das, Debojyoti; Ray, Deb Shankar

    2013-06-01

    We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR) -membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion system.

  3. Anomalous Diffusion of Particles Dispersed in Xanthan Solutions Subjected to Shear Flow

    NASA Astrophysics Data System (ADS)

    Takikawa, Yoshinori; Yasuta, Muneharu; Fujii, Shuji; Orihara, Hiroshi; Tanaka, Yoshimi; Nishinari, Katsuyoshi

    2018-05-01

    Xanthan gum exhibits viscoelastic and shear-thinning properties. We investigate the Brownian motion of particles dispersed in xanthan gum solutions that are subjected to simple shear flow. The mean square displacements (MSDs) are obtained in both the flow and vorticity directions. In the absence of shear flow, subdiffusion is observed, MSD ∝ tα with α < 1, where t is time. In the presence of shear flow, however, the exponent α becomes larger together with the MSD itself in both the flow and vorticity directions. We show that the diffusion is enhanced by Taylor dispersion in the flow direction, whereas in the vorticity direction it is enhanced by nonthermal self-diffusion.

  4. OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE IN BULK TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.

    2015-09-22

    We used our recently developed lattice based OKMC code; KSOME [1] to carryout simulations of radiation damage in bulk W. We study the effect of dimensionality of self interstitial atom (SIA) diffusion i.e. 1D versus 3D on the defect accumulation during irradiation with a primary knock-on atom (PKA) energy of 100 keV at 300 K for the dose rates of 10-5 and 10-6 dpa/s. As expected 3D SIA diffusion significantly reduces damage accumulation due to increased probability of recombination events. In addition, dose rate, over the limited range examined here, appears to have no effect in both cases of SIAmore » diffusion.« less

  5. The Diffusion of Evidence-Based Practice: Reviewing the Evidence-Based Practice Networks in the United States and German-Speaking Countries.

    PubMed

    Ghanem, Christian; Lawson, Thomas R; Pankofer, Sabine; Maragkos, Markos; Kollar, Ingo

    2017-01-01

    Evidence-based practice (EBP) has had a major influence on U.S. social work while it has rarely been adapted in German-speaking countries. This study investigates how knowledge about EBP is diffused within and across geographical contexts. Network analysis methods reveals different diffusion patterns and provide reasons for these differences. For example, the U.S. discourse is self-contained and based on a more homogeneous knowledge base, while the German discourse is more heterogeneous and focuses on a notion of reflexive professionalism. The different conceptual influences within the U.S. and German discourses are discussed in light of future directions of disciplinary social work.

  6. Simulation studies of self-organization of microtubules and molecular motors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian, Z.; Karpeev, D.; Aranson, I. S.

    We perform Monte Carlo type simulation studies of self-organization of microtubules interacting with molecular motors. We model microtubules as stiff polar rods of equal length exhibiting anisotropic diffusion in the plane. The molecular motors are implicitly introduced by specifying certain probabilistic collision rules resulting in realignment of the rods. This approximation of the complicated microtubule-motor interaction by a simple instant collision allows us to bypass the 'computational bottlenecks' associated with the details of the diffusion and the dynamics of motors and the reorientation of microtubules. Consequently, we are able to perform simulations of large ensembles of microtubules and motors onmore » a very large time scale. This simple model reproduces all important phenomenology observed in in vitro experiments: Formation of vortices for low motor density and raylike asters and bundles for higher motor density.« less

  7. Transport tensors in perfectly aligned low-density fluids: Self-diffusion and thermal conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, G. S.; Kumar, B.

    2001-06-01

    The modified Taxman equation for the kinetic theory of low-density fluids composed of rigid aspherical molecules possessing internal degrees of freedom is generalized to obtain the transport tensors in a fluid of aligned molecules. The theory takes care of the shape of the particles exactly but the solution has been obtained only for the case of perfectly aligned hard spheroids within the framework of the first Sonine polynomial approximation. The expressions for the thermal-conductivity components have been obtained for the first time whereas the self-diffusion components obtained here turn out to be exactly the same as those derived by Kumarmore » and Masters [Mol. Phys. >81, 491 (1994)] through the solution of the Lorentz-Boltzmann equation. All our expressions yield correct results in the hard-sphere limit.« less

  8. Simulation of the early startup period of high-temperature heat pipes from the frozen state by a rarefied vapor self-diffusion model

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1993-01-01

    The heat pipe startup process is described physically and is divided into five periods for convenience of analysis. The literature survey revealed that none of the previous attempts to simulate the heat pipe startup process numerically were successful, since the rarefied vapor flow in the heat pipe was not considered. Therefore, a rarefied vapor self-diffusion model is proposed, and the early startup periods, in which the rarefied vapor flow is dominant within the heat pipe, are first simulated numerically. The numerical results show that large vapor density gradients existed along the heat pipe length, and the vapor flow reaches supersonic velocities when the density is extremely low. The numerical results are compared with the experimental data of the early startup period with good agreement.

  9. Experimental measurement of self-diffusion in a strongly coupled plasma

    DOE PAGES

    Strickler, Trevor S.; Langin, Thomas K.; McQuillen, Paul; ...

    2016-05-17

    Here, we present a study of the collisional relaxation of ion velocities in a strongly coupled, ultracold neutral plasma on short time scales compared to the inverse collision rate. The measured average velocity of a tagged population of ions is shown to be equivalent to the ion-velocity autocorrelation function. We thus gain access to fundamental aspects of the single-particle dynamics in strongly coupled plasmas and to the ion self-diffusion constant under conditions where experimental measurements have been lacking. Nonexponential decay towards equilibrium of the average velocity heralds non-Markovian dynamics that are not predicted by traditional descriptions of weakly coupled plasmas.more » This demonstrates the utility of ultracold neutral plasmas for studying the effects of strong coupling on collisional processes, which is of interest for dense laboratory and astrophysical plasmas.« less

  10. Relaxation and Self-Diffusion of a Polymer Chain in a Melt

    NASA Astrophysics Data System (ADS)

    Hagita, Katsumi; Takano, Hiroshi

    2004-04-01

    Relaxation and self-diffusion of a polymer chain in a melt are discussed on the basis of the results of our recent Monte Carlo simulations of the bond fluctuation model, where only the excluded volume interaction is considered. Polymer chains are located on an L × L × L simple cubic lattice under periodic boundary conditions. Each chain consists of N segments, each of which occupies 2 × 2 × 2 unit cells. The results for N = 32, 48, 64, 96, 128, 192, 256, 384 and 512 at the volume fraction φ ≃ 0.5 are examined, where L = 128 for N ⩽ 256 and L = 192 for N ⩾ 384. The longest relaxation time τ is estimated by solving generalized eigenvalue problems for the equilibrium time correlation matrices of the positions of segments of a polymer chain. The self-diffusion constant D is estimated from the mean square displacements of the center of mass of a single polymer chain at the times larger than τ. From the data for N = 256, 384 and 512, the apparent exponents x r and xd, which describe the power law dependences of τ and D on N as τ ∝ N xr and D ∝ N-xd, are estimated to be xr ≃ 3.5 and xd ≃ 2.4, respectively. For N = 192, 256, 384 and 512, Dτ/ appears to be a constant, where denotes the mean square end-to-end distance of a polymer chain.

  11. NMR 1D-imaging of water infiltration into mesoporous matrices.

    PubMed

    Le Feunteun, Steven; Diat, Olivier; Guillermo, Armel; Poulesquen, Arnaud; Podor, Renaud

    2011-04-01

    It is shown that coupling nuclear magnetic resonance (NMR) 1D-imaging with the measure of NMR relaxation times and self-diffusion coefficients can be a very powerful approach to investigate fluid infiltration into porous media. Such an experimental design was used to study the very slow seeping of pure water into hydrophobic materials. We consider here three model samples of nuclear waste conditioning matrices which consist in a dispersion of NaNO(3) (highly soluble) and/or BaSO(4) (poorly soluble) salt grains embedded in a bitumen matrix. Beyond studying the moisture progression according to the sample depth, we analyze the water NMR relaxation times and self-diffusion coefficients along its 1D-concentration profile to obtain spatially resolved information on the solution properties and on the porous structure at different scales. It is also shown that, when the relaxation or self-diffusion properties are multimodal, the 1D-profile of each water population is recovered. Three main levels of information were disclosed along the depth-profiles. They concern (i) the water uptake kinetics, (ii) the salinity and the molecular dynamics of the infiltrated solutions and (iii) the microstructure of the water-filled porosities: open networks coexisting with closed pores. All these findings were fully validated and enriched by NMR cryoporometry experiments and by performing environmental scanning electronic microscopy observations. Surprisingly, results clearly show that insoluble salts enhance the water progression and thereby increase the capability of the material to uptake water. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Three-stage nucleation and growth of Ge self-assembled quantum dots grown on partially relaxed SiGe buffer layers

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Zhao, Z. M.; Xie, Y. H.

