Science.gov

Sample records for self-gravitating gaseous discs

  1. A local prescription for the softening length in self-gravitating gaseous discs

    NASA Astrophysics Data System (ADS)

    Huré, J.-M.; Pierens, A.

    2009-11-01

    In 2D-simulations of self-gravitating gaseous discs, the potential is often computed in the framework of “softened gravity” initially designed for N-body codes. In this special context, the role of the softening length λ is twofold: i) to avoid numerical singularities in the integral representation of the potential (i.e., arising when the separation |r -r'| → 0); and ii) to account for stratification of matter in the direction perpendicular to the disc mid-plane. So far, most studies have considered λ as a free parameter and various values or formulae have been proposed without much mathematical justification. In this paper, we demonstrate by means of a rigorous calculus that it is possible to define λ such that the gravitational potential of a flat disc coincides at order zero with that of a geometrically thin disc of the same surface density. Our prescription for λ, valid in the local, axisymmetric limit, has the required properties i) and ii). It is mainly an analytical function of the radius and disc thickness, and is sensitive to the vertical stratification. For mass density profiles considered (namely, profiles expandable over even powers of the altitude), we find that λ: i) is independant of the numerical mesh, ii) is always a fraction of the local thickness H; iii) goes through a minimum at the singularity (i.e., at null separation); and iv) is such that 0.13 ⪉ λ/H ⪉ 0.29 typically (depending on the separation and on density profile). These results should help us to improve the quality of 2D- and 3D-simulations of gaseous discs in several respects (physical realism, accuracy, and computing time).

  2. A viscosity prescription for a self-gravitating accretion disc

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Pringle, J. E.

    1987-01-01

    A model for treating the transfer of angular momentum within a gaseous differentially rotating disc subject to gravitational instability is discussed in terms of an effective kinematic viscosity. It is assumed that even when matter in the disc is subject to self-gravitation, the instability does not necessarily lead directly to condensation of parts of the disc into self-gravitating bodies. Conditions under which the present model permits a similarity solution are discussed, and it is shown that the general solution tends to the similarity solution at large times.

  3. A viscosity prescription for a self-gravitating accretion disc

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Pringle, J. E.

    1987-01-01

    A model for treating the transfer of angular momentum within a gaseous differentially rotating disc subject to gravitational instability is discussed in terms of an effective kinematic viscosity. It is assumed that even when matter in the disc is subject to self-gravitation, the instability does not necessarily lead directly to condensation of parts of the disc into self-gravitating bodies. Conditions under which the present model permits a similarity solution are discussed, and it is shown that the general solution tends to the similarity solution at large times.

  4. Vortex stretching in self-gravitating protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Regály, Zs.; Vorobyov, E.

    2017-10-01

    Horseshoe-shaped brightness asymmetries of several transitional discs are thought to be caused by large-scale vortices. Anticyclonic vortices efficiently collect dust particles, therefore they can play a major role in planet formation. Former studies suggest that the disc self-gravity weakens vortices formed at the edge of the gap opened by a massive planet in discs whose masses are in the range of 0.01 ≤ Mdisc/M* ≤ 0.1. Here, we present an investigation on the long-term evolution of the large-scale vortices formed at the viscosity transition of the discs' dead zone outer edge by means of two-dimensional hydrodynamic simulations taking disc self-gravity into account. We perform a numerical study of low-mass, 0.001 ≤ Mdisc/M* ≤ 0.01, discs, for which cases disc self-gravity was previously neglected. The large-scale vortices are found to be stretched due to disc self-gravity even for low-mass discs with Mdisc/M* ≳ 0.005, where initially the Toomre Q-parameter was ≲ 50 at the vortex distance. As a result of stretching, the vortex aspect ratio increases and a weaker azimuthal density contrast develops. The strength of the vortex stretching is proportional to the disc mass. The vortex stretching can be explained by a combined action of a non-vanishing gravitational torque caused by the vortex and the Keplerian shear of the disc. Self-gravitating vortices are subject to significantly faster decay than non-self-gravitating ones. We found that vortices developed at sharp viscosity transitions of self-gravitating discs can be described by a Goodman - Narayan - Goldreich (GNG) model as long as the disc viscosity is low, i.e. αdz ≤ 10-5.

  5. Global stability of self-gravitating discs in modified gravity

    NASA Astrophysics Data System (ADS)

    Ghafourian, Neda; Roshan, Mahmood

    2017-07-01

    Using N-body simulations, we study the global stability of a self-gravitating disc in the context of modified gravity (MOG). This theory is a relativistic scalar-tensor-vector theory of gravity and it is presented to address the dark matter problem. In the weak field limit, MOG possesses two free parameters α and μ0, which have already been determined using the rotation curve data of spiral galaxies. The evolution of a stellar self-gravitating disc and, more specifically, the bar instability in MOG are investigated and compared to a Newtonian case. Our models have exponential and Mestel-like surface densities as Σ ∝ exp (-r/h) and Σ ∝ 1/r. It is found that, surprisingly, the discs are more stable against the bar mode in MOG than in Newtonian gravity. In other words, the bar growth rate is effectively slower than the Newtonian discs. Also, we show that both free parameters (i.e. α and μ0) have stabilizing effects. In other words, an increase in these parameters will decrease the bar growth rate.

  6. Quantification of stochastic fragmentation of self-gravitating discs

    NASA Astrophysics Data System (ADS)

    Young, M. D.; Clarke, C. J.

    2016-01-01

    Using 2D smoothed particle hydrodynamics, we investigate the distribution of wait times between strong shocks in a turbulent, self-gravitating accretion disc. We show that the resulting distributions do not depend strongly on the cooling time or resolution of the disc and that they are consistent with the predictions of earlier work. We use the distribution of wait times between shocks to estimate the likelihood of stochastic fragmentation by gradual contraction of shear-resistant clumps on the cooling time-scale. We conclude that the stochastic fragmentation mechanism cannot change the radius at which fragmentation is possible by more than ˜20 per cent, restricting direct gravitational collapse as a mechanism for giant planet formation to the outer regions of protoplanetary discs.

  7. On the fragmentation boundary in magnetized self-gravitating discs

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan; Price, Daniel J.; Bonnell, Ian

    2017-04-01

    We investigate the role of magnetic fields in the fragmentation of self-gravitating discs using 3D global ideal magnetohydrodynamic simulations performed with the PHANTOM smoothed particle hydrodynamics code. For initially toroidal fields, we find two regimes. In the first, where the cooling time is greater than five times the dynamical time, magnetic fields reduce spiral density wave amplitudes, which in turn suppresses fragmentation. This is the case even if the magnetic pressure is only a 10th of the thermal pressure. The second regime occurs when the cooling time is sufficiently short that magnetic fields cannot halt fragmentation. We find that magnetized discs produce more massive fragments, due to both the additional pressure exerted by the magnetic field and the additional angular momentum transport induced by Maxwell stresses. The fragments are confined to a narrower range of initial semimajor axes than those in unmagnetized discs. The orbital eccentricity and inclination distributions of unmagnetized and magnetized disc fragments are similar. Our results suggest that the fragmentation boundary could be at cooling times a factor of 2 lower than predicted by purely hydrodynamical models.

  8. Self-gravitational Force Calculation of Infinitesimally Thin Gaseous Disks on Nested Grids

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Hsu; Taam, Ronald E.; Yen, David C. C.

    2016-06-01

    We extend the work of Yen et al. and develop second-order formulae to accommodate a nested grid discretization for the direct self-gravitational force calculation for infinitesimally thin gaseous disks. This approach uses a two-dimensional kernel that is derived for infinitesimally thin disks and is free of artificial boundary conditions. The self-gravitational force calculation is presented in generalized convolution forms for a nested grid configuration. A numerical technique derived from a fast Fourier transform is employed to reduce the computational complexity to be nearly linear. By comparing with analytic potential-density pairs associated with the generalized Maclaurin disks, the extended approach is verified to be of second-order accuracy when using numerical simulations. The proposed method is accurate, computationally fast, and has the potential to be applied to studies of planetary migration and the gaseous morphology of disk galaxies.

  9. Self-similar evolution of self-gravitating viscous accretion discs

    NASA Astrophysics Data System (ADS)

    Illenseer, Tobias F.; Duschl, Wolfgang J.

    2015-06-01

    A new one-dimensional, dynamical model is proposed for geometrically thin, self-gravitating viscous accretion discs. The vertically integrated equations are simplified using the slow accretion limit and the monopole approximation with a time-dependent central point mass to account for self-gravity and accretion. It is shown that the system of partial differential equations can be reduced to a single non-linear advection diffusion equation which describes the time evolution of angular velocity. In order to solve the equation, three different turbulent viscosity prescriptions are considered. It is shown that for these parametrizations the differential equation allows for similarity transformations depending only on a single non-dimensional parameter. A detailed analysis of the similarity solutions reveals that this parameter is the initial power-law exponent of the angular velocity distribution at large radii. The radial dependence of the self-similar solutions is in most cases given by broken power laws. At small radii, the rotation law always becomes Keplerian with respect to the current central point mass. In the outer regions, the power-law exponent of the rotation law deviates from the Keplerian value and approaches asymptotically the value determined by the initial condition. It is shown that accretion discs with flatter rotation laws at large radii yield higher accretion rates. The methods are applied to self-gravitating accretion discs in active galactic nuclei. Fully self-gravitating discs are found to evolve faster than nearly Keplerian discs. The implications on supermassive black hole formation and Quasar evolution are discussed.

  10. One-armed spirals in locally isothermal, radially structured self-gravitating discs

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai

    2015-04-01

    We describe a new mechanism that leads to the destabilization of non-axisymmetric waves in astrophysical discs with an imposed radial temperature gradient. This might apply, for example, to the outer parts of protoplanetary discs. We use linear density wave theory to show that non-axisymmetric perturbations generally do not conserve their angular momentum in the presence of a forced temperature gradient. This implies an exchange of angular momentum between linear perturbations and the background disc. In particular, when the disturbance is a low-frequency trailing wave and the disc temperature decreases outwards, this interaction is unstable and leads to the growth of the wave. We demonstrate this phenomenon through numerical hydrodynamic simulations of locally isothermal discs in 2D using the FARGO code and in 3D with the ZEUS-MP and PLUTO codes. We consider radially structured discs with a self-gravitating region which remains stable in the absence of a temperature gradient. However, when a temperature gradient is imposed we observe exponential growth of a one-armed spiral mode (azimuthal wavenumber m = 1) with co-rotation radius outside the bulk of the spiral arm, resulting in a nearly stationary one-armed spiral pattern. The development of this one-armed spiral does not require the movement of the central star, as found in previous studies. Because destabilization by a forced temperature gradient does not explicitly require disc self-gravity, we suggest this mechanism may also affect low-frequency one-armed oscillations in non-self-gravitating discs.

  11. Limits on the location of planetesimal formation in self-gravitating protostellar discs

    NASA Astrophysics Data System (ADS)

    Clarke, C. J.; Lodato, G.

    2009-09-01

    In this Letter, we show that if planetesimals form in spiral features in self-gravitating discs, as previously suggested by the idealized simulations of Rice et al., then in realistic protostellar discs, this process will be restricted to the outer regions of the disc (i.e. at radii in excess of several tens of au). This restriction relates to the requirement that dust has to be concentrated in spiral features on a time-scale that is less than the (roughly dynamical) lifetime of such features, and that such rapid accumulation requires spiral features whose fractional amplitude is not much less than unity. This in turn requires that the cooling time-scale of the gas is relatively short, which restricts the process to the outer disc. We point out that the efficient conversion of a large fraction of the primordial dust in the disc into planetesimals could rescue this material from the well-known problem of rapid inward migration at an approximate metre-size scale and that in principle the collisional evolution of these objects could help to resupply small dust to the protostellar disc. We also point out the possible implications of this scenario for the location of planetesimal belts inferred in debris discs around main sequence stars, but stress that further dynamical studies are required in order to establish whether the disc retains a memory of the initial site of planetesimal creation.

  12. A modified WKB formulation for linear eigenmodes of a collisionless self-gravitating disc in the epicyclic approximation

    NASA Astrophysics Data System (ADS)

    Gulati, Mamta; Saini, Tarun Deep

    2016-07-01

    The short-wave asymptotics (WKB) of spiral density waves in self-gravitating stellar discs is well suited for the study of the dynamics of tightly-wound wavepackets. But the textbook WKB theory is not well adapted to the study of the linear eigenmodes in a collisionless self-gravitating disc because of the transcendental nature of the dispersion relation. We present a modified WKB theory of spiral density waves, for collisionless discs in the epicyclic limit, in which the perturbed gravitational potential is related to the perturbed surface density by the Poisson integral in Kalnaj's logarithmic spiral form. An integral equation is obtained for the surface density perturbation, which is seen to also reduce to the standard WKB dispersion relation. Although our formulation is general and applies to all discs, we present our analysis only for nearly Keplerian, low-mass, self-gravitating discs revolving around massive central objects, and derive an integral equation governing the slow precessional modes of such discs. For a prograde disc, the integral kernel turns out be real and symmetric, implying that all slow modes are stable. We apply the slow mode integral equation to two unperturbed disc profiles, the Jalali-Tremaine annular discs, and the Kuzmin disc. We determine eigenvalues and eigenfunctions for both m = 1 and m = 2 slow modes for these profiles and discuss their properties. Our results compare well with those of Jalali-Tremaine.

  13. Disc-protoplanet interaction. Influence of circumprimary radiative discs on self-gravitating protoplanetary bodies in binary star systems

    NASA Astrophysics Data System (ADS)

    Gyergyovits, M.; Eggl, S.; Pilat-Lohinger, E.; Theis, Ch.

    2014-06-01

    Context. More than 60 planets have been discovered so far in systems that harbour two stars, some of which have binary semi-major axes as small as 20 au. It is well known that the formation of planets in such systems is strongly influenced by the stellar components, since the protoplanetary disc and the particles within are exposed to the gravitational influence of the binary. However, the question on how self-gravitating protoplanetary bodies affect the evolution of a radiative, circumprimary disc is still open. Aims: We present our 2D hydrodynamical GPU-CPU code and study the interaction of several thousands of self-gravitating particles with a viscous and radiative circumprimary disc within a binary star system. To our knowledge this program is the only one at the moment that is capable to handle this many particles and to calculate their influence on each other and on the disc. Methods: We performed hydrodynamical simulations of a circumstellar disc assuming the binary system to be coplanar. Our grid-based staggered mesh code relies on ideas from ZEUS-2D, where we implemented the FARGO algorithm and an additional energy equation for the radiative cooling according to opacity tables. To treat particle motion we used a parallelised version of the precise Bulirsch - Stoer algorithm. Four models in total where computed taking into account (i) only N-body interaction; (ii) N-body and disc interaction; (iii) the influence of computational parameters (especially smoothing) on N-body interaction; and (iv) the influence of a quiet low-eccentricity disc while running model (ii). The impact velocities were measured at two different time intervals and were compared. Results: We show that the combination of disc- and N-body self-gravity can have a significant influence on the orbit evolution of roughly Moon sized protoplanets. Conclusions: Not only gas drag can alter the orbit of particles, but the gravitational influence of the disc can accomplish this as well. The results

  14. Numerical convergence in self-gravitating disc simulations: initial conditions and edge effects

    NASA Astrophysics Data System (ADS)

    Paardekooper, Sijme-Jan; Baruteau, Clément; Meru, Farzana

    2011-09-01

    We study the numerical convergence of hydrodynamical simulations of self-gravitating accretion discs, in which a simple cooling law is balanced by shock heating. It is well known that there exists a critical cooling time-scale for which shock heating can no longer compensate for the energy losses, at which point the disc fragments. The numerical convergence of previous results of this critical cooling time-scale was questioned recently using smoothed particle hydrodynamics (SPH). We employ a two-dimensional grid-based code to study this problem and find that for smooth initial conditions, fragmentation is possible for slower cooling as the resolution is increased, in agreement with recent SPH results. We show that this non-convergence is at least partly due to the creation of a special location in the disc, the boundary between the turbulent and the laminar region, when cooling towards a gravito-turbulent state. Converged results appear to be obtained in setups where no such sharp edges appear, and we then find a critical cooling time-scale of ˜4Ω-1, where Ω is the local angular velocity.

  15. Collision velocity of dust grains in self-gravitating protoplanetary discs

    PubMed Central

    Booth, Richard A.; Clarke, Cathie J.

    2016-01-01

    We have conducted the first comprehensive numerical investigation of the relative velocity distribution of dust particles in self-gravitating protoplanetary discs with a view to assessing the viability of planetesimal formation via direct collapse in such environments. The viability depends crucially on the large sizes that are preferentially collected in pressure maxima produced by transient spiral features (Stokes numbers, St ∼ 1); growth to these size scales requires that collision velocities remain low enough that grain growth is not reversed by fragmentation. We show that, for a single-sized dust population, velocity driving by the disc's gravitational perturbations is only effective for St > 3, while coupling to the gas velocity dominates otherwise. We develop a criterion for understanding this result in terms of the stopping distance being of the order of the disc scaleheight. Nevertheless, the relative velocities induced by differential radial drift in multi-sized dust populations are too high to allow the growth of silicate dust particles beyond St ∼ 10− 2 or 10−1 (10 cm to m sizes at 30 au), such Stokes numbers being insufficient to allow concentration of solids in spiral features. However, for icy solids (which may survive collisions up to several 10 m s−1), growth to St ∼ 1 (10 m size) may be possible beyond 30 au from the star. Such objects would be concentrated in spiral features and could potentially produce larger icy planetesimals/comets by gravitational collapse. These planetesimals would acquire moderate eccentricities and remain unmodified over the remaining lifetime of the disc. PMID:27346980

  16. Collision velocity of dust grains in self-gravitating protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Booth, Richard A.; Clarke, Cathie J.

    2016-05-01

    We have conducted the first comprehensive numerical investigation of the relative velocity distribution of dust particles in self-gravitating protoplanetary discs with a view to assessing the viability of planetesimal formation via direct collapse in such environments. The viability depends crucially on the large sizes that are preferentially collected in pressure maxima produced by transient spiral features (Stokes numbers, St ˜ 1); growth to these size scales requires that collision velocities remain low enough that grain growth is not reversed by fragmentation. We show that, for a single-sized dust population, velocity driving by the disc's gravitational perturbations is only effective for St > 3, while coupling to the gas velocity dominates otherwise. We develop a criterion for understanding this result in terms of the stopping distance being of the order of the disc scaleheight. Nevertheless, the relative velocities induced by differential radial drift in multi-sized dust populations are too high to allow the growth of silicate dust particles beyond St ˜ 10- 2 or 10-1 (10 cm to m sizes at 30 au), such Stokes numbers being insufficient to allow concentration of solids in spiral features. However, for icy solids (which may survive collisions up to several 10 m s-1), growth to St ˜ 1 (10 m size) may be possible beyond 30 au from the star. Such objects would be concentrated in spiral features and could potentially produce larger icy planetesimals/comets by gravitational collapse. These planetesimals would acquire moderate eccentricities and remain unmodified over the remaining lifetime of the disc.

  17. Secular diffusion in discrete self-gravitating tepid discs. I. Analytic solution in the tightly wound limit

    NASA Astrophysics Data System (ADS)

    Fouvry, J. B.; Pichon, C.; Chavanis, P. H.

    2015-09-01

    The secular evolution of an infinitely thin tepid isolated galactic disc made of a finite number of particles is described using the inhomogeneous Balescu-Lenard equation. Assuming that only tightly wound transient spirals are present in the disc, a WKB approximation provides a simple and tractable quadrature for the corresponding drift and diffusion coefficients. It provides insight into the physical processes at work during the secular diffusion of a self-gravitating discrete disc and makes quantitative predictions on the initial variations of the distribution function in action space. When applied to the secular evolution of an isolated stationary self-gravitating Mestel disc, this formalism predicts the initial importance of the corotation resonance in the inner regions of the disc leading to a regime involving radial migration and heating. It predicts in particular the formation of a ridge-like feature in action space, in agreement with simulations, but over-estimates the timescale involved in its appearance. Swing amplification is likely needed to resolve this discrepancy. In astrophysics, the inhomogeneous Balescu-Lenard equation and its WKB limit may also describe the secular diffusion of giant molecular clouds in galactic discs, the secular migration and segregation of planetesimals in proto-planetary discs, or even the long-term evolution of population of stars within the Galactic centre. Appendices are available in electronic form at http://www.aanda.org

  18. Vortex and spiral instabilities at gap edges in three-dimensional self-gravitating disc-satellite simulations

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai

    2012-11-01

    Numerical simulations of global three-dimensional (3D), self-gravitating discs with a gap opened by an embedded planet are presented. The simulations are customized to examine planetary gap stability. Previous results, obtained by Lin & Papaloizou from 2D disc models, are reproduced in 3D. These include (i) the development of vortices associated with local vortensity minima at gap edges and their merging on dynamical time-scales in weakly self-gravitating discs, (ii) the increased number of vortices as the strength of self-gravity is increased and their resisted merging, and (iii) suppression of the vortex instability and development of global spiral arms associated with local vortensity maxima in massive discs. The vertical structure of these disturbances is examined. In terms of the relative density perturbation, the vortex disturbance has weak vertical dependence when self-gravity is neglected. Vortices become more vertically stratified with increasing self-gravity. This effect is seen even when the unperturbed region around the planet's orbital radius has a Toomre stability parameter ˜10. The spiral modes display significant vertical structure at the gap edge, with the mid-plane density enhancement being several times larger than that near the upper disc boundary. However, for both instabilities the vertical Mach number is typically a few per cent, and on average vertical motions near the gap edge do not dominate horizontal motions.

  19. Coevolution of binaries and circumbinary gaseous discs

    NASA Astrophysics Data System (ADS)

    Fleming, David P.; Quinn, Thomas R.

    2017-01-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disc and how the disc and binary interact and change as a result. The central binary excites resonances in the surrounding protoplanetary disc which drive evolution in both the binary orbital elements and in the disc. To probe how these interactions impact binary eccentricity and disc structure evolution, N-body smooth particle hydrodynamics simulations of gaseous protoplanetary discs surrounding binaries based on Kepler 38 were run for 104 binary periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disc via a parametric instability and excite disc eccentricity growth. Eccentric binaries strongly couple to the disc causing eccentricity growth for both the disc and binary. Discs around sufficiently eccentric binaries which strongly couple to the disc develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance which corresponds to an alignment of gas particle longitude of periastrons. All systems display binary semimajor axis decay due to dissipation from the viscous disc.

  20. Enhancing the rate of tidal disruptions of stars by a self-gravitating disc around a massive central black hole

    NASA Astrophysics Data System (ADS)

    Karas, V.; Šubr, L.

    2012-12-01

    We further study the idea that a self-gravitating accretion disc around a supermassive black hole can increase the rate of gradual orbital decay of stellar trajectories (and hence tidal disruption events) by setting some stars on eccentric trajectories. Cooperation between the gravitational field of the disc and the dissipative environment can provide a mechanism explaining the origin of stars that become bound tightly to the central black hole. We examine this process as a function of the black hole mass and conclude that it is most efficient for intermediate central masses of the order of ˜ 104Mʘ. Members of the cluster experience the stage of orbital decay via collisions with an accretion disc and by other dissipative processes, such as tidal effects, dynamical friction and the emission of gravitational waves. Our attention is concentrated on the region of gravitational dominance of the central body. Mutual interaction between stars and the surrounding environment establishes a non-spherical shape and anisotropy of the nuclear cluster. In some cases, the stellar sub-system acquires ring-type geometry. Stars of the nuclear cluster undergo a tidal disruption event as they plunge below the tidal radius of the supermassive black hole.

  1. Gaseous discs at intermediate redshifts from kinematic data modelling

    NASA Astrophysics Data System (ADS)

    Kipper, R.; Tamm, A.; Tenjes, P.; Tempel, E.

    2016-10-01

    Our purpose is to measure thickness of gaseous discs in 0 < z < 1.2 galaxies. As gas dispersions are sensitive to scale height of gaseous discs, we model the kinematics of galaxies using Jeans equations. The resulting thicknesses of gaseous discs at higher redshifts are more thicker (and arbitrary) while nearby ones are thinner. We also found that clumpiness of galaxy is a possible indicator of the gas disc thickness.

  2. On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs

    NASA Astrophysics Data System (ADS)

    Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.

    2016-05-01

    The dynamical response of edge waves under the influence of self-gravity is examined in an idealized two-dimensional model of a proto-stellar disc, characterized in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius r0. The fluid in basic state is prescribed to rotate with a Keplerian profile $\\Omega_k(r)\\sim r^{-3/2}$ modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabilizer irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non- Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density, in addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect . Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.

  3. Self-gravitational Force Calculation of Second-order Accuracy for Infinitesimally Thin Gaseous Disks in Polar Coordinates

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Hsu; Yen, David C. C.; Taam, Ronald E.

    2015-11-01

    Investigating the evolution of disk galaxies and the dynamics of proto-stellar disks can involve the use of both a hydrodynamical and a Poisson solver. These systems are usually approximated as infinitesimally thin disks using two-dimensional Cartesian or polar coordinates. In Cartesian coordinates, the calculations of the hydrodynamics and self-gravitational forces are relatively straightforward for attaining second-order accuracy. However, in polar coordinates, a second-order calculation of self-gravitational forces is required for matching the second-order accuracy of hydrodynamical schemes. We present a direct algorithm for calculating self-gravitational forces with second-order accuracy without artificial boundary conditions. The Poisson integral in polar coordinates is expressed in a convolution form and the corresponding numerical complexity is nearly linear using a fast Fourier transform. Examples with analytic solutions are used to verify that the truncated error of this algorithm is of second order. The kernel integral around the singularity is applied to modify the particle method. The use of a softening length is avoided and the accuracy of the particle method is significantly improved.

  4. SELF-GRAVITATIONAL FORCE CALCULATION OF SECOND-ORDER ACCURACY FOR INFINITESIMALLY THIN GASEOUS DISKS IN POLAR COORDINATES

    SciTech Connect

    Wang, Hsiang-Hsu; Taam, Ronald E.; Yen, David C. C.

    2015-11-15

    Investigating the evolution of disk galaxies and the dynamics of proto-stellar disks can involve the use of both a hydrodynamical and a Poisson solver. These systems are usually approximated as infinitesimally thin disks using two-dimensional Cartesian or polar coordinates. In Cartesian coordinates, the calculations of the hydrodynamics and self-gravitational forces are relatively straightforward for attaining second-order accuracy. However, in polar coordinates, a second-order calculation of self-gravitational forces is required for matching the second-order accuracy of hydrodynamical schemes. We present a direct algorithm for calculating self-gravitational forces with second-order accuracy without artificial boundary conditions. The Poisson integral in polar coordinates is expressed in a convolution form and the corresponding numerical complexity is nearly linear using a fast Fourier transform. Examples with analytic solutions are used to verify that the truncated error of this algorithm is of second order. The kernel integral around the singularity is applied to modify the particle method. The use of a softening length is avoided and the accuracy of the particle method is significantly improved.

  5. Secular diffusion in discrete self-gravitating tepid discs II. Accounting for swing amplification via the matrix method

    NASA Astrophysics Data System (ADS)

    Fouvry, J. B.; Pichon, C.; Magorrian, J.; Chavanis, P. H.

    2015-12-01

    The secular evolution of an infinitely thin tepid isolated galactic disc made of a finite number of particles is investigated using the inhomogeneous Balescu-Lenard equation expressed in terms of angle-action variables. The matrix method is implemented numerically in order to model the induced gravitational polarisation. Special care is taken to account for the amplification of potential fluctuations of mutually resonant orbits and the unwinding of the induced swing amplified transients. Quantitative comparisons with N-body simulations yield consistent scalings with the number of particles and with the self-gravity of the disc: the fewer the particles and the colder the disc, the faster the secular evolution. Secular evolution is driven by resonances, but does not depend on the initial phases of the disc. For a Mestel disc with Q ~ 1.5, the polarisation cloud around each star boosts its secular effect by a factor of a thousand or more, accordingly promoting the dynamical relevance of self-induced collisional secular evolution. The position and shape of the induced resonant ridge are found to be in very good agreement with the prediction of the Balescu-Lenard equation, which scales with the square of the susceptibility of the disc. In astrophysics, the inhomogeneous Balescu-Lenard equation may describe the secular diffusion of giant molecular clouds in galactic discs, the secular migration and segregation of planetesimals in proto-planetary discs, or even the long-term evolution of population of stars within the Galactic centre. It could be used as a valuable check of the accuracy of N-body integrators on secular timescales. Appendices are available in electronic form at http://www.aanda.orgA copy of the linear matrix response code is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A129

  6. Giant cyclones in gaseous discs of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fridman, A. M.; Khoruzhii, O. V.; Polyachenko, E.; Zasov, A. V.; Sil'chenko, O. K.; Afanas'ev, V. L.; Dodonov, S. N.; Moiseev, A. V.

    1999-12-01

    We report the detection of giant cyclonic vortices in the gaseous disc of the spiral galaxy NGC 3631 in the reference frame rotating with the spiral pattern. A presence of such structures was predicted by the authors for galaxies, where the radial gradient of the perturbed velocity exceeds that of the rotational velocity. This situation really takes place in NGC 3631.

  7. Self-gravitating skyrmions

    NASA Astrophysics Data System (ADS)

    Ayón-Beato, Eloy; Canfora, Fabrizio; Zanelli, Jorge

    2016-05-01

    A self-gravitating Skyrmion is an analytic and globally regular solution of the Einstein-Skyrme system with nonvanishing topological charge. The spacetime is the direct product R × S3 and the Skyrmion is the self-gravitating generalization of the static hedgehog solution of Manton and Ruback. This solution can be promoted to a dynamical one in which the spacetime is a cosmology of the Bianchi type-IX and, through an analytic continuation, it can also be turned into a transversable asymptotically AdS Lorentzian wormhole. The stress-energy of this wormhole satisfies physically realistic energy conditions and the only “exotic matter” required by it is a negative cosmological constant.

  8. Self-gravitating fluid tori with charge

    NASA Astrophysics Data System (ADS)

    Karas, Vladimir; Trova, Audrey; Kovar, Jiri

    2017-08-01

    We have been developing an analytical approach to study equilibria of self-gravitating charged fluid embedded in the gravitational and magnetic fields of a central body. Our calculations provide a toy-model scenario for gaseous/dusty tori surrounding supermassive black holes in galactic nuclei. While the central black hole dominates the gravitational field and remains electrically neutral, the surrounding material has a non-negligible self-gravitational effect on the torus structure. Moreover, by charging mechanisms it also acquires non-zero electric charge density. These two influences need to be taken into account to achieve a self-consistent picture (based on Trova et al., ApJSS, 226, id. 12, 2016).

  9. In situ accretion of gaseous envelopes on to planetary cores embedded in evolving protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Coleman, Gavin A. L.; Papaloizou, John C. B.; Nelson, Richard P.

    2017-09-01

    The core accretion hypothesis posits that planets with significant gaseous envelopes accreted them from their protoplanetary discs after the formation of rocky/icy cores. Observations indicate that such exoplanets exist at a broad range of orbital radii, but it is not known whether they accreted their envelopes in situ, or originated elsewhere and migrated to their current locations. We consider the evolution of solid cores embedded in evolving viscous discs that undergo gaseous envelope accretion in situ with orbital radii in the range 0.1-10 au. Additionally, we determine the long-term evolution of the planets that had no runaway gas accretion phase after disc dispersal. We find the following. (i) Planets with 5 M⊕ cores never undergo runaway accretion. The most massive envelope contained 2.8 M⊕ with the planet orbiting at 10 au. (ii) Accretion is more efficient on to 10 M⊕ and 15 M⊕ cores. For orbital radii ap ≥ 0.5 au, 15 M⊕ cores always experienced runaway gas accretion. For ap ≥ 5 au, all but one of the 10 M⊕ cores experienced runaway gas accretion. No planets experienced runaway growth at ap = 0.1 au. (iii) We find that, after disc dispersal, planets with significant gaseous envelopes cool and contract on Gyr time-scales, the contraction time being sensitive to the opacity assumed. Our results indicate that Hot Jupiters with core masses ≲15 M⊕ at ≲0.1 au likely accreted their gaseous envelopes at larger distances and migrated inwards. Consistently with the known exoplanet population, super-Earths and mini-Neptunes at small radii during the disc lifetime, accrete only modest gaseous envelopes.

  10. The pseudo-photosphere model for the continuum emission of gaseous discs

    NASA Astrophysics Data System (ADS)

    Vieira, R. G.; Carciofi, A. C.; Bjorkman, J. E.

    2015-12-01

    We investigate the continuum emission of viscous decretion discs around Be stars in this paper. The results obtained from non-LTE (local thermodynamic equilibrium) radiative transfer models show two regimes in the disc surface brightness profile: an inner optically thick region, which behaves as a pseudo-photosphere with a wavelength-dependent size, and an optically thin tenuous outer part, which contributes with about a third of the total flux. The isophotal shape of the surface brightness is well described by elliptical contours with an axial ratio b/a = cos i for inclinations i < 75°. Based on these properties, a semi-analytical model was developed to describe the continuum emission of gaseous discs. It provides fluxes and spectral slopes at the infrared within an accuracy of 10 and 5 per cent, respectively, when compared to the numerical results. The model indicates that the infrared spectral slope is mainly determined by both the density radial slope and the disc flaring exponent, being practically independent of disc inclination and base density. As a first application, the density structure of 15 Be stars was investigated, based on the infrared flux excess, and the results compared to previous determinations in the literature. Our results indicate that the decretion rates are in the range of 10-12-10-9 M⊙ yr-1, which is at least two orders of magnitude smaller than the previous outflowing disc model predictions.

  11. Collapse in self-gravitating turbulent fluids

    NASA Astrophysics Data System (ADS)

    Murray, Daniel W.; Chang, Philip; Murray, Norman W.; Pittman, John

    2017-02-01

    Motivated by the non-linear star formation efficiency found in recent numerical simulations by a number of workers, we perform high-resolution adaptive mesh refinement simulations of star formation in self-gravitating turbulently driven gas. As we follow the collapse of this gas, we find that the character of the flow changes at two radii, the disc radius rd and the radius r*, where the enclosed gas mass exceeds the stellar mass. Accretion starts at large scales and works inwards. In line with recent analytical work, we find that the density evolves to a fixed attractor, ρ(r, t) → ρ(r), for rd < r < r*; mass flows through this structure on to a sporadically gravitationally unstable disc and from thence on to the star. In the bulk of the simulation box, we find that the random motions vT ∼ rp with p ∼ 0.5 are in agreement with Larson's size-linewidth relation. In the vicinity of massive star-forming regions, we find p ∼ 0.2-0.3, as seen in observations. For r < r*, vT increases inwards, with p = -1/2. Finally, we find that the total stellar mass M*(t) ∼ t2 is in line with previous numerical and analytic work that suggests a non-linear rate of star formation.

  12. Classifying self-gravitating radiations

    NASA Astrophysics Data System (ADS)

    Kim, Hyeong-Chan

    2017-02-01

    We study a static system of self-gravitating radiations confined in a sphere by using numerical and analytical calculations. Because of the scaling symmetry of radiations, most of the main properties of a solution can be represented as a segment of a solution curve on a plane of two-dimensional scale invariant variables. We define an "approximate horizon" (AH) from the analogy with an apparent horizon. Any solution curve contains a unique point that corresponds to the AH. A given solution is uniquely labeled by three parameters representing the solution curve, the size of the AH, and the sphere size, which are an alternative to the data at the outer boundary. Various geometrical properties including the existence of an AH and the behaviors around the center can be identified from the parameters. We additionally present an analytic solution of the radiations on the verge of forming a black hole. Analytic formulas for the central mass of the naked singularity are given.

  13. Protostellar collapse in a self-gravitating sheet

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Boss, Alan; Calvet, Nuria; Whitney, Barbara

    1994-01-01

    We present preliminary calculations of protostellar cloud collapse starting from an isothermal, self-gravitating gaseous layer in hydrostatic equilibrium. This gravitationally unstable layer collapses into a flattened or toroidal density distribution, even in the absence of rotation or magnetic fields. We suggest that the flat infalling envelope recently observed in HL Tau by Hayashi et al.is the result of collapse from an initially nonspherical layer. We also speculate that the later evolution of such a flattened, collapsing envelope can produce a structure similar to the 'flared disk' invoked by Kenyon and Hartmann to explain the infrared excesses of many T Tauri stars.

  14. Self-gravitating system made of axions

    SciTech Connect

    Barranco, J.; Bernal, A.

    2011-02-15

    We show that the inclusion of an axionlike effective potential in the construction of a self-gravitating system of scalar fields decreases its compactness when the value of the self-interaction coupling constant is increased. By including the current values for the axion mass m and decay constant f{sub a}, we have computed the mass and the radius for self-gravitating systems made of axion particles. It is found that such objects will have asteroid size masses and radii of a few meters, thus a self-gravitating system made of axions could play the role of scalar mini-MACHOs and mimic a cold dark matter model for the galactic halo.

  15. The fate of the gaseous discs of galaxies that fall into clusters

    NASA Astrophysics Data System (ADS)

    Ruggiero, Rafael; Lima Neto, Gastao B.

    2017-07-01

    Galaxy clusters are known to induce gas loss in infalling galaxies due to the ram pressure exerted by the intracluster medium over their gas content. In this paper, we investigate this process through a set of simulations of Milky Way like galaxies falling inside idealized clusters of 1014 and 1015 M⊙, containing a cool core or not, using the adaptive mesh refinement code ramses. We use these simulations to constrain how much of the initial mass contained in the gaseous disc of the galaxy will be converted into stars and how much of it will be lost, after a single crossing of the entire cluster. We find that, if the galaxy reaches the central region of a cool-core cluster, it is expected to lose all its gas, independently of its entry conditions and of the cluster's mass. On the other hand, it is expected to never lose all its gas after crossing a cluster without a cool core just once. Before reaching the centre of the cluster, the star formation rate (SFR) of the galaxy is always enhanced, by a factor of 1.5-3. If the galaxy crosses the cluster without being completely stripped, its final amount of gas is on average two times smaller after crossing the 1015 M⊙ cluster, relative to the 1014 M⊙ cluster. This is reflected in the final SFR of the galaxy, which is also two times smaller in the former, ranging from 0.5 to 1 M⊙ yr-1, compared to 1-2 M⊙ yr-1 for the latter.

  16. Evolution of self-gravitating accretion disks in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Begelman, Mitchell C.

    1989-01-01

    The evolution of self-gravitating gaseous disks in active galactic nuclei on scales of about 10-1000 pc is investigated. Star formation is a plausible outcome of the Jeans instability operating in a disk which violates the criterion for local stability. Even a low efficiency of star formation would deplete the gaseous disk on a short time scale and create a flat stellar system. These systems can evolve (sphericalize) secularly by means of stellar encounters but this process appears to be too slow to be important. Such flattened stellar systems may be common in the circumnuclear regions of disk galaxies. Conventional viscosities are inefficient in building anew the accretion process even in a cosmological time. Strongly self-gravitating disks are unstable to global nonaxisymmetric modes, which can induce radial inflow of gas in a short dynamical time. The latter effect is studied in a separate paper.

  17. Effective geometries in self-gravitating polytropes

    SciTech Connect

    Bini, D.; Cherubini, C.; Filippi, S.

    2008-09-15

    Perturbations of a perfect barotropic and irrotational Newtonian self-gravitating fluid are studied using a generalization of the so-called 'effective geometry' formalism. The case of polytropic spherical stars, as described by the Lane-Emden equation, is studied in detail in the known cases of existing explicit solutions. The present formulation gives a natural scenario in which the acoustic analogy has relevance for both stellar and galactic dynamics.

  18. Dynamical evolution of the young stellar disc in the Galactic centre

    NASA Astrophysics Data System (ADS)

    Šubr, Ladislav; Haas, Jaroslav

    2012-07-01

    Origin of several hundreds of young stars in within the distance lesssim 1pc from the Galactic supermassive black hole still represents an open problem of contemporary astrophysics. In this contribution we further investigate the model which assumes their formation in situ via fragmentation of a self-gravitating gaseous disc. We show that currently observed configuration of the system of young stars can be obtained as an outcome of a dynamical evolution of a single, initially very thin stellar disc. Our model assumes the long-term evolution of the stellar disc to be determined by gravitational influence of a distant molecular torus (CND) and mutual resonances of stellar orbits within the disc.

  19. Gas flow in spiral galaxies - effects of rotation, thermal processes, and self-gravitation

    SciTech Connect

    Berman, V.G.; Marochnik, L.S.; Mishurov, IU.N.; Suchkov, A.A.; Timonin, P.N.

    1986-02-01

    The motion of interstellar gas in the gravitational field of a spiral density wave is investigated. Numerical integration of the nonlinear gas-dynamics equations coupled with equations for thermal processes indicates that in order for gas flowing through the spiral field to undergo a phase transition and to condense into clouds by thermal instability, the gaseous model galactic disk must be rotating. If the disk is sufficiently thin and dense, the thermal processes and self-gravitation of the gas will act jointly to produce very compact clumps of rapidly rising density and falling temperature, although they show no tendency toward gravitational fragmentation. 14 references.

  20. Self-gravitating black hole scalar wigs

    NASA Astrophysics Data System (ADS)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Núñez, Darío; Sarbach, Olivier

    2017-07-01

    It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.

  1. Dressed diffusion and friction coefficients in inhomogeneous multicomponent self-gravitating systems

    NASA Astrophysics Data System (ADS)

    Heyvaerts, Jean; Fouvry, Jean-Baptiste; Chavanis, Pierre-Henri; Pichon, Christophe

    2017-08-01

    General self-consistent expressions for the coefficients of diffusion and dynamical friction in a stable, bound, multicomponent self-gravitating, and inhomogeneous system are derived. They account for the detailed dynamics of the colliding particles and their self-consistent dressing by collective gravitational interactions. The associated Fokker-Planck equation is shown to be fully consistent with the corresponding inhomogeneous Balescu-Lenard equation and, in the weak self-gravitating limit, to the inhomogeneous Landau equation. Hence, it provides an alternative derivation to both and demonstrates their equivalence. The corresponding stochastic Langevin equations are presented: they can be a practical alternative to numerically solving the inhomogeneous Fokker-Planck and Balescu-Lenard equations. The present formalism allows for a self-consistent description of the secular evolution of different populations covering a spectrum of masses, with a proper accounting of the induced secular mass segregation, which should be of interest to various astrophysical contexts, from galactic centres to protostellar discs.

  2. Electrically Charged Matter in Permanent Rotation around Magnetized Black Holes: A Toy Model for Self-gravitating Fluid Tori

    NASA Astrophysics Data System (ADS)

    Trova, A.; Karas, V.; Slaný, P.; Kovář, J.

    2016-09-01

    We present an analytical approach for the equilibrium of a self-gravitating charged fluid embedded in a spherical gravitational and dipolar magnetic fields produced by a central mass. Our scheme is proposed, as a toy model, in the context of gaseous/dusty tori surrounding supermassive black holes in galactic nuclei. While the central black hole dominates the gravitational field and remains electrically neutral, the surrounding material has a non-negligible self-gravitational effect on the torus structure. By charging mechanisms it also acquires non-zero electric charge density, so the two influences need to be taken into account to achieve a self-consistent picture. Using our approach we discuss the impact of self-gravity, represented by the term {d}{{t}} (ratio of the torus total mass to the mass of the central body), on the conditions for existence of the equilibrium and the morphology and typology of the tori. By comparison with a previous work without self-gravity, we show that the conditions can be different. Although the main aim of the present paper is to discuss a framework for the classification of electrically charged, magnetized, self-gravitating tori, we also mention potential astrophysical applications to vertically stratified fluid configurations.

  3. Massive and modified gravity as self-gravitating media

    NASA Astrophysics Data System (ADS)

    Ballesteros, Guillermo; Comelli, Denis; Pilo, Luigi

    2016-12-01

    We study the effective field theory that describes the low-energy physics of self-gravitating media. The field content consists of four derivatively coupled scalar fields that can be identified with the internal comoving coordinates of the medium. Imposing SO(3) internal spatial invariance, the theory describes supersolids. Stronger symmetry requirements lead to superfluids, solids and perfect fluids, at lowest order in derivatives. In the unitary gauge, massive gravity emerges, being thus the result of a continuous medium propagating in spacetime. Our results can be used to explore systematically the effects and signatures of modifying gravity consistently at large distances. The dark sector is then described as a self-gravitating medium with dynamical and thermodynamic properties dictated by internal symmetries. These results indicate that the divide between dark energy and modified gravity, at large distance scales, is simply a gauge choice.

  4. Jeans instability in partially ionized self-gravitating dusty plasmas.

    PubMed

    Verheest, F; Shukla, P K; Jacobs, G; Yaroshenko, V V

    2003-08-01

    By employing the Boltzmann distributions for electrons and ions and by retaining the full dynamics of charged dust and neutral fluids, we derive a dispersion law for coupled dust-acoustic and neutral sound waves in partially ionized self-gravitating dusty plasmas. This dispersion law exhibits new classes of Jeans instability in both collisionless and highly collisional regimes. The result should help understand the origin of molecular cloud collapse in interstellar space.

  5. Time evolution of entropy for spherical self-gravitating systems

    NASA Astrophysics Data System (ADS)

    Sui, Ning; He, Ping

    In this work, we investigate the dynamical evolution of spherical self-gravitating systems under their own gravity with N-body simulations. For this purpose, we study the evolution of the generalized virialization relations, and particularly focus on the time evolution of the coarse-grained entropy of dark matter halos under various perturbations. First, we construct six single perturbation models under four initial conditions to mimic typical disturbances that a realistic gravitating system may encounter. With the simulation results, we show the time evolution of the entropy for the six perturbation models. In all these models, at first the entropy increases rapidly for a short period of time, slowly evolves for a longer period of time and then remains nearly unchanged in the subsequent evolution. The main dynamical mechanisms behind these evolutions should be violent relaxation and phase mixing. However, under repeated perturbations to the system, the evolution of entropy of self-gravitating systems manifests complete differences from that of the usual thermodynamical systems. We see that the entropy of the end states of every single perturbation, according to different repeated perturbation modes, either decreases or increases. We argue that the increasing or decreasing of the end-state entropy should be the reflection of the complexity of the thermodynamical states of self-gravitating systems. These conclusions are independent of the initial conditions. Besides, we demonstrate that the generalized virialization relations can reveal whether or not, or in which radius interval, the collisionless Boltzmann equation is suitable for description of a self-gravitating system, and can be used as good stability criteria of the system.

  6. Fundamental thermodynamical equation of a self-gravitating system

    NASA Astrophysics Data System (ADS)

    Martinez, Erik A.

    1996-06-01

    The features of the fundamental thermodynamical relation (expressing entropy as function of state variables) that arise from the self-gravitating character of a system are analyzed. The models studied include not only a spherically symmetric hot matter shell with constant particle number but also a black hole characterized by a general thermal equation of state. These examples illustrate the formal structure of thermodynamics developed by Callen as applied to a gravitational configuration as well as the phenomenological manner in which Einstein equations largely determine the thermodynamical equations of state. We consider in detail the thermodynamics and quasistatic collapse of a self-gravitating shell. This includes a discussion of intrinsic stability for a one-parameter family of thermal equations of state and the interpretation of the Bekenstein bound. The entropy growth associated with a collapsing sequence of equilibrium states of a shell is computed under different boundary conditions in the quasistatic approximation and compared with black hole entropy. Although explicit expressions involve empirical coefficients, these are constrained by physical conditions of thermodynamical origin. The absence of a Gibbs-Duhem relation and the associated scaling laws for self-gravitating matter systems are presented.

  7. VISCOSITY IN PLANETARY RINGS WITH SPINNING SELF-GRAVITATING PARTICLES

    SciTech Connect

    Yasui, Yuki; Ohtsuki, Keiji; Daisaka, Hiroshi

    2012-05-15

    Using local N-body simulation, we examine viscosity in self-gravitating planetary rings. We investigate the dependence of viscosity on various parameters in detail, including the effects of particle surface friction. In the case of self-gravitating rings with low optical depth, viscosity is determined by particle random velocity. Inclusion of surface friction slightly reduces both random velocity and viscosity when particle random velocity is determined by inelastic collisions, while surface friction slightly increases viscosity when gravitational encounters play a major role in particle velocity evolution, so that viscous heating balances with increased energy dissipation at collisions due to surface friction. We find that including surface friction changes viscosity in dilute rings up to a factor of about two. In the case of self-gravitating dense rings, viscosity is significantly increased due to the effects of gravitational wakes, and we find that varying restitution coefficients also change viscosity in such dense rings by a factor of about two. We confirm that our numerical results for viscosity in dense rings with gravitational wakes can be well approximated by a semianalytic expression that is consistent with a previously obtained formula. However, we find that this formula seems to overestimate viscosity in dense rings far from the central planet, where temporary gravitational aggregates form. We derive semianalytic expressions that reproduce our numerical results well for the entire range of examined parameters.

  8. Power distributions for self-gravitating astrophysical systems based on nonextensive Tsallis kinetics

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, A. V.

    2017-03-01

    The long-time development of self-gravitating gaseous astrophysical systems (in particular, the evolution of the protoplanet accretion disk) is mainly determined by relatively fast processes of the collision relaxation of particles. However, slower dynamical processes related to force (Newton or Coulomb) interactions between particles should be included (as q-collisions) in the nonextensive kinetic theory as well. In the present paper, we propose a procedure to include the Newton self-gravity potential and the centrifugal potential in the near-equilibrium power-like q-distribution in the phase space, obtained (in the framework of nonextensive statistics) by means of the modified Boltzmann equation averaged with respect to an unnormalized distribution. We show that if the power distribution satisfies the stationary q-kinetic equation, then the said equation imposes clear restrictions on the character of the long-term force field and on the possible dependence of hydrodynamic parameters of the coordinates: it determines those parameters uniquely. We provide a thermodynamic stability criterion for the equilibrium of the nonextensive system. The results allow us to simulate the evolution of gaseous astrophysical systems (in particular, the gravitational stability of rotating protoplanet accretion disks) more adequately.

  9. Numerical simulation of three-dimensional self-gravitating flow

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1993-01-01

    The three-dimensional flow of a self-gravitating fluid is numerically simulated using a Fourier pseudospectral method with a logarithmic variable formulation. Two cases with zero total angular momentum are studied in detail, a 323 simulation (Run B). Other than the grid size, the primary difference between the two cases are that Run A modeled atomic hydrogen and had considerably more compressible motion initially than Run B, which modeled molecular hydrogen. The numerical results indicate that gravitational collapse can proceed in a variety of ways. In the Run A, collapse led to an elongated tube-like structure, while in the Run B, collapse led to a flatter, disklike structure.

  10. Dynamics of self-gravitating dust clouds in astrophysical plasmas

    SciTech Connect

    Eliasson, B.; Avinash, K.; Shukla, P. K.

    2008-09-07

    Due to the gravitational force, clouds of dust and gas in the interstellar medium can contract and form stars and planet systems. We here show that if the dust grains are electrically charged then the self-gravitation can be balanced by the ion pressure, and the collapse can be halted. In this case, the dust cloud may form soft dust planets, having the weight of a small moon or satellite, but a radius larger than of our Sun. There exist a critical mass beyond which the dust cloud collapses and forms a solid planet.

  11. Dynamics of self-gravitating dust clouds in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Avinash, K.; Shukla, P. K.

    2008-09-01

    Due to the gravitational force, clouds of dust and gas in the interstellar medium can contract and form stars and planet systems. We here show that if the dust grains are electrically charged then the self-gravitation can be balanced by the ion pressure, and the collapse can be halted. In this case, the dust cloud may form soft dust planets, having the weight of a small moon or satellite, but a radius larger than of our Sun. There exist a critical mass beyond which the dust cloud collapses and forms a solid planet.

  12. Self-gravitating strings in 2+1 dimensions

    NASA Astrophysics Data System (ADS)

    Ben-Menahem, Shahar

    1993-05-01

    We present a family of classical spacetimes in 2+1 dimensions. Such a spacetime is produced by a Nambu-Goto self-gravitating string. Because of the special properties of three-dimensional gravity, the metric is completely described as a Minkowski space with two identified world sheets. In the flat limit, the standard string is recovered. The formalism is developed for an open string with massive end points, but applies to other boundary conditions as well. We consider another limit, where the string tension vanishes in geometrical units but the end masses produce finite deficit angles. In this limit, our open string reduces to the free-masses solution of Gott, which possesses closed timelike curves when the relative motion of the two masses is sufficiently rapid. It is shown that the induced world sheet Liouville mode obeys (-classically)- a sinh- or cosh-Gordon differential equation, which reduces to the Liouville equation in the flat limit. A quadratic-action formulation of this system is presented. The possibility and significance of quantizing the self-gravitating string is discussed.

  13. Jeans self gravitational instability of strongly coupled quantum plasma

    SciTech Connect

    Sharma, Prerana; Chhajlani, R. K.

    2014-07-15

    The Jeans self-gravitational instability is studied for quantum plasma composed of weakly coupled degenerate electron fluid and non-degenerate strongly coupled ion fluid. The formulation for such system is done on the basis of two fluid theory. The dynamics of weakly coupled degenerate electron fluid is governed by inertialess momentum equation. The quantum forces associated with the quantum diffraction effects and the quantum statistical effects act on the degenerate electron fluid. The strong correlation effects of ion are embedded in generalized viscoelastic momentum equation including the viscoelasticity and shear viscosities of ion fluid. The general dispersion relation is obtained using the normal mode analysis technique for the two regimes of propagation, i.e., hydrodynamic and kinetic regimes. The Jeans condition of self-gravitational instability is also obtained for both regimes, in the hydrodynamic regime it is observed to be affected by the ion plasma oscillations and quantum parameter while in the kinetic regime in addition to ion plasma oscillations and quantum parameter, it is also affected by the ion velocity which is modified by the viscosity generated compressional effects. The Jeans critical wave number and corresponding critical mass are also obtained for strongly coupled quantum plasma for both regimes.

  14. Polymer quantization of a self-gravitating thin shell

    NASA Astrophysics Data System (ADS)

    Ziprick, Jonathan; Gegenberg, Jack; Kunstatter, Gabor

    2016-11-01

    We study the quantum mechanics of self-gravitating thin shell collapse by solving the polymerized Wheeler-DeWitt equation. We obtain the energy spectrum and solve the time-dependent equation using numerics. In contradistinction to the continuum theory, we are able to consistently quantize the theory for super-Planckian black holes, and find two choices of boundary conditions which conserve energy and probability, as opposed to one in the continuum theory. Another feature unique to the polymer theory is the existence of negative energy stationary states that disappear from the spectrum as the polymer scale goes to 0. In both theories the probability density is positive semidefinite only for the space of positive energy stationary states. Dynamically, we find that an initial Gaussian probability density develops regions of negative probability as the wave packet approaches R =0 and bounces. This implies that the bouncing state is a sum of both positive and negative eigenstates.

  15. Dynamics of a self-gravitating neutron source

    SciTech Connect

    Paret, D. Manreza; Martínez, A. Pérez; Rey, A. Ulacia; Sussman, Roberto A. E-mail: aurora@icmf.inf.cu E-mail: sussman@nucleares.unam.mx

    2010-03-01

    We examine the dynamics of a self-gravitating magnetized neutron gas as a source of a Bianchi I spacetime described by the Kasner metric. The set of Einstein-Maxwell field equations can be expressed as a dynamical system in a 4-dimensional phase space. Numerical solutions of this system reveal the emergence of a point-like singularity as the final evolution state for a large class of physically motivated initial conditions. Besides the theoretical interest of studying this source in a fully general relativistic context, the resulting idealized model could be helpful in understanding the collapse of local volume elements of a neutron gas in the critical conditions that would prevail in the center of a compact object.

  16. Hedgehog ansatz and its generalization for self-gravitating Skyrmions

    NASA Astrophysics Data System (ADS)

    Canfora, Fabrizio; Maeda, Hideki

    2013-04-01

    The hedgehog ansatz for spherically symmetric spacetimes in self-gravitating nonlinear sigma models and Skyrme models is revisited and its generalization for nonspherically symmetric spacetimes is proposed. The key idea behind our construction is that, even if the matter fields depend on the Killing coordinates in a nontrivial way, the corresponding energy-momentum tensor can still be compatible with spacetime symmetries. Our generalized hedgehog ansatz reduces the Skyrme equations to coupled differential equations for two scalar fields together with several constraint equations between them. Some particular field configurations satisfying those constraints are presented in several physically important spacetimes, including stationary and axisymmetric spacetimes. Incidentally, new exact solutions are obtained under the standard hedgehog ansatz, one of which represents a global monopole inside a black hole with the Skyrme effect.

  17. Nonlinear wave breaking in self-gravitating viscoelastic quantum fluid

    NASA Astrophysics Data System (ADS)

    Mitra, Aniruddha; Roychoudhury, Rajkumar; Bhar, Radhaballav; Khan, Manoranjan

    2017-02-01

    The stability of a viscoelastic self-gravitating quantum fluid has been studied. Symmetry breaking instability of solitary wave has been observed through 'viscosity modified Ostrovsky equation' in weak gravity limit. In presence of strong gravitational field, the solitary wave breaks into shock waves. Response to a Gaussian perturbation, the system produces quasi-periodic short waves, which in terns predicts the existence of gravito-acoustic quasi-periodic short waves in lower solar corona region. Stability analysis of this dynamical system predicts gravity has the most prominent effect on the phase portraits, therefore, on the stability of the system. The non-existence of chaotic solution has also been observed at long wavelength perturbation through index value theorem.

  18. How the presence of a gas giant affects the formation of mean-motion resonances between two low-mass planets in a locally isothermal gaseous disc

    NASA Astrophysics Data System (ADS)

    Podlewska-Gaca, E.; Szuszkiewicz, E.

    2014-03-01

    In this paper we investigate the possibility of a migration-induced resonance locking in systems containing three planets, namely an Earth analogue (1 M⊕), a super-Earth (4 M⊕) and a gas giant (one Jupiter mass). The planets have been listed in order of increasing orbital periods. All three bodies are embedded in a locally isothermal gaseous disc and orbit around a solar mass star. We are interested in answering the following questions: will the low-mass planets form the same resonant structures with each other in the vicinity of the gas giant as in the case when the gas giant is absent? More in general, how will the presence of the gas giant affect the evolution of the two low-mass planets? When there is no gas giant in the system, it has been already shown that if the two low-mass planets undergo a convergent differential migration, they will capture each other in a mean-motion resonance. For the choices of disc parameters and planet masses made in this paper, the formation of the 5:4 resonance in the absence of the Jupiter has been observed in a previous investigation and confirmed here. In this work we add a gas giant on the most external orbit of the system in such a way that its differential migration is convergent with the low-mass planets. We show that the result of this set-up is the speeding up of the migration of the super-Earth and, after that, all three planets become locked in a triple mean-motion resonance. However, this resonance is not maintained due to the low-mass planet eccentricity excitation, a fact that leads to close encounters between planets and eventually to the ejection from the internal orbits of one or both low-mass planets. We have observed that the ejected low-mass planets can leave the system, fall into a star or become the external planet relative to the gas giant. In our simulations the latter situation has been observed for the super-Earth. It follows from the results presented here that the presence of a Jupiter-like planet

  19. Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the `final au problem'

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas C.; Metzger, Brian D.; Haiman, Zoltán

    2017-01-01

    We explore the evolution of stellar mass black hole binaries (BHBs) which are formed in the self-gravitating discs of active galactic nuclei (AGN). Hardening due to three-body scattering and gaseous drag are effective mechanisms that reduce the semimajor axis of a BHB to radii where gravitational waves take over, on time-scales shorter than the typical lifetime of the AGN disc. Taking observationally motivated assumptions for the rate of star formation in AGN discs, we find a rate of disc-induced BHB mergers (R ˜ 3 yr^{-1} Gpc^{-3}, but with large uncertainties) that is comparable with existing estimates of the field rate of BHB mergers, and the approximate BHB merger rate implied by the recent Advanced LIGO detection of GW150914. BHBs formed thorough this channel will frequently be associated with luminous AGN, which are relatively rare within the sky error regions of future gravitational wave detector arrays. This channel could also possess a (potentially transient) electromagnetic counterpart due to super-Eddington accretion on to the stellar mass black hole following the merger.

