Lithographically defined microporous carbon-composite structures
Burckel, David Bruce; Washburn, Cody M.; Lambert, Timothy N.; Finnegan, Patrick Sean; Wheeler, David R.
2016-12-06
A microporous carbon scaffold is produced by lithographically patterning a carbon-containing photoresist, followed by pyrolysis of the developed resist structure. Prior to exposure, the photoresist is loaded with a nanoparticulate material. After pyrolysis, the nanonparticulate material is dispersed in, and intimately mixed with, the carbonaceous material of the scaffold, thereby yielding a carbon composite structure.
Multilayer block copolymer meshes by orthogonal self-assembly
Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.
2016-01-01
Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218
Scheible, Max B; Pardatscher, Günther; Kuzyk, Anton; Simmel, Friedrich C
2014-03-12
The combination of molecular self-assembly based on the DNA origami technique with lithographic patterning enables the creation of hierarchically ordered nanosystems, in which single molecules are positioned at precise locations on multiple length scales. Based on a hybrid assembly protocol utilizing DNA self-assembly and electron-beam lithography on transparent glass substrates, we here demonstrate a DNA origami microarray, which is compatible with the requirements of single molecule fluorescence and super-resolution microscopy. The spatial arrangement allows for a simple and reliable identification of single molecule events and facilitates automated read-out and data analysis. As a specific application, we utilize the microarray to characterize the performance of DNA strand displacement reactions localized on the DNA origami structures. We find considerable variability within the array, which results both from structural variations and stochastic reaction dynamics prevalent at the single molecule level.
Lithographer 3 and 2: Naval Rate Training Manual and Nonresident Career Course.
ERIC Educational Resources Information Center
Naval Education and Training Command, Pensacola, FL.
The rate training manual and nonresident career course (RTM/NRCC) form is a self-study package that will enable third class and second class lithographers to fulfill the requirements for that rating. Chapter one provides a brief history of printing and discusses the duties and qualifications of the Navy lithographer. Chapters two through eighteen…
NASA Technical Reports Server (NTRS)
McMillan, R. Andrew; Howard, Jeanie; Zaluzec, Nestor J.; Kagawa, Hiromi K.; Li, Yi-Fen; Paavola, Chad D.; Trent, Jonathan D.
2004-01-01
Self-assembling biomolecules that form highly ordered structures have attracted interest as potential alternatives to conventional lithographic processes for patterning materials. Here we introduce a general technique for patterning materials on the nanoscale using genetically modified protein cage structures called chaperonins that self-assemble into crystalline templates. Constrained chemical synthesis of transition metal nanoparticles is specific to templates genetically functionalized with poly-Histidine sequences. These arrays of materials are ordered by the nanoscale structure of the crystallized protein. This system may be easily adapted to pattern a variety of materials given the rapidly growing list of peptide sequences selected by screening for specificity for inorganic materials.
Extreme Mechanics: Self-Folding Origami
NASA Astrophysics Data System (ADS)
Santangelo, Christian D.
2017-03-01
Origami has emerged as a tool for designing three-dimensional structures from flat films. Because they can be fabricated by lithographic or roll-to-roll processing techniques, they have great potential for the manufacture of complicated geometries and devices. This article discusses the mechanics of origami and kirigami with a view toward understanding how to design self-folding origami structures. Whether an origami structure can be made to fold autonomously depends strongly on the geometry and kinematics of the origami fold pattern. This article collects some of the results on origami rigidity into a single framework, and discusses how these aspects affect the foldability of origami. Despite recent progress, most problems in origami and origami design remain completely open.
NASA Astrophysics Data System (ADS)
Park, Jeong-Ho; Kang, Seok-Ju; Park, Jeong-Woo; Lim, Bogyu; Kim, Dong-Yu
2007-11-01
The submicroscaled octadecyltrichlorosilane (OTS) line patterns on gate-dielectric surfaces were introduced into the fabrication of organic field effect transistors (OFETs). These spin-cast regioregular poly(3-hexylthiophene) films on soft-lithographically patterned SiO2 surfaces yielded a higher hole mobility (˜0.072cm2/Vs ) than those of unpatterned (˜0.015cm2/Vs) and untreated (˜5×10-3cm2/Vs) OFETs. The effect of mobility enhancement as a function of the patterned line pitch was investigated in structural and geometric characteristics. The resulting improved mobility is likely attributed to the formation of efficient π-π stacking as a result of guide-assisted, local self-organization-involved molecular interactions between the poly(3-hexylthiophene) polymer and the geometrical OTS patterns.
Polymer-stabilized liquid crystalline topological defect network for micro-pixelated optical devices
NASA Astrophysics Data System (ADS)
Araoka, Fumito; Le, Khoa V.; Fujii, Shuji; Orihara, Hiroshi; Sasaki, Yuji
2018-02-01
Spatially and temporally controlled topological defects in nematic liquid crystals (NLCs) are promising for its potential in optical applications. Utilization of self-organization is a key to fabricate complex micro- and nano-structures which are often difficult to obtain by conventional lithographic tools. Using photo-polymerization technique, here we show a polymer-stabilized NLC having a micro-pixelated structure of regularly ordered umbilical defects which are induced by an electric field. Due to the formation of polymer network, the self-organized pattern is kept stable without deterioration. Moreover, the polymer network allows to template other LCs whose optical properties can be tuned with external stimuli such as temperature and electric fields.
Hybrid strategies for nanolithography and chemical patterning
NASA Astrophysics Data System (ADS)
Srinivasan, Charan
Remarkable technological advances in photolithography have extended patterning to the sub-50-nm regime. However, because photolithography is a top-down approach, it faces substantial technological and economic challenges in maintaining the downward scaling trends of feature sizes below 30 nm. Concurrently, fundamental research on chemical self-assembly has enabled the path to access molecular length scales. The key to the success of photolithography is its inherent economies of scale, which justify the large capital investment for its implementation. In this thesis research, top-down and bottom-up approaches have been combined synergistically, and these hybrid strategies have been employed in applications that do not have the economies of scale found in semiconductor chip manufacturing. The specific instances of techniques developed here include molecular-ruler lithography and a series of nanoscale chemical patterning methods. Molecular-ruler lithography utilizes self-assembled multilayered films as a sidewall spacer on initial photolithographically patterned gold features (parent) to place a second-generation feature (daughter) in precise proximity to the parent. The parent-daughter separation, which is on the nanometer length scale, is defined by the thickness of the molecular-ruler resist. Analogous to protocols followed in industry to evaluate lithographic performance, electrical test-pad structures were designed to interrogate the nanostructures patterned by molecular-ruler nanolithography, failure modes creating electrical shorts were mapped to each lithographic step, and subsequent lithographic optimization was performed to pattern nanoscale devices with excellent electrical performance. The optimized lithographic processes were applied to generate nanoscale devices such as nanowires and thin-film transistors (TFTs). Metallic nanowires were patterned by depositing a tertiary generation material in the nanogap and surrounding micron-scale regions, and then chemically removing the parent and daughter structures selectively. This processing was also performed on silicon-on-insulator substrates and the metallic nanowires were used as a hard mask to transfer the pattern to the single crystalline silicon epilayer resulting in a quaternary generation structure of single-crystalline silicon nanowire field-effect transistors. Additionally, the proof of concept for patterning nanoscale pentacene TFTs utilizing molecular-rulers was demonstrated. For applications in sub-100-nm lithography, the limitations on the relative heights of parent and daughter structures were overcome and processes to integrate molecular-ruler nanolithography with existing complementary metal-oxide-semiconductor (CMOS) processing were developed. Pattern transfer to underlying SiO2 substrates has opened a new avenue of opportunities to apply these nanostructures in nanofluidics and in non-traditional lithography such as imprint lithography. Additionally, the molecular-ruler process has been shown to increase the spatial density of features created by high-resolution techniques such as electron-beam lithography. A limitation of photolithography is its inability to pattern chemical functionality on surfaces. To overcome this limitation, two techniques were developed to extend nanolithography beyond semiconductors and apply them to patterning of self-assembled monolayers. First, a novel bilayer resist was devised to protect and to pattern chemical functionality on surfaces by being able to withstand conditions necessary for both chemical self-assembly and photooxidation of the Au-S bond while not disrupting the preexisting SAM. In addition to photolithography, soft-lithographic approaches such as microcontact printing are often used to create chemical patterns. In this work, a technique for the creation of chemical patterns of inserted molecules with dilute coverages (≤10%) was implemented. As part of the research in chemical patterning, a method for characterizing chemical patterns using scanning electron microscopy has been developed. These tools are the standard for metrology in nanolithography, and thus are readily accessible as our advances in chemical patterning are adopted and applied by the lithography community.
Protein Bricks: 2D and 3D Bio-Nanostructures with Shape and Function on Demand.
Jiang, Jianjuan; Zhang, Shaoqing; Qian, Zhigang; Qin, Nan; Song, Wenwen; Sun, Long; Zhou, Zhitao; Shi, Zhifeng; Chen, Liang; Li, Xinxin; Mao, Ying; Kaplan, David L; Gilbert Corder, Stephanie N; Chen, Xinzhong; Liu, Mengkun; Omenetto, Fiorenzo G; Xia, Xiaoxia; Tao, Tiger H
2018-05-01
Precise patterning of polymer-based biomaterials for functional bio-nanostructures has extensive applications including biosensing, tissue engineering, and regenerative medicine. Remarkable progress is made in both top-down (based on lithographic methods) and bottom-up (via self-assembly) approaches with natural and synthetic biopolymers. However, most methods only yield 2D and pseudo-3D structures with restricted geometries and functionalities. Here, it is reported that precise nanostructuring on genetically engineered spider silk by accurately directing ion and electron beam interactions with the protein's matrix at the nanoscale to create well-defined 2D bionanopatterns and further assemble 3D bionanoarchitectures with shape and function on demand, termed "Protein Bricks." The added control over protein sequence and molecular weight of recombinant spider silk via genetic engineering provides unprecedented lithographic resolution (approaching the molecular limit), sharpness, and biological functions compared to natural proteins. This approach provides a facile method for patterning and immobilizing functional molecules within nanoscopic, hierarchical protein structures, which sheds light on a wide range of biomedical applications such as structure-enhanced fluorescence and biomimetic microenvironments for controlling cell fate. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lithographically defined microporous carbon structures
Burckel, David Bruce; Washburn, Cody M.; Polsky, Ronen; Brozik, Susan M.; Wheeler, David R.
2013-01-08
A lithographic method is used to fabricate porous carbon structures that can provide electrochemical electrodes having high surface area with uniform and controllable dimensions, providing enormous flexibility to tailor the electrodes toward specific applications. Metal nanoparticles deposited on the surface of the porous carbon electrodes exhibit ultra small dimensions with uniform size distribution. The resulting electrodes are rugged, electrically conductive and show excellent electrochemical behavior.
Lithographic fabrication of nanoapertures
Fleming, James G.
2003-01-01
A new class of silicon-based lithographically defined nanoapertures and processes for their fabrication using conventional silicon microprocessing technology have been invented. The new ability to create and control such structures should significantly extend our ability to design and implement chemically selective devices and processes.