    2003-11-01

    Three-stage nucleation and growth of Ge self-assembled quantum dots (SAQDs) on a relaxed SiGe buffer layer has been studied. Plastic relaxation of the SiGe buffer layer is associated with a network of buried 60° dislocations leading to an undulating strain field. As a result, the surface possesses three different types of sites for the nucleation and growth of Ge SAQDs: over the intersection of two perpendicular buried dislocations, over a single dislocation line, and in the region beyond one diffusion length away from any dislocation. Ge SAQDs are observed to nucleate exclusively over the dislocation intersections first, followed by over single dislocation lines, and finally in the region far away from dislocations. By increasing the Ge coverage at a slow rate, the prenucleation stage at the various sites is observed. It appears that the varying strain field has a significant effect on both the diffusion of Ge adatoms before SAQD nucleation, as well as the shape evolution of the SAQDs after they form. Moreover, two distinctly different self-assembly mechanisms are observed at different sites. There exist denuded zones free of Ge SAQDs adjacent to dislocation lines. The width of the denuded zone can be used to make direct determination of the Ge adatom diffusion lengths. The partially relaxed substrate provides a useful experimental vehicle for the in-depth understanding of the formation mechanism of SAQDs grown epitaxially in the Stranski-Krastanov growth mode.

  13. Lateral diffusion in model membranes is independent of the size of the hydrophobic region of molecules.

    PubMed Central

    Balcom, B J; Petersen, N O

    1993-01-01

    We have systematically investigated the probe size and shape dependence of lateral diffusion in model dimyristoyl phosphatidylcholine membranes. Linear hydrophobic polymers, which differ in length by an order of magnitude, were used to explore the effect on the lateral diffusion coefficient of hydrodynamic restrictions in the bilayer interior. The polymers employed are isoprenoid alcohols--citronellol, solanesol, and dolichol. Tracer lateral diffusion coefficients were measured by fluorescence photobleaching recovery. Despite the large difference in lengths, the nitrobenzoxadiazole labelled alcohols all diffuse at the rate of lipid self-diffusion (5.0 x 10(-12) m2 s-1, 29 degrees C) in the liquid crystal phase. Companion measurements in isotropic polymer solution, in gel phase lipid membranes and with nonpolar fluorescent polyaromatic hydrocarbons, show a marked dependence of the lateral diffusion coefficient on the probe molecule size. Our results in the liquid crystal phase are in accord with free area theory which asserts that lateral diffusion in the membrane is restricted by the surface-free area. Probe molecules which are significantly longer than the host phospholipid, seven times longer in the case of dolichol, are still restricted in their lateral motion by the surface properties of the bilayer in the liquid crystal phase. Fluorescence quenching experiments indicate that the nitrobenzoxadiazole label does not reside at the aqueous interface, although it must reside in close proximity according to the diffusion measurements. PMID:8218892

  14. FAST TRACK COMMUNICATION: Quantum anomalies and linear response theory

    NASA Astrophysics Data System (ADS)

    Sela, Itamar; Aisenberg, James; Kottos, Tsampikos; Cohen, Doron

    2010-08-01

    The analysis of diffusive energy spreading in quantized chaotic driven systems leads to a universal paradigm for the emergence of a quantum anomaly. In the classical approximation, a driven chaotic system exhibits stochastic-like diffusion in energy space with a coefficient D that is proportional to the intensity ɛ2 of the driving. In the corresponding quantized problem the coherent transitions are characterized by a generalized Wigner time tɛ, and a self-generated (intrinsic) dephasing process leads to nonlinear dependence of D on ɛ2.

  15. Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method

    NASA Astrophysics Data System (ADS)

    Qiu, T.; Wu, X. L.; Mei, Y. F.; Chu, P. K.; Siu, G. G.

    2005-09-01

    Unique silver dendritic nanostructures, with stems, branches, and leaves, were synthesized with self-organization via a simple electroless metal deposition method in a conventional autoclave containing aqueous HF and AgNO3 solution. Their growth mechanisms are discussed in detail on the basis of a self-assembled localized microscopic electrochemical cell model. A process of diffusion-limited aggregation is suggested for the formation of the silver dendritic nanostructures. This nanostructured material is of great potential to be building blocks for assembling mini-functional devices of the next generation.

  16. From self-assembly fundamental knowledge to nanomedicine developments.

    PubMed

    Monduzzi, Maura; Lampis, Sandrina; Murgia, Sergio; Salis, Andrea

    2014-03-01

    This review highlights the key role of NMR techniques in demonstrating the molecular aspects of the self-assembly of surfactant molecules that nowadays constitute the basic knowledge which modern nanoscience relies on. The aim is to provide a tutorial overview. The story of a rigorous scientific approach to understand self-assembly in surfactant systems and biological membranes starts in the early seventies when the progresses of SAXRD and NMR technological facilities allowed to demonstrate the existence of ordered soft matter, and the validity of Tanford approach concerning self-assembly at a molecular level. Particularly, NMR quadrupolar splittings, NMR chemical shift anisotropy, and NMR relaxation of dipolar and quadrupolar nuclei in micellar solutions, microemulsions, and liquid crystals proved the existence of an ordered polar-apolar interface, on the NMR time scale. NMR data, rationalized in terms of the two-step model of relaxation, allowed to quantify the dynamic aspects of the supramolecular aggregates in different soft matter systems. In addition, NMR techniques allowed to obtain important information on counterion binding as well as on size of the aggregate through molecular self-diffusion. Indeed NMR self-diffusion proved without any doubt the existence of bicontinuous microemulsions and bicontinuous cubic liquid crystals, suggested by pioneering and brilliant interpretation of SAXRD investigations. Moreover, NMR self-diffusion played a fundamental role in the understanding of microemulsion and emulsion nanostructures, phase transitions in phase diagrams, and particularly percolation phenomena in microemulsions. Since the nineties, globalization of the knowledge along with many other technical facilities such as electron microscopy, particularly cryo-EM, produced huge progresses in surfactant and colloid science. Actually we refer to nanoscience: bottom up/top down strategies allow to build nanodevices with applications spanning from ICT to food technology. Developments in the applied fields have also been addressed by important progresses in theoretical skills aimed to understand intermolecular forces, and specific ion interactions. Nevertheless, this is still an open question. Our predictive ability has however increased, hence more ambitious targets can be planned. Nanomedicine represents a major challenging field with its main aims: targeted drug delivery, diagnostic, theranostics, tissue engineering, and personalized medicine. Few recent examples will be mentioned. Although the real applications of these systems still need major work, nevertheless new challenges are open, and perspectives based on integrated multidisciplinary approaches would enable both a deeper basic knowledge and the expected advances in biomedical field. © 2013.

  17. Understanding of the Elemental Diffusion Behavior in Concentrated Solid Solution Alloys

    DOE PAGES

    Zhang, Chuan; Zhang, Fan; Jin, Ke; ...