  20. Critical exact solutions for self-gravitating Dirac fields

    NASA Astrophysics Data System (ADS)

    Cianci, Roberto; Fabbri, Luca; Vignolo, Stefano

    2016-11-01

    We consider the Einstein-Dirac field equations describing a self-gravitating massive neutrino, looking for axially symmetric exact solutions; in the search of general solutions, we find some that are specific and which have critical features, such as the fact that the space-time curvature turns out to be flat and the spinor field gives rise to a vanishing bi-linear scalar overline{ψ }ψ =0 with non-vanishing bi-linear pseudo-scalar ioverline{ψ }γ ^5ψ not =0: because in quantum-field theory general computational methods are built on plane-wave solutions, for which the bi-linear pseudo-scalar vanishes while the bi-linear scalar does not vanish, then the solutions we found cannot be treated with the usual machinery of quantum-field theory. This means that for the Einstein-Dirac system there exist admissible solutions which nevertheless cannot be quantized with the common prescriptions; we regard this situation as yet another issue of tension between Einstein gravity and quantum principles. Possible ways to quench this tension can be seen either in enlarging the validity of quantum-field theory or by restricting the space of the solutions of the Einstein-Dirac system of field equations.

  1. The chemical evolution of self-gravitating primordial disks

    NASA Astrophysics Data System (ADS)

    Schleicher, Dominik R. G.; Bovino, Stefano; Latif, Muhammad A.; Ferrara, Andrea; Grassi, Tommaso

    2016-01-01

    Numerical simulations show the formation of self-gravitating primordial disks during the assembly of the first structures in the Universe, in particular, during the formation of Population III and supermassive stars. Their subsequent evolution is expected to be crucial in determining the mass scale of the first cosmological objects, which depends on the temperature of the gas and dominant cooling mechanism. Here, we derive a one-zone framework to explore the chemical evolution of these disks and show that viscous heating leads to the collisional dissociation of an initially molecular gas. The effect is relevant on scales of 10 AU (1000 AU) for a central mass of 10 M⊙ (104 M⊙) at an accretion rate of 10-1 M⊙ yr-1, and provides a substantial heat input to stabilize the disk. If the gas is initially atomic, it remains atomic during the further evolution and the effect of viscous heating is less significant. The additional thermal support is particularly relevant for the formation of very massive objects, such as the progenitors of the first supermassive black holes. The stabilizing impact of viscous heating thus alleviates the need for strong radiation background as a means of keeping the gas atomic.

  2. Solitary waves in a self-gravitating opposite polarity dust-plasma medium

    SciTech Connect

    Mamun, A. A.; Schlickeiser, R.

    2015-10-15

    A more general and realistic dusty plasma model, namely, self-gravitating opposite polarity dust-plasma system (containing inertial positive and negative dust, and inertialess ions and electrons following Maxwellian distribution) is considered. The possibility for the formation of solitary electrostatic and self-gravitational potential structures in such a dust-plasma system is thoroughly examined. The standard reductive perturbation method, which is valid for small but finite amplitude solitary structures, is employed. The parametric regimes for the existence of solitary electrostatic and self-gravitational potential structures, and their basic properties (viz., polarity, amplitude, width, and speed) are found to be significantly modified by the combined effects of positively charged dust component and self-gravitational field. The applications of the present investigation in different space dusty plasma environments and laboratory dusty plasma devices are briefly discussed.

  3. Velocity Anisotropy in Self-gravitating Molecular Clouds. I. Simulation

    NASA Astrophysics Data System (ADS)

    Otto, Frank; Ji, Weiguang; Li, Hua-bai

    2017-02-01

    The complex interplay between turbulence, magnetic fields, and self-gravity leads to the formation of molecular clouds out of the diffuse interstellar medium (ISM). One avenue of studying this interplay is by analyzing statistical features derived from observations, where the interpretation of these features is greatly facilitated by comparisons with numerical simulations. Here we focus on the statistical anisotropy present in synthetic maps of velocity centroid data, which we derive from three-dimensional magnetohydrodynamic simulations of a turbulent, magnetized, self-gravitating patch of ISM. We study how the orientation and magnitude of the velocity anisotropy correlate with the magnetic field and with the structures generated by gravitational collapse. Motivated by recent observational constraints, our simulations focus on the supersonic (sonic Mach number { M }≈ 2{--}17) but sub- to trans-alfvénic (alfvénic Mach number {{ M }}{{A}}≈ 0.2{--}1.2) turbulence regime, and we consider clouds that are barely to mildly magnetically supercritical (mass-to-flux ratio equal to once or twice the critical value). Additionally we explore the impact of the turbulence driving mechanism (solenoidal or compressive) on the velocity anisotropy. While we confirm previous findings that the velocity anisotropy generally aligns well with the plane-of-sky magnetic field, our inclusion of the effects of self-gravity reveals that in regions of higher column density, the velocity anisotropy may be destroyed or even reoriented to align with the gravitationally formed structures. We provide evidence that this effect is not necessarily due to the increase of {{ M }}{{A}} inside the high-density regions.

  4. Bose and Fermi gases in the early Universe with self-gravitational effect

    SciTech Connect

    Niu Yuezhen; Huang Junwu; Ma Boqiang

    2011-03-15

    We study the self-gravitational effect on the equation of state (EoS) of Bose and Fermi gases in thermal equilibrium at the end of reheating, the period after quark-hadron transition and before big bang nucleosynthesis (BBN). After introducing new grand canonical partition functions based on the work of Uhlenbeck and Gropper, we notice some interesting features of the newly developed EoSs with distinct behaviors of relativistic and nonrelativistic gases under self-gravity. The usual negligence of the self-gravitational effect when solving the background expansion of the early Universe is justified with numerical results, showing the magnitude of the self-gravitational modification of the state constant to be less than O(10{sup -78}). This helps us to clarify the background thermal evolution of the primordial patch. Such clarification is crucial in testing gravity theories, evaluating inflation models and determining element abundances in BBN.

  5. Hydrodynamic vortices in the gaseous disks of galaxies

    NASA Astrophysics Data System (ADS)

    Antonov, V. A.; Zhelezniak, O. A.

    1989-08-01

    A two-dimensional gas stream with a velocity field vx proportional to y is considered which is assumed to be stationary with respect to a rotating coordinate system. This stream can serve as a model of the local kinematic of a galactic gaseous disk. It is shown the local uniform stream cannot develop into a soliton if self-gravitation, dissipation, and the nonuniformity of the vortex are neglected.

  6. Comment on "Self-gravitating spherically symmetric solutions in scalar-torsion theories"

    NASA Astrophysics Data System (ADS)

    Yaqin, Ainol; Gunara, Bobby Eka

    2017-07-01

    We find a crucial miscalculation in [G. Kofinas, E. Papantonopoulos, and E. N. Saridakis, Self-gravitating spherically symmetric solutions in scalar-torsion theories, Phys. Rev. D 91, 104034 (2015), 10.1103/PhysRevD.91.104034] which leads to the wrong master equation. This follows that there is no wormhole-like solution for hyperbolic scalar potential and the solution at large distances differs from that of [G. Kofinas, E. Papantonopoulos, and E. N. Saridakis, Self-gravitating spherically symmetric solutions in scalar-torsion theories, Phys. Rev. D 91, 104034 (2015), 10.1103/PhysRevD.91.104034].

  7. Semidegenerate Self-Gravitating System of Fermion as Dark Matter on Galaxies i: Universality Laws

    NASA Astrophysics Data System (ADS)

    Fraga, Bernardo M. O.; Argüelles, Carlos; Ruffini, Remo; Siutsou, Ivan

    2015-01-01

    We present a unified model for galactic Dark Matter (DM) halos as well as galactic DM central cores (alternatively to the central Supermassive Black Hole scenario), based on systems of self-gravitating fermions at finite temperatures. This work will deal mainly with the halo part, leaving the core description to another part of this proceedings...

  8. Heavy nucleus-acoustic spherical solitons in self-gravitating super-dense plasmas

    NASA Astrophysics Data System (ADS)

    Mamun, A. A.; Amina, M.; Schlickeiser, R.

    2017-04-01

    Heavy nucleus-acoustic (HNA) spherical solitons (SSs) associated with HNA waves (in which the inertia is provided by the heavy and light nuclear species, and restoring force is provided by the degenerate pressure of electron species) in self-gravitating degenerate (super-dense) quantum plasmas have been theoretically investigated. The reductive perturbation method has been employed to derive a modified Korteweg-de Vries equation. The new basic features (e.g., polarity, amplitude, width, etc.) of the HNA SSs (associated with electrostatic and self-gravitational potentials) are identified, and are found to be significantly modified by the effects of ultra-relativistically degenerate electron pressure, dynamics of non-degenerate light and heavy nuclear species, self-gravitational field, and spherical geometry. It is found that depending on the plasma parameters, the HNA SSs with either positive (negative) or negative (positive) electrostatic (self-gravitational) potential exist in such realistic astrophysical plasma systems. The applications of our results in some astrophysical compact objects (containing heavy and light nuclear species, and degenerate electron species) are briefly discussed.

  9. Characteristics of the surface plasma wave in a self-gravitating magnetized dusty plasma slab

    SciTech Connect

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-11-15

    The dispersion properties of surface dust ion-acoustic waves in a self-gravitating magnetized dusty plasma slab are investigated. The dispersion relation is derived by using the low-frequency magnetized dusty dielectric function and the surface wave dispersion integral for the slab geometry. We find that the self-gravitating effect suppresses the frequency of surface dust ion-acoustic wave for the symmetric mode in the long wavelength regime, whereas it hardly changes the frequency for the anti-symmetric mode. As the slab thickness and the wave number increase, the surface wave frequency slowly decreases for the symmetric mode but increases significantly for the anti-symmetric mode. The influence of external magnetic field is also investigated in the case of symmetric mode. We find that the strength of the magnetic field enhances the frequency of the symmetric-mode of the surface plasma wave. The increase of magnetic field reduces the self-gravitational effect and thus the self-gravitating collapse may be suppressed and the stability of dusty objects in space is enhanced.

  10. On the Properties of the Geometry of Spacetime for Distributions of Self-Gravitating Extreme Matter

    NASA Astrophysics Data System (ADS)

    Krechet, V. G.; Oshurko, V. B.; Rodichev, S. V.

    2017-01-01

    Within the framework of the general theory of relativity, we investigate all possible astrophysical and geometrical effects induced by self-gravitating extreme matter in the form of ideal fluids with limiting and superlimiting equations of state or in the form of strongly nonlinear physical fields. Attention is directed to the possibility of the formation of wormholes and other unusual astrophysical objects.

  11. The role of disc self-gravity in circumbinary planet systems - I. Disc structure and evolution

    NASA Astrophysics Data System (ADS)

    Mutter, Matthew M.; Pierens, Arnaud; Nelson, Richard P.

    2017-03-01

    We present the results of two-dimensional hydrodynamic simulations of self-gravitating circumbinary discs around binaries whose parameters match those of the circumbinary planet-hosting systems Kepler-16, Kepler-34 and Kepler-35. Previous work has shown that non-self-gravitating discs in these systems form an eccentric precessing inner cavity due to tidal truncation by the binary, and planets which form at large radii migrate until stalling at this cavity. Whilst this scenario appears to provide a natural explanation for the observed orbital locations of the circumbinary planets, previous simulations have failed to match the observed planet orbital parameters. The aim of this work is to examine the role of self-gravity in modifying circumbinary disc structure as a function of disc mass, prior to considering the evolution of embedded circumbinary planets. In agreement with previous work, we find that for disc masses between one and five times the minimum mass solar nebula (MMSN), disc self-gravity affects modest changes in the structure and evolution of circumbinary discs. Increasing the disc mass to 10 or 20 MMSN leads to two dramatic changes in disc structure. First, the scale of the inner cavity shrinks substantially, bringing its outer edge closer to the binary. Secondly, in addition to the eccentric inner cavity, additional precessing eccentric ring-like features develop in the outer regions of the discs. If planet formation starts early in the disc lifetime, these changes will have a significant impact on the formation and evolution of planets and precursor material.

  12. Dynamical instabilities in disc-planet interactions

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai

    2012-03-01

    Protoplanetary discs may become dynamically unstable due to structure induced by an embedded giant planet. In this thesis, I discuss the stability of such systems and explore the consequence of instability on planetary migration. I begin with non-self-gravitating, low viscosity discs and show that giant planets induce shocks inside its co-orbital region, leading to a profile unstable to vortex formation around a potential vorticity minimum. This instability is commonly known as the vortex or Rossby wave instability. Vortex-planet interaction lead to episodic phases of migration, which can be understood in the framework of type III migration. I then examine the effect of disc self-gravity on gap stability. The linear theory of the Rossby wave instability is extended to include disc gravity, which shows that self-gravity is effective at stabilising the vortex instability at small azimuthal wavenumber. This is consistent with the observation that more vortices develop with increasing disc mass in hydrodynamic simulations. Vortices in self-gravitating discs also resist merging, and is most simply understood as pair-vortices undergoing mutual horsehoe turns upon encounter. I show that in sufficiently massive discs vortex modes are suppressed. Instead, global spiral instabilities develop which are associated with a potential vorticity maximum at the gap edge. These edge modes can be physically understood as a result of unstable interaction between the gap edge and the exterior disc through gravity. I show the spiral arms can provide a positive torque on the planet, leading to fast migration outwards. I confirm the above results, obtained from razor-thin disc models, persist in three-dimensions.

  13. Topography and self-gravitation interaction in elastic-gravitational modeling

    NASA Astrophysics Data System (ADS)

    Charco, M.; Luzón, F.; FernáNdez, J.; Tiampo, K. F.

    2007-01-01

    Changes in gravity due to volcanic loading of the crust are influenced by topography. We investigate the relative importance of topography and self-gravitation in the interpretation of gravity changes. It is shown that modeling of gravity changes can be more precise with the introduction of topographic relief, although it is neglected self-gravitation of the medium. This paper exploits this result by suggesting a mathematical simplification that could be useful in the future development of a numerical technique to accurately include topographic effects in the modeling of deformation and gravity changes. Finally, we perform an inversion of the gravity changes observed at Mayon volcano (Philippines) between December 1992 and December 1996 including topographic effects by varying the depth of the source. Failure to account for topographic influences can bias estimates of source parameters particularly when the lateral extension of the relief is of the same order of magnitude as the source depth.

  14. Rotating black hole surrounded by self-gravitating torus in the puncture framework

    SciTech Connect

    Shibata, Masaru

    2007-09-15

    We present a formulation for computing equilibria composed of a rotating black hole and a massive self-gravitating torus in general relativity. Such a system is a plausible outcome formed after stellar core collapse of massive and supermassive stars as well as after a merger of a black hole-neutron star binary. In our formulation, the black hole is modeled in the puncture framework. The numerical solutions for equilibria are computed for rapidly rotating black holes and for a wide range of mass ratio of the black hole and torus. The equilibria obtained in this paper can be used for studying nonaxisymmetric instabilities, runaway instability, and magnetorotational instability of a self-gravitating accretion torus around a rotating black hole in numerical relativity. We also remark that the relation among the area, mass, and spin of rotating black holes are slightly modified by the torus.

  15. Ergodicity in a two-dimensional self-gravitating many-body system

    NASA Astrophysics Data System (ADS)

    Silvestre, C. H.; Rocha Filho, T. M.

    2016-01-01

    We study the ergodic properties of a two-dimensional self-gravitating system using molecular dynamics simulations. We apply three different tests for ergodicity: a direct method comparing the time average of a particle momentum and position to the respective ensemble average, sojourn times statistics and the dynamical functional method. For comparison purposes they are also applied to a short-range interacting system and to the Hamiltonian mean-field model. Our results show that a two-dimensional self-gravitating system takes a very long time to establish ergodicity. If a Kac factor is used in the potential energy, such that the total energy is extensive, then this time is independent of particle number, and diverges with √{ N} without a Kac factor.

  16. Dynamics of self-gravitating dust clouds and the formation of planetesimals

    NASA Astrophysics Data System (ADS)

    Avinash, K.; Eliasson, B.; Shukla, P. K.

    2006-04-01

    Due to the gravitational force, clouds of dust and gas in the interstellar medium can contract and form stars and planet systems. Here we show that if the dust grains are electrically charged then the self-gravitation can be balanced by the “electrostatic pressure” and the collapse can be halted. In this case, the dust cloud may form soft dust planets, having the weight of a small moon or satellite, but a radius larger than of our Sun. There exist a critical mass beyond which the dust cloud collapses and forms a solid planet. We here present a simple model for the dynamics and equilibrium of self-gravitating dust clouds and apply the model to typical parameters for dust in molecular clouds and in the interstellar medium.

  17. Jeans instability of self gravitating partially ionized Hall plasma with radiative heat loss functions and porosity

    NASA Astrophysics Data System (ADS)

    Kaothekar, Sachin; Chhajlani, R. K.

    2013-06-01

    The Jeans instability of partially ionized self gravitating plasma is discussed to investigate the effect of the Hall current, radiative heat-loss function, thermal conductivity, collision frequency of neutrals, porosity, finite electrical resistivity and viscosity for the formation of stars in HI and HII regions. The standard Magnetohydrodynamics (MHD) set of equations is used for the present configuration with radiative heat-loss function and thermal conductivity. A general dispersion relation is obtained from perturbation equations using the normal mode analysis method. We find that the Jeans condition of self-gravitational instability is modified due to the presence of neutral particle, radiative heat-loss functions and thermal conductivity. Presence of Hall current, porosity and collision frequency have no effect on Jeans criterion.

  18. Effective geometry of the n=1 uniformly rotating self-gravitating polytrope

    SciTech Connect

    Bini, D.; Cherubini, C.; Filippi, S.; Geralico, A.

    2010-08-15

    The ''effective geometry'' formalism is used to study the perturbations of a perfect barotropic Newtonian self-gravitating rotating and compressible fluid coupled with gravitational backreaction. The case of a uniformly rotating polytrope with index n=1 is investigated, due to its analytical tractability. Special attention is devoted to the geometrical properties of the underlying background acoustic metric, focusing, in particular, on null geodesics as well as on the analog light cone structure.

  19. Modified Jeans instability in Lorentzian dusty self-gravitating plasmas with Lennard-Jones potential

    NASA Astrophysics Data System (ADS)

    Qian, Y. Z.; Chen, H.; Liu, S. Q.

    2014-11-01

    The Jeans instability in self-gravitating plasma with Kappa distributed dust grains is investigated basing on assumption that the mutual interaction among dust grains is governed by Lennard-Jones potential. It is shown that the presence of additional suprathermal particles has significant effects on the range of unstable modes and growth rate of Jeans instability. Compared with Maxwellian scenario, suprathermality stabilized the Jeans instability.

  20. Modified Jeans instability in Lorentzian dusty self-gravitating plasmas with Lennard-Jones potential

    SciTech Connect

    Qian, Y. Z. Chen, H. Liu, S. Q.

    2014-11-15

    The Jeans instability in self-gravitating plasma with Kappa distributed dust grains is investigated basing on assumption that the mutual interaction among dust grains is governed by Lennard-Jones potential. It is shown that the presence of additional suprathermal particles has significant effects on the range of unstable modes and growth rate of Jeans instability. Compared with Maxwellian scenario, suprathermality stabilized the Jeans instability.

  1. Long-range correlations in self-gravitating N-body systems

    NASA Astrophysics Data System (ADS)

    Huber, D.; Pfenniger, D.

    2002-04-01

    Observed self-gravitating systems reveal often fragmented, non-equilibrium structures that feature characteristic long-range correlations. However, models accounting for non-linear structure growth are not always consistent with observations and a better understanding of self-gravitating N-body systems appears necessary. Because unstable gravitating systems are sensitive to non-gravitational perturbations, we study the effect of different dissipative factors as well as different small and large scale boundary conditions on idealized N-body systems. We find, in the interval of negative specific heat, equilibrium properties differing from theoretical predictions made for gravo-thermal systems, substantiating the importance of microscopic physics and the lack of consistent theoretical tools to describe self-gravitating gas. Also, in the interval of negative specific heat, yet outside of equilibrium, unforced systems fragment and establish transient long-range correlations. The strength of these correlations depends on the degree of granularity, which shows that the mass and force resolution should be coherent. Finally, persistent correlations appear in model systems subject to an energy flow.

  2. Newtonian self-gravitating system in a relativistic huge void universe model

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ryusuke; Nakao, Ken-ichi; Yoo, Chul-Moon

    2016-12-01

    We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.

  3. Gaseous detonations

    SciTech Connect

    Nettleton, M.A.

    1987-01-01

    Focusing predominantly on safety problems in handling combustible gas or dust mixtures with air or oxygen, the book is a reference on gaseous detonations. Topics covered include: unidimensional models, structure of detonation fronts, and interaction of a detonation with confinement.

  4. Global gravito-electrostatic fluctuations in self-gravitating spherical non-uniform charged dust clouds

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Borah, B.

    2016-04-01

    We formulate exact non-local linear analysis for identification and characterization of the global collective gravito-electrostatic eigenmodes, discrete oscillations and associated instabilities in interstellar charged dust molecular cloud (DMC) sphere with mass-radius above the stability critical values on the astrophysical fluid scales of space and time. The realistic relevant zeroth-order effects, hitherto remaining unaccounted for, are concurrently included. It avoids using any kind of the Jeansian swindles against usual viewpoint. Armed with the modified Fourier plane-wave method, the dispersion relations (eigenvalues) and amplitude-variations (eigenfunctions) of the relevant perturbations about the inhomogenous equilibrium are procedurally derived and analyzed together with numerical illustrations. It is seen that the entire cloud supports spectrally heterogeneous mixture of the Jeans ( gravitational) and electrostatic ( acoustic) modes, coupled via quasi-linear discrete oscillations of mixed pattern. The lowest-order non-rigid diffused cloud surface boundary (CSB), sourced by active gravito-electrostatic interplay, is the most unstable interfacial plasma layer. Three distinct and spatio-spectrally isolated classes of global eigenmodes—dispersive, non-dispersive and hybrid types—are keyed together with idiosyncratic prolific features. Dispersive features are prominent in the ultra-high k-regime (acoustic) with modified form due to self-gravitational condensation of the Jeans modes; whereas, non-dispersive characteristics in the ultra-low k-regime (gravitational) dominated by the Jeans waves; where, k = 2π/ λ is the angular wave number of the fluctuations on the Jeans scale. We further demonstrate that the grain-charge (grain-mass) plays destabilizing (stabilizing) influential role for the electrostatic fluctuations, but stabilizing (destabilizing) role for the self-gravitational counterparts. The results can be useful to realize diverse complex global

  5. Dust acoustic double layers in a magnetized dusty self-gravitating plasma with superthermal particles

    NASA Astrophysics Data System (ADS)

    Sabetkar, Akbar; Dorranian, Davoud

    2016-08-01

    Our prime objective of this paper is to examine the parametric regimes for the existence and polarity of dust acoustic double layers (DADLs) and its solitary structures arising from a magnetized self-gravitating opposite polarity dust-plasma (OPDP) model. The constituents of the OPDP model are two species of positively and negatively charged dust grains, Maxwellian electrons and kappa distributed ions. Contributions of gravitational force only on dust grains are taken into account. For weakly nonlinear analysis, the multiple time scale technique has been used to construct the extended Korteweg-de Vries (E-KdV) and modified Korteweg-de Vries (M-KdV) equations. They pinpoint the evolution of DADLs and solitary structures associated with dust acoustic (DA) mode, respectively. The relevant configurational parameters in our study include the superthermality of ions (κ), obliqueness of propagation (θ), ion concentration (δi), static magnetic field B0 (via ω c p , ω c n ), and self-gravitational field (via γ), as well as the density (μ0), charge (α), and mass (β) ratio of positive to negative dust species. The proposed OPDP model permits positive and negative double layer polarities, while higher order nonlinear equation dictates us only positive polarity solitary structures. The main modification due to an increase in self-gravitational field (via γ) is an enhancement in the spatial width of double layers, yet leaving their amplitude, phase speed, and polarity practically unaffected. With enhanced superthermality and other intrinsic parameters in OPDP model, there is an opposite trend in both amplitude and width of double layers, while the amplitude and the width of solitary waves (via M-KdV equation) undergo the identical behaviors. In particular, the amplitude of solitary waves manifests monotonic behavior for permissible range of obliqueness θ, whereas this scenario is acceptable to only width of double layers. The results are discussed in the context of

  6. ANGULAR MOMENTUM TRANSFER AND LACK OF FRAGMENTATION IN SELF-GRAVITATING ACCRETION FLOWS

    SciTech Connect

    Begelman, Mitchell C.; Shlosman, Isaac E-mail: shlosman@pa.uky.edu

    2009-09-01

    Rapid inflows associated with early galaxy formation lead to the accumulation of self-gravitating gas in the centers of proto-galaxies. Such gas accumulations are prone to nonaxisymmetric instabilities, as in the well known Maclaurin sequence of rotating ellipsoids, which are accompanied by a catastrophic loss of angular momentum (J). Self-gravitating gas is also intuitively associated with star formation. However, recent simulations of the infall process display highly turbulent continuous flows. We propose that J-transfer, which enables the inflow, also suppresses fragmentation. Inefficient J loss by the gas leads to decay of turbulence, triggering global instabilities and renewed turbulence driving. Flow regulated in this way is stable against fragmentation, while staying close to the instability threshold for bar formation-thick self-gravitating disks are prone to global instabilities before they become unstable locally. On smaller scales, the fraction of gravitationally unstable matter swept up by shocks in such a flow is a small and decreasing function of the Mach number. We conclude counterintuitively that gas able to cool down to a small fraction of its virial temperature will not fragment as it collapses. This provides a venue for supermassive black holes to form via direct infall, without the intermediary stage of forming a star cluster. Some black holes could have formed or grown in massive halos at low redshifts. Thus the fragmentation is intimately related to J redistribution within the system: it is less dependent on the molecular/metal cooling but is conditioned by the ability of the flow to develop virial, supersonic turbulence.

  7. Energy landscape and phase transitions in the self-gravitating ring model.

    PubMed

    Nardini, Cesare; Casetti, Lapo

    2009-12-01

    We apply a recently proposed criterion for the existence of phase transitions, which is based on the properties of the saddles of the energy landscape, to a simplified model of a system with gravitational interactions referred to as the self-gravitating ring model. We show analytically that the criterion correctly singles out the phase transition between a homogeneous and a clustered phase and also suggests the presence of another phase transition not previously known. On the basis of the properties of the energy landscape we conjecture on the nature of the latter transition.

  8. Self-Gravitating System of Semidegenerated Fermions as Central Objects and Dark Matter Halos in Galaxies

    NASA Astrophysics Data System (ADS)

    Fraga, Bernardo M. O.; Argüelles, Carlos R.; Ruffini, Remo

    2013-01-01

    We propose a unified model for dark matter haloes and central galactic objects as a self-gravitating system of semidegenerated fermions in thermal equilibrium. We consider spherical symmetry and then we solve the equations of gravitational equilibrium using the Fermi integrals in a dimensionless manner, obtaining the density profile and velocity curve. We also obtain scaling laws for the observables of the system and show that, for a wide range of our parameters, our model is consistent with the so called universality of the surface density of dark matter.

  9. Entropy principle and complementary second law of thermodynamics for self-gravitating systems

    NASA Astrophysics Data System (ADS)

    He, Ping; Kang, Dong-Biao

    2010-08-01

    The statistical mechanics of isolated collisionless self-gravitating systems is a long-held puzzle, which has not been successfully resolved for nearly 50years. In this work, we employ a phenomenological entropy form of ideal gas, first proposed by White & Narayan, to revisit this issue. By calculating the first-order variation of the entropy, subject to the usual mass- and energy-conservation constraints, we obtain an entropy stationary equation. Incorporated with the Jeans equation, and by specifying some functional form for the anisotropy parameter β, we numerically solve the two equations, and demonstrate that the velocity anisotropy parameter plays an important role in attaining a density profile that is finite in mass, energy and spatial extent. If incorporated again with some empirical density profile from simulations, our theoretical predictions of the anisotropy parameter, and the radial pseudo-phase-space density ρ/σ3r in the outer non-gravitationally degenerate region of the dark matter halo, agree rather well with the simulation data, and the predictions are also acceptable in the middle weak-degenerate region of the dark halo. The disagreements occur just in the inner strong-degenerate region because of the neglect of gravitational degeneracy. As far as we know, our results may be the first theoretical predictions based on the entropy principle that can partially match the empirical data. The second-order variational calculus reveals the seemingly paradoxical but actually complementary consequence that the equilibrium state of self-gravitating systems is the global minimum entropy state for the whole system under long-range violent relaxation, but simultaneously the local maximum entropy state for every and any small part of the system under short-range two-body relaxation and Landau damping. This minimum-maximum entropy duality means that the standard second law of thermodynamics needs to be re-expressed or generalized for self-gravitating systems

  10. Super computers in astrophysics and High Performance simulations of self-gravitating systems

    NASA Astrophysics Data System (ADS)

    Capuzzo-Dolcetta, R.; Di Matteo, P.; Miocchi, P.

    The modern study of the dynamics of stellar systems requires the use of high-performance computers. Indeed, an accurate modelization of the structure and evolution of self-gravitating systems like planetary systems, open clusters, globular clusters and galaxies imply the evaluation of body-body interaction over the whole size of the structure, a task that is computationally very expensive, in particular when it is performed over long intervals of time. In this report we give a concise overview of the main problems of stellar systems simulations and present some exciting results we obtained about the interaction of globular clusters with the parent galaxy.

  11. General Relativity Without General Relativity: Self-Gravitating Systems and Effective Geometries

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Cherubini, Christian; Filippi, Simonetta; Geralico, Andrea

    Perturbations of Newtonian self-gravitating barotropic perfect fluid systems can be studied via an extension of the "effective geometry" formalism. The case of polytropic spherical stars described by the Lane-Emden equation has been studied in the past in the known cases of existing explicit solutions relevant for both stellar and galactic dynamics. Applications of the formalism in the case of rotating configurations found via William's "matching method" and possible generalizations are here discussed. The present formulation represents another natural scenario, in addition with the usual one of quantum condensates in laboratories, in which the acoustic analogy has physical relevance.

  12. The instability of viscous self-gravitating protostellar disk affected by density bump

    NASA Astrophysics Data System (ADS)

    Elyasi, Mahjubeh; Nejad-Asghar, Mohsen

    2017-09-01

    In this work, we study the instability of viscous self-gravitating protostellar disk affected by infalling Low-mass condensations (LMCs) from the envelope of collapsing molecular cloud cores. The infalling low-mass-condensations (LMCs) are considered as density bumps through the nearly Keplerian viscous accretion disk, and their evolutions are analyzed by using the linear perturbation approximation. We investigate occurrence of instability in the evolution of these density bumps. We find the unstable regions of the bumped accretion disk and evaluate the growth time scale (GTS) of the instability. We also study the radial accretion and azimuthal rotation in these unstable regions. The results show that the GTS will be minimum at a special radius so that the unstable regions can be divided in two parts (inner and outer regions). The perturbed radial and azimuthal velocities in the inner unstable regions are strengthened, while in the outer unstable regions are weakened. Decreasing the radial and azimuthal velocities in the outer unstable regions may lead to coagulation of matters. This effect can help the fragmentation of the disk and formation of the self-gravitating bound objects.

  13. Shock structures in a strongly coupled self-gravitating opposite-polarity dust plasma

    SciTech Connect

    Mamun, A. A.; Schlickeiser, R.

    2016-03-15

    A strongly coupled, self-gravitating, opposite-polarity dust plasma (containing strongly coupled inertial positive and negative dust fluids, and inertialess weakly coupled ions) is considered. The generalized hydrodynamic model and the reductive perturbation method are employed to examine the possibility for the formation of the dust-acoustic (DA) shock structures in such an opposite-polarity dust plasma. It has been shown that the strong correlation among charged dust is a source of dissipation and is responsible for the formation of the DA shock structures in such the opposite-polarity dust plasma medium. The parametric regimes for the existence of the DA shock structures (associated with electrostatic and gravitational potentials) and their basic properties (viz., polarity, amplitude, width, and speed) are found to be significantly modified by the combined effects of positively charged dust component, self-gravitational field, and strong correlation among charged dust. The implications of our results in different space plasma environments and laboratory plasma devices are briefly discussed.

  14. Approximations for the free evolution of self-gravitating quantum particles

    NASA Astrophysics Data System (ADS)

    Großardt, André

    2016-08-01

    The evolution of the center-of-mass wave function for a mesoscopic particle according to the Schrödinger-Newton equation can be approximated by a harmonic potential if the wave function is narrow compared to the size of the mesoscopic particle. It was noticed by Colin et al. [Phys. Rev. A 93, 062102 (2016).], 10.1103/PhysRevA.93.062102 that, in the regime where self-gravitational effects are weak, intermediate and wider wave functions may be approximated by a harmonic potential as well but with a width-dependent coupling, leading to a time evolution that is determined only by a differential equation for the width of a Gaussian wave function as a single parameter. Such an approximation results in considerably less computational effort in order to predict the self-gravitational effects on the wave-function dynamics. Here, we provide an alternative approach to this kind of approximation, including a rigorous derivation of the equations of motion for an initially Gaussian wave packet under the assumption that its shape is conserved. Our result deviates to some degree from the result by Colin et al. [Phys. Rev. A 93, 062102 (2016).], 10.1103/PhysRevA.93.062102, specifically in the limit of wide wave functions.

  15. Vortices and spirals at gap edges in 3D self-gravitating disk-planet simulations

    NASA Astrophysics Data System (ADS)

    Lin, M.

    2012-12-01

    Numerical simulations of global 3D self-gravitating protoplanetary disks with a gap opened by an embedded planet are presented. The simulations are customised to examine planetary gap stability. Previous results, obtained by Lin & Papaloizou from 2D disk models, are reproduced in 3D. These include (i) the development of vortices associated with local potential vorticity minima at gap edges and their merging on dynamical timescales in weakly self-gravitating disks, (ii) the increased number of vortices as the strength of self-gravity is increased and their resisted merging, and (iii) suppression of the vortex instability and development of global spiral arms associated with local potential vorticity maxima in massive disks. The vertical structure of these disturbances are examined. In terms of the relative density perturbation, the vortex disturbance has weak vertical dependence when self-gravity is neglected. Vortices become more stratified with increasing self-gravity. This effect is seen even when the unperturbed region around the planet's orbital radius has a Toomre stability parameter ~ 10. The spiral modes display significant vertical structure at the gap edge, with the midplane density enhancement being several times larger than that near the upper disk boundary. However, for both instabilities the vertical Mach number is small, and on average vertical motions near the gap edge do not dominate over horizontal motions.

  16. Analytic self-gravitating Skyrmions, cosmological bounces and AdS wormholes

    NASA Astrophysics Data System (ADS)

    Ayón-Beato, Eloy; Canfora, Fabrizio; Zanelli, Jorge

    2016-01-01

    We present a self-gravitating, analytic and globally regular Skyrmion solution of the Einstein-Skyrme system with winding number w = ± 1, in presence of a cosmological constant. The static spacetime metric is the direct product R ×S3 and the Skyrmion is the self-gravitating generalization of the static hedgehog solution of Manton and Ruback with unit topological charge. This solution can be promoted to a dynamical one in which the spacetime is a cosmology of the Bianchi type-IX with time-dependent scale and squashing coefficients. Remarkably, the Skyrme equations are still identically satisfied for all values of these parameters. Thus, the complete set of field equations for the Einstein-Skyrme-Λ system in the topological sector reduces to a pair of coupled, autonomous, nonlinear differential equations for the scale factor and a squashing coefficient. These equations admit analytic bouncing cosmological solutions in which the universe contracts to a minimum non-vanishing size, and then expands. A non-trivial byproduct of this solution is that a minor modification of the construction gives rise to a family of stationary, regular configurations in General Relativity with negative cosmological constant supported by an SU (2) nonlinear sigma model. These solutions represent traversable AdS wormholes with NUT parameter in which the only "exotic matter" required for their construction is a negative cosmological constant.

  17. Self-gravitating Magnetically Supported Protostellar Disks and the Formation of Substellar Companions

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yun

    2002-08-01

    Isolated low-mass stars are formed, in the standard picture, from the collapse of dense cores condensed out of strongly magnetized molecular clouds. The dynamically collapsing inflow traps nearly half of the critical magnetic flux needed for the core support and deposits it in a small region surrounding the protostar. It has been argued previously that the deposited flux can slow down the inflow, allowing matter to pile up and settle along field lines into a magnetically supported, circumstellar disk. Here we show that the disk typically contains ~10% of the stellar mass and that it could become self-gravitating under plausible conditions during the rapidly accreting, ``Class 0'' phase of star formation. Subsequent fragmentation of the self-gravitating, magnetically subcritical disk, driven by magnetic diffusion, could produce fragments of substellar masses, which collapse to form brown dwarfs and possibly massive planets. This scenario predicts substellar object formation at distances of order 100 AU from the central star, although orbital evolution is possible after formation. It may provide an explanation for the small, but growing, number of brown dwarf companions found around nearby stars by direct imaging. The relatively large formation distances make the substellar companions vulnerable to dynamic ejection, particularly in binary (multiple) systems and dense clusters. Those ejected may account for, at least in part, the isolated brown dwarfs and perhaps free-floating planetary mass objects.

  18. Geometry of the energy landscape of the self-gravitating ring.

    PubMed

    Monechi, Bernardo; Casetti, Lapo

    2012-10-01

    We study the global geometry of the energy landscape of a simple model of a self-gravitating system, the self-gravitating ring (SGR). This is done by endowing the configuration space with a metric such that the dynamical trajectories are identified with geodesics. The average curvature and curvature fluctuations of the energy landscape are computed by means of Monte Carlo simulations and, when possible, of a mean-field method, showing that these global geometric quantities provide a clear geometric characterization of the collapse phase transition occurring in the SGR as the transition from a flat landscape at high energies to a landscape with mainly positive but fluctuating curvature in the collapsed phase. Moreover, curvature fluctuations show a maximum in correspondence with the energy of a possible further transition, occurring at lower energies than the collapsed one, whose existence had been previously conjectured on the basis of a local analysis of the energy landscape and whose effect on the usual thermodynamic quantities, if any, is extremely weak. We also estimate the largest Lyapunov exponent λ of the SGR using the geometric observables. The geometric estimate always gives the correct order of magnitude of λ and is also quantitatively correct at small energy densities and, in the limit N→∞, in the whole homogeneous phase.

  19. A computer software system for the generation of global ocean tides including self-gravitation and crustal loading effects

    NASA Technical Reports Server (NTRS)

    Estes, R. H.

    1977-01-01

    A computer software system is described which computes global numerical solutions of the integro-differential Laplace tidal equations, including dissipation terms and ocean loading and self-gravitation effects, for arbitrary diurnal and semidiurnal tidal constituents. The integration algorithm features a successive approximation scheme for the integro-differential system, with time stepping forward differences in the time variable and central differences in spatial variables. Solutions for M2, S2, N2, K2, K1, O1, P1 tidal constituents neglecting the effects of ocean loading and self-gravitation and a converged M2, solution including ocean loading and self-gravitation effects are presented in the form of cotidal and corange maps.

  20. Equilibrium statistical mechanics for self-gravitating systems: local ergodicity and extended Boltzmann-Gibbs/White-Narayan statistics

    NASA Astrophysics Data System (ADS)

    He, Ping

    2012-01-01

    The long-standing puzzle surrounding the statistical mechanics of self-gravitating systems has not yet been solved successfully. We formulate a systematic theoretical framework of entropy-based statistical mechanics for spherically symmetric collisionless self-gravitating systems. We use an approach that is very different from that of the conventional statistical mechanics of short-range interaction systems. We demonstrate that the equilibrium states of self-gravitating systems consist of both mechanical and statistical equilibria, with the former characterized by a series of velocity-moment equations and the latter by statistical equilibrium equations, which should be derived from the entropy principle. The velocity-moment equations of all orders are derived from the steady-state collisionless Boltzmann equation. We point out that the ergodicity is invalid for the whole self-gravitating system, but it can be re-established locally. Based on the local ergodicity, using Fermi-Dirac-like statistics, with the non-degenerate condition and the spatial independence of the local microstates, we rederive the Boltzmann-Gibbs entropy. This is consistent with the validity of the collisionless Boltzmann equation, and should be the correct entropy form for collisionless self-gravitating systems. Apart from the usual constraints of mass and energy conservation, we demonstrate that the series of moment or virialization equations must be included as additional constraints on the entropy functional when performing the variational calculus; this is an extension to the original prescription by White & Narayan. Any possible velocity distribution can be produced by the statistical-mechanical approach that we have developed with the extended Boltzmann-Gibbs/White-Narayan statistics. Finally, we discuss the questions of negative specific heat and ensemble inequivalence for self-gravitating systems.

  1. Long-term evolution of stellar self-gravitating systems away from thermal equilibrium: connection with nonextensive statistics.

    PubMed

    Taruya, Atsushi; Sakagami, Masa-aki

    2003-05-09

    With particular attention to the recently postulated introduction of a nonextensive generalization of Boltzmann-Gibbs statistics, we study the long-term stellar dynamical evolution of self-gravitating systems on time scales much longer than the two-body relaxation time. In a self-gravitating N-body system confined in an adiabatic wall, we show that the quasiequilibrium sequence arising from the Tsallis entropy, so-called stellar polytropes, plays an important role in characterizing the transient states away from the Boltzmann-Gibbs equilibrium state.

  2. Statistical thermodynamics for a self-gravitating fluid of rotating particles

    SciTech Connect

    Escamilla, L.; Torres-Arenas, J.; Benavides, A. L.

    2013-07-23

    Systems with long-range interactions (those which decay at large distances as r{sup -l}, with l≥d, where d is the dimensionality of the considered space), like gravitational or charged ones, present difficulties when treated by conventional statistical mechanics perturbation methods. In this work a self-gravitating fluid of rotating spherical particles is considered. The corresponding inter-particle potential model is a long-ranged one and was obtained from the application of the Newtonian limit to the Kerr metric. This potential has been expressed as a finite sum of hard-core Yukawa potentials. This new potential mimics the original long-ranged one and can be treated with conventional statistical mechanics methods. The first-order mean spherical approximation is applied to this potential to obtain the thermodynamic response functions.

  3. General proof of the entropy principle for self-gravitating fluid in f ( R) gravity

    NASA Astrophysics Data System (ADS)

    Fang, Xiongjun; Guo, Minyong; Jing, Jiliang

    2016-08-01

    The discussions on the connection between gravity and thermodynamics attract much attention recently. We consider a static self-gravitating perfect fluid system in f ( R) gravity, which is an important theory could explain the accelerated expansion of the universe. We first show that the Tolman-Oppenheimer-Volkoff equation of f ( R) theories can be obtained by thermodynamical method in spherical symmetric spacetime. Then we prove that the maximum entropy principle is also valid for f ( R) gravity in general static spacetimes beyond spherical symmetry. The result shows that if the constraint equation is satisfied and the temperature of fluid obeys Tolmans law, the extrema of total entropy implies other components of gravitational equations. Conversely, if f ( R) gravitational equation hold, the total entropy of the fluid should be extremum. Our work suggests a general and solid connection between f ( R) gravity and thermodynamics.

  4. Density fluctuation dynamics in a dissipative self-gravitating dilute gas revisited

    NASA Astrophysics Data System (ADS)

    Méndez, A. R.; García-Perciante, A. L.

    2016-11-01

    The analysis of the behavior of density fluctuations in a dissipative self gravitating gas in the linear regime is revisited. A factorization for the dispersion relation given by approximate roots is proposed, which is analogous to the one introduced in the case without gravitational field. The threshold for the onset of a gravitational instability, namely Jeans wavenumber, is found to be unaltered by the presence of thermal and viscous dissipation. However, the behavior of damped modes does not correspond to the usual Rayleigh-Brillouin spectrum when the gravitational field is taken into account. Additional to the usual central Rayleigh peak and Brillouin doublet, both corrected due to the presence of the field, non-Lorentizan terms are included in the structure factor. These terms are larger in the presence of the gravitational field and may lead in principle to relevant differences in the general properties of the spectrum. The possible mathematical origin of these modifications is briefly discussed.

  5. Collisionless relaxation of self-gravitating systems with spherically symmetric dynamics

    NASA Astrophysics Data System (ADS)

    Ziegler, Harald J.; Wiechen, Heinz

    1990-10-01

    A recent theory of the collisionless relaxation of self-gravitating matter is applied to systems with spherically symmetric dynamics. Therefore consideration is given to additional constants of motion of the exact dynamics, which arise from the given symmetry, i.e. conservation of phase-space density and conservation of single particle angular momentum of the exact dynamics as well as total energy conservation and the mixing character of collisionless relaxation are considered. The strength of the relaxation process is governed by the amount of nonequilibrium energy of a given initial state. As can be expected by heuristic arguments the resulting final equilibrium states on macroscopic scales show a stronger dependence on the initial states compared with systems having an arbitrarily (more violent) dynamical evolution.

  6. The production of turbulence by gravitational instabilities in self-gravitating differentially rotating disks

    NASA Astrophysics Data System (ADS)

    Ebert, R.

    1994-06-01

    Interstellar molecular clouds can collapse under their selfgravity. As numerical calculations have shown, the process of collapse mostly leads to differentially rotating self-gravitating disks without any central condensation. Our calculation shows that these disks are mostly gravitational unstable and can build up turbulent motion by these instabilities. From the conditions of gravitational instabilities we calculate the dispersion relation and determine the most unstable wavelength. The mean turbulent velocity and the mixing length are calculated from these wavelengths. Turbulent viscosity which results from the turbulent motion determine the angular momentum transportation out of the disk and therefore the time scale of mass concentration of the whole disk. The source of turbulent energy in this case is the gravitational energy in the rotating disk.

  7. Nada: A new code for studying self-gravitating tori around black holes

    SciTech Connect

    Montero, Pedro J.; Font, Jose A.; Shibata, Masaru

    2008-09-15

    We present a new two-dimensional numerical code called Nada designed to solve the full Einstein equations coupled to the general relativistic hydrodynamics equations. The code is mainly intended for studies of self-gravitating accretion disks (or tori) around black holes, although it is also suitable for regular spacetimes. Concerning technical aspects the Einstein equations are formulated and solved in the code using a formulation of the standard 3+1 Arnowitt-Deser-Misner canonical formalism system, the so-called Baumgarte-Shapiro Shibata-Nakamura approach. A key feature of the code is that derivative terms in the spacetime evolution equations are computed using a fourth-order centered finite difference approximation in conjunction with the Cartoon method to impose the axisymmetry condition under Cartesian coordinates (the choice in Nada), and the puncture/moving puncture approach to carry out black hole evolutions. Correspondingly, the general relativistic hydrodynamics equations are written in flux-conservative form and solved with high-resolution, shock-capturing schemes. We perform and discuss a number of tests to assess the accuracy and expected convergence of the code, namely, (single) black hole evolutions, shock tubes, and evolutions of both spherical and rotating relativistic stars in equilibrium, the gravitational collapse of a spherical relativistic star leading to the formation of a black hole. In addition, paving the way for specific applications of the code, we also present results from fully general relativistic numerical simulations of a system formed by a black hole surrounded by a self-gravitating torus in equilibrium.

  8. Instability of a uniformly collapsing cloud of classical and quantum self-gravitating Brownian particles.

    PubMed

    Chavanis, Pierre-Henri

    2011-09-01

    We study the growth of perturbations in a uniformly collapsing cloud of self-gravitating Brownian particles. This problem shares analogies with the formation of large-scale structures in a universe experiencing a "big-crunch" or with the formation of stars in a molecular cloud experiencing gravitational collapse. Starting from the barotropic Smoluchowski-Poisson system, we derive a new equation describing the evolution of the density contrast in the comoving (collapsing) frame. This equation can serve as a prototype to study the process of self-organization in complex media with structureless initial conditions. We solve this equation analytically in the linear regime and compare the results with those obtained by using the "Jeans swindle" in a static medium. The stability criteria, as well as the laws for the time evolution of the perturbations, differ. The Jeans criterion is expressed in terms of a critical wavelength λ(J) while our criterion is expressed in terms of a critical polytropic index γ(4/3). In a static background, the system is stable for λ<λ(J) and unstable for λ>λ(J). In a collapsing cloud, the system is stable for γ>γ(4/3) and unstable for γ<γ(4/3). If γ=γ(4/3), it is stable for λ<λ(J) and unstable for λ>λ(J). We also study the fragmentation process in the nonlinear regime. We determine the growth of the skewness, the long-wavelength tail of the power spectrum and find a self-similar solution to the nonlinear equations valid for large times. Finally, we consider dissipative self-gravitating Bose-Einstein condensates with short-range interactions and show that, in a strong friction limit, the dissipative Gross-Pitaevskii-Poisson system is equivalent to the quantum barotropic Smoluchowski-Poisson system. This yields new types of nonlinear mean-field Fokker-Planck equations, including quantum effects.

  9. Postglacial isostatic adjustment in a self-gravitating spherical earth with power-law rheology

    NASA Astrophysics Data System (ADS)

    Wu, Patrick; Wang, Hansheng

    2008-10-01

    Since microphysics cannot say definitively whether the rheology of the mantle is linear or non-linear, the aim of this paper is to constrain mantle rheology from observations related to the glacial isostatic adjustment (GIA) process—namely relative sea-levels (RSLs), land uplift rate from GPS and gravity-rate-of-change from GRACE. We consider three earth model types that can have power-law rheology ( n = 3 or 4) in the upper mantle, the lower mantle or throughout the mantle. For each model type, a range of A parameter in the creep law will be explored and the predicted GIA responses will be compared to the observations to see which value of A has the potential to explain all the data simultaneously. The coupled Laplace finite-element (CLFE) method is used to calculate the response of a 3D spherical self-gravitating viscoelastic Earth to forcing by the ICE-4G ice history model with ocean loads in self-gravitating oceans. Results show that ice thickness in Laurentide needs to increase significantly or delayed by 2 ka, otherwise the predicted uplift rate, gravity rate-of-change and the amplitude of the RSL for sites inside the ice margin of Laurentide are too low to be able to explain the observations. However, the ice thickness elsewhere outside Laurentide needs to be slightly modified in order to explain the global RSL data outside Laurentide. If the ice model is modified in this way, then the results of this paper indicate that models with power-law rheology in the lower mantle (with A ˜ 10 -35 Pa -3 s -1 for n = 3) have the highest potential to simultaneously explain all the observed RSL, uplift rate and gravity rate-of-change data than the other model types.

  10. Nada: A new code for studying self-gravitating tori around black holes

    NASA Astrophysics Data System (ADS)

    Montero, Pedro J.; Font, José A.; Shibata, Masaru

    2008-09-01

    We present a new two-dimensional numerical code called Nada designed to solve the full Einstein equations coupled to the general relativistic hydrodynamics equations. The code is mainly intended for studies of self-gravitating accretion disks (or tori) around black holes, although it is also suitable for regular spacetimes. Concerning technical aspects the Einstein equations are formulated and solved in the code using a formulation of the standard 3+1 Arnowitt-Deser-Misner canonical formalism system, the so-called Baumgarte-Shapiro Shibata-Nakamura approach. A key feature of the code is that derivative terms in the spacetime evolution equations are computed using a fourth-order centered finite difference approximation in conjunction with the Cartoon method to impose the axisymmetry condition under Cartesian coordinates (the choice in Nada), and the puncture/moving puncture approach to carry out black hole evolutions. Correspondingly, the general relativistic hydrodynamics equations are written in flux-conservative form and solved with high-resolution, shock-capturing schemes. We perform and discuss a number of tests to assess the accuracy and expected convergence of the code, namely, (single) black hole evolutions, shock tubes, and evolutions of both spherical and rotating relativistic stars in equilibrium, the gravitational collapse of a spherical relativistic star leading to the formation of a black hole. In addition, paving the way for specific applications of the code, we also present results from fully general relativistic numerical simulations of a system formed by a black hole surrounded by a self-gravitating torus in equilibrium.

  11. Secular resonant dressed orbital diffusion - I. Method and WKB limit for tepid discs

    NASA Astrophysics Data System (ADS)

    Fouvry, Jean-Baptiste; Pichon, Christophe; Prunet, Simon

    2015-05-01

    The equation describing the secular diffusion of a self-gravitating collisionless system induced by an exterior perturbation is derived while assuming that the time-scale corresponding to secular evolution is much larger than that corresponding to the natural frequencies of the system. Its two-dimensional formulation for a tepid galactic disc is also derived using the epicyclic approximation. Its Wentzel-Kramers-Brillouin (WKB) limit is found while assuming that only tightly wound transient spirals are sustained by the disc. It yields a simple quadrature for the diffusion coefficients which provides a straightforward understanding of the loci of maximal diffusion within the disc.

  12. Numerical simulation code for self-gravitating Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Madarassy, Enikő J. M.; Toth, Viktor T.

    2013-04-01

    We completed the development of simulation code that is designed to study the behavior of a conjectured dark matter galactic halo that is in the form of a Bose-Einstein Condensate (BEC). The BEC is described by the Gross-Pitaevskii equation, which can be solved numerically using the Crank-Nicholson method. The gravitational potential, in turn, is described by Poisson’s equation, that can be solved using the relaxation method. Our code combines these two methods to study the time evolution of a self-gravitating BEC. The inefficiency of the relaxation method is balanced by the fact that in subsequent time iterations, previously computed values of the gravitational field serve as very good initial estimates. The code is robust (as evidenced by its stability on coarse grids) and efficient enough to simulate the evolution of a system over the course of 109 years using a finer (100×100×100) spatial grid, in less than a day of processor time on a contemporary desktop computer. Catalogue identifier: AEOR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5248 No. of bytes in distributed program, including test data, etc.: 715402 Distribution format: tar.gz Programming language: C++ or FORTRAN. Computer: PCs or workstations. Operating system: Linux or Windows. Classification: 1.5. Nature of problem: Simulation of a self-gravitating Bose-Einstein condensate by simultaneous solution of the Gross-Pitaevskii and Poisson equations in three dimensions. Solution method: The Gross-Pitaevskii equation is solved numerically using the Crank-Nicholson method; Poisson’s equation is solved using the relaxation method. The time evolution of the system is governed by the Gross-Pitaevskii equation; the solution of Poisson

  13. Instability of a uniformly collapsing cloud of classical and quantum self-gravitating Brownian particles

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2011-03-01

    We study the growth of perturbations in a uniformly collapsing cloud of self-gravitating Brownian particles. This problem shares analogies with the formation of large-scale structures in a universe experiencing a “big-crunch” or with the formation of stars in a molecular cloud experiencing gravitational collapse. Starting from the barotropic Smoluchowski-Poisson system, we derive a new equation describing the evolution of the density contrast in the comoving (collapsing) frame. This equation can serve as a prototype to study the process of self-organization in complex media with structureless initial conditions. We solve this equation analytically in the linear regime and compare the results with those obtained by using the “Jeans swindle” in a static medium. The stability criteria, as well as the laws for the time evolution of the perturbations, differ. The Jeans criterion is expressed in terms of a critical wavelength λJ while our criterion is expressed in terms of a critical polytropic index γ4/3. In a static background, the system is stable for λ<λJ and unstable for λ>λJ. In a collapsing cloud, the system is stable for γ>γ4/3 and unstable for γ<γ4/3. If γ=γ4/3, it is stable for λ<λJ and unstable for λ>λJ. We also study the fragmentation process in the nonlinear regime. We determine the growth of the skewness, the long-wavelength tail of the power spectrum and find a self-similar solution to the nonlinear equations valid for large times. Finally, we consider dissipative self-gravitating Bose-Einstein condensates with short-range interactions and show that, in a strong friction limit, the dissipative Gross-Pitaevskii-Poisson system is equivalent to the quantum barotropic Smoluchowski-Poisson system. This yields new types of nonlinear mean-field Fokker-Planck equations, including quantum effects.

  14. Observational Diagnostics of Self-gravitating MHD Turbulence in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Burkhart, Blakesley; Collins, David C.; Lazarian, Alex

    2015-07-01

    We study the observable signatures of self-gravitating magnetohydrodynamics (MHD) turbulence by applying the probability density functions (PDFs) and the spatial density power spectrum to synthetic column density maps. We find that there exists three characterizable stages of the evolution of the collapsing cloud which we term “early,” “intermediate,” and “advanced.” At early times, i.e., t\\lt 0.15{t}{ff}, the column density has a power spectral slope similar to nongravitating supersonic turbulence and a lognormal distribution. At an intermediate stage, i.e., 0.15{t}{ff}\\lt t≤slant 0.35{t}{ff}, there exist signatures of the first cores in the shallower PDF and power spectrum power-law slopes. The column density PDF power-law tails at these times have line of sight averaged slopes ranging from -2.5 to -1.5 with shallower values belonging to simulations with lower magnetic field strength. The density power spectrum slope becomes shallow and can be characterized by P(k)={A}1{k}{β 2}{e}-k/{kc}, where A1 describes the amplitude, {k}{β 2} describes the classical power-law behavior, and the scale kc characterizes the turn over from turbulence dominated to self-gravity dominated. At advanced stages of collapse, i.e., ≈ t\\gt 0.35{t}{ff}, the power spectral slope is positive valued, and a dramatic increase is observed in the PDF moments and the Tsallis incremental PDF parameters, which gives rise to deviations between PDF-sonic Mach number relations. Finally, we show that the imprint of gravity on the density power spectrum can be replicated in non-gravitating turbulence by introducing a delta-function with amplitude equivalent to the maximum valued point in a given self-gravitating map. We find that the turbulence power spectrum restored through spatial filtering of the high density material.

  15. The Structure and Stability of Selected, 2-D Self-Gravitating Systems

    NASA Astrophysics Data System (ADS)

    Andalib, Saied W.

    1998-12-01

    Models of radially and vertically extended self-gravitating disks orbiting around a central point mass are relevant to the dynamics of astrophysical systems and are thought to be common in many galaxies. The gravity driven instabilities in these accretion disks are now believed to be a possible mechanism for star formation via disk fragmentation (Shu, Adams, & Lizano 1987, Adams, Rudin & Shu 1989; Christodoulou 1995). We quantify these regions of instability using a simple toroidal model of an accretion disk. We choose the two-dimensional axisymmetric, incompressible slender disks to examine and map out these principal modes of gravity driven instabilities. Through stability analyses and numerical simulations we have found that only the gravity driven 'intermediate' modes (see Goodman and Narayan 1988) are important in all self-gravitating accretion disks with small or moderate axis ratios. The P-mode instability found by Papalaizou and Pringle (1983) is unlikely to play a role in the dynamics of realistic disk systems. Next, we extend the existing numerical methods for constructing equilibrium structures to include nonaxisymmetric systems. We have developed a new computational technique to obtain two-dimensional, nonaxisymmetric, compressible systems with nontrivial internal motions. We have constructed two types of two-dimensional configurations: infinite cylinders and infinitesimally thin disks. The infinite cylinders have been primarily restricted to elliptic-like boundaries but the disks have exhibited much more flexibility in their geometries. At smaller axis ratios, they become dumbbells or loosely coupled binaries. The topology and dynamics of the flow is governed by the presence of vortices and stagnation points. In our simulation it is shown that there are equilibrium configurations that can only exist in the presence of internal differential motions and not in uniformly rotating models. This indicates that in general, the equilibrium structures of these

  16. Generation of inclined protoplanetary discs and misaligned planets through mass accretion - I. Coplanar secondary discs

    NASA Astrophysics Data System (ADS)

    Xiang-Gruess, M.; Kroupa, P.

    2017-10-01

    We study the three-dimensional (3D) evolution of a viscous protoplanetary disc that accretes gas material from a second protoplanetary disc during a close encounter in an embedded star cluster. The aim is to investigate the capability of the mass accretion scenario to generate strongly inclined gaseous discs that could later form misaligned planets. We use smoothed particle hydrodynamics to study mass transfer and disc inclination for passing stars and circumstellar discs with different masses. We explore different orbital configurations to find the parameter space that allows significant disc inclination generation. Thies et al. suggested that significant disc inclination and disc or planetary system shrinkage can generally be produced by the accretion of external gas material with a different angular momentum. We found that this condition can be fulfilled for a large range of gas mass and angular momentum. For all encounters, mass accretion from the secondary disc increases with decreasing mass of the secondary proto-star. Thus, higher disc inclinations can be attained for lower secondary stellar masses. Variations of the secondary disc's orientation relative to the orbital plane can alter the disc evolution significantly. The results taken together show that mass accretion can change the 3D disc orientation significantly resulting in strongly inclined discs. In combination with the gravitational interaction between the two star-disc systems, this scenario is relevant for explaining the formation of highly inclined discs that could later form misaligned planets.