Fabrication of 3D polymer photonic crystals for near-IR applications
NASA Astrophysics Data System (ADS)
Yao, Peng; Qiu, Liang; Shi, Shouyuan; Schneider, Garrett J.; Prather, Dennis W.; Sharkawy, Ahmed; Kelmelis, Eric
2008-02-01
Photonic crystals[1, 2] have stirred enormous research interest and became a growing enterprise in the last 15 years. Generally, PhCs consist of periodic structures that possess periodicity comparable with the wavelength that the PhCs are designed to modulate. If material and periodic pattern are properly selected, PhCs can be applied to many applications based on their unique properties, including photonic band gaps (PBG)[3], self-collimation[4], super prism[5], etc. Strictly speaking, PhCs need to possess periodicity in three dimensions to maximize their advantageous capabilities. However, many current research is based on scaled two-dimensional PhCs, mainly due to the difficulty of fabrication such three-dimensional PhCs. Many approaches have been explored for the fabrication of 3D photonic crystals, including layer-by-layer surface micromachining[6], glancing angle deposition[7], 3D micro-sculpture method[8], self-assembly[9] and lithographical methods[10-12]. Among them, lithographic methods became increasingly accepted due to low costs and precise control over the photonic crystal structure. There are three mostly developed lithographical methods, namely X-ray lithography[10], holographic lithography[11] and two-photon polymerization[12]. Although significant progress has been made in developing these lithography-based technologies, these approaches still suffer from significant disadvantages. X-ray lithography relies on an expensive radiation source. Holographic lithography lacks the flexibility to create engineered defects, and multi-photon polymerization is not suitable for parallel fabrication. In our previous work, we developed a multi-layer photolithography processes[13, 14] that is based on multiple resist application and enhanced absorption upon exposure. Using a negative lift-off resist (LOR) and 254nm DUV source, we have demonstrated fabrication of 3D arbitrary structures with feature size of several microns. However, severe intermixing problem occurred as we reduced the lattice constant for near-IR applications. In this work, we address this problem by employing SU8. The exposure is vertically confined by using a mismatched 220nm DUV source. Intermixing problem is eliminated due to more densely crosslinked resist molecules. Using this method, we have demonstrated 3D "woodpile" structure with 1.55μm lattice constant and a 2mm-by-2mm pattern area.
Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas.
Bellido, Edson P; Bernasconi, Gabriel D; Rossouw, David; Butet, Jérémy; Martin, Olivier J F; Botton, Gianluigi A
2017-11-28
We investigate the plasmonic behavior of Koch snowflake fractal geometries and their possible application as broadband optical antennas. Lithographically defined planar silver Koch fractal antennas were fabricated and characterized with high spatial and spectral resolution using electron energy loss spectroscopy. The experimental data are supported by numerical calculations carried out with a surface integral equation method. Multiple surface plasmon edge modes supported by the fractal structures have been imaged and analyzed. Furthermore, by isolating and reproducing self-similar features in long silver strip antennas, the edge modes present in the Koch snowflake fractals are identified. We demonstrate that the fractal response can be obtained by the sum of basic self-similar segments called characteristic edge units. Interestingly, the plasmon edge modes follow a fractal-scaling rule that depends on these self-similar segments formed in the structure after a fractal iteration. As the size of a fractal structure is reduced, coupling of the modes in the characteristic edge units becomes relevant, and the symmetry of the fractal affects the formation of hybrid modes. This analysis can be utilized not only to understand the edge modes in other planar structures but also in the design and fabrication of fractal structures for nanophotonic applications.
OPC modeling by genetic algorithm
NASA Astrophysics Data System (ADS)
Huang, W. C.; Lai, C. M.; Luo, B.; Tsai, C. K.; Tsay, C. S.; Lai, C. W.; Kuo, C. C.; Liu, R. G.; Lin, H. T.; Lin, B. J.
2005-05-01
Optical proximity correction (OPC) is usually used to pre-distort mask layouts to make the printed patterns as close to the desired shapes as possible. For model-based OPC, a lithographic model to predict critical dimensions after lithographic processing is needed. The model is usually obtained via a regression of parameters based on experimental data containing optical proximity effects. When the parameters involve a mix of the continuous (optical and resist models) and the discrete (kernel numbers) sets, the traditional numerical optimization method may have difficulty handling model fitting. In this study, an artificial-intelligent optimization method was used to regress the parameters of the lithographic models for OPC. The implemented phenomenological models were constant-threshold models that combine diffused aerial image models with loading effects. Optical kernels decomposed from Hopkin"s equation were used to calculate aerial images on the wafer. Similarly, the numbers of optical kernels were treated as regression parameters. This way, good regression results were obtained with different sets of optical proximity effect data.
Silicone elastomers capable of large isotropic dimensional change
Lewicki, James; Worsley, Marcus A.
2017-07-18
Described herein is a highly effective route towards the controlled and isotropic reduction in size-scale, of complex 3D structures using silicone network polymer chemistry. In particular, a class of silicone structures were developed that once patterned and cured can `shrink` micron scale additive manufactured and lithographically patterned structures by as much as 1 order of magnitude while preserving the dimensions and integrity of these parts. This class of silicone materials is compatible with existing additive manufacture and soft lithographic fabrication processes and will allow access to a hitherto unobtainable dimensionality of fabrication.
NASA Astrophysics Data System (ADS)
Colombi, P.; Alessandri, I.; Bergese, P.; Federici, S.; Depero, L. E.
2009-08-01
In this paper, self-assembled polystyrene nanospheres are proposed as a shape characterizer sample for SPM tips. Ordered arrays or 2D islands of polystyrene spheres may be prepared either by sedimentation or by crystallization of the colloidal spheres' suspension. The self-assembling mechanism guarantees high reproducibility; thus the characterizer sample can be 'freshly' prepared at each use, avoiding the problem of time and use deterioration and reducing the problem of sample structure fidelity that occurs when lithographic structures are employed. The spheres could also be deposited on the sample itself in order to speed up the characterization process in applications requiring frequent tip characterizations. We present numerical calculations of geometrical convoluted profiles on the proposed structures showing that, for a variety of different tip shapes, at the border between a couple of touching spheres the tip flanks do not come into contact with the spheres. Due to this behaviour, touching spheres are an optimum characterizer sample for SPM tip curvature radius characterization, enabling a straightforward procedure for calculating the curvature radius from the amplitude of tip oscillation along profiles connecting spheres' centres. The new procedure for the characterization of SPM probes was assessed exploiting different kinds of self-assembled structures and comparing results to those obtained by spiked structures and SEM observations.
NASA Astrophysics Data System (ADS)
Xu, Wentao; Lee, Yeongjun; Min, Sung-Yong; Park, Cheolmin; Lee, Tae-Woo
2016-09-01
Resistive random-access memory (RRAM) is a candidate next generation nonvolatile memory due to its high access speed, high density and ease of fabrication. Especially, cross-point-access allows cross-bar arrays that lead to high-density cells in a two-dimensional planar structure. Use of such designs could be compatible with the aggressive scaling down of memory devices, but existing methods such as optical or e-beam lithographic approaches are too complicated. One-dimensional inorganic nanowires (i-NWs) are regarded as ideal components of nanoelectronics to circumvent the limitations of conventional lithographic approaches. However, post-growth alignment of these i-NWs precisely on a large area with individual control is still a difficult challenge. Here, we report a simple, inexpensive, and rapid method to fabricate two-dimensional arrays of perpendicularly-aligned, individually-conductive Cu-NWs with a nanometer-scale CuxO layer sandwiched at each cross point, by using an inorganic-nanowire-digital-alignment technique (INDAT) and a one-step reduction process. In this approach, the oxide layer is self-formed and patterned, so conventional deposition and lithography are not necessary. INDAT eliminates the difficulties of alignment and scalable fabrication that are encountered when using currently-available techniques that use inorganic nanowires. This simple process facilitates fabrication of cross-point nonvolatile memristor arrays. Fabricated arrays had reproducible resistive switching behavior, high on/off current ratio (Ion/Ioff) 10 6 and extensive cycling endurance. This is the first report of memristors with the resistive switching oxide layer self-formed, self-patterned and self-positioned; we envision that the new features of the technique will provide great opportunities for future nano-electronic circuits.
NASA Astrophysics Data System (ADS)
Sayin, Mustafa; Dahint, Reiner
2017-03-01
Nanostructure formation via self-assembly processes offers a fast and cost-effective approach to generate surface patterns on large lateral scale. In particular, if the high precision of lithographic techniques is not required, a situation typical of many biotechnological and biomedical applications, it may be considered as the method of choice as it does not require any sophisticated instrumentation. However, in many cases the variety and complexity of the surface structures accessible with a single self-assembly based technique is limited. Here, we report on a new approach which combines two different self-assembly strategies, colloidal lithography and layer-by-layer deposition of polyelectrolytes, in order to significantly expand the spectrum of accessible patterns. In particular, flat and donut-like charge-patterned templates have been generated, which facilitate subsequent deposition of gold nanoparticles in dot, grid, ring, out-of-ring and circular patch structures. Potential applications are e.g. in the fields of biofunctional interfaces with well-defined lateral dimensions, optical devices with tuned properties, and controlled three-dimensional material growth.
Size-uniform 200 nm particles: fabrication and application to magnetofection.
Mair, Lamar; Ford, Kris; Alam, M d Rowshon; Kole, Ryszard; Fisher, Michael; Superfine, Richard
2009-04-01
We report on the fabrication of arrays of mono- and multimetallic particles via metal evaporation onto lithographically patterned posts, as well as the magnetic force calibration and successful magnetofection of iron particles grown via this method. This work represents the first instance in which metal evaporation onto post structures was used for the formation of released, shape-defined metal particles. Also, our work represents the first use of lithographically defined particles as agents of magnetofection. Using these techniques it is possible to create particles with complex shapes and lateral dimensions as small as 40 nm. Our demonstrated compositionally flexible particles are highly size-uniform due to their photolithographically defined growth substrates, with particle dimensions along two axes fixed at 200 nm; the third axis dimension can be varied from 20 nm to 300 nm during the deposition procedure. Atomic percent of metals incorporated into the particle volume is highly tunable and particles have been synthesized with as many as four different metals. We performed magnetic force calibrations on a single particle size for iron particles using an axially magnetized NeFeB permanent magnet and comparisons are made with commercially available magnetic beads. In order to evalutate their usefulness as magnetofection agents, an antisense oligonucleotide (ODN) designed to correct the aberrant splicing of enhanced green fluorescent protein mRNA, was successfully transfected into a modified HeLa cell line. Magnetically enhanced gene delivery was accomplished in vitro using antisense ODN-laden iron particles followed by application of a field gradient. Magnetically enhanced transfection resulted in a 76% and 139% increase in fluorescence intensity when compared to Lipofectamine and antisense ODN-loaded particles delivered without magnetic treatment, respectively. To our knowledge, these experiments constitute the first use of lithographically defined particles as successful agents for magnetically enhanced transfection of an antisense oligonucleotide.