    2017-07-13

    As one of the core effects on the high-temperature structural stability, the so-called “sluggish diffusion effect” in high-entropy alloy (HEA) has attracted much attention. Experimental investigations on the diffusion kinetics have been carried out in a few HEA systems, such as Al-Co-Cr-Fe-Ni and Co-Cr-Fe-Mn-Ni. However, the mechanisms behind this effect remain unclear. To better understand the diffusion kinetics of the HEAs, a combined computational/experimental approach is employed in the current study. In the present work, a self-consistent atomic mobility database is developed for the face-centered cubic (fcc) phase of the Co-Cr-Fe-Mn-Ni quinary system. The simulated diffusion coefficients and concentration profilesmore » using this database can well describe the experimental data both from this work and the literatures. The validated mobility database is then used to calculate the tracer diffusion coefficients of Ni in the subsystems of the Co-Cr-Fe-Mn-Ni system with equiatomic ratios. The comparisons of these calculated diffusion coefficients reveal that the diffusion of Ni is not inevitably more sluggish with increasing number of components in the subsystem even with homologous temperature. Taking advantage of computational thermodynamics, the diffusivities of alloying elements with composition and/or temperature are also calculated. Furthermore, these calculations provide us an overall picture of the diffusion kinetics within the Co-Cr-Fe-Mn-Ni system.« less

  18. Gaussian memory in kinematic matrix theory for self-propellers.

    PubMed

    Nourhani, Amir; Crespi, Vincent H; Lammert, Paul E

    2014-12-01

    We extend the kinematic matrix ("kinematrix") formalism [Phys. Rev. E 89, 062304 (2014)], which via simple matrix algebra accesses ensemble properties of self-propellers influenced by uncorrelated noise, to treat Gaussian correlated noises. This extension brings into reach many real-world biological and biomimetic self-propellers for which inertia is significant. Applying the formalism, we analyze in detail ensemble behaviors of a 2D self-propeller with velocity fluctuations and orientation evolution driven by an Ornstein-Uhlenbeck process. On the basis of exact results, a variety of dynamical regimes determined by the inertial, speed-fluctuation, orientational diffusion, and emergent disorientation time scales are delineated and discussed.

  19. Self-diffusion of polycrystalline ice Ih under confining pressure: Hydrogen isotope analysis using 2-D Raman imaging

    NASA Astrophysics Data System (ADS)

    Noguchi, Naoki; Kubo, Tomoaki; Durham, William B.; Kagi, Hiroyuki; Shimizu, Ichiko

    2016-08-01

    We have developed a high-resolution technique based on micro Raman spectroscopy to measure hydrogen isotope diffusion profiles in ice Ih. The calibration curve for quantitative analysis of deuterium in ice Ih was constructed using micro Raman spectroscopy. Diffusion experiments using diffusion couples composed of dense polycrystalline H2O and D2O ice were carried out under a gas confining pressure of 100 MPa (to suppress micro-fracturing and pore formation) at temperatures from 235 K to 245 K and diffusion times from 0.2 to 94 hours. Two-dimensional deuterium profiles across the diffusion couples were determined by Raman imaging. The location of small spots of frost from room air could be detected from the shapes of the Raman bands of OH and OD stretching modes, which change because of the effect of the molar ratio of deuterium on the molecular coupling interaction. We emphasize the validity for screening the impurities utilizing the coupling interaction. Some recrystallization and grain boundary migration occurred in recovered diffusion couples, but analysis of two-dimensional diffusion profiles of regions not affected by grain boundary migration allowed us to measure a volume diffusivity for ice at 100 MPa of (2.8 ± 0.4) ×10-3exp[ -57.0 ± 15.4kJ /mol RT ] m2 /s (R is the gas constant, T is temperature). Based on ambient pressure diffusivity measurements by others, this value indicates a high (negative) activation volume for volume diffusivity of -29.5 cm3/mol or more. We can also constrain the value of grain boundary diffusivity in ice at 100 MPa to be <104 that of volume diffusivity.

  20. Atomisti modeling of the microstructure and transport properties of lead-free solder alloys

    NASA Astrophysics Data System (ADS)

    Sellers, Michael S.

    Damage mechanics models of lead-free solder joints in nanoelectronics continue to improve, and in doing so begin to utilize quantitative values describing processes at the atomic level, governing phenomena like electromigration and thermomigration. In particular, knowledge of the transport properties of specific microstructures helps continuum level models fully describe these larger-scale damage phenomena via multi-scale analysis. For example, diffusivities for different types of grain boundaries (fast diffusion paths for solvent and solute atoms, and vacancies), and a description of the boundary structure as a function of temperature, are critical in modeling solder microstructure evolution and, consequently, joint behavior under extreme temperature and electric current. Moreover, for damage that develops at larger length scales, surface energies and diffusivities play important roles in characterizing void stability and morphology. Unfortunately, experiments that investigate these kind of damage phenomena in the atomistic realm are often inconsistent or unable to directly quantify important parameters. One case is the particular transport and structural properties of grain boundaries in Sn (the main component in lead-free solder alloys) and their behavior in the presence of Ag and Cu impurities. This information is crucial in determining accurate diffusivity values for the common SnAgCu (SAC) type solder. Although an average grain boundary diffusivity has been reported for polycrystalline Sn in several works, the value for grain boundary width is estimated and specific diffusivities for boundaries known to occur in Sn have not been reported, to say nothing of solute effects on Sn diffusivity and grain boundary structure. Similarly, transport properties of Sn surfaces remain relatively uninvestigated as well. These gaps and inconsistencies in atomistic data must be remedied for micro- and macro-scale modeling to improve. As a complement to experimental work and possessing the ability to fill in the gaps, molecular simulation serves to reinforce experimental predictions and provide insight into the atomistic processes that govern studied phenomena. In the present body of work, we employ molecular statics and dynamics simulations in the characterization and computation of betaSn surface energies and surface diffusivities, the determination of diffusivities and structural properties of specific betaSn grain boundaries, and the investigation of Cu and Ag solute effects on betaSn grain boundaries. In our study of betaSn surfaces, energies for low number Miller index surfaces are computed and the (100) plane is found to have the lowest un-relaxed energy. We then find that two simple hopping mechanisms dominate adatom diffusion transitions on this surface. For each, we determine hopping rates of the adatom and compute its tracer diffusivity. Our work on grain boundaries investigates the self-diffusion properties and structure of several betaSn symmetric tilt grain boundaries using molecular dynamics simulations. We find that larger diffusive widths are exhibited by higher excess potential energy grain boundaries. Diffusivities in the directions parallel to the interface plane are also computed and activation energies are found with the Arrhenius relation. These are shown to agree well with experimental data. Finally, we examine the effect that solute atoms of Ag and Cu have on the microstructure of betaSn. Excess energies of the (101) symmetric tilt betaSn grain boundary are computed as a function of solute concentration at the interface, and we show that Ag lowers the energy at a greater rate than Cu. We also quantify segregation enthalpies and critical solute concentrations (where the excess energy of the boundary is reduced to zero). The effect of solute type on shear stress is also examined, and we show that solute has a strong effect on the stabilization of higher energy grain boundaries under shear stress. We then look at the self-diffusivity of Sn in the (101) symmetric tilt betaSn grain boundary and show that adding both Ag or Cu decrease the grain boundary self-diffusivity of Sn as solute amount in the interface increases. Effects of larger concentrations of Cu in particular are also investigated.

  1. Microscopic theory of topologically entangled fluids of rigid macromolecules

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.; Schweizer, Kenneth S.

    2011-06-01

    We present a first-principles theory for the slow dynamics of a fluid of entangling rigid crosses of zero excluded volume based on a generalization of the dynamic mean-field approach of Szamel for infinitely thin nonrotating rods. The latter theory exactly includes topological constraints at the two-body collision level and self-consistently renormalizes an effective diffusion tensor to account for many-body effects. Remarkably, it predicts scaling laws consistent with the phenomenological reptation-tube predictions of Doi and Edwards for the long-time diffusion and the localization length in the heavily entangled limit. We generalize this approach to a different macromolecular architecture, infinitely thin three-dimensional crosses, and also extend the range of densities over which a dynamic localization length can be calculated for rods. Ideal gases of nonrotating crosses have recently received attention in computer simulations and are relevant as a simple model of both a strong-glass former and entangling star-branched polymers. Comparisons of our theory with these simulations reveal reasonable agreement for the magnitude and reduced density dependence of the localization length and also the self-diffusion constant if the consequences of local density fluctuations are taken into account.

  2. Accelerated ions and self-excited Alfvén waves at the Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Taneev, S. N.; Trattner, K. J.

    2011-07-01

    The diffuse energetic ion event and related Alfvén waves upstream of the Earth's bow shock, measured by AMPTE/IRM satellite on 29 September 1984, 06:42-07:22 UT, was studied using a self-consistent quasi-linear theory of ion diffusive shock acceleration and associated Alfvén wave generation. The wave energy density satisfies a wave kinetic equation, and the ion distribution function satisfies the diffusive transport equation. These coupled equations are solved numerically, and calculated ion and wave spectra are compared with observations. It is shown that calculated steady state ion and Alfvén wave spectra are established during the time period of about 1000 s. Alfvén waves excited by accelerated ions are confined within the frequency range (10-2 to 1) Hz, and their spectral peak with the wave amplitude δB ≈ B comparable to the interplanetary magnetic field value B corresponds to the frequency 2 × 10-2 Hz. The high-frequency part of the wave spectrum undergoes absorption by thermal protons. It is shown that the observed ion spectra and the associated Alfvén wave spectra are consistent with the theoretical prediction.