  17. On the Motion of a Self-Gravitating Incompressible Fluid with Free Boundary

    NASA Astrophysics Data System (ADS)

    Bieri, Lydia; Miao, Shuang; Shahshahani, Sohrab; Wu, Sijue

    2017-10-01

    We consider the motion of the interface separating a vacuum from an inviscid, incompressible, and irrotational fluid, subject to the self-gravitational force and neglecting surface tension, in two space dimensions. The fluid motion is described by the Euler-Poisson system in moving bounded simply-connected domains. A family of equilibrium solutions of the system are the perfect balls moving at constant velocity. We show that for smooth data that are small perturbations of size {ɛ} of these static states, measured in appropriate Sobolev spaces, the solution exists and the perturbation remains of size {ɛ} on a time interval of length at least {cɛ^{-2},} where c is a constant independent of {ɛ.} This should be compared with the lifespan {O(ɛ^{-1})} provided by local well-posedness. The key ingredient of our proof is finding a two-step nonlinear transformation which removes quadratic terms from the nonlinearity. Compared with the gravity water wave problem, besides the different geometry of the bounded moving domain, an important difference is that the gravity in water waves is a constant vector, while the self-gravity in the Euler-Poisson system depends nonlinearly on the interface.

  18. A mixed method Poisson solver for three-dimensional self-gravitating astrophysical fluid dynamical systems

    NASA Technical Reports Server (NTRS)

    Duncan, Comer; Jones, Jim

    1993-01-01

    A key ingredient in the simulation of self-gravitating astrophysical fluid dynamical systems is the gravitational potential and its gradient. This paper focuses on the development of a mixed method multigrid solver of the Poisson equation formulated so that both the potential and the Cartesian components of its gradient are self-consistently and accurately generated. The method achieves this goal by formulating the problem as a system of four equations for the gravitational potential and the three Cartesian components of the gradient and solves them using a distributed relaxation technique combined with conventional full multigrid V-cycles. The method is described, some tests are presented, and the accuracy of the method is assessed. We also describe how the method has been incorporated into our three-dimensional hydrodynamics code and give an example of an application to the collision of two stars. We end with some remarks about the future developments of the method and some of the applications in which it will be used in astrophysics.

  19. Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars

    NASA Astrophysics Data System (ADS)

    Freire, Paulo C. C.; Kramer, Michael; Wex, Norbert

    2012-09-01

    In this paper, we review tests of the strong equivalence principle (SEP) derived from pulsar-white dwarf binary data. The extreme difference in the binding energy between both components and the precise measurement of the orbital motion provided by pulsar timing allow the only current precision SEP tests for strongly self-gravitating bodies. We start by highlighting why such tests are conceptually important. We then review previous work where limits on SEP violation are obtained with an ensemble of wide binary systems with small eccentricity orbits. Then, we propose a new SEP violation test based on the measurement of the variation of the orbital eccentricity (ė). This new method has the following advantages: (a) unlike previous methods it is not based on probabilistic considerations, (b) it can make a direct detection of SEP violation and (c) the measurement of ė is not contaminated by any known external effects, which implies that this SEP test is only restricted by the measurement precision of ė. In the final part of the review, we conceptually compare the SEP test with the test for dipolar radiation damping, a phenomenon closely related to SEP violation, and speculate on future prospects by new types of tests in globular clusters and future triple systems.

  20. Stable and Unstable Equilibria of Uniformly Rotating Self-Gravitating Cylinders

    NASA Astrophysics Data System (ADS)

    Bartolucci, Daniele

    2012-12-01

    The equilibrium configurations of self-gravitating uniformly rotating isothermal cylinders in contact with a heat bath and their stability is studied by recently derived analytical techniques. The known critical temperature Tc obtained by Katz and Lynden-Bell is found to be a stability threshold with respect to axially symmetric perturbations. We provide the almost explicit expression of negative specific heat solutions whose densities are sharply concentrated either near the symmetry axis or near some off-axis filaments as T-> Tc-. The critical angular frequency observed numerically in literature is found to be the threshold value for the existence of these off-axis filaments. This is in striking contrast with the static case analyzed by Katz and Lynden-Bell where equilibrium configurations are found only if T > Tc and no negative specific heat equilibria exists at all. Metastability of the free energy's relative maximizers for T ≤ Tc is also discussed. Those off-axis configurations were predicted in the study of negative temperature states for guiding-centre plasmas and vortex systems.

  1. Microcanonical Monte Carlo study of one dimensional self-gravitating lattice gas models

    NASA Astrophysics Data System (ADS)

    Maciel, Joao Marcos; Amato, Marco Antônio; da Rocha Filho, Tarcisio Marciano; Figueiredo, Annibal D.

    2017-03-01

    In this study we present a microcanonical Monte Carlo investigation of one dimensional (1 - d) self-gravitating toy models. We study the effect of hard-core potentials and compare to the results obtained with softening parameters and also the effect of the topology on these systems. In order to study the effect of the topology in the system we introduce a model with the symmetry of motion in a line instead of a circle, which we denominate as 1 /r model. The hard-core particle potential introduces the effect of the size of particles and, consequently, the effect of the density of the system that is redefined in terms of the packing fraction of the system. The latter plays a role similar to the softening parameter ɛ in the softened particles' case. In the case of low packing fractions both models with hard-core particles show a behavior that keeps the intrinsic properties of the three dimensional gravitational systems such as negative heat capacity. For higher values of the packing fraction the ring model behaves as the potential for the standard cosine Hamiltonian Mean Field model while for the 1 /r model it is similar to the one-dimensional systems. In the present paper we intend to show that a further simplification level is possible by introducing the lattice-gas counterpart of such models, where a drastic simplification of the microscopic state is obtained by considering a local average of the exact N-body dynamics.

  2. On the equilibrium of heated self-gravitating masses - Cooling by conduction

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Low, B. C.

    1980-01-01

    An investigation is given of the equilibrium states available to a self-gravitating mass of gas, cooling by conduction, and being heated at a rate proportional to the local gas density. The plane geometry situation is shown to be reducible to quadratures for the pressure, density, temperature, and gravitational potential. For a constant thermal conductivity it is shown that the gas density has either a central maximum or a central minimum, depending on the ratio of the thermal conductivity to a parameter taken to be a measure of the rate of heating. For a thermal conductivity which is a positive power of the temperature, it is shown that the gas density always has a central minimum and a maximum at the outer boundary of the configuration. For cylindrical and spherical geometrical configurations the same general properties are obtained. The physical origin of this behavior is discussed, and it is suggested that these exploratory calculations provide an effect which may not only aid in understanding thin filamentary structure observed in supernova remnants, but also help to assuage the difficulties of producing maser activity in the interior regions of 'cocoon' protostars.

  3. Kinetic Jeans instability and nonlinear damping of electromagnetic waves in self gravitating dusty plasma

    NASA Astrophysics Data System (ADS)

    Rozina, Ch.; Tsintsadze, N. L.; Madiha, M.; Zeba, I.

    2017-05-01

    A kinetic theory of the Jeans instability of a self gravitating dusty plasma has been developed in the presence of nonlinear Landau damping (NLD) term. We demonstrate that NLD alters the growth rate of the gravitational collapse of the gravitating dusty plasma. The dispersion relation of modified Jeans instability is obtained and analyzed for specific conditions. Jeans frequency is compared with the dust acoustic frequency; new definition of Jeans wave length is introduced. The maximum growth rate is obtained for a particular condition as well as the Jeans critical mass is defined. Next to address the heating of plasma through radiation processes, we investigate the nonlinear theory of high frequency electromagnetic waves (EMWs) in a collisionless dusty plasma by using a set of Vlasov-Poisson equations. The effects of the nonlocal nonlinear Landau term (appearing due to the nonlinear interaction of EMWs with gravitating dusty plasma) in the nonlinear Schrödinger equation are examined. It is found that nonlinear Landau damping of EMWs leads to transfer of effective energy to the plasma particles, the corresponding decay rate of EMWs appears to be a function of amplitude of electromagnetic pump waves, and damping can be faster in the presence of large ion number density.

  4. On the quasihydrostatic flows of radiatively cooling self-gravitating gas clouds

    SciTech Connect

    Meerson, B.; Megged, E.; Tajima, T.

    1995-03-01

    Two model problems are considered, illustrating the dynamics of quasihydrostatic flows of radiatively cooling, optically thin self-gravitating gas clouds. In the first problem, spherically symmetric flows in an unmagnetized plasma are considered. For a power-law dependence of the radiative loss function on the temperature, a one-parameter family of self-similar solutions is found. The authors concentrate on a constant-mass cloud, one of the cases, when the self-similarity indices are uniquely selected. In this case, the self-similar flow problem can be formally reduced to the classical Lane-Emden equation and therefore solved analytically. The cloud is shown to undergo radiative condensation, if the gas specific heat ratio {gamma} > 4/3. The condensation proceeds either gradually, or in the form of (quasihydrostatic) collapse. For {gamma} < 4/3, the cloud is shown to expand. The second problem addresses a magnetized plasma slab that undergoes quasihydrostatic radiative cooling and condensation. The problem is solved analytically, employing the Lagrangian mass coordinate.

  5. Spectral-infinite-element Simulations of Self-gravitating Seismic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Gharti, H. N.; Tromp, J.

    2015-12-01

    Gravitational perturbations induced by particle motions are governed by the Poisson/Laplace equation, whosedomain includes all of space. Due to its unbounded nature, obtaining an accurate numerical solution is verychallenging. Consequently, gravitational perturbations are generally ignored in simulations of global seismicwave propagation, and only the unperturbed equilibrium gravitational field is taken into account. This so-called"Cowling approximation" is justified for relatively short-period waves (periods less than 250 s), but is invalidfor free-oscillation seismology. Existing methods are usually based on spherical harmonic expansions. Mostmethods are either limited to spherically symmetric models or have to rely on costly iterative implementationprocedures. We propose a spectral-infinite-element method to solve wave propagation in a self-gravitating Earthmodel. The spectral-infinite-element method combines the spectral-element method with the infinite-elementmethod. Spectral elements are used to capture the internal field, and infinite elements are used to represent theexternal field. To solve the weak form of the Poisson/Laplace equation, we employ Gauss-Legendre-Lobattoquadrature in spectral elements. In infinite elements, Gauss-Radau quadrature is used in the radial directionwhereas Gauss-Legendre-Lobatto quadrature is used in the lateral directions. Infinite elements naturally integratewith spectral elements, thereby avoiding an iterative implementation. We demonstrate the accuracy of themethod by comparing our results with a spherical harmonics method. The new method empowers us to tackleseveral problems in long-period seismology accurately and efficiently.

  6. Self-gravitating phase transitions: Point particles, black holes and strings

    NASA Astrophysics Data System (ADS)

    Sanchez, Norma G.

    2006-04-01

    We compute the quantum string entropy S(m,j) of the microscopic string states of mass m and spin j in two physically relevant backgrounds: Kerr (rotating) black holes and de Sitter (dS) space time. We find a new formula for the quantum gravitational entropy S(M,J), as a function of the usual Bekenstein Hawking entropy Ssem(0)(M,J). We compute the quantum string emission by a black hole in de Sitter space time (bhdS). In all the following cases: (i) strings with the highest spin, and (ii) in dS space time, (iii) quantum rotating black holes, (iv) quantum dS regime, (v) late bhdS evaporation, we find a new gravitational phase transition with a common distinctive universal feature: a square root branch point singularity in any space time dimensions. This is the same behavior as for the thermal self-gravitating gas of point particles (de Vega Sanchez transition), thus describing a new universality class. To cite this article: N.G. Sanchez, C. R. Physique 7 (2006).

  7. Criterion for the dynamical stability of a non-adiabatic spherical self-gravitating body

    NASA Astrophysics Data System (ADS)

    Stothers, Richard B.

    1999-04-01

    Why do stars and planets maintain their dynamical stability over cosmically long periods of time? The standard answer is that the first generalized adiabatic exponent of their material, Gamma_1, exceeds the value 4/3. Yet it has never been rigorously demonstrated (except for the simple one-zone model) that non-adiabatic effects do not modify this result at some level. Many authors, in fact, have suggested the probable need for a non-adiabatic correction to the square of the radial adiabatic eigenfrequency, sigma^2, which ostensibly governs dynamical stability in the more general case where Gamma_1 varies throughout a fully distributed self-gravitating spherical body. Here, a carefully controlled series of numerical experiments based on linear and non-linear hydrodynamical models of highly non-adiabatic spherically symmetric stellar envelopes (mimicking the envelopes of luminous blue variables) confirms, quite generally, that the purely adiabatic criterion sigma^2>0 does in fact determine dynamical stability. An accurate approximation to this criterion is further shown to be that the volumetric pressure-weighted average of Gamma_1 must exceed 4/3. These results, which concern only radial stability, verify the theoretical basis of the more sophisticated models for luminous blue variables that were constructed by the author and C.-w. Chin, but they do not support the objections to these models raised by W. Glatzel and M. Kiriakidis.

  8. Effect of self-gravitation on the energy loss of pair of projectiles in dusty plasma

    SciTech Connect

    Mirza, Arshad M.; Sarwar, M. Adnan; Qaisar, M.S.

    2006-05-15

    The effect of self-gravitation of massive dust grains is investigated on the shielded potential and the energy loss of pair of charged projectiles passing through a dust-contaminated plasma. Analytical general expressions are derived for the shielded potential and for the energy loss by incorporating two-body correlation effects. An interference contribution of these projectiles to the shielded potential and energy loss is observed that depends upon their orientation and separation distance. It is found that for two collinear projectiles the potential is enhanced by increasing dust Jeans frequency for separation less than Debye length and the energy loss versus projectile velocity decreases with the increase of Jeans frequency for arbitrary separation. The effect of inclination of two noncollinear projectiles on energy loss is also investigated for a fixed value of Jeans frequency {omega}{sub jd}=4x10{sup -4}{omega}{sub pd}. The contribution to the energy loss due to the interference term has been separately calculated for a typical Jeans frequency. The present investigation would be useful to explain the coagulation of dust particles in the molecular clouds and in the ion-beam-driven inertial confinement fusion approach.

  9. MASS AND MAGNETIC DISTRIBUTIONS IN SELF-GRAVITATING SUPER-ALFVENIC TURBULENCE WITH ADAPTIVE MESH REFINEMENT

    SciTech Connect

    Collins, David C.; Norman, Michael L.; Padoan, Paolo; Xu Hao

    2011-04-10

    In this work, we present the mass and magnetic distributions found in a recent adaptive mesh refinement magnetohydrodynamic simulation of supersonic, super-Alfvenic, self-gravitating turbulence. Power-law tails are found in both mass density and magnetic field probability density functions, with P({rho}) {proportional_to} {rho}{sup -1.6} and P(B) {proportional_to} B{sup -2.7}. A power-law relationship is also found between magnetic field strength and density, with B {proportional_to} {rho}{sup 0.5}, throughout the collapsing gas. The mass distribution of gravitationally bound cores is shown to be in excellent agreement with recent observation of prestellar cores. The mass-to-flux distribution of cores is also found to be in excellent agreement with recent Zeeman splitting measurements. We also compare the relationship between velocity dispersion and density to the same cores, and find an increasing relationship between the two, with {sigma} {proportional_to} n{sup 0.25}, also in agreement with the observations. We then estimate the potential effects of ambipolar diffusion in our cores and find that due to the weakness of the magnetic field in our simulation, the inclusion of ambipolar diffusion in our simulation will not cause significant alterations of the flow dynamics.

  10. Static configurations and nonlinear waves in rotating nonuniform self-gravitating fluids.

    PubMed

    Nekrasov, A K

    2006-02-01

    The equilibrium states and low-frequency waves in rotating nonuniform self-gravitating fluids are studied. The effect of a central object is included. Two-dimensional static configurations accounting for self-gravity, external gravity, and nonuniform rotation are considered for three models connecting the pressure with the mass density: thermodynamic equilibrium, polytropic pressure, and constant mass density. Explicit analytical solutions for equilibrium have been found in some cases. The low-frequency waves arising due to the vertical and horizontal fluid inhomogeneities are considered in the linear and nonlinear regimes. The relationship between the background pressure and mass density is supposed to be arbitrary in the wave analysis. It is shown that the waves considered can be unstable in the cases of polytropic pressure and constant mass density. The additional nonlinear term proportional to the product of the pressure and mass density perturbations, which is usually omitted, is kept in our nonlinear equations. There have been found conditions for this term to be important. Stationary nonlinear wave equations having solutions in the form of coherent vortex structures are obtained in a general form. The importance of involving real static configurations in the consideration of wave perturbations is emphasized.

  11. A computer software system for the generation of global ocean tides including self-gravitation and crustal loading effects

    NASA Technical Reports Server (NTRS)

    Estes, R. H.

    1977-01-01

    A computer software system is described which computes global numerical solutions of the integro-differential Laplace tidal equations, including dissipation terms and ocean loading and self-gravitation effects, for arbitrary diurnal and semidiurnal tidal constituents. The integration algorithm features a successive approximation scheme for the integro-differential system, with time stepping forward differences in the time variable and central differences in spatial variables.

  12. The Role of the Cooling Prescription for Disk Fragmentation: Numerical Convergence and Critical Cooling Parameter in Self-gravitating Disks

    NASA Astrophysics Data System (ADS)

    Baehr, Hans; Klahr, Hubert

    2015-12-01

    Protoplanetary disks fragment due to gravitational instability when there is enough mass for self-gravitation, described by the Toomre parameter, and when heat can be lost at a rate comparable to the local dynamical timescale, described by {t}{{c}}=β {{{Ω }}}-1. Simulations of self-gravitating disks show that the cooling parameter has a rough critical value at {β }{{crit}}=3. When below {β }{{crit}}, gas overdensities will contract under their own gravity and fragment into bound objects while otherwise maintaining a steady state of gravitoturbulence. However, previous studies of the critical cooling parameter have found dependences on simulation resolution, indicating that the simulation of self-gravitating protoplanetary disks is not so straightforward. In particular, the simplicity of the cooling timescale tc prevents fragments from being disrupted by pressure support as temperatures rise. We alter the cooling law so that the cooling timescale is dependent on local surface density fluctuations, which is a means of incorporating optical depth effects into the local cooling of an object. For lower resolution simulations, this results in a lower critical cooling parameter and a disk that is more stable to gravitational stresses, suggesting that the formation of large gas giants planets in large, cool disks is generally suppressed by more realistic cooling. At our highest resolution, however, the model becomes unstable to fragmentation for cooling timescales up to β =10.

  13. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  14. Modal analysis of gravitational instabilities in nearly Keplerian, counter-rotating collisionless discs

    NASA Astrophysics Data System (ADS)

    Gulati, Mamta; Saini, Tarun Deep

    2017-02-01

    We present a modal analysis of instabilities of counter-rotating, self-gravitating collisionless stellar discs, using the recently introduced modified WKB formulation of spiral density waves for collisionless systems by Gulati & Saini. The discs are assumed to be axisymmetric and in coplanar orbits around a massive object at the common centre of the discs. The mass in both discs is assumed to be much smaller than the mass of the central object. For each disc, the disc particles are assumed to be in near circular orbits. The two discs are coupled to each other gravitationally. The perturbed dynamics of the discs evolves on the order of the precession time-scale of the discs, which is much longer than the Keplerian time-scale. We present results for the azimuthal wavenumber m = 1 and 2, for the full range of disc mass ratio between the prograde and retrograde discs. The eigenspectra are in general complex, therefore all eigenmodes are unstable. Eigenfunctions are radially more compact for m = 1 as compared to m = 2. Pattern speed of eigenmodes is always prograde with respect to the more massive disc. The growth rate of unstable modes increases with increasing mass fraction in the retrograde disc, and decreases with m; therefore, m = 1 instability is likely to play the dominant role in the dynamics of such systems.

  15. Critical dynamics of self-gravitating Langevin particles and bacterial populations.

    PubMed

    Sire, Clément; Chavanis, Pierre-Henri

    2008-12-01

    We study the critical dynamics of the generalized Smoluchowski-Poisson system (for self-gravitating Langevin particles) or generalized Keller-Segel model (for the chemotaxis of bacterial populations). These models [P. H. Chavanis and C. Sire, Phys. Rev. E 69, 016116 (2004)] are based on generalized stochastic processes leading to the Tsallis statistics. The equilibrium states correspond to polytropic configurations with index n similar to polytropic stars in astrophysics. At the critical index n_{3}=d(d-2) (where d>or=2 is the dimension of space), there exists a critical temperature Theta_{c} (for a given mass) or a critical mass M_{c} (for a given temperature). For Theta>Theta_{c} or MM_{c} the system collapses and forms, in a finite time, a Dirac peak containing a finite fraction M_{c} of the total mass surrounded by a halo. We study these regimes numerically and, when possible, analytically by looking for self-similar or pseudo-self-similar solutions. This study extends the critical dynamics of the ordinary Smoluchowski-Poisson system and Keller-Segel model in d=2 corresponding to isothermal configurations with n_{3}-->+infinity . We also stress the analogy between the limiting mass of white dwarf stars (Chandrasekhar's limit) and the critical mass of bacterial populations in the generalized Keller-Segel model of chemotaxis.

  16. Violent and mild relaxation of an isolated self-gravitating uniform and spherical cloud of particles

    NASA Astrophysics Data System (ADS)

    Sylos Labini, Francesco

    2012-06-01

    The collapse of an isolated, uniform and spherical cloud of self-gravitating particles represents a paradigmatic example of a relaxation process leading to the formation of a quasi-stationary state in virial equilibrium. We consider several N-body simulations of such a system, with the initial velocity dispersion as a free parameter. We show that there is a clear difference between structures formed when the initial virial ratio is ? and b0>bc0. These two sets of initial conditions give rise respectively to a mild and violent relaxation occurring in about the same time-scale; however, in the latter case the system contracts by a large factor, while in the former it approximately maintains its original size. Correspondingly, the resulting quasi-equilibrium state is characterized by a density profile decaying at large enough distances as r-4 or with a sharp cut-off. The case b0bc0 is the ejection of particles and energy, which is not captured by such a theoretical approach: for this case we introduce a simple physical model to explain the formation of the power-law density profile. This model shows that the behaviour n(r) ˜r-4 is the typical density profile that is obtained when the initial conditions are cold enough that mass and energy ejection occurs. In addition, we clarify the origin of the critical value of the initial virial ratio bc0.

  17. Dynamics and Evolution of Self-Gravitating Circumstellar Disks on a Moving Mesh

    NASA Astrophysics Data System (ADS)

    Munoz, Diego; Hernquist, L.

    2011-05-01

    We present a novel approach to the numerical study of gas disks around young stars using the Voronoi-tessellation cosmological code AREPO (Springel,2010). This finite-volume code is shock-capturing and second-order-accurate in time and space. Its moving mesh makes it a Lagrangian/Eulerian code that satisfies Galilean invariance and has a very low diffusivity due to its unbiased unstructured grid. Its pseudo-Lagrangian nature makes it ideal for problems that show large dynamical range in density, such as gravitationally unstable systems with clustering and collapse. The self-gravity solver is implemented consistently for collisionless particles as well as for gas ``particles" (Voronoi cells) in an N-body fashion using a tree algorithm. The hydrodynamics+N-body approach of AREPO is unparalleled in its ability to treat self-gravitating systems that lack of a symmetric configuration while retaining the resolution and accuracy of conventional grid codes. Thus, it combines the benefits of both particle- and mesh-based codes. Precisely, these two approaches are used in numerical studies of circumstellar disks depending on the physical process of interest. For example, those studies that choose particle based codes -- such as SPH -- focus on gravitationally unstable disks or the tidal interaction of disks. On the other hand, grid codes are preferred in studies of planet-disk interaction, where proper treatment of shocks, wakes and gaps requires an accurate shock-capturing method. We present examples of how the flexible approach of AREPO can be used to simulate these and other types of problems.

  18. Structure formation through self-gravitational instability in degenerate and non-degenerate anisotropic magnetized plasma

    NASA Astrophysics Data System (ADS)

    Sharma, Prerana

    2017-04-01

    The self-gravitational instability is examined for non-degenerate and degenerate magnetized plasma. In the case of non-degenerate collisionless magnetized plasma the pressure is considered as anisotropic while in the case of degenerate situations it is taken as isotropic. The effect of finite Larmor radius correction of non-degenerate ions and viscous dissipation is taken into account in both the cases. Firstly in non-degenerate anisotropic plasma the conventional magnetohydrodynamic model is used to construct basic set of equations within the framework of modified Chew-Goldberger and Low theory. Secondly, in the case of degenerate isotropic plasma, which is considered to be composed of degenerate electrons and non-degenerate ions, the model equations are constructed using quantum magneto hydrodynamic model. The dynamics of degenerate particles are governed by Bohm and exchange potentials. The general dispersion relations are derived for both degenerate and non-degenerate situations separately using linearized perturbation equations. The results are discussed analytically and numerically for various modes of propagation. In case of non degenerate strongly magnetized plasma the effects of stress tensor anisotropy dominate over the influence of FLR effects while the FLR effects prevail in the weak magnetic field region. In case of isotropic degenerate plasma the implications of exchange parameter on the Jeans mass have been estimated and it is found that the increase in exchange parameter increases the limit of Jeans mass. The Jeans length and Jeans mass have been estimated for the white dwarf stars as LJ ≈ 2.1 × 10^{11} m and MJ ≈ 5 × 10^{39} kg respectively assist the existence of super Chandrasekhar white dwarfs.

  19. Core and filament formation in magnetized, self-gravitating isothermal layers

    SciTech Connect

    Van Loo, Sven; Keto, Eric; Zhang, Qizhou

    2014-07-01

    We examine the role of the gravitational instability in an isothermal, self-gravitating layer threaded by magnetic fields on the formation of filaments and dense cores. Using a numerical simulation, we follow the non-linear evolution of a perturbed equilibrium layer. The linear evolution of such a layer is described in the analytic work of Nagai et al. We find that filaments and dense cores form simultaneously. Depending on the initial magnetic field, the resulting filaments form either a spiderweb-like network (for weak magnetic fields) or a network of parallel filaments aligned perpendicular to the magnetic field lines (for strong magnetic fields). Although the filaments are radially collapsing, the density profile of their central region (up to the thermal scale height) can be approximated by a hydrodynamical equilibrium density structure. Thus, the magnetic field does not play a significant role in setting the density distribution of the filaments. The density distribution outside of the central region deviates from the equilibrium. The radial column density distribution is then flatter than the expected power law of r {sup –4} and similar to filament profiles observed with Herschel. Our results do not explain the near constant filament width of ∼0.1pc. However, our model does not include turbulent motions. It is expected that the accretion-driven amplification of these turbulent motions provides additional support within the filaments against gravitational collapse. Finally, we interpret the filamentary network of the massive star forming complex G14.225-0.506 in terms of the gravitational instability model and find that the properties of the complex are consistent with being formed out of an unstable layer threaded by a strong, parallel magnetic field.

  20. Double-disc gate valve

    DOEpatents

    Wheatley, Seth J.

    1979-01-01

    This invention relates to an improvement in a conventional double-disc gate valve having a vertically movable gate assembly including a wedge, spreaders slidably engaged therewtih, a valve disc carried by the spreaders. When the gate assembly is lowered to a selected point in the valve casing, the valve discs are moved transversely outward to close inlet and outlet ports in the casing. The valve includes hold-down means for guiding the disc-and-spreader assemblies as they are moved transversely outward and inward. If such valves are operated at relatively high differential pressures, they sometimes jam during opening. Such jamming has been a problem for many years in gate valves used in gaseous diffusion plants for the separtion of uranium isotopes. The invention is based on the finding that the above-mentioned jamming results when the outlet disc tilts about its horizontal axis in a certain way during opening of the valve. In accordance with the invention, tilting of the outlet disc is maintained at a tolerable value by providing the disc with a rigid downwardly extending member and by providing the casing with a stop for limiting inward arcuate movement of the member to a preselected value during opening of the valve.

  1. Explaining the density profile of self-gravitating systems by statistical mechanics

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Biao

    A self-gravitating system usually shows a quasi-universal density profile, such as the NFW profile of a simulated dark matter halo, the flat rotation curve of a spiral galaxy, the Sérsic profile of an elliptical galaxy, the King profile of a globular cluster and the exponential law of the stellar disk. It will be interesting if all of the above can be obtained from first principles. Based on the original work of White & Narayan (1987), we propose that if the self-bounded system is divided into infinite infinitesimal subsystems, the entropy of each subsystem can be maximized, but the whole system's gravity may just play the role of the wall, which may not increase the whole system's entropy S t , and finally S t may be the minimum among all of the locally maximized entropies (He & Kang 2010). For spherical systems with isotropic velocity dispersion, the form of the equation of state will be a hybrid of isothermal and adiabatic (Kang & He 2011). Hence this density profile can be approximated by a truncated isothermal sphere, which means that the total mass must be finite and our results can be consistent with observations (Kang & He 2011b). Our method requires that the mass and energy should be conserved, so we only compare our results with simulations of mild relaxation (i.e. the virial ratio is close to -1) of dissipationless collapse (Kang 2014), and the fitting also is well. The capacity can be calculated and is found not to be always negative as in previous works, and combining with calculations of the second order variation of the entropy, we find that the thermodynamical stability still can be true (Kang 2012) if the temperature tends to be zero. However, the cusp in the center of dark matter halos can not be explained, and more works will continue. The above work can be generalized to study the radial distribution of the disk (Kang 2015). The energy constraint automatically disappears in our variation, because angular momentum is much more important than

  2. Modeling gravitational instabilities in self-gravitating protoplanetary disks with adaptive mesh refinement techniques

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Tim; Schleicher, Dominik R. G.

    2015-07-01

    The astonishing diversity in the observed planetary population requires theoretical efforts and advances in planet formation theories. The use of numerical approaches provides a method to tackle the weaknesses of current models and is an important tool to close gaps in poorly constrained areas such as the rapid formation of giant planets in highly evolved systems. So far, most numerical approaches make use of Lagrangian-based smoothed-particle hydrodynamics techniques or grid-based 2D axisymmetric simulations. We present a new global disk setup to model the first stages of giant planet formation via gravitational instabilities (GI) in 3D with the block-structured adaptive mesh refinement (AMR) hydrodynamics code enzo. With this setup, we explore the potential impact of AMR techniques on the fragmentation and clumping due to large-scale instabilities using different AMR configurations. Additionally, we seek to derive general resolution criteria for global simulations of self-gravitating disks of variable extent. We run a grid of simulations with varying AMR settings, including runs with a static grid for comparison. Additionally, we study the effects of varying the disk radius. The physical settings involve disks with Rdisk = 10,100 and 300 AU, with a mass of Mdisk ≈ 0.05 M⊙ and a central object of subsolar mass (M⋆ = 0.646 M⊙). To validate our thermodynamical approach we include a set of simulations with a dynamically stable profile (Qinit = 3) and similar grid parameters. The development of fragmentation and the buildup of distinct clumps in the disk is strongly dependent on the chosen AMR grid settings. By combining our findings from the resolution and parameter studies we find a general lower limit criterion to be able to resolve GI induced fragmentation features and distinct clumps, which induce turbulence in the disk and seed giant planet formation. Irrespective of the physical extension of the disk, topologically disconnected clump features are only

  3. Effect of Coriolis force on the self-gravitational instability of dusty plasma in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Pensia, R. K.; Sutar, D. L.; Kumar, V.; Kumar, A.

    2017-05-01

    In view of the importance of Coriolis force in an astrophysical context, the problem of self-gravitational instability of dusty plasma in the presence of magnetic field is investigated. Equations of the problem are stated and the dispersion relation has been derived with the help of linearized perturbation equations. We find that the Jeans criterion of instability remains valid but the expression of the critical Jeans wave-number is modified. Mathematical calculations have been performed and some figures are plotted between the growth rate of instability and wave numbers. From the curves, it is found that dust sonic speed has a stabilizing effect.

  4. Investigation of cryogenic rupture disc design

    NASA Technical Reports Server (NTRS)

    Keough, J. B.; Oldland, A. H.

    1973-01-01

    Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.

  5. DIRECT INTEGRATION OF THE COLLISIONLESS BOLTZMANN EQUATION IN SIX-DIMENSIONAL PHASE SPACE: SELF-GRAVITATING SYSTEMS

    SciTech Connect

    Yoshikawa, Kohji; Umemura, Masayuki; Yoshida, Naoki

    2013-01-10

    We present a scheme for numerical simulations of collisionless self-gravitating systems which directly integrates the Vlasov-Poisson equations in six-dimensional phase space. Using the results from a suite of large-scale numerical simulations, we demonstrate that the present scheme can simulate collisionless self-gravitating systems properly. The integration scheme is based on the positive flux conservation method recently developed in plasma physics. We test the accuracy of our code by performing several test calculations, including the stability of King spheres, the gravitational instability, and the Landau damping. We show that the mass and the energy are accurately conserved for all the test cases we study. The results are in good agreement with linear theory predictions and/or analytic solutions. The distribution function keeps the property of positivity and remains non-oscillatory. The largest simulations are run on 64{sup 6} grids. The computation speed scales well with the number of processors, and thus our code performs efficiently on massively parallel supercomputers.

  6. Self-gravito-acoustic shock structures in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma system

    NASA Astrophysics Data System (ADS)

    Mamun, A. A.

    2017-10-01

    The existence of self-gravito-acoustic (SGA) shock structures (SSs) associated with negative self-gravitational potential in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma (SGSCMCDQP) system is predicted for the first time. The modified Burgers (MB) equation, which is valid for both planar and non-planar (spherical) geometries, is derived analytically, and solved numerically. It is shown that the longitudinal viscous force acting on inertial plasma species of the plasma system is the source of dissipation and is responsible for the formation of these SGA SSs in the plasma system. The time evolution of these SGA SSs is also shown for different values (viz., 0.5, 1, and 2) of Γ, where Γ is the ratio of the nonlinear coefficient to the dissipative coefficient in the MB equation. The SGSCMCDQP model and the numerical analysis of the MB equation presented here are so general that they can be applied in any type of SGSCMCDQP systems like astrophysical compact objects having planar or non-planar (spherical) shape.

  7. Collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2016-10-01

    We study the collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction. Equilibrium states in which the gravitational attraction and the attraction due to the self-interaction are counterbalanced by the quantum pressure (Heisenberg's uncertainty principle) exist only below a maximum mass Mmax=1.012 ℏ/√{G m |as| } where as<0 is the scattering length of the bosons and m is their mass [P. H. Chavanis, Phys. Rev. D 84, 043531 (2011)]. For M >Mmax the system is expected to collapse and form a black hole. We study the collapse dynamics by making a Gaussian ansatz for the wave function and reducing the problem to the study of the motion of a particle in an effective potential. We find that the collapse time scales as (M /Mmax-1 )-1 /4 for M →Mmax+ and as M-1 /2 for M ≫Mmax. Other analytical results are given above and below the critical point corresponding to a saddle-node bifurcation. We apply our results to QCD axions with mass m =10-4 eV /c2 and scattering length as=-5.8 ×10-53 m for which Mmax=6.5 ×10-14M⊙ and R =3.3 ×10-4R⊙. We confirm our previous claim that bosons with attractive self-interaction, such as QCD axions, may form low mass stars (axion stars or dark matter stars) but cannot form dark matter halos of relevant mass and size. These mini axion stars could be the constituents of dark matter. They can collapse into mini black holes of mass ˜10-14M⊙ in a few hours. In that case, dark matter halos would be made of mini black holes. We also apply our results to ultralight axions with mass m =1.93 ×10-20 eV /c2 and scattering length as=-8.29 ×10-60 fm for which Mmax=0.39 ×1 06M⊙ and R =33 pc . These ultralight axions could cluster into dark matter halos. Axionic dark matter halos with attractive self-interaction can collapse into supermassive black holes of mass ˜1 06M⊙ (similar to those reported at the center of galaxies) in about one million years. We point out the limitations of the Gaussian ansatz to

  8. Structure of radiation-dominated gravitoturbulent quasar discs

    NASA Astrophysics Data System (ADS)

    Shadmehri, Mohsen; Khajenabi, Fazeleh; Dib, Sami

    2017-02-01

    Self-gravitating accretion discs in a gravitoturbulent state, including radiation and gas pressures, are studied using a set of new analytical solutions. While the Toomre parameter of the disc remains close to its critical value for the onset of gravitational instability, the dimensionless stress parameter is uniquely determined from the thermal energy reservoir of the disc and its cooling rate. Our solutions are applicable to the accretion discs with dynamically important radiation pressure such as that in the quasars discs. We show that physical quantities of a gravitoturbulent disc in the presence of radiation are significantly modified compared to solutions with only gas pressure. We show that the dimensionless stress parameter is an increasing function of the radial distance so that its steepness strongly depends on the accretion rate. In a disc without radiation its slope is 4.5; however, we show that in the presence of radiation, it varies between 2 and 4.5 depending on the accretion rate and the central mass. As for the surface density, we find a shallower profile with an exponent -2 in a disc with sub-Eddington accretion rate compared to a similar disc, but without radiation, where its surface density slope is -3 independent of the accretion rate. We then investigate gravitational stability of the disc when the stress parameter reaches to its critical value. In order to self-consistently determine the fragmentation boundary, however, it is shown that the critical value of the stress parameter is a power-law function of the ratio of gas pressure and the total pressure and its exponent is around 1.7. We also estimate the maximum mass of the central black hole using our analytical solutions.

  9. Standing on the shoulders of giants. Trojan Earths and vortex trapping in low mass self-gravitating protoplanetary disks of gas and solids

    NASA Astrophysics Data System (ADS)

    Lyra, W.; Johansen, A.; Klahr, H.; Piskunov, N.

    2009-01-01

    Context: Centimeter and meter-sized solid particles in protoplanetary disks are trapped within long-lived, high-pressure regions, creating opportunities for collapse into planetesimals and planetary embryos. Aims: We aim to study the effect of the high-pressure regions generated in the gaseous disks by a giant planet perturber. These regions consist of gas retained in tadpole orbits around the stable Lagrangian points as a gap is carved, and the Rossby vortices launched at the edges of the gap. Methods: We performed global simulations of the dynamics of gas and solids in a low mass non-magnetized self-gravitating thin protoplanetary disk. We employed the Pencil code to solve the Eulerian hydro equations, tracing the solids with a large number of Lagrangian particles, usually 100 000. To compute the gravitational potential of the swarm of solids, we solved the Poisson equation using particle-mesh methods with multiple fast Fourier transforms. Results: Huge particle concentrations are seen in the Lagrangian points of the giant planet, as well as in the vortices they induce at the edges of the carved gaps. For 1 cm to 10 cm radii, gravitational collapse occurs in the Lagrangian points in less than 200 orbits. For 5 cm particles, a 2M⊕ planet is formed. For 10 cm, the final maximum collapsed mass is around 3M⊕. The collapse of the 1 cm particles is indirect, following the timescale of gas depletion from the tadpole orbits. Vortices are excited at the edges of the gap, primarily trapping particles of 30 cm radii. The rocky planet that is formed is as massive as 17M⊕, constituting a Super-Earth. Collapse does not occur for 40 cm onwards. By using multiple particle species, we find that gas drag modifies the streamlines in the tadpole region around the classical L4 and L5 points. As a result, particles of different radii have their stable points shifted to different locations. Collapse therefore takes longer and produces planets of lower mass. Three super-Earths are

  10. Self-Gravitating Relativistic Fluids: The Formation of a Free Phase Boundary in the Phase Transition from Hard to Soft

    NASA Astrophysics Data System (ADS)

    Christodoulou, Demetrios; Lisibach, André

    2016-11-01

    In the 1990s Christodoulou introduced an idealized fluid model intended to capture some of the features of the gravitational collapse of a massive star to form a neutron star or a black hole. This was the two-phase model introduced in `Self-gravitating relativistic fluids: a two phase model' (Demeterios, Arch Ration Mech Anal 130:343-400, 1995). The present work deals with the formation of a free phase boundary in the phase transition from hard to soft in this model. In this case the phase boundary has corners at the null points; the points which separate the timelike and spacelike components of the interface between the two phases. We prove the existence and uniqueness of a free phase boundary. Also the local form of the shock near the null point is established.

  11. On equilibrium states of heated self-gravitating gas clouds cooling by conduction in an external gravitational field

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Low, B. C.

    1980-01-01

    Exact analytic solutions are presented for equilibrium states of a self-gravitating one-dimensional cloud of gas, embedded in an external gravitational field due to a plane of 'stars' being heated at a rate proportional to the local gas density, and cooling by thermal conduction. It is found that the general topology of the solutions is such that the gas density has a minimum on the plane of 'stars', rising to an infinite but integrable peak away from the plane so that the total mass of gas in the cloud is finite. The results may be of interest in investigations of interstellar molecular clouds and of filamentary structures in supernova remnants as well as in the modeling of gas distributions around 'cocoon' protostars.

  12. Self-gravitation interaction of IR deformed Hořava-Lifshitz gravity via new Hamilton-Jacobi method

    NASA Astrophysics Data System (ADS)

    Liu, Molin; Xu, Yin; Lu, Junwang; Yang, Yuling; Lu, Jianbo; Wu, Yabo

    2014-06-01

    The apparent discovery of logarithmic entropies has a significant impact on IR deformed Hořava-Lifshitz (IRDHL) gravity in which the original infrared (IR) property is improved by introducing three-geometry's Ricci scalar term "μ4 R" in action. Here, we reevaluate the Hawking radiation in IRDHL by using recent new Hamilton-Jacobi method (NHJM). In particular, a thorough analysis is considered both in asymptotically flat Kehagias-Sfetsos and asymptotically non-flat Park models in IRDHL. We find the NHJM offers simplifications on the technical side. The modification in the entropy expression is given by the physical interpretation of self-gravitation of the Hawking radiation in this new Hamilton-Jacobi (HJ) perspectives.

  13. Forming disc galaxies in major mergers - III. The effect of angular momentum on the radial density profiles of disc galaxies

    NASA Astrophysics Data System (ADS)

    Peschken, N.; Athanassoula, E.; Rodionov, S. A.

    2017-06-01

    We study the effect of angular momentum on the surface density profiles of disc galaxies, using high-resolution simulations of major mergers whose remnants have downbending radial density profiles (type II). As described in the previous papers of this series, in this scenario, most of the disc mass is acquired after the collision via accretion from a hot gaseous halo. We find that the inner and outer disc scalelengths, as well as the break radius, correlate with the total angular momentum of the initial merging system, and are larger for high-angular momentum systems. We follow the angular momentum redistribution in our simulated galaxies, and find that like the mass, the disc angular momentum is acquired via accretion, i.e. to the detriment of the gaseous halo. Furthermore, high-angular momentum systems give more angular momentum to their discs, which directly affects their radial density profile. Adding simulations of isolated galaxies to our sample, we find that the correlations are valid also for disc galaxies evolved in isolation. We show that the outer part of the disc at the end of the simulation is populated mainly by inside-out stellar migration, and that in galaxies with higher angular momentum, stars travel radially further out. This, however, does not mean that outer disc stars (in type II discs) were mostly born in the inner disc. Indeed, generally the break radius increases over time, and not taking this into account leads to overestimating the number of stars born in the inner disc.

  14. MASSIVE BLACK HOLE PAIRS IN CLUMPY, SELF-GRAVITATING CIRCUMNUCLEAR DISKS: STOCHASTIC ORBITAL DECAY

    SciTech Connect

    Fiacconi, Davide; Mayer, Lucio; Roškar, Rok; Colpi, Monica

    2013-11-01

    We study the dynamics of massive black hole pairs in clumpy gaseous circumnuclear disks. We track the orbital decay of the light, secondary black hole M {sub .2} orbiting around the more massive primary at the center of the disk, using N-body/smoothed particle hydrodynamic simulations. We find that the gravitational interaction of M {sub .2} with massive clumps M {sub cl} erratically perturbs the otherwise smooth orbital decay. In close encounters with massive clumps, gravitational slingshots can kick the secondary black hole out of the disk plane. The black hole moving on an inclined orbit then experiences the weaker dynamical friction of the stellar background, resulting in a longer orbital decay timescale. Interactions between clumps can also favor orbital decay when the black hole is captured by a massive clump that is segregating toward the center of the disk. The stochastic behavior of the black hole orbit emerges mainly when the ratio M {sub .2}/M {sub cl} falls below unity, with decay timescales ranging from ∼1 to ∼50 Myr. This suggests that describing the cold clumpy phase of the interstellar medium in self-consistent simulations of galaxy mergers, albeit so far neglected, is important to predict the black hole dynamics in galaxy merger remnants.

  15. THE STRUCTURE OF A SELF-GRAVITATING PROTOPLANETARY DISK AND ITS IMPLICATIONS FOR DIRECT IMAGING OBSERVATIONS

    SciTech Connect

    Muto, Takayuki

    2011-09-20

    We consider the effects of self-gravity on the hydrostatic balance in the vertical direction of a gaseous disk and discuss the possible signature of the self-gravity that may be captured by direct imaging observations of protoplanetary disks in the future. In this paper, we consider a vertically isothermal disk in order to isolate the effects of self-gravity. The specific disk model we consider in this paper is the one with a radial surface density gap, at which the Toomre's Q-parameter of the disk varies rapidly in the radial direction. We calculate the vertical structure of the disk including the effects of self-gravity. We then calculate the scattered light and the dust thermal emission. We find that if the disk is massive enough and the effects of self-gravity come into play, a weak bump-like structure at the gap edge appears in the near-infrared (NIR) scattered light, while no such bump-like structure is seen in the submillimeter (sub-mm) dust continuum image. The appearance of the bump is caused by the variation of the height of the surface in the NIR wavelength. If such a bump-like feature is detected in future direct imaging observations, combined with sub-mm observations, it will give us useful information about the physical states of the disk.

  16. Herniated Cervical Disc

    MedlinePlus

    ... center of the disc may start to lose water content, making the disc less effective as a cushion. As a disc deteriorates, the outer layer can also tear. This can allow displacement of the disc's center (called a herniated or ...

  17. Spiral-driven accretion in protoplanetary discs. II. Self-similar solutions

    NASA Astrophysics Data System (ADS)

    Hennebelle, Patrick; Lesur, Geoffroy; Fromang, Sébastien

    2016-05-01

    Context. Accretion discs are ubiquitous in the Universe, and it is crucial to understand how angular momentum and mass are radially transported in these objects. Aims: Here, we study the role played by non-linear spiral patterns within hydrodynamical and non-self-gravitating accretion discs assuming that external disturbances such as infall onto the disc may trigger them. Methods: To do so, we computed self-similar solutions that describe discs in which a spiral wave propagates. These solutions present shocks and critical sonic points that were analyzed. Results: We calculated the wave structure for all allowed temperatures and for several spiral shocks. In particular, we inferred the angle of the spiral pattern, the stress it exerts on the disc, and the associated flux of mass and angular momentum as a function of temperature. We quantified the rate of angular momentum transport by means of the dimensionless α parameter. For the thickest disc we considered (corresponding to h/r values of about one-third), we found values of α as high as 0.1 that scaled with the temperature T such that α ∝ T3 / 2 ∝ (h/r)3. The spiral angle scales with the temperature as arctan(r/h). Conclusions: These solutions suggests that perturbations occurring at disc outer boundaries, such as perturbations due to infall motions, can propagate deep inside the disc and therefore should not be ignored, even when considering small radii.

  18. Substellar fragmentation in self-gravitating fluids with a major phase transition

    NASA Astrophysics Data System (ADS)

    Füglistaler, A.; Pfenniger, D.

    2015-06-01

    Context. The observation of various ices in cold molecular clouds, the existence of ubiquitous substellar, cold H2 globules in planetary nebulae and supernova remnants, or the mere existence of comets suggest that the physics of very cold interstellar gas might be much richer than usually envisioned. At the extreme of low temperatures (≲10 K), H2 itself is subject to a phase transition crossing the entire cosmic gas density scale. Aims: This well-known, laboratory-based fact motivates us to study the ideal case of a cold neutral gaseous medium in interstellar conditions for which the bulk of the mass, instead of trace elements, is subject to a gas-liquid or gas-solid phase transition. Methods: On the one hand, the equilibrium of general non-ideal fluids is studied using the virial theorem and linear stability analysis. On the other hand, the non-linear dynamics is studied using computer simulations to characterize the expected formation of solid bodies analogous to comets. The simulations are run with a state-of-the-art molecular dynamics code (LAMMPS) using the Lennard-Jones inter-molecular potential. The long-range gravitational forces can be taken into account together with short-range molecular forces with finite limited computational resources, using super-molecules, provided the right scaling is followed. Results: The concept of super-molecule, where the phase transition conditions are preserved by the proper choice of the particle parameters, is tested with computer simulations, allowing us to correctly satisfy the Jeans instability criterion for one-phase fluids. The simulations show that fluids presenting a phase transition are gravitationally unstable as well, independent of the strength of the gravitational potential, producing two distinct kinds of substellar bodies, those dominated by gravity (planetoids) and those dominated by molecular attractive force (comets). Conclusions: Observations, formal analysis, and computer simulations suggest the

  19. Effects of Spiral Arms on Gaseous Structures and Mass Drift in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Yonghwi; Kim, Woong-Tae

    2015-01-01

    Stellar spiral arms play a key role in the formation and evolution of gaseous structures in disk galaxies as well as mass drift in the radial direction. Using hydrodynamic simulations, we investigate nonlinear responses of self-gravitating gas to an imposed stellar spiral potential in galactic disks. By considering various models with different arm strength and pattern speed, we find that the physical properties of imposed spiral potential have profound influences on the shapes and extent of gaseous arms as well as the related mass drift rate. To produce quasi-steady spiral shocks, the gas has to not only move faster than the local sound speed relative to the perturbing potential, but also have sufficient time to respond to one arm before encountering the next arm. From our numerical results, we provide a simple expression for the existence of quasi-steady spiral shocks depending on the pitch angle and pattern speed of stellar spiral arms, which appears consistent to the previous study. We also measure the mass drift rates which are in the range of ~0.5-3.0 M⊙/yr inside the corotation radius, and further quantify the relative contribution of shock dissipation (~50%), external torque (~40%), and self-gravitational torque (~10%) to them. The offset between the pitch angles of stellar and gaseous arms is larger for smaller arm strength and larger pattern speed, since a deeper potential tends to form shocks closer to the potential minima of the arms. We demonstrate that the distributions of line-of-sight velocities and spiral shock densities can be a diagnostic tool in distinguishing whether the spiral pattern rotates fast or not.

  20. Solid and Gaseous Fuels.

    ERIC Educational Resources Information Center

    Schultz, Hyman; And Others

    1989-01-01

    This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids and methods for the chemical, physical, and instrumental analyses of gaseous fuels. The review covers from October 1986, to September 1988. (MVL)

  1. Solid and Gaseous Fuels.

    ERIC Educational Resources Information Center

    Schultz, Hyman; And Others

    1989-01-01

    This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids and methods for the chemical, physical, and instrumental analyses of gaseous fuels. The review covers from October 1986, to September 1988. (MVL)

  2. PARKER INSTABILITY IN A SELF-GRAVITATING MAGNETIZED GAS DISK. III. NONLINEAR DEVELOPMENT OF THE PARKER INSTABILITY

    SciTech Connect

    Lee, Sang Min; Hong, S. S. E-mail: ssrhong@gmail.com

    2011-06-20

    Using a total variation diminishing MHD code, we have simulated the nonlinear development of the Parker instability in an isothermal magnetized gas disk that is under the influence of self-gravity. Our objective is to investigate how the Jeans and Parker instabilities compete with the disruptive tendency of the convection in the nonlinear stage of evolution and to know whether the Parker-Jeans instability can be a mechanism for the formation of the larger scale structures in the Galaxy. When the perturbation wavelengths are larger than a Jeans critical wavelength, a cooperative action between the Parker and Jeans instabilities can suppress completely the disruptive behavior of the convective instability and lead the interstellar medium gas material into large-scale structures of high density, whose masses and sizes correspond to H I superclouds rather than to giant molecular clouds. The gas disk develops the vertical filamentary structures near the dense core instead of the chaotic sheet structures that are often seen from simulations of the classical Parker instability. The low-density filaments connect the dense part to the diffuse region far from the disk central plane. The filamentary structure is similar to galactic diffuse vertical structure. When the wavelength of the given perturbations is so short that the Jeans instability may not get triggered, the self-gravitating, magnetized gas disk seems to reach an equilibrium state different from the initial one.

  3. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure

    NASA Astrophysics Data System (ADS)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten

    2017-09-01

    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multilayered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  4. Exact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri; Sire, Clément

    2011-03-01

    We provide an exact analytical solution of the collapse dynamics of self-gravitating Brownian particles and bacterial populations at zero temperature. These systems are described by the Smoluchowski-Poisson system or Keller-Segel model in which the diffusion term is neglected. As a result, the dynamics is purely deterministic. A cold system undergoes a gravitational collapse, leading to a finite-time singularity: The central density increases and becomes infinite in a finite time tcoll. The evolution continues in the postcollapse regime. A Dirac peak emerges, grows, and finally captures all the mass in a finite time tend, while the central density excluding the Dirac peak progressively decreases. Close to the collapse time, the pre- and postcollapse evolutions are self-similar. Interestingly, if one starts from a parabolic density profile, one obtains an exact analytical solution that describes the whole collapse dynamics, from the initial time to the end, and accounts for non-self-similar corrections that were neglected in previous works. Our results have possible application in different areas including astrophysics, chemotaxis, colloids, and nanoscience.

  5. ON THE MINIMAL ACCURACY REQUIRED FOR SIMULATING SELF-GRAVITATING SYSTEMS BY MEANS OF DIRECT N-BODY METHODS

    SciTech Connect

    Portegies Zwart, Simon; Boekholt, Tjarda

    2014-04-10

    The conservation of energy, linear momentum, and angular momentum are important drivers of our physical understanding of the evolution of the universe. These quantities are also conserved in Newton's laws of motion under gravity. Numerical integration of the associated equations of motion is extremely challenging, in particular due to the steady growth of numerical errors (by round-off and discrete time-stepping and the exponential divergence between two nearby solutions. As a result, numerical solutions to the general N-body problem are intrinsically questionable. Using brute force integrations to arbitrary numerical precision we demonstrate empirically that ensembles of different realizations of resonant three-body interactions produce statistically indistinguishable results. Although individual solutions using common integration methods are notoriously unreliable, we conjecture that an ensemble of approximate three-body solutions accurately represents an ensemble of true solutions, so long as the energy during integration is conserved to better than 1/10. We therefore provide an independent confirmation that previous work on self-gravitating systems can actually be trusted, irrespective of the intrinsically chaotic nature of the N-body problem.

  6. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure

    NASA Astrophysics Data System (ADS)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten

    2017-04-01

    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multi-layered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With the decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  7. Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth

    USGS Publications Warehouse

    Pollitz, F.F.; Burgmann, R.; Banerjee, P.

    2006-01-01

    he Mw ??? 9.0 2004 December 26 Sumatra-Andaman and Mw =8.7 2005 March 28 Nias earthquakes, which collectively ruptured approximately 1800 km of the Andaman and Sunda subduction zones, are expected to be followed by vigorous viscoelastic relaxation involving both the upper and lower mantle. Because of these large spatial dimensions it is desirable to fully account for gravitational coupling effects in the relaxation process. We present a stable method of computing relaxation of a spherically-stratified, compressible and self-gravitating viscoelastic Earth following an impulsive moment release event. The solution is cast in terms of a spherical harmonic expansion of viscoelastic normal modes. For simple layered viscoelastic models, which include a low-viscosity oceanic asthenosphere, we predict substantial post-seismic effects over a region several 100s of km wide surrounding the eastern Indian Ocean. We compare observed GPS time-series from ten regional sites (mostly in Thailand and Indonesia), beginning in 2004 December, with synthetic time-series that include the coseismic and post-seismic effects of the 2004 December 26 and 2005 March 28 earthquakes. A viscosity structure involving a biviscous (Burgers body) rheology in the asthenosphere explains the pattern and amplitude of post-seismic offsets remarkably well. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  8. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri; Sire, Clément

    2006-06-01

    We derive the virial theorem appropriate to the generalized Smoluchowski-Poisson (GSP) system describing self-gravitating Brownian particles in an overdamped limit. We extend previous works by considering the case of an unbounded domain and an arbitrary equation of state. We use the virial theorem to study the diffusion (evaporation) of an isothermal Brownian gas above the critical temperature Tc in dimension d=2 and show how the effective diffusion coefficient and the Einstein relation are modified by self-gravity. We also study the collapse at T=Tc and show that the central density increases logarithmically with time instead of exponentially in a bounded domain. Finally, for d>2 , we show that the evaporation of the system is essentially a pure diffusion slightly slowed down by self-gravity. We also study the linear dynamical stability of stationary solutions of the GSP system representing isolated clusters of particles and investigate the influence of the equation of state and of the dimension of space on the dynamical stability of the system.

  9. Gravitational instabilities in a protosolar-like disc - II. Continuum emission and mass estimates

    NASA Astrophysics Data System (ADS)

    Evans, M. G.; Ilee, J. D.; Hartquist, T. W.; Caselli, P.; Szűcs, L.; Purser, S. J. D.; Boley, A. C.; Durisen, R. H.; Rawlings, J. M. C.

    2017-09-01

    Gravitational instabilities (GIs) are most likely a fundamental process during the early stages of protoplanetary disc formation. Recently, there have been detections of spiral features in young, embedded objects that appear consistent with GI-driven structure. It is crucial to perform hydrodynamic and radiative transfer simulations of gravitationally unstable discs in order to assess the validity of GIs in such objects, and constrain optimal targets for future observations. We utilize the radiative transfer code lime (Line modelling Engine) to produce continuum emission maps of a 0.17 M⊙ self-gravitating protosolar-like disc. We note the limitations of using lime as is and explore methods to improve upon the default gridding. We use casa to produce synthetic observations of 270 continuum emission maps generated across different frequencies, inclinations and dust opacities. We find that the spiral structure of our protosolar-like disc model is distinguishable across the majority of our parameter space after 1 h of observation, and is especially prominent at 230 GHz due to the favourable combination of angular resolution and sensitivity. Disc mass derived from the observations is sensitive to the assumed dust opacities and temperatures, and therefore can be underestimated by a factor of at least 30 at 850 GHz and 2.5 at 90 GHz. As a result, this effect could retrospectively validate GIs in discs previously thought not massive enough to be gravitationally unstable, which could have a significant impact on the understanding of the formation and evolution of protoplanetary discs.

  10. Gaseous Structures and Mass Drift in Spiral Galaxies: Effects of Arm Strength

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, W.-T.

    2015-10-01

    Stellar spiral arms in disk galaxies play an important role in the formation of gaseous substructures such as gaseous feathers as well as mass inflows/outflows in the radial direction. We study nonlinear responses of self-gravitating gas to an imposed stellar spiral potential in galactic disks with differing arm strength and pattern speed. We find that the extent and shapes of gaseous arms as well as the radial mass drift rate depend rather sensitively on the arm pattern speed. Quasi-steady spiral shocks can exist only when the normal Mach number is small. The pitch angle of gaseous arms is usually smaller than that of stellar arms. The mass drift rate to the central region is in the range of ˜0.05-3.0M⊙yr-1 , with larger values corresponding to stronger and/or slower-rotating arms. Using a normal-mode linear stability analysis together with nonlinear simulations, we show that wiggle instability of spiral shocks is due to the accumulation of potential vorticity at a perturbed shock front, rather than Kelvin-Helmholtz instability as previously suggested.

  11. Kinetic and Structural Evolution of Self-gravitating, Magnetized Clouds: 2.5-dimensional Simulations of Decaying Turbulence

    NASA Astrophysics Data System (ADS)

    Ostriker, Eve C.; Gammie, Charles F.; Stone, James M.