Lithography-free glass surface modification by self-masking during dry etching
NASA Astrophysics Data System (ADS)
Hein, Eric; Fox, Dennis; Fouckhardt, Henning
2011-01-01
Glass surface morphologies with defined shapes and roughness are realized by a two-step lithography-free process: deposition of an ~10-nm-thin lithographically unstructured metallic layer onto the surface and reactive ion etching in an Ar/CF4 high-density plasma. Because of nucleation or coalescence, the metallic layer is laterally structured during its deposition. Its morphology exhibits islands with dimensions of several tens of nanometers. These metal spots cause a locally varying etch velocity of the glass substrate, which results in surface structuring. The glass surface gets increasingly rougher with further etching. The mechanism of self-masking results in the formation of surface structures with typical heights and lateral dimensions of several hundred nanometers. Several metals, such as Ag, Al, Au, Cu, In, and Ni, can be employed as the sacrificial layer in this technology. Choice of the process parameters allows for a multitude of different glass roughness morphologies with individual defined and dosed optical scattering.
NASA Astrophysics Data System (ADS)
Lenhart, Joseph L.; Fischer, Daniel; Sambasivan, Sharadha; Lin, Eric K.; Wu, Wen-Li; Guerrero, Douglas J.; Wang, Yubao; Puligadda, Rama
2007-02-01
Interactions between a bottom anti-reflective coating (BARC) and a photoresist can critically impact lithographic patterns. For example, a lithographic pattern can shrink or spread near a BARC interface, a process called undercutting or footing respectively, due to incompatibility between the two materials. Experiments were conducted on two industrial BARC coatings in an effort to determine the impact of BARC surface chemistry on the footing and undercutting phenomena. The BARC coatings were characterized by near edge X-ray absorption fine structure (NEXAFS), contact angle measurements, and neutron and X-ray reflectivity. Contact angle measurement using a variety of fluids showed that the fluid contact angles were independent of the type of BARC coating or the BARC processing temperature. NEXAFS measurements showed that the surface chemistry of each BARC was also independent of the processing temperature. These results suggest that acid-base interactions at the BARC-resist interface are not the cause of the footing-undercutting phenomena encountered in lithographic patterns.
Interference lithography for optical devices and coatings
NASA Astrophysics Data System (ADS)
Juhl, Abigail Therese
Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self-healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self-healing coatings that readout when damage has occurred.
Cushen, Julia D; Otsuka, Issei; Bates, Christopher M; Halila, Sami; Fort, Sébastien; Rochas, Cyrille; Easley, Jeffrey A; Rausch, Erica L; Thio, Anthony; Borsali, Redouane; Willson, C Grant; Ellison, Christopher J
2012-04-24
Block copolymers demonstrate potential for use in next-generation lithography due to their ability to self-assemble into well-ordered periodic arrays on the 3-100 nm length scale. The successful lithographic application of block copolymers relies on three critical conditions being met: high Flory-Huggins interaction parameters (χ), which enable formation of <10 nm features, etch selectivity between blocks for facile pattern transfer, and thin film self-assembly control. The present paper describes the synthesis and self-assembly of block copolymers composed of naturally derived oligosaccharides coupled to a silicon-containing polystyrene derivative synthesized by activators regenerated by electron transfer atom transfer radical polymerization. The block copolymers have a large χ and a low degree of polymerization (N) enabling formation of 5 nm feature diameters, incorporate silicon in one block for oxygen reactive ion etch contrast, and exhibit bulk and thin film self-assembly of hexagonally packed cylinders facilitated by a combination of spin coating and solvent annealing techniques. As observed by small angle X-ray scattering and atomic force microscopy, these materials exhibit some of the smallest block copolymer features in the bulk and in thin films reported to date.
Lithographically defined few-electron silicon quantum dots based on a silicon-on-insulator substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horibe, Kosuke; Oda, Shunri; Kodera, Tetsuo, E-mail: kodera.t.ac@m.titech.ac.jp
2015-02-23
Silicon quantum dot (QD) devices with a proximal single-electron transistor (SET) charge sensor have been fabricated in a metal-oxide-semiconductor structure based on a silicon-on-insulator substrate. The charge state of the QDs was clearly read out using the charge sensor via the SET current. The lithographically defined small QDs enabled clear observation of the few-electron regime of a single QD and a double QD by charge sensing. Tunnel coupling on tunnel barriers of the QDs can be controlled by tuning the top-gate voltages, which can be used for manipulation of the spin quantum bit via exchange interaction between tunnel-coupled QDs. Themore » lithographically defined silicon QD device reported here is technologically simple and does not require electrical gates to create QD confinement potentials, which is advantageous for the integration of complicated constructs such as multiple QD structures with SET charge sensors for the purpose of spin-based quantum computing.« less
NASA Astrophysics Data System (ADS)
Hughes, Robert A.; Menumerov, Eredzhep; Neretina, Svetlana
2017-07-01
One of the foremost challenges in nanofabrication is the establishment of a processing science that integrates wafer-based materials, techniques, and devices with the extraordinary physicochemical properties accessible when materials are reduced to nanoscale dimensions. Such a merger would allow for exacting controls on nanostructure positioning, promote cooperative phenomenon between adjacent nanostructures and/or substrate materials, and allow for electrical contact to individual or groups of nanostructures. With neither self-assembly nor top-down lithographic processes being able to adequately meet this challenge, advancements have often relied on a hybrid strategy that utilizes lithographically-defined features to direct the assembly of nanostructures into organized patterns. While these so-called directed assembly techniques have proven viable, much of this effort has focused on the assembly of periodic arrays of spherical or near-spherical nanostructures comprised of a single element. Work directed toward the fabrication of more complex nanostructures, while still at a nascent stage, has nevertheless demonstrated the possibility of forming arrays of nanocubes, nanorods, nanoprisms, nanoshells, nanocages, nanoframes, core-shell structures, Janus structures, and various alloys on the substrate surface. In this topical review, we describe the progress made in the directed assembly of periodic arrays of these complex metal nanostructures on planar and textured substrates. The review is divided into three broad strategies reliant on: (i) the deterministic positioning of colloidal structures, (ii) the reorganization of deposited metal films at elevated temperatures, and (iii) liquid-phase chemistry practiced directly on the substrate surface. These strategies collectively utilize a broad range of techniques including capillary assembly, microcontact printing, chemical surface modulation, templated dewetting, nanoimprint lithography, and dip-pen nanolithography and employ a wide scope of chemical processes including redox reactions, alloying, dealloying, phase separation, galvanic replacement, preferential etching, template-mediated reactions, and facet-selective capping agents. Taken together, they highlight the diverse toolset available when fabricating organized surfaces of substrate-supported nanostructures.
NASA Astrophysics Data System (ADS)
Kuo, Hung-Fei; Kao, Guan-Hsuan; Zhu, Liang-Xiu; Hung, Kuo-Shu; Lin, Yu-Hsin
2018-02-01
This study used a digital micromirror device (DMD) to produce point-array patterns and employed a self-developed optical system to define line-and-space patterns on nonplanar substrates. First, field tracing was employed to analyze the aerial images of the lithographic system, which comprised an optical system and the DMD. Multiobjective particle swarm optimization was then applied to determine the spot overlapping rate used. The objective functions were set to minimize linewidth and maximize image log slope, through which the dose of the exposure agent could be effectively controlled and the quality of the nonplanar lithography could be enhanced. Laser beams with 405-nm wavelength were employed as the light source. Silicon substrates coated with photoresist were placed on a nonplanar translation stage. The DMD was used to produce lithographic patterns, during which the parameters were analyzed and optimized. The optimal delay time-sequence combinations were used to scan images of the patterns. Finally, an exposure linewidth of less than 10 μm was successfully achieved using the nonplanar lithographic process.
Speranza, Valentina; Trotta, Francesco; Drioli, Enrico; Gugliuzza, Annarosa
2010-02-01
The fabrication of well-defined interfaces is in high demand in many fields of biotechnologies. Here, high-definition membrane-like arrays are developed through the self-assembly of water droplets, which work as natural building blocks for the construction of ordered channels. Solution viscosity together with the dynamics of the water droplets can decide the final formation of three-dimensional well-ordered patterns resembling anodic structures, especially because solvents denser than water are used. Particularly, the polymer solution viscosity is demonstrated to be a powerful tool for control of the mobility of submerged droplets during the microfabrication process. The polymeric patterns are structured at very high levels of organization and exhibit well-established transport-surface property relationships, considered basics for any types of advanced biotechnologies.
Size-Uniform 200 nm Particles: Fabrication and Application to Magnetofection
Mair, Lamar; Ford, Kris; Alam, Rowshon; Kole, Ryszard; Fisher, Michael; Superfine, Richard
2009-01-01
We report on the fabrication of arrays of mono- and multimetallic particles via metal evaporation onto lithographically patterned posts, as well as the magnetic force calibration and successful magnetofection of iron particles grown via this method. This work represents the first instance in which metal evaporation onto post structures was used for the formation of released, shape-defined metal particles. Also, our work represents the first use of lithographically defined particles as agents of magnetofection. Using these techniques it is possible to create particles with complex shapes and lateral dimensions as small as 40 nm. Our demonstrated compositionally flexible particles are highly size-uniform due to their photolithographically defined growth substrates, with particle dimensions along two axes fixed at 200 nm; the third axis dimension can be varied from 20 nm to 300 nm during the deposition procedure. Atomic percent of metals incorporated into the particle volume is highly tunable and particles have been synthesized with as many as four different metals. We performed magnetic force calibrations on a single particle size for iron particles using an axially magnetized NeFeB permanent magnet and comparisons are made with commercially available magnetic beads. In order to evalutate their usefulness as magnetofection agents, an antisense oligonucleotide (ODN) designed to correct the aberrant splicing of enhanced green fluorescent protein mRNA, was successfully transfected into a modified HeLa cell line. Magnetically enhanced gene delivery was accomplished in vitro using antisense ODN-laden iron particles followed by application of a field gradient. Magnetically enhanced transfection resulted in a 76% and 139% increase in fluorescence intensity when compared to Lipofectamine and antisense ODN-loaded particles delivered without magnetic treatment, respectively. To our knowledge, these experiments constitute the first use of lithographically defined particles as successful agents for magnetically enhanced transfection of an antisense oligonucleotide. PMID:20055096
Electron-Beam Lithographic Grafting of Functional Polymer Structures from Fluoropolymer Substrates.
Gajos, Katarzyna; Guzenko, Vitaliy A; Dübner, Matthias; Haberko, Jakub; Budkowski, Andrzej; Padeste, Celestino
2016-10-07
Well-defined submicrometer structures of poly(dimethylaminoethyl methacrylate) (PDMAEMA) were grafted from 100 μm thick films of poly(ethene-alt-tetrafluoroethene) after electron-beam lithographic exposure. To explore the possibilities and limits of the method under different exposure conditions, two different acceleration voltages (2.5 and 100 keV) were employed. First, the influence of electron energy and dose on the extent of grafting and on the structure's morphology was determined via atomic force microscopy. The surface grafting with PDMAEMA was confirmed by advanced surface analytical techniques such as time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Additionally, the possibility of effective postpolymerization modification of grafted structures was demonstrated by quaternization of the grafted PDMAEMA to the polycationic QPDMAEMA form and by exploiting electrostatic interactions to bind charged organic dyes and functional proteins.