  3. Describing Temperature-Dependent Self-Diffusion Coefficients and Fluidity of 1- and 3-Alcohols with the Compensated Arrhenius Formalism.

    PubMed

    Fleshman, Allison M; Forsythe, Grant E; Petrowsky, Matt; Frech, Roger

    2016-09-22

    The location of the hydroxyl group in monohydroxy alcohols greatly affects the temperature dependence of the liquid structure due to hydrogen bonding. Temperature-dependent self-diffusion coefficients, fluidity (the inverse of viscosity), dielectric constant, and density have been measured for several 1-alcohols and 3-alcohols with varying alkyl chain lengths. The data are modeled using the compensated Arrhenius formalism (CAF). The CAF follows a modified transition state theory using an Arrhenius-like expression to describe the transport property, which consists of a Boltzmann factor containing an energy of activation, Ea, and an exponential prefactor containing the temperature-dependent solution dielectric constant, εs(T). Both 1- and 3-alcohols show the Ea of diffusion coefficients (approximately 43 kJ mol(-1)) is higher than the Ea of fluidity (approximately 35 kJ mol(-1)). The temperature dependence of the exponential prefactor in these associated liquids is explained using the dielectric constant and the Kirkwood-Frölich correlation factor, gk. It is argued that the dielectric constant must be used to account for the additional temperature dependence due to variations in the liquid structure (e.g., hydrogen bonding) for the CAF to accurately model the transport property.

  4. Frequency-constant Q, unity and disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargreaves, N.D.

    1995-12-31

    In exploration geophysics we obtain information about the earth by observing its response to different types of applied force. The response can cover the full range of possible Q values (where Q, the quality factor, is a measure of energy dissipation), from close to infinity in the case of deep crustal seismic to close to 0 in the case of many electromagnetic methods. When Q is frequency-constant, however, the various types of response have a common scaling behavior and can be described as being self-affine. The wave-equation then takes on a generalised form, changing from the standard wave-equation at Qmore » = {infinity} to the diffusion equation at Q = 0, via lossy, diffusive, propagation at intermediate Q values. Solutions of this wave-diffusion equation at any particular Q value can be converted to an equivalent set of results for any other Q value. In particular it is possible to convert from diffusive to wave propagation by a mapping from Q < {infinity} to Q = {infinity}. In the context of seismic sounding this is equivalent to applying inverse Q-filtering; in a more general context the mapping integrates different geophysical observations by referencing them to the common result at Q = {infinity}. The self-affinity of the observations for frequency-constant Q is an expression of scale invariance in the fundamental physical properties of the medium of propagation, this being the case whether the mechanism of diffusive propagation is scattering of intrinsic attenuation. Scale invariance, or fractal scaling, is a general property of disordered systems; the assumption of frequency-constant Q not only implies a unity between different geophysical observations, but also suggests that it is the disordered nature of the earth`s sub-surface that is the unifying factor.« less

  5. Diffusion of Sites versus Polymers in Polyelectrolyte Complexes and Multilayers.

    PubMed

    Fares, Hadi M; Schlenoff, Joseph B

    2017-10-18

    It has long been assumed that the spontaneous formation of materials such as complexes and multilayers from charged polymers depends on (inter)diffusion of these polyelectrolytes. Here, we separately examine the mass transport of polymer molecules and extrinsic sites-charged polyelectrolyte repeat units balanced by counterions-within thin films of polyelectrolyte complex, PEC, using sensitive isotopic labeling techniques. The apparent diffusion coefficients of these sites within PEC films of poly(diallyldimethylammonium), PDADMA, and poly(styrenesulfonate), PSS, are at least 2 orders of magnitude faster than the diffusion of polyelectrolytes themselves. This is because site diffusion requires only local rearrangements of polyelectrolyte repeat units, placing far fewer kinetic limitations on the assembly of polyelectrolyte complexes in all of their forms. Site diffusion strongly depends on the salt concentration (ionic strength) of the environment, and diffusion of PDADMA sites is faster than that of PSS sites, accounting for the asymmetric nature of multilayer growth. Site diffusion is responsible for multilayer growth in the linear and into the exponential regimes, which explains how PDADMA can mysteriously "pass through" layers of PSS. Using quantitative relationships between site diffusion coefficient and salt concentration, conditions were identified that allowed the diffusion length to always exceed the film thickness, leading to full exponential growth over 3 orders of magnitude thickness. Both site and polymer diffusion were independent of molecular weight, suggesting that ion pairing density is a limiting factor. Polyelectrolyte complexes are examples of a broader class of dynamic bulk polymeric materials that (self-) assemble via the transport of cross-links or defects rather than actual molecules.

  6. Using tobacco mosaic virus to probe enhanced surface diffusion of molecular glasses.

    PubMed

    Zhang, Yue; Potter, Richard; Zhang, William; Fakhraai, Zahra

    2016-11-09

    Recent studies have shown that diffusion on the surface of organic glasses can be many orders of magnitude faster than bulk diffusion. Developing new probes that can readily measure surface diffusion can help study the effect of parameters such as chemical structure, intermolecular interaction, molecules' shape and size on the enhanced surface diffusion. In this study, we develop a novel probe that significantly simplifies these types of studies. Tobacco mosaic virus (TMV) is used as probe particle to measure surface diffusion coefficient of molecular glass N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD). The evolution of the meniscus formed around TMV is probed as a function of time at various temperatures. TMV has a well-defined, mono-dispersed, cylindrical shape, with a large aspect-ratio (average diameter of 16.6 nm, length of 300 nm). As such, the shape of the meniscus around the center of TMV is semi-two dimensional, which compared to using a nanosphere as probe, increases the driving force for meniscus formation and simplifies the analysis of surface diffusion. We show that under these conditions, after a short transient time the shape of the meniscus is self-similar, allowing accurate determination of the surface diffusion coefficient. Measurements at various temperatures are then performed to investigate the temperature dependence of the surface diffusion coefficient. It is found that surface diffusion is greatly enhanced in TPD and has a lower activation barrier compared to the bulk counterpart. These observations are consistent with previous studies of surface diffusion on molecular glasses, demonstrating the accuracy of this method.

  7. Optimized Diffusion of Run-and-Tumble Particles in Crowded Environments

    NASA Astrophysics Data System (ADS)

    Bertrand, Thibault; Zhao, Yongfeng; Bénichou, Olivier; Tailleur, Julien; Voituriez, Raphaël

    2018-05-01

    We study the transport of self-propelled particles in dynamic complex environments. To obtain exact results, we introduce a model of run-and-tumble particles (RTPs) moving in discrete time on a d -dimensional cubic lattice in the presence of diffusing hard-core obstacles. We derive an explicit expression for the diffusivity of the RTP, which is exact in the limit of low density of fixed obstacles. To do so, we introduce a generalization of Kac's theorem on the mean return times of Markov processes, which we expect to be relevant for a large class of lattice gas problems. Our results show the diffusivity of RTPs to be nonmonotonic in the tumbling probability for low enough obstacle mobility. These results prove the potential for the optimization of the transport of RTPs in crowded and disordered environments with applications to motile artificial and biological systems.

  8. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer

    NASA Astrophysics Data System (ADS)

    Chen, Mohan; Zheng, Lixin; Santra, Biswajit; Ko, Hsin-Yu; DiStasio, Robert A., Jr.; Klein, Michael L.; Car, Roberto; Wu, Xifan

    2018-03-01

    Proton transfer via hydronium and hydroxide ions in water is ubiquitous. It underlies acid-base chemistry, certain enzyme reactions, and even infection by the flu. Despite two centuries of investigation, the mechanism underlying why hydroxide diffuses slower than hydronium in water is still not well understood. Herein, we employ state-of-the-art density-functional-theory-based molecular dynamics—with corrections for non-local van der Waals interactions, and self-interaction in the electronic ground state—to model water and hydrated water ions. At this level of theory, we show that structural diffusion of hydronium preserves the previously recognized concerted behaviour. However, by contrast, proton transfer via hydroxide is less temporally correlated, due to a stabilized hypercoordination solvation structure that discourages proton transfer. Specifically, the latter exhibits non-planar geometry, which agrees with neutron-scattering results. Asymmetry in the temporal correlation of proton transfer leads to hydroxide diffusing slower than hydronium.