    1999-03-01

    The molecular component of the Galaxy is comprised of turbulent, magnetized clouds, many of which are self-gravitating and form stars. To develop an understanding of how these clouds' kinetic and structural evolution may depend on their level of turbulence, mean magnetization, and degree of self-gravity, we perform a survey of direct numerical MHD simulations in which three parameters are independently varied. Our simulations consist of solutions to the time-dependent MHD equations on a two-dimensional grid with periodic boundary conditions; an additional ``half'' dimension is also incorporated as dependent variables in the third Cartesian direction. Two of our survey parameters, the mean magnetization parameter β≡c2sound/v2Alfven and the Jeans number nJ≡Lcloud/LJeans, allow us to model clouds that either meet or fail conditions for magneto-Jeans stability and magnetic criticality. Our third survey parameter, the sonic Mach number M≡σvelocity/csound, allows us to initiate turbulence of either sub- or super-Alfvénic amplitude; we employ an isothermal equation of state throughout. We evaluate the times for each cloud model to become gravitationally bound and measure each model's kinetic energy loss over the fluid-flow crossing time. We compare the evolution of density and magnetic field structural morphology and quantify the differences in the density contrast generated by internal stresses for models of differing mean magnetization. We find that the values of β and nJ, but not the initial Mach number M, determine the time for cloud gravitational binding and collapse: for mean cloud density nH2=100 cm-3, unmagnetized models collapse after ~5 Myr, and magnetically supercritical models generally collapse after 5-10 Myr (although the smallest magneto-Jeans stable clouds survive gravitational collapse until t~15 Myr), while magnetically subcritical clouds remain uncollapsed over the entire simulations; these cloud collapse times scale with the mean density as

  12. Artificial Disc Replacement

    MedlinePlus

    ... treat this condition, alternatives to disc replacement include fusion, nonoperative care or no treatment. Typically, surgery is ... operative treatment for disc pain has been spinal fusion. This is a surgical procedure in which disc ...

  13. Gap formation in a self-gravitating disk and the associated migration of the embedded giant planet

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Hui-Gen; Zhou, Ji-Lin; Wittenmyer, Robert A.

    2014-04-01

    We present the results of our recent study on the interactions between a giant planet and a self-gravitating gas disk. We investigate how the disk's self-gravity affects the gap formation process and the migration of the giant planet. Two series of 1-D and 2-D hydrodynamic simulations are performed. We select several surface densities and focus on the gravitationally stable region. To obtain more reliable gravity torques exerted on the planet, a refined treatment of the disk's gravity is adopted in the vicinity of the planet. Our results indicate that the net effect of the disk's self-gravity on the gap formation process depends on the surface density of the disk. We notice that there are two critical values, ΣI and ΣII. When the surface density of the disk is lower than the first one, Σ0 < ΣI, the effect of self-gravity suppresses the formation of a gap. When Σ0 > ΣI, the self-gravity of the gas tends to benefit the gap formation process and enlarges the width/depth of the gap. According to our 1-D and 2-D simulations, we estimate the first critical surface density to be ΣI ≈ 0.8 MMSN. This effect increases until the surface density reaches the second critical value ΣII. When Σ0 > ΣII, the gravitational turbulence in the disk becomes dominant and the gap formation process is suppressed again. Our 2-D simulations show that this critical surface density is around 3.5 MMSN. We also study the associated orbital evolution of a giant planet. Under the effect of the disk's self-gravity, the migration rate of the giant planet increases when the disk is dominated by gravitational turbulence. We show that the migration timescale correlates with the effective viscosity and can be up to 104 yr.

  14. Thermodynamics of gravitational clustering phenomena: N-body self-gravitating gas on the sphere {{{S}}^{3}}\\subset {{{R}}^{4}}

    NASA Astrophysics Data System (ADS)

    Tello-Ortiz, F.; Velazquez, L.

    2016-10-01

    This work is devoted to the thermodynamics of gravitational clustering, a collective phenomenon with a great relevance in the N-body cosmological problem. We study a classical self-gravitating gas of identical non-relativistic particles defined on the sphere {{{S}}3}\\subset {{{R}}4} by considering gravitational interaction that corresponds to this geometric space. The analysis is performed within microcanonical description of an isolated Hamiltonian system by combining continuum approximation and the steepest descend method. According to numerical solution of resulting equations, the gravitational clustering can be associated with two microcanonical phase transitions. A first phase transition with a continuous character is associated with breakdown of SO(4) symmetry of this model. The second one is the gravitational collapse, whose continuous or discontinuous character crucially depends on the regularization of short-range divergence of gravitation potential. We also derive the thermodynamic limit of this model system, the astrophysical counterpart of the Gibbs-Duhem relation, the order parameters that characterize its phase transitions and the equation of state. Other interesting behavior is the existence of states with negative heat capacities, which appear when the effects of gravitation turn dominant for energies sufficiently low. Finally, we comment on the relevance of some of these results in the study of astrophysical and cosmological situations. Special interest deserves the gravitational modification of the equation of state due to the local inhomogeneities of matter distribution. Although this feature is systematically neglected in studies about universe expansion, the same one is able to mimic an effect that is attributed to the dark energy: a negative pressure.

  15. Dissipative self-gravitating Bose-Einstein condensates with arbitrary nonlinearity as a model of dark matter halos

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2017-06-01

    We develop a general formalism applying to Newtonian self-gravitating Bose-Einstein condensates. This formalism may find application in the context of dark matter halos. We introduce a generalized Gross-Pitaevskii equation including a source of dissipation (damping) and an arbitrary nonlinearity. Using the Madelung transformation, we derive the hydrodynamic representation of this generalized Gross-Pitaevskii equation and obtain a damped quantum Euler equation involving a friction force proportional and opposite to the velocity and a pressure force associated with an equation of state determined by the nonlinearity present in the generalized Gross-Pitaevskii equation. In the strong friction limit, we obtain a quantum Smoluchowski equation. These equations satisfy an H-theorem for a free energy functional constructed with a generalized entropy. We specifically consider the Boltzmann and Tsallis entropies associated with isothermal and polytropic equations of state. We also consider the entropy associated with the logotropic equation of state. We derive the virial theorem corresponding to the generalized Gross-Pitaevskii equation, damped quantum Euler equation, and quantum Smoluchowski equation. Using a Gaussian ansatz, we obtain a simple equation governing the dynamical evolution of the size of the condensate. We develop a mechanical analogy associated with this gross dynamics. We highlight a specific model of dark matter halos corresponding to a generalized Gross-Pitaevskii equation with a logarithmic nonlinearity and a cubic nonlinearity. It corresponds to a damped quantum Euler equation associated with a mixed entropy combining the Boltzmann and Tsallis entropies. It leads to dark matter halos with an equation of state P=ρ kB T_eff/m+2π as\\hbar2ρ2/m3 presenting a condensed core (BEC/soliton) and an isothermal halo with an effective temperature T_eff. We propose that this model provides an effective coarse-grained parametrization of dark matter halos

  16. The Global Nonlinear Stability of Minkowski Space for Self-gravitating Massive Fields. The Wave-Klein-Gordon Model

    NASA Astrophysics Data System (ADS)

    LeFloch, Philippe G.; Ma, Yue

    2016-09-01

    The Hyperboloidal Foliation Method (introduced by the authors in 2014) is extended here and applied to the Einstein equations of general relativity. Specifically, we establish the nonlinear stability of Minkowski spacetime for self-gravitating massive scalar fields, while existing methods only apply to massless scalar fields. First of all, by analyzing the structure of the Einstein equations in wave coordinates, we exhibit a nonlinear wave-Klein-Gordon model defined on a curved background, which is the focus of the present paper. For this model, we prove here the existence of global-in-time solutions to the Cauchy problem, when the initial data have sufficiently small Sobolev norms. A major difficulty comes from the fact that the class of conformal Killing fields of Minkowski space is significantly reduced in the presence of a massive scalar field, since the scaling vector field is not conformal Killing for the Klein-Gordon operator. Our method relies on the foliation (of the interior of the light cone) of Minkowski spacetime by hyperboloidal hypersurfaces and uses Lorentz-invariant energy norms. We introduce a frame of vector fields adapted to the hyperboloidal foliation and we establish several key properties: Sobolev and Hardy-type inequalities on hyperboloids, as well as sup-norm estimates, which correspond to the sharp time decay for the wave and the Klein-Gordon equations. These estimates allow us to control interaction terms associated with the curved geometry and the massive field by distinguishing between two levels of regularity and energy growth and by a successive use of our key estimates in order to close a bootstrap argument.

  17. Self-gravitating rotating anisotropic pressure plasma in presence of Hall current and electrical resistivity using generalized polytrope laws

    SciTech Connect

    Prajapati, R. P.; Chhajlani, R. K.; Soni, G. D.

    2008-06-15

    The effects of uniform rotation, finite electrical resistivity, electron inertia, and Hall current on the self-gravitational instability of anisotropic pressure plasma with generalized polytrope laws have been studied. A general dispersion relation is obtained with the help of the relevant linearized perturbed magnetohydrodynamic (MHD) equations incorporating the relevant contributions of various effects of the problem using the method of normal mode analysis. The general dispersion relation is further reduced for the special cases of rotation; i.e., parallel and perpendicular to the direction of the magnetic field. The longitudinal and transverse modes of propagation are discussed separately for investigation of condition of instability. The effects of rotation, Hall current, finite electron inertia, and polytropic indices are discussed on the gravitational, ''firehose,'' and ''mirror'' instabilities. The numerical calculations have been performed to obtain the dependence of the growth rate of the gravitational unstable mode on the various physical parameters involved. The finite electrical resistivity, rotation, and Hall current have a stabilizing influence on the growth rate of the unstable mode of wave propagation. The finite electrical resistivity removes the effect of magnetic field and polytropic index from the condition of instability in the transverse mode of propagation for both the cases of rotation. It is also found that the Jeans criterion of gravitational instability depends upon rotation, electron inertia, and polytropic indices. In the case of transverse mode of propagation with the axis of rotation parallel to the magnetic field, it is observed that the region of instability and the value of the critical Jeans wavenumber are larger for the Chew-Goldberger-Low set of equations in comparison with the MHD set of equations. The stability of the system is discussed by applying Routh-Hurwitz criterion. The inclusion of rotation or Hall current or both

  18. Self-gravitating compressible Maxwell Earth models: the role of the self compression and the compositional initial density gradient

    NASA Astrophysics Data System (ADS)

    Cambiotti, G.

    2009-04-01

    We analyse a new class of self-gravitating Maxwell Earth models that takes the compressibility into account both at the initial state of hydrostatic equilibrium and during the deformations. By resorting to the Correspondence Principle we derive the analytical solution for a particular model with an inviscid core, a Darwin law density profile in the mantle and a continuous compositional initial density gradient. It allows to gain deep insight into the global dynamics of the Earth showing that the compressional stratification is responsible only for stable modes, namely the C0 and M0 buoyancy modes, the D-modes and the transient modes, while the compositional stratification triggers new transient modes and a denumerably set of buoyancy modes, of which the RT-modes are a particular case. We show that the model is unstable only when the square of the Brunt-Väiäsala frequency is positive and the solely unstable modes are the new compositional ones. By resorting to a numerical algorithm we extend our analysis to more general self-compressed compressible models with specific Darwin law density profiles in each layer and a compositional initial density gradient describing the density contrasts at the main Earth interfaces. We show that no buoyancy modes are due to the continuous variation of the initial density but they arise because of the density contrasts while the D-modes are substitute by a non-modal contribution always associated with the compressional relaxation times. Such results shed light on the role of the compositional stratification on the relaxation processes and allow us to deal with the issue of the Earth stability in a more consistent way compared to the past. Besides this they are relevant to model the Post-Glacial rebound and the post seismic deformations.

  19. Secular resonant dressed orbital diffusion - II. Application to an isolated self-similar tepid galactic disc

    NASA Astrophysics Data System (ADS)

    Fouvry, Jean-Baptiste; Pichon, Christophe

    2015-05-01

    The main orbital signatures of the secular evolution of an isolated self-gravitating stellar Mestel disc are recovered using a dressed Fokker-Planck formalism in angle-action variables. The shot-noise-driven formation of narrow ridges of resonant orbits is recovered in the WKB limit of tightly wound transient spirals, for a tepid Toomre-stable tapered disc. The relative effect of the bulge, the halo, the disc temperature and the spectral properties of the shot noise are investigated in turn. For such galactic discs all elements seem to impact the locus and direction of the ridge. For instance, when the halo mass is decreased, we observe a transition between a regime of heating in the inner regions of the disc through the inner Lindblad resonance to a regime of radial migration of quasi-circular orbits via the corotation resonance in the outer part of the disc. The dressed secular formalism captures both the nature of collisionless systems (via their natural frequencies and susceptibility), and their nurture via the structure of the external perturbing power spectrum. Hence it provides the ideal framework in which to study their long-term evolution.

  20. Redundant disc

    NASA Technical Reports Server (NTRS)

    Barack, W. N.; Domas, P. A.; Beekman, S. W. (Inventor)

    1978-01-01

    A rotatable disc is described that consists of parallel plates tightly joined together for rotation about a hub. Each plate is provided with several angularly projecting spaced lands. The lands of each plate are interposed in alternating relationship between the lands of the next adjacent plate. In this manner, circumferential displacement of adjacent sectors in any one plate is prevented in the event that a crack develops. Each plate is redundantly sized so that, in event of structural failure of one plate, the remaining plates support a proportionate share of the load of the failed plate. The plates are prevented from separating laterally through the inclusion of generally radially extending splines which are inserted to interlock cooperating, circumferentially adjacent lands.

  1. The role of disc self-gravity in circumbinary planet systems - II. Planet evolution

    NASA Astrophysics Data System (ADS)

    Mutter, Matthew M.; Pierens, Arnaud; Nelson, Richard P.

    2017-08-01

    We present the results of hydrodynamic simulations examining migration and growth of planets embedded in self-gravitating circumbinary discs. The binary star parameters are chosen to mimic those of the Kepler-16, -34 and -35 systems; the aim of this study is to examine the role of disc mass in determining the stopping locations of migrating planets at the edge of the cavity created by the central binary. Disc self-gravity can cause significant shrinkage of the cavity for disc masses in excess of 5-10 × the minimum mass solar nebula model. Planets forming early in the disc lifetime can migrate through the disc and stall at locations closer to the central star than is normally the case for lower mass discs, resulting in closer agreement between simulated and observed orbital architecture. The presence of a planet orbiting in the cavity of a massive disc can prevent the cavity size from expanding to the size of a lower mass disc. As the disc mass reduces over long time-scales, this indicates that circumbinary planet systems retain memory of their initial conditions. Our simulations produce planetary orbits in good agreement with Keper-16b without the need for self-gravity; Kepler-34 analogue systems produce wide and highly eccentric cavities, and self-gravity improves the agreement between simulations and data. Kepler-35b is more difficult to explain in detail due to its relatively low mass, which results in the simulated stopping location being at a larger radius than that observed.

  2. Runaway accretion of metals from compact discs of debris on to white dwarfs

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2011-09-01

    It was recently proposed that metal-rich white dwarfs (WDs) accrete their metals from compact discs of debris found to exist around more than a dozen of them. At the same time, elemental abundances measured in atmospheres of some WDs imply vigorous metal accretion at rates up to 1011 g s-1, far in excess of what can be supplied solely by Poynting-Robertson drag acting on such discs of debris. To explain this observation we propose a model, in which rapid transport of metals from the disc on to the WD naturally results from interaction between this particulate disc and a spatially coexisting disc of metallic gas. The latter is fed by evaporation of debris particles at the sublimation radius located at several tens of WD radii. Because of pressure support the gaseous disc orbits the WD slower than the particulate disc. Resultant azimuthal drift between them at speed ≲1 m s-1 causes aerodynamic drag on the disc of solids and drives inward migration of its constituent particles. Upon reaching the sublimation radius, particles evaporate, enhancing the density of the metallic gaseous disc and leading to positive feedback. Under favourable circumstances (low viscosity in the disc of metallic gas and efficient aerodynamic coupling between the discs) a system evolves in a runaway fashion, destroying the discs of debris on time-scale of ˜105 yr, and giving rise to high metal accretion rates up to ? g s-1, in agreement with observations.

  3. Gaseous wire detectors

    SciTech Connect

    Va'vra, J.

    1997-08-01

    This article represents a series of three lectures describing topics needed to understand the design of typical gaseous wire detectors used in large high energy physics experiments; including the electrostatic design, drift of electrons in the electric and magnetic field, the avalanche, signal creation, limits on the position accuracy as well as some problems one encounters in practical operations.

  4. Spirals, gaps, cavities, gapities: What do planets do in discs?

    NASA Astrophysics Data System (ADS)

    Crida, A.

    2016-12-01

    In this presentation, part of the "Observations of discs" workshop, I address the theoretical point of view of planet-disc interactions. In section 2, I will review the physics of spirals, and explain why the inner and the outer wake created by a planet in a gaseous keplerian disc look very different, but their shape is independant of the mass of the planet and almost only depends on the aspect ratio of the disc. In the third section, I discuss the axisymmetric features (gaps and cavities), and how they differ in the gas or the dust component. However, to start with, some clarification of the nomenclature seems to be required, as observers and theorists may have a different idea of what a gap is. The definition of a "gapity" may help to clarify the situation of pre-transitional discs.

  5. GASEOUS DISPOSAL PROCESS

    DOEpatents

    Ryan, R.F.; Thomasson, F.R.; Hicks, J.H.

    1963-01-22

    A method is described of removing gaseous radioactive Xe and Kr from water containing O. The method consists in stripping the gases from the water stream by means of H flowing countercurrently to the stream. The gases are then heated in a deoxo bed to remove O. The carrier gas is next cooled and passed over a charcoal adsorbent bed maintained at a temperature of about --280 deg F to remove the Xe and Kr. (AEC)

  6. Gaseous diffusion system

    DOEpatents

    Garrett, George A.; Shacter, John

    1978-01-01

    1. A gaseous diffusion system comprising a plurality of diffusers connected in cascade to form a series of stages, each of said diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof.

  7. Gaseous fuel reactor research

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T.

    1977-01-01

    The paper reviews studies dealing with the concept of a gaseous fuel reactor and describes the structure and plans of the current NASA research program of experiments on uranium hexafluoride systems and uranium plasma systems. Results of research into the basic properties of uranium plasmas and fissioning gases are reported. The nuclear pumped laser is described, and the main results of experiments with these devices are summarized.

  8. Fragmentation of protoplanetary discs around M-dwarfs

    NASA Astrophysics Data System (ADS)

    Backus, Isaac; Quinn, Thomas

    2016-12-01

    We investigate the conditions required for planet formation via gravitational instability (GI) and protoplanetary disc (PPD) fragmentation around M-dwarfs. Using a suite of 64 SPH simulations with 106 particles, the parameter space of disc mass, temperature, and radius is explored, bracketing reasonable values based on theory and observation. Our model consists of an equilibrium, gaseous, and locally isothermal disc orbiting a central star of mass M* = M⊙/3. Discs with a minimum Toomre Q of Qmin ≲ 0.9 will fragment and form gravitationally bound clumps. Some previous literature has found Qmin < 1.3-1.5 to be sufficient for fragmentation. Increasing disc height tends to stabilize discs, and when incorporated into Q as Qeff ∝ Q(H/R)α for α = 0.18 is sufficient to predict fragmentation. Some discrepancies in the literature regarding Qcrit may be due to different methods of generating initial conditions (ICs). A series of 15 simulations demonstrates that perturbing ICs slightly out of equilibrium can cause discs to fragment for higher Q. Our method for generating ICs is presented in detail. We argue that GI likely plays a role in PPDs around M-dwarfs and that disc fragmentation at large radii is a plausible outcome for these discs.

  9. Apparent quasar disc sizes in the "bird's nest" paradigm

    NASA Astrophysics Data System (ADS)

    Abolmasov, P.

    2017-04-01

    Context. Quasar microlensing effects make it possible to measure the accretion disc sizes around distant supermassive black holes that are still well beyond the spatial resolution of contemporary instrumentation. The sizes measured with this technique appear inconsistent with the standard accretion disc model. Not only are the measured accretion disc sizes larger, but their dependence on wavelength is in most cases completely different from the predictions of the standard model. Aims: We suggest that these discrepancies may arise not from non-standard accretion disc structure or systematic errors, as it was proposed before, but rather from scattering and reprocession of the radiation of the disc. In particular, the matter falling from the gaseous torus and presumably feeding the accretion disc may at certain distances become ionized and produce an extended halo that is free from colour gradients. Methods: A simple analytical model is proposed assuming that a geometrically thick translucent inflow acts as a scattering mirror changing the apparent spatial properties of the disc. This inflow may be also identified with the broad line region or its inner parts. Results: Such a model is able to explain the basic properties of the apparent disc sizes, primarily their large values and their shallow dependence on wavelength. The only condition required is to scatter a significant portion of the luminosity of the disc. This can easily be fulfilled if the scattering inflow has a large geometrical thickness and clumpy structure.

  10. Scale-dependent response from the invariant rescaling of stress in a self-gravitating thermomechanical Earth

    NASA Astrophysics Data System (ADS)

    Watkinson, John; Patton, Regan

    2014-05-01

    It is widely known that gravitation can be accounted for via general relativity in a four-dimensional manifold called spacetime. A direct corollary of this is that the observable characteristics of any self-gravitating body in space are closely tied to its 'rheology' - how stress and deformation are related to one another. The large-scale/long-term response of terrestrial planets to loading is arguably dissipative, which can be modeled using purely viscous rheology. Evidence for this includes Earth's flattened ellipsoidal configuration, the likely result of self-gravity and rotation. On the other hand, the small scale, short-term response of solid earth materials is arguably conservative, which can be modeled using purely elastic rheology. Evidence for this includes the propagation of shear waves throughout the crust and mantle. These general observations, combined with long-term creep and attenuation of seismic signals at the longest wavelengths, seems to suggest that networks of springs, dash pots, and sliding masses, although vogue, comprise only one possible family of an otherwise infinite number of rheological models. The response of solid earth materials to loading is a scale-dependent process and involves both elasticity (strain-energy storage) and viscosity (energy dissipation). Tectonic processes are controlled by regional stratification, lithology, thermal structure, fluid content, metamorphic reactions, and deformation rates, many aspects of which are inherited through geological time. Clearly, topography and igneous activity on terrestrial planets are closely allied phenomena, consistent with global and regional isostatic balance demonstrated through gravity-topography analysis. It is reasonable to conclude that crustal stratification and igneous activity are inherent features of the Earth system, which must be predicted by any self-consistent model. We have assumed that solid earth rheology can be modeled using the differential grade-2 (DG-2) material

  11. STAR FORMATION IN SELF-GRAVITATING DISKS IN ACTIVE GALACTIC NUCLEI. II. EPISODIC FORMATION OF BROAD-LINE REGIONS

    SciTech Connect

    WangJianmin; Du Pu; Ge Junqiang; Hu Chen; Baldwin, Jack A.; Ferland, Gary J.

    2012-02-20

    This is the second in a series of papers discussing the process and effects of star formation in the self-gravitating disk around the supermassive black holes in active galactic nuclei (AGNs). We have previously suggested that warm skins are formed above the star-forming (SF) disk through the diffusion of warm gas driven by supernova explosions. Here we study the evolution of the warm skins when they are exposed to the powerful radiation from the inner part of the accretion disk. The skins initially are heated to the Compton temperature, forming a Compton atmosphere (CAS) whose subsequent evolution is divided into four phases. Phase I is the duration of pure accumulation supplied by the SF disk. During phase II clouds begin to form due to line cooling and sink to the SF disk. Phase III is a period of preventing clouds from sinking to the SF disk through dynamic interaction between clouds and the CAS because of the CAS overdensity driven by continuous injection of warm gas from the SF disk. Finally, phase IV is an inevitable collapse of the entire CAS through line cooling. This CAS evolution drives the episodic appearance of broad-line regions (BLRs). We follow the formation of cold clouds through the thermal instability of the CAS during phases II and III, using linear analysis. Since the clouds are produced inside the CAS, the initial spatial distribution of newly formed clouds and angular momentum naturally follow the CAS dynamics, producing a flattened disk of clouds. The number of clouds in phases II and III can be estimated, as well as the filling factor of clouds in the BLR. Since the cooling function depends on the metallicity, the metallicity gradients that originate in the SF disk give rise to different properties of clouds in different radial regions. We find from the instability analysis that clouds have column density N{sub H} {approx}< 10{sup 22} cm{sup -2} in the metal-rich regions whereas they have N{sub H} {approx}> 10{sup 22} cm{sup -2} in the

  12. Star Formation in Self-gravitating Disks in Active Galactic Nuclei. II. Episodic Formation of Broad-line Regions

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Min; Du, Pu; Baldwin, Jack A.; Ge, Jun-Qiang; Hu, Chen; Ferland, Gary J.

    2012-02-01

    This is the second in a series of papers discussing the process and effects of star formation in the self-gravitating disk around the supermassive black holes in active galactic nuclei (AGNs). We have previously suggested that warm skins are formed above the star-forming (SF) disk through the diffusion of warm gas driven by supernova explosions. Here we study the evolution of the warm skins when they are exposed to the powerful radiation from the inner part of the accretion disk. The skins initially are heated to the Compton temperature, forming a Compton atmosphere (CAS) whose subsequent evolution is divided into four phases. Phase I is the duration of pure accumulation supplied by the SF disk. During phase II clouds begin to form due to line cooling and sink to the SF disk. Phase III is a period of preventing clouds from sinking to the SF disk through dynamic interaction between clouds and the CAS because of the CAS overdensity driven by continuous injection of warm gas from the SF disk. Finally, phase IV is an inevitable collapse of the entire CAS through line cooling. This CAS evolution drives the episodic appearance of broad-line regions (BLRs). We follow the formation of cold clouds through the thermal instability of the CAS during phases II and III, using linear analysis. Since the clouds are produced inside the CAS, the initial spatial distribution of newly formed clouds and angular momentum naturally follow the CAS dynamics, producing a flattened disk of clouds. The number of clouds in phases II and III can be estimated, as well as the filling factor of clouds in the BLR. Since the cooling function depends on the metallicity, the metallicity gradients that originate in the SF disk give rise to different properties of clouds in different radial regions. We find from the instability analysis that clouds have column density N H <~ 1022 cm-2 in the metal-rich regions whereas they have N H >~ 1022 cm-2 in the metal-poor regions. The metal-rich clouds compose

  13. Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology

    SciTech Connect

    Hessel, R P; Aceves, S M; Flowers, D L

    2006-03-06

    The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.

  14. GASEOUS SCINTILLATION COUNTER

    DOEpatents

    Eggler, C.; Huddleston, C.M.

    1959-04-28

    A gaseous excitation counter for detecting the presence amd measuring the energy of subatomic particles and electromagnetic radiation is described. The counter includes a gas-tight chamber filled with an elemental gas capable of producing ultra-violet excitation quanta when irradiated with subatomic particles and electromagnetic radiation. The gas has less than one in a thousand parts ultra-violet absorbing contamination. When nuclear radiation ps present the ultra-violet light produced by the gas strikes a fluorescent material within the counter, responsive to produce visible excitation quanta, and photo-sensitive counting means detect the visible emission.

  15. Protostellar disc formation enabled by removal of small dust grains

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Caselli, Paola; Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien; Nakamura, Fumitaka

    2016-08-01

    It has been shown that a realistic level of magnetization of dense molecular cloud cores can suppress the formation of a rotationally supported disc (RSD) through catastrophic magnetic braking in the axisymmetric ideal MHD limit. In this study, we present conditions for the formation of RSDs through non-ideal MHD effects computed self-consistently from an equilibrium chemical network. We find that removing from the standard MRN distribution the large population of very small grains (VSGs) of ˜ 10 Å to few 100 Å that dominate the coupling of the bulk neutral matter to the magnetic field increases the ambipolar diffusivity by ˜ 1-2 orders of magnitude at densities below 1010/cm-3. The enhanced ambipolar diffusion (AD) in the envelope reduces the amount of magnetic flux dragged by the collapse into the circumstellar disc-forming region. Therefore, magnetic braking is weakened and more angular momentum can be retained. With continuous high angular momentum inflow, RSDs of tens of au are able to form, survive, and even grow in size, depending on other parameters including cosmic ray ionization rate, magnetic field strength, and rotation speed. Some discs become self-gravitating and evolve into rings in our 2D (axisymmetric) simulations, which have the potential to fragment into (close) multiple systems in 3D. We conclude that disc formation in magnetized cores is highly sensitive to chemistry, especially to grain sizes. A moderate grain coagulation/growth to remove the large population of VSGs, either in the prestellar phase or during free-fall collapse, can greatly promote AD and help formation of tens of au RSDs.

  16. Flares in gamma-ray bursts: disc fragmentation and evolution

    NASA Astrophysics Data System (ADS)

    Dall'Osso, Simone; Perna, Rosalba; Tanaka, Takamitsu L.; Margutti, Raffaella

    2017-02-01

    Flaring activity following gamma-ray bursts (GRBs), observed in both long and short GRBs, signals a long-term activity of the central engine. However, its production mechanism has remained elusive. Here, we develop a quantitative model of the idea proposed by Perna et al. of a disc whose outer regions fragment due to the onset of gravitational instability. The self-gravitating clumps migrate through the disc and begin to evolve viscously when tidal and shearing torques break them apart. Our model consists of two ingredients: theoretical bolometric flare light curves whose shape (width, skewness) is largely insensitive to the model parameters, and a spectral correction to match the bandpass of the available observations, that is calibrated using the observed spectra of the flares. This simple model reproduces, with excellent agreement, the empirical statistical properties of the flares as measured by their width-to-arrival time ratio and skewness (ratio between decay and rise time). We present model fits to the observed light curves of two well-monitored flares, GRB 060418 and GRB 060904B. To the best of our knowledge, this is the first quantitative model able to reproduce the flare light curves and explain their global statistical properties.

  17. Downhole gaseous liquid flow agitator

    SciTech Connect

    Kamilos, N.; Kennedy, D.D.; Lederhos, L.J. Jr.

    1989-03-14

    An apparatus is described for agitating and mixing of a gaseous phase and a liquid phase comprising: a first tube having non-blocking internal threads within the first tube to agitate a liquid phase adhering thereto with a gaseous phase passing therethrough, whereby a uniform gaseous phase and liquid phase mixture is formed; and a second tube connected to an end of the first tube having non-blocking internal threads of opposite handedness.

  18. Turbine disc sealing assembly

    DOEpatents

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  19. Effect of Gas Accretion Disc Profile on Orbital Parameters of the Accreted Stars

    NASA Astrophysics Data System (ADS)

    Shukirgaliyev, Bekdaulet T.; Panamarev, Taras P.; Naurzbaeva, Aisha Zh.; Kalambay, Mukhagali T.; Makukov, Maxim A.; Vilkoviskij, Emmanuil Y.; Omarov, Chingis T.; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-10-01

    The results of studies of the effect of the gas disk and its profile on the dynamics of active galactic nuclei are presented. The study was conducted with a numerical model of galactic nucleus based on phiGRAPE+GPU comprising three subsystems - a central supermassive black hole, gaseous accretion disc, and compact stellar cluster. The evolution of the compact stellar cluster is modeled with direct integration (N-body simulation), while the black hole and gaseous disc are represented phenomenologically: the black hole is introduced as an external potential (fixed in space but variable in time due to black hole mass growth), and the gaseous disc is introduced as spatial time-independent density distribution. We examined and compared with each other orbital parameters of accreting stars for model of the galactic nucleus with gas disc of constant and variable thickness, as well as without gas. It was found that in the presence of a gaseous disk almost half of the accreted particles interact strongly with the gas and are captured by the disc before accretion, while more than 85% of particles are affected to some extent by the disc prior to accretion. This suggests that interaction of the stellar cluster with the gas disk in the galactic nucleus might lead to the formation of stellar disk in the central part of the nucleus.

  20. Fragmentation of vertically stratified gaseous layers: monolithic or coalescence-driven collapse

    NASA Astrophysics Data System (ADS)

    Dinnbier, František; Wünsch, Richard; Whitworth, Anthony P.; Palouš, Jan

    2016-12-01

    We investigate, using 3D hydrodynamic simulations, the fragmentation of pressure-confined, vertically stratified, self-gravitating gaseous layers. The confining pressure is either thermal pressure acting on both surfaces, or thermal pressure acting on one surface and ram-pressure on the other. In the linear regime of fragmentation, the dispersion relation we obtain agrees well with that derived by Elmegreen & Elmegreen (1978), and consequently deviates from the dispersion relations based on the thin shell approximation (Vishniac 1983) or pressure assisted gravitational instability (Wünsch et al. 2010). In the non-linear regime, the relative importance of the confining pressure to the self-gravity is a crucial parameter controlling the qualitative course of fragmentation. When confinement of the layer is dominated by external pressure, self-gravitating condensations are delivered by a two-stage process: first the layer fragments into gravitationally bound but stable clumps, and then these clumps coalesce until they assemble enough mass to collapse. In contrast, when external pressure makes a small contribution to confinement of the layer, the layer fragments monolithically into gravitationally unstable clumps and there is no coalescence. This dichotomy persists whether the external pressure is thermal or ram. We apply these results to fragments forming in a shell swept up by an expanding H II region, and find that, unless the swept up gas is quite hot or the surrounding medium has low density, the fragments have low-mass (⪉ 3 M_{_⊙}), and therefore they are unlikely to spawn stars that are sufficiently massive to promote sequential self-propagating star formation.

  1. Fragmentation of vertically stratified gaseous layers: monolithic or coalescence-driven collapse

    NASA Astrophysics Data System (ADS)

    Dinnbier, František; Wünsch, Richard; Whitworth, Anthony P.; Palouš, Jan

    2017-04-01

    We investigate, using 3D hydrodynamic simulations, the fragmentation of pressure-confined, vertically stratified, self-gravitating gaseous layers. The confining pressure is either thermal pressure acting on both surfaces or thermal pressure acting on one surface and ram pressure on the other. In the linear regime of fragmentation, the dispersion relation we obtain agrees well with that derived by Elmegreen & Elmegreen, and consequently deviates from the dispersion relations based on the thin shell approximation or pressure assisted gravitational instability. In the non-linear regime, the relative importance of the confining pressure to the self-gravity is a crucial parameter controlling the qualitative course of fragmentation. When confinement of the layer is dominated by external pressure, self-gravitating condensations are delivered by a two-stage process: first the layer fragments into gravitationally bound but stable clumps, and then these clumps coalesce until they assemble enough mass to collapse. In contrast, when external pressure makes a small contribution to confinement of the layer, the layer fragments monolithically into gravitationally unstable clumps and there is no coalescence. This dichotomy persists whether the external pressure is thermal or ram. We apply these results to fragments forming in a shell swept up by an expanding H ii region, and find that, unless the swept-up gas is quite hot or the surrounding medium has low density, the fragments have low mass ({≲} 3 M_{⊙}), and therefore they are unlikely to spawn stars that are sufficiently massive to promote sequential self-propagating star formation.

  2. GASEOUS DISCHARGE DEVICE

    DOEpatents

    Gow, J.D.

    1961-01-10

    An extremely compact two-terminal gaseous discharge device is described that is capable of producing neutrons in copious quantities, relatively high energy ions, intense x rays, and the like. Principal novelty resides in the provision of a crossed electric-magnetic field region in the discharge envelope that traps electrons and accelerates them to very high energies to provide an intense ionizing medium adjacent the anode of the device for ionizing gas therein with extremely high efficiency. In addition, the crossed-field trapping region holds the electrons close to the anode whereby the acceleration of ions to the cathode is not materially effected by the electron sheath and the ions assume substantially the full energy of the anodecathode potential drop. (auth)

  3. Ethylene Oxide Gaseous Sterilization

    PubMed Central

    Ernst, Robert R.; Shull, James J.

    1962-01-01

    The duration of the equilibration period between admission of water vapor and subsequent introduction of gaseous ethylene oxide to an evacuated sterilizer chamber was studied with respect to its effect on the inactivation of spores of Bacillus subtilis var. niger under simulated practical conditions. Introduction of a water-adsorbing cotton barrier between the spores and an incoming gas mixture of water vapor and ethylene oxide caused a marked increase in the observed thermochemical death time of the spore populations. This effect was negated by admission of water vapor one or more minutes prior to introduction of ethylene oxide gas. Increases in temperature and relative humidity of the system promoted passage of water vapor through the cotton barriers and diminished their effect. PMID:13890660

  4. Bell's theorem, the measurement problem, Newton's self-gravitation and its connections to violations of the discrete symmetries C, P, T

    NASA Astrophysics Data System (ADS)

    Hiesmayr, Beatrix C.

    2015-07-01

    About 50 years ago John St. Bell published his famous Bell theorem that initiated a new field in physics. This contribution discusses how discrete symmetries relate to the big open questions of quantum mechanics, in particular: (i) how correlations stronger than those predicted by theories sharing randomness (Bell's theorem) relate to the violation of the CP symmetry and the P symmetry; and its relation to the security of quantum cryptography, (ii) how the measurement problem (“why do we observe no tables in superposition?”) can be polled in weakly decaying systems, (iii) how strongly and weakly interacting quantum systems are affected by Newton's self gravitation. These presented preliminary results show that the meson-antimeson systems and the hyperon- antihyperon systems are a unique laboratory to tackle deep fundamental questions and to contribute to the understand what impact the violation of discrete symmetries has.

  5. Nonlinear propagation of ion-acoustic waves in self-gravitating dusty plasma consisting of non-isothermal two-temperature electrons

    NASA Astrophysics Data System (ADS)

    Paul, S. N.; Chatterjee, A.; Paul, Indrani

    2017-01-01

    Nonlinear propagation of ion-acoustic waves in self-gravitating multicomponent dusty plasma consisting of positive ions, non-isothermal two-temperature electrons and negatively charged dust particles with fluctuating charges and drifting ions has been studied using the reductive perturbation method. It has been shown that nonlinear propagation of ion-acoustic waves in gravitating dusty plasma is described by an uncoupled third order partial differential equation which is a modified form of Korteweg-deVries equation, in contraries to the coupled nonlinear equations obtained by earlier authors. Quasi-soliton solution for the ion-acoustic solitary wave has been obtained from this uncoupled nonlinear equation. Effects of non-isothermal two-temperature electrons, gravity, dust charge fluctuation and drift motion of ions on the ion-acoustic solitary waves have been discussed.

  6. A truly Newtonian softening length for disc simulations

    NASA Astrophysics Data System (ADS)

    Huré, J.-M.; Trova, A.

    2015-02-01

    The softened point mass model is commonly used in simulations of gaseous discs including self-gravity while the value of associated length λ remains, to some degree, controversial. This `parameter' is however fully constrained when, in a discretized disc, all fluid cells are demanded to obey Newton's law. We examine the topology of solutions in this context, focusing on cylindrical cells more or less vertically elongated. We find that not only the nominal length depends critically on the cell's shape (curvature, radial extension, height), but it is either a real or an imaginary number. Setting λ as a fraction of the local disc thickness - as usually done - is indeed not the optimal choice. We then propose a novel prescription valid irrespective of the disc properties and grid spacings. The benefit, which amounts to 2-3 more digits typically, is illustrated in a few concrete cases. A detailed mathematical analysis is in progress.

  7. Japan's research on gaseous flames

    NASA Technical Reports Server (NTRS)

    Niioka, Takashi

    1995-01-01

    Although research studies on gaseous flames in microgravity in Japan have not been one-sided, they have been limited, for the most part, to comparatively fundamental studies. At present it is only possible to achieve a microgravity field by the use of drop towers, as far as gaseous flames are concerned. Compared with experiments on droplets, including droplet arrays, which have been vigorously performed in Japan, studies on gaseous flames have just begun. Experiments on ignition of gaseous fuel, flammability limits, flame stability, effect of magnetic field on flames, and carbon formation from gaseous flames are currently being carried out in microgravity. Seven subjects related to these topics are introduced and discussed herein.

  8. The Arrow of Time in the Collapse of Collisionless Self-gravitating Systems: Non-validity of the Vlasov–Poisson Equation during Violent Relaxation

    NASA Astrophysics Data System (ADS)

    Beralso e Silva, Leandro; de Siqueira Pedra, Walter; Sodré, Laerte; Perico, Eder L. D.; Lima, Marcos

    2017-09-01

    The collapse of a collisionless self-gravitating system, with the fast achievement of a quasi-stationary state, is driven by violent relaxation, with a typical particle interacting with the time-changing collective potential. It is traditionally assumed that this evolution is governed by the Vlasov–Poisson equation, in which case entropy must be conserved. We run N-body simulations of isolated self-gravitating systems, using three simulation codes, NBODY-6 (direct summation without softening), NBODY-2 (direct summation with softening), and GADGET-2 (tree code with softening), for different numbers of particles and initial conditions. At each snapshot, we estimate the Shannon entropy of the distribution function with three different techniques: Kernel, Nearest Neighbor, and EnBiD. For all simulation codes and estimators, the entropy evolution converges to the same limit as N increases. During violent relaxation, the entropy has a fast increase followed by damping oscillations, indicating that violent relaxation must be described by a kinetic equation other than the Vlasov–Poisson equation, even for N as large as that of astronomical structures. This indicates that violent relaxation cannot be described by a time-reversible equation, shedding some light on the so-called “fundamental paradox of stellar dynamics.” The long-term evolution is well-described by the orbit-averaged Fokker–Planck model, with Coulomb logarithm values in the expected range 10{--}12. By means of NBODY-2, we also study the dependence of the two-body relaxation timescale on the softening length. The approach presented in the current work can potentially provide a general method for testing any kinetic equation intended to describe the macroscopic evolution of N-body systems.

  9. N-body simulation for self-gravitating collisional systems with a new SIMD instruction set extension to the x86 architecture, Advanced Vector eXtensions

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru; Yoshikawa, Kohji; Okamoto, Takashi; Nitadori, Keigo

    2012-02-01

    We present a high-performance N-body code for self-gravitating collisional systems accelerated with the aid of a new SIMD instruction set extension of the x86 architecture: Advanced Vector eXtensions (AVX), an enhanced version of the Streaming SIMD Extensions (SSE). With one processor core of Intel Core i7-2600 processor (8 MB cache and 3.40 GHz) based on Sandy Bridge micro-architecture, we implemented a fourth-order Hermite scheme with individual timestep scheme ( Makino and Aarseth, 1992), and achieved the performance of ˜20 giga floating point number operations per second (GFLOPS) for double-precision accuracy, which is two times and five times higher than that of the previously developed code implemented with the SSE instructions ( Nitadori et al., 2006b), and that of a code implemented without any explicit use of SIMD instructions with the same processor core, respectively. We have parallelized the code by using so-called NINJA scheme ( Nitadori et al., 2006a), and achieved ˜90 GFLOPS for a system containing more than N = 8192 particles with 8 MPI processes on four cores. We expect to achieve about 10 tera FLOPS (TFLOPS) for a self-gravitating collisional system with N ˜ 10 5 on massively parallel systems with at most 800 cores with Sandy Bridge micro-architecture. This performance will be comparable to that of Graphic Processing Unit (GPU) cluster systems, such as the one with about 200 Tesla C1070 GPUs ( Spurzem et al., 2010). This paper offers an alternative to collisional N-body simulations with GRAPEs and GPUs.

  10. Forming Disc Galaxies In Major Mergers: Radial Density Profiles And Angular Momentum

    NASA Astrophysics Data System (ADS)

    Peschken, Nicolas; Athanassoula, E.; Rodionov, S. A.; Lambert, J. C.

    2017-06-01

    In Athanassoula et al. (2016), we used high resolution N-body hydrodynamical simulations to model the major merger between two disc galaxies with a hot gaseous halo each, and showed that the remnant is a spiral galaxy. The two discs are destroyed by the collision, but after the merger, accretion from the surrounding gaseous halo allows the building of a new disc in the remnant galaxy. In Peschken et al. (2017), we used these simulations to study the radial surface density profiles of the remnant galaxies with downbending profiles (type II), i.e. composed of an inner and an outer exponential disc separated by a break. We analyzed the effect of angular momentum on these profiles, and found that the inner and outer disc scalelengths, as well as the break radius, all increase linearly with the total angular momentum of the initial merging system. Following the angular momentum redistribution in our simulations, we find that the disc angular momentum is acquired via accretion from the gaseous halo. Furthermore, high angular momentum systems give more angular momentum to their discs, which affects directly their radial density profile.

  11. A new criterion for bar-forming instability in rapidly rotating gaseous and stellar systems. 2: Nonaxisymmetric form

    NASA Technical Reports Server (NTRS)

    Christodoulou, Dimitris M.; Shlosman, Isaac; Tohline, Joel E.

    1995-01-01

    We have previously introduced the parameter alpha as an indicator of stability to m = 2 nonaxisymmetric modes in rotating, self-gravitating, axisymmetric, gaseous (alpha less than or approximately equal to 0.34) and stellar (alpha less than or approximately equal to 0.25) systems. This parameter can be written as alpha = (ft/2)(exp 1/2), where t is defined as T/(absolute value of W), T is the total rotational kinetic energy, W is the total gravitational potential energy, and f is a function characteristic of the topology/connectedness and the geometric shape of a system. In this paper, we extend the stability criterion to nonaxisymmetric equilibrium systems by determining empirically the appropriate form of the function f for ellipsoids and elliptical disks and cylinders. We test the validity of this extension of the stability indicator alpha by considering its predictions for previously published, gaseous and stellar, nonaxisymmetric models. The formulation and critical values account accurately for the stability properties of m =2 modes in gaseous Riemann S-type ellipsoids (including the Jacobi and Dedekind ellipsoids) and elliptical Riemann disks as well as in stellar elliptical Freeman disks and cylinders: all these systems are dynamically stable except the stellar elliptical Freeman disks that exhibit a relatively small region of m = 2 dynamical instability. A partial disagreement in the case of stellar Freeman ellipsoids in maximum rotation may be due to the fact that the region of instability has not been previously determined with sufficient accuracy.

  12. Ethylene Oxide Gaseous Sterilization

    PubMed Central

    Ernst, Robert R.; Shull, James J.

    1962-01-01

    The relationships of reaction temperature and concentration of gaseous ethylene oxide to the time required for inactivation of air-dried Bacillus subtilis var. niger spores are more complex than previously reported. A plot of temperature vs. the logarithm of “thermochemical death time” (TCDT) resulted in a straight line between 18 and 57 C for systems of “high” ethylene oxide concentration. The TCDT values were independent of ethylene oxide concentrations above certain temperature-dependent limits. A given ethylene oxide concentration produced a TCDT curve identical in the upper temperature regions with that for higher concentrations. As the temperature was lowered beyond a critical point, this curve diverged from that for higher concentrations, as a straight line of lesser slope. Thus, a series of curves exists for a range of ethylene oxide concentrations. They are characterized by two segments, both logarithmic, intersecting at a critical temperature for each concentration. The intersecting point is at a temperature inversely related to the ethylene oxide gas concentration. The temperature quotient for the high temperature segments of all systems was 1.8. This value was characteristic for ethylene oxide concentrations of 440 and 880 mg/liter at temperatures above 40.6 and 33.4 C, respectively. Below these critical temperatures, the Q10 values for the respective systems were 3.2 and 2.3. PMID:13890659

  13. The structure of protoplanetary discs around evolving young stars

    NASA Astrophysics Data System (ADS)

    Bitsch, Bertram; Johansen, Anders; Lambrechts, Michiel; Morbidelli, Alessandro

    2015-03-01

    The formation of planets with gaseous envelopes takes place in protoplanetary accretion discs on time scales of several million years. Small dust particles stick to each other to form pebbles, pebbles concentrate in the turbulent flow to form planetesimals and planetary embryos and grow to planets, which undergo substantial radial migration. All these processes are influenced by the underlying structure of the protoplanetary disc, specifically the profiles of temperature, gas scale height, and density. The commonly used disc structure of the minimum mass solar nebula (MMSN) is a simple power law in all these quantities. However, protoplanetary disc models with both viscous and stellar heating show several bumps and dips in temperature, scale height, and density caused by transitions in opacity, which are missing in the MMSN model. These play an important role in the formation of planets, since they can act as sweet spots for forming planetesimals via the streaming instability and affect the direction and magnitude of type-I migration. We present 2D simulations of accretion discs that feature radiative cooling and viscous and stellar heating, and they are linked to the observed evolutionary stages of protoplanetary discs and their host stars. These models allow us to identify preferred planetesimal and planet formation regions in the protoplanetary disc as a function of the disc's metallicity, accretion rate, and lifetime. We derive simple fitting formulae that feature all structural characteristics of protoplanetary discs during the evolution of several Myr. These fits are straightforward for applying to modelling any growth stage of planets where detailed knowledge of the underlying disc structure is required. Appendix A is available in electronic form at http://www.aanda.org

  14. General polytropic self-gravitating cylinder free-fall and accreting mass string with a chain of collapsed objects

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Hu, Xu-Yao

    2016-06-01

    We present a theoretical model framework for general polytropic (GP) hydrodynamic cylinder under self-gravity of infinite length with axial uniformity and axisymmetry. For self-similar dynamic solutions, we derive valuable integrals, analytic asymptotic solutions, sonic critical curves, shock conditions, and global numerical solutions with or without expansion shocks. Among others, we investigate various dynamic solutions featured with central free-fall asymptotic behaviours, corresponding to a collapsed mass string with a sustained dynamic accretion from a surrounding mass reservoir. Depending on the allowed ranges of a scaling index a < -1, such cylindrical dynamic mass accretion rate could be steady, increasing with time and decreasing with time. Physically, such a collapsed mass string or filament would break up into a sequence of sub-clumps and segments as induced by gravitational Jeans instabilities. Depending on the scales involved, such sub-clumps would evolve into collapsed objects or gravitationally bound systems. In diverse astrophysical and cosmological contexts, such a scenario can be adapted on various temporal, spatial and mass scales to form a chain of collapsed clumps and/or compact objects. Examples include the formation of chains of proto-stars, brown dwarfs and gaseous planets along molecular filaments; the formation of luminous massive stars along magnetized spiral arms and circum-nuclear starburst rings in barred spiral galaxies; the formation of chains of compact stellar objects such as white dwarfs, neutron stars, and black holes along a highly condensed mass string. On cosmological scales, one can perceive the formation of chains of galaxies, chains of galaxy clusters or even chains of supermassive and hypermassive black holes in the Universe including the early Universe. All these chains referred to above include possible binaries.

  15. The effects of a hot gaseous halo in galaxy major mergers

    NASA Astrophysics Data System (ADS)

    Moster, Benjamin P.; Macciò, Andrea V.; Somerville, Rachel S.; Naab, Thorsten; Cox, T. J.

    2011-08-01

    Cosmological hydrodynamical simulations as well as observations indicate that spiral galaxies comprise five different components: dark matter halo, stellar disc, stellar bulge, gaseous disc and gaseous halo. While the first four components have been extensively considered in numerical simulations of binary galaxy mergers, the effect of a hot gaseous halo has usually been neglected even though it can contain up to 80 per cent of the total gas within the galaxy virial radius. We present a series of hydrodynamic simulations of major mergers of disc galaxies, that for the first time include a diffuse, rotating, hot gaseous halo. Through cooling and accretion, the hot halo can dissipate and refuel the cold gas disc before and after a merger. This cold gas can subsequently form stars, thus impacting the morphology and kinematics of the remnant. Simulations of isolated systems with total mass M˜ 1012 M⊙ show a nearly constant star formation rate of ˜5 M⊙ yr-1 if the hot gaseous halo is included, while the star formation rate declines exponentially if it is neglected. We conduct a detailed study of the star formation efficiency during mergers and find that the presence of a hot gaseous halo reduces the starburst efficiency (e= 0.5) compared to simulations without a hot halo (e= 0.68). The ratio of the peak star formation rate in mergers compared to isolated galaxies is reduced by almost an order of magnitude (from 30 to 5). Moreover, we find cases where the stellar mass of the merger remnant is lower than the sum of the stellar mass of the two progenitor galaxies when evolved in isolation. This suggests a revision to semi-analytic galaxy formation models which assume that a merger always leads to enhanced star formation. In addition, the bulge-to-total ratio after a major merger is decreased if hot gas is included in the halo, due to the formation of a more massive stellar disc in the remnant. We show that adding the hot gas component has a significant effect on the

  16. FIRST INVESTIGATION OF THE COMBINED IMPACT OF IONIZING RADIATION AND MOMENTUM WINDS FROM A MASSIVE STAR ON A SELF-GRAVITATING CORE

    SciTech Connect

    Ngoumou, Judith; Hubber, David; Dale, James E.; Burkert, Andreas

    2015-01-01

    Massive stars shape the surrounding interstellar matter (ISM) by emitting ionizing photons and ejecting material through stellar winds. To study the impact of the momentum from the wind of a massive star on the surrounding neutral or ionized material, we implemented a new HEALPix-based momentum-conserving wind scheme in the smoothed particle hydrodynamics (SPH) code SEREN. A qualitative study of the impact of the feedback from an O7.5-like star on a self-gravitating sphere shows that on its own, the transfer of momentum from a wind onto cold surrounding gas has both a compressing and dispersing effect. It mostly affects gas at low and intermediate densities. When combined with a stellar source's ionizing ultraviolet (UV) radiation, we find the momentum-driven wind to have little direct effect on the gas. We conclude that during a massive star's main sequence, the UV ionizing radiation is the main feedback mechanism shaping and compressing the cold gas. Overall, the wind's effects on the dense gas dynamics and on the triggering of star formation are very modest. The structures formed in the ionization-only simulation and in the combined feedback simulation are remarkably similar. However, in the combined feedback case, different SPH particles end up being compressed. This indicates that the microphysics of gas mixing differ between the two feedback simulations and that the winds can contribute to the localized redistribution and reshuffling of gas.

  17. Effect of neutral collision and radiative heat-loss function on self-gravitational instability of viscous thermally conducting partially-ionized plasma

    SciTech Connect

    Kaothekar, Sachin; Soni, Ghanshyam D.; Chhajlani, Rajendra K.

    2012-12-15

    The problem of thermal instability and gravitational instability is investigated for a partially ionized self-gravitating plasma which has connection in astrophysical condensations. We use normal mode analysis method in this problem. The general dispersion relation is derived using linearized perturbation equations of the problem. Effects of collisions with neutrals, radiative heat-loss function, viscosity, thermal conductivity and magnetic field strength, on the instability of the system are discussed. The conditions of instability are derived for a temperature-dependent and density-dependent heat-loss function with thermal conductivity. Numerical calculations have been performed to discuss the effect of various physical parameters on the growth rate of the gravitational instability. The temperature-dependent heat-loss function, thermal conductivity, viscosity, magnetic field and neutral collision have stabilizing effect, while density-dependent heat-loss function has a destabilizing effect on the growth rate of the gravitational instability. With the help of Routh-Hurwitz's criterion, the stability of the system is discussed.

  18. Weak asymptotic methods for 3-D self-gravitating pressureless fluids. Application to the creation and evolution of solar systems from the fully nonlinear Euler-Poisson equations

    NASA Astrophysics Data System (ADS)

    Colombeau, M.

    2015-06-01

    We construct a family of classical continuous functions S(x, y, z, t, ɛ) which tend to satisfy asymptotically the system of selfgravitating pressureless fluids when ɛ → 0. This produces a weak asymptotic method in the sense of Danilov, Omel'yanov, and Shelkovich. The construction is based on a family of two ordinary differential equations (ODEs) (one for the continuity equation and one for the Euler equation) in classical Banach spaces of continuous functions. This construction applies to 3-D self-gravitating pressureless fluids even in presence of point and string concentrations of matter. The method is constructive which permits to check numerically from standard methods for ODEs that these functions tend to the known or admitted solutions when the latter exist. As a direct application, we present a simulation of formation and evolution of a planetary system from a rotating disk of dust: a theorem in this paper asserts that the observed results are a depiction of functions that satisfy the system with arbitrary precision.

  19. Effect of self-gravitation and dust-charge fluctuations on the shielding and energy loss of NxM projectiles in a collisional dusty plasma

    SciTech Connect

    Sarwar, M. Adnan; Mirza, Arshad M.

    2007-03-15

    A simple derivation of the electrostatic potential and energy loss of NxM test charge projectiles traveling through dusty plasma has been presented. The effect of dust-charge fluctuations, dust neutral collisions, and self-gravitation on the shielded potential and energy loss of charge projectiles has been investigated both analytically as well as numerically. An interference contribution of these projectiles to the shielded potential and energy loss has been observed, which depends upon their relative orientation and separation distance. A comparison has been made for correlated and uncorrelated motion of the two projectiles. The amplitude of the shielded potential is enhanced with the increase of dust Jeans frequency for separation less than the effective Debye length. The dust-charge fluctuations produce a potential well for a slow charge relaxation rate and energy is gained, not lost, by the test charge projectiles. However, a fast charge relaxation rate with a fixed value of Jeans frequency enhances the energy loss. The dust neutral collisions are also found to enhance the energy loss for the test charge velocities greater than the dust acoustic speeds. The present investigation might be useful to explain the coagulation of dust particles such as those in molecular clouds, the interstellar medium, comet tails, planetary rings, etc.

  20. Evolution of gas in debris discs

    NASA Astrophysics Data System (ADS)

    Kral, Quentin; Wyatt, Mark; Pringle, Jim

    2015-12-01

    A non negligible quantity of gas has been discovered in an increasing number of debris disc systems. ALMA high sensitivity and high resolution is changing our perception of the gaseous component of debris discs as CO is discovered in systems where it should be rapidly photodissociated. It implies that there is a replenishment mechanism and that the observed gas is secondary. Past missions such as Herschel probed the atomic part of the gas through O I and C II emission lines. Gas science in debris discs is still in its infancy, and these new observations raise a handful of questions concerning the mechanisms to create the gas and about its evolution in the planetary system when it is released. The latter question will be addressed in this talk as a self-consistent gas evolution scenario is proposed and is compared to observations for the peculiar case of β Pictoris.Our model proposes that carbon and oxygen within debris discs are created due to photodissociation of CO which is itself created from the debris disc dust (due to grain-grain collisions or photodesorption). The evolution of the carbon atoms is modelled as viscous spreading, with viscosity parameterised using an α model. The temperature, ionisation fraction and population levels of carbon are followed with a PDR model called Cloudy, which is coupled to the dynamical viscous α model. Only carbon gets ionised due to its lower ionisation potential than oxygen. The carbon gas disc can end up with a high ionisation fraction due to strong FUV radiation field. A high ionisation fraction means that the magnetorotational instability (MRI) is very active, so that α is very high. Gas density profiles can be worked out for different input parameters such as the α value, the CO input rate, the location of the input and the incoming radiation field. Observability predictions can be made for future observations, and our model is tested on β Pictoris observations. This new gas evolution model fits the carbon and CO

  1. Holographic optical disc

    NASA Astrophysics Data System (ADS)

    Zhou, Gan; An, Xin; Pu, Allen; Psaltis, Demetri; Mok, Fai H.

    1999-11-01

    The holographic disc is a high capacity, disk-based data storage device that can provide the performance for next generation mass data storage needs. With a projected capacity approaching 1 terabit on a single 12 cm platter, the holographic disc has the potential to become a highly efficient storage hardware for data warehousing applications. The high readout rate of holographic disc makes it especially suitable for generating multiple, high bandwidth data streams such as required for network server computers. Multimedia applications such as interactive video and HDTV can also potentially benefit from the high capacity and fast data access of holographic memory.

  2. Entropy of gaseous boron monobromide

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Feng; Peng, Xiao-Long; Zhang, Lie-Hui; Wang, Chao-Wen; Jia, Chun-Sheng

    2017-10-01

    We present an explicit representation of molar entropy for gaseous boron monobromide in terms of experimental values of only three molecular constants. Fortunately, through comparison of theoretically calculated results and experimental data, we find that the molar entropy of gaseous boron monobromide can be well predicted by employing the improved Manning-Rosen oscillator to describe the internal vibration of boron monobromide molecule. The present approach provides also opportunities for theoretical predictions of molar entropy for other gases with no use of large amounts of experimental spectroscopy data.

  3. Zonal flow evolution and overstability in accretion discs

    NASA Astrophysics Data System (ADS)

    Vanon, R.; Ogilvie, G. I.