A versatile diffractive maskless lithography for single-shot and serial microfabrication.
Jenness, Nathan J; Hill, Ryan T; Hucknall, Angus; Chilkoti, Ashutosh; Clark, Robert L
2010-05-24
We demonstrate a diffractive maskless lithographic system that is capable of rapidly performing both serial and single-shot micropatterning. Utilizing the diffractive properties of phase holograms displayed on a spatial light modulator, arbitrary intensity distributions were produced to form two and three dimensional micropatterns/structures in a variety of substrates. A straightforward graphical user interface was implemented to allow users to load templates and change patterning modes within the span of a few minutes. A minimum resolution of approximately 700 nm is demonstrated for both patterning modes, which compares favorably to the 232 nm resolution limit predicted by the Rayleigh criterion. The presented method is rapid and adaptable, allowing for the parallel fabrication of microstructures in photoresist as well as the fabrication of protein microstructures that retain functional activity.
Lithographically-generated 3D lamella layers and their structural color
NASA Astrophysics Data System (ADS)
Zhang, Sichao; Chen, Yifang; Lu, Bingrui; Liu, Jianpeng; Shao, Jinhai; Xu, Chen
2016-04-01
Inspired by the structural color from the multilayer nanophotonic structures in Morpho butterfly wing scales, 3D lamellae layers in dielectric polymers (polymethyl methacrylate, PMMA) with n ~ 1.5 were designed and fabricated by standard top-down electron beam lithography with one-step exposure followed by an alternating development/dissolution process of PMMA/LOR (lift-off resist) multilayers. This work offers direct proof of the structural blue/green color via lithographically-replicated PMMA/air multilayers, analogous to those in real Morpho butterfly wings. The success of nanolithography in this work for the 3D lamellae structures in dielectric polymers not only enables us to gain deeper insight into the mysterious blue color of the Morpho butterfly wings, but also breaks through the bottleneck in technical development toward broad applications in gas/liquid sensors, 3D meta-materials, coloring media, and infrared imaging devices, etc.
Controlled evaporative self-assembly of confined microfluids: A route to complex ordered structures
NASA Astrophysics Data System (ADS)
Byun, Myunghwan
The evaporative self-assembly of nonvolatile solutes such as polymers, nanocrystals, and carbon nanotubes has been widely recognized as a non-lithographic means of producing a diverse range of intriguing complex structures. Due to the spatial variation of evaporative flux and possible convection, however, these non-equilibrium dissipative structures (e.g., fingering patterns and polygonal network structures) are often irregularly and stochastically organized. Yet for many applications in microelectronics, data storage devices, and biotechnology, it is highly desirable to achieve surface patterns having a well-controlled spatial arrangement. To date, only a few elegant studies have centered on precise control over the evaporation process to produce ordered structures. In a remarked comparison with conventional lithography techniques, surface patterning by controlled solvent evaporation is simple and cost-effective, offering a lithography- and external field-free means to organize nonvolatile materials into ordered microscopic structures over large surface areas. The ability to engineer an evaporative self-assembly process that yields a wide range of complex, self-organizing structures over large areas offers tremendous potential for applications in electronics, optoelectronics, and bio- or chemical sensors. We developed a facile, robust tool for evaporating polymer, nanoparticle, or DNA solutions in curve-on-flat geometries to create versatile, highly regular microstructures, including hierarchically structured polymer blend rings, conjugated polymer "snake-skins", block copolymer stripes, and punch-hole-like meshes, biomolecular microring arrays, etc. The mechanism of structure formation was elucidated both experimentally and theoretically. Our method further enhances current fabrication approaches to creating highly ordered structures in a simple and cost-effective manner, envisioning the potential to be tailored for use in photonics, optoelectronics, microfluidic devices, nanotechnology and biotechnology, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang-Yong Nam; Stein, Aaron; Kisslinger, Kim
We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ~1019 cm -3 carrier density, and ~0.1 cm 2 V -1 s -1 electron mobility, reflecting highly nanocrystalline internal structure. The results demonstratemore » the potential application of infiltration synthesis in fabricating metal oxide electronic devices.« less
Chang-Yong Nam; Stein, Aaron; Kisslinger, Kim; ...
2015-11-17
We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ~1019 cm -3 carrier density, and ~0.1 cm 2 V -1 s -1 electron mobility, reflecting highly nanocrystalline internal structure. The results demonstratemore » the potential application of infiltration synthesis in fabricating metal oxide electronic devices.« less
12. Photocopy of lithograph (source unknown) The Armor Lithograph Company, ...
12. Photocopy of lithograph (source unknown) The Armor Lithograph Company, Ltd., Pittsburgh, Pennsylvania, ca. 1888 COURTHOUSE AND JAIL, FROM THE WEST - Allegheny County Courthouse & Jail, 436 Grant Street (Courthouse), 420 Ross Street (Jail), Pittsburgh, Allegheny County, PA
Challenges and advances in the field of self-assembled membranes.
van Rijn, Patrick; Tutus, Murat; Kathrein, Christine; Zhu, Leilei; Wessling, Matthias; Schwaneberg, Ulrich; Böker, Alexander
2013-08-21
Self-assembled membranes are of vital importance in biological systems e.g. cellular and organelle membranes, however, more focus is being put on synthetic self-assembled membranes not only as an alternative for lipid membranes but also as an alternative for lithographic methods. More investigations move towards self-assembly processes because of the low-cost preparations, structural self-regulation and the ease of creating composite materials and tunable properties. The fabrication of new smart membrane materials via self-assembly is of interest for delivery vessels, size selective separation and purification, controlled-release materials, sensors and catalysts, scaffolds for tissue engineering, low dielectric constant materials for microelectronic devices, antireflective coatings and proton exchange membranes for polymer electrolyte membrane fuel cells. Polymers and nanoparticles offer the most straightforward approaches to create membrane structures. However, alternative approaches using small molecules or composite materials offer novel ultra-thin membranes or multi-functional membranes, respectively. Especially, the composite material membranes are regarded as highly promising since they offer the possibility to combine properties of different systems. The advantages of polymers which provide elastic and flexible yet stable matrices can be combined with nanoparticles being either inorganic, organic or even protein-based which offers pore-size control, catalytic activity or permeation regulation. It is therefore believed that at the interface of different disciplines with each offering different materials or approaches, the most novel and interesting membrane structures are going to be produced. The combinations and approaches presented in this review offer non-conventional self-assembled membrane materials which exhibit a high potential to advance membrane science and find more practical applications.
A heuristic approach to optimization of structural topology including self-weight
NASA Astrophysics Data System (ADS)
Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2018-01-01
Topology optimization of structures under a design-dependent self-weight load is investigated in this paper. The problem deserves attention because of its significant importance in the engineering practice, especially nowadays as topology optimization is more often applied when designing large engineering structures, for example, bridges or carrying systems of tall buildings. It is worth noting that well-known approaches of topology optimization which have been successfully applied to structures under fixed loads cannot be directly adapted to the case of design-dependent loads, so that topology generation can be a challenge also for numerical algorithms. The paper presents the application of a simple but efficient non-gradient method to topology optimization of elastic structures under self-weight loading. The algorithm is based on the Cellular Automata concept, the application of which can produce effective solutions with low computational cost.
From lattice Hamiltonians to tunable band structures by lithographic design
NASA Astrophysics Data System (ADS)
Tadjine, Athmane; Allan, Guy; Delerue, Christophe
2016-08-01
Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.
Using process monitor wafers to understand directed self-assembly defects
NASA Astrophysics Data System (ADS)
Cao, Yi; Her, YoungJun; Delgadillo, Paulina R.; Vandenbroeck, Nadia; Gronheid, Roel; Chan, Boon Teik; Hashimoto, Yukio; Romo, Ainhoa; Somervell, Mark; Nafus, Kathleen; Nealey, Paul F.
2013-03-01
As directed self-assembly (DSA) has gained momentum over the past few years, questions about its application to high volume manufacturing have arisen. One of the major concerns is about the fundamental limits of defectivity that can be attained with the technology. If DSA applications demonstrate defectivity that rivals of traditional lithographic technologies, the pathway to the cost benefits of the technology creates a very compelling case for its large scale implementation. To address this critical question, our team at IMEC has established a process monitor flow to track the defectivity behaviors of an exemplary chemo-epitaxy application for printing line/space patterns. Through establishing this baseline, we have been able to understand both traditional lithographic defect sources in new materials as well as new classes of assembly defects associated with DSA technology. Moreover, we have explored new materials and processing to lower the level of the defectivity baseline. The robustness of the material sets and process is investigated as well. In this paper, we will report the understandings learned from the IMEC DSA process monitor flow.
Leung, V Y F; Pijn, D R M; Schlatter, H; Torralbo-Campo, L; La Rooij, A L; Mulder, G B; Naber, J; Soudijn, M L; Tauschinsky, A; Abarbanel, C; Hadad, B; Golan, E; Folman, R; Spreeuw, R J C
2014-05-01
We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold (87)Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.
Active Transport of Nanomaterials Using Motor Proteins -Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Henry
During the six months of funding we have focused first on the completion of the research begun at the University of Washington in the previous funding cycle. Specifically, we developed a method to polymerize oriented networks of microtubules on lithographically patterned surfaces (M.S. thesis Robert Doot). The properties of active transport have been studied detail, yielding insights into the dispersion mechanisms (Nitta et al.). The assembly of multifunctional structures with a microtubule core has been investigated (Ramachandran et al.). Isaac Luria (B.S. in physics, U. of Florida 2005) worked on the directed assembly of nanoscale, non-equilibrium structures as a summermore » intern. He is now a graduate student in my group at the University of Florida. T. Nitta and H. Hess: Dispersion in Active Transport by Kinesin-Powered Molecular Shuttles, Nano Letters, 5, 1337-1342 (2005) S. Ramachandran, K.-H. Ernst, G. D. Bachand, V. Vogel, H. Hess*: Selective Loading of Kinesin-Powered Molecular Shuttles with Protein Cargo and its Application to Biosensing, submitted to Small (2005)« less
New self-assembly strategies for next generation lithography
NASA Astrophysics Data System (ADS)
Schwartz, Evan L.; Bosworth, Joan K.; Paik, Marvin Y.; Ober, Christopher K.
2010-04-01
Future demands of the semiconductor industry call for robust patterning strategies for critical dimensions below twenty nanometers. The self assembly of block copolymers stands out as a promising, potentially lower cost alternative to other technologies such as e-beam or nanoimprint lithography. One approach is to use block copolymers that can be lithographically patterned by incorporating a negative-tone photoresist as the majority (matrix) phase of the block copolymer, paired with photoacid generator and a crosslinker moiety. In this system, poly(α-methylstyrene-block-hydroxystyrene)(PαMS-b-PHOST), the block copolymer is spin-coated as a thin film, processed to a desired microdomain orientation with long-range order, and then photopatterned. Therefore, selfassembly of the block copolymer only occurs in select areas due to the crosslinking of the matrix phase, and the minority phase polymer can be removed to produce a nanoporous template. Using bulk TEM analysis, we demonstrate how the critical dimension of this block copolymer is shown to scale with polymer molecular weight using a simple power law relation. Enthalpic interactions such as hydrogen bonding are used to blend inorganic additives in order to enhance the etch resistance of the PHOST block. We demonstrate how lithographically patternable block copolymers might fit in to future processing strategies to produce etch-resistant self-assembled features at length scales impossible with conventional lithography.