  9. Field Testing of an Unvented Roof with Fibrous Insulation, Tiles, and Vapor Diffusion Venting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Lstiburek, J. W.

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane.more » As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design.« less

  10. Relation between heat of vaporization, ion transport, molar volume, and cation-anion binding energy for ionic liquids.

    PubMed

    Borodin, Oleg

    2009-09-10

    A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.

  11. First principles study of intrinsic defects in hexagonal tungsten carbide

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; You, Yu-Wei; Xia, J. H.; Liu, C. S.; Fang, Q. F.; Luo, G.-N.; Huang, Qun-Ying

    2010-11-01

    The characteristics of intrinsic defects are important for the understanding of self-diffusion processes, mechanical strength, brittleness, and plasticity of tungsten carbide, which are present in the divertor of fusion reactors. Here, we use first-principles calculations to investigate the stability of point defects and their complexes in tungsten carbide. Our results confirm that the defect formation energies of carbon are much lower than that of tungsten and reveal the carbon vacancy to be the dominant defect in tungsten carbide. The C sbnd C dimer configuration along the dense a direction is the most stable configuration of carbon interstitial defect. The results of carbon defect diffusion show that the carbon vacancy stay for a wide range of temperature because of extremely high diffusion barriers, while carbon interstitial migration is activated at lower temperatures for its considerably lower activation energy. Both of them prefer to diffusion in carbon basal plane.

  12. Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance.

    PubMed

    Callaghan, P T; Jolley, K W; Lelievre, J

    1979-10-01

    Pulsed field gradient nuclear magnetic resonance has been used to measure water self-diffusion coefficients in the endosperm tissue of wheat grains as a function of the tissue water content. A model that confines the water molecules to a randomly oriented array of capillaries with both transverse dimension less than 100 nm has been used to fit the data and give a unique diffusion coefficient at each water content. The diffusion rates vary from 1.8 x 10(-10) m2s-1 at the lowest to 1.2 x 10(-9) m2s-1 at the highest moisture content. This variation can be explained in terms of an increase in water film thickness from approximately 0.5 to approximately 2.5 nm over the moisture range investigated (200-360 mg g-1).

  13. Self-assembled single-crystal silicon circuits on plastic

    PubMed Central

    Stauth, Sean A.; Parviz, Babak A.

    2006-01-01

    We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-μm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems. PMID:16968780

  14. High-pressure nuclear magnetic resonance studies of fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene Stephane

    This thesis focuses on the use of high pressure NMR to study transport properties in electrolyte membranes used for fuel cells. The main concern is in studying the self-diffusion coefficients of ions and molecules in membranes and solutions, which can be used to characterize electrolytes in fuel cells. For this purpose, a high-pressure fringe field NMR method to study transport properties in material systems useful for fuel cell and battery electrolytes, was designed, developed, and implemented. In this investigation, pressure is the thermodynamic variable to obtain additional information about the ionic transport process, which could yield the crucial parameter, activation volume. Most of the work involves proton NMR, with additional investigations of others nuclei, such as fluorine, phosphorus and lithium. Using the FFG method, two fuel cell membrane types (NAFION-117, SPTES), and different dilutions of phosphoric acid were investigated, as was LiTf salt in Diglyme solution, which is used as a lithium battery electrolyte. In addition to high-pressure NMR diffusion measurements carried out in the fringe field gradient for the investigation of SPTES, pulse field gradient spin echo NMR was also used to characterize the water diffusion, in addition to measuring diffusion rates as a function of temperature. This second method allows us to measure distinct diffusion coefficients in cases where the different nuclear (proton) environments can be resolved in the NMR spectrum. Polymer electrolyte systems, in which the mobility of both cations and anions is probed by NMR self-diffusion measurements using standard pulsed field gradient methods and static gradient measurements as a function of applied hydrostatic pressure, were also investigated. The material investigated is the low molecular weight liquid diglyme/LiCF3SO3 (LiTf) complexes which can be used as electrolytes in lithium batteries. Finally, high-pressure diffusion coefficient measurements of phosphoric acid in water at different concentrations: proton (1H) and phosphorus (31P) nuclei have been performed using the static field gradient spin-echo nuclear magnetic resonance. This study is expected to be helpful in improving the understanding of phosphoric acid fuel cell technology.

  15. Physical properties and application in the confined geometrical systems

    NASA Astrophysics Data System (ADS)

    Pak, Hunkyun

    Surface viscoelasticity of a vitamin E modified polyethylene glycol (vitamin E-TPGS) monolayers at the air/water interface is deduced by the surface light scattering method and Wilhelmy plate method. It was found that the viscoelasticity of vitamin E-TPGS monolayer is similar to that of PEO monolayer at the surface pressure lower than the collapse pressure of the polyethylene oxide (PEO). However, at higher surface pressure than the collapse pressure of PEO, it deviates from the viscoelastic behavior of PEO. Lateral diffusion constants of a probe lipid (NBD-PC) in a binary monolayer of L-a-dilauroylphosphatidylcholine (DLPC) and poly-(di-isobutylene-alt-maleic acid) (PDIBMA) were determined by the fluorescence recovery after photobleaching (FRAP) method at the air/pH 7 buffer interface as a function of composition. The diffusion constant is found to retard down to less than one hundredth to that at pure DLPC monolayers as the mole fraction of PDIBMA increased. The free area model was used to interpret the probe diffusion retardation. Translational diffusion constants of a probe molecule, 4-octadecylamino-7-nitrobenzo-2-oxa-1,3-diazole (C18-NBD), in thin polyisoprene (PI) and polydimethyl siloxane (PDMS) films, spin coated on methylated and propylyaminated silicon wafers, are studied by the FRAP method as a function of film thickness. Reduction of the diffusion constant is observed as thickness of the films is decreased. Two empirical models, the two-layer model and the continuous layer model are proposed to account for the diffusion constant dependence on the film thickness vs. thickness. It was observed that the diffusion profiles in the films are dependet on the nature of the substrate surfaces. Self-assembled patterns of magnetic particles were made and fixed by applying magnetic field on the particles dispersed at the air/liquid interface, followed by gelling of the liquid subphase. With this method, the large patterns with controllable lattice constant can be made. The fixation of the subphase enhances the stability of the patterns. Further, three-dimensional self-assembled patterns can be made by this method when the fixation process is incorporated.

  16. Effect of nonlinear absorption on self focusing of short laser pulse in a plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok

    2012-06-01

    Paraxial theory of self focusing of short pulse laser in a plasma under transient and saturating effects of nonlinearity and nonlinear absorption is developed. The absorption is averaged over the cross-section of the beam and is different for different time segments of the pulse. The electron temperature includes cumulative effect of previous history of temporal profile of pulse intensity, however, the ambipolar diffusion is taken to be faster than the heating time. The relaxation effect causes self-distortion of the pulse temporal profile where as the nonlinear absorption weakens self focusing. For the pulses of duration comparable to the electron ion collision time, the front part of the pulse gets defocused where as the latter part undergoes periodic self focusing.

  17. The Stokes-Einstein relation at moderate Schmidt number.

    PubMed

    Balboa Usabiaga, Florencio; Xie, Xiaoyi; Delgado-Buscalioni, Rafael; Donev, Aleksandar

    2013-12-07

    The Stokes-Einstein relation for the self-diffusion coefficient of a spherical particle suspended in an incompressible fluid is an asymptotic result in the limit of large Schmidt number, that is, when momentum diffuses much faster than the particle. When the Schmidt number is moderate, which happens in most particle methods for hydrodynamics, deviations from the Stokes-Einstein prediction are expected. We study these corrections computationally using a recently developed minimally resolved method for coupling particles to an incompressible fluctuating fluid in both two and three dimensions. We find that for moderate Schmidt numbers the diffusion coefficient is reduced relative to the Stokes-Einstein prediction by an amount inversely proportional to the Schmidt number in both two and three dimensions. We find, however, that the Einstein formula is obeyed at all Schmidt numbers, consistent with linear response theory. The mismatch arises because thermal fluctuations affect the drag coefficient for a particle due to the nonlinear nature of the fluid-particle coupling. The numerical data are in good agreement with an approximate self-consistent theory, which can be used to estimate finite-Schmidt number corrections in a variety of methods. Our results indicate that the corrections to the Stokes-Einstein formula come primarily from the fact that the particle itself diffuses together with the momentum. Our study separates effects coming from corrections to no-slip hydrodynamics from those of finite separation of time scales, allowing for a better understanding of widely observed deviations from the Stokes-Einstein prediction in particle methods such as molecular dynamics.