    2017-04-01

    This work presents a linear analytical calculation on the stability and evolution of a compressible, viscous self-gravitating (SG) Keplerian disc with both horizontal thermal diffusion and a constant cooling time-scale when an axisymmetric structure is present and freely evolving. The calculation makes use of the shearing sheet model and is carried out for a range of cooling times. Although the solutions to the inviscid problem with no cooling or diffusion are well known, it is non-trivial to predict the effect caused by the introduction of cooling and of small diffusivities; this work focuses on perturbations of intermediate wavelengths, therefore representing an extension to the classical stability analysis on thermal and viscous instabilities. For density wave modes, the analysis can be simplified by means of a regular perturbation analysis; considering both shear and thermal diffusivities, the system is found to be overstable for intermediate and long wavelengths for values of the Toomre parameter Q ≲ 2; a non-SG instability is also detected for wavelengths ≳18H, where H is the disc scale-height, as long as γ ≲ 1.305. The regular perturbation analysis does not, however, hold for the entropy and potential vorticity slow modes as their ideal growth rates are degenerate. To understand their evolution, equations for the axisymmetric structure's amplitudes in these two quantities are analytically derived and their instability regions obtained. The instability appears boosted by increasing the value of the adiabatic index and of the Prandtl number, while it is quenched by efficient cooling.

  4. Artificial Disc Replacement

    MedlinePlus

    ... also disc replacements designed for use in the cervical spine (the neck). These devices have only been used ... of your spine increases the risk of significant injury during this type of spinal surgery. Back pain ...

  5. Bryan total disc arthroplasty: a replacement disc for cervical disc disease

    PubMed Central

    Wenger, Markus; Markwalder, Thomas-Marc

    2010-01-01

    Total disc arthroplasty is a new option in the treatment of cervical degenerative disc disease. Several types of cervical disc prostheses currently challenge the gold-standard discectomy and fusion procedures. This review describes the Bryan Cervical Disc System and presents the Bryan prosthesis, its indications, surgical technique, complications, and outcomes, as given in the literature. PMID:22915917

  6. Magnetic fields in giant planet formation and protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Keith, Sarah Louise

    2015-12-01

    Protoplanetary discs channel accretion onto their host star. How this is achieved is critical to the growth of giant planets which capture their massive gaseous atmosphere from the surrounding flow. Theoretical studies find that an embedded magnetic field could power accretion by hydromagnetic turbulence or torques from a large-scale field. This thesis presents a study of the inuence of magnetic fields in three key aspects of this process: circumplanetary disc accretion, gas flow across gaps in protoplanetary discs, and magnetic-braking in accretion discs. The first study examines the conditions needed for self-consistent accretion driven by magnetic fields or gravitational instability. Models of these discs typically rely on hydromagnetic turbulence as the source of effective viscosity. However, magnetically coupled,accreting regions may be so limited that the disc may not support sufficient inflow. An improved Shakura-Sunyaev ? disc is used to calculate the ionisation fraction and strength of non-ideal effects. Steady magnetically-driven accretion is limited to the thermally ionised, inner disc so that accretion in the remainder of the disc is time-dependent. The second study addresses magnetic flux transport in an accretion gap evacuated by a giant planet. Assuming the field is passively drawn along with the gas, the hydrodynamical simulation of Tanigawa, Ohtsuki & Machida (2012) is used for an a posteriori analysis of the gap field structure. This is used to post-calculate magnetohydrodynamical quantities. This assumption is self-consistent as magnetic forces are found to be weak, and good magnetic coupling ensures the field is frozen into the gas. Hall drift dominates across much of the gap, with the potential to facilitate turbulence and modify the toroidal field according to the global field orientation. The third study considers the structure and stability of magnetically-braked accretion discs. Strong evidence for MRI dead-zones has renewed interest in

  7. The formation of the Hubble sequence of disc galaxies: the effects of early viscous evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Wyse, Rosemary F. G.

    2000-04-01

    We investigate a model of disc galaxies whereby viscous evolution of the gaseous disc drives material inwards to form a protobulge. We start from the standard picture of disc formation through the settling of gas into a dark halo potential well, with the disc initially coming into centrifugal equilibrium with detailed conservation of angular momentum. We derive generic analytic solutions for the disc-halo system after adiabatic compression of the dark halo, with free choice of the input virialized dark halo density profile and of the specific angular momentum distribution. We derive limits on the final density profile of the halo in the central regions. Subsequent viscous evolution of the disc is modelled by a variation of the specific angular momentum distribution of the disc, providing analytic solutions to the final disc structure. The assumption that the viscous evolution time-scale and the star formation time-scale are similar leads to predictions of the properties of the stellar components. Focusing on small `exponential' bulges, i.e., ones that may be formed through a disc instability, we investigate the relationship between the assumed initial conditions, such as halo `formation', or assembly, redshift zf, spin parameter λ, baryonic fraction F, and final disc properties such as global star formation time-scale, gas fraction, and bulge-to-disc ratio. We find that the present properties of discs, such as the scalelength, are compatible with a higher initial formation redshift if the redistribution by viscous evolution is included than if it is ignored. We also quantify the dependence of final disc properties on the ratio Fλ, thus including the possibility that the baryonic fraction varies from galaxy to galaxy, as perhaps may be inferred from the observations.

  8. The origin of thick discs

    NASA Astrophysics Data System (ADS)

    Comerón, Sébastien

    2015-03-01

    Thick discs are defined to be disc-like components with a scale height larger than that of the classical discs. They are ubiquitous (Yoachim & Dalcanton 2006; Comerón et al. 2011a), they are made of mostly old and metal-poor stars and are most easily detected in close to edge-on galaxies. Their origin has been considered mysterious and several formation theories have been proposed: • The thick disc being formed secularly by thin disc stars heated by disc overdensities such as giant molecular clouds or spiral arms (Villumsen 1985, ApJ, 290, 75) and by stars moved outwards from their original orbits by radial migration mechanisms (Schönrich & Binney 2009). • The thick disc being formed by the heating of the thin disc by satellites (Quinn et al. 1993) and the tidal stripping of them (Abadi et al. 2003). • The thick disc being formed fast and already thick at high redshift in an highly unstable disc. Inside that thick disc, a thin disc would form afterwards as suggested by Elemgreen & Elmegreen (2006). • The thick disc being formed originally thick at high redshift by the merger of gas-rich protogalactic fragments and a thin disc forming afterwards within it (Brook et al. 2007). The first mechanism is a secular evolution mechanism. The time-scale of the second one is dependent on the merger history of the main galaxy. In the two last mechanisms, the thick disc forms already thick in a short time-scale at high redshift. Recent Milky Way studies, (see, e.g., Bovy et al. 2012), have shown indications that there is no discontinuity between the thin and the thick disc chemical and kinematic properties. Instead, those studies indicate the presence of a monotonic distribution of disc thicknesses. This would suggest a secular origin for the Milky Way thick disc. Studies in external galaxies (Yoachim & Dalcanton 2006; Comerón et al. 2011b), have shown that low-mass disc galaxies have thick disc relative masses much larger than those found in large-mass galaxies

  9. Gaseous fuel nuclear reactor research

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  10. Gaseous fuel nuclear reactor research

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  11. Recent work on gaseous detonations

    NASA Astrophysics Data System (ADS)

    Nettleton, M. A.

    The paper reviews recent progress in the field of gaseous detonations, with sections on shock diffraction and reflection, the transition to detonation, hybrid, spherically-imploding, and galloping and stuttering fronts, their structure, their transmission and quenching by additives, the critical energy for initiation and detonation of more unusual fuels. The final section points out areas where our understanding is still far from being complete and contains some suggestions of ways in which progress might be made.

  12. Recent topics on gaseous detectors

    NASA Astrophysics Data System (ADS)

    Sauli, Fabio

    2010-11-01

    Started in the late sixties by the invention of the multi-wire proportional chamber (MWPC), the development of modern gaseous detectors has continued for decades and is still blooming, with the introduction of new generations of innovative devices having superior position accuracy, time resolutions and rate capability. Motivated mostly by the requirements of high energy physics, the novel devices find however applications in many other fields, such as astrophysics and medical diagnostics.

  13. Planar Reflection of Gaseous Detonations

    NASA Astrophysics Data System (ADS)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  14. Kozai-Lidov disc instability

    NASA Astrophysics Data System (ADS)

    Lubow, Stephen H.; Ogilvie, Gordon I.

    2017-08-01

    Recent results by Martin et al. showed in 3D smoothed particle hydrodynamics simulations that tilted discs in binary systems can be unstable to the development of global, damped Kozai-Lidov (KL) oscillations in which the discs exchange tilt for eccentricity. We investigate the linear stability of KL modes for tilted inviscid discs under the approximations that the disc eccentricity is small and the disc remains flat. By using 1D equations, we are able to probe regimes of large ratios of outer to inner disc edge radii that are realistic for binary systems of hundreds of astronomical unit separations and are not easily probed by multidimensional simulations. For order unity binary mass ratios, KL instability is possible for a window of disc aspect ratios H/r in the outer parts of a disc that roughly scale as (nb/n)2 ≲ H/r ≲ nb/n, for binary orbital frequency nb and orbital frequency n at the disc outer edge. We present a framework for understanding the zones of instability based on the determination of branches of marginally unstable modes. In general, multiple growing eccentric KL modes can be present in a disc. Coplanar apsidal-nodal precession resonances delineate instability branches. We determine the range of tilt angles for unstable modes as a function of disc aspect ratio. Unlike the KL instability for free particles that involves a critical (minimum) tilt angle, disc instability is possible for any non-zero tilt angle depending on the disc aspect ratio.

  15. The Galactic stellar disc

    NASA Astrophysics Data System (ADS)

    Feltzing, S.; Bensby, T.

    2008-12-01

    The study of the Milky Way stellar discs in the context of galaxy formation is discussed. In particular, we explore the properties of the Milky Way disc using a new sample of about 550 dwarf stars for which we have recently obtained elemental abundances and ages based on high-resolution spectroscopy. For all the stars we also have full kinematic information as well as information about their stellar orbits. We confirm results from previous studies that the thin and the thick discs have distinct abundance patterns. But we also explore a larger range of orbital parameters than what has been possible in our previous studies. Several new results are presented. We find that stars that reach high above the Galactic plane and have eccentric orbits show remarkably tight abundance trends. This implies that these stars formed out of well-mixed gas that had been homogenized over large volumes. We find some evidence that suggest that the event that most likely caused the heating of this stellar population happened a few billion years ago. Through a simple, kinematic exploration of stars with super-solar [Fe/H], we show that the solar neighbourhood contains metal-rich, high velocity stars that are very likely associated with the thick disc. Additionally, the HR1614 moving group and the Hercules and Arcturus stellar streams are discussed and it is concluded that, probably, a large fraction of the groups and streams so far identified in the disc are the result of evolution and interactions within the stellar disc rather than being dissolved stellar clusters or engulfed dwarf galaxies. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Also based on observations collected at the Nordic Optical Telescope on La Palma, Spain, and at the European Southern Observatories on La Silla and Paranal, Chile, Proposals no. 65.L-0019(B), 67.B-0108(B), 69.B-0277.

  16. The first velocity space image of a planetary debris disc orbiting a white dwarf

    NASA Astrophysics Data System (ADS)

    Manser, Christopher James

    2015-12-01

    Since the first ESS meeting, dusty debris discs at white dwarfs have been firmly established as signposts of evolved planetary systems. We have identified a small number of systems where the circumstellar dust is accompanied by gas. The emission lines from these gaseous components are tracers of dynamic activity in these remnant planetary environments, and provide unparalleled insight into the formation and evolution of the debris discs, and into the properties of the parent planetesimals.Here we present the twelve years of spectroscopy of the prototypical gas disc at SDSS J1228+1040, revealing a spectacular long-term evolution in the morphology of the emission line profiles. Using Doppler tomography, we constructed an image of the gaseous disc in velocity space, and show that the observations are consistent with the precession of a fixed intensity pattern on a period of 27 ± 3 years. We speculate that the underlying cause of this dynamical activity is either a young, not fully circularised disc, or a perturbation of a previously stable and quiescent disc.

  17. Self-gravitating branes again

    NASA Astrophysics Data System (ADS)

    Kofinas, Georgios; Irakleidou, Maria

    2014-03-01

    We raise on theoretical grounds the question of the physical relevance of Israel matching conditions and their generalizations to higher codimensions, the standard cornerstone of the braneworld and other membrane scenarios. Our reasoning is based on the incapability of the conventional matching conditions to accept the Nambu-Goto probe limit, the inconsistency of codimension-2 and -3 classical defects for D=4 and the probable inconsistency of high enough codimensional defects for any D since there is no high enough Lovelock density to support them. We propose alternative matching conditions which seem to overcome the previous puzzles. Instead of varying the brane-bulk action with respect to the bulk metric at the brane position, we vary with respect to the brane embedding fields so that the gravitational backreaction is included ("gravitating Nambu-Goto matching conditions"). Here, we consider in detail the case of a codimension-2 brane in 6-dim Einstein-Gauss-Bonnet gravity, prove its consistency for an axially symmetric cosmological configuration and show that the theory possesses richer structure compared to the standard theory. The cosmologies found have the Friedmann behavior and extra correction terms. For a radiation brane one solution avoids a cosmological singularity and undergoes accelerated expansion near the minimum scale factor. In the presence of an induced gravity term, there naturally appears in the theory the effective cosmological constant scale λ /(M64rc2), which for a brane tension λ ˜M64 (e.g. TeV4) and rc˜H0-1 gives the observed value of the cosmological constant.

  18. Revival of the Jumping Disc

    ERIC Educational Resources Information Center

    Ucke, C.; Schlichting, H-J.

    2009-01-01

    Snap discs made of bimetal have many technical applications as thermostats. Jumping discs are a toy version of such snap discs. Besides giving technical information, we describe physical investigations. We show especially how, through simple measurements and calculations, you can determine the initial speed ([approximately equal to]3.5 m…

  19. The Chemistry of Optical Discs.

    ERIC Educational Resources Information Center

    Birkett, David

    2002-01-01

    Explains the chemistry used in compact discs (CD), digital versatile discs (DVD), and magneto-optical (MO) discs focusing on the steps of initial creation of the mold, the molding of the polycarbonate, the deposition of the reflective layers, the lacquering of the CDs, and the bonding of DVDs. (Contains 15 references.) (YDS)

  20. Revival of the Jumping Disc

    ERIC Educational Resources Information Center

    Ucke, C.; Schlichting, H-J.

    2009-01-01

    Snap discs made of bimetal have many technical applications as thermostats. Jumping discs are a toy version of such snap discs. Besides giving technical information, we describe physical investigations. We show especially how, through simple measurements and calculations, you can determine the initial speed ([approximately equal to]3.5 m…

  1. How do accretion discs break?

    NASA Astrophysics Data System (ADS)

    Dogan, Suzan

    2016-07-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.

  2. Dynamical friction on hot bodies in opaque, gaseous media

    NASA Astrophysics Data System (ADS)

    Masset, Frédéric S.; Velasco Romero, David A.

    2017-03-01

    We consider the gravitational force exerted on a point-like perturber of mass M travelling within a uniform gaseous, opaque medium at constant velocity V. The perturber irradiates the surrounding gas with luminosity L. The diffusion of the heat released is modelled with a uniform thermal diffusivity χ. Using linear perturbation theory, we show that the force exerted by the perturbed gas on the perturber differs from the force without radiation (or standard dynamical friction). Hot, underdense gas trails the mass, which gives rise to a new force component, the heating force, with direction +V, thus opposed to the standard dynamical friction. In the limit of low Mach numbers, the heating force has expression F_heat=γ (γ -1)GML/(2χ c_s^2), cs being the sound speed and γ the ratio of specific heats. In the limit of large Mach numbers, Fheat = (γ - 1)GML/(χV2)f(rminV/4χ), where f is a function that diverges logarithmically as rmin tends to zero. Remarkably, the force in the low Mach number limit does not depend on the velocity. The equilibrium speed, when it exists, is set by the cancellation of the standard dynamical friction and heating force. In the low Mach number limit, it scales with the luminosity-to-mass ratio of the perturber. Using the above results suggests that Mars- to Earth-sized planetary embryos heated by accretion in a gaseous protoplanetary disc should have eccentricities and inclinations that amount to a sizeable fraction of the disc's aspect ratio, for conditions thought to prevail at a few astronomical units.

  3. The DISC Quotient

    NASA Astrophysics Data System (ADS)

    Elliott, John R.; Baxter, Stephen

    2012-09-01

    D.I.S.C: Decipherment Impact of a Signal's Content. The authors present a numerical method to characterise the significance of the receipt of a complex and potentially decipherable signal from extraterrestrial intelligence (ETI). The purpose of the scale is to facilitate the public communication of work on any such claimed signal, as such work proceeds, and to assist in its discussion and interpretation. Building on a "position" paper rationale, this paper looks at the DISC quotient proposed and develops the algorithmic steps and comprising measures that form this post detection strategy for information dissemination, based on prior work on message detection, decipherment. As argued, we require a robust and incremental strategy, to disseminate timely, accurate and meaningful information, to the scientific community and the general public, in the event we receive an "alien" signal that displays decipherable information. This post-detection strategy is to serve as a stepwise algorithm for a logical approach to information extraction and a vehicle for sequential information dissemination, to manage societal impact. The "DISC Quotient", which is based on signal analysis processing stages, includes factors based on the signal's data quantity, structure, affinity to known human languages, and likely decipherment times. Comparisons with human and other phenomena are included as a guide to assessing likely societal impact. It is submitted that the development, refinement and implementation of DISC as an integral strategy, during the complex processes involved in post detection and decipherment, is essential if we wish to minimize disruption and optimize dissemination.

  4. Herniated Lumbar Disc

    MedlinePlus

    ... at and just below the waist. A herniated lumbar disc can press on the nerves in the spine and may cause pain, numbness, ... point injections do not help heal a herniated lumbar ... on and irritating the nerves, causing symptoms of pain and weakness. The most ...

  5. The Teddy Bears' Disc.

    ERIC Educational Resources Information Center

    Laurillard, Diana

    1985-01-01

    Reports an evaluation of the Teddy Bear disc, an interactive videodisc developed at the Open University for a second-level course in metallurgy and materials technology. Findings from observation of students utilizing the videodisc are reviewed; successful design features and design problems are considered; and development costs are outlined. (MBR)

  6. Hybrid cervical disc arthroplasty.

    PubMed

    Tu, Tsung-Hsi; Wu, Jau-Ching; Cheng, Henrich; Mummaneni, Praveen V

    2017-01-01

    For patients with multilevel cervical stenosis at nonadjacent segments, one of the traditional approaches has included a multilevel fusion of the abnormal segments as well as the intervening normal segment. In this video we demonstrate an alternative treatment plan with tailored use of a combination of anterior cervical discectomy and fusion (ACDF) and cervical disc arthroplasty (CDA) with an intervening skipped level. The authors present the case of a 72-year-old woman with myeloradiculopathy and a large disc herniation with facet joint degeneration at C3-4 and bulging disc at C5-6. After nonoperative treatment failed, she underwent a single-level ACDF at C3-4 and single-level arthroplasty at C5-6, which successfully relieved her symptoms. No intervention was performed at the normal intervening C4-5 segment. By using ACDF combined with arthroplasty, the authors have avoided a 3-level fusion for this patient and maintained the range of motion of 2 disc levels. The video can be found here: https://youtu.be/OrxcPUBvqLk .

  7. The Teddy Bears' Disc.

    ERIC Educational Resources Information Center

    Laurillard, Diana

    1985-01-01

    Reports an evaluation of the Teddy Bear disc, an interactive videodisc developed at the Open University for a second-level course in metallurgy and materials technology. Findings from observation of students utilizing the videodisc are reviewed; successful design features and design problems are considered; and development costs are outlined. (MBR)

  8. Planet-disc interaction in laminar and turbulent discs

    NASA Astrophysics Data System (ADS)

    Stoll, Moritz H. R.; Picogna, Giovanni; Kley, Wilhelm

    2017-07-01

    In weakly ionised discs turbulence can be generated through the vertical shear instability (VSI). Embedded planets are affected by a stochastic component in the torques acting on them, which can impact their migration. In this work we study the interplay between a growing planet embedded in a protoplanetary disc and the VSI turbulence. We performed a series of 3D hydrodynamical simulations for locally isothermal discs with embedded planets in the mass range from 5 to 100 Earth masses. We study planets embedded in an inviscid disc that is VSI unstable, becomes turbulent, and generates angular momentum transport with an effective α = 5 × 10-4. This is compared to the corresponding viscous disc using exactly this α-value. In general we find that the planets have only a weak impact on the disc turbulence. Only for the largest planet (100 M⊕) does the turbulent activity become enhanced inside of the planet. The depth and width of a gap created by the more massive planets (30,100 M⊕) in the turbulent disc equal exactly that of the corresponding viscous case, leading to very similar torque strengths acting on the planet, with small stochastic fluctuations for the VSI disc. At the gap edges vortices are generated that are stronger and longer-lived in the VSI disc. Low mass planets (with Mp ≤ 10 M⊕) do not open gaps in the disc in either case, but generate for the turbulent disc an overdensity behind the planet that exerts a significant negative torque. This can boost the inward migration in VSI turbulent discs well above the Type I rate. Owing to the finite turbulence level in realistic 3D discs the gap depth will always be limited and migration will not stall in inviscid discs.

  9. 26 CFR 1.6011-2 - Returns, etc., of DISC's and former DISC's.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 13 2011-04-01 2011-04-01 false Returns, etc., of DISC's and former DISC's. 1...., of DISC's and former DISC's. (a) Records and information. Every DISC and former DISC (as defined in..., statements, and special returns. Thus, for example, a DISC is required to maintain the books of account or...

  10. The effect of gaseous ozone treatment on egg components.

    PubMed

    Fuhrmann, Herbert; Rupp, Nadine; Büchner, Andrea; Braun, Peggy

    2010-03-15

    Because of the salmonella problem in poultry, disinfection technologies are necessary. Ozone is a strong oxidant used for the disinfection of surfaces, drinking water and foods. However, since ozone not only destroys bacteria but may also damage eggs, it is necessary to clarify the effects of ozone treatment on hatching egg components. In this study, doses of gaseous ozone ranging from 10 to 50 mL L(-1) were tested. The vitamin A and E contents and fatty acid composition of the egg yolk were determined. To detect possible damage to the DNA of the germ disc, single-cell gel electrophoresis was used. Moreover, free SH groups were measured in the egg white. The soluble cuticula proteins were analysed by polyacrylamide gel electrophoresis. The yolk was not significantly affected by ozone treatment. However, the DNA of the germ disc was attacked and a significant decrease in free SH groups in the egg white was recorded at 50 mL L(-1) ozone. Even at low ozone doses the soluble cuticula proteins were completely destroyed. Significant alterations of egg components were caused by 50 mL L(-1) ozone. At lower ozone doses the oxidative processes occurred mainly at the egg surface and are therefore probably harmless to the developing embryo.

  11. Hydrogen and Gaseous Fuel Safety and Toxicity

    SciTech Connect

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  12. Spiral arms and disc stability in the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Tenjes, P.; Tuvikene, T.; Tamm, A.; Kipper, R.; Tempel, E.

    2017-03-01

    Aims: Density waves are often considered as the triggering mechanism of star formation in spiral galaxies. Our aim is to study relations between different star formation tracers (stellar UV and near-IR radiation and emission from H i, CO, and cold dust) in the spiral arms of M 31, to calculate stability conditions in the galaxy disc, and to draw conclusions about possible star formation triggering mechanisms. Methods: We selected fourteen spiral arm segments from the de-projected data maps and compared emission distributions along the cross sections of the segments in different datasets to each other, in order to detect spatial offsets between young stellar populations and the star-forming medium. By using the disc stability condition as a function of perturbation wavelength and distance from the galaxy centre, we calculated the effective disc stability parameters and the least stable wavelengths at different distances. For this we used a mass distribution model of M 31 with four disc components (old and young stellar discs, cold and warm gaseous discs) embedded within the external potential of the bulge, the stellar halo, and the dark matter halo. Each component is considered to have a realistic finite thickness. Results: No systematic offsets between the observed UV and CO/far-IR emission across the spiral segments are detected. The calculated effective stability parameter has a lowest value of Qeff ≃ 1.8 at galactocentric distances of 12-13 kpc. The least stable wavelengths are rather long, with the lowest values starting from ≃ 3 kpc at distances R > 11 kpc. Conclusions: The classical density wave theory is not a realistic explanation for the spiral structure of M 31. Instead, external causes should be considered, such as interactions with massive gas clouds or dwarf companions of M 31.

  13. Gas and stellar spiral structures in tidally perturbed disc galaxies

    NASA Astrophysics Data System (ADS)

    Pettitt, Alex R.; Tasker, Elizabeth J.; Wadsley, James W.

    2016-06-01

    Tidal interactions between disc galaxies and low-mass companions are an established method for generating galactic spiral features. In this work, we present a study of the structure and dynamics of spiral arms driven in interactions between disc galaxies and perturbing companions in 3D N-body/smoothed hydrodynamical numerical simulations. Our specific aims are to characterize any differences between structures formed in the gas and stars from a purely hydrodynamical and gravitational perspective, and to find a limiting case for spiral structure generation. Through analysis of a number of different interacting cases, we find that there is very little difference between arm morphology, pitch angles and pattern speeds between the two media. The main differences are a minor offset between gas and stellar arms, clear spurring features in gaseous arms, and different radial migration of material in the stronger interacting cases. We investigate the minimum mass of a companion required to drive spiral structure in a galactic disc, finding the limiting spiral generation cases with companion masses of the order of 1 × 109 M⊙, equivalent to only 4 per cent of the stellar disc mass, or 0.5 per cent of the total galactic mass of a Milky Way analogue.

  14. LUMBAR DISC HERNIATION

    PubMed Central

    Vialle, Luis Roberto; Vialle, Emiliano Neves; Suárez Henao, Juan Esteban; Giraldo, Gustavo

    2015-01-01

    Lumbar disc herniation is the most common diagnosis among the degenerative abnormalities of the lumbar spine (affecting 2 to 3% of the population), and is the principal cause of spinal surgery among the adult population. The typical clinical picture includes initial lumbalgia, followed by progressive sciatica. The natural history of disc herniation is one of rapid resolution of the symptoms (four to six weeks). The initial treatment should be conservative, managed through medication and physiotherapy, sometimes associated with percutaneous nerve root block. Surgical treatment is indicated if pain control is unsuccessful, if there is a motor deficit greater than grade 3, if there is radicular pain associated with foraminal stenosis, or if cauda equina syndrome is present. The latter represents a medical emergency. A refined surgical technique, with removal of the extruded fragment and preservation of the ligamentum flavum, resolves the sciatic symptoms and reduces the risk of recurrence over the long term. PMID:27019834

  15. Mechanotransduction in intervertebral discs

    PubMed Central

    Tsai, Tsung-Ting; Cheng, Chao-Min; Chen, Chien-Fu; Lai, Po-Liang

    2014-01-01

    Mechanotransduction plays a critical role in intracellular functioning—it allows cells to translate external physical forces into internal biochemical activities, thereby affecting processes ranging from proliferation and apoptosis to gene expression and protein synthesis in a complex web of interactions and reactions. Accordingly, aberrant mechanotransduction can either lead to, or be a result of, a variety of diseases or degenerative states. In this review, we provide an overview of mechanotransduction in the context of intervertebral discs, with a focus on the latest methods of investigating mechanotransduction and the most recent findings regarding the means and effects of mechanotransduction in healthy and degenerative discs. We also provide some discussion of potential directions for future research and treatments. PMID:25267492

  16. Biomechanics of Disc Degeneration

    PubMed Central

    Palepu, V.; Kodigudla, M.; Goel, V. K.

    2012-01-01

    Disc degeneration and associated disorders are among the most debated topics in the orthopedic literature over the past few decades. These may be attributed to interrelated mechanical, biochemical, and environmental factors. The treatment options vary from conservative approaches to surgery, depending on the severity of degeneration and response to conservative therapies. Spinal fusion is considered to be the “gold standard” in surgical methods till date. However, the association of adjacent level degeneration has led to the evolution of motion preservation technologies like spinal arthroplasty and posterior dynamic stabilization systems. These new technologies are aimed to address pain and preserve motion while maintaining a proper load sharing among various spinal elements. This paper provides an elaborative biomechanical review of the technologies aimed to address the disc degeneration and reiterates the point that biomechanical efficacy followed by long-term clinical success will allow these nonfusion technologies as alternatives to fusion, at least in certain patient population. PMID:22745914

  17. A new criterion for bar-forming instability in rapidly rotating gaseous and stellar systems. 1: Axisymmetric form

    NASA Technical Reports Server (NTRS)

    Christodoulou, Dimitris M.; Shlosman, Isaac; Tohline, Joel E.

    1995-01-01

    We analyze previous results on the stability of uniformly and differentialy rotating, self-gravitating, gaseous and stellar, axisymmetric systems to derive a new stability criterion for the appearance of torodial, m = 2 intermediate or I-modes and bar modes. In the process, we demonstrate that the bar modes in stellar systems and the m = 2 I-modes in gaseous systems have many common physical characteristics and only one substantial difference: because of the anisotropy of the stress tensor, dynamical instability sets in at lower rotation in stellar systems. This difference is reflected also in the new stability criterion. The new stability parameter alpha equals (T(sub J))/(absolute value of W) is formulated first for uniformly rotating systems and is based on the angular momentum content rather than on the energy content of a system. (T(sub J) is defined as ((L)(Omega(sub J)))/2; L is the total angular momentum; Omega(sub J) is the Jeans frequency introduced by self-gravity; and W is the total gravitational potential energy.) For stability of stellar systems alpha less than or equal to 0.254-0.258 while alpha less than or equal to 0.341-0.354 for stability of gaseous systems. For uniform rotation, one can write alpha = ((ft)/2)(exp 1/2), where t is defined as T/(absolute value of W), T is the total kinetic energy due to rotation, and f is a function characteristic of the topology/connectedness and the geometric shape of a system. Equivalently, alpha equals t/(chi), where chi is defined as Omega/Omega(sub J) and Omega is the rotation frequency. Using these forms, alpha can be extended to and calculated for a variety of differentially rotating, gaseous and stellar, axisymmetric disk and spheroidal models whose equilibrium structures and stability characteristics are known. In this paper, we also estimate alpha for gaseous torodial models and for stellar disk systems embedded in an inert or responsive 'halo.' We find that the new stability criterion holds equally

  18. Total disc replacement.

    PubMed

    Vital, J-M; Boissière, L

    2014-02-01

    Total disc replacement (TDR) (partial disc replacement will not be described) has been used in the lumbar spine since the 1980s, and more recently in the cervical spine. Although the biomechanical concepts are the same and both are inserted through an anterior approach, lumbar TDR is conventionally indicated for chronic low back pain, whereas cervical TDR is used for soft discal hernia resulting in cervicobrachial neuralgia. The insertion technique must be rigorous, with precise centering in the disc space, taking account of vascular anatomy, which is more complex in the lumbar region, particularly proximally to L5-S1. All of the numerous studies, including prospective randomized comparative trials, have demonstrated non-inferiority to fusion, or even short-term superiority regarding speed of improvement. The main implant-related complication is bridging heterotopic ossification with resulting loss of range of motion and increased rates of adjacent segment degeneration, although with an incidence lower than after arthrodesis. A sufficiently long follow-up, which has not yet been reached, will be necessary to establish definitively an advantage for TDR, particularly in the cervical spine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Mechanics of Actuated Disc Cutting

    NASA Astrophysics Data System (ADS)

    Dehkhoda, Sevda; Detournay, Emmanuel

    2017-02-01

    This paper investigates the mechanics of an actuated disc cutter with the objective of determining the average forces acting on the disc as a function of the parameters characterizing its motion. The specific problem considered is that of a disc cutter revolving off-centrically at constant angular velocity around a secondary axis rigidly attached to a cartridge, which is moving at constant velocity and undercutting rock at a constant depth. This model represents an idealization of a technology that has been implemented in a number of hard rock mechanical excavators with the goal of reducing the average thrust force to be provided by the excavation equipment. By assuming perfect conformance of the rock with the actuated disc as well as a prescribed motion of the disc (perfectly rigid machine), the evolution of the contact surface between the disc and the rock during one actuation of the disc can be computed. Coupled with simple cutter/rock interaction models that embody either a ductile or a brittle mode of fragmentation, these kinematical considerations lead to an estimate of the average force on the cartridge and of the partitioning of the energy imparted by the disc to the rock between the actuation mechanism of the disc and the translation of the cartridge on which the actuated disc is attached.

  20. Estrogens and the intervertebral disc.

    PubMed

    Calleja-Agius, J; Muscat-Baron, Y; Brincat, M P

    2009-09-01

    Intervertebral discs are an integral part of the vertebral column. It has been shown that menopause has a negative effect on bone and on intervertebral discs. Estrogen has a beneficial effect of preserving the health of collagen-containing tissues, including the intervertebral disc. The intervertebral disc allows for mobility of the spine, and maintains a uniform stress distribution of the area of the vertebral endplates. Also, the disc influences spinal height. The disc tissue is adapted for this biomechanical function. The function of the spine is impaired if there is a loss of disc tissue. Narrowing of the disc space due to degeneration of intervertebral discs is associated with a significantly increased risk of vertebral fractures. Estrogen should be seen as the first-choice therapy for bones and other collagen-rich tissues, such as intervertebral discs, because it maintains homeostasis of the bone-remodelling unit. Unlike bisphosphonates, estrogen is unique in its ability to regenerate bone collagen after its disintegration, apart from suppressing osteoclastic activity. Besides, there is insufficient data on deterioration in bone qualities and micro-cracks in patients on long-term bisphosphonates.

  1. Polarimetric microlensing of circumstellar discs

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe; Rahvar, Sohrab

    2015-12-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar discs around the microlensed stars located at the Galactic bulge. These discs which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these discs can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot discs which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of discs, we show that although the polarimetric efficiency for detecting discs is similar to the photometric observation, but polarimetry observations can help to constraint the disc geometrical parameters e.g. the disc inner radius and the lens trajectory with respect to the disc semimajor axis. On the other hand, the time-scale of polarimetric curves of these microlensing events generally increases while their photometric time-scale does not change. By performing a Monte Carlo simulation, we show that almost four optically thin discs around the Galactic bulge sources are detected (or even characterized) through photometry (or polarimetry) observations of high-magnification microlensing events during 10-yr monitoring of 150 million objects.

  2. Disc-mass distribution in star-disc encounters

    NASA Astrophysics Data System (ADS)

    Steinhausen, M.; Olczak, C.; Pfalzner, S.

    2012-02-01

    Aims: Investigations of stellar encounters in cluster environments have demonstrated their potential influence on the mass and angular momentum of protoplanetary discs around young stars. We investigated how far the initial surface density in the disc surrounding a young star influences the outcome of an encounter. Methods: The numerical method applied here allows us to determine the mass and angular momentum losses in an encounter for any initial disc-mass distribution. On the basis of a power-law ansatz for the surface density, Σ(r) ∝ r - p, we perform a parameter study of star-disc encounters with different initial disc-mass distributions using N-body simulations. Results: We demonstrate that the shape of the disc-mass distribution has a significant impact on the quantity of the disc-mass and angular momentum losses in star-disc encounters. In particular, the results are most sensitive to how the outer parts of the disc are perturbed by high-mass stars. In contrast, disc-penetrating encounters lead more or less independently of the disc-mass distribution always to large losses. However, maximum losses are generally obtained for initially flat distributed disc material. Based on a parameter study, a fit formula is derived, describing how the relative mass and angular momentum loss depend on the initial disc-mass distribution index p. Encounters generally lead to a steepening of the density profile of the disc. The resulting profiles can have a r-2-dependence or an even steeper one that is independent of the initial distribution of the disc material. Conclusions: From observations, the initial density distribution in discs remains unconstrained, hence the strong dependence on the initial density distribution that we find here might require a revision of the effect of encounters in young stellar clusters. The steep surface density distributions induced by some encounters might be a prerequisite to the formation of planetary systems similar to our own Solar

  3. Rethinking Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the

  4. Gaseous sulfur in the Venusian atmosphere

    NASA Astrophysics Data System (ADS)

    San'ko, N. F.

    1980-07-01

    It is shown that the increased extinction of solar radiation scattered in the Venusian atmosphere, recorded by scanning spectrophotometers on board Venera 11 and 12, may be explained by the presence of gaseous sulfur in the lower atmosphere of the planet. A model of the vertical distribution of gaseous sulfur with respect to allotropic states is proposed.

  5. Gaseous emissions from waste combustion.

    PubMed

    Werther, Joachim

    2007-06-18

    An overview is given on methods and technologies for limiting the gaseous emissions from waste combustion. With the guideline 2000/76/EC recent European legislation has set stringent limits not only for the mono-combustion of waste in specialized incineration plants but also for co-combustion in coal-fired power plants. With increased awareness of environmental issues and stepwise decrease of emission limits and inclusion of more and more substances into the network of regulations a multitude of emission abatement methods and technologies have been developed over the last decades. The result is the state-of-the-art waste incinerator with a number of specialized process steps for the individual components in the flue gas. The present work highlights some new developments which can be summarized under the common goal of reducing the costs of flue gas treatment by applying systems which combine the treatment of several noxious substances in one reactor or by taking new, simpler routes instead of the previously used complicated ones or - in the case of flue gas desulphurisation - by reducing the amount of limestone consumption. Cost reduction is also the driving force for new processes of conditioning of nonhomogenous waste before combustion. Pyrolysis or gasification is used for chemical conditioning whereas physical conditioning means comminution, classification and sorting processes. Conditioning yields a fuel which can be used in power plants either as a co-fuel or a mono-fuel and which will burn there under much better controlled conditions and therefore with less emissions than the nonhomogeneous waste in a conventional waste incinerator. Also for cost reasons, co-combustion of wastes in coal-fired power stations is strongly pressing into the market. Recent investigations reveal that the co-firing of waste can also have beneficial effects on the operating behavior of the boiler and on the gaseous emissions.

  6. Enclosed rotary disc air pulser

    DOEpatents

    Olson, A. L.; Batcheller, Tom A.; Rindfleisch, J. A.; Morgan, John M.

    1989-01-01

    An enclosed rotary disc air pulser for use with a solvent extraction pulse olumn includes a housing having inlet, exhaust and pulse leg ports, a shaft mounted in the housing and adapted for axial rotation therein, first and second disc members secured to the shaft within the housing in spaced relation to each other to define a chamber therebetween, the chamber being in communication with the pulse leg port, the first disc member located adjacent the inlet port, the second disc member being located adjacent the exhaust port, each disc member having a milled out portion, the disc members positioned on the shaft so that as the shaft rotates, the milled out portions permit alternative cyclical communication between the inlet port and the chamber and the exhaust port and the chamber.

  7. Heat distribution in disc brake

    NASA Astrophysics Data System (ADS)

    Klimenda, Frantisek; Soukup, Josef; Kampo, Jan

    2016-06-01

    This article is deals by the thermal analysis of the disc brake with floating caliper. The issue is solved by numerically. The half 2D model is used for solution in program ADINA 8.8. Two brake discs without the ventilation are solved. One disc is made from cast iron and the second is made from stainless steel. Both materials are an isotropic. By acting the pressure force on the brake pads will be pressing the pads to the brake disc. Speed will be reduced (slowing down). On the contact surface generates the heat, which the disc and pads heats. In the next part of article is comparison the maximum temperature at the time of braking. The temperatures of both materials for brake disc (gray cast iron, stainless steel) are compares. The heat flux during braking for the both materials is shown.

  8. Numbered nasal discs for waterfowl

    USGS Publications Warehouse

    Bartonek, J.C.; Dane, C.W.

    1964-01-01

    Numbered nasal discs were successfully used in studies requiring large numbers of individually marked waterfowl. The procedure for constructing these discs is outlined. Blue-winged teal (Anas discors) with 5/8-inch discs, and canvasback (Aythya valisineria) and redhead (A. americana) with 3/4-inch discs can be individually identified up to 50 and 80 yards, respectively, with a gunstock-mounted, 20-power spotting scope. The particular value of these markers is their durability, the number of combinations possible, and the apparent absence of behavioral or mortality influence among such species as the blue-winged teal.

  9. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    SciTech Connect

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  10. [Temporomandibular joint disc surgery].

    PubMed

    Potier, J; Maes, J-M; Nicot, R; Dumousseau, T; Cotelle, M; Ferri, J

    2016-09-01

    Temporomandibular joint (TMJ) disorders are a common disease and may be responsible for major functional and painful repercussions. Treatment is not consensual. The literature highlights the role of conservative treatments (physiotherapy, analgesics, splints) in a first attempt. Minimally invasive surgical techniques (arthroscopy, arthrocentesis) have developed rapidly in recent decades. They have proven effective and reliable, especially in patients suffering from irreducible or reducible anterior disc dislocation or presenting with arthopathies. The goal of our work was to make an update about disk surgery. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. 26 CFR 1.6011-2 - Returns, etc., of DISC's and former DISC's.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Returns, etc., of DISC's and former DISC's. 1... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Tax Returns Or Statements § 1.6011-2 Returns, etc., of DISC's and former DISC's. (a) Records and information. Every DISC and former DISC (as defined in section 992...

  12. Accretion does not drive the turbulence in galactic discs

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Kereš, Dušan; Murray, Norman

    2013-07-01

    Rapid accretion of cold intergalactic gas plays a crucial role in getting gas into galaxies. It has been suggested that this gas accretion proceeds along narrow streams that might also directly drive the turbulence in galactic gas, dynamical disturbances and bulge formation. In cosmological simulations, however, it is impossible to isolate and hence disentangle the effect of cold stream accretion from internal instabilities and mergers. Moreover, in most current cosmological simulations, the phase structure and turbulence in the interstellar medium (ISM) arising from stellar feedback are treated in an approximate (subgrid) manner, so that the feedback cannot generate turbulence in the ISM. In this paper we therefore test the effects of cold streams in extremely high-resolution simulations of otherwise isolated galaxy discs using detailed models for star formation and stellar feedback; we then include or exclude mock cold flows falling on to the galaxies, with mass accretion rates, velocities and flow geometry set to maximize their effect on the gaseous disc. We find (1) turbulent velocity dispersions in gas discs are identical with or without the presence of the cold flow; the energy injected by the flow is efficiently dissipated where it meets the disc. (2) In runs without stellar feedback, the presence of a cold flow has essentially no effect on runaway fragmentation (local collapse), resulting in star formation rates (SFRs) that are an order-of-magnitude too large. (3) Model discs in runs with both explicit feedback and cold flows have higher SFRs, but only insofar as they have more gas. (4) Because the flows are extended, relative to the size of the disc, they do not trigger strong resonant responses and so induce weak gross morphological perturbation (bulge formation via instabilities/fragmentation is not accelerated). (5) However, flows can thicken the disc by direct contribution of out-of-plane or misaligned star-forming streams/filaments. We conclude that

  13. Preparation of ormetoprim sulfadimethoxine medicated discs for disc diffusion assay

    USDA-ARS?s Scientific Manuscript database

    Romet (a blend of ormetoprim and sulfadimethoxine) is a typeA medicated article for the manufacture of medicated feed in the catfish industry. Recently, the commercial manufacture of ormetoprim–sulfadimethoxine susceptibility discs was discontinued. Ormetoprim–sulfadimethoxine discs were prepared at...

  14. Sizes of protoplanetary discs after star-disc encounters

    NASA Astrophysics Data System (ADS)

    Breslau, Andreas; Steinhausen, Manuel; Vincke, Kirsten; Pfalzner, Susanne

    2014-05-01

    Most stars do not form in isolation, but as part of a star cluster or association. These young stars are initially surrounded by protoplanetary discs. In these cluster environments tidal interactions with other cluster members can alter the disc properties. Besides the disc frequency, its mass, angular momentum, and energy, the disc's size is particularly prone to being changed by a passing star. So far the change in disc size has only been investigated for a small number of very specific encounters. Several studies investigated the effect of the cluster environment on the sizes of planetary systems like our own solar system, based on a generalisation of information from this limited sample. We performed numerical simulations covering the wide parameter space typical of young star clusters, to test the validity of this approach. Here the sizes of discs after encounters are presented, based on a size definition that is comparable to the one used in observational studies. We find that, except for encounters between equal-mass stars, the usually applied estimates are insufficient. They tend to severely overestimate the remaining disc size. We show that the disc size after an encounter can be described by a relatively simple dependence on the periastron distance and the mass ratio of the encounter partners. This knowledge allows us, for example, to pin down the types of encounter possibly responsible for the structure of today's solar system. Appendix A is available in electronic form at http://www.aanda.org

  15. Disc cell therapies: critical issues.

    PubMed

    Tibiletti, Marta; Kregar Velikonja, Nevenka; Urban, Jill P G; Fairbank, Jeremy C T

    2014-06-01

    Disc cell therapies, in which cells are injected into the degenerate disc in order to regenerate the matrix and restore function, appear to be an attractive, minimally invasive method of treatment. Interest in this area has stimulated research into disc cell biology in particular. However, other important issues, some of which are discussed here, need to be considered if cell-based therapies are to be brought to the clinic. Firstly, a question which is barely addressed in the literature, is how to identify patients with 'degenerative disc disease' who would benefit from cell therapy. Pain not disc degeneration is the symptom which drives patients to the clinic. Even though there are associations between back pain and disc degeneration, many people with even severely degenerate discs, with herniated discs or with spinal stenosis, are pain-free. It is not possible using currently available techniques to identify whether disc repair or regeneration would remove symptoms or prevent symptoms from occurring in future. Moreover, the repair process in human discs is very slow (years) because of the low cell density which can be supported nutritionally even in healthy human discs. If repair is necessary for relief of symptoms, questions regarding quality of life and rehabilitation during this long process need consideration. Also, some serious technical issues remain. Finding appropriate cell sources and scaffolds have received most attention, but these are not the only issues determining the feasibility of the procedure. There are questions regarding the safety of implanting cells by injection through the annulus whether the nutrient supply to the disc is sufficient to support implanted cells and whether, if cells are able to survive, conditions in a degenerate human disc will allow them to repair the damaged tissue. If cell therapy for treatment of disc-related disorders is to enter the clinic as a routine treatment, investigations must examine the questions related to

  16. Fantastic Disc Activities for Fitness

    ERIC Educational Resources Information Center

    Griffin, Michael R.; Johnson, Romona; Thomas, Jessica; Spell, Melissa; Popham, John; Croft, Brent; Umpleby, Albert; Verbel, Eric

    2005-01-01

    Disc activities are an excellent elementary content area for both skill and fitness enhancement. They may occur through progressive skill and drill practice, small sided-game examples, modifications of traditional disc activities appropriate to large groups, and with adjustments designed to increase activity and fitness levels. For games in this…

  17. Combination free electron and gaseous laser

    DOEpatents

    Brau, Charles A.; Rockwood, Stephen D.; Stein, William E.

    1980-01-01

    A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  18. Gaseous phase coal surface modification

    SciTech Connect

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  19. Radiofrequency stimulation of intervertebral discs.

    PubMed

    Rosen, Steven; Falco, Frank

    2003-10-01

    The etiology of discogenic pain is poorly understood. The most accepted theory has been that nociceptors in the outer one-third of the annulus fibrosis are responsible for transmitting pain secondary to internal disc disruptions. The concept of "neoneuralization" after disc injury has been disseminated. It has been noted that disc degeneration and injury are associated with ingrowth of neural fibers into the disc annulus. One mechanism of Intradiscal Electrodothermal Therapy (IDET) has been thought to be lesioning of these nociceptors. Five consecutive patients were studied using an intraannular electrode. The Radionics discTRODE was used. It was found impossible to selectively stimulate axial pain fibers using this system. Radicular stimulation was noted in all patients at all levels studied. The implication of these findings concerning the concept of neoneuralization, mechanism of IDET, and possible strategies to decrease discogenic pain are discussed.

  20. Imaginal disc regeneration takes flight.

    PubMed

    Hariharan, Iswar K; Serras, Florenci

    2017-04-01

    Drosophila imaginal discs, the larval precursors of adult structures such as the wing and leg, are capable of regenerating after damage. During the course of regeneration, discs can sometimes generate structures that are appropriate for a different type of disc, a phenomenon termed transdetermination. Until recently, these phenomena were studied by physically fragmenting discs and then transplanting them into the abdomens of adult female flies. This field has experienced a renaissance following the development of genetic ablation systems that can damage precisely defined regions of the disc without the need for surgery. Together with more traditional approaches, these newer methods have generated many novel insights into wound healing, the mechanisms that drive regenerative growth, plasticity during regeneration and systemic effects of tissue damage and regeneration.

  1. Intraoral micro-identification discs.

    PubMed

    Hansen, R W

    1991-12-01

    Intraoral micro-identification discs have recently been utilized to provide a more permanent method of personal identification. A wafer of plastic or metal with a surface area of 2.5 to 5 mm2 and carrying identifying numbers and/or letters (indicia) is bonded to the buccal enamel surface of the posterior teeth. Personal identification can occur after the I.D. disc is identified and the indicia is read. Reading of photoreduced indicia requires the aid of a microscope subsequent to the removal of the microdisc. In situ reading of disc indicia is possible using low power handheld magnifiers if the size of the indicia approximates 0.3 mm. Computerization is an integral part of non-custom alpha/numeric type designs, but a custom disc carries a name, address, and other specific information unique to the manufacturer. The use of a computer improves access to the database and it decreases the amount of data placed on the disc. Microdisc bases may be fabricated using a mylar type plastic or they may be manufactured from a stainless steel blank. Plastic discs are constructed with an internal sandwich containing the photo-reduced indicia. Metal discs are marked with a photochemical etch or engraved with a computer driven YAG laser. Attachment of the disc to the enamel surface is accomplished by conventional etching and bonding techniques and are typically bonded to the buccal surface of the maxillary first permanent molar or the second primary molar. Clear composite bonding material covers the disc so that salivary contamination does not result in degradation of the indicia. Orthodontic style discs with a mesh back carry laser written information that may be cemented with conventional orthodontic bonding cement. Standardization of the indicia and overall design is considered to be an important aspect of patient and professional acceptance.

  2. Cervical Total Disc Arthroplasty

    PubMed Central

    Basho, Rahul; Hood, Kenneth A.

    2012-01-01

    Symptomatic adjacent segment degeneration of the cervical spine remains problematic for patients and surgeons alike. Despite advances in surgical techniques and instrumentation, the solution remains elusive. Spurred by the success of total joint arthroplasty in hips and knees, surgeons and industry have turned to motion preservation devices in the cervical spine. By preserving motion at the diseased level, the hope is that adjacent segment degeneration can be prevented. Multiple cervical disc arthroplasty devices have come onto the market and completed Food and Drug Administration Investigational Device Exemption trials. Though some of the early results demonstrate equivalency of arthroplasty to fusion, compelling evidence of benefits in terms of symptomatic adjacent segment degeneration are lacking. In addition, non-industry-sponsored studies indicate that these devices are equivalent to fusion in terms of adjacent segment degeneration. Longer-term studies will eventually provide the definitive answer. PMID:24353955

  3. Gap formation by inclined massive planets in locally isothermal three-dimensional discs

    NASA Astrophysics Data System (ADS)

    Chametla, Raúl O.; Sánchez-Salcedo, F. J.; Masset, F. S.; Hidalgo-Gámez, A. M.

    2017-07-01

    We study gap formation in gaseous protoplanetary discs by a Jupiter mass planet. The planet's orbit is circular and inclined relative to the mid-plane of the disc. We use the impulse approximation to estimate the gravitational tidal torque between the planet and the disc, and infer the gap profile. For low-mass discs, we provide a criterion for gap opening when the orbital inclination is ≤30°. Using the fargo3d code, we simulate the disc response to an inclined massive planet. The dependence of the depth and width of the gap obtained in the simulations on the inclination of the planet is broadly consistent with the scaling laws derived in the impulse approximation. Although we mainly focus on planets kept on fixed orbits, the formalism permits to infer the temporal evolution of the gap profile in the cases where the inclination of the planet changes with time. This study may be useful to understand the migration of massive planets on inclined orbit, because the strength of the interaction with the disc depends on whether a gap is opened or not.

  4. Comparison of animal discs used in disc research to human lumbar disc: torsion mechanics and collagen content.

    PubMed

    Showalter, Brent L; Beckstein, Jesse C; Martin, John T; Beattie, Elizabeth E; Espinoza Orías, Alejandro A; Schaer, Thomas P; Vresilovic, Edward J; Elliott, Dawn M

    2012-07-01

    Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these with the human disc. To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar discs, and cow, rat, and mouse caudal discs. Collagen content was measured and normalized by dry weight for the same discs except the rat and the mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human discs. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Disc torsion mechanics are comparable with human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented are useful for selecting and interpreting results for animal disc models. Structural organization of the fiber angle may explain the differences that were noted between species after geometric normalization.

  5. Self-consistent internal structure of a rotating gaseous planet and its comparison with an approximation by oblate spheroidal equidensity surfaces

    NASA Astrophysics Data System (ADS)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2015-12-01

    In an important paper, Roberts (1963b) studied the hydrostatic equilibrium of an isolated, self-gravitating, rapidly rotating polytropic gaseous body based on a controversial assumption/approximation that all (outer and internal) equidensity surfaces are in the shape of oblate spheroids whose eccentricities are a function of the equatorial radius and whose axes of symmetry are parallel to the rotation axis. We compute the three-dimensional, finite-element, fully self-consistent, continuous solution for a rapidly rotating polytropic gaseous body with Jupiter-like parameters without making any prior assumptions about its outer shape and internal structure. Upon partially relaxing the Roberts' approximation by assuming that only the outer equidensity surface is in the shape of an oblate spheroid, we also compute a finite-element solution with the same parameters without making any prior assumptions about its internal structure. It is found that all equidensity surfaces of the fully self-consistent solution differ only slightly from the oblate spheroidal shape. It is also found that the characteristic difference between the fully self-consistent solution and the outer-spheroidal-shape solution is insignificantly small. Our results suggest that the Roberts' assumption of spheroidal equidensity surfaces represents a reasonably accurate approximation for rotating polytropic gaseous bodies with Jupiter-like parameters. The numerical accuracy of our finite-element solution is checked by an exact analytic solution based on the Green's function using the spheroidal wave function. The three different solutions in non-spherical geometries - the fully self-consistent numerical solution, the numerical solution with the outer spheroidal shape and the exact analytical solution - can also serve as a useful benchmark for other solutions based on different numerical methods.

  6. Mitral disc-valve variance

    PubMed Central

    Berroya, Renato B.; Escano, Fernando B.

    1972-01-01

    This report deals with a rare complication of disc-valve prosthesis in the mitral area. A significant disc poppet and struts destruction of mitral Beall valve prostheses occurred 20 and 17 months after implantation. The resulting valve incompetence in the first case contributed to the death of the patient. The durability of Teflon prosthetic valves appears to be in question and this type of valve probably will be unacceptable if there is an increasing number of disc-valve variance in the future. Images PMID:5017573

  7. Medical Information on Optical Disc*

    PubMed Central

    Schipma, Peter B.; Cichocki, Edward M.; Ziemer, Susan M.

    1987-01-01

    Optical discs may permit a revolutionary change in the distribution and use of medical information. A single compact disc, similar in size to that used for digital audio recording, can contain over 500 million characters of information that is accessible by a Personal Computer. These discs can be manufactured at a cost lower than that of print on paper, at reasonable volumes. Software can provide the health care professional with nearly instantaneous access to the information. Thus, for the first time, the opportunity exists to have large local medical information collections. This paper describes an application of this technology in the field of Oncology.

  8. Decellularized allogeneic intervertebral disc: natural biomaterials for regenerating disc degeneration

    PubMed Central

    Hu, Zhijun; Chen, Kai; Shan, Zhi; Chen, Shuai; Wang, Jiying; Mo, Jian; Ma, Jianjun; Xu, Wenbing; Qin, An; Fan, Shunwu

    2016-01-01

    Intervertebral disc degeneration is associated with back pain and disc herniation. This study established a modified protocol for intervertebral disc (IVD) decellularization and prepared its extracellular matrix (ECM). By culturing mesenchymal stem cells (MSCs)(3, 7, 14 and 21 days) and human degenerative IVD cells (7 days) in the ECM, implanting it subcutaneously in rabbit and injecting ECM microparticles into degenerative disc, the biological safety and efficacy of decellularized IVD was evaluated both in vitro and in vivo. Here, we demonstrated that cellular components can be removed completely after decellularization and maximally retain the structure and biomechanics of native IVD. We revealed that allogeneic ECM did not evoke any apparent inflammatory reaction in vivo and no cytotoxicity was found in vitro. Moreover, IVD ECM can induce differentiation of MSCs into IVD-like cells in vitro. Furthermore, allogeneic ECM microparticles are effective on the treatment of rabbit disc degeneration in vivo. In conclusion, our study developed an optimized method for IVD decellularization and we proved decellularized IVD is safe and effective for the treatment of degenerated disc diseases. PMID:26933821

  9. Enlivening Physics, a Local Video Disc Project.

    ERIC Educational Resources Information Center

    McInerney, M.

    1989-01-01

    Describes how to make and use an inexpensive video disc of physics demonstrations. Discusses the background, production of the disc, subject of the disc including angular momentum, "monkey and the hunter" experiment, Doppler shift, pressure of a constant volume of gas thermometer, and wave effects, and using the disc in classroom. (YP)

  10. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD... SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture disc is the only pressure relief device on the tank, the rupture disc must— (a) Rupture at a pressure of...

  11. Disc Golf: Teaching a Lifetime Activity

    ERIC Educational Resources Information Center

    Eastham, Susan L.

    2015-01-01

    Disc golf is a lifetime activity that can be enjoyed by students of varying skill levels and abilities. Disc golf follows the principles of ball golf but is generally easier for students to play and enjoy success. The object of disc golf is similar to ball golf and involves throwing a disc from the teeing area to the target in as few throws as…

  12. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD... SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture disc is the only pressure relief device on the tank, the rupture disc must— (a) Rupture at a pressure of...

  13. Disc Golf: Teaching a Lifetime Activity

    ERIC Educational Resources Information Center

    Eastham, Susan L.

    2015-01-01

    Disc golf is a lifetime activity that can be enjoyed by students of varying skill levels and abilities. Disc golf follows the principles of ball golf but is generally easier for students to play and enjoy success. The object of disc golf is similar to ball golf and involves throwing a disc from the teeing area to the target in as few throws as…

  14. Design Issues in Video Disc Map Display.

    DTIC Science & Technology

    1984-10-01

    Tables: disc storage capacities under various conditions. Photos: map frames. Constanzo , D.J. (1984a), "The Potential for Video Disc Technology in...discs. Constanzo , D.J. (1984b), "Requirements and Specifications for Cartographic Video Discs", presented as a poster paper at the 1984 Army Science

  15. Enlivening Physics, a Local Video Disc Project.

    ERIC Educational Resources Information Center

    McInerney, M.

    1989-01-01

    Describes how to make and use an inexpensive video disc of physics demonstrations. Discusses the background, production of the disc, subject of the disc including angular momentum, "monkey and the hunter" experiment, Doppler shift, pressure of a constant volume of gas thermometer, and wave effects, and using the disc in classroom. (YP)

  16. 26 CFR 1.246-4 - Dividends from a DISC or former DISC.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Dividends from a DISC or former DISC. 1.246-4... a DISC or former DISC. The deduction provided in section 243 (relating to dividends received by... distribution or an amount treated as a dividend pursuant to section 995(c)) from a corporation which is a DISC...

  17. Tissue engineering: A live disc

    NASA Astrophysics Data System (ADS)

    Hukins, David W. L.

    2005-12-01

    A material-cell hybrid device that mimics the anatomic shape of the intervertebral disc has been made and successfully implanted into mice to show that tissue engineering may, in the future, benefit sufferers from back pain.

  18. Eclipse Mapping of Accretion Discs

    NASA Astrophysics Data System (ADS)

    Baptista, R.