Factors Influencing Material Removal And Surface Finish Of The Polishing Of Silica Glasses
2006-01-01
Mechanical Properties of Quartz and Zerodur ® ..................................... 48 TABLE 4.2: Results from variable load and lap velocity experiments...of glass and glass-ceramic substrates which are used in a vast amount of applications, from optics for lithographic machines to mirrors and lenses...SiO2) glass polishing with metal oxide abrasive particles. This scheme will mirror the experimentation in this thesis, and hopefully provide a better
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Chang-Yong, E-mail: cynam@bnl.gov; Stein, Aaron; Kisslinger, Kim
We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ∼10{sup 19 }cm{sup −3} carrier density, and ∼0.1 cm{sup 2} V{sup −1} s{sup −1} electron mobility, reflecting highly nanocrystalline internal structure. The results demonstrate themore » potential application of infiltration synthesis in fabricating metal oxide electronic devices.« less
Oded, Meirav; Kelly, Stephen T.; Gilles, Mary K.; ...
2016-04-07
Nano-patterned materials are beneficial for applications such as solar cells, opto-electronics, and sensing owing to their periodic structure and high interfacial area. We present a non-lithographic approach for assembling polyelectrolytes into periodic nanoscale patterns over cm 2 -scale areas. We used chemically modified block copolymer thin films featuring alternating charged and neutral domains as patterned substrates for electrostatic self-assembly. In-depth characterization of the deposition process using spectroscopy and microscopy techniques, including the state-of-the-art scanning transmission X-ray microscopy (STXM), reveals both the selective deposition of the polyelectrolyte on the charged copolymer domains as well as gradual changes in the film topographymore » that arise from further penetration of the solvent molecules and possibly also the polyelectrolyte into these domains. Our results demonstrate the feasibility of creating nano-patterned polyelectrolyte layers, which opens up new opportunities for structured functional coating fabrication.« less
Choi, Jungwook; Chen, Haorong; Li, Feiran; Yang, Lingming; Kim, Steve S; Naik, Rajesh R; Ye, Peide D; Choi, Jong Hyun
2015-11-04
2D transition metal dichalcogenides (TMDCs) are nanomanufactured using a generalized strategy with self-assembled DNA nanotubes. DNA nanotubes of various lengths serve as lithographic etch masks for the dry etching of TMDCs. The nanostructured TMDCs are studied by atomic force microscopy, photoluminescence, and Raman spectroscopy. This parallel approach can be used to manufacture 2D TMDC nanostructures of arbitrary geometries with molecular-scale precision. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sukhdeo, David S; Nam, Donguk; Kang, Ju-Hyung; Brongersma, Mark L; Saraswat, Krishna C
2015-06-29
Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.
Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation.
Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano
2016-09-16
Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.
Removable pellicle for lithographic mask protection and handling
Klebanoff, Leonard E.; Rader, Daniel J.; Hector, Scott D.; Nguyen, Khanh B.; Stulen, Richard H.
2002-01-01
A removable pellicle for a lithographic mask that provides active and robust particle protection, and which utilizes a traditional pellicle and two deployments of thermophoretic protection to keep particles off the mask. The removable pellicle is removably attached via a retaining structure to the mask substrate by magnetic attraction with either contacting or non-contacting magnetic capture mechanisms. The pellicle retaining structural is composed of an anchor piece secured to the mask substrate and a frame member containing a pellicle. The anchor piece and the frame member are in removable contact or non-contact by the magnetic capture or latching mechanism. In one embodiment, the frame member is retained in a floating (non-contact) relation to the anchor piece by magnetic levitation. The frame member and the anchor piece are provided with thermophoretic fins which are interdigitated to prevent particles from reaching the patterned area of the mask. Also, the anchor piece and mask are maintained at a higher temperature than the frame member and pellicle which also prevents particles from reaching the patterned mask area by thermophoresis. The pellicle can be positioned over the mask to provide particle protection during mask handling, inspection, and pumpdown, but which can be removed manually or robotically for lithographic use of the mask.
Lithographically defined porous Ni-carbon nanocomposite supercapacitors.
Xiao, Xiaoyin; Beechem, Thomas; Wheeler, David R; Burckel, D Bruce; Polsky, Ronen
2014-03-07
Ni was deposited onto lithographically-defined conductive three dimensional carbon networks to form asymmetric pseudo-capacitive electrodes. A real capacity of above 500 mF cm(-2), or specific capacitance of ∼2100 F g(-1) near the theoretical value, has been achieved. After a rapid thermal annealing process, amorphous carbon was partially converted into multilayer graphene depending on the annealing temperature and time duration. These annealed Ni-graphene composite structures exhibit enhanced charge transport kinetics relative to un-annealed Ni-carbon scaffolds indicated by a reduction in peak separation from 0.84 V to 0.29 V at a scan rate of 1000 mV s(-1).
Protection of lithographic components from particle contamination
Klebanoff, Leonard E.; Rader, Daniel J.
2000-01-01
A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.
Method for protection of lithographic components from particle contamination
Klebanoff, Leonard E.; Rader, Daniel J.
2001-07-03
A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.
Demas, Vasiliki; Bernhardt, Anthony; Malba, Vince; Adams, Kristl L; Evans, Lee; Harvey, Christopher; Maxwell, Robert S; Herberg, Julie L
2009-09-01
Nuclear magnetic resonance (NMR) offers a non-destructive, powerful, structure-specific analytical method for the identification of chemical and biological systems. The use of radio frequency (RF) microcoils has been shown to increase the sensitivity in mass-limited samples. Recent advances in micro-receiver technology have further demonstrated a substantial increase in mass sensitivity [D.L. Olson, T.L. Peck, A.G. Webb, R.L. Magin, J.V. Sweedler, High-resolution microcoil H-1-NMR for mass-limited, nanoliter-volume samples, Science 270 (5244) (1995) 1967-1970]. Lithographic methods for producing solenoid microcoils possess a level of flexibility and reproducibility that exceeds previous production methods, such as hand winding microcoils. This paper presents electrical characterizations of RF microcoils produced by a unique laser lithography system that can pattern three dimensional surfaces and compares calculated and experimental results to those for wire wound RF microcoils. We show that existing optimization conditions for RF coil design still hold true for RF microcoils produced by lithography. Current lithographic microcoils show somewhat inferior performance to wire wound RF microcoils due to limitations in the existing electroplating technique. In principle, however, when the pitch of the RF microcoil is less than 100mum lithographic coils should show comparable performance to wire wound coils. In the cases of larger pitch, wire cross sections can be significantly larger and resistances lower than microfabricated conductors.
Improving 130nm node patterning using inverse lithography techniques for an analog process
NASA Astrophysics Data System (ADS)
Duan, Can; Jessen, Scott; Ziger, David; Watanabe, Mizuki; Prins, Steve; Ho, Chi-Chien; Shu, Jing
2018-03-01
Developing a new lithographic process routinely involves usage of lithographic toolsets and much engineering time to perform data analysis. Process transfers between fabs occur quite often. One of the key assumptions made is that lithographic settings are equivalent from one fab to another and that the transfer is fluid. In some cases, that is far from the truth. Differences in tools can change the proximity effect seen in low k1 imaging processes. If you use model based optical proximity correction (MBOPC), then a model built in one fab will not work under the same conditions at another fab. This results in many wafers being patterned to try and match a baseline response. Even if matching is achieved, there is no guarantee that optimal lithographic responses are met. In this paper, we discuss the approach used to transfer and develop new lithographic processes and define MBOPC builds for the new lithographic process in Fab B which was transferred from a similar lithographic process in Fab A. By using PROLITHTM simulations to match OPC models for each level, minimal downtime in wafer processing was observed. Source Mask Optimization (SMO) was also used to optimize lithographic processes using novel inverse lithography techniques (ILT) to simultaneously optimize mask bias, depth of focus (DOF), exposure latitude (EL) and mask error enhancement factor (MEEF) for critical designs for each level.
Monitoring of self-healing composites: a nonlinear ultrasound approach
NASA Astrophysics Data System (ADS)
Malfense Fierro, Gian-Piero; Pinto, Fulvio; Dello Iacono, Stefania; Martone, Alfonso; Amendola, Eugenio; Meo, Michele
2017-11-01
Self-healing composites using a thermally mendable polymer, based on Diels-Alder reaction were fabricated and subjected to various multiple damage loads. Unlike traditional destructive methods, this work presents a nonlinear ultrasound technique to evaluate the structural recovery of the proposed self-healing laminate structures. The results were compared to computer tomography and linear ultrasound methods. The laminates were subjected to multiple loading and healing cycles and the induced damage and recovery at each stage was evaluated. The results highlight the benefit and added advantage of using a nonlinear based methodology to monitor the structural recovery of reversibly cross-linked epoxy with efficient recycling and multiple self-healing capability.
Self-aligned spatial filtering using laser optical tweezers.
Birkbeck, Aaron L; Zlatanovic, Sanja; Esener, Sadik C
2006-09-01
We present an optical spatial filtering device that has been integrated into a microfluidic system and whose motion and alignment is controlled using a laser optical tweezer. The lithographically patterned micro-optical spatial filter device filters out higher frequency additive noise components by automatically aligning itself in three dimensions to the focus of the laser beam. This self-alignment capability is achieved through the attachment of a refractive optical element directly over the circular aperture or pinhole of the spatial filter. A discussion of two different spatial filter designs is presented along with experimental results that demonstrate the effectiveness of the self-aligned micro-optic spatial filter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, V. Y. F.; Complex Photonic Systems; Pijn, D. R. M.
2014-05-15
We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined atmore » an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold {sup 87}Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.« less
Domain alignment within ferroelectric/dielectric PbTiO 3 /SrTiO 3 superlattice nanostructures
Park, Joonkyu; Mangeri, John; Zhang, Qingteng; ...
2018-01-01
The ferroelectric domain pattern within lithographically defined PbTiO 3/SrTiO 3ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures.
Large patternable metal nanoparticle sheets by photo/e-beam lithography
NASA Astrophysics Data System (ADS)
Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru
2017-10-01
Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.
Solar system lithograph set for earth and space science
NASA Technical Reports Server (NTRS)
1995-01-01
A color lithographs of many of the celestial bodies within our solar system are contained in this educational set of materials. Printed on the back of each lithograph is information regarding the particular celestial body. A sheet with information listing NASA resources and electronic resources for education is included.