  18. Interleaved EPI diffusion imaging using SPIRiT-based reconstruction with virtual coil compression.

    PubMed

    Dong, Zijing; Wang, Fuyixue; Ma, Xiaodong; Zhang, Zhe; Dai, Erpeng; Yuan, Chun; Guo, Hua

    2018-03-01

    To develop a novel diffusion imaging reconstruction framework based on iterative self-consistent parallel imaging reconstruction (SPIRiT) for multishot interleaved echo planar imaging (iEPI), with computation acceleration by virtual coil compression. As a general approach for autocalibrating parallel imaging, SPIRiT improves the performance of traditional generalized autocalibrating partially parallel acquisitions (GRAPPA) methods in that the formulation with self-consistency is better conditioned, suggesting SPIRiT to be a better candidate in k-space-based reconstruction. In this study, a general SPIRiT framework is adopted to incorporate both coil sensitivity and phase variation information as virtual coils and then is applied to 2D navigated iEPI diffusion imaging. To reduce the reconstruction time when using a large number of coils and shots, a novel shot-coil compression method is proposed for computation acceleration in Cartesian sampling. Simulations and in vivo experiments were conducted to evaluate the performance of the proposed method. Compared with the conventional coil compression, the shot-coil compression achieved higher compression rates with reduced errors. The simulation and in vivo experiments demonstrate that the SPIRiT-based reconstruction outperformed the existing method, realigned GRAPPA, and provided superior images with reduced artifacts. The SPIRiT-based reconstruction with virtual coil compression is a reliable method for high-resolution iEPI diffusion imaging. Magn Reson Med 79:1525-1531, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Selective Adsorption and Selective Transport Diffusion of CO2-CH4 Binary Mixture in Coal Ultramicropores.

    PubMed

    Zhao, Yongliang; Feng, Yanhui; Zhang, Xinxin

    2016-09-06

    The adsorption and diffusion of the CO2-CH4 mixture in coal and the underlying mechanisms significantly affect the design and operation of any CO2-enhanced coal-bed methane recovery (CO2-ECBM) project. In this study, bituminous coal was fabricated based on the Wiser molecular model and its ultramicroporous parameters were evaluated; molecular simulations were established through Grand Canonical Monte Carlo (GCMC) and Molecular Dynamic (MD) methods to study the effects of temperature, pressure, and species bulk mole fraction on the adsorption isotherms, adsorption selectivity, three distinct diffusion coefficients, and diffusivity selectivity of the binary mixture in the coal ultramicropores. It turns out that the absolute adsorption amount of each species in the mixture decreases as temperature increases, but increases as its own bulk mole fraction increases. The self-, corrected, and transport diffusion coefficients of pure CO2 and pure CH4 all increase as temperature or/and their own bulk mole fractions increase. Compared to CH4, the adsorption and diffusion of CO2 are preferential in the coal ultramicropores. Adsorption selectivity and diffusivity selectivity were simultaneously employed to reveal that the optimal injection depth for CO2-ECBM is 800-1000 m at 308-323 K temperature and 8.0-10.0 MPa.

  20. Diffusion of Molecular Diagnostic Lung Cancer Tests: A Survey of German Oncologists

    PubMed Central

    Steffen, Julius Alexander

    2014-01-01

    This study was aimed at examining the diffusion of diagnostic lung cancer tests in Germany. It was motivated by the high potential of detecting and targeting oncogenic drivers. Recognizing that the diffusion of diagnostic tests is a conditio sine qua non for the success of personalized lung cancer therapies, this study analyzed the diffusion of epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) tests in Germany. Qualitative and quantitative research strategies were combined in a mixed-method design. A literature review and subsequent Key Opinion Leader interviews identified a set of qualitative factors driving the diffusion process, which were then translated into an online survey. The survey was conducted among a sample of 961 oncologists (11.34% response rate). The responses were analyzed in a multiple linear regression which identified six statistically significant factors driving the diffusion of molecular diagnostic lung cancer tests: reimbursement, attitude towards R&D, information self-assessment, perceived attitudes of colleagues, age and test-pathway strategies. Besides the important role of adequate reimbursement and relevant guidelines, the results of this study suggest that an increasing usage of test-pathway strategies, especially in an office-based setting, can increase the diffusion of molecular diagnostic lung cancer tests in the future. PMID:25562146

  1. Analytical solution for the diffusion of a capacitor discharge generated magnetic field pulse in a conductor

    NASA Astrophysics Data System (ADS)

    Grants, Ilmārs; Bojarevičs, Andris; Gerbeth, Gunter

    2016-06-01

    Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.

  2. Noise and diffusion of a vibrated self-propelled granular particle

    NASA Astrophysics Data System (ADS)

    Walsh, Lee; Wagner, Caleb G.; Schlossberg, Sarah; Olson, Christopher; Baskaran, Aparna; Menon, Narayanan

    Granular materials are an important physical realization of active matter. In vibration-fluidized granular matter, both diffusion and self-propulsion derive from the same collisional forcing, unlike many other active systems where there is a clean separation between the origin of single-particle mobility and the coupling to noise. Here we present experimental studies of single-particle motion in a vibrated granular monolayer, along with theoretical analysis that compares grain motion at short and long time scales to the assumptions and predictions, respectively, of the active Brownian particle (ABP) model. The results demonstrate that despite the unique relation between noise and propulsion, granular media do show the generic features predicted by the ABP model and indicate that this is a valid framework to predict collective phenomena. Additionally, our scheme of analysis for validating the inputs and outputs of the model can be applied to other granular and non-granular systems.

  3. Manipulating surface diffusion and elastic interactions to obtain quantum dot multilayer arrangements over different length scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placidi, E., E-mail: ernesto.placidi@ism.cnr.it; Arciprete, F.; Università di Roma “Tor Vergata”, Dipartimento di Fisica, via della Ricerca Scientifica 1, 00133 Rome

    2014-09-15

    An innovative multilayer growth of InAs quantum dots on GaAs(100) is demonstrated to lead to self-aggregation of correlated quantum dot chains over mesoscopic distances. The fundamental idea is that at critical growth conditions is possible to drive the dot nucleation only at precise locations corresponding to the local minima of the Indium chemical potential. Differently from the known dot multilayers, where nucleation of new dots on top of the buried ones is driven by the surface strain originating from the dots below, here the spatial correlations and nucleation of additional dots are mostly dictated by a self-engineering of the surfacemore » occurring during the growth, close to the critical conditions for dot formation under the fixed oblique direction of the incoming As flux, that drives the In surface diffusion.« less

  4. Purely hydrodynamic ordering of rotating disks at a finite Reynolds number.

    PubMed

    Goto, Yusuke; Tanaka, Hajime

    2015-01-28

    Self-organization of moving objects in hydrodynamic environments has recently attracted considerable attention in connection to natural phenomena and living systems. However, the underlying physical mechanism is much less clear due to the intrinsically nonequilibrium nature, compared with self-organization of thermal systems. Hydrodynamic interactions are believed to play a crucial role in such phenomena. To elucidate the fundamental physical nature of many-body hydrodynamic interactions at a finite Reynolds number, here we study a system of co-rotating hard disks in a two-dimensional viscous fluid at zero temperature. Despite the absence of thermal noise, this system exhibits rich phase behaviours, including a fluid state with diffusive dynamics, a cluster state, a hexatic state, a glassy state, a plastic crystal state and phase demixing. We reveal that these behaviours are induced by the off-axis and many-body nature of nonlinear hydrodynamic interactions and the finite time required for propagating the interactions by momentum diffusion.

  5. Self-attracting walk on heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Kim, Kanghun; Kyoung, Jaegu; Lee, D.-S.