    The eclipse mapping method is an inversion technique that makes use of the information contained in eclipse light curves to probe the structure, the spectrum and the time evolution of accretion discs. In this review I present the basics of the method and discuss its different implementations. I summarize the most important results obtained to date and discuss how they have helped to improve our understanding of accretion physics, from testing the theoretical radial brightness temperature distribution and measuring mass accretion rates to showing the evolution of the structure of a dwarf novae disc throughout its outburst cycle, from isolating the spectrum of a disc wind to revealing the geometry of disc spiral shocks. I end with an outline of the future prospects.

  19. Disc Golf, a Growing Sport

    PubMed Central

    Nelson, Joseph T.; Jones, Richard E.; Runstrom, Michael; Hardy, Jolene

    2015-01-01

    Background Disc golf is a sport played much like traditional golf, but rather than using a ball and club, players throw flying discs with various throwing motions. It has been played by an estimated 8 to 12 million people in the United States. Like all sports, injuries sustained while playing disc golf are not uncommon. Although formalized in the 1970s, it has grown at a rapid pace; however, disc golf–related injuries have yet to be described in the medical literature. Purpose To describe the most common injuries incurred by disc golf players while comparing the different types of throwing styles. Study Design Descriptive epidemiology study. Methods The data in this study were collected from 883 disc golf players who responded to an online survey collected over a 1-month period. Respondents answered 49 questions related to demographics, experience, style of play, and injury details. Using a chi-square analysis, common injuries sustained in players using backhand and forehand throwing styles were compared. Results More than 81% of respondents stated that they had sustained an injury playing disc golf, including injuries to the elbow (n = 325), shoulder (n = 305), back (n = 218), and knee (n = 199). The injuries were most commonly described as a muscle strain (n = 241), sprain (n = 162), and tendinitis (n = 145). The type of throw primarily used by players varied, with 86.2% using backhand, 12.7% using forehand, and 1.1% using an overhead throw. Players using a forehand throw were more likely to sustain an elbow injury (P = .014). Many players (n = 115) stated they had undergone surgery due to a disc golf–related injury, with the most common surgeries including meniscal, shoulder, spine, and foot/ankle surgeries. Conclusion The majority of surveyed disc golfers sustained at least 1 injury while playing disc golf, with many requiring surgery. The types of injuries sustained by players varied by the types of throw primarily used. As the sport of disc golf continues

  20. Percutaneous diode laser disc nucleoplasty

    NASA Astrophysics Data System (ADS)

    Menchetti, P. P.; Longo, Leonardo

    2004-09-01

    The treatment of herniated disc disease (HNP) over the years involved different miniinvasive surgical options. The classical microsurgical approach has been substituted over the years both by endoscopic approach in which is possible to practice via endoscopy a laser thermo-discoplasty, both by percutaneous laser disc nucleoplasty. In the last ten years, the percutaneous laser disc nucleoplasty have been done worldwide in more than 40000 cases of HNP. Because water is the major component of the intervertebral disc, and in HNP pain is caused by the disc protrusion pressing against the nerve root, a 980 nm Diode laser introduced via a 22G needle under X-ray guidance and local anesthesia, vaporizes a small amount of nucleous polposus with a disc shrinkage and a relief of pressure on nerve root. Most patients get off the table pain free and are back to work in 5 to 7 days. Material and method: to date, 130 patients (155 cases) suffering for relevant symptoms therapy-resistant 6 months on average before consulting our department, have been treated. Eightyfour (72%) males and 46 (28%) females had a percutaneous laser disc nucleoplasty. The average age of patients operated was 48 years (22 - 69). The level of disc removal was L3/L4 in 12 cases, L4/L5 in 87 cases and L5/S1 in 56 cases. Two different levels were treated at the same time in 25 patients. Results: the success rate at a minimum follow-up of 6 months was 88% with a complication rate of 0.5%.

  1. Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Torsion Mechanics and Collagen Content

    PubMed Central

    Showalter, Brent L.; Beckstein, Jesse C.; Martin, John T.; Beattie, Elizabeth E.; Orías, Alejandro A. Espinoza; Schaer, Thomas P.; Vresilovic, Edward J.; Elliott, Dawn M.

    2012-01-01

    Study Design Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these to the human disc. Objective To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. Summary of Background Data There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Methods Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar, and cow, rat, and mouse caudal. Collagen content was measured and normalized by dry weight for the same discs except the rat and mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Results Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Conclusion Disc torsion mechanics are comparable to human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented is useful for selecting and interpreting results for animal models of the disc. Structural composition of the disc, such as initial fiber angle, may explain the differences that were noted between species after geometric normalization. PMID:22333953

  2. Evolution of protoplanetary discs with magnetically driven disc winds

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Ogihara, Masahiro; Morbidelli, Alessandro; Crida, Aurélien; Guillot, Tristan

    2016-12-01

    Aims: We investigate the evolution of protoplanetary discs (PPDs) with magnetically driven disc winds and viscous heating. Methods: We considered an initially massive disc with 0.1 M⊙ to track the evolution from the early stage of PPDs. We solved the time evolution of surface density and temperature by taking into account viscous heating and the loss of mass and angular momentum by the disc winds within the framework of a standard α model for accretion discs. Our model parameters, turbulent viscosity, disc wind mass-loss, and disc wind torque, which were adopted from local magnetohydrodynamical simulations and constrained by the global energetics of the gravitational accretion, largely depends on the physical condition of PPDs, particularly on the evolution of the vertical magnetic flux in weakly ionized PPDs. Results: Although there are still uncertainties concerning the evolution of the vertical magnetic flux that remains, the surface densities show a large variety, depending on the combination of these three parameters, some of which are very different from the surface density expected from the standard accretion. When a PPD is in a wind-driven accretion state with the preserved vertical magnetic field, the radial dependence of the surface density can be positive in the inner region <1-10 au. The mass accretion rates are consistent with observations, even in the very low level of magnetohydrodynamical turbulence. Such a positive radial slope of the surface density strongly affects planet formation because it inhibits the inward drift or even causes the outward drift of pebble- to boulder-sized solid bodies, and it also slows down or even reversed the inward type-I migration of protoplanets. Conclusions: The variety of our calculated PPDs should yield a wide variety of exoplanet systems.

  3. Gaseous insulators for high voltage electrical equipment

    DOEpatents

    Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.

    1979-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  4. Gaseous insulators for high voltage electrical equipment

    DOEpatents

    Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.

    1981-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  5. Gaseous fuel reactors for power systems

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  6. Gaseous hydrogen embrittlement of high strength steels

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1977-01-01

    The effects of temperature, hydrogen pressure, stress intensity, and yield strength on the kinetics of gaseous hydrogen assisted crack propagation in 18Ni maraging steels were investigated experimentally. It was found that crack growth rate as a function of stress intensity was characterized by an apparent threshold for crack growth, a stage where the growth rate increased sharply, and a stage where the growth rate was unchanged over a significant range of stress intensity. Cracking proceeded on load application with little or no detectable incubation period. Gaseous hydrogen embrittlement susceptibility increased with increasing yield strength.

  7. Dynamical instability of a charged gaseous cylinder

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Mumtaz, Saadia

    2017-10-01

    In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.

  8. Infalling clouds on to supermassive black hole binaries - I. Formation of discs, accretion and gas dynamics

    NASA Astrophysics Data System (ADS)

    Goicovic, F. G.; Cuadra, J.; Sesana, A.; Stasyszyn, F.; Amaro-Seoane, P.; Tanaka, T. L.

    2016-01-01

    There is compelling evidence that most - if not all - galaxies harbour a supermassive black hole (SMBH) at their nucleus; hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the Universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall towards and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall on to equal-mass SMBH binaries, using a modified version of the SPH (smoothed particle hydrodynamics) code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that the formation of circumbinary discs and discs around each SMBH (`mini-discs') depend on those parameters. We also study the dynamics of the formed discs, and the variability of the feeding rate on to the SMBHs in the different configurations.

  9. Wet disc contraction to galactic blue nuggets and quenching to red nuggets

    NASA Astrophysics Data System (ADS)

    Dekel, A.; Burkert, A.

    2014-02-01

    We study the origin of high-redshift, compact, quenched spheroids (red nuggets) through the dissipative shrinkage of gaseous discs into compact star-forming systems (blue nuggets). The discs, fed by cold streams, undergo violent disc instability that drives gas into the centre (along with mergers). The inflow is dissipative when its time-scale is shorter than the star formation time-scale. This implies a threshold of ˜0.28 in the cold-to-total mass ratio within the disc radius. For the typical gas fraction ˜0.5 at z ˜ 2, this threshold is traced back to a maximum spin parameter of ˜0.05, implying that ˜half the star-forming galaxies contract to blue nuggets, while the rest form extended stellar discs. Thus, the surface density of blue galaxies is expected to be bimodal about ˜109 M⊙ kpc-2, slightly increasing with mass. The blue nuggets are expected to be rare at low z when the gas fraction is low. The blue nuggets quench to red nuggets by complementary internal and external mechanisms. Internal quenching by a compact bulge, in a fast mode and especially at high z, may involve starbursts, stellar and active galactic nucleus feedback, or Q-quenching. Quenching due to hot-medium haloes above 1012 M⊙ provides maintenance and a slower mode at low redshift. These predictions are confirmed in simulations and are consistent with observations at z = 0-3.

  10. Formation of disc galaxies in preheated media: a preventative feedback model

    NASA Astrophysics Data System (ADS)

    Lu, Yu; Mo, H. J.; Wechsler, Risa H.

    2015-01-01

    We develop a semi-analytic galaxy formation model that implements a self-consistent treatment for the hot halo gas and the assembly of central discs. We use the model to explore a preventative feedback scenario, in which the circumhalo medium is assumed to be preheated up to a certain entropy level by early starbursts or other processes, and contrast it with an ejective feedback scenario in which baryons are first accreted into dark matter haloes and subsequently ejected by feedback. When the preheating entropy is comparable to the halo virial entropy, baryon accretion can be reduced and delayed. The accreted medium establishes an extended gaseous halo, and the cooling gas that forms the central disc has a higher specific angular momentum than the halo material. The preventative feedback model can reproduce remarkably well a number of observational scaling relations, including the cold baryon mass fraction-halo mass relations, star formation histories, disc size-stellar mass relation and its evolution, and the evolution of the number density of low-mass galaxies. In contrast, the ejective feedback model fails to reproduce these observational trends. These results show that the properties of disc galaxies are closely tied to the thermal state of hot halo gas and perhaps also the circumhalo medium, which suggests that observations of the disc properties and circumgalactic hot/warm medium may jointly provide important constraints on galaxy formation.

  11. Gravitoturbulence in magnetized protostellar discs

    NASA Astrophysics Data System (ADS)

    Riols, A.; Latter, H.

    2016-08-01

    Gravitational instability (GI) features in several aspects of protostellar disc evolution, most notably in angular momentum transport, fragmentation, and the outbursts exemplified by FU Ori and EX Lupi systems. The outer regions of protostellar discs may also be coupled to magnetic fields, which could then modify the development of GI. To understand the basic elements of their interaction, we perform local 2D ideal and resistive magnetohydrodynamics simulations with an imposed toroidal field. In the regime of moderate plasma beta, we find that the system supports a hot gravitoturbulent state, characterized by considerable magnetic energy and stress and a surprisingly large Toomre parameter Q ≳ 10. This result has potential implications for disc structure, vertical thickness, ionization, etc. Our simulations also reveal the existence of long-lived and dense `magnetic islands' or plasmoids. Lastly, we find that the presence of a magnetic field has little impact on the fragmentation criterion of the disc. Though our focus is on protostellar discs, some of our results may be relevant for the outer radii of AGN.

  12. Hydrogel discs for digital microfluidics

    PubMed Central

    Fiddes, Lindsey K.; Luk, Vivienne N.; Au, Sam H.; Ng, Alphonsus H. C.; Luk, Victoria; Kumacheva, Eugenia; Wheeler, Aaron R.

    2012-01-01

    Hydrogels are networks of hydrophilic polymer chains that are swollen with water, and they are useful for a wide range of applications because they provide stable niches for immobilizing proteins and cells. We report here the marriage of hydrogels with digital microfluidic devices. Until recently, digital microfluidics, a fluid handling technique in which discrete droplets are manipulated electromechanically on the surface of an array of electrodes, has been used only for homogeneous systems involving liquid reagents. Here, we demonstrate for the first time that the cylindrical hydrogel discs can be incorporated into digital microfluidic systems and that these discs can be systematically addressed by droplets of reagents. Droplet movement is observed to be unimpeded by interaction with the gel discs, and gel discs remain stationary when droplets pass through them. Analyte transport into gel discs is observed to be identical to diffusion in cases in which droplets are incubated with gels passively, but transport is enhanced when droplets are continually actuated through the gels. The system is useful for generating integrated enzymatic microreactors and for three-dimensional cell culture. This paper demonstrates a new combination of techniques for lab-on-a-chip systems which we propose will be useful for a wide range of applications. PMID:22662096

  13. Analyses of the temporomandibular disc.

    PubMed

    Jirman, R; Fricová, M; Horák, Z; Krystůfek, J; Konvicková, S; Mazánek, J

    2007-01-01

    This project is the beginning of a large research work with a goal to develop a new total replacement of temporomandibular (TM) joint. First aim of this work was to determine the relative displacement of the TM disc and the mandible during mouth opening. The movement of the TM disc was studied using a magnetic resonance imaging. Sagittal static images in revolved sections of the TM joint were obtained in various positions of jaw opening from 0 to 50 mm. The results provided a description of the TM disc displacements as a function of jaw opening. The displacements of the mandible and TM disc were about 16 mm and 10 mm respectively at mouth opening of 50 mm, maximum rotation of the mandible was 34s. The results of these measurements can be used for clinical diagnostics and also they were used as inputs for the follows finite element analysis (FEA). Second aim of this work was to create stress and strain analysis of TM joint using non-linear FEA. Complex of TM joint consists of mandibular disc, half skull and half mandible during normal jaw opening. The results illustrate the stress distributions in the TMJ during a normal jaw opening.

  14. THE LIQUID AND GASEOUS FUEL DISTRIBUTION SYSTEM

    EPA Science Inventory

    The report describes the national liquid and gaseous fuel distribution system. he study leading to the report was performed as part of an effort to better understand emissions of volatile organic compounds from the fuel distribution system. he primary, secondary, and tertiary seg...

  15. Gaseous detectors of ultraviolet and visible photons

    SciTech Connect

    Peskov, V.; Borovik-Romanov, A.; Volynshikova, T.

    1994-06-01

    We describe simple methods of manufacturing in a laboratory gaseous detectors of visible photons with GaAs(Cs) and SbCs photocathodes and Ti getters. Covered by CsI protective layers they are robust enough to be stable under ordinary experimental conditions. First attempts to use these detectors for crystal scintillator and fiber readout are presented.

  16. THE LIQUID AND GASEOUS FUEL DISTRIBUTION SYSTEM

    EPA Science Inventory

    The report describes the national liquid and gaseous fuel distribution system. he study leading to the report was performed as part of an effort to better understand emissions of volatile organic compounds from the fuel distribution system. he primary, secondary, and tertiary seg...

  17. Annual Gaseous Electronics Conference (43rd)

    DTIC Science & Technology

    1991-04-23

    University Avenue Madison, WI 53706 Madison, WI 53706 aig Denman Jacques Derouard Russell DeYoung !00 Eubank, N.E., #417 Spectrometrie Physique Gaseous...Universitat Innsbruck Dawley Road Santa Clara, CA 95054 Technikerstr. 25 Hayes UB31H4 A 6020 Innstruck U.K. Austria JoanneLiu RonLockwood Leonard Loeb MIT

  18. Methods and systems for deacidizing gaseous mixtures

    DOEpatents

    Hu, Liang

    2010-05-18

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  19. Atomic gas in debris discs

    NASA Astrophysics Data System (ADS)

    Hales, Antonio S.; Barlow, M. J.; Crawford, I. A.; Casassus, S.

    2017-04-01

    We have conducted a search for optical circumstellar absorption lines in the spectra of 16 debris disc host stars. None of the stars in our sample showed signs of emission line activity in either Hα, Ca II or Na I, confirming their more evolved nature. Four stars were found to exhibit narrow absorption features near the cores of the photospheric Ca II and Na I D lines (when Na I D data were available). We analyse the characteristics of these spectral features to determine whether they are of circumstellar or interstellar origins. The strongest evidence for circumstellar gas is seen in the spectrum of HD 110058, which is known to host a debris disc observed close to edge-on. This is consistent with a recent ALMA detection of molecular gas in this debris disc, which shows many similarities to the β Pictoris system.

  20. Changes in orientation and shape of protoplanetary discs moving through an ambient medium

    NASA Astrophysics Data System (ADS)

    Wijnen, T. P. G.; Pelupessy, F. I.; Pols, O. R.; Portegies Zwart, S.

    2017-08-01

    Misalignments between the orbital planes of planets and the equatorial planes of their host stars have been observed in our solar system, in transiting exoplanets, and for the orbital planes of debris discs. We present a mechanism that causes such a spin-orbit misalignment for a protoplanetary disc due to its movement through an ambient medium. Our physical explanation of the mechanism is based on the theoretical solutions to the Stark problem. We test this idea by performing self-consistent hydrodynamical simulations and simplified gravitational N-body simulations. The N-body model reduces the mechanism to the relevant physical processes. The hydrodynamical simulations show the mechanism in its full extent, including gas-dynamical and viscous processes in the disc which are not included in the theoretical framework. We find that a protoplanetary disc embedded in a flow changes its orientation as its angular momentum vector tends to align parallel to the relative velocity vector. Due to the force exerted by the flow, orbits in the disc become eccentric, which produces a net torque and consequentially changes the orbital inclination. The tilting of the disc causes it to contract. Apart from becoming lopsided, the gaseous disc also forms a spiral arm even if the inclination does not change substantially. The process is most effective at high velocities and observational signatures are therefore mostly expected in massive star-forming regions and around winds or supernova ejecta. Our N-body model indicates that the interaction with supernova ejecta is a viable explanation for the observed spin-orbit misalignment in our solar system.

  1. HD 172555: Detection of 63 micrometers [OI] Emission in a Debris Disc

    NASA Technical Reports Server (NTRS)

    Riviere-Marichalar, P.; Barrado, D.; Augereau, J. -C.; Thi, W. F.; Roberge, A.; Eiroa, C.; Montesinos, B.; Meeus, G.; Howard, C.; Sandell, G.; hide

    2012-01-01

    Context. HD 172555 is a young A7 star belonging to the Beta Pictoris Moving Group that harbours a debris disc. The Spitzer IRS spectrum of the source showed mid-IR features such as silicates and glassy silica species, indicating the presence of a warm dust component with small grains, which places HD 172555 among the small group of debris discs with such properties. The IRS spectrum also shows a possible emission of SiO gas. Aims. We aim to study the dust distribution in the circumstellar disc of HD 172555 and to asses the presence of gas in the debris disc. Methods. As part of the GASPS Open Time Key Programme, we obtained Herschel-PACS photometric and spectroscopic observations of the source. We analysed PACS observations of HD 172555 and modelled the Spectral Energy Distribution (SED) with a modified blackbody and the gas emission with a two-level population model with no collisional de-excitation. Results. We report for the first time the detection of [OI] atomic gas emission at 63.18 micrometers in the HD 172555 circumstellar disc.We detect excesses due to circumstellar dust toward HD 172555 in the three photometric bands of PACS (70, 100, and 160 m). We derive a large dust particle mass of (4.8 plus-minus 0.6)x10(exp -4) Mass compared to Earth and an atomic oxygen mass of 2.5x10(exp -2)R(exp 2) Mass compared to Earth, where R in AU is the separation between the star and the inner disc. Thus, most of the detected mass of the disc is in the gaseous phase.

  2. Stability of galactic discs: finite arm-inclination and finite-thickness effects

    NASA Astrophysics Data System (ADS)

    Griv, Evgeny; Gedalin, Michael

    2012-05-01

    A modified theory of the Lin-Shu density waves, studied in connection with the problem of spiral pattern of rapidly and differentially rotating disc galaxies, is presented for both the axisymmetric and non-axisymmetric structures in highly flattened galaxies resulted from the classical Jeans instability of small gravity perturbations (e.g. those produced by a spontaneous disturbance). A new method is provided for the analytical solution of the self-consistent system of the gas-dynamic equations and the Poisson equation describing the stability of a three-dimensional galactic disc composed of stars or gaseous clouds. In order to apply the method, the modifications introduced for the properties of the gravitationally unstable, that is to say, amplitude-growing density waves are considered by removing the often used assumptions that the gravity perturbations are axisymmetric and the disc is infinitesimally thin. In contrast to previous studies, in this paper these two effects - the non-axial symmetry effect and the finite thickness effect - are simultaneously taken into account. We show that non-axisymmetric perturbations developing in a differentially rotating disc are more unstable than the axisymmetric ones. We also show that destabilizing self-gravity is far more 'dangerous' in thin discs than in thick discs. The primary effect of small but finite thickness is a reduction of the growth rate of the gravitational Jeans instability and a shift in the threshold of instability towards a longer wavelength (and larger wavelength will include more mass). The results of this paper are in qualitative agreement with previous analytical and numerical estimations of the effects. The extent to which our results on the disc's stability can have a bearing on observable spiral galaxies, including the Milky Way, is also discussed.

  3. Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disc?

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Izidoro, Andre; Bitsch, Bertram; Jacobson, Seth A.

    2016-05-01

    Jupiter's core is generally assumed to have formed beyond the snow line. Here we consider an alternative scenario that Jupiter's core may have accumulated in the innermost part of the protoplanetary disc. A growing body of research suggests that small particles (`pebbles') continually drift inward through the disc. If a fraction of drifting pebbles is trapped at the inner edge of the disc, several Earth-mass cores can quickly grow. Subsequently, the core may migrate outward beyond the snow line via planet-disc interactions. Of course, to reach the outer Solar system Jupiter's core must traverse the terrestrial planet-forming region. We use N-body simulations including synthetic forces from an underlying gaseous disc to study how the outward migration of Jupiter's core sculpts the terrestrial zone. If the outward migration is fast (τmig ˜ 104 yr), the core simply migrates past resident planetesimals and planetary embryos. However, if its migration is slower (τmig ˜ 105 yr) the core clears out solids in the inner disc by shepherding objects in mean motion resonances. In many cases, the disc interior to 0.5-1 AU is cleared of embryos and most planetesimals. By generating a mass deficit close to the Sun, the outward migration of Jupiter's core may thus explain the absence of terrestrial planets closer than Mercury. Jupiter's migrating core often stimulates the growth of another large (˜Earth-mass) core - that may provide a seed for Saturn's core - trapped in an exterior resonance. The migrating core also may transport a fraction of terrestrial planetesimals, such as the putative parent bodies of iron meteorites, to the asteroid belt.

  4. Experimental Evaluation of a Subscale Gaseous Hydrogen/Gaseous Oxygen Coaxial Rocket Injector

    NASA Astrophysics Data System (ADS)

    Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert

    2002-11-01

    The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.

  5. Experimental Evaluation of a Subscale Gaseous Hydrogen/gaseous Oxygen Coaxial Rocket Injector

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert

    2002-01-01

    The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.

  6. 40 CFR 89.417 - Data evaluation for gaseous emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.417 Data evaluation for gaseous emissions. For the evaluation of the gaseous...

  7. 40 CFR 89.417 - Data evaluation for gaseous emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.417 Data evaluation for gaseous emissions. For the evaluation of the gaseous...

  8. 21 CFR 866.1620 - Antimicrobial susceptibility test disc.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of antimicrobic-impregnated paper discs used to measure by a disc-agar diffusion technique or a disc... antimicrobial agents. In the disc-agar diffusion technique, bacterial susceptibility is ascertained by directly...

  9. 21 CFR 866.1620 - Antimicrobial susceptibility test disc.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of antimicrobic-impregnated paper discs used to measure by a disc-agar diffusion technique or a disc... antimicrobial agents. In the disc-agar diffusion technique, bacterial susceptibility is ascertained by directly...

  10. 21 CFR 866.1620 - Antimicrobial susceptibility test disc.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of antimicrobic-impregnated paper discs used to measure by a disc-agar diffusion technique or a disc... antimicrobial agents. In the disc-agar diffusion technique, bacterial susceptibility is ascertained by directly...

  11. 21 CFR 866.1620 - Antimicrobial susceptibility test disc.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of antimicrobic-impregnated paper discs used to measure by a disc-agar diffusion technique or a disc... antimicrobial agents. In the disc-agar diffusion technique, bacterial susceptibility is ascertained by directly...

  12. Gaseous modification of MCrAlY coatings

    DOEpatents

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes methods for modifying MCrAlY coatings by using gaseous carburization, gaseous nitriding or gaseous carbonitriding. The modified MCrAlY coatings are useful in thermal barrier coating systems, which may be used in gas turbine engines.

  13. 26 CFR 1.246-4 - Dividends from a DISC or former DISC.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Dividends from a DISC or former DISC. 1.246-4... TAX (CONTINUED) INCOME TAXES Special Deductions for Corporations § 1.246-4 Dividends from a DISC or former DISC. The deduction provided in section 243 (relating to dividends received by corporations) is...

  14. Photoevaporating transitional discs and molecular cloud cores

    NASA Astrophysics Data System (ADS)

    Li, Min; Sui, Ning

    2017-04-01

    We investigate the evolution of photoevaporating protoplanetary discs including mass influx from molecular cloud cores. We examine the influence of cloud core properties on the formation and evolution of transitional discs. We use one-dimensional thin disc assumption and calculate the evolution of the protoplanetary disc. The effects of X-ray photoevaporation are also included. Our calculations suggest that most discs should experience the transitional disc phase within 10 Myr. The formation time of a gap and its initial location are functions of the properties of the cloud cores. In some circumstances, discs can open two gaps by photoevaporation alone. The two gaps form when the gas in the disc can expand to large radius and if the mass at large radius is sufficiently small. The surface density profile of the disc determines whether the two gaps can form. Since the structure of a disc is determined by the properties of a molecular cloud core, the core properties determine the formation of two gaps in the disc. We further find that even when the photoevaporation rate is reduced to 10 per cent of the standard value, two gaps can still form in the disc. The only difference is that the formation time is delayed.

  15. Hydrodynamic ablation of protoplanetary discs via supernovae

    NASA Astrophysics Data System (ADS)

    Close, J. L.; Pittard, J. M.

    2017-07-01

    We present three-dimensional simulations of a protoplanetary disc subject to the effect of a nearby (0.3 pc distant) supernova (SN), using a time-dependent flow from a one-dimensional numerical model of the supernova remnant (SNR), in addition to constant peak ram pressure simulations. Simulations are performed for a variety of disc masses and inclination angles. We find disc mass-loss rates that are typically 10-7-10-6 M⊙ yr-1 (but they peak near 10-5 M⊙ yr-1 during the 'instantaneous' stripping phase) and are sustained for around 200 yr. Inclination angle has little effect on the mass-loss unless the disc is close to edge-on. Inclined discs also strip asymmetrically with the trailing edge ablating more easily. Since the interaction lasts less than one outer rotation period, there is not enough time for the disc to restore its symmetry, leaving the disc asymmetrical after the flow has passed. Of the low-mass discs considered, only the edge-on disc is able to survive interaction with the SNR (with 50 per cent of its initial mass remaining). At the end of the simulations, discs that survive contain fractional masses of SN material up to 5 × 10-6. This is too low to explain the abundance of short-lived radionuclides in the early Solar system, but a larger disc and the inclusion of radiative cooling might allow the disc to capture a higher fraction of SN material.

  16. Electromagnetic Levitation of a Disc

    ERIC Educational Resources Information Center

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  17. Optical Disc Applications in Libraries.

    ERIC Educational Resources Information Center

    Andre, Pamela Q. J.

    1989-01-01

    Discusses a variety of library applications of optical disc storage technology, including CD-ROM, digital videodisc, and WORM. Research and development projects at the Library of Congress, National Library of Medicine, and National Agricultural Library are described, products offered by library networks are reviewed, and activities in academic and…

  18. Electromagnetic Levitation of a Disc

    ERIC Educational Resources Information Center

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  19. Twin Disc Gear Tooth Simulator

    DTIC Science & Technology

    1994-05-01

    temperature testing, i.e., aluminum, titanium alloys, or magnesium with Krytox . * Use adequate forced-draft ventilation. * Prior to conducting any...ultrasonic cleaner charged with Stoddard solvent. 2. Prior to installation, wipe all disc surfaces with a lint-free cloth dampened with Stoddard solvent

  20. The star formation history in the far outer disc of M33

    NASA Astrophysics Data System (ADS)

    Barker, Michael K.; Ferguson, A. M. N.; Cole, A. A.; Ibata, R.; Irwin, M.; Lewis, G. F.; Smecker-Hane, T. A.; Tanvir, N. R.

    2011-01-01

    The outer regions of disc galaxies are becoming increasingly recognized as key testing sites for models of disc assembly and evolution. Important issues are the epoch at which the bulk of the stars in these regions formed and how discs grow radially over time. To address these issues, we use Hubble Space Telescope Advanced Camera for Surveys imaging to study the star formation history (SFH) of two fields at 9.1 and 11.6 kpc along M33's northern major axis. These fields lie at ˜ 4 and 5 V-band disc scalelengths and straddle the break in M33's surface brightness profile. The colour-magnitude diagrams (CMDs) reach the ancient main-sequence turn-off with a signal-to-noise ratio of ˜ 5. From detailed modelling of the CMDs, we find that the majority of stars in both fields combined formed at z < 1. The mean age in the inner field, S1, is ˜ 3 ± 1 Gyr and the mean metallicity is [M/H]˜- 0.5 ± 0.2 dex. The SFH of S1 unambiguously reveals how the inside-out growth previously measured for M33's inner disc out to ? extends out to the disc edge at ?. In comparison, the outer field, S2, is older (mean age ˜ 7 ± 2 Gyr), more metal-poor (mean [M/H]˜- 0.8 ± 0.3 dex), and contains ˜ 30 times less stellar mass. These results provide the most compelling evidence yet that M33's age gradient reverses at large radii near the disc break and that this reversal is accompanied by a break in stellar mass surface density. We discuss several possible interpretations of this behaviour including radial stellar mixing, warping of the gaseous disc, a change in star formation efficiency and a transition to another structural component. These results offer one of the most detailed views yet of the peripheral regions of any disc galaxy and provide a much needed observational constraint on the last major epoch of star formation in the outer disc.

  1. Rotational support of giant clumps in high-z disc galaxies

    NASA Astrophysics Data System (ADS)

    Ceverino, Daniel; Dekel, Avishai; Mandelker, Nir; Bournaud, Frederic; Burkert, Andreas; Genzel, Reinhard; Primack, Joel

    2012-03-01

    We address the internal support against total free-fall collapse of the giant clumps that form by violent gravitational instability in high-z disc galaxies. Guidance is provided by an analytic model, where the protoclumps are cut from a rotating disc and collapse to equilibrium while preserving angular momentum. This model predicts prograde clump rotation, which dominates the support if the clump has contracted to a surface density contrast ≳10. This is confirmed in hydro adaptive mesh refinement zoom-in simulations of galaxies in a cosmological context. In most high-z clumps, the centrifugal force dominates the support, ?, where Vrot is the rotation velocity and the circular velocity Vcirc measures the potential well. The clump spin indeed tends to be in the sense of the global disc angular momentum, but substantial tilts are frequent, reflecting the highly warped nature of the high-z discs. Most clumps are in Jeans equilibrium, with the rest of the support provided by turbulence, partly driven by the gravitational instability itself. The general agreement between model and simulations indicates that angular momentum loss or gain in most clumps is limited to a factor of 2. Simulations of isolated gas-rich discs that resolve the clump substructure reveal that the cosmological simulations may overestimate ? by ˜30 per cent, but the dominance of rotational support at high z is not a resolution artefact. In turn, isolated gas-poor disc simulations produce at z= 0 smaller gaseous non-rotating transient clouds, indicating that the difference in rotational support is associated with the fraction of cold baryons in the disc. In our current cosmological simulations, the clump rotation velocity is typically more than twice the disc dispersion, Vrot˜ 100 km s-1, but when beam smearing of ≥0.1 arcsec is imposed, the rotation signal is reduced to a small gradient of ≤30 km s-1 kpc-1 across the clump. The velocity dispersion in the simulated clumps is comparable to the

  2. Intervertebral disc calcifications in children.

    PubMed

    Beluffi, G; Fiori, P; Sileo, C

    2009-03-01

    This study was done to assess the presence of both asymptomatic and symptomatic intervertebral disc calcifications in a large paediatric population. We retrospectively reviewed the radiographs taken during the past 26 years in children (age 0-18 years) undergoing imaging of the spine or of other body segments in which the spine was adequately depicted, to determine possible intervertebral disc calcifications. The following clinical evaluation was extrapolated from the patients' charts: presence of spinal symptoms, history of trauma, suspected or clinically evident scoliosis, suspected or clinically evident syndromes, bone dysplasias, and pre- or postoperative chest or abdominal X-rays. We detected intervertebral disc calcifications in six patients only. Five calcifications were asymptomatic (one newborn baby with Patau syndrome; three patients studied to rule out scoliosis, hypochondroplasia and syndromic traits; one for dyspnoea due to sunflower seeds inhalation). Only one was symptomatic, with acute neck pain. Calcifications varied in number from one in one patient to two to five in the others. Apart from the calcification in the patient with cervical pain, all calcifications were asymptomatic and constituted an incidental finding (particularly those detected at the thoracic level in the patient studied for sunflower-seed inhalation). Calcification shapes were either linear or round. Our series confirms that intervertebral disc calcifications are a rare finding in childhood and should not be a source of concern: symptomatic calcifications tend to regress spontaneously within a short time with or without therapy and immobilisation, whereas asymptomatic calcifications may last for years but disappear before the age of 20 years. Only very few cases, such as those of medullary compression or severe dysphagia due to anterior herniation of cervical discs, may require surgical procedures.

  3. The relationship between quantitative measures of disc height and disc signal intensity with Pfirrmann score of disc degeneration.

    PubMed

    Salamat, Sara; Hutchings, John; Kwong, Clemens; Magnussen, John; Hancock, Mark J

    2016-01-01

    To assess the relationship between quantitative measures of disc height and signal intensity with the Pfirrmann disc degeneration scoring system and to test the inter-rater reliability of the quantitative measures. Participants were 76 people who had recently recovered from their last episode of acute low back pain and underwent MRI scan on a single 3T machine. At all 380 lumbar discs, quantitative measures of disc height and signal intensity were made by 2 independent raters and compared to Pfirrmann scores from a single radiologist. For quantitative measures of disc height and signal intensity a "raw" score and 2 adjusted ratios were calculated and the relationship with Pfirrmann scores was assessed. The inter-tester reliability of quantitative measures was also investigated. There was a strong linear relationship between quantitative disc signal intensity and Pfirrmann scores for grades 1-4, but not for grades 4 and 5. For disc height only, Pfirrmann grade 5 had significantly reduced disc height compared to all other grades. Results were similar regardless of whether raw or adjusted scores were used. Inter-rater reliability for the quantitative measures was excellent (ICC > 0.97). Quantitative measures of disc signal intensity were strongly related to Pfirrmann scores from grade 1 to 4; however disc height only differentiated between grade 4 and 5 Pfirrmann scores. Using adjusted ratios for quantitative measures of disc height or signal intensity did not significantly alter the relationship with Pfirrmann scores.

  4. Effect of gaseous ammonia on nicotine sorption

    SciTech Connect

    Webb, A.M.; Singer, B.C.; Nazaroff, W.W.

    2002-06-01

    Nicotine is a major constituent of environmental tobacco smoke. Sorptive interactions of nicotine with indoor surfaces can substantially alter indoor concentrations. The phenomenon is poorly understood, including whether sorption is fully reversible or partially irreversible. They hypothesize that acid-base chemistry on indoor surfaces might contribute to the apparent irreversibility of nicotine sorption under some circumstances. Specifically, they suggest that nicotine may become protonated on surfaces, markedly reducing its vapor pressure. If so, subsequent exposure of the surface to gaseous ammonia, a common base, could raise the surface pH, causing deprotonation and desorption of nicotine from surfaces. A series of experiments was conducted to explore the effect of ammonia on nicotine sorption to and reemission from surfaces. The results indicate that, under some conditions, exposure to gaseous ammonia can substantially increase the rate of desorption of previously sorbed nicotine from common indoor surface materials.

  5. Towards spark-proof gaseous pixel detectors

    NASA Astrophysics Data System (ADS)

    Tsigaridas, S.; Beuzekom, M. v.; Chan, H. W.; Graaf, H. v. d.; Hartjes, F.; Heijhoff, K.; Hessey, N. P.; Prodanovic, V.

    2016-11-01

    The micro-pattern gaseous pixel detector, is a promising technology for imaging and particle tracking applications. It is a combination of a gas layer acting as detection medium and a CMOS pixelated readout-chip. As a prevention against discharges we deposit a protection layer on the chip and then integrate on top a micromegas-like amplification structure. With this technology we are able to reconstruct 3D track segments of particles passing through the gas thanks to the functionality of the chip. We have turned a Timepix3 chip into a gaseous pixel detector and tested it at the SPS at Cern. The preliminary results are promising and within the expectations. However, the spark protection layer needs further improvement to make reliable detectors. For this reason, we have created a setup for spark-testing. We present the first results obtained from the lab-measurements along with preliminary results from the testbeam.

  6. Gaseous drag and planetary formation by accretion

    SciTech Connect

    Spaute, D.; Lago, B.; Cazenave, A.

    1985-10-01

    Several numerical experiments concerning the collisional and gravitational interaction of a planetesimal swarm in the early solar system are presented. The experiments simulate the accretional growth of numerous planetesimals in the absence (or presence) of gaseous drag, with (or without) one larger embryo among them, and with (or without) a size gradient. It is shown that, for a population of planetesimals subjected to a negative gradient in size as the heliocentric distance increases, the outer planetesimals spiral toward the sun faster than the inner ones; this leads after some time to an accumulation of bodies inside the cloud, allowing the formation of an embryo. In addition, it is found that the growth of one embryo among a population of planetesimals is accelerated by the presence of gas, and is warranted as long as its feeding zone is fed by the inward flow of planetesimals due to gaseous drag. 15 references.

  7. Uranium enrichment export control guide: Gaseous diffusion

    SciTech Connect

    Not Available

    1989-09-01

    This document was prepared to serve as a guide for export control officials in their interpretation, understanding, and implementation of export laws that relate to the Zangger International Trigger List for gaseous diffusion uranium enrichment process components, equipment, and materials. Particular emphasis is focused on items that are especially designed or prepared since export controls are required for these by States that are party to the International Nuclear Nonproliferation Treaty.

  8. Dry-Enzyme Test For Gaseous Chemicals

    NASA Technical Reports Server (NTRS)

    Barzana, Eduardo; Karel, Marcus; Klibanov, Alexander

    1990-01-01

    Simple, dry-chemical test detects ethanol in human breath. Method of test also adapted to detection of such toxic chemicals as formaldehyde in airstreams. Used qualitatively to detect chemical compounds above present level; for example, ethanol above legal level for driving. Also used to indicate quantitatively concentrations of compounds. Involves dry enzyme and color indicator. Adapted to detect any gaseous compound transformed by enzymes to produce change evident to human eye or to instrument.

  9. Gaseous reference standards of formaldehyde from trioxane.

    PubMed

    Brewer, Paul J; di Meane, Elena Amico; Vargha, Gergely M; Brown, Richard J C; Milton, Martin J T

    2013-04-15

    We have developed a dynamic reference standard of gaseous formaldehyde based on diffusion of the sublimate of trioxane and thermal conversion to formaldehyde in the gas phase. We have also produced a gravimetric standard for formaldehyde in a nitrogen matrix, also by thermal conversion of the sublimate of trioxane. Analysis of the gravimetric standard with respect to the dynamic standard has confirmed the comparability of the static and dynamic gravimetric values. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Correlation and prediction of gaseous diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  11. Correlation and prediction of gaseous diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  12. Trace organic impurities in gaseous helium

    NASA Technical Reports Server (NTRS)

    Schehl, T. A.

    1973-01-01

    A program to determine trace organic impurities present in helium has been initiated. The impurities were concentrated in a cryogenic trap to permit detection and identification by a gas chromatographic-mass spectrometric technique. Gaseous helium (GHe) exhibited 63 GC flame ionization response peaks. Relative GC peak heights and identifications of 25 major impurities by their mass spectra are given. As an aid to further investigation, identities are proposed for 16 other components, and their mass spectra are given.

  13. Diffusion method of seperating gaseous mixtures

    DOEpatents

    Pontius, Rex B.

    1976-01-01

    A method of effecting a relatively large change in the relative concentrations of the components of a gaseous mixture by diffusion which comprises separating the mixture into heavier and lighter portions according to major fraction mass recycle procedure, further separating the heavier portions into still heavier subportions according to a major fraction mass recycle procedure, and further separating the lighter portions into still lighter subportions according to a major fraction equilibrium recycle procedure.

  14. Peripheral Disc Margin Shape and Internal Disc Derangement: Imaging Correlation in Significantly Painful Discs Identified at Provocation Lumbar Discography

    PubMed Central

    Bartynski, W.S.; Rothfus, W.E.

    2012-01-01

    Summary Annular margin shape is used to characterize lumbar disc abnormality on CT/MR imaging studies. Abnormal discs also have internal derangement including annular degeneration and radial defects. The purpose of this study was to evaluate potential correlation between disc-margin shape and annular internal derangement on post-discogram CT in significantly painful discs encountered at provocation lumbar discography (PLD). Significantly painful discs were encountered at 126 levels in 86 patients (47 male, 39 female) studied by PLD where no prior surgery had been performed and response to intradiscal lidocaine after provocation resulted in either substantial/total relief or no improvement after lidocaine administration. Post-discogram CT and discogram imaging was evaluated for disc-margin characteristics (bulge/protrusion), features of disc internal derangement (radial annular defect [RD: radial tear/fissure/annular gap], annular degeneration) and presence/absence of discographic contrast leakage. In discs with focal protrusion, 50 of 63 (79%) demonstrated Grade 3 RD with 13 (21%) demonstrating severe degenerative change only. In discs with generalized-bulge-only, 48 of 63 (76%) demonstrated degenerative change only (primarily Dallas Grade 3) with 15 of 63 (24%) demonstrating a RD (Dallas Grade 3). Differences were highly statistically significant (p<0.001). Pain elimination with intra-discal lidocaine correlated with discographic contrast leakage (p<0.001). Disc-margin shape correlates with features of internal derangement in significantly painful discs encountered at PLD. Discs with focal protrusion typically demonstrate RD while generalized bulging discs typically demonstrated degenerative changes only (p<0.001). Disc-margin shape may provide an important imaging clue to the cause of chronic discogenic low back pain. PMID:22681741

  15. [Optic disc granuloma secondary to sarcoidosis].

    PubMed

    Qu-Knafo, L; Auregan-Giocanti, A

    2017-02-01

    We report a case of optic disc granuloma due to sarcoidosis. A 64-year-old, caucasian female with a history of pulmonary sarcoidosis presented with a vision loss on her left eye. The ophthalmologic examination revealed a discrete optic disc infiltrate compatible with the diagnosis of optic disc granuloma. Fluorescein angiography showed diffusion and impregnation of the granuloma without vascularitis. The optical coherence tomography demonstrated a homogenous and isoreflective lesion at the optic disc. The patient recovered her visual acuity after systemic corticosteroid treatment. Isolated optic disc granuloma is a rare condition of ocular sarcoidosis.

  16. Sealing arrangement with annular flexible disc

    DOEpatents

    Pennell, William E.; Honigsberg, Charles A.

    1983-01-01

    Fluid sealing arrangements including an annular shaped flexible disc having enlarged edges disposed within channel-shaped annular receptacles which are spaced from one another. The receptacles form an annular region for contacting and containing the enlarged edges of the disc, and the disc is preloaded to a conical configuration. The disc is flexibly and movably supported within the receptacles so that unevenly distributed relative motion between the components containing the receptacles is accommodated without loss of sealing contact between the edges of the disc and the walls of the receptacles.

  17. Planetary migration in weakly magnetized turbulent discs

    NASA Astrophysics Data System (ADS)

    Baruteau, C.; Fromang, S.; Nelson, R. P.; Masset, F.

    2011-12-01

    In laminar viscous disc models, the migration of protoplanets embedded in their nascent protoplanetary discs may be directed inwards or outwards, depending on the relative magnitude of the Lindblad and corotation torques. The long-term evolution of the corotation torque is intimately related to diffusion processes inside the planet's horseshoe region. This communication examines the properties of the corotation torque in discs where magnetohydrodynamic (MHD) turbulence develops as a result of the magnetorotational instability (MRI), considering a weak initial toroidal magnetic field. We show that the differential Lindblad torque takes very similar values in MHD turbulent and laminar viscous discs, and there exists an unsaturated corotation torque in MHD turbulent discs.

  18. Coexisting stable conformations of gaseous protein ions.

    PubMed Central

    Suckau, D; Shi, Y; Beu, S C; Senko, M W; Quinn, J P; Wampler, F M; McLafferty, F W

    1993-01-01

    For further insight into the role of solvent in protein conformer stabilization, the structural and dynamic properties of protein ions in vacuo have been probed by hydrogen-deuterium exchange in a Fourier-transform mass spectrometer. Multiply charged ions generated by electrospray ionization of five proteins show exchange reactions with 2H2O at 10(-7) torr (1 torr = 133.3 Pa) exhibiting pseudo-first-order kinetics. Gas-phase compactness of the S-S cross-linked RNase A relative to denatured S-derivatized RNase A is indicated by exchange of 35 and 135 hydrogen atoms, respectively. For pure cytochrome c ions, the existence of at least three distinct gaseous conformers is indicated by the substantially different values--52, 113, and 74--of reactive H atoms; the observation of these same values for ions of a number--2, 7, and 5, respectively--of different charge states indicates conformational insensitivity to coulombic forces. For each of these conformers, the compactness in vacuo indicated by these values corresponds directly to that of a known conformer structure in the solution from which the conformer ions are produced by electrospray. S-derivatized RNase A ions also exist as at least two gaseous conformers exchanging 50-140 H atoms. Gaseous conformer ions are isometrically stable for hours; removal of solvent greatly increases conformational rigidity. More specific ion-molecule reactions could provide further details of conformer structures. Images PMID:8381533

  19. Method for reacting nongaseous material with a gaseous reactant

    DOEpatents

    Lumpkin, Robert E.; Duraiswamy, Kandaswamy

    1979-03-27

    This invention relates to a new and novel method and apparatus for reacting nongaseous material with a gaseous reactant comprising introducing a first stream containing a nongaseous material into a reaction zone; simultaneously introducing a second stream containing a gaseous reactant into the reaction zone such that the gaseous reactant immediately contacts and reacts with the first stream thereby producing a gaseous product; forming a spiralling vortex within the reaction zone to cause substantial separation of gases, including the gaseous product, from the nongaseous material; forming and removing a third stream from the reaction zone containing the gaseous product which is substantially free of the nongaseous material before a major portion of the gaseous product can react with the nongaseous material; and forming and removing a fourth stream containing the nongaseous material from the reaction zone.

  20. Synthesis of Organic Matter of Prebiotic Chemistry at the Protoplanetary Disc

    NASA Astrophysics Data System (ADS)

    Snytnikov, Valeriy; Stoynovskaya, Olga; Rudina, Nina

    pressure inside the disc from tens to hundred atmospheres. We simulated unsteady processes in massive circumstellar discs around YSO class O and I. In the computational experiments, we have shown that at a certain stage of its evolution the circumstellar discs of gas and solids produces local areas of high pressure. According to the classical heterogeneous catalysis, a wide range of organic and prebiotic compounds could have been synthesized in these areas. Can we capture these areas of high pressure synthesis in observation of circumstellar discs? Due to the small sizes of such areas they can be hardly ever resolved even with the modern telescopes such as ALMA. However, we can try to detect their signatures in the disc, since the gas of the disc keep the set of organic synthesis products. The idea is to define the signature of the process using laboratory experiments. Varying gas temperature and pressure in laboratory setup we can carry out the catalytic high pressure syntheses and specify the set of gaseous products. These sets of organic compounds observed in the discs may serve as indicators of the emergence of high-pressure areas of prebiotic chemistry. Thus, there is a special interest to the study of YSO class 0 and I by means of observational astronomy. For these objects, first data on the presence of individual organic compounds in massive hydrogen-helium component of the discs appear. The origin of the organic compounds that are associated with chemical reactions in the discs should be separated from the set of organic compounds of the initial molecular cloud.

  1. Thermochemical modelling of brown dwarf discs

    NASA Astrophysics Data System (ADS)

    Greenwood, A. J.; Kamp, I.; Waters, L. B. F. M.; Woitke, P.; Thi, W.-F.; Rab, Ch.; Aresu, G.; Spaans, M.

    2017-05-01

    The physical properties of brown dwarf discs, in terms of their shapes and sizes, are still largely unexplored by observations. ALMA has by far the best capabilities to observe these discs in sub-mm CO lines and dust continuum, while also spatially resolving some discs. To what extent brown dwarf discs are similar to scaled-down T Tauri discs is currently unknown, and this work is a step towards establishing a relationship through the eventual modelling of future observations. We use observations of the brown dwarf disc ρ Oph 102 to infer a fiducial model around which we build a small grid of brown dwarf disc models, in order to model the CO, HCN, and HCO+ line fluxes and the chemistry which drives their abundances. These are the first brown dwarf models to be published which relate detailed, 2D radiation thermochemical disc models to observational data. We predict that moderately extended ALMA antenna configurations will spatially resolve CO line emission around brown dwarf discs, and that HCN and HCO+ will be detectable in integrated flux, following our conclusion that the flux ratios of these molecules to CO emission are comparable to that of T Tauri discs. These molecules have not yet been observed in sub-mm wavelengths in a brown dwarf disc, yet they are crucial tracers of the warm surface-layer gas and of ionization in the outer parts of the disc. We present the prediction that if the physical and chemical processes in brown dwarf discs are similar to those that occur in T Tauri discs - as our models suggest - then the same diagnostics that are used for T Tauri discs can be used for brown dwarf discs (such as HCN and HCO+ lines that have not yet been observed in the sub-mm), and that these lines should be observable with ALMA. Through future observations, either confirmation (or refutation) of these ideas about brown dwarf disc chemistry will have strong implications for our understanding of disc chemistry, structure, and subsequent planet formation in brown

  2. The growth of discs and bulges during hierarchical galaxy formation - I. Fast evolution versus secular processes

    NASA Astrophysics Data System (ADS)

    Tonini, C.; Mutch, S. J.; Croton, D. J.; Wyithe, J. S. B.

    2016-07-01

    We present a theoretical model for the evolution of mass, angular momentum and size of galaxy discs and bulges, and we implement it into the semi-analytic galaxy formation code, Semi-Analytic Galaxy Evolution. The model follows both secular and violent evolutionary channels, including smooth accretion, disc instabilities, minor and major mergers. We find that the combination of our recipe with hierarchical clustering produces two distinct populations of bulges: merger-driven bulges, akin to classical bulges and ellipticals, and instability-driven bulges, akin to secular (or pseudo-)bulges. The model mostly reproduces the mass-size relation of gaseous and stellar discs, the evolution of the mass-size relation of ellipticals, the Faber-Jackson relation, and the magnitude-colour diagram of classical and secular bulges. The model predicts only a small overlap of merger-driven and instability-driven components in the same galaxy, and predicts different bulge types as a function of galaxy mass and disc fraction. Bulge type also affects the star formation rate and colour at a given luminosity. The model predicts a population of merger-driven red ellipticals that dominate both the low-mass and high-mass ends of the galaxy population, and span all dynamical ages; merger-driven bulges in disc galaxies are dynamically old and do not interfere with subsequent evolution of the star-forming component. Instability-driven bulges dominate the population at intermediate galaxy masses, especially thriving in massive discs. The model green valley is exclusively populated by instability-driven bulge hosts. Through the present implementation, the mass accretion history is perceivable in the galaxy structure, morphology and colours.

  3. Curveballs in protoplanetary discs - the effect of the Magnus force on planet formation

    NASA Astrophysics Data System (ADS)

    Forbes, John C.

    2015-10-01

    Spinning planetesimals in a gaseous protoplanetary disc may experience a hydrodynamical force perpendicular to their relative velocities. We examine the effect this force has on the dynamics of these objects using analytical arguments based on a simple laminar disc model and numerical integrations of the equations of motion for individual grains. We focus in particular on metre-sized boulders traditionally expected to spiral in to the central star in as little as 100 years from 1 au We find that there are plausible scenarios in which this force extends the lifetime of these solids in the disc by a factor of several. More importantly the velocities induced by the Magnus force can prevent the formation of planetesimals via gravitational instability in the inner disc if the size of the dust particles is larger than of the order of 10 cm. We find that the fastest growing linear modes of the streaming instability may still grow despite the diffusive effect of the Magnus force, but it remains to be seen how the Magnus force will alter the non-linear evolution of these instabilities.

  4. Proto-planetary disc evolution and dispersal

    NASA Astrophysics Data System (ADS)

    Rosotti, Giovanni Pietro

    2015-05-01

    Planets form from gas and dust discs in orbit around young stars. The timescale for planet formation is constrained by the lifetime of these discs. The properties of the formed planetary systems depend thus on the evolution and final dispersal of the discs, which is the main topic of this thesis. Observations reveal the existence of a class of discs called "transitional", which lack dust in their inner regions. They are thought to be the last stage before the complete disc dispersal, and hence they may provide the key to understanding the mechanisms behind disc evolution. X-ray photoevaporation and planet formation have been studied as possible physical mechanisms responsible for the final dispersal of discs. However up to now, these two phenomena have been studied separately, neglecting any possible feedback or interaction. In this thesis we have investigated what is the interplay between these two processes. We show that the presence of a giant planet in a photo-evaporating disc can significantly shorten its lifetime, by cutting the inner regions from the mass reservoir in the exterior of the disc. This mechanism produces transition discs that for a given mass accretion rate have larger holes than in models considering only X-ray photo-evaporation, constituting a possible route to the formation of accreting transition discs with large holes. These discs are found in observations and still constitute a puzzle for the theory. Inclusion of the phenomenon called "thermal sweeping", a violent instability that can destroy a whole disc in as little as 10 4 years, shows that the outer disc left can be very short-lived (depending on the X-ray luminosity of the star), possibly explaining why very few non accreting transition discs are observed. However the mechanism does not seem to be efficient enough to reconcile with observations. In this thesis we also show that X-ray photo-evaporation naturally explains the observed correlation between stellar masses and accretion

  5. Tidal Decay and Disruption of Gaseous Exoplanets

    NASA Astrophysics Data System (ADS)

    Jackson, Brian K.; Arras, Phil; Jensen, Emily; Peacock, Sarah; Marchant, Pablo; Penev, Kaloyan

    2015-11-01

    Many gaseous exoplanets in short-period orbits are on the verge of Roche-lobe overflow, and observations, along with orbital stability analysis, show tides probably drive significant orbital decay. Thus, the coupled processes of orbital evolution and tidal disruption likely shape the observed distribution of close-in exoplanets and may even be responsible for producing the shortest-period solid planets. However, the exact outcome for an overflowing planet depends on its internal response to mass loss and variable stellar insolation, and the accompanying orbital evolution can act to enhance or inhibit the disruption process. The final orbits of the denuded remnants of gas giants may be predictable from their mass-radius relationship, and so a distinctive mass-period relationship for some short-period solid planets may provide evidence for their origins as gaseous planets. In this presentation, we will discuss our work on tidal decay and disruption of close-in gaseous planets using a new model that accounts for the fact that short-period planets have hot, distended atmospheres, which can result in overflow even for planets that are not officially in Roche lobe contact. We will also point out that the orbital expansion that can accompany mass transfer may be less effective than previously realized because the resulting accretion disk may not return all of its angular momentum to the donor, as is usually assumed. Both of these effects have bee incorporated into the fully-featured and robust Modules for Experiments in Stellar Astrophysics (MESA) suite.

  6. Electrostatic Precipitation in Nearly Pure Gaseous Nitrogen

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Cox, Bobby; Ritz, Mindy

    2008-01-01

    Electrostatic precipitation was performed in a nearly pure gaseous nitrogen system as a possible remedy for black dust contaminant from high pressure 6000 psi lines at the NASA Kennedy Space Center. The results of a prototype electrostatic precipitator that was built and tested using nitrogen gas at standard atmospheric pressures is presented. High voltage pulsed waveforms are generated using a rotating spark gap system at 30 Hz. A unique dust delivery system utilizing the Venturi effect was devised that supplies a given amount of dust per unit time for testing purposes.

  7. Detection of Gaseous Methane on Pluto

    NASA Technical Reports Server (NTRS)

    Young, Leslie; Tokunaga, Alan; Elliot, J.; deBergh, Catherine; Owen, Tobias; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    We obtained Pluto's spectrum using the CSHELL echelle spectrograph at NASA's IRTF on Mauna Kea, on 25-26 May 1992, with a spectral resolution of 13,300. The spectral range (5998 - 6018 per centimeter, or 1661.8 - 1666.9 nm) includes the R(0) and the Q(1) - Q(9) lines of the 2v3 band of methane. The resulting spectrum shows the first detection of gaseous methane on Pluto, with a column height of 1.20 (sup +3.15) (sub -0.87) cm-A (3.22 (sup +8.46) (sub -2.34) x 10(exp 19) molecule per square centimeter)).

  8. Detection of Gaseous Methane on Pluto

    NASA Technical Reports Server (NTRS)

    Young, Leslie; Tokunaga, Alan; Elliot, J.; deBergh, Catherine; Owen, Tobias; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    We obtained Pluto's spectrum using the CSHELL echelle spectrograph at NASA's IRTF on Mauna Kea, on 25-26 May 1992, with a spectral resolution of 13,300. The spectral range (5998 - 6018 per centimeter, or 1661.8 - 1666.9 nm) includes the R(0) and the Q(1) - Q(9) lines of the 2v3 band of methane. The resulting spectrum shows the first detection of gaseous methane on Pluto, with a column height of 1.20 (sup +3.15) (sub -0.87) cm-A (3.22 (sup +8.46) (sub -2.34) x 10(exp 19) molecule per square centimeter)).

  9. Magnetic field dragging in accretion discs

    NASA Astrophysics Data System (ADS)

    de Guiran, R.; Ferreira, J.

    2010-12-01

    Accretion discs are composed of ionized gas in motion around a central object. Sometimes, the disc is the source of powerful bipolar jets along its rotation axis. Theoretical models invoke the existence of a bipolar magnetic field crossing the disc and require two conditions to produce powerful jets: field lines need to be bent enough at the disc surface and the magnetic field needs to be close to equipartition. The work of Petrucci et al (2008) on the variability of X-ray binaries supposes that transitions between pure accretion phases and accretion-ejection phases are due to some variations of the disc magnetization. This rises the problem of the magnetic field dragging in accretion discs. We revisit the method developed by Lubow et al (1994) by including momentum and mass conservation equations in a time-dependent 1D MHD code.

  10. [Polish nomenclature of lumbar disc disease].

    PubMed

    Radło, Paweł; Smetkowski, Andrzej; Tesiorowski, Maciej

    2014-01-01

    Lumbar disc herniation is one of the most common damage of musculoskeletal system. The incidence of pain of lumbosacral spine is estimated approximately on 60-90% in general population, whereas the incidence of disc herniation in patients experiencing low back pain is about 91%. Despite the high incidence and uncomplicated pathogenesis of disc disease there is a problem with the nomenclature. In the vast majority of cases, the naming confusion stems from ignorance of the etiology of low back pain. Different terminologies: morphological, topographical, Radiological and Clinical are used interchangeably. In addition, diagnosis is presented in a variety of languages: Polish, English and Latin. Moreover, the medical and traditional language are used alternately. The authors found in Polish literature more, than 20 terms to describe lumbar disc herniation. All of these terms in the meaning of the authors are used to determine one pathology--mechanical damage to the intervertebral disc and moving the disc material beyond the anatomical area.

  11. Chiral Self-Gravitating Cosmic Vortices

    SciTech Connect

    Rybakov, Yu.P.