Silva, Gabriel A
2010-06-01
Nanotechnology is the science and engineering concerned with the design, synthesis, and characterization of materials and devices that have a functional organization in at least one dimension on the nanometer (i.e., one billionth of a meter) scale. The potential impact of bottom up self-assembling nanotechnology, custom made molecules that self-assemble or self-organize into higher ordered structures in response to a defined chemical or physical cue, and top down lithographic type technologies where detail is engineered at smaller scales starting from bulk materials, stems from the fact that these nanoengineered materials and devices exhibit emergent mesocale and macroscale chemical and physical properties that are often different than their constituent nanoscale building block molecules or materials. As such, applications of nanotechnology to medicine and biology allow the interaction and integration of cells and tissues with nanoengineered substrates at a molecular (i.e., subcellular) level with a very high degree of functional specificity and control. This review considers applications of nanotechnology aimed at the neuroprotection and functional regeneration of the central nervous system (CNS) following traumatic or degenerative insults, and nanotechnology approaches for delivering drugs and other small molecules across the blood-brain barrier. It also discusses developing platform technologies that may prove to have broad applications to medicine and physiology, including some being developed for rescuing or replacing anatomical and/or functional CNS structures.
Applications of two- and three-dimensional microstructures formed by soft lithographic techniques
NASA Astrophysics Data System (ADS)
Jackman, Rebecca Jane
This thesis describes the development of several soft lithographic techniques. Each of these techniques has applications in two- and three-dimensional microfabrication or in the design of microreactor systems. All soft lithographic techniques make use of an elastomeric element that is formed by casting and curing a prepolymer against a planar substrate having three-dimensional (3D) relief. Chapters 1--3 (and Appendices I--VII) describe the use of a soft lithographic technique, microcontact printing (muCP), to produce patterns with micron-scale resolution on both planar and non-planar substrates. Electrodeposition transforms patterns produced by muCP into functional, 3D structures. It is an additive method that: (i) strengthens the metallic patterns; (ii) increases the conductivity of the structures; (iii) enables high-strain deformations to be performed on the structures; and (iv) welds non-connected structures. Applications for cylindrical microstructures, formed by the combination of muCP and electroplating, are presented. Some important classes of materials---biological macromolecules, gels, sol-gels, some polymers, low molecular weight organic and organometallic species---are often incompatible with conventional patterning techniques. Chapters 4 and 5 describe the use of elastomeric membranes as dry resists or as masks in dry lift-off to produce simple features as small as 5 mum from these and other materials on both planar and non-planar surfaces. These procedures are "dry" because the membranes conformed and sealed reversibly to surfaces without the use of solvents. This technique, for example, produced a simple electroluminescent device. By using two membranes simultaneously, multicolored, photoluminescent patterns of organic materials were created. Membranes were also used in sequential, dry-lift off steps to produce patterns with greater complexity. Chapter 6 (and Appendix XII) demonstrates that the ability to mold elastomers enables the fabrication of large (≤45 cm2) arrays of microwells (volumes ≥3 fL/well; densities ≤107 wells/cm2 ). These microwells can function as vessels for performing chemical reactions---"microreactors". Discontinuous dewetting is a technique that takes advantage of the interfacial properties of the elastomer and allows wells to be filled rapidly (typically ˜104 wells/second) and uniformly with a wide range of liquids. Several rudimentary strategies for addressing microwells are investigated including electroosmotic pumping and diffusion of gases.
Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns
Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M.; ...
2016-08-16
Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyreneblock-poly(methyl methacrylate). Faster assembly kinetics aremore » observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. Lastly, the rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces.« less
Lithographic manufacturing of adaptive optics components
NASA Astrophysics Data System (ADS)
Scott, R. Phillip; Jean, Madison; Johnson, Lee; Gatlin, Ridley; Bronson, Ryan; Milster, Tom; Hart, Michael
2017-09-01
Adaptive optics systems and their laboratory test environments call for a number of unusual optical components. Examples include lenslet arrays, pyramids, and Kolmogorov phase screens. Because of their specialized application, the availability of these parts is generally limited, with high cost and long lead time, which can also significantly drive optical system design. These concerns can be alleviated by a fast and inexpensive method of optical fabrication. To that end, we are exploring direct-write lithographic techniques to manufacture three different custom elements. We report results from a number of prototype devices including 1, 2, and 3 wave Multiple Order Diffractive (MOD) lenslet arrays with 0.75 mm pitch and phase screens with near Kolmogorov structure functions with a Fried length r0 around 1 mm. We also discuss plans to expand our research to include a diffractive pyramid that is smaller, lighter, and more easily manufactured than glass versions presently used in pyramid wavefront sensors. We describe how these components can be produced within the limited dynamic range of the lithographic process, and with a rapid prototyping and manufacturing cycle. We discuss exploratory manufacturing methods, including replication, and potential observing techniques enabled by the ready availability of custom components.
The lithographer's dilemma: shrinking without breaking the bank
NASA Astrophysics Data System (ADS)
Levinson, Harry J.
2013-10-01
It can no longer be assumed that the lithographic scaling which has previously driven Moore's Law will lead in the future to reduced cost per transistor. Until recently, higher prices for lithography tools were offset by improvements in scanner productivity. The necessity of using double patterning to extend scaling beyond the single exposure resolution limit of optical lithography has resulted in a sharp increase in the cost of patterning a critical construction layer that has not been offset by improvements in exposure tool productivity. Double patterning has also substantially increased the cost of mask sets. EUV lithography represents a single patterning option, but the combination of very high exposure tools prices, moderate throughput, high maintenance costs, and expensive mask blanks makes this a solution more expensive than optical double patterning but less expensive than triple patterning. Directed self-assembly (DSA) could potentially improve wafer costs, but this technology currently is immature. There are also design layout and process integration issues associated with DSA that need to be solved in order to obtain full benefit from tighter pitches. There are many approaches for improving the cost effectiveness of lithography. Innovative double patterning schemes lead to smaller die. EUV lithography productivity can be improved with higher power light sources and improved reliability. There are many technical and business challenges for extending EUV lithography to higher numerical apertures. Efficient contact hole and cut mask solutions are needed, as well as very tight overlay control, regardless of lithographic solution.
Van Gorp, Hans; Walke, Peter; Bragança, Ana M; Greenwood, John; Ivasenko, Oleksandr; Hirsch, Brandon E; De Feyter, Steven
2018-04-11
A network of self-assembled polystyrene beads was employed as a lithographic mask during covalent functionalization reactions on graphitic surfaces to create nanocorrals for confined molecular self-assembly studies. The beads were initially assembled into hexagonal arrays at the air-liquid interface and then transferred to the substrate surface. Subsequent electrochemical grafting reactions involving aryl diazonium molecules created covalently bound molecular units that were localized in the void space between the nanospheres. Removal of the bead template exposed hexagonally arranged circular nanocorrals separated by regions of chemisorbed molecules. Small molecule self-assembly was then investigated inside the resultant nanocorrals using scanning tunneling microscopy to highlight localized confinement effects. Overall, this work illustrates the utility of self-assembly principles to transcend length scale gaps in the development of hierarchically patterned molecular materials.
Photo-Definable Self Assembled Maerials
DOSHI, DHAVAL; [et al
2004-10-26
The present invention provides a mesoporous material comprising at least one region of mesoporous material patterned at a lithographic scale. The present invention also provides a a method for forming a patterned mesoporous material comprising: coating a sol on a substrate to form a film, the sol comprising: a templating molecule, a photoactivator generator, a material capable of being sol-gel processed, water, and a solvent; and exposing the film to light to form a patterned mesoporous material.
NASA Astrophysics Data System (ADS)
Moers, Marco H. P.; van der Laan, Hans; Zellenrath, Mark; de Boeij, Wim; Beaudry, Neil A.; Cummings, Kevin D.; van Zwol, Adriaan; Brecht, Arthur; Willekers, Rob
2001-09-01
ARTEMISTM (Aberration Ring Test Exposed at Multiple Illumination Settings) is a technique to determine in-situ, full-field, low and high order lens aberrations. In this paper we are analyzing the ARTEMISTM data of PAS5500/750TM DUV Step & Scan systems and its use as a lithographic prediction tool. ARTEMISTM is capable of determining Zernike coefficients up to Z25 with a 3(sigma) reproducibility range from 1.5 to 4.5 nm depending on the aberration type. 3D electric field simulations, that take the extended geometry of the phase shift feature into account, have been used for an improved treatment of the extraction of the spherical Zernike coefficients. Knowledge of the extracted Zernike coefficients allows an accurate prediction of the lithographic performance of the scanner system. This ability is demonstrated for a two bar pattern and an isolation pattern. The RMS difference between the ARTEMISTM-based lithographic prediction and the lithographic measurement is 2.5 nm for the two bar pattern and 3 nm for the isolation pattern. The 3(sigma) reproducibility of the prediction for the two bar pattern is 2.5 nm and 1 nm for the isolation pattern. This is better than the reproducibility of the lithographic measurements themselves.
Kisailus, David; Truong, Quyen; Amemiya, Yosuke; Weaver, James C.; Morse, Daniel E.
2006-01-01
The recent discovery and characterization of silicatein, a mineral-synthesizing enzyme that assembles to form the filamentous organic core of the glassy skeletal elements (spicules) of a marine sponge, has led to the development of new low-temperature synthetic routes to metastable semiconducting metal oxides. These protein filaments were shown in vitro to catalyze the hydrolysis and structurally direct the polycondensation of metal oxides at neutral pH and low temperature. Based on the confirmation of the catalytic mechanism and the essential participation of specific serine and histidine residues (presenting a nucleophilic hydroxyl and a nucleophilicity-enhancing hydrogen-bonding imidazole nitrogen) in silicatein’s catalytic active site, we therefore sought to develop a synthetic mimic that provides both catalysis and the surface determinants necessary to template and structurally direct heterogeneous nucleation through condensation. Using lithographically patterned poly(dimethylsiloxane) stamps, bifunctional self-assembled monolayer surfaces containing the essential catalytic and templating elements were fabricated by using alkane thiols microcontact-printed on gold substrates. The interface between chemically distinct self-assembled monolayer domains provided the necessary juxtaposition of nucleophilic (hydroxyl) and hydrogen-bonding (imidazole) agents to catalyze the hydrolysis of a gallium oxide precursor and template the condensed product to form gallium oxohydroxide (GaOOH) and the defect spinel, gamma-gallium oxide (γ-Ga2O3). Using this approach, the production of patterned substrates for catalytic synthesis and templating of semiconductors for device applications can be envisioned. PMID:16585518
Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates
NASA Astrophysics Data System (ADS)
Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P.
2000-12-01
We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 × 1011 wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.
NASA Technical Reports Server (NTRS)
Zank, G. P.; Khabibrakhmanov, I. KH.; Story, T.
1993-01-01
A new two-fluid model which describes mass loading in the solar wind (e.g., the interaction of the solar wind with a cometary coma or the local interstellar medium) is presented. The self-consistent back-reaction of the mass-loaded ions is included through their effective scattering in low-frequency MHD turbulence and the invocation of a diffusive approximation. Such an approximation has the advantage of introducing self-consistent dissipation coefficients into the governing equations, thereby facilitating the investigation of the internal structure of shocks in mass-loading environments. To illustrate the utility of the new model, we consider the structure of cometary shocks in the hypersonic one-dimensional limit, finding that the incoming solar wind is slowed by both mass loading and the development of a large cometary ion pressure gradient. The shock is broadened and smoothed by the cometary ions with a thickness of the order of the cometary ion diffusion scale.