    2016-05-01

    Understanding human mobility in cyberspace becomes increasingly important in this information era. While human mobility, memory-dependent and subdiffusive, is well understood in Euclidean space, it remains elusive in random heterogeneous networks like the World Wide Web. Here we study the diffusion characteristics of self-attracting walks, in which a walker is more likely to move to the locations visited previously than to unvisited ones, on scale-free networks. Under strong attraction, the number of distinct visited nodes grows linearly in time with larger coefficients in more heterogeneous networks. More interestingly, crossovers to sublinear growths occur in strongly heterogeneous networks. To understand these phenomena, we investigate the characteristic volumes and topology of the cluster of visited nodes and find that the reinforced attraction to hubs results in expediting exploration first but delaying later, as characterized by the scaling exponents that we derive. Our findings and analysis method can be useful for understanding various diffusion processes mediated by human.

  6. Enhanced Organic Solar Cell Stability through the Effective Blocking of Oxygen Diffusion using a Self-Passivating Metal Electrode.

    PubMed

    Lee, Hansol; Jo, Sae Byeok; Lee, Hyo Chan; Kim, Min; Sin, Dong Hun; Ko, Hyomin; Cho, Kilwon

    2016-03-08

    A new and simple strategy for enhancing the stability of organic solar cells (OSCs) was developed by using self-passivating metal top electrodes. Systematic investigations on O2 permeability of Al top electrodes revealed that the main pathways for oxidation-induced degradation could be greatly suppressed by simply controlling the nanoscale morphology of the Al electrode. The population of nanoscale pinholes among Al grains, which critically decided the diffusion of O2 molecules toward the Al-organic interfaces that are vulnerable to oxidation, was successfully regulated by rapidly depositing Al or promoting lateral growth among the Al grains, accompanied by increasing the deposition thickness. Our observations suggested that the stability of OSCs with conventional architectures might be greatly enhanced simply by controlling the fabrication conditions of the Al top electrode, without the aid of additional secondary treatments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Reboux, Sylvain; Schrader, Birte; Sbalzarini, Ivo F.

    2012-05-01

    We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection-diffusion, the Burgers equation, the Buckley-Leverett five-spot problem, and curvature-driven level-set surface refinement.

  8. Dispersion relation in oscillatory reaction-diffusion systems with self-consistent flow in true slime mold.

    PubMed

    Yamada, H; Nakagaki, T; Baker, R E; Maini, P K

    2007-06-01

    In the large amoeboid organism Physarum, biochemical oscillators are spatially distributed throughout the organism and their collective motion exhibits phase waves, which carry physiological signals. The basic nature of this wave behaviour is not well-understood because, to date, an important effect has been neglected, namely, the shuttle streaming of protoplasm which accompanies the biochemical rhythms. Here we study the effects of self-consistent flow on the wave behaviour of oscillatory reaction-diffusion models proposed for the Physarum plasmodium, by means of numerical simulation for the dispersion relation and weakly nonlinear analysis for derivation of the phase equation. We conclude that the flow term is able to increase the speed of phase waves (similar to elongation of wave length). We compare the theoretical consequences with real waves observed in the organism and also point out the physiological roles of these effects on control mechanisms of intracellular communication.

  9. Self-consistent approach to the solution of the light transfer problem for irradiances in marine waters with arbitrary turbidity, depth, and surface illumination. I. Case of absorption and elastic scattering.

    PubMed

    Haltrin, V I

    1998-06-20

    A self-consistent variant of the two-flow approximation that takes into account strong anisotropy of light scattering in seawater of finite depth and arbitrary turbidity is presented. To achieve an appropriate accuracy, this approach uses experimental dependencies between downward and total mean cosines. It calculates irradiances, diffuse attenuation coefficients, and diffuse reflectances in waters with arbitrary values of scattering, backscattering, and attenuation coefficients. It also takes into account arbitrary conditions of illumination and reflection from the bottom with the Lambertian albedo. This theory can be used for the calculation of apparent optical properties in both open and coastal oceanic waters, lakes, and rivers. It can also be applied to other types of absorbing and scattering medium such as paints, photographic emulsions, and biological tissues.

  10. Effect of liquid-phase sintering as a means of quality enhancement of pseudoalloys based on copper

    NASA Astrophysics Data System (ADS)

    Gordeev, Yu I.; Abkaryan, A. K.; Zeer, G. M.; Lepeshev, A. A.; Zelenkova, E. G.

    2017-01-01

    The effects of the liquid phase of a metal binder on the microstructure and properties of self-diffusion gradient composite (Cu - Al - ZnO) were investigated. For the compositions considered, it was revealed that at the temperature of about 550 °C, a liquid phase binder forms from nanoparticles Cu - Al. Applying a proper amount of a (Cu - Al) binder appeared to be beneficial for fabricating gradient composites with the desired self-diffusion process. It is also favorable for mass transfer of additives nanoparticles into the volume of a matrix during sintering and for the desired fine microstructure and mechanical properties. For the experimental conditions considered in this study, the best mechanical properties can be obtained when 6 mass % (Cu - Al) of ligature were used, which gave hardness HB at 120, electroerosion wear - 0.092 • 10-6 g / cycle, resistivity - 0.025 mcOm.

  11. Using the Ab Initio Molecular Dynamics Method for Simulating the Peculiarities in the Temperature Dependence of Liquid Bismuth Properties

    NASA Astrophysics Data System (ADS)

    Yuryev, A. A.; Gelchinski, B. R.; Vatolin, N. A.

    2018-03-01

    The specific features pertinent to the temperature dependence of the electronic and atomic properties of liquid bismuth that have been observed in experiments are investigated according to the ab initio molecular dynamics method using the SIESTA open software package. The density of electronic states, the radial distribution function of atoms, and the self-diffusion coefficient are calculated for the temperature range from the melting point equal to 545 K to 1500 K. The calculated data are in good agreement with the experimental data. It is found that the position of the first peak in the radial distribution function of atoms and the self-diffusion coefficient are characterized by a nonmonotonic dependence under the conditions of superheating by approximately 150 K above the melting temperature. In the authors' opinion, this dependence feature is attributed to a change in the liquid short-range order structure.

  12. Abundance stratification in the atmospheres of blue horizontal-branch stars

    NASA Astrophysics Data System (ADS)

    LeBlanc, F.

    2013-12-01

    Horizontal-branch stars with effective temperatures larger than approximately 11 500 K show abundance anomalies as well as other peculiar observational properties believed to be due to atomic diffusion in their atmosphere. These stars possess low rotational velocities that makes it possible for atomic diffusion to come into play and are therefore of great interest with respect to diffusion theory. Observational anomalies of blue horizontal-branch stars found in globular clusters such as photometric jumps and gaps are reviewed. Recent detections of vertical stratification of elements are also discussed. These results are compared to predictions of atmospheric modeling while including vertical stratification of the elements. The atmospheric structure of these models is calculated self-consistently while taking into account vertical stratification of the elements.

  13. Self-consistent photothermal techniques: Application for measuring thermal diffusivity in vegetable oils

    NASA Astrophysics Data System (ADS)

    Balderas-López, J. A.; Mandelis, Andreas

    2003-01-01

    The thermal wave resonator cavity (TWRC) was used to measure the thermal properties of vegetable oils. The thermal diffusivity of six commercial vegetable oils (olive, corn, soybean, canola, peanut, and sunflower) was measured by means of this device. A linear relation between both the amplitude and phase as functions of the cavity length for the TWRC was observed and used for the measurements. Three significant figure precisions were obtained. A clear distinction between extra virgin olive oil and other oils in terms of thermal diffusivity was shown. The high measurement precision of the TWRC highlights the potential of this relatively new technique for assessing the quality of this kind of fluids in terms of their thermophysical properties.

  14. Electrotransport and diffusivity of molybdenum, rhenium, tungsten, and zirconium in beta-thorium

    NASA Technical Reports Server (NTRS)

    Schmidt, F. A.; Beck, M. S.; Rehbein, D. K.; Conzemius, R. J.; Carlson, O. N.

    1984-01-01

    The electric mobilities, diffusivities, and effective valences were determined for molybdenum, rhenium, tungsten, and zirconium in beta-thorium. All four solutes migrated in the same direction as the electron flow. Rhenium and molybdenum were found to be very mobile, with tungsten somewhat slower. Zirconium was found to move at a rate near that of the self-diffusion of beta-thorium, viz., about 10 to the -11th sq m/s at 1500 C. The electromigration velocities showed a similar trend. A comparison was made between experimental data obtained by scanning laser mass spectrometry and theoretical transport equations for two purification experiments. Good agreement was obtained with both the concentration profile predicted by DeGroot and the purification ratio predicted by Verhoeven.