    2005-06-01

    In the framework of general relativity, an exact axisymmetric (vortex) solution of the equations of motion is obtained for the SU(2) symmetric sigma model. This solution is characterized by the topological charge (winding number) and angular deficit. In the linearized approximation, the Lyapunov stability of vortices is proved and the deflection angle of a light ray in the gravitational field of the vortex (gravitational lens effect) is calculated.

  12. Thermal conductivity of graphene nanoribbons in noble gaseous environments

    SciTech Connect

    Zhong, Wei-Rong Xu, Zhi-Cheng; Zheng, Dong-Qin; Ai, Bao-Quan

    2014-02-24

    We investigate the thermal conductivity of suspended graphene nanoribbons in noble gaseous environments using molecular dynamics simulations. It is reported that the thermal conductivity of perfect graphene nanoribbons decreases with the gaseous pressure. The decreasing is more obvious for the noble gas with large atomic number. However, the gaseous pressure cannot change the thermal conductivity of defective graphene nanoribbons apparently. The phonon spectra of graphene nanoribbons are also provided to give corresponding supports.

  13. Close-packing of growing discs

    SciTech Connect

    Bursill, L.A.; Xudong, F. . School of Physics)

    1988-12-01

    Spiral lattices are derived by allowing growing discs to aggregate under a close-packing rule. Both Fibonacci and Lucas numbers of visible spirals arise naturally, dependent only on the choice of growth centre. Both the rate of convergence towards an ideal spiral, and chirality, are determined by the initial placement of the first few discs (initial conditions). Thus the appearance of spiral packings is no more or less mysterious than the appearance of hexagonal packed arrays of equal discs.

  14. Factors that influence recurrent lumbar disc herniation.

    PubMed

    Yaman, M E; Kazancı, A; Yaman, N D; Baş, F; Ayberk, G

    2017-06-01

    The most common cause of poor outcome following lumbar disc surgery is recurrent herniation. Recurrence has been noted in 5% to 15% of patients with surgically treated primary lumbar disc herniation. There have been many studies designed to determine the risk factors for recurrent lumbar disc herniation. In this study, we retrospectively analysed the influence of disc degeneration, endplate changes, surgical technique, and patient's clinical characteristics on recurrent lumbar disc herniation. Patients who underwent primary single-level L4-L5 lumbar discectomy and who were reoperated on for recurrent L4-L5 disc herniation were retrospectively reviewed. All these operations were performed between August 2004 and September 2009 at the Neurosurgery Department of Ataturk Education and Research Hospital in Ankara, Turkey. During the study period, 126 patients were reviewed, with 101 patients underwent primary single-level L4-L5 lumbar discectomy and 25 patients were reoperated on for recurrent L4-L5 disc herniation. Preoperative higher intervertebral disc height (P<0.001) and higher body mass index (P=0.042) might be risk factors for recurrence. Modic endplate changes were statistically significantly greater in the recurrent group than in the non-recurrent group (P=0.032). Our study suggests that patients who had recurrent lumbar disc herniation had preoperative higher disc height and higher body mass index. Modic endplate changes had a higher tendency for recurrence of lumbar disc herniation. Well-planned and well-conducted large-scale prospective cohort studies are needed to confirm this and enable convenient treatment modalities to prevent recurrent disc pathology.

  15. Disc repositioning: does it really work?

    PubMed

    Gonçalves, João Roberto; Cassano, Daniel Serra; Rezende, Luciano; Wolford, Larry M

    2015-02-01

    Although limited, there is evidence to support the assumption that temporomandibular joint (TMJ) articular disc repositioning indeed works; to date, there is no evidence that TMJ articular disc repositioning does not work. Despite the controversy among professionals in private practice and academia, TMJ articular disc repositioning is a procedure based on (still limited) evidence; the opposition is based solely on clinical preference and influenced by the ability to perform it or not. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Novel gaseous detectors for medical imaging

    NASA Astrophysics Data System (ADS)

    Danielsson, M.; Fonte, P.; Francke, T.; Iacobaeus, C.; Ostling, J.; Peskov, V.

    2004-02-01

    We have developed and successfully tested prototypes of two new types of gaseous detectors for medical imaging purposes. The first one is called the Electronic Portal Imaging Device (EPID). It is oriented on monitoring and the precise alignment of the therapeutic cancer treatment beam (pulsed gamma radiation) with respect to the patient's tumor position. The latest will be determined from an X-ray image of the patient obtained in the time intervals between the gamma pulses. The detector is based on a "sandwich" of hole-type gaseous detectors (GEM and glass microcapillary plates) with metallic gamma and X-ray converters coated with CsI layers. The second detector is an X-ray image scanner oriented on mammography and other radiographic applications. It is based on specially developed by us high rate RPCs that are able to operate at rates of 10 5 Hz/mm 2 with a position resolution better than 50 μm at 1 atm. The quality of the images obtained with the latest version of this device were in most cases more superior than those obtained from commercially available detectors.

  17. Characterizing gaseous flow in submicron chromatography columns.

    SciTech Connect

    Wong, Chung-Nin Channy

    2003-05-01

    Enormous interest exists to develop the next generation of an integrated microsystem for chemical and biological analysis ({mu}ChemLab{trademark}) and to further reduce the volume of the system. One approach is to scale down the size of critical components and to explore any pumping mechanism that can minimize the power requirement. Since the majority of the pumping requirement is to overcome the wall resistance in the gas chromatography (GC) column, our attention is to study the gas flow in this GC column. As the column dimension decreases, the gaseous flow will go from a continuum regime into a non-continuum regime; i.e., slip, transition, and free molecular regimes. Thus it is very important to well characterize the gaseous flow in submicron columns and to understand its flow behavior. Specifically, in this study, our focus is to investigate the effects of viscosity, rarefaction, and compressibility as the column dimension decreases. Both theoretical predictions and experimental results will be presented.

  18. Predicting gaseous pollutant dispersion around a workplace.

    PubMed

    Guerra, Davide; Ricciardi, Laurent; Laborde, Jean-Claude; Domenech, Serge

    2007-08-01

    Predicting the space-time evolution of a gaseous or particulate pollutant concentration in a ventilated room where a process operation is performed is imperative in hazardous activities, such as chemical or nuclear ones. This study presents a prediction of the space-time evolution of airborne pollutant dispersion following the accidental rupture of a containment enclosure (fume cupboard, glove box, pressurized gas duct, etc.). The final model is written as correlations inspired by the free turbulent jet theory, giving the space-time evolution of a pollutant concentration c (x,y,z,t) that has been formulated as a correlated function of various parameters: leak geometry (slot or round opening), emission type (continuous or transient), emission duration and initial emission velocity. These correlations are based on gas tracing experiments and on multidimensional simulations using computational fluid dynamics (CFD) tools. An instrumented experimental facility was used to simulate pressurized gas industrial failure, and the measurements performed gave the real-time evolution of a tracer gas concentration. Transient leak simulations were run in parallel with a CFD code. Comparisons between experimental and numerical results largely agree. A semiempirical model was built using a methodical parametric study of all the simulation results. This model is easy to use in safety evaluations of radioactive material containment and radiological protection inside nuclear facilities and for evaluating toxic gaseous compounds in the chemical industry.

  19. Innovative Monitoring of Atmospheric Gaseous Hydrogen Fluoride

    PubMed Central

    Bonari, Alessandro; Pompilio, Ilenia; Monti, Alessandro; Arcangeli, Giulio

    2016-01-01

    Hydrogen fluoride (HF) is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC)/mass spectrometry (MS). After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90). In addition, precision (relative standard deviation for n = 10, 4.3%), sensitivity (0.2 μg/filter), and linearity (2.0–4000 μg/filter; correlation coefficient: 0.9913) were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day) and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation. PMID:27829835

  20. Gaseous detonation synthesis and characterization of nano-oxide

    NASA Astrophysics Data System (ADS)

    Yan, Honghao; Wu, Linsong; Li, Xiaojie; Wang, Xiaohong

    2015-07-01

    Gaseous detonation is a new method of heating the precursor of nanomaterials into gas, and integrating it with combustible gas as mixture to be detonated for the synthesis of nanomaterials. In this paper, the mixed gas of oxygen and hydrogen is used as the source for detonation, to synthesize nano TiO2, nano SiO2 and nano SnO2 through gaseous detonation method, characterization and analysis of the products, it was found that the products from gaseous detonation method were of high purity, good dispersion, smaller particle size and even distribution. It also shows that for the synthesis of nano-oxides, gaseous detonation is universal.

  1. 14 CFR 34.71 - Compliance with gaseous emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) §...

  2. 14 CFR 34.71 - Compliance with gaseous emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) §...

  3. The quiescent phase of galactic disc growth

    NASA Astrophysics Data System (ADS)

    Aumer, Michael; Binney, James; Schönrich, Ralph

    2016-07-01

    We perform a series of controlled N-body simulations of growing disc galaxies within non-growing, live dark matter haloes of varying mass and concentration. Our initial conditions include either a low-mass disc or a compact bulge. New stellar particles are continuously added on near-circular orbits to the existing disc, so spiral structure is continuously excited. To study the effect of combined spiral and giant molecular cloud (GMC) heating on the discs, we introduce massive, short-lived particles that sample a GMC mass function. An isothermal gas component is introduced for a subset of the models. We perform a resolution study and vary parameters governing the GMC population, the histories of star formation and radial scale growth. Models with GMCs and standard values for the disc mass and halo density provide the right level of self-gravity to explain the age-velocity dispersion relation of the solar neighbourhood (Snhd). GMC heating generates remarkably exponential vertical profiles with scaleheights that are radially constant and agree with observations of galactic thin discs. GMCs are also capable of significantly delaying bar formation. The amount of spiral-induced radial migration agrees with what is required for the metallicity distribution of the Snhd. However, in our standard models, the outward-migrating populations are not hot enough vertically to create thick discs. Thick discs can form in models with high baryon fractions, but the corresponding bars are too long, the young stellar populations too hot and the discs flare considerably.

  4. Accretion Discs Show Their True Colours

    NASA Astrophysics Data System (ADS)

    2008-07-01

    Quasars are the brilliant cores of remote galaxies, at the hearts of which lie supermassive black holes that can generate enough power to outshine the Sun a trillion times. These mighty power sources are fuelled by interstellar gas, thought to be sucked into the hole from a surrounding 'accretion disc'. A paper in this week's issue of the journal Nature, partly based on observations collected with ESO's Very Large Telescope, verifies a long-standing prediction about the intensely luminous radiation emitted by these accretion discs. Uncovering the disc ESO PR Photo 21/08 Uncovering the inner disc "Astronomers were puzzled by the fact that the best models of these discs couldn't quite be reconciled with some of the observations, in particular, with the fact that these discs did not appear as blue as they should be," explains lead-author Makoto Kishimoto. Such a discrepancy could be the signal that there was something very wrong with the models. With his colleagues, he investigated this discrepancy by studying the polarised light from six quasars. This enabled them to demonstrate that the disc spectrum is as blue as predicted. "The crucial observational difficulty here has been that the disc is surrounded by a much larger torus containing hot dust, whose light partly outshines that of the disc," says Kishimoto. "Because the light coming from the disc is scattered in the disc vicinity and thus polarised, by observing only polarised light from the quasars, one can uncover the buried light from the disc." In a similar way that a fisherman would wear polarised sunglasses to help get rid of the glare from the water surface and allow him to see more clearly under the water, the filter on the telescope allowed the astronomers to see beyond surrounding clouds of dust and gas to the blue colour of the disc in infrared light. The observations were done with the FORS and ISAAC instruments on one of the 8.2-m Unit Telescopes of ESO's Very Large Telescope, located in the Atacama

  5. Total Disc Replacement in Lumbar Degenerative Disc Diseases

    PubMed Central

    2015-01-01

    More than 10 years have passed since lumbar total disc replacement (LTDR) was introduced for the first time to the world market for the surgical management of lumbar degenerative disc disease (DDD). It seems like the right time to sum up the relevant results in order to understand where LTDR stands on now, and is heading forward to. The pathogenesis of DDD has been currently settled, but diagnosis and managements are still controversial. Fusion is recognized as golden standard of surgical managements but has various kinds of shortcomings. Lately, LTDR has been expected to replace fusion surgery. A great deal of LTDR reports has come out. Among them, more than 5-year follow-up prospective randomized controlled studies including USA IDE trials were expected to elucidate whether for LTDR to have therapeutic benefit compared to fusion. The results of these studies revealed that LTDR was not inferior to fusion. Most of clinical studies dealing with LTDR revealed that there was no strong evidence for preventive effect of LTDR against symptomatic degenerative changes of adjacent segment disease. LTDR does not have shortcomings associated with fusion. However, it has a potentiality of the new complications to occur, which surgeons have never experienced in fusion surgeries. Consequently, longer follow-up should be necessary as yet to confirm the maintenance of improved surgical outcome and to observe any very late complications. LTDR still may get a chance to establish itself as a substitute of fusion both nominally and virtually if it eases the concerns listed above. PMID:26713139

  6. Grain charging in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Ilgner, M.

    2012-02-01

    Context. Recent work identified a growth barrier for dust coagulation that originates in the electric repulsion between colliding particles. Depending on its charge state, dust material may have the potential to control key processes towards planet formation such as magnetohydrodynamic (MHD) turbulence and grain growth, which are coupled in a two-way process. Aims: We quantify the grain charging at different stages of disc evolution and differentiate between two very extreme cases: compact spherical grains and aggregates with fractal dimension Df = 2. Methods: Applying a simple chemical network that accounts for collisional charging of grains, we provide a semi-analytical solution. This allowed us to calculate the equilibrium population of grain charges and the ionisation fraction efficiently. The grain charging was evaluated for different dynamical environments ranging from static to non-stationary disc configurations. Results: The results show that the adsorption/desorption of neutral gas-phase heavy metals, such as magnesium, effects the charging state of grains. The greater the difference between the thermal velocities of the metal and the dominant molecular ion, the greater the change in the mean grain charge. Agglomerates have more negative excess charge on average than compact spherical particles of the same mass. The rise in the mean grain charge is proportional to N1/6 in the ion-dust limit. We find that grain charging in a non-stationary disc environment is expected to lead to similar results. Conclusions: The results indicate that the dust growth and settling in regions where the dust growth is limited by the so-called "electro-static barrier" do not prevent the dust material from remaining the dominant charge carrier.

  7. Circumplanetary discs around young giant planets: a comparison between core-accretion and disc instability

    NASA Astrophysics Data System (ADS)

    Szulágyi, J.; Mayer, L.; Quinn, T.

    2017-01-01

    Circumplanetary discs can be found around forming giant planets, regardless of whether core accretion or gravitational instability built the planet. We carried out state-of-the-art hydrodynamical simulations of the circumplanetary discs for both formation scenarios, using as similar initial conditions as possible to unveil possible intrinsic differences in the circumplanetary disc mass and temperature between the two formation mechanisms. We found that the circumplanetary discs' mass linearly scales with the circumstellar disc mass. Therefore, in an equally massive protoplanetary disc, the circumplanetary discs formed in the disc instability model can be only a factor of 8 more massive than their core-accretion counterparts. On the other hand, the bulk circumplanetary disc temperature differs by more than an order of magnitude between the two cases. The subdiscs around planets formed by gravitational instability have a characteristic temperature below 100 K, while the core-accretion circumplanetary discs are hot, with temperatures even greater than 1000 K when embedded in massive, optically thick protoplanetary discs. We explain how this difference can be understood as the natural result of the different formation mechanisms. We argue that the different temperatures should persist up to the point when a full-fledged gas giant forms via disc instability; hence, our result provides a convenient criterion for observations to distinguish between the two main formation scenarios by measuring the bulk temperature in the planet vicinity.

  8. Variables affecting disc size in the lumbar spine of rabbits: anesthesia, paralysis, and disc injury.

    PubMed

    Neufeld, J H; Machado, T; Margolin, L

    1991-01-01

    Methods have been developed that permit repetitive radiographic measurement of the lumbar intervertebral disc space in a rostral-caudal direction (width) in the anesthetized laboratory rabbit. Using isolated control discs and injured discs in which narrowing has been induced for chronic and acute periods, the widths of the lumbar intervertebral disc spaces determined ratio-graphically correlate with widths determined histologically (p less than 0.000, r = 0.75). Both an increase (widening) and a decrease (narrowing) in disc width were observed using radiography after different experimental treatments. Anesthesia and lower-body paralysis (an experimentally induced inability to bear weight on and to perceive a pinch stimulus in hind limbs) caused widening of the discs: anesthesia causing a general widening throughout the lumbar spine and lower-body paralysis causing a specific widening low in the lumbar spine. Both disc injection and piercing the disc with needles to recover nucleus pulposus material caused narrowing of the discs. Acridine-orange injection induced a narrowing accompanied by osteophytosis. Experimentally induced narrowing at L4-5 (the result of injury to the disc) resulted in narrowing also at L2-3. These findings are consistent with the hypothesis that in vivo disc-width size in the young rabbit depends on both the quantity of nucleus pulposus material and the force-generating activities of the adjacent spinal muscles, and that disc injury at one level stimulates narrowing at other levels.

  9. [Standardized terminology for disc disease].

    PubMed

    Sánchez Pérez, M; Gil Sierra, A; Sánchez Martín, A; Gallego Gómez, P; Pereira Boo, D

    2012-01-01

    This article reviews the terminology used to describe morphological alterations in the intervertebral discs. Radiologists must be able to communicate information about the type, location, and severity of these alterations to medical and surgical clinicians. It is crucial to use simple, standard, and unified terminology to ensure comprehension not only among radiologists but also with professionals from the different specialties for whom the radiology reports are written (fundamentally traumatologists and neurosurgeons). This terminology will help ensure a more accurate diagnosis and better patient management.

  10. Stellar discs in Aquarius dark matter haloes

    NASA Astrophysics Data System (ADS)

    DeBuhr, Jackson; Ma, Chung-Pei; White, Simon D. M.

    2012-10-01

    We investigate the gravitational interactions between live stellar discs and their dark matter haloes, using Λ cold dark matter haloes similar in mass to that of the Milky Way taken from the Aquarius Project. We introduce the stellar discs by first allowing the haloes to respond to the influence of a growing rigid disc potential from z = 1.3 to 1.0. The rigid potential is then replaced with star particles which evolve self-consistently with the dark matter particles until z = 0.0. Regardless of the initial orientation of the disc, the inner parts of the haloes contract and change from prolate to oblate as the disc grows to its full size. When the disc's normal is initially aligned with the major axis of the halo at z = 1.3, the length of the major axis contracts and becomes the minor axis by z = 1.0. Six out of the eight discs in our main set of simulations form bars, and five of the six bars experience a buckling instability that results in a sudden jump in the vertical stellar velocity dispersion and an accompanying drop in the m = 2 Fourier amplitude of the disc surface density. The bars are not destroyed by the buckling but continue to grow until the present day. Bars are largely absent when the disc mass is reduced by a factor of 2 or more; the relative disc-to-halo mass is therefore a primary factor in bar formation and evolution. A subset of the discs is warped at the outskirts and contains prominent non-coplanar material with a ring-like structure. Many discs reorient by large angles between z = 1 and 0, following a coherent reorientation of their inner haloes. Larger reorientations produce more strongly warped discs, suggesting a tight link between the two phenomena. The origins of bars and warps appear independent: some discs with strong bars show little disturbances at the outskirts, while the discs with the weakest bars show severe warps.

  11. Quantitative Pfirrmann Disc Degeneration Grading System to Overcome the Limitation of Pfirrmann Disc Degeneration Grade.

    PubMed

    Rim, Dae Cheol

    2016-03-01

    Pfirrmann disc degeneration grade is one of morphologic disc degeneration grading system and it was reliable on routine T2-weighted magnetic resonance (MR) images. The purpose of this study was to evaluate the agreement of Pfirrmann disc degeneration grade, and check the alternative technique of disc degeneration grading system. Fifteen volunteers (4 medical doctors related to spinal disease, 2 medical doctors not related to spinal disease, 6 nurses in spinal hospital, and 3 para-medicines) were included in this study. Three different digitalized MR images were provided all volunteers, and they checked Pfirrmann disc degeneration grade of each disc levels after careful listening to explanation. Indeed, all volunteers checked the signal intensity of disc degeneration at the points of nucleus pulposus (NP), disc membrane, ligaments, fat, and air to modify the quantitative Pfirrmann disc degeneration grade. Total 225 grade results of Pfirrmann disc degeneration grade and 405 signal intensity results of quantitative Pfirrmann disc degeneration grade were analyzed. Average interobserver agreement was "moderate (mean±standard deviation, 0.575±0.251)" from poor to excellent. Completely agreed levels of Pfirrmann disc degeneration grade were only 4 levels (26.67%), and the disagreement levels were observed in 11 levels; two different grades in 8 levels (53.33%) and three different grades in 3 levels (20%). Quantitative Pfirrmann disc degeneration showed relatively cluster distribution with the interobserver deviations of 0.41-1.56 at the ratio of NP and disc membrane, and it showed relatively good cluster and distribution indicating that the proposed grading system has good discrimination ability. Pfirrmann disc degeneration grade showed the limitation of different interobserver results, but this limitation could be overcome by using quantitative techniques of MR signal intensity. Further evaluation is needed to access its advantage and reliabilities.

  12. On the orbital evolution of supermassive black hole binaries with circumbinary accretion discs

    NASA Astrophysics Data System (ADS)

    Tang, Yike; MacFadyen, Andrew; Haiman, Zoltán

    2017-08-01

    Gaseous circumbinary accretion discs provide a promising mechanism to facilitate the mergers of supermassive black holes (SMBHs) in galactic nuclei. We measure the torques exerted on accreting SMBH binaries, using 2D, isothermal, moving-mesh, viscous hydrodynamical simulations of circumbinary accretion discs. Our computational domain includes the entire inner region of the circumbinary disc, with the individual black holes (BHs) treated as point masses on the grid. A sink prescription is used to account for accretion on to each BH through well-resolved minidiscs. We explore a range of mass-removal rates for the sinks. We find that the torque exerted on the binary is primarily gravitational, and dominated by the gas orbiting close behind and ahead of the individual BHs. The torques are sensitive to the sink prescription: slower sinks result in more gas accumulating near the BHs and more negative torques, driving more rapid binary merger. For faster sinks, the torques are less negative, and eventually turn positive (for unphysically fast sinks). When the minidiscs are modelled as standard α discs, our results are insensitive to the chosen sink radius. When scaled to \\dot{M}/\\dot{M}_Edd=0.3, the implied residence time-scale is ≈3 × 106 yr, independent of the SMBH masses and orbital separation. For binaries with total mass ≲ 107 M⊙, this is shorter than the inspiral time due to gravitational wave (GW) emission alone, implying that gas discs will have a significant impact on the SMBH binary population and can affect the GW signal for pulsar timing arrays.

  13. Composition of early planetary atmospheres - I. Connecting disc astrochemistry to the formation of planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Cridland, A. J.; Pudritz, R. E.; Alessi, M.

    2016-09-01

    We present a model of the early chemical composition and elemental abundances of planetary atmospheres based on the cumulative gaseous chemical species that are accreted on to planets forming by core accretion from evolving protoplanetary discs. The astrochemistry of the host disc is computed using an ionization-driven, non-equilibrium chemistry network within viscously evolving disc models. We accrete gas giant planets whose orbital evolution is controlled by planet traps using the standard core accretion model and track the chemical composition of the material that is accreted on to the protoplanet. We choose a fiducial disc model and evolve planets in three traps - water ice line, dead zone and heat transition. For a disc with a lifetime of 4.1 Myr, we produce two hot Jupiters (M = 1.43, 2.67 MJupiter, r = 0.15, 0.11 au) in the heat transition and ice line trap and one failed core (M = 0.003 MJupiter, r = 3.7 au) in the dead zone. These planets are found with mixing ratios for CO and H2O of 1.99 × 10-4 and 5.0 × 10-4, respectively, for both hot Jupiters. Additionally, for these planets we find CO2 and CH4, with mixing ratios of 1.8 × 10-6 → 9.8 × 10-10 and 1.1 × 10-8 → 2.3 × 10-10, respectively. These ranges correspond well with the mixing ratio ranges that have been inferred through the detection of emission spectra from hot Jupiters by multiple authors. We compute a carbon-to-oxygen ratio of 0.227 for the ice line planet and 0.279 for the heat transition planet. These planets accreted their gas inside the ice line, hence the sub-solar C/O.

  14. Use NASA GES DISC Data in ArcGIS

    NASA Technical Reports Server (NTRS)

    Yang, Wenli; Pham, Long B.; Kempler, Steve

    2015-01-01

    This presentation describes GIS relevant data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), GES DISC Services and Support for GIS Users, and use cases of GES DISC data in ArcGIS.

  15. Intervertebral disc replacement. Experimental study.

    PubMed

    Kostuik, J P

    1997-04-01

    Arthrodesis of the lumbosacral spine, although satisfactory for a majority of patients, has long term sequelae in 30% of patients. This is particularly true for adjacent segment degeneration. Numerous attempts at providing a mobile motion segment have been made in the past. The current status of the development of dynamic intervertebral prosthesis, including biomechanical and clinical data have been presented. The relevant material properties of plastics, ceramics, and metal are presented with the conclusion that metals currently present with the greatest longevity without undue fatigue and wear as many as 100,000,000 cycles (40 years use) as an alternative to spinal fusion. An analysis of the kinematics of the motion segment have resulted, together with the material properties in the development of a dynamic intervertebral disc for use in the lumbar spine. The disc resembles a normal motion segment. In motion stiffness and center of rotation, wear debris development in 1/300 equivalent to that of a total hip prosthesis for the same given time. Safety features include immediate screw fixation to prevent displacement, a wedge elastic (spring) shape, and a bony porous ingrowth surface. The prosthesis is constructed of cobalt chromium and titanium with minimal corrosive properties on long term testing.

  16. Changes in disc herniation after CT-guided Percutaneous Laser Disc Decompression (PLDD): MR findings

    NASA Astrophysics Data System (ADS)

    Brat, Hugues G.; Bouziane, Tarik; Lambert, Jean; Divano, Luisa

    2004-09-01

    The aim of Percutaneous Laser Disc Decompression (PLDD) is to vaporize a small portion of the nucleus pulposus. Clinical efficacy of this technique is largely proven. However, time-evolution of intervertebral disc and its hernia after PLDD is not known. This study analyses changes in disc herniation and its native intervertebral disc at a mean follow-up of 7.5 months after PLDD in asymptomatic patients. Main observations at MRI are appearance of a high signal on T2WI in the hernia in 59%, shrinking of the hernia in 66% and overall stability of disc height.

  17. Study of Capillary-Based Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Iacobaeus, C.; Francke, T.; Danielsson, M.; Ostling, J.; Peskov, V.

    2004-06-01

    We have studied gain vs. voltage characteristics and position resolutions of multistep capillary plates (two or three capillary plates operating in a cascade), as well as capillary plates operating in a mode when the main amplification occurs between plates or between the capillary plate and the readout plate (parallel plate amplification mode). Results of these studies demonstrated that in the parallel-plate amplification mode one can reach both high gains (>100000) and good position resolutions (~100 micro meter) even with a single step arrangement. It offers a compact amplification structure, which can be used in many applications. For example, in preliminary tests we succeeded to combine it with a photocathode and use it as a position sensitive gaseous photomultiplier. CsI coated capillary plates could also be used as a high position resolution and high rate X-ray converter.

  18. Acoustoelectric effects in a gaseous medium

    NASA Astrophysics Data System (ADS)

    Robson, R. E.; Paranjape, B. V.

    1992-06-01

    The well-known acoustoelectric coupling effect in semiconductors, whereby a sound wave is amplified if a charge carrier's drift velocity exceeds the speed of sound, also exists for ions and electrons in a gaseous medium, but theoretical analysis so far has been limited to simplified collisional-exchange models [G. M. Sessler, Phys. Fluids 7, 90 (1964); U. Ingard and M. Schultz, Phys. Rev. 158, 106 (1967); T. D. Mantei and M. Fitaire, in 2 Proceedings of the 10th International Conference on Phenomena in Ionized Gases (Oxford University Press, Oxford, 1971), p. 309]. The present paper is based upon more accurate considerations of collisional phenomena, leading to more realistic predictions of the qualitative and quantitative nature of the effect.

  19. Chemiluminescent detection of neutral gaseous radicals.

    PubMed

    Grankin, V P; Styrov, V V; Karpov, E G

    2007-10-07

    This paper presents a systematic approach to the development of novel solid-state chemical sensors on the basis of heterogeneous chemiluminescence. The method is applicable for the identification and measurements of concentration of H, O, and other gaseous chemical radicals, where utilization of standard techniques is difficult. The luminescence is invoked during Eley-Rideal recombination of the radicals in question on the surface of the sensor core. A technique is discussed to separate the contributions of Eley-Rideal and Langmuir-Hinshelwood mechanisms, and to select appropriate materials for the sensor emitter fabrication. Typical sensor characteristics include sensitivity of 10(5) cm(-3), working gas pressures of 10(-8) - 10(1) Torr, and measurement time approximately 1 s.

  20. Gaseous-fuel safety assessment. Status report

    SciTech Connect

    Krupka, M.C.; Edeskuty, F.J.; Bartlit, J.R.; Williamson, K.D. Jr.

    1982-01-01

    The Los Alamos National Laboratory, in support of studies sponsored by the Office of Vehicle and Engine Research and Development in the US Department of Energy, has undertaken a safety assessment of selected gaseous fuels for use in light automotive transportation. The purpose is to put into perspective the hazards of these fuels relative to present day fuels and delineated criteria for their safe handling. Fuels include compressed and liquified natural gas (CNG and LNG), liquefied petroleum gas (LPG), and for reference gasoline and diesel. This paper is a program status report. To date, physicochemical property data and general petroleum and transportation information were compiled; basic hazards defined; alternative fuels were safety-ranked based on technical properties alone; safety data and vehicle accident statistics reviewed; and accident scenarios selected for further analysis. Methodology for such analysis is presently under consideration.

  1. Infrared radiative energy transfer in gaseous systems

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.

    1991-01-01

    Analyses and numerical procedures are presented to investigate the radiative interactions in various energy transfer processes in gaseous systems. Both gray and non-gray radiative formulations for absorption and emission by molecular gases are presented. The gray gas formulations are based on the Planck mean absorption coefficient and the non-gray formulations are based on the wide band model correlations for molecular absorption. Various relations for the radiative flux and divergence of radiative flux are developed. These are useful for different flow conditions and physical problems. Specific plans for obtaining extensive results for different cases are presented. The procedure developed was applied to several realistic problems. Results of selected studies are presented.

  2. Background reduction of a spherical gaseous detector

    SciTech Connect

    Fard, Ali Dastgheibi; Loaiza, Pia; Piquemal, Fabrice; Giomataris, Ioannis; Gray, David; Gros, Michel; Magnier, Patrick; Navick, Xavier-François

    2015-08-17

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of detector. It consists of a large spherical volume filled with gas, using a single detection readout channel. The detector allows 100 % detection efficiency. SEDINE is a low background version of SPC installed at the Laboratoire Souterrain de Modane (LSM) underground laboratory (4800 m.w.e) looking for rare events at very low energy threshold, below 100 eV. This work presents the details on the chemical cleaning to reduce internal {sup 210}Pb surface contamination on the copper vessel and the external radon reduction achieved via circulation of pure air inside anti-radon tent. It will be also show the radon measurement of pure gases (Ar, N, Ne, etc) which are used in the underground laboratory for the low background experiments.

  3. The gaseous jet in supersonic crossflow

    SciTech Connect

    Heister, S.D.; Karagozian, A.R.

    1989-01-01

    An analytical/numerical model for the deflection and mixing of a single gaseous jet in a supersonic crossflow is presented. The jet cross-section is described in terms of the compressible vortex pair resulting from viscous and impulsive forces acting at the jet periphery, and the vortex pair data are combined with data for the mass and momentum balance along the jet axis in order to model the trajectory and mixing of the injected fluid. A numerical technique is employed to solve for the inviscid outer flow and the position of the bow shock which envelopes the jet. The model is shown to be capable of predicting overall jet penetration (for perfectly or slightly underexpanded jets) to within 10 percent of experimental findings, while requiring only a few seconds of computer time. 24 refs.

  4. Gaseous hydrogen/oxygen injector performance characterization

    NASA Technical Reports Server (NTRS)

    Degroot, W. A.; Tsuei, H. H.

    1994-01-01

    Results are presented of spontaneous Raman scattering measurements in the combustion chamber of a 110 N thrust class gaseous hydrogen/oxygen rocket. Temperature, oxygen number density, and water number density profiles at the injector exit plane are presented. These measurements are used as input profiles to a full Navier-Stokes computational fluid dynamics (CFD) code. Predictions of this code while using the measured profiles are compared with predictions while using assumed uniform injector profiles. Axial and radial velocity profiles derived from both sets of predictions are compared with Rayleigh scattering measurements in the exit plane of a 33:1 area ratio nozzle. Temperature and number density Raman scattering measurements at the exit plane of a test rocket with a 1:1.36 area ratio nozzle are also compared with results from both sets of predictions.

  5. Background reduction of a spherical gaseous detector

    NASA Astrophysics Data System (ADS)

    Fard, Ali Dastgheibi; Loaiza, Pia; Piquemal, Fabrice; Giomataris, Ioannis; Gray, David; Gros, Michel; Magnier, Patrick; Navick, Xavier-François; Savvidis, Ilias

    2015-08-01

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of detector. It consists of a large spherical volume filled with gas, using a single detection readout channel. The detector allows 100 % detection efficiency. SEDINE is a low background version of SPC installed at the Laboratoire Souterrain de Modane (LSM) underground laboratory (4800 m.w.e) looking for rare events at very low energy threshold, below 100 eV. This work presents the details on the chemical cleaning to reduce internal 210Pb surface contamination on the copper vessel and the external radon reduction achieved via circulation of pure air inside anti-radon tent. It will be also show the radon measurement of pure gases (Ar, N, Ne, etc) which are used in the underground laboratory for the low background experiments.

  6. Simulating Isotope Enrichment by Gaseous Diffusion

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2015-04-01

    A desktop-computer simulation of isotope enrichment by gaseous diffusion has been developed. The simulation incorporates two non-interacting point-mass species whose members pass through a cascade of cells containing porous membranes and retain constant speeds as they reflect off the walls of the cells and the spaces between holes in the membranes. A particular feature is periodic forward recycling of enriched material to cells further along the cascade along with simultaneous return of depleted material to preceding cells. The number of particles, the mass ratio, the initial fractional abundance of the lighter species, and the time between recycling operations can be chosen by the user. The simulation is simple enough to be understood on the basis of two-dimensional kinematics, and demonstrates that the fractional abundance of the lighter-isotope species increases along the cascade. The logic of the simulation will be described and results of some typical runs will be presented and discussed.

  7. 2011 GASEOUS IONS GORDON RESEARCH CONFERENCE

    SciTech Connect

    Scott Anderson

    2011-03-04

    The Gaseous Ions: Structures, Energetics and Reactions Gordon Research Conference will focus on ions and their interactions with molecules, surfaces, electrons, and light. The conference will cover theory and experiments, and systems ranging from molecular to biological to clusters to materials. The meeting goal continues to be bringing together scientists interested in fundamentals, with those applying fundamental phenomena to a wide range of practical problems. Each of the ten conference sessions will focus on a topic within this spectrum, and there will also be poster sessions for contributed papers, with sufficient space and time to allow all participants to present their latest results. To encourage active participation by young investigators, about ten of the poster abstracts will be selected for 15 minute 'hot topic' talks during the conference sessions. Hot topic selection will be done about a month before the meeting. Funds should be available to offset the participation cost for young investigators.

  8. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  9. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  10. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  11. Rapid radiative clearing of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Haworth, Thomas J.; Clarke, Cathie J.; Owen, James E.

    2016-04-01

    The lack of observed transition discs with inner gas holes of radii greater than ˜50 au implies that protoplanetary discs dispersed from the inside out must remove gas from the outer regions rapidly. We investigate the role of photoevaporation in the final clearing of gas from low mass discs with inner holes. In particular, we study the so-called `thermal sweeping' mechanism which results in rapid clearing of the disc. Thermal sweeping was originally thought to arise when the radial and vertical pressure scalelengths at the X-ray heated inner edge of the disc match. We demonstrate that this criterion is not fundamental. Rather, thermal sweeping occurs when the pressure maximum at the inner edge of the dust heated disc falls below the maximum possible pressure of X-ray heated gas (which depends on the local X-ray flux). We derive new critical peak volume and surface density estimates for rapid radiative clearing which, in general, result in rapid dispersal happening less readily than in previous estimates. This less efficient clearing of discs by X-ray driven thermal sweeping leaves open the issue of what mechanism (e.g. far-ultraviolet heating) can clear gas from the outer disc sufficiently quickly to explain the non-detection of cold gas around weak line T Tauri stars.

  12. Circular plate capacitor with different discs

    NASA Astrophysics Data System (ADS)

    Paffuti, Giampiero; Cataldo, Enrico; Di Lieto, Alberto; Maccarrone, Francesco

    2016-10-01

    In this paper, we write a system of integral equations for a capacitor composed of two discs of different radii, generalizing Love's equation for equal discs. We compute the complete asymptotic form of the capacitance matrix for both large and small distances obtaining a generalization of Kirchhoff's formula for the latter case.

  13. Spiral Waves in Accretion Discs - Theory

    NASA Astrophysics Data System (ADS)

    Boffin, H. M. J.

    Spirals shocks have been widely studied in the context of galactic dynamics and protostellar discs. They may however also play an important role in some classes of close binary stars, and more particularly in cataclysmic variables. In this paper, we review the physics of spirals waves in accretion discs, present the results of numerical simulations and consider whether theory can be reconcilied with observations.

  14. The inner cavity of the circumnuclear disc

    NASA Astrophysics Data System (ADS)

    Blank, M.; Morris, M. R.; Frank, A.; Carroll-Nellenback, J. J.; Duschl, W. J.

    2016-06-01

    The circumnuclear disc (CND) orbiting the Galaxy's central black hole is a reservoir of material that can ultimately provide energy through accretion, or form stars in the presence of the black hole, as evidenced by the stellar cluster that is presently located at the CND's centre. In this paper, we report the results of a computational study of the dynamics of the CND. The results lead us to question two paradigms that are prevalent in previous research on the Galactic Centre. The first is that the disc's inner cavity is maintained by the interaction of the central stellar cluster's strong winds with the disc's inner rim, and secondly, that the presence of unstable clumps in the disc implies that the CND is a transient feature. Our simulations show that, in the absence of a magnetic field, the interaction of the wind with the inner disc rim actually leads to a filling of the inner cavity within a few orbital time-scales, contrary to previous expectations. However, including the effects of magnetic fields stabilizes the inner disc rim against rapid inward migration. Furthermore, this interaction causes instabilities that continuously create clumps that are individually unstable against tidal shearing. Thus the occurrence of such unstable clumps does not necessarily mean that the disc is itself a transient phenomenon. The next steps in this investigation are to explore the effect of the magnetorotational instability on the disc evolution and to test whether the results presented here persist for longer time-scales than those considered here.

  15. 40 CFR 90.415 - Raw gaseous sampling procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Raw gaseous sampling procedures. 90.415 Section 90.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Test Procedures § 90.415 Raw gaseous sampling procedures. Fit all heated sampling lines with a heated...

  16. 40 CFR 91.415 - Raw gaseous sampling procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Raw gaseous sampling procedures. 91.415 Section 91.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Raw gaseous sampling procedures. Fit all heated sampling lines with a heated filter to extract solid...

  17. Removing gaseous NH3 using biochar as an adsorbent

    USDA-ARS?s Scientific Manuscript database

    Ammonia is a major fugitive gas emitted from livestock operations and fertilization production. This study tested the potential of various biochars in removing gaseous ammonia via adsorption processes. Gaseous ammonia adsorption capacities of various biochars made from two different feedstocks (wood...

  18. Dependence of optic disc parameters on disc area according to Heidelberg Retina Tomograph: Part II.

    NASA Astrophysics Data System (ADS)

    Machekhin, V.; Manaenkova, G.; Bondarenko, O.

    2007-05-01

    With the help of Heidelberg Retina Tomograph (HRT-II) optic disc parameters in 211 eyes of 115 healthy patients with refraction Em +/- 3,0 D and 96 eyes of 72 patients with myopia 3,5-14,0 D without any signs of glaucoma were studied. Analysis of optic disc parameters were carried out in 5 groups of patients according to disc area: less than 1,5 mm2, 1,5- 2,5 mm2, 2,5-3,0 mm2, 3,0-3,5 mm2 and more than 3,5 mm2. An accurate depending on disc area was revealed for all optic disc parameters in all sectors, which was manifested by increasing cup disc and rim disc (area and volume) and other parameters. We consider it is necessary to use the proper tables for right interpretation of received data for early diagnosis of glaucoma.

  19. Roentgenographic measurement of lumbar intervertebral disc height.

    PubMed

    Andersson, G B; Schultz, A; Nathan, A; Irstam, L

    1981-01-01

    The influences of differences in both intervertebral motion segment orientations and in reader judgments on measurements of the apparent intervertebral disc heights in lateral roentgenographs of the lumbar spine were examined. Forty-nine roentgenographs were obtained of nine discs that were titled laterally up to +/- 10 degrees, and rotated longitudinally up to +/- 20 degrees. Three orthopaedic surgeons and three radiologists measured disc heights from five of these roentgenographs, all using the same measurement method. The differences in apparent height that resulted from the orientation changes and differences in judgments among the six readers were considerable, usually of the order of one half of the nominal disc height. The results show that, while roentgenographic measurements can be used to estimate disc height, accurate measurements cannot readily be made from routine roentgenographs, and the interpretation should always be cautious.

  20. About detection of precessing circumpulsar discs

    NASA Astrophysics Data System (ADS)

    Grimani, Catia

    2016-08-01

    Detections of circumpulsar discs and planetary systems through electromagnetic observations appear quite rare. In the case of PSR 1931+24 and B0656+14, the hypothesis of a precessing disc penetrating the pulsar light cylinder is found consistent with radio and gamma observations from these stars. Disc self-occultation and precession may affect electromagnetic measurements. We investigate here under which conditions gravitational waves generated by circumpulsar disc precession may be detected by the proposed second-generation space interferometers DECI-hertz Interferometer Gravitational Wave Observatory and Big Bang Observer. The characteristics of circumpulsar detectable precessing discs are estimated as a function of distance from the Solar system. Speculations on detection rates are presented.

  1. Optic disc dysplasia in poland syndrome.

    PubMed

    Maxfield, Steven D; Strominger, Mitchell B

    2014-06-01

    To report optic disc dysplasia in a case of Poland syndrome. Non-interventional case report. A 2-year-old boy with Poland syndrome was referred for ophthalmic evaluation after abnormal optic discs were found on exam. Physical exam at birth revealed right-sided aplasia of the pectoralis major muscle, symbrachydactyly, hypoplastic scapula, and an abnormal third rib. On dilated examination the optic nerve heads were dysplastic. The findings included multiple cilioretinal vessels, situs inversus, inferotemporal excavation, and surrounding pigmentary disturbances. Only one case of optic disc anomaly has been reported in Poland syndrome and was described as morning glory syndrome. The optic discs in our patient do not fit well with other optic disc excavation syndromes but are most reminiscent of those in papillorenal syndrome. As both Poland syndrome and papillorenal syndrome share vascular dysfunction as a possible etiology, this case adds to the literature of vascular dysgenesis in Poland syndrome.

  2. Strongly magnetized accretion discs require poloidal flux

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2016-08-01

    Motivated by indirect observational evidence for strongly magnetized accretion discs around black holes, and the novel theoretical properties of such solutions, we investigate how a strong magnetization state can develop and persist. To this end, we perform local simulations of accretion discs with an initially purely toroidal magnetic field of equipartition strength. We demonstrate that discs with zero net vertical magnetic flux and realistic boundary conditions cannot sustain a strong toroidal field. However, a magnetic pressure-dominated disc can form from an initial configuration with a sufficient amount of net vertical flux and realistic boundary conditions. Our results suggest that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion discs.

  3. Lumbar Epidural Varix Mimicking Disc Herniation

    PubMed Central

    Bursalı, Adem; Guvenal, Ahmet Burak; Yaman, Onur

    2016-01-01

    Lumbar radiculopathy is generally caused by such well-recognized entity as lumbar disc herniation in neurosurgical practice; however rare pathologies such as thrombosed epidural varix may mimic them by causing radicular symptoms. In this case report, we present a 26-year-old man with the complaint of back and right leg pain who was operated for right L4–5 disc herniation. The lesion interpreted as an extruded disc herniation preoperatively was found to be a thrombosed epidural varix compressing the nerve root preoperatively. The nerve root was decompressed by shrinking the lesion with bipolar thermocoagulation and excision. The patient's complaints disappeared in the postoperative period. Thrombosed lumbar epidural varices may mimic lumbar disc herniations both radiologically and clinically. Therefore, must be kept in mind in the differential diagnosis of lumbar disc herniations. Microsurgical techniques are mandatory for the treatment of these pathologies and decompression with thermocoagulation and excision is an efficient method. PMID:27446525

  4. DETECTORS AND EXPERIMENTAL METHODS: A new gaseous detector — micro mesh gaseous structure

    NASA Astrophysics Data System (ADS)

    Tang, Hao-Hui; Guo, Jun-Jun; Wang, Xiao-Lian; Xu, Zi-Zong

    2009-09-01

    The structure and working principle of Micromegas (MICRO Mesh Gaseous Structure) is discussed. Some radiation sources of α and X rays are used to test this detector. The optimized electric-field intensity of the conversion gap is obtained. The transmission of electrons and the uniformity of the amplification gap are also presented. The energy resolution of the 5.9 keV peak is better than 27%.

  5. Structure distribution and turbulence in self-consistently supernova-driven ISM of multiphase magnetized galactic discs

    NASA Astrophysics Data System (ADS)

    Iffrig, Olivier; Hennebelle, Patrick

    2017-08-01

    Context. Galaxy evolution and star formation are two multi-scale problems tightly linked to each other. Aims: We aim to describe simultaneously the large-scale evolution widely induced by the feedback processes and the details of the gas dynamics that controls the star formation process through gravitational collapse. This is a necessary step in understanding the interstellar cycle, which triggers galaxy evolution. Methods: We performed a set of three-dimensional high-resolution numerical simulations of a turbulent, self-gravitating and magnetized interstellar medium within a 1 kpc stratified box with supernova feedback correlated with star-forming regions. In particular, we focussed on the role played by the magnetic field and the feedback on the galactic vertical structure, the star formation rate (SFR) and the flow dynamics. For this purpose we have varied their respective intensities. We extracted properties of the dense clouds arising from the turbulent motions and compute power spectra of various quantities. Results: Using a distribution of supernovae sufficiently correlated with the dense gas, we find that supernova explosions can reproduce the observed SFR, particularly if the magnetic field is on the order of a few μG. The vertical structure, which results from a dynamical and an energy equilibrium is well reproduced by a simple analytical model, which allows us to roughly estimate the efficiency of the supernovae in driving the turbulence in the disc to be rather low, of the order of 1.5%. Strong magnetic fields may help to increase this efficiency by a factor of between two and three. To characterize the flow we compute the power spectra of various quantities in 3D but also in 2D in order to account for the stratification of the galactic disc. We find that within our setup, the compressive modes tend to dominate in the equatorial plane, while at about one scale height above it, solenoidal modes become dominant. We measured the angle between the magnetic

  6. The role of thermodynamics in disc fragmentation

    NASA Astrophysics Data System (ADS)

    Stamatellos, Dimitris; Whitworth, Anthony P.

    2009-12-01

    Thermodynamics play an important role in determining the way a protostellar disc fragments to form planets, brown dwarfs and low-mass stars. We explore the effect that different treatments of radiative transfer have in simulations of fragmenting discs. Three prescriptions for the radiative transfer are used: (i) the diffusion approximation of Stamatellos et al.; (ii) the barotropic equation of state (EOS) of Goodwin et al. and (iii) the barotropic EOS of Bate et al. The barotropic approximations capture the general evolution of the density and temperature at the centre of each proto-fragment but (i) they do not make any adjustments for particular circumstances of a proto-fragment forming in the disc and (ii) they do not take into account thermal inertia effects that are important for fast-forming proto-fragments in the outer disc region. As a result, the number of fragments formed in the disc and their properties are different, when a barotropic EOS is used. This is important not only for disc studies but also for simulations of collapsing turbulent clouds, as in many cases in such simulations stars form with discs that subsequently fragment. We also examine the difference in the way proto-fragments condense out in the disc at different distances from the central star using the diffusion approximation and following the collapse of each proto-fragment until the formation of the second core (ρ ~= 10-3gcm-3). We find that proto-fragments forming closer to the central star tend to form earlier and evolve faster from the first to the second core than proto-fragments forming in the outer disc region. The former have a large pool of material in the inner disc region that they can accrete from and grow in mass. The latter accrete more slowly and they are hotter because they generally form in a quick abrupt event.

  7. Symptoms of thoracolumbar junction disc herniation.

    PubMed

    Tokuhashi, Y; Matsuzaki, H; Uematsu, Y; Oda, H

    2001-11-15

    A retrospective clinical review of patients with thoracolumbar junction disc herniation. To evaluate the clinical features of thoracolumbar junction disc herniation and to prepare a chart for the level diagnosis in the neurologic findings and symptoms. Thoracolumbar junction disc herniations show a variety of signs and symptoms because of the complexity of the upper and lower neurons of the spinal cord, cauda equina, and nerve roots. Furthermore, much is still unknown about thoracolumbar junction disc herniations because of their rare frequency. The clinical features of 26 patients who had undergone operations for single disc herniations at T10-T11 through L2-L3 were investigated. Affected levels were as follows: 2 patients with disc herniation at T10-T11 disc, 4 patients at T11-T12, 3 patients at T12-L1, 6 patients at L1-L2, and 11 patients at L2-L3. The level of disc space of interest was confirmed with whole-spine plain roentgenograms. The caudal end of the cord was judged by magnetic resonance imaging and computed tomographic myelogram. Two patients with T10-T11 disc herniation showed moderate lower extremity weakness, increased patellar tendon reflex, and sensory disturbance of the entire lower extremities. Three of four patients with T11-T12 disc herniation experienced lower extremity weakness, and three patients had accentuated patellar tendon reflex. Sensory disturbance was observed in the anterolateral aspect of the thigh in one patient and on the entire leg in three patients. Bowel and bladder dysfunction was noted in three patients. In the T12-L1 disc herniation group (n = 3), muscle weakness and atrophy below the leg were advanced, and bowel and bladder dysfunction were also noted. Two of these three patients had bilateral drop foot, and one patient had unilateral drop foot; sensory disturbance was noted in the sole or foot and around the circumference of the anus, and the patellar tendon reflex and Achilles tendon reflex were absent. All six patients

  8. Rehabilitation after lumbar disc surgery.

    PubMed

    Ostelo, R W; de Vet, H C; Waddell, G; Kerckhoffs, M R; Leffers, P; van Tulder, M W

    2002-01-01

    Although several rehabilitation programs, physical fitness programs or protocols regarding instruction for patients to return to work after lumbar disc surgery have been suggested, little is known about the efficacy and effectiveness of these treatments. There are still persistent fears of causing re-injury, re-herniation, or instability. The objective of this systematic review was to evaluate the effectiveness of active treatments that are used in the rehabilitation after first-time lumbar disc surgery. We searched the MEDLINE, EMBASE and Psyclit databases up to April 2000 and the Cochrane Controlled Trials Register 2001, Issue 3. Both randomized and non-randomized controlled trials on any type of active rehabilitation program after first-time disc surgery were included. Two independent reviewers performed the inclusion of studies and two other reviewers independently performed the methodological quality assessment. A rating system that consists of four levels of scientific evidence summarizes the results. Thirteen studies were included, six of which were of high quality. There is no strong evidence for the effectiveness for any treatment starting immediately post-surgery, mainly because of lack of (good quality) studies. For treatments that start four to six weeks post-surgery there is strong evidence (level 1) that intensive exercise programs are more effective on functional status and faster return to work (short-term follow-up) as compared to mild exercise programs and there is strong evidence (level 1) that on long term follow up there is no difference between intensive exercise programs and mild exercise programs with regard to overall improvement. For all other primary outcome measures for the comparison between intensive and mild exercise programs there is conflicting evidence (level 3) with regard to long-term follow-up. Furthermore, there is no strong evidence for the effectiveness of supervised training as compared to home exercises. There was also no

  9. Mass spectrometric study of thermodynamic properties of gaseous lead tellurates. Estimation of formation enthalpies of gaseous lead polonates

    NASA Astrophysics Data System (ADS)

    Shugurov, S. M.; Panin, A. I.; Lopatin, S. I.; Emelyanova, K. A.

    2016-10-01

    Gaseous reactions involving lead oxides, tellurium oxide and lead tellurates were studied by the Knudsen effusion mass spectrometry. Equilibrium constants and reaction enthalpies were evaluated. Structures, molecular parameters and thermodynamic functions of gaseous PbTeO3 and Pb2TeO4 were calculated by quantum chemistry methods. The formation enthalpies ΔfH0 (298.15) = -294 ± 13 for gaseous PbTeO3 and ΔfH0 (298.15) = -499 ± 12 for gaseous Pb2TeO4 were obtained. On the base of these results the formation enthalpies of gaseous PbPoO3 and Pb2PoO4 were estimated as -249 ± 34 and -478 ± 38, respectively.

  10. Effects of photophoresis on the dust distribution in a 3D protoplanetary disc

    NASA Astrophysics Data System (ADS)

    Cuello, N.; Gonzalez, J.-F.; Pignatale, F. C.

    2016-05-01

    Photophoresis is a physical process based on momentum exchange between an illuminated dust particle and its gaseous environment. Its net effect in protoplanetary discs (PPD) is the outward transport of solid bodies from hot to cold regions. This process naturally leads to the formation of ring-shaped features where dust piles up. In this work, we study the dynamical effects of photophoresis in PPD by including the photophoretic force in the two-fluid (gas+dust) smoothed particle hydrodynamics (SPH) code developed by Barrière-Fouchet et al. (2005). We find that the conditions of pressure and temperature encountered in the inner regions of PPD result in important photophoretic forces, which dramatically affect the radial motion of solid bodies. Moreover, dust particles have different equilibrium locations in the disc depending on their size and their intrinsic density. The radial transport towards the outer parts of the disc is more efficient for silicates than for iron particles, which has important implications for meteoritic composition. Our results indicate that photophoresis must be taken into account in the inner regions of PPD to fully understand the dynamics and the evolution of the dust composition.

  11. Lumbar herniated disc: spontaneous regression

    PubMed Central

    Yüksel, Kasım Zafer

    2017-01-01

    Background Low back pain is a frequent condition that results in substantial disability and causes admission of patients to neurosurgery clinics. To evaluate and present the therapeutic outcomes in lumbar disc hernia (LDH) patients treated by means of a conservative approach, consisting of bed rest and medical therapy. Methods This retrospective cohort was carried out in the neurosurgery departments of hospitals in Kahramanmaraş city and 23 patients diagnosed with LDH at the levels of L3−L4, L4−L5 or L5−S1 were enrolled. Results The average age was 38.4 ± 8.0 and the chief complaint was low back pain and sciatica radiating to one or both lower extremities. Conservative treatment was administered. Neurological examination findings, durations of treatment and intervals until symptomatic recovery were recorded. Laségue tests and neurosensory examination revealed that mild neurological deficits existed in 16 of our patients. Previously, 5 patients had received physiotherapy and 7 patients had been on medical treatment. The number of patients with LDH at the level of L3−L4, L4−L5, and L5−S1 were 1, 13, and 9, respectively. All patients reported that they had benefit from medical treatment and bed rest, and radiologic improvement was observed simultaneously on MRI scans. The average duration until symptomatic recovery and/or regression of LDH symptoms was 13.6 ± 5.4 months (range: 5−22). Conclusions It should be kept in mind that lumbar disc hernias could regress with medical treatment and rest without surgery, and there should be an awareness that these patients could recover radiologically. This condition must be taken into account during decision making for surgical intervention in LDH patients devoid of indications for emergent surgery. PMID:28119770

  12. Another one grinds the dust: variability of the planetary debris disc at the white dwarf SDSS J104341.53+085558.2

    NASA Astrophysics Data System (ADS)

    Manser, Christopher J.; Gänsicke, Boris T.; Koester, Detlev; Marsh, Thomas R.; Southworth, John

    2016-10-01

    We report 9 yr of optical spectroscopy of the metal-polluted white dwarf SDSS J104341.53+085558.2, which presents morphological variations of the line profiles of the 8600 Å Ca II triplet emission from the gaseous component of its debris disc. Similar changes in the shape of the Ca II triplet have also been observed in two other systems that host a gaseous disc, and are likely related to the same mechanism. We report the Mg, Si, and Ca abundances of the debris detected in the photosphere of SDSS J1043+0855, place upper limits on O and Fe, and derive an accretion rate of (2.5-12) × 108 g s-1, consistent with those found in other systems with detected debris discs. The Mg/Si ratio and the upper limit on the Fe/Si ratio of the accreted material broadly agree with those found for the crust of the Earth. We also review the range of variability observed among white dwarfs with planetary debris discs.

  13. Spontaneous Regression of Herniated Lumbar Disc with New Disc Protrusion in the Adjacent Level

    PubMed Central

    Gürcan, Serkan

    2016-01-01

    Spontaneous regression of herniated lumbar discs was reported occasionally. The mechanisms proposed for regression of disc herniation are still incomplete. This paper describes and discusses a case of spontaneous regression of herniated lumbar discs with a new disc protrusion in the adjacent level. A 41-year-old man was admitted with radiating pain and numbness in the left lower extremity with a left posterolateral disc extrusion at L5-S1 level. He was admitted to hospital with low back pain due to disc herniation caudally immigrating at L4-5 level three years ago. He refused the surgical intervention that was offered and was treated conservatively at that time. He had no neurological deficit and a history of spontaneous regression of the extruded lumbar disc; so, a conservative therapy, including bed rest, physical therapy, nonsteroidal anti-inflammatory drugs, and analgesics, was advised. In conclusion, herniated lumbar disc fragments may regress spontaneously. Reports are prone to advise conservative treatment for extruded or sequestrated lumbar disc herniations. However, these patients should be followed up closely; new herniation at adjacent/different level may occur. Furthermore, it is important to know which herniated disk should be removed and which should be treated conservatively, because disc herniation may cause serious complications as muscle weakness and cauda equine syndrome. PMID:27429818

  14. Autologous adipose stem cells and polylactide discs in the replacement of the rabbit temporomandibular joint disc

    PubMed Central

    Ahtiainen, Katja; Mauno, Jari; Ellä, Ville; Hagström, Jaana; Lindqvist, Christian; Miettinen, Susanna; Ylikomi, Timo; Kellomäki, Minna; Seppänen, Riitta

    2013-01-01

    The temporomandibular joint (TMJ) disc lacks functional replacement after discectomy. We investigated tissue-engineered bilayer polylactide (PLA) discs and autologous adipose stem cells (ASCs) as a potential replacement for the TMJ disc. These ASC discs were pre-cultured either in control or in differentiation medium, including transforming growth factor (TGF)-β1 for one week. Prior to implantation, expression of fibrocartilaginous genes was measured by qRT-PCR. The control and differentiated ASC discs were implanted, respectively, in the right and left TMJs of rabbits for six (n = 5) and 12 months (n = 5). Thereafter, the excised TMJ areas were examined with cone beam computed tomography (CBCT) and histology. No signs of infection, inflammation or foreign body reactions were detected at histology, whereas chronic arthrosis and considerable condylar hypertrophy were observed in all operated joints at CBCT. The left condyle treated with the differentiated ASC discs appeared consistently smoother and more sclerotic than the right condyle. The ASC disc replacement resulted in dislocation and morphological changes in the rabbit TMJ. The ASC discs pre-treated with TGF-β1 enhanced the condylar integrity. While adverse tissue reactions were not shown, the authors suggest that with improved attachment and design, the PLA disc and biomaterial itself would hold potential for TMJ disc replacement. PMID:23720535

  15. Autologous adipose stem cells and polylactide discs in the replacement of the rabbit temporomandibular joint disc.

    PubMed

    Ahtiainen, Katja; Mauno, Jari; Ellä, Ville; Hagström, Jaana; Lindqvist, Christian; Miettinen, Susanna; Ylikomi, Timo; Kellomäki, Minna; Seppänen, Riitta

    2013-08-06

    The temporomandibular joint (TMJ) disc lacks functional replacement after discectomy. We investigated tissue-engineered bilayer polylactide (PLA) discs and autologous adipose stem cells (ASCs) as a potential replacement for the TMJ disc. These ASC discs were pre-cultured either in control or in differentiation medium, including transforming growth factor (TGF)-β1 for one week. Prior to implantation, expression of fibrocartilaginous genes was measured by qRT-PCR. The control and differentiated ASC discs were implanted, respectively, in the right and left TMJs of rabbits for six (n = 5) and 12 months (n = 5). Thereafter, the excised TMJ areas were examined with cone beam computed tomography (CBCT) and histology. No signs of infection, inflammation or foreign body reactions were detected at histology, whereas chronic arthrosis and considerable condylar hypertrophy were observed in all operated joints at CBCT. The left condyle treated with the differentiated ASC discs appeared consistently smoother and more sclerotic than the right condyle. The ASC disc replacement resulted in dislocation and morphological changes in the rabbit TMJ. The ASC discs pre-treated with TGF-β1 enhanced the condylar integrity. While adverse tissue reactions were not shown, the authors suggest that with improved attachment and design, the PLA disc and biomaterial itself would hold potential for TMJ disc replacement.