Nanopatterns by phase separation of patterned mixed polymer monolayers
Huber, Dale L; Frischknecht, Amalie
2014-02-18
Micron-size and sub-micron-size patterns on a substrate can direct the self-assembly of surface-bonded mixed polymer brushes to create nanoscale patterns in the phase-separated mixed polymer brush. The larger scale features, or patterns, can be defined by a variety of lithographic techniques, as well as other physical and chemical processes including but not limited to etching, grinding, and polishing. The polymer brushes preferably comprise vinyl polymers, such as polystyrene and poly(methyl methacrylate).
Lithography alternatives meet design style reality: How do they "line" up?
NASA Astrophysics Data System (ADS)
Smayling, Michael C.
2016-03-01
Optical lithography resolution scaling has stalled, giving innovative alternatives a window of opportunity. One important factor that impacts these lithographic approaches is the transition in design style from 2D to 1D for advanced CMOS logic. Just as the transition from 3D circuits to 2D fabrication 50 years ago created an opportunity for a new breed of electronics companies, the transition today presents exciting and challenging time for lithographers. Today, we are looking at a range of non-optical lithography processes. Those considered here can be broadly categorized: self-aligned lithography, self-assembled lithography, deposition lithography, nano-imprint lithography, pixelated e-beam lithography, shot-based e-beam lithography .Do any of these alternatives benefit from or take advantage of 1D layout? Yes, for example SAPD + CL (Self Aligned Pitch Division combined with Complementary Lithography). This is a widely adopted process for CMOS nodes at 22nm and below. Can there be additional design / process co-optimization? In spite of the simple-looking nature of 1D layout, the placement of "cut" in the lines and "holes" for interlayer connections can be tuned for a given process capability. Examples of such optimization have been presented at this conference, typically showing a reduction of at least one in the number of cut or hole patterns needed.[1,2] Can any of the alternatives complement each other or optical lithography? Yes.[3] For example, DSA (Directed Self Assembly) combines optical lithography with self-assembly. CEBL (Complementary e-Beam Lithography) combines optical lithography with SAPD for lines with shot-based e-beam lithography for cuts and holes. Does one (shrinking) size fit all? No, that's why we have many alternatives. For example NIL (Nano-imprint Lithography) has been introduced for NAND Flash patterning where the (trending lower) defectivity is acceptable for the product. Deposition lithography has been introduced in 3D NAND Flash to set the channel length of select and memory transistors.
Chemical solution route to self-assembled epitaxial oxide nanostructures.
Obradors, X; Puig, T; Gibert, M; Queraltó, A; Zabaleta, J; Mestres, N
2014-04-07
Self-assembly of oxides as a bottom-up approach to functional nanostructures goes beyond the conventional nanostructure formation based on lithographic techniques. Particularly, chemical solution deposition (CSD) is an ex situ growth approach very promising for high throughput nanofabrication at low cost. Whereas strain engineering as a strategy to define nanostructures with tight control of size, shape and orientation has been widely used in metals and semiconductors, it has been rarely explored in the emergent field of functional complex oxides. Here we will show that thermodynamic modeling can be very useful to understand the principles controlling the growth of oxide nanostructures by CSD, and some attractive kinetic features will also be presented. The methodology of strain engineering is applied in a high degree of detail to form different sorts of nanostructures (nanodots, nanowires) of the oxide CeO2 with fluorite structure which then is used as a model system to identify the principles controlling self-assembly and self-organization in CSD grown oxides. We also present, more briefly, the application of these ideas to other oxides such as manganites or BaZrO3. We will show that the nucleation and growth steps are essentially understood and manipulated while the kinetic phenomena underlying the evolution of the self-organized networks are still less widely explored, even if very appealing effects have been already observed. Overall, our investigation based on a CSD approach has opened a new strategy towards a general use of self-assembly and self-organization which can now be widely spread to many functional oxide materials.
Health monitoring and rehabilitation of a concrete structure using intelligent materials
NASA Astrophysics Data System (ADS)
Song, G.; Mo, Y. L.; Otero, K.; Gu, H.
2006-04-01
This paper presents the concept of an intelligent reinforced concrete structure (IRCS) and its application in structural health monitoring and rehabilitation. The IRCS has multiple functions which include self-rehabilitation, self-vibration damping, and self-structural health monitoring. These functions are enabled by two types of intelligent (smart) materials: shape memory alloys (SMAs) and piezoceramics. In this research, Nitinol type SMA and PZT (lead zirconate titanate) type piezoceramics are used. The proposed concrete structure is reinforced by martensite Nitinol cables using the method of post-tensioning. The martensite SMA significantly increases the concrete's damping property and its ability to handle large impact. In the presence of cracks due to explosions or earthquakes, by electrically heating the SMA cables, the SMA cables contract and close up the cracks. In this research, PZT patches are embedded in the concrete structure to detect possible cracks inside the concrete structure. The wavelet packet analysis method is then applied as a signal-processing tool to analyze the sensor signals. A damage index is defined to describe the damage severity for health monitoring purposes. In addition, by monitoring the electric resistance change of the SMA cables, the crack width can be estimated. To demonstrate this concept, a concrete beam specimen with reinforced SMA cables and with embedded PZT patches is fabricated. Experiments demonstrate that the IRC has the ability of self-sensing and self-rehabilitation. Three-point bending tests were conducted. During the loading process, a crack opens up to 0.47 inches. Upon removal of the load and heating the SMA cables, the crack closes up. The damage index formed by wavelet packet analysis of the PZT sensor data predicts and confirms the onset and severity of the crack during the loading. Also during the loading, the electrical resistance value of the SMA cable changes by up to 27% and this phenomenon is used to monitor the crack width.
NASA Astrophysics Data System (ADS)
Rahman, Taibur; Renaud, Luke; Heo, Deuk; Renn, Michael; Panat, Rahul
2015-10-01
The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10-100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10-100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives.
A new fabrication technique for complex refractive micro-optical systems
NASA Astrophysics Data System (ADS)
Tormen, Massimo; Carpentiero, Alessandro; Ferrari, Enrico; Cabrini, Stefano; Cojoc, Dan; Di Fabrizio, Enzo
2006-01-01
We present a new method that allows to fabricate structures with tightly controlled three-dimensional profiles in the 10 nm to 100 μm scale range. This consists of a sequence of lithographic steps such as Electron Beam (EB) or Focused Ion Beam (FIB) lithography, alternated with isotropic wet etching processes performed on a quartz substrate. Morphological characterization by SEM and AFM shows that 3D structures with very accurate shape control and nanometer scale surface roughness can be realized. Quartz templates have been employed as complex system of micromirrors after metal coating of the patterned surface or used as stamps in nanoimprint, hot embossing or casting processes to shape complex plastic elements. Compared to other 3D micro and nanostructuring methods, in which a hard material is directly "sculptured" by energetic beams, our technique requires a much less intensive use of expensive lithographic equipments, for comparable volumes of structured material, resulting in dramatic increase of throughput. Refractive micro-optical elements have been fabricated and characterized in transmission and reflection modes with white and monochromatic light. The elements produce a distribution of sharp focal spots and lines in the three dimensional space, opening the route for applications of image reconstruction based on refractive optics.
One-step patterning of double tone high contrast and high refractive index inorganic spin-on resist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanchetta, E.; Della Giustina, G.; Brusatin, G.
2014-09-14
A direct one-step and low temperature micro-fabrication process, enabling to realize large area totally inorganic TiO₂ micro-patterns from a spin-on resist, is presented. High refractive index structures (up to 2 at 632 nm) without the need for transfer processes have been obtained by mask assisted UV lithography, exploiting photocatalytic titania properties. A distinctive feature not shared by any of the known available resists and boosting the material versatility, is that the system behaves either as a positive or as negative tone resist, depending on the process parameters and on the development chemistry. In order to explain the resist double tonemore » behavior, deep comprehension of the lithographic process parameters optimization and of the resist chemistry and structure evolution during the lithographic process, generally uncommon in literature, is reported. Another striking property of the presented resist is that the negative tone shows a high contrast up to 19, allowing to obtain structures resolution down to 2 μm wide. The presented process and material permit to directly fabricate different titania geometries of great importance for solar cells, photo-catalysis, and photonic crystals applications.« less
2009-01-01
We describe the design and optimization of a reliable strategy that combines self-assembly and lithographic techniques, leading to very precise micro-/nanopositioning of biomolecules for the realization of micro- and nanoarrays of functional DNA and antibodies. Moreover, based on the covalent immobilization of stable and versatile SAMs of programmable chemical reactivity, this approach constitutes a general platform for the parallel site-specific deposition of a wide range of molecules such as organic fluorophores and water-soluble colloidal nanocrystals. PMID:20596482
Development of inorganic resists for electron beam lithography: Novel materials and simulations
NASA Astrophysics Data System (ADS)
Jeyakumar, Augustin
Electron beam lithography is gaining widespread utilization as the semiconductor industry progresses towards both advanced optical and non-optical lithographic technologies for high resolution patterning. The current resist technologies are based on organic systems that are imaged most commonly through chain scission, networking, or a chemically amplified polarity change in the material. Alternative resists based on inorganic systems were developed and characterized in this research for high resolution electron beam lithography and their interactions with incident electrons were investigated using Monte Carlo simulations. A novel inorganic resist imaging scheme was developed using metal-organic precursors which decompose to form metal oxides upon electron beam irradiation that can serve as inorganic hard masks for hybrid bilayer inorganic-organic imaging systems and also as directly patternable high resolution metal oxide structures. The electron beam imaging properties of these metal-organic materials were correlated to the precursor structure by studying effects such as interactions between high atomic number species and the incident electrons. Optimal single and multicomponent precursors were designed for utilization as viable inorganic resist materials for sub-50nm patterning in electron beam lithography. The electron beam imaging characteristics of the most widely used inorganic resist material, hydrogen silsesquioxane (HSQ), was also enhanced using a dual processing imaging approach with thermal curing as well as a sensitizer catalyzed imaging approach. The interaction between incident electrons and the high atomic number species contained in these inorganic resists was also studied using Monte Carlo simulations. The resolution attainable using inorganic systems as compared to organic systems can be greater for accelerating voltages greater than 50 keV due to minimized lateral scattering in the high density inorganic systems. The effects of loading nanoparticles in an electron beam resist was also investigated using a newly developed hybrid Monte Carlo approach that accounts for multiple components in a solid film. The resolution of the nanocomposite resist process was found to degrade with increasing nanoparticle loading. Finally, the electron beam patterning of self-assembled monolayers, which were found to primarily utilize backscattered electrons from the high atomic number substrate materials to form images, was also investigated and characterized. It was found that backscattered electrons limit the resolution attainable at low incident electron energies.
1. Photocopy of lithograph, ca. 1880 (in possession American Catholic ...
1. Photocopy of lithograph, ca. 1880 (in possession American Catholic Historical Society) FRONT AND SIDE ELEVATIONS - St. Francis Xavier's Roman Catholic Church, 2321 Green Street, Philadelphia, Philadelphia County, PA
Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates.
Thurn-Albrecht, T; Schotter, J; Kästle, G A; Emley, N; Shibauchi, T; Krusin-Elbaum, L; Guarini, K; Black, C T; Tuominen, M T; Russell, T P
2000-12-15
We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 x 10(11) wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.
Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch(2).