  15. First-principles investigation of thermodynamic and kinetic properties in titanium-hydrogen system and B2-nickel-alminum compound: Phase stability, point defect complexes and diffusion

    NASA Astrophysics Data System (ADS)

    Xu, Qingchuan

    The purpose of this thesis is to show the technique of predicting thermodynamic and kinetic properties from first-principles using density functional theory (DFT) calculations, cluster expansion methods and Monte Carlo simulations instead of experiments. Two material systems are selected as examples: one is an interstitial system (Ti-H system) and another is a substitutional compound (B2-NiAl alloy). For Ti-H system, this thesis investigated hydride stability, exploring the role of configurational degrees of freedom, zero-point vibrational energy and coherency strains. The tetragonal gamma-TiH phase was predicted to be unstable relative to hcp alpha-Ti and fcc based delta-TiH2. Zero point vibrational energy makes the gamma phase even less stable. The coherency strains between hydride precipitates and alpha-Ti matrix stabilize gamma-TiH relative to alpha-Ti and delta-TiH2. We also found that hydrogen prefers octahedral sites at low hydrogen concentration and tetrahedral sites at high concentration. For B2-NiAl, this thesis investigated the point defects and various diffusion mechanisms. A low barrier collective hop was discovered that could mediate Al diffusion through the anti-structural-bridge (ASB) mechanism. We also found an alternative hop sequence for the migration of a triple defect and a six-jump-cycle than that proposed previously. Going beyond the mean field approximation, we found that the inclusion of interactions among point defects is crucial to predict the concentration of defect complexes. Accounting for interactions among defects and incorporating all diffusion mechanisms proposed for B2-NiAl in Monte Carlo simulation, we calculated tracer diffusion coefficients. For the first time, the relative importance of various diffusion mechanisms is revealed. The ASB hop is the dominant mechanism for Ni in Ni-rich alloy and for Al diffusion in Al-rich alloys. Other mechanisms also play a role to various extents. We also calculated the self and interdiffusion coefficients for B2-NiAl. We found in Al-rich alloys that the thermodynamic factor of Al is much greater than that of Ni while in Ni-rich alloys they are very similar. This difference in thermodynamic factors results in a much higher self-diffusion coefficient of Al compared to that of Ni in Al-rich alloys and also causes two different interdiffusion coefficients.

  16. Understanding and improving lithium ion batteries through mathematical modeling and experiments

    NASA Astrophysics Data System (ADS)

    Deshpande, Rutooj D.

    There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. For improvement of battery technology understanding the capacity fading mechanism in batteries is of utmost importance. Novel electrode material and improved electrode designs are needed for high energy- high power batteries with less capacity fading. Furthermore, for applications such as automotive applications, precise cycle-life prediction of batteries is necessary. One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, there is a volume change associated with insertion or de-insertion. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the batteries. With different mathematical models we studied the behavior of diffusion induces stresses and effects of electrode shape, size, concentration dependent material properties, pre-existing cracks, phase transformations, operating conditions etc. on the diffusion induced stresses. Thus we develop tools to guide the design of the electrode material with better mechanical stability for durable batteries. Along with mechanical degradation, chemical degradation of batteries also plays an important role in deciding battery cycle life. The instability of commonly employed electrolytes results in solid electrolyte interphase (SEI) formation. Although SEI formation contributes to irreversible capacity loss, the SEI layer is necessary, as it passivates the electrode-electrolyte interface from further solvent decomposition. SEI layer and diffusion induced stresses are inter-dependent and affect each-other. We study coupled chemical-mechanical degradation of electrode materials to understand the capacity fading of the battery with cycling. With the understanding of chemical and mechanical degradation, we develop a simple phenomenological model to predict battery life. On the experimental part we come up with a novel concept of using liquid metal alloy as a self-healing battery electrode. We develop a method to prepare thin film liquid gallium electrode on a conductive substrate. This enabled us to perform a series of electrochemical and characterization experiments which certify that liquid electrode undergo liquid-solid-liquid transition and thus self-heals the cracks formed during de-insertion. Thus the mechanical degradation can be avoided. We also perform ab-initio calculations to understand the equilibrium potential of various lithium-gallium phases. KEYWORDS: Lithium ion batteries, diffusion induced stresses, self-healing electrode, coupled chemical and mechanical degradation, life-prediction model.

  17. Translational diffusion of cumene and 3-methylpentane on free surfaces and pore walls studied by time-of-flight secondary ion mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souda, Ryutaro

    2010-12-07

    Mobility of molecules in confined geometry has been studied extensively, but the origins of finite size effects on reduction of the glass transition temperature, T{sub g}, are controversial especially for supported thin films. We investigate uptake of probe molecules in vapor-deposited thin films of cumene, 3-methylpentane, and heavy water using secondary ion mass spectrometry and discuss roles of individual molecular motion during structural relaxation and glass-liquid transition. The surface mobility is found to be enhanced for low-density glasses in the sub-T{sub g} region because of the diffusion of molecules on pore walls, resulting in densification of a film via poremore » collapse. Even for high-density glasses without pores, self-diffusion commences prior to the film morphology change at T{sub g}, which is thought to be related to decoupling between translational diffusivity and viscosity. The diffusivity of deeply supercooled liquid tends to be enhanced when it is confined in pores of amorphous solid water. The diffusivity of molecules is further enhanced at temperatures higher than 1.2-1.3 T{sub g} irrespective of the confinement.« less

  18. Star Formation and the Hall Effect

    NASA Astrophysics Data System (ADS)

    Braiding, Catherine

    2011-10-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well-studied. This thesis describes a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity solutions that demonstrate that the Hall effect has a profound influence on the dynamics of collapse. ... Hall diffusion also determines the strength of the magnetic diffusion and centrifugal shocks that bound the pseudo and rotationally-supported discs, and can introduce subshocks that further slow accretion onto the protostar. In cores that are not initially rotating Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field would be worth exploring in future numerical simulations of star formation.

  19. Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field.

    PubMed

    García-Pérez, E; Serra-Crespo, P; Hamad, S; Kapteijn, F; Gascon, J

    2014-08-14

    Simulation of gas adsorption in flexible porous materials is still limited by the slow progress in the development of flexible force fields. Moreover, the high computational cost of such flexible force fields may be a drawback even when they are fully developed. In this work, molecular simulations of gas adsorption and diffusion of carbon dioxide and methane in NH2-MIL-53(Al) are carried out using a linear combination of two crystallographic structures with rigid force fields. Once the interactions of carbon dioxide molecules and the bridging hydroxyls groups of the framework are optimized, an excellent match is found for simulations and experimental data for the adsorption of methane and carbon dioxide, including the stepwise uptake due to the breathing effect. In addition, diffusivities of pure components are calculated. The pore expansion by the breathing effect influences the self-diffusion mechanism and much higher diffusivities are observed at relatively high adsorbate loadings. This work demonstrates that using a rigid force field combined with a minimum number of experiments, reproduces adsorption and simulates diffusion of carbon dioxide and methane in the flexible metal-organic framework NH2-MIL-53(Al).

  20. Testing the accuracy of correlations for multicomponent mass transport of adsorbed gases in metal-organic frameworks: diffusion of H2/CH4 mixtures in CuBTC.

    PubMed

    Keskin, Seda; Liu, Jinchen; Johnson, J Karl; Sholl, David S

    2008-08-05

    Mass transport of chemical mixtures in nanoporous materials is important in applications such as membrane separations, but measuring diffusion of mixtures experimentally is challenging. Methods that can predict multicomponent diffusion coefficients from single-component data can be extremely useful if these methods are known to be accurate. We present the first test of a method of this kind for molecules adsorbed in a metal-organic framework (MOF). Specifically, we examine the method proposed by Skoulidas, Sholl, and Krishna (SSK) ( Langmuir, 2003, 19, 7977) by comparing predictions made with this method to molecular simulations of mixture transport of H 2/CH 4 mixtures in CuBTC. These calculations provide the first direct information on mixture transport of any species in a MOF. The predictions of the SSK approach are in good agreement with our direct simulations of binary diffusion, suggesting that this approach may be a powerful one for examining multicomponent diffusion in MOFs. We also use our molecular simulation data to test the ideal adsorbed solution theory method for predicting binary adsorption isotherms and a method for predicting mixture self-diffusion coefficients.

Top