  16. Migration and kinematics in growing disc galaxies with thin and thick discs

    NASA Astrophysics Data System (ADS)

    Aumer, Michael; Binney, James; Schönrich, Ralph

    2017-09-01

    We analyse disc heating and radial migration in N-body models of growing disc galaxies with thick and thin discs. Similar to thin-disc-only models, galaxies with appropriate non-axisymmetric structures reproduce observational constraints on radial disc heating in and migration to the Solar Neighbourhood (Snhd). The presence of thick discs can suppress non-axisymmetries and thus higher baryonic-to-dark matter fractions are required than in models that only have a thin disc. Models that are baryon dominated to roughly the Solar radius R0 are favoured, in agreement with data for the Milky Way. For inside-out growing discs, today's thick-disc stars at R0 are dominated by outwards migrators. Whether outwards migrators are vertically hotter than non-migrators depends on the radial gradient of the thick-disc vertical velocity dispersion. There is an effective upper boundary in angular momentum that thick-disc stars born in the centre of a galaxy can reach by migration, which explains the fading of the high [α/Fe] sequence outside R0. Our models compare well to Snhd kinematics from Radial Velocity Survey and Tycho-Gaia Astrometric Solution data. For such comparisons, it is important to take into account the azimuthal variation of kinematics at R ∼ R0 and biases from survey selection functions. The vertical heating of thin-disc stars by giant molecular clouds is only mildly affected by the presence of thick discs. Our models predict higher vertical velocity dispersions for the oldest stars than found in the Snhd age velocity dispersion relation, possibly because of measurement uncertainties or an underestimation of the number of old cold stars in our models.

  17. [Clinical application of percutaneous laser disc decompression in the treatment of cervical disc herniation].

    PubMed

    Li, Kangren; Qin, Hui; Chen, Jian

    2007-05-01

    To evaluate the clinical effect of percutaneous laser disc decompression (PLDD) in the treatment of cervical disc herniation. From March 2003 to December 2005, 47 patients with cervical disc herniation (96 cervical disc) were treated with PLDD. There were 25 males and 22 females with an average age of 56 years, ranging from 37 to 72 years. The lesion were located at the levels of C3,4 in 20 discs, C4,5 in 27 discs, C5,6 in 31 discs, C6,7 in 18 discs. The laser fiber was introduced into the center of the herniated disc space by percutaneous puncture from anterior neck surface under fluoroscopic guidance. Laser reduced the intra-disc pressure through the vaporization of disc nucleu. The adopted laser was semi-conducted with a wavelength of 810 nm. Each laser output power was 15 W with 1 s emission and 2 s interval. The total laser output power was decided depending on the degenerative degree of the disc and the reactive process of heat, ranging from 300 to 1 000 J. Of 47 patients, 42 were followed up for 3 to 31 months (mean 13 months). The clinical evaluation was classified as excellent in 18 cases (42.9%), good in 14 cases (33.3%), fair in 6 cases (14.3%) and poor in 4 cases (9.5%). The general response rate was 90.5%. The excellent and good rate was 76.2%. No complications occurred. PLDD can relieve the symptoms and signs of patients suffering from cervical disc herniation with less complication. The manipulation of PLDD is easy, safe and mini-invasive.

  18. Intervertebral disc properties: challenges for biodevices.

    PubMed

    Costi, John J; Freeman, Brian J C; Elliott, Dawn M

    2011-05-01

    Intervertebral disc biodevices that employ motion-preservation strategies (e.g., nucleus replacement, total disc replacement and posterior stabilization devices) are currently in use or in development. However, their long-term performance is unknown and only a small number of randomized controlled trials have been conducted. In this article, we discuss the following biodevices: interbody cages, nuclear pulposus replacements, total disc replacements and posterior dynamic stabilization devices, as well as future biological treatments. These biodevices restore some function to the motion segment; however, contrary to expectations, the risk of adjacent-level degeneration does not appear to have been reduced. The short-term challenge is to replicate the complex biomechanical function of the motion segment (e.g., biphasic, viscoelastic behavior and nonlinearity) to improve the quality of motion and minimize adjacent level problems, while ensuring biodevice longevity for the younger, more active patient. Biological strategies for regeneration and repair of disc tissue are being developed and these offer exciting opportunities (and challenges) for the longer term. Responsible introduction and rigorous assessment of these new technologies are required. In this article, we will describe the properties of the disc, explore biodevices currently in use for the surgical treatment of low back pain (with an emphasis on lumbar total disc replacement) and discuss future directions for biological treatments. Finally, we will assess the challenges ahead for the next generation of biodevices designed to replace the disc.

  19. Stem cells sources for intervertebral disc regeneration

    PubMed Central

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-01-01

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  20. The Quiescent Growth Of Galactic Discs

    NASA Astrophysics Data System (ADS)

    Binney, James

    2016-09-01

    We use N-bodies to simulate the growth since redshift 2 of an isolated disc in a live halo. Giant molecular clouds (GMCs), The bar and spiral structure all play key roles in the evolution of the disc. Our GMCs are short-lived and have masses drawn from a mass spectrum. Their number density is related to the SFR. For the expected number densities and likely maximum masses of GMCs, they heat the disc very effectively at early times, and either postpone or cancel bar formation. They generate remarkably exponential vertical profiles. Spiral structure drives a level of radial migration that agrees well with that predicted by models of local chemical evolution. The radial patterns of star formation include different levels of inside-out growth. The radial scale length of the final disc is always greater than any of the scale lengths used for star formation and rather independent of the extent of inside-out growth. The only way to obtain a thick disc nearly as massive as those observed is to include in the initial conditions a massive, extended object that will be compressed into the present thick disc by the gravity of the thin disc.

  1. Shear Mechanics of the TMJ Disc

    PubMed Central

    Juran, C.M.; Dolwick, M.F.; McFetridge, P.S.

    2012-01-01

    The temporomandibular joint (TMJ) is a complex hinge and gliding joint that induces significant shear loads onto the fibrocartilage TMJ disc during jaw motion. The purpose of this study was to assess regional variation in the disc’s shear loading characteristics under physiologically relevant loads and to associate those mechanical findings with common clinical observations of disc fatigue and damage. Porcine TMJ discs were compressed between an axially translating bottom platen and a 2.5-cm-diameter indenter within a hydrated testing chamber. Discs were cyclically sheared at 0.5, 1, or 5 Hz to 1, 3, or 5% shear strain. Within the anterior and intermediate regions of the disc when sheared in the anteroposterior direction, both shear and compressive moduli experienced a significant decrease from instantaneous to steady state, while the posterior region’s compressive modulus decreased approximately 5%, and no significant loss of shear modulus was noted. All regions retained their shear modulus within 0.5% of instantaneous values when shear was applied in the mediolateral direction. The results of the disc’s regional shear mechanics suggest an observable and predictable link with the common clinical observation that the posterior region of the disc is most often the zone in which fatigue occurs, which may lead to disc damage and perforation. PMID:23166043

  2. THE SEPARATION OF URANIUM ISOTOPES BY GASEOUS DIFFUSION: A LINEAR PROGRAMMING MODEL,

    DTIC Science & Technology

    URANIUM, ISOTOPE SEPARATION), (*GASEOUS DIFFUSION SEPARATION, LINEAR PROGRAMMING ), (* LINEAR PROGRAMMING , GASEOUS DIFFUSION SEPARATION), MATHEMATICAL MODELS, GAS FLOW, NUCLEAR REACTORS, OPERATIONS RESEARCH

  3. Radiant Extinction of Gaseous Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Berhan, Sean; Atreya, Arvind; Everest, David; Sacksteder, Kurt R.

    1999-01-01

    The absence of buoyancy-induced flows in microgravity (mu-g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and mu-g flames have been reported in experiments on candle flames, flame spread over solids, droplet combustion, and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (1) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation; and (2) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the "weak" (low burning rate per unit flame area) mu-g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in mu-g will burn indefinitely. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the mu-g experiments and modeling because: (1) It reduces the complexity by making the problem one

  4. Radiant Extinction Of Gaseous Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Berhan, S.; Chernovsky, M.; Atreya, A.; Baum, Howard R.; Sacksteder, Kurt R.

    2003-01-01

    The absence of buoyancy-induced flows in microgravity (mu:g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and :g flames have been reported in experiments on candle flames [1, 2], flame spread over solids [3, 4], droplet combustion [5,6], and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the Aweak@ (low burning rate per unit flame area) :g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in :g will burn indefinitely [1]. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the :g experiments and modeling because: (i) It reduces the complexity by making the problem

  5. Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction: an experimental study on the rabbit lumbar spine model.

    PubMed

    Guehring, Thorsten; Unglaub, Frank; Lorenz, Helga; Omlor, Georg; Wilke, Hans-Joachim; Kroeber, Markus W

    2006-05-01

    Intervertebral disc (IVD) pressure measurement is an appropriate method for characterizing spinal loading conditions. However, there is no human or animal model that provides sufficient IVD pressure data. The aim of our study was to establish physiological pressure values in the rabbit lumbar spine and to determine whether temporary external disc compression and distraction were associated with pressure changes. Measurements were done using a microstructure-based fibreoptic sensor. Data were collected in five control rabbits (N, measurement lying prone at segment L3/4 at day 28), five rabbits with 28 days of axial compression (C, measurement at day 28) and three rabbits with 28 days of axial compression and following 28 days of axial distraction (D, measurement at day 56). Disc compression and distraction was verified by disc height in lateral radiographs. The controls (N) showed a level-related range between 0.25 MPa-0.45 MPa. The IVD pressure was highest at level L3/4 (0.42 MPa; range 0.38-0.45) with a decrease in both cranial and caudal adjacent segments. The result for C was a significant decrease in IVD pressure (0.31 MPa) when compared with controls (P=0.009). D showed slightly higher median IVD pressure (0.32 MPa) compared to C, but significantly lower levels when compared with N (P=0.037). Our results indicate a high range of physiological IVD pressure at different levels of the lumbar rabbit spine. Temporary disc compression reduces pressure when compared with controls. These data support the hypothesis that temporary external compression leads to moderate disc degeneration as a result of degradation of water-binding disc matrix or affected active pumping mechanisms of nutrients into the disc. A stabilization of IVD pressure in discs treated with temporary distraction was observed.

  6. Disc herniations in the National Football League.

    PubMed

    Gray, Benjamin L; Buchowski, Jacob M; Bumpass, David B; Lehman, Ronald A; Mall, Nathan A; Matava, Matthew J

    2013-10-15

    Retrospective analysis of a prospectively collected database. To determine the overall incidence, location, and type of disc herniations in professional football players to target treatment issues and prevention. Disc herniations represent a common and debilitating injury to the professional athlete. The NFL's (National Football League's) Sports Injury Monitoring System is a surveillance database created to monitor the league for all injuries, including injuries to the cervical, thoracic, and lumbar spine. A retrospective analysis was performed on all disc herniations to the cervical, thoracic, and lumbar spine during a 12-season period (2000–2012) using the NFL's surveillance database. The primary data points included the location of the injury, player position, activity at time of injury, and playing time lost due to injury. During the 12 seasons, 275 disc herniations occurred in the spine. In regard to location, 76% occurred in the lumbar spine and most frequently affected the L5–S1 disc. The offensive linemen were most frequently injured. As expected, blocking was the activity that caused most injuries. Lumbar disc herniations rose in prevalence and had a mean loss of playing time of more than half the season (11 games). Thoracic disc herniations led to the largest mean number of days lost overall, whereas players with cervical disc herniations missed the most practices. Disc herniations represent a significant cause of morbidity in the NFL. Although much attention is placed on spinal cord injuries, preventive measures targeting the cervical, thoracic, and lumbar spine may help to reduce the overall incidence of these debilitating injuries. N/A

  7. Chemical separation of disc components using RAVE

    NASA Astrophysics Data System (ADS)

    Wojno, Jennifer; Kordopatis, Georges; Steinmetz, Matthias; McMillan, Paul; Matijevič, Gal; Binney, James; Wyse, Rosemary F. G.; Boeche, Corrado; Just, Andreas; Grebel, Eva K.; Siebert, Arnaud; Bienaymé, Olivier; Gibson, Brad K.; Zwitter, Tomaž; Bland-Hawthorn, Joss; Navarro, Julio F.; Parker, Quentin A.; Reid, Warren; Seabroke, George; Watson, Fred

    2016-10-01

    We present evidence from the RAdial Velocity Experiment (RAVE) survey of chemically separated, kinematically distinct disc components in the solar neighbourhood. We apply probabilistic chemical selection criteria to separate our sample into α-low (`thin disc') and α-high (`thick disc') sequences. Using newly derived distances, which will be utilized in the upcoming RAVE DR5, we explore the kinematic trends as a function of metallicity for each of the disc components. For our α-low disc, we find a negative trend in the mean rotational velocity (Vφ) as a function of iron abundance ([Fe/H]). We measure a positive gradient ∂Vφ/∂[Fe/H] for the α-high disc, consistent with results from high-resolution surveys. We also find differences between the α-low and α-high discs in all three components of velocity dispersion. We discuss the implications of an α-low, metal-rich population originating from the inner Galaxy, where the orbits of these stars have been significantly altered by radial mixing mechanisms in order to bring them into the solar neighbourhood. The probabilistic separation we propose can be extended to other data sets for which the accuracy in [α/Fe] is not sufficient to disentangle the chemical disc components a priori. For such data sets which will also have significant overlap with Gaia DR1, we can therefore make full use of the improved parallax and proper motion data as it becomes available to investigate kinematic trends in these chemical disc components.

  8. Spectroscopic Parameters of Lumbar Intervertebral Disc Material

    NASA Astrophysics Data System (ADS)

    Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.

    2009-06-01

    There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 μm thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 435±5 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the

  9. Fundamental Performance on Disc Type Thermomagnetic Engine

    NASA Astrophysics Data System (ADS)

    Takahashi, Yutaka; Matsuzawa, Tomohiro; Nishikawa, Masahiro

    This paper is described on the fundamental performance of the disc type thermomagnetic engine. The disc type engine has been designed in order to decrease the eddy current braking loss. The performance characteristics such as power, torque and loss has been measured, and compared with that of the cylindrical engine in the condition of the same volume of the temperature sensitive magnetic material. The eddy current braking loss is 0.04W which corresponds to 1/30 the loss in the cylindrical engine at the rotation speed of 0.4rps with the maximum power output. The total loss including partial losses due to the friction, the hydraulic effect and the eddy current braking is 0.9W in the disc type engine and is 1.8W in the cylindrical engine. The total loss in the disc type engine is reduced to be 50% of the value of the total loss in the cylindrical engine at the same condition mentioned above. The maximum output power is 6.0W at the rotation speed of 0.4rps in the disc type engine which is about 1.6 times larger than that of the cylindrical engine. The eddy current braking loss in the disc type engine is 0.7% of the value of the maximum output power, which is negligible effect in this engine. The power per unit volume of disc has the maximum value at the disc width of 40mm. The clearance between discs is decided to be of 1mm due to keeping the working fluid flow condition at a constant. The rotor thickness includes with the clearance and the disc thickness. The power per unit rotor thickness also has the maximum value at the disc thickness of 0.5mm. The thermomagnetic engine with the optimum condition can be designed by using these results. When the permanent magnet fixes the size constant, the disc type engine generates high output power in comparison with the cylindrical engine at the point of effective use of magnetic field.

  10. How Does Lumbar Degenerative Disc Disease Affect the Disc Deformation at the Cephalic Levels In Vivo?

    PubMed Central

    Wang, Shaobai; Xia, Qun; Passias, Peter; Li, Weishi; Wood, Kirkham; Li, Guoan

    2013-01-01

    Study Design Case-control study. Objective . To evaluate the effect of lumbar degenerative disc disease (DDD) on the disc deformation at the adjacent level and at the level one above the adjacent level during end ranges of lumbar motion. Summary of Background Data It has been reported that in patients with DDD, the intervertebral discs adjacent to the diseased levels have a greater tendency to degenerate. Although altered biomechanics have been suggested to be the causative factors, few data have been reported on the deformation characteristics of the adjacent discs in patients with DDD. Methods Ten symptomatic patients with discogenic low back pain between L4 and S1 and with healthy discs at the cephalic segments were involved. Eight healthy subjects recruited in our previous studies were used as a reference comparison. The in vivo kinematics of L3–L4 (the cephalic adjacent level to the degenerated discs) and L2–L3 (the level one above the adjacent level) lumbar discs of both groups were obtained using a combined magnetic resonance imaging and dual fluoroscopic imaging technique at functional postures. Deformation characteristics, in terms of areas of minimal deformation (defined as less than 5%), deformations at the center of the discs, and maximum tensile and shear deformations, were compared between the two groups at the two disc levels. Results In the patients with DDD, there were significantly smaller areas of minimal disc deformation at L3–L4 and L2–L3 than the healthy subjects (18% compared with 45% of the total disc area, on average). Both L2–L3 and L3–L4 discs underwent larger tensile and shear deformations in all postures than the healthy subjects. The maximum tensile deformations were higher by up to 23% (of the local disc height in standing) and the maximum shear deformations were higher by approximately 25% to 40% (of the local disc height in standing) compared with those of the healthy subjects. Conclusion Both the discs of the adjacent

  11. Growth of graphene films from non-gaseous carbon sources

    DOEpatents

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  12. Photocatalytic Degradation of a Gaseous Organic Pollutant

    NASA Astrophysics Data System (ADS)

    Yu, Jimmy C.; Chan, Linda Y. L.

    1998-06-01

    A simple and effective method to demonstrate the phenomenon of photocatalytic degradation of a gaseous organic pollutant was developed. Titanium dioxide (anatase) was used as the photocatalyst, and sunlight was found to be an effective light source for the activation of TiO2. The organic pollutant degrade in this demonstration was a common indoor air pollutant, dichloromethane. The TiO2 powder was suspended in a 3:7 ethanol/water solution, and then coated on microscopic slides. The slides together with appropriate indicators were place in 250-mL conical flasks. A small amount of the volatile dichloromethane solvent was injected into each flask, and the flasks were sealed with a piece of parafilm. Some of the flasks were exposed to direct sunlight, and some were kept in the dark. The degradation products of dichloromethane were carbon dioxide, water, and hydrogen chloride. Formation of the acidic HCl gas could be monitored easily by two indicators, the universal pH paper and ammonia. The universal pH paper would change color from green to red in the presence of HCl and H2O, while HCl would react with ammonia to form a white fume. The results of this demonstration showed that both TiO2 and light were required in this photocatalytic degradation process.

  13. Action-FRET of a Gaseous Protein

    NASA Astrophysics Data System (ADS)

    Daly, Steven; Knight, Geoffrey; Halim, Mohamed Abdul; Kulesza, Alexander; Choi, Chang Min; Chirot, Fabien; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe

    2017-01-01

    Mass spectrometry is an extremely powerful technique for analysis of biological molecules, in particular proteins. One aspect that has been contentious is how much native solution-phase structure is preserved upon transposition to the gas phase by soft ionization methods such as electrospray ionization. To address this question—and thus further develop mass spectrometry as a tool for structural biology—structure-sensitive techniques must be developed to probe the gas-phase conformations of proteins. Here, we report Förster resonance energy transfer (FRET) measurements on a ubiquitin mutant using specific photofragmentation as a reporter of the FRET efficiency. The FRET data is interpreted in the context of circular dichroism, molecular dynamics simulation, and ion mobility data. Both the dependence of the FRET efficiency on the charge state—where a systematic decrease is observed—and on methanol concentration are considered. In the latter case, a decrease in FRET efficiency with methanol concentration is taken as evidence that the conformational ensemble of gaseous protein cations retains a memory of the solution phase conformational ensemble upon electrospray ionization.

  14. A gasdynamic gun driven by gaseous detonation.

    PubMed

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels.

  15. Elements of radiative interactions in gaseous systems

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.

    1991-01-01

    Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption model are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is identical to the second system. Here, the influence of nongray walls is also studied, and a correlation between the parallel plates and circular tube results is presented. The particular gases selected are CO, CO2, H2O, CH4, N2O, NH3, OH, and NO. The temperature and pressure range considered are 300 to 2000 K, and 0.1 to 100 atmosphere, respectively. Illustrative results obtained for different cases are discussed and some specific conclusions are provided.

  16. Gaseous Nitrogen Orifice Mass Flow Calculator

    NASA Technical Reports Server (NTRS)

    Ritrivi, Charles

    2013-01-01

    The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.

  17. The Hydrodynamic Stability of Gaseous Cosmic Filaments

    NASA Astrophysics Data System (ADS)

    Birnboim, Yuval; Padnos, Dan; Zinger, Elad

    2016-11-01

    Virial shocks at the edges of cosmic-web structures are a clear prediction of standard structure formation theories. We derive a criterion for the stability of the post-shock gas and of the virial shock itself in spherical, filamentary, and planar infall geometries. When gas cooling is important, we find that shocks become unstable, and gas flows uninterrupted toward the center of the respective halo, filament, or sheet. For filaments, we impose this criterion on self-similar infall solutions. We find that instability is expected for filament masses between 1011 and 1013 {M}⊙ Mpc-1. Using a simplified toy model, we then show that these filaments will likely feed halos with 1010 M ⊙ ≲ M halo ≲ 1013 M ⊙ at redshift z = 3, as well as 1012 M ⊙ ≲ M halo ≲ 1015 M ⊙ at z = 0. The instability will affect the survivability of the filaments as they penetrate gaseous halos in a non-trivial way. Additionally, smaller halos accreting onto non-stable filaments will not be subject to ram pressure inside the filaments. The instreaming gas will continue toward the center and stop either once its angular momentum balances the gravitational attraction, or when its density becomes so high that it becomes self-shielded to radiation.

  18. Combustion characteristics of alternative gaseous fuels

    SciTech Connect

    Park, O.; Veloo, Peter S.; Liu, N.; Egolfopoulos, Fokion N.

    2011-01-01

    Fundamental flame properties of mixtures of air with hydrogen, carbon monoxide, and C{sub 1}–C{sub 4} saturated hydrocarbons were studied both experimentally and numerically. The fuel mixtures were chosen in order to simulate alternative gaseous fuels and to gain insight into potential kinetic couplings during the oxidation of fuel mixtures. The studies included the use of the counterflow configuration for the determination of laminar flame speeds, as well as extinction and ignition limits of premixed flames. The experiments were modeled using the USC Mech II kinetic model. It was determined that when hydrocarbons are added to hydrogen flames as additives, flame ignition, propagation, and extinction are affected in a counterintuitive manner. More specifically, it was found that by substituting methane by propane or n-butane in hydrogen flames, the reactivity of the mixture is reduced both under pre-ignition and vigorous burning conditions. This behavior stems from the fact that propane and n-butane produce higher amounts of methyl radicals that can readily recombine with atomic hydrogen and reduce thus the rate of the H + O{sub 2} → O + OH branching reaction. The kinetic model predicts closely the experimental data for flame propagation and extinction for various fuel mixtures and pressures, and for various amounts of carbon dioxide in the fuel blend. On the other hand, it underpredicts, in general, the ignition temperatures.

  19. Measuring scattering lengths of gaseous samples

    NASA Astrophysics Data System (ADS)

    Huber, M. G.; Black, T. C.; Haun, R.; Pushin, D. A.; Shahi, C. B.; Weitfeldt, F. E.

    2016-03-01

    Neutron interferometry represents one of the most precise techniques for measuring the coherent scattering lengths (bc) of particular nuclear isotopes. Currently bc for helium-4 is known only to 1% relative uncertainty; a factor of ten higher than precision measurements of other light isotopes. Scattering lengths are measured using a neutron interferometer and by comparing the phase shift a neutron acquires as it passes through a gaseous sample relative to that of a neutron passing through vacuum. The density of the gas is determined by continuous monitoring of the sample's temperature and pressure. Challenges for these types of experiments include achieving the necessary long-term phase stability and accurate determination of the phase shift caused by the aluminum cell used to hold the gas; a phase shift many times greater than that of the sample. The present status on the effort to measure the n-4He scattering length at the NIST center for Neutron Research will be given. Financial support provided by the NSERC `Create' and `Discovery' programs, CERC, NIST and NSF Grant PHY-1205342.

  20. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Interarticular disc prosthesis (interpositional... disc prosthesis (interpositional implant). (a) Identification. An interarticular disc prosthesis... Food and Drug Administration on or before March 30, 1999, for any interarticular disc...

  1. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Interarticular disc prosthesis (interpositional... disc prosthesis (interpositional implant). (a) Identification. An interarticular disc prosthesis... Food and Drug Administration on or before March 30, 1999, for any interarticular disc...

  2. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Interarticular disc prosthesis (interpositional... disc prosthesis (interpositional implant). (a) Identification. An interarticular disc prosthesis... Food and Drug Administration on or before March 30, 1999, for any interarticular disc...

  3. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Interarticular disc prosthesis (interpositional... disc prosthesis (interpositional implant). (a) Identification. An interarticular disc prosthesis... Food and Drug Administration on or before March 30, 1999, for any interarticular disc prosthesis...

  4. Archival-grade optical disc design and international standards

    NASA Astrophysics Data System (ADS)

    Fujii, Toru; Kojyo, Shinichi; Endo, Akihisa; Kodaira, Takuo; Mori, Fumi; Shimizu, Atsuo

    2015-09-01

    Optical discs currently on the market exhibit large variations in life span among discs, making them unsuitable for certain business applications. To assess and potentially mitigate this problem, we performed accelerated degradation testing under standard ISO conditions, determined the probable disc failure mechanisms, and identified the essential criteria necessary for a stable disc composition. With these criteria as necessary conditions, we analyzed the physical and chemical changes that occur in the disc components, on the basis of which we determined technological measures to reduce these degradation processes. By applying these measures to disc fabrication, we were able to develop highly stable optical discs.

  5. Treatment of lumbar disc herniation by percutaneous laser disc decompression (PLDD) and modified PLDD

    NASA Astrophysics Data System (ADS)

    Chi, Xiao fei; Li, Hong zhi; Wu, Ru zhou; Sui, Yun xian

    2005-07-01

    Objective: To study the micro-invasive operative method and to compare the effect of treatment of PLDD and modified PLDD for Lumbar Disc Herniation. Method: Vaporized part of the nucleus pulposus in single or multiple point after acupuncture into lumbar disc, to reach the purpose of the decompression of the lumbar disc. Result: Among the 19 cases of the regular PLDD group, the excellent and good rate was 63.2%, and among the 40 cases of the modified PLDD group, the excellent and good rate was 82.5%. Conclusion: The modified PLDD has good effect on the treatment for lumbar disc herniation.

  6. [Disc electrophoresis of collagen protein (author's transl)].

    PubMed

    Reitmayr, P; Verzár, F

    1975-01-01

    The composition of proteins extracted from tendon collagen is investigated by disc electrophoresis. No qualitative differences can be demonstrated between young and old collagen. The action of formaldehyde and methionine on the tendons has no effect on the electrophoretic picture.

  7. Thermal analysis on motorcycle disc brake geometry

    NASA Astrophysics Data System (ADS)

    W. M. Zurin W., S.; Talib, R. J.; Ismail, N. I.

    2017-08-01

    Braking is a phase of slowing and stop the movement of motorcycle. During braking, the frictional heat was generated and the energy was ideally should be faster dissipated to surrounding to prevent the built up of the excessive temperature which may lead to brake fluid vaporization, thermoelastic deformation at the contact surface, material degradation and failure. In this paper, solid and ventilated type of motorcycle disc brake are being analyse using Computational Fluid Dynamic (CFD) software. The main focus of the analysis is the thermal behaviour during braking for solid and ventilated disc brake. A comparison between both geometries is being discussed to determine the better braking performance in term of temperature distribution. It is found that ventilated disc brake is having better braking performance in terms of heat transfer compare to solid disc.

  8. Genetics Home Reference: intervertebral disc disease

    MedlinePlus

    ... link) National Institute of Neurological Disorders and Stroke: Low Back Pain Fact Sheet Educational Resources (8 links) American Association ... MalaCards: intervertebral disc disease Merck Manual Consumer Version: Low Back Pain Merck Manual Consumer Version: Neck Pain The Children's ...

  9. Dynamical modelling of galactic disc outskirts

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.

    2017-03-01

    I review briefly some dynamical models of structures in the outer parts of disc galaxies, including models of polar rings, tidal tails and bridges. I then discuss the density distribution in the outer parts of discs. For this, I compare observations to results of a model in which the disc galaxy is in fact the remnant of a major merger, and find good agreement. This comparison includes radial profiles of the projected surface density and of stellar age, as well as time evolution of the break radius and of the inner and outer disc scale lengths. I also compare the radial projected surface density profiles of dynamically motivated mono-age populations and find that, compared to older populations, younger ones have flatter density profiles in the inner region and steeper in the outer one. The break radius, however, does not vary with stellar age, again in good agreement with observations.

  10. Particle rings and astrophysical accretion discs

    SciTech Connect

    Lovelace, R. V. E. Romanova, M. M.

    2016-03-25

    Norman Rostoker had a wide range of interests and significant impact on the plasma physics research at Cornell during the time he was a Cornell professor. His interests ranged from the theory of energetic electron and ion beams and strong particle rings to the related topics of astrophysical accretion discs. We outline some of the topics related to rings and discs including the Rossby wave instability which leads to formation of anticyclonic vortices in astrophysical discs. These vorticies are regions of high pressure and act to trap dust particles which in turn may facilitate planetesimals growth in proto-planetary disks and could be important for planet formation. Analytical methods and global 3D magneto-hydrodynamic simulations have led to rapid advances in our understanding of discs in recent years.

  11. Disc valve for sampling erosive process streams

    DOEpatents

    Mrochek, John E.; Dinsmore, Stanley R.; Chandler, Edward W.

    1986-01-01

    A four-port disc valve for sampling erosive, high temperature process streams. A rotatable disc defining opposed first and second sampling cavities rotates between fired faceplates defining flow passageways positioned to be alternatively in axial alignment with the first and second cavities. Silicon carbide inserts and liners composed of .alpha. silicon carbide are provided in the faceplates and in the sampling cavities to limit erosion while providing lubricity for a smooth and precise operation when used under harsh process conditions.

  12. 53. THRUST SECTION HEATER AND GASEOUS NITROGEN PURGE CONTROLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. THRUST SECTION HEATER AND GASEOUS NITROGEN PURGE CONTROLS ON EAST SIDE OF LAUNCH DECK. LAUNCHER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. 91. VIEW OF OXYGEN AND GASEOUS NITROGEN TANKS AND OXIDIZER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    91. VIEW OF OXYGEN AND GASEOUS NITROGEN TANKS AND OXIDIZER APRON FROM NORTH - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. Liquid and gaseous oxygen safety review, volume 1

    NASA Technical Reports Server (NTRS)

    Lapin, A.

    1972-01-01

    Materials used or contained in liquid and gaseous oxygen systems are analyzed for their compatibility; and areas of possible concern in oxygen systems are outlined. Design criteria, cleaning procedures, and quality control methods are covered in detail.

  15. Heterogeneous Reaction gaseous chlorine nitrate and solid sodium chloride

    NASA Technical Reports Server (NTRS)

    Timonen, Raimo S.; Chu, Liang T.; Leu, Ming-Taun

    1994-01-01

    The heterogeneous reaction of gaseous chlorine nitrate and solid sodium chloride was investigated over a temperature range of 220 - 300 K in a flow-tube reactor interfaced with a differentially pumped quadrupole mass spectrometer.

  16. Method of and apparatus for monitoring gaseous pollutants

    SciTech Connect

    Cramp, J. H. W.

    1985-07-16

    Laser scanning apparatus for monitoring gaseous pollutants uses two intersecting scanning beams so that the point of intersection (which is monitored by both scanning beams) can be identified by triangulation.

  17. Method for removing acid gases from a gaseous stream

    DOEpatents

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  18. Favorite Demonstrations: Gaseous Diffusion: A Demonstration of Graham's Law.

    ERIC Educational Resources Information Center

    Kauffman, George B.; Ebner, Ronald D.

    1985-01-01

    Describes a demonstration in which gaseous ammonia and hydrochloric acid are used to illustrate rates of diffusion (Graham's Law). Simple equipment needed for the demonstration include a long tube, rubber stoppes, and cotton. Two related demonstrations are also explained. (DH)

  19. Favorite Demonstrations: Gaseous Diffusion: A Demonstration of Graham's Law.

    ERIC Educational Resources Information Center

    Kauffman, George B.; Ebner, Ronald D.

    1985-01-01

    Describes a demonstration in which gaseous ammonia and hydrochloric acid are used to illustrate rates of diffusion (Graham's Law). Simple equipment needed for the demonstration include a long tube, rubber stoppes, and cotton. Two related demonstrations are also explained. (DH)

  20. 14 CFR 34.71 - Compliance with gaseous emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.71...

  1. Heterogeneous Reaction gaseous chlorine nitrate and solid sodium chloride

    NASA Technical Reports Server (NTRS)

    Timonen, Raimo S.; Chu, Liang T.; Leu, Ming-Taun

    1994-01-01

    The heterogeneous reaction of gaseous chlorine nitrate and solid sodium chloride was investigated over a temperature range of 220 - 300 K in a flow-tube reactor interfaced with a differentially pumped quadrupole mass spectrometer.

  2. Monitoring by Control Technique - Wet Scrubber For Gaseous Control

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Wet Scrubber For Gaseous controls used to reduce pollutant emissions.

  3. Gaseous iodine monitoring in Europe after the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Masson, Olivier; de Vismes-Ott, Anne; Manificat, Guillaume; Gurriaran, Rodolfo; Debayle, Christophe

    2014-05-01

    After the Fukushima accident and following the worldwide dispersion of contaminated air masses, many monitoring networks have reported airborne levels of emitted radionuclides, namely and mainly cesium isotopes and iodine 131. Most of the values focused on the particulate fraction (i.e. radionuclide-labeled aerosols) and were dedicated to cesium 137, cesium 134 and iodine 131. Iodine-131 was also found under gaseous form that accounted for most part of the total (gaseous + particulate)I-131 throughout the world. This gaseous predominance was also noticed after the Chernobyl accident despite differences in the type of accident. This predominance is due to the high iodine volatility and also by a rather low transfer from the gaseous form to the particulate one by adsorption on ambient airborne particles. Paradoxically, the number of gaseous determinations was rather low compared to the magnitude of data related to the particulate form (around 10 percent). Routine monitoring of airborne radionuclides species have been extensively based on aerosol sampling for decades as this allows the long term characterization of trace levels of remnant anthropogenic radionuclides. Moreover the capability of gaseous sampler equipped with activated charcoal to allow the quantification of 131I gaseous at trace level is limited by the contact time required for the sorption of iodine on the sorbent and thus by the low acceptable flow rate (usually between 3 and 5 m3/h, exceptionally 12 m3/h). In this context and despite the fact that airborne level outside Japan were of no concern for public health, this contribute to the lack of information on the actual levels of gaseous iodine. Other incidents involving iodine determination in the air have been reported in Europe in 2011 and 2012 without any relation with the Fukushima accident. For the same reason as previously mentioned, mainly, if not only, the particulate form was reported whereas it can be supposed that the predominant form was

  4. Radio monitoring of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Ubach, C.; Maddison, S. T.; Wright, C. M.; Wilner, D. J.; Lommen, D. J. P.; Koribalski, B.

    2017-04-01

    Protoplanetary disc systems observed at radio wavelengths often show excess emission above that expected from a simple extrapolation of thermal dust emission observed at short millimetre wavelengths. Monitoring the emission at radio wavelengths can be used to help disentangle the physical mechanisms responsible for this excess, including free-free emission from a wind or jet, and chromospheric emission associated with stellar activity. We present new results from a radio monitoring survey conducted with Australia Telescope Compact Array over the course of several years with observation intervals spanning days, months and years, where the flux variability of 11 T Tauri stars in the Chamaeleon and Lupus star-forming regions was measured at 7 and 15 mm, and 3 and 6 cm. Results show that most sources are variable to some degree at 7 mm, indicating the presence of emission mechanisms other than thermal dust in some sources. Additionally, evidence of grain growth to centimetre-sized pebbles was found for some sources that also have signs of variable flux at 7 mm. We conclude that multiple processes contributing to the emission are common in T Tauri stars at 7 mm and beyond, and that a detection at a single epoch at radio wavelengths should not be used to determine all processes contributing to the emission.

  5. Circumplanetary disc or circumplanetary envelope?

    NASA Astrophysics Data System (ADS)

    Szulágyi, J.; Masset, F.; Lega, E.; Crida, A.; Morbidelli, A.; Guillot, T.

    2016-08-01

    We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution (80 per cent of Jupiter's diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000, 1500, and 2000 K). In these fixed temperature cases circumplanetary discs (CPDs) were formed. This suggests that the capability to form a CPD is not simply linked to the mass of the planet and its ability to open a gap. Instead, the gas temperature at the planet's location, which depends on its accretion history, plays also fundamental role. The CPDs in the simulations are hot and cooling very slowly, they have very steep temperature and density profiles, and are strongly sub-Keplerian. Moreover, the CPDs are fed by a strong vertical influx, which shocks on the CPD surfaces creating a hot and luminous shock-front. In contrast, the pressure supported circumplanetary envelope is characterized by internal convection and almost stalled rotation.

  6. Radio Monitoring of Protoplanetary Discs

    NASA Astrophysics Data System (ADS)

    Ubach, C.; Maddison, S. T.; Wright, C. M.; Wilner, D. J.; Lommen, D. J. P.; Koribalski, B.

    2017-01-01

    Protoplanetary disc systems observed at radio wavelengths often show excess emission above that expected from a simple extrapolation of thermal dust emission observed at short millimetre wavelengths. Monitoring the emission at radio wavelengths can be used to help disentangle the physical mechanisms responsible for this excess, including free-free emission from a wind or jet, and chromospheric emission associated with stellar activity. We present new results from a radio monitoring survey conducted with Australia Telescope Compact Array over the course of several years with observation intervals spanning days, months and years, where the flux variability of 11 T Tauri stars in the Chamaeleon and Lupus star forming regions was measured at 7 and 15 mm and 3 and 6 cm. Results show that for most sources are variable to some degree at 7 mm, indicating the presence of emission mechanisms other than thermal dust in some sources. Additionally, evidence of grain growth to cm-sized pebbles was found for some sources that also have signs of variable flux at 7 mm. We conclude that multiple processes contributing to the emission are common in T Tauri stars at 7 mm and beyond, and that a detection at a single epoch at radio wavelengths should not be used to determine all processes contributing to the emission.

  7. Clumpy disc and bulge formation

    NASA Astrophysics Data System (ADS)

    Perez, Josefa; Valenzuela, Octavio; Tissera, Patricia B.; Michel-Dansac, Leo

    2013-11-01

    We present a set of hydrodynamical/N-body controlled simulations of isolated gas-rich galaxies that self-consistently include supernova (SN) feedback and a detailed chemical evolution model, both tested in cosmological simulations. The initial conditions are motivated by the observed star-forming galaxies at z ˜ 2-3. We find that the presence of a multiphase interstellar media in our models promotes the growth of disc instability favouring the formation of clumps which, in general, are not easily disrupted on time-scales compared to the migration time. We show that stellar clumps migrate towards the central region and contribute to form a classical-like bulge with a Sérsic index, n > 2. Our physically motivated SN feedback has a mild influence on clump survival and evolution, partially limiting the mass growth of clumps as the energy released per SN event is increased, with the consequent flattening of the bulge profile. This regulation does not prevent the building of a classical-like bulge even for the most energetic feedback tested. Our SN feedback model is able to establish self-regulated star formation, producing mass-loaded outflows and stellar age spreads comparable to observations. We find that the bulge formation by clumps may coexist with other channels of bulge assembly such as bars and mergers. Our results suggest that galactic bulges could be interpreted as composite systems with structural components and stellar populations storing archaeological information of the dynamical history of their galaxy.

  8. Validation of Sodium MRI of Intervertebral Disc

    PubMed Central

    Wang, Chenyang; McArdle, Erin; Fenty, Matthew; Witschey, Walter; Elliott, Mark; Sochor, Matthew; Reddy, Ravinder; Borthakur, Arijitt

    2009-01-01

    Study Design This study demonstrated the diagnostic potential of sodium MRI for non-invasive quantification of PG in the intervertebral discs. Objective To determine the existence of a linear correlation between intervertebral disc [Na] measured from sodium MRI and [PG] measurement from DMMB assay. Summary of Background Data Previous studies have shown the possibility of quantifying [Na] in vivo using sodium MRI, however none has shown a direct linear correlation between [Na] measured from sodium MRI and [PG]. Methods 3D sodium MRI images of bovine discs were acquired and converted into [Na] maps. Samples were systematically removed from the discs for DMMB assay. The removal locations were photographically recorded and applied to the [Na] maps to extract the [Na] measurements for comparison. In vivo sodium MRI scans were also carried out on a pair of symptomatic and asymptomatic subjects. Results The linear regression fit of [Na] versus [PG] data yielded a significant linear correlation coefficient of 0.71. The in vivo sodium MRI image of the symptomatic subject showed significant [Na] decrease when compared to that of the asymptomatic subject. Conclusion Sodium MRI's specificity for PG in the intervertebral discs makes it a promising diagnostic tool for the earlier phase of disc degeneration. PMID:20147881

  9. The molecular basis of intervertebral disc degeneration.

    PubMed

    Kepler, Christopher K; Ponnappan, Ravi K; Tannoury, Chadi A; Risbud, Marakand V; Anderson, David G

    2013-03-01

    Intervertebral disc (IVD) degeneration remains a clinically important condition for which treatment is costly and relatively ineffective. The molecular basis of degenerative disc disease has been an intense focus of research recently, which has greatly increased our understanding of the biology underlying this process. To review the current understanding of the molecular basis of disc degeneration. Review article. A literature review was performed to identify recent investigations and current knowledge regarding the molecular basis of IVD degeneration. The unique structural requirements and biochemical properties of the disc contribute to its propensity toward degeneration. Mounting evidence suggests that genetic factors account for up to 75% of individual susceptibility to IVD degeneration, far more than the environmental factors such as occupational exposure or smoking that were previously suspected to figure prominently in this process. Decreased extracellular matrix production, increased production of degradative enzymes, and increased expression of inflammatory cytokines contribute to the loss of structural integrity and accelerate IVD degeneration. Neurovascular ingrowth occurs, in part, because of the changing degenerative phenotype. A detailed understanding of the biology of IVD degeneration is essential to the design of therapeutic solutions to treat degenerative discs. Although significant advances have been made in explaining the biologic mediators of disc degeneration, the inhospitable biochemical environment of the IVD remains a challenging environment for biological therapies. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. [Passive FTIR remote sensing of gaseous pollutant in heated plume].

    PubMed

    Gao, Min-guang; Liu, Wen-qing; Zhang, Tian-shu; Liu, Cheng; Liu, Jian-guo; Wei, Qing-nong; Lu, Yi-huai; Wang, Ya-ping; Zhu, Jun; Xu, Liang

    2006-01-01

    The principle and techniques of passive remote sensing of gaseous pollutant in heated plume was illustrated and discussed in this paper. The algorithm of radiance spectra and transmittance spectra in measured region was proposed, and the method of retrieving gas concentrations with NLLS fitting algorithm was also proposed. The remote senseing of actual gaseous pollutant of smokestack was done, and the quantitative analysis of SO2 and CO2 was completed.

  11. Feasibility of gas-phase decontamination of gaseous diffusion equipment

    SciTech Connect

    Munday, E.B.; Simmons, D.W.

    1993-02-01

    The five buildings at the K-25 Site formerly involved in the gaseous diffusion process contain 5000 gaseous diffusion stages as well as support facilities that are internally contaminated with uranium deposits. The gaseous diffusion facilities located at the Portsmouth Gaseous Diffusion Plant and the Paducah Gaseous Diffusion Plant also contain similar equipment and will eventually close. The decontamination of these facilities will require the most cost-effective technology consistent with the criticality, health physics, industrial hygiene, and environmental concerns; the technology must keep exposures to hazardous substances to levels as low as reasonably achievable (ALARA). This report documents recent laboratory experiments that were conducted to determine the feasibility of gas-phase decontamination of the internal surfaces of the gaseous diffusion equipment that is contaminated with uranium deposits. A gaseous fluorinating agent is used to fluorinate the solid uranium deposits to gaseous uranium hexafluoride (UF{sub 6}), which can be recovered by chemical trapping or freezing. The lab results regarding the feasibility of the gas-phase process are encouraging. These results especially showed promise for a novel decontamination approach called the long-term, low-temperature (LTLT) process. In the LTLT process: The equipment is rendered leak tight, evacuated, leak tested, and pretreated, charged with chlorine trifluoride (ClF{sub 3}) to subatmospheric pressure, left for an extended period, possibly > 4 months, while processing other items. Then the UF{sub 6} and other gases are evacuated. The UF{sub 6} is recovered by chemical trapping. The lab results demonstrated that ClF{sub 3} gas at subatmospheric pressure and at {approx} 75{degree}F is capable of volatilizing heavy deposits of uranyl fluoride from copper metal surfaces sufficiently that the remaining radioactive emissions are below limits.

  12. Gaseous emissions from plants in controlled environments

    NASA Technical Reports Server (NTRS)

    Dubay, Denis T.

    1988-01-01

    Plant growth in a controlled ecological life support system may entail the build-up over extended time periods of phytotoxic concentrations of volatile organic compounds produced by the plants themselves. Ethylene is a prominent gaseous emission of plants, and is the focus of this report. The objective was to determine the rate of ethylene release by spring wheat, white potato, and lettuce during early, middle, and late growth stages, and during both the light and dark segments of the diurnal cycle. Plants grown hydroponically using the nutrient film technique were covered with plexiglass containers for 4 to 6 h. At intervals after enclosure, gas samples were withdrawn with a syringe and analyzed for ethylene with a gas chromatograph. Lettuce produced 10 to 100 times more ethylene than wheat or potato, with production rates ranging from 141 to 158 ng g-dry/wt/h. Wheat produced from 1.7 to 14.3 ng g-dry/wt/h, with senescent wheat producing the least amount and flowering wheat the most. Potatoes produced the least amount of ethylene, with values never exceeding 5 ng g-dry/wt/h. Lettuce and potatoes each produced ethylene at similar rates whether in dark period or light period. Ethylene sequestering of 33 to 43 percent by the plexiglass enclosures indicated that these production estimates may be low by one-third to one-half. These results suggest that concern for ethylene build-up in a contained atmosphere should be greatest when growing lettuce, and less when growing wheat or potato.

  13. Euthanasia using gaseous agents in laboratory rodents.

    PubMed

    Valentim, A M; Guedes, S R; Pereira, A M; Antunes, L M

    2016-08-01

    Several questions have been raised in recent years about the euthanasia of laboratory rodents. Euthanasia using inhaled agents is considered to be a suitable aesthetic method for use with a large number of animals simultaneously. Nevertheless, its aversive potential has been criticized in terms of animal welfare. The data available regarding the use of carbon dioxide (CO2), inhaled anaesthetics (such as isoflurane, sevoflurane, halothane and enflurane), as well as carbon monoxide and inert gases are discussed throughout this review. Euthanasia of fetuses and neonates is also addressed. A table listing currently available information to ease access to data regarding euthanasia techniques using gaseous agents in laboratory rodents was compiled. Regarding better animal welfare, there is currently insufficient evidence to advocate banning or replacing CO2 in the euthanasia of rodents; however, there are hints that alternative gases are more humane. The exposure to a volatile anaesthetic gas before loss of consciousness has been proposed by some scientific studies to minimize distress; however, the impact of such a measure is not clear. Areas of inconsistency within the euthanasia literature have been highlighted recently and stem from insufficient knowledge, especially regarding the advantages of the administration of isoflurane or sevoflurane over CO2, or other methods, before loss of consciousness. Alternative methods to minimize distress may include the development of techniques aimed at inducing death in the home cage of animals. Scientific outcomes have to be considered before choosing the most suitable euthanasia method to obtain the best results and accomplish the 3Rs (replacement, reduction and refinement).

  14. Unravelling tidal dissipation in gaseous giant planets

    NASA Astrophysics Data System (ADS)

    Guenel, M.; Mathis, S.; Remus, F.

    2014-06-01

    Context. Tidal dissipation in planetary interiors is one of the key physical mechanisms that drive the evolution of star-planet and planet-moon systems. New constraints on this dissipation are now obtained both in the solar and exo-planetary systems. Aims: Tidal dissipation in planets is intrinsically related to their internal structure. Indeed, the dissipation behaves very differently when we compare its properties in solid and fluid planetary layers. Since planetary interiors consist of both types of regions, it is necessary to be able to assess and compare the respective intensity of the reservoir of dissipation in each type of layers. Therefore, in the case of giant planets, the respective contribution of the potential central dense rocky/icy core and of the deep convective fluid envelope must be computed as a function of the mass and the radius of the core. This will allow us to obtain their respective strengths. Methods: Using a method that evaluates the reservoir of dissipation associated to each region, which is a frequency-average of complex tidal Love numbers, we compared the respective contributions of the central core and of the fluid envelope. Results: For Jupiter- and Saturn-like planets, we show that the viscoelastic dissipation in the core could dominate the turbulent friction acting on tidal inertial waves in the envelope. However, the fluid dissipation would not be negligible. This demonstrates that it is necessary to build complete models of tidal dissipation in planetary interiors from their deep interior to their surface without any arbitrary assumptions. Conclusions: We demonstrate how important it is to carefully evaluate the respective strength of each type of dissipation mechanism in planetary interiors and to go beyond the usually adopted ad-hoc models. We confirm the significance of tidal dissipation in the potential dense core of gaseous giant planets.

  15. Impedance signature of pharyngeal gaseous reflux.

    PubMed

    Kawamura, Osamu; Bajaj, Shailesh; Aslam, Muhammad; Hofmann, Candy; Rittmann, Tanya; Shaker, Reza

    2007-01-01

    Pharyngeal impedance changes induced by various pharyngeal reflux events have not been characterized. To characterize pharyngeal impedance changes induced by participant-perceived belching events. We systematically evaluated pharyngeal impedance and pH changes related to 453 belch events in 11 gastroesophageal reflux disease, 10 reflux attributed-laryngitis patients and 16 controls. Of 453 belch events, 362 were analyzable. Of these, 72% occurred within 10 s, 93% within 20 s, 99% within 30 s and 100% within 40 s of the time that participants marked a belch event. In 15% impedance changes in the pharynx preceded, in 12% they were simultaneous and in 73% they occurred after the start of the impedance change in the proximal esophagus. Time interval between the two events ranged between 0.4+/-0.03 and 0.7+/-0.1 s. In all, there were three types of belch-induced impedance changes: (a) impedance increase, (b) impedance decrease and (c) multiphasic. Twenty percent of impedance events associated with belching had less than 50% change from baseline, whereas in 51% changes exceeded or were equal to 50%. Among events with a drop in pharyngeal impedance, only two satisfied the criteria for the liquid reflux event. Pharyngeal ventilation of gastric gaseous content seems to have a unique impedance signature. During pharyngeal gas reflux events, impedance changes may start before or after proximal esophageal changes. Belching may induce negative pharyngeal changes that do not meet the criteria for liquid reflux. These findings need to be taken into consideration in the analysis of pharyngeal reflux events.

  16. Global concentrations of gaseous elemental mercury and reactive gaseous mercury in the marine boundary layer.

    PubMed

    Soerensen, Anne L; Skov, Henrik; Jacob, Daniel J; Soerensen, Britt T; Johnson, Matthew S

    2010-10-01

    Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured during an eight month circumnavigation to obtain knowledge of their worldwide distributions in the marine boundary layer (MBL). Background GEM concentrations were found to be 1.32 ± 0.2 ng/m(3) (summer) and 2.62 ± 0.4 ng/m(3) (spring) in the northern hemisphere and 1.27 ± 0.2 ng/m(3) (spring and summer) in the southern hemisphere. Radiation and relative humidity are shown to control diurnal cycles of RGM. During the cruise the ship passed areas of clean MBL air, air influenced by biomass burning (South Atlantic) and air with high concentrations of GEM and RGM of unknown origin (Antarctic). High GEM concentrations above the Atlantic indicate that emission from the ocean can be an important GEM source. Our data combined with data from earlier cruises provides adequate information to establish a seasonal cycle for the Atlantic. Results show a cycle similar to that found at Mace Head, Ireland but with larger amplitude. We have improved the basic knowledge of mean GEM and RGM concentrations in the MBL worldwide and shown how natural sources and reemissions can affect GEM concentrations in the MBL.

  17. Treatment of Plants with Gaseous Ethylene and Gaseous Inhibitors of Ethylene Action.

    PubMed

    Tucker, Mark L; Kim, Joonyup; Wen, Chi-Kuang

    2017-01-01

    The gaseous nature of ethylene affects not only its role in plant biology but also how you treat plants with the hormone. In many ways, it simplifies the treatment problem. Other hormones have to be made up in solution and applied to some part of the plant hoping the hormone will be taken up into the plant and translocated throughout the plant at the desired concentration. Because all plant cells are connected by an intercellular gas space the ethylene concentration you treat with is relatively quickly reached throughout the plant. In some instances, like mature fruit, treatment with ethylene initiates autocatalytic synthesis of ethylene. However, in most experiments, the exogenous ethylene concentration is saturating, usually >1 μL L(-1), and the synthesis of additional ethylene is inconsequential. Also facilitating ethylene research compared with other hormones is that there are inhibitors of ethylene action 1-MCP (1-methylcyclopropene) and 2,5-NBD (2,5-norbornadiene) that are also gases wherein you can achieve nearly 100% inhibition of ethylene action quickly and with few side effects. Inhibitors for other plant hormones are applied as a solution and their transport and concentration at the desired site is not always known and difficult to measure. Here, our focus is on how to treat plants and plant parts with the ethylene gas and the gaseous inhibitors of ethylene action.

  18. Stellar irradiated discs and implications on migration of embedded planets. I. Equilibrium discs

    NASA Astrophysics Data System (ADS)

    Bitsch, B.; Crida, A.; Morbidelli, A.; Kley, W.; Dobbs-Dixon, I.

    2013-01-01

    Context. The strength and direction of migration of embedded low mass planets depends on the disc's thermodynamic state. It has been shown that, in discs where the viscous heating is balanced by radiative transport, the migration can be directed outwards, a process which extends the lifetime of growing planetary embryos. Aims: We investigate the influence of opacity and stellar irradiation on the disc thermodynamics. We focus on equilibrium discs, which have no net mass flux. Utilizing the resulting disc structure, we determine the regions of outward migration in the disc. Methods: We performed two-dimensional numerical simulations of equilibrium discs with viscous heating, radiative cooling, and stellar irradiation. We used the explicit/implicit hydrodynamical code NIRVANA that includes a full tensor viscosity and stellar irradiation, as well as a two temperature solver that includes radiation transport in the flux-limited diffusion approximation. The migration of embedded planets was studied by using torque formulae. Results: In the constant opacity case, our code reproduces the analytical results corresponding to a black-body disc: the stellar irradiation dominates in the outer regions - leading to flaring (H/r ∝ r2/7) - while the viscous heating dominates close to the star. In particular, we find that the inner edge of the disc should not be significantly puffed-up by the stellar irradiation. If the opacity depends on the local density and temperature, the structure of the disc is different, and several bumps in the aspect ratio H/r appear, due to transitions between different opacity regimes. The bumps in the disc structure are very important, as they can shield the outer disc from stellar irradiation. Conclusions: Stellar irradiation is an important factor for determining the disc structure and has dramatic consequences for the migration of embedded planets. Compared to discs with only viscous heating and radiative cooling, a stellar irradiated disc

  19. Lumbar Disc Degenerative Disease: Disc Degeneration Symptoms and Magnetic Resonance Image Findings

    PubMed Central

    Saleem, Shafaq; Rehmani, Muhammad Asim Khan; Raees, Aisha; Alvi, Arsalan Ahmad; Ashraf, Junaid

    2013-01-01

    Study Design Cross sectional and observational. Purpose To evaluate the different aspects of lumbar disc degenerative disc disease and relate them with magnetic resonance image (MRI) findings and symptoms. Overview of Literature Lumbar disc degenerative disease has now been proven as the most common cause of low back pain throughout the world. It may present as disc herniation, lumbar spinal stenosis, facet joint arthropathy or any combination. Presenting symptoms of lumbar disc degeneration are lower back pain and sciatica which may be aggravated by standing, walking, bending, straining and coughing. Methods This study was conducted from January 2012 to June 2012. Study was conducted on the diagnosed patients of lumbar disc degeneration. Diagnostic criteria were based upon abnormal findings in MRI. Patients with prior back surgery, spine fractures, sacroiliac arthritis, metabolic bone disease, spinal infection, rheumatoid arthritis, active malignancy, and pregnancy were excluded. Results During the targeted months, 163 patients of lumbar disc degeneration with mean age of 43.92±11.76 years, came into Neurosurgery department. Disc degeneration was most commonly present at the level of L4/L5 105 (64.4%).Commonest types of disc degeneration were disc herniation 109 (66.9%) and lumbar spinal stenosis 37 (22.7%). Spondylolisthesis was commonly present at L5/S1 10 (6.1%) and associated mostly with lumbar spinal stenosis 7 (18.9%). Conclusions Results reported the frequent occurrence of lumbar disc degenerative disease in advance age. Research efforts should endeavor to reduce risk factors and improve the quality of life. PMID:24353850

  20. Reoperations Following Cervical Disc Replacement

    PubMed Central

    Skovrlj, Branko; Lee, Dong-Ho; Caridi, John Michael

    2015-01-01

    Cervical disc replacement (CDR) has emerged as an alternative surgical option to cervical arthrodesis. With increasing numbers of patients and longer follow-ups, complications related to the device and/or aging spine are growing, leaving us with a new challenge in the management and surgical revision of CDR. The purpose of this study is to review the current literature regarding reoperations following CDR and to discuss about the approaches and solutions for the current and future potential complications associated with CDR. The published rates of reoperation (mean, 1.0%; range, 0%-3.1%), revision (mean, 0.2%; range, 0%-0.5%), and removal (mean, 1.2%; range, 0%-1.9%) following CDR are low and comparable to the published rates of reoperation (mean, 1.7%; range; 0%-3.4%), revision (mean, 1.5%; range, 0%-4.7%), and removal (mean, 2.0%; range, 0%-3.4%) following cervical arthrodesis. The surgical interventions following CDR range from the repositioning to explantation followed by fusion or the reimplantation to posterior foraminotomy or fusion. Strict patient selection, careful preoperative radiographic review and surgical planning, as well as surgical technique may reduce adverse events and the need for future intervention. Minimal literature and no guidelines exist for the approaches and techniques in revision and for the removal of implants following CDR. Adherence to strict indications and precise surgical technique may reduce the number of reoperations, revisions, and removals following CDR. Long-term follow-up studies are needed, assessing the implant survivorship and its effect on the revision and removal rates. PMID:26097667