Huang, Cheng; Förste, Alexander; Walheim, Stefan; Schimmel, Thomas
2015-01-01
Polymer blend lithography (PBL) is a spin-coating-based technique that makes use of the purely lateral phase separation between two immiscible polymers to fabricate large area nanoscale patterns. In our earlier work (Huang et al. 2012), PBL was demonstrated for the fabrication of patterned self-assembled monolayers. Here, we report a new method based on the technique of polymer blend lithography that allows for the fabrication of metal island arrays or perforated metal films on the nanometer scale, the metal PBL. As the polymer blend system in this work, a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA), dissolved in methyl ethyl ketone (MEK) is used. This system forms a purely lateral structure on the substrate at controlled humidity, which means that PS droplets are formed in a PMMA matrix, whereby both phases have direct contact both to the substrate and to the air interface. Therefore, a subsequent selective dissolution of either the PS or PMMA component leaves behind a nanostructured film which can be used as a lithographic mask. We use this lithographic mask for the fabrication of metal patterns by thermal evaporation of the metal, followed by a lift-off process. As a consequence, the resulting metal nanostructure is an exact replica of the pattern of the selectively removed polymer (either a perforated metal film or metal islands). The minimum diameter of these holes or metal islands demonstrated here is about 50 nm. Au, Pd, Cu, Cr and Al templates were fabricated in this work by metal PBL. The wavelength-selective optical transmission spectra due to the localized surface plasmonic effect of the holes in perforated Al films were investigated and compared to the respective hole diameter histograms.
Biomedical microfluidic devices by using low-cost fabrication techniques: A review.
Faustino, Vera; Catarino, Susana O; Lima, Rui; Minas, Graça
2016-07-26
One of the most popular methods to fabricate biomedical microfluidic devices is by using a soft-lithography technique. However, the fabrication of the moulds to produce microfluidic devices, such as SU-8 moulds, usually requires a cleanroom environment that can be quite costly. Therefore, many efforts have been made to develop low-cost alternatives for the fabrication of microstructures, avoiding the use of cleanroom facilities. Recently, low-cost techniques without cleanroom facilities that feature aspect ratios more than 20, for fabricating those SU-8 moulds have been gaining popularity among biomedical research community. In those techniques, Ultraviolet (UV) exposure equipment, commonly used in the Printed Circuit Board (PCB) industry, replaces the more expensive and less available Mask Aligner that has been used in the last 15 years for SU-8 patterning. Alternatively, non-lithographic low-cost techniques, due to their ability for large-scale production, have increased the interest of the industrial and research community to develop simple, rapid and low-cost microfluidic structures. These alternative techniques include Print and Peel methods (PAP), laserjet, solid ink, cutting plotters or micromilling, that use equipment available in almost all laboratories and offices. An example is the xurography technique that uses a cutting plotter machine and adhesive vinyl films to generate the master moulds to fabricate microfluidic channels. In this review, we present a selection of the most recent lithographic and non-lithographic low-cost techniques to fabricate microfluidic structures, focused on the features and limitations of each technique. Only microfabrication methods that do not require the use of cleanrooms are considered. Additionally, potential applications of these microfluidic devices in biomedical engineering are presented with some illustrative examples. Copyright © 2015 Elsevier Ltd. All rights reserved.
14. 1862 LITHOGRAPH SHOWING ST. DAVID'S CHURCH IN WINTER SCENE. ...
14. 1862 LITHOGRAPH SHOWING ST. DAVID'S CHURCH IN WINTER SCENE. Photocopied from George Smith's book, History of Delaware County, Penna., 1862 - St. David's Church (Episcopal), Valley Forge Road (Newtown Township), Wayne, Delaware County, PA
Image based method for aberration measurement of lithographic tools
NASA Astrophysics Data System (ADS)
Xu, Shuang; Tao, Bo; Guo, Yongxing; Li, Gongfa
2018-01-01
Information of lens aberration of lithographic tools is important as it directly affects the intensity distribution in the image plane. Zernike polynomials are commonly used for a mathematical description of lens aberrations. Due to the advantage of lower cost and easier implementation of tools, image based measurement techniques have been widely used. Lithographic tools are typically partially coherent systems that can be described by a bilinear model, which entails time consuming calculations and does not lend a simple and intuitive relationship between lens aberrations and the resulted images. Previous methods for retrieving lens aberrations in such partially coherent systems involve through-focus image measurements and time-consuming iterative algorithms. In this work, we propose a method for aberration measurement in lithographic tools, which only requires measuring two images of intensity distribution. Two linear formulations are derived in matrix forms that directly relate the measured images to the unknown Zernike coefficients. Consequently, an efficient non-iterative solution is obtained.
Microoptical System And Fabrication Method Therefor
Sweatt, William C.; Christenson, Todd R.
2005-03-15
Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.
Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey
2010-01-01
An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.
Microoptical system and fabrication method therefor
Sweatt, William C.; Christenson, Todd R.
2003-07-08
Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.
Scherer, Ronny; Jansen, Malte; Nilsen, Trude; Areepattamannil, Shaljan; Marsh, Herbert W.
2016-01-01
Teachers’ self-efficacy is an important motivational construct that is positively related to a variety of outcomes for both the teachers and their students. This study addresses challenges associated with the commonly used ‘Teachers’ Sense of Self-Efficacy (TSES)’ measure across countries and provides a synergism between substantive research on teachers’ self-efficacy and the novel methodological approach of exploratory structural equation modeling (ESEM). These challenges include adequately representing the conceptual overlap between the facets of self-efficacy in a measurement model (cross-loadings) and comparing means and factor structures across countries (measurement invariance). On the basis of the OECD Teaching and Learning International Survey (TALIS) 2013 data set comprising 32 countries (N = 164,687), we investigate the effects of cross-loadings in the TSES measurement model on the results of measurement invariance testing and the estimation of relations to external constructs (i.e., working experience, job satisfaction). To further test the robustness of our results, we replicate the 32-countries analyses for three selected sub-groups of countries (i.e., Nordic, East and South-East Asian, and Anglo-Saxon country clusters). For each of the TALIS 2013 participating countries, we found that the factor structure of the self-efficacy measure is better represented by ESEM than by confirmatory factor analysis (CFA) models that do not allow for cross-loadings. For both ESEM and CFA, only metric invariance could be achieved. Nevertheless, invariance levels beyond metric invariance are better achieved with ESEM within selected country clusters. Moreover, the existence of cross-loadings did not affect the relations between the dimensions of teachers’ self-efficacy and external constructs. Overall, this study shows that a conceptual overlap between the facets of self-efficacy exists and can be well-represented by ESEM. We further argue for the cross-cultural generalizability of the corresponding measurement model. PMID:26959236
Scherer, Ronny; Jansen, Malte; Nilsen, Trude; Areepattamannil, Shaljan; Marsh, Herbert W
2016-01-01
Teachers' self-efficacy is an important motivational construct that is positively related to a variety of outcomes for both the teachers and their students. This study addresses challenges associated with the commonly used 'Teachers' Sense of Self-Efficacy (TSES)' measure across countries and provides a synergism between substantive research on teachers' self-efficacy and the novel methodological approach of exploratory structural equation modeling (ESEM). These challenges include adequately representing the conceptual overlap between the facets of self-efficacy in a measurement model (cross-loadings) and comparing means and factor structures across countries (measurement invariance). On the basis of the OECD Teaching and Learning International Survey (TALIS) 2013 data set comprising 32 countries (N = 164,687), we investigate the effects of cross-loadings in the TSES measurement model on the results of measurement invariance testing and the estimation of relations to external constructs (i.e., working experience, job satisfaction). To further test the robustness of our results, we replicate the 32-countries analyses for three selected sub-groups of countries (i.e., Nordic, East and South-East Asian, and Anglo-Saxon country clusters). For each of the TALIS 2013 participating countries, we found that the factor structure of the self-efficacy measure is better represented by ESEM than by confirmatory factor analysis (CFA) models that do not allow for cross-loadings. For both ESEM and CFA, only metric invariance could be achieved. Nevertheless, invariance levels beyond metric invariance are better achieved with ESEM within selected country clusters. Moreover, the existence of cross-loadings did not affect the relations between the dimensions of teachers' self-efficacy and external constructs. Overall, this study shows that a conceptual overlap between the facets of self-efficacy exists and can be well-represented by ESEM. We further argue for the cross-cultural generalizability of the corresponding measurement model.
Dawn Mission to Vesta and Ceres Lithograph
2007-01-01
This artist's lithograph features general information, significant dates, and interesting facts on the backabout asteroid Vesta and dwarf planet Ceres and is part of the Mission Art series from NASA's Dawn mission. http://photojournal.jpl.nasa.gov/catalog/PIA19370
Self-folding micropatterned polymeric containers.
Azam, Anum; Laflin, Kate E; Jamal, Mustapha; Fernandes, Rohan; Gracias, David H
2011-02-01
We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.
Self-centering connections for traffic sign supporting structures.
DOT National Transportation Integrated Search
2015-03-01
Steel structures supporting traffic sign panels are designed as intended to dissipate energy by : yielding structural members during severe wind loading (ex. strong hurricanes). Yielding results : in inelastic deformations, which are permanent damage...
1. Photocopy of lithograph (from Annual Report of the Supervising ...
1. Photocopy of lithograph (from Annual Report of the Supervising Architect to the Secretary for the Calendar Year Ending December 31, 1888) GENERAL VIEW, SOUTH (FRONT) ELEVATION - Old U.S. Mint, Chestnut & Juniper Streets, Philadelphia, Philadelphia County, PA
NASA Astrophysics Data System (ADS)
Amblard, Gilles; Purdy, Sara; Cooper, Ryan; Hockaday, Marjory
2016-03-01
The overall quality and processing capability of lithographic materials are critical for ensuring high device yield and performance at sub-20nm technology nodes in a high volume manufacturing environment. Insufficient process margin and high line width roughness (LWR) cause poor manufacturing control, while high defectivity causes product failures. In this paper, we focus on the most critical layer of a sub-20nm technology node LSI device, and present an improved method for characterizing both lithographic and post-patterning defectivity performance of state-of-the-art immersion photoresists. Multiple formulations from different suppliers were used and compared. Photoresists were tested under various process conditions, and multiple lithographic metrics were investigated (depth of focus, exposure dose latitude, line width roughness, etc.). Results were analyzed and combined using an innovative approach based on advanced software, providing clearer results than previously available. This increased detail enables more accurate performance comparisons among the different photoresists. Post-patterning defectivity was also quantified, with defects reviewed and classified using state-of-the-art inspection tools. Correlations were established between the lithographic and post-patterning defectivity performances for each material, and overall ranking was established among the photoresists, enabling the selection of the best performer for implementation in a high volume manufacturing environment.
Self-monitoring fiber reinforced polymer strengthening system for civil engineering infrastructures
NASA Astrophysics Data System (ADS)
Jiang, Guoliang; Dawood, Mina; Peters, Kara; Rizkalla, Sami
2008-03-01
Fiber reinforced polymer (FRP) materials are currently used for strengthening civil engineering infrastructures. The strengthening system is dependant on the bond characteristics of the FRP to the external surface of the structure to be effective in resisting the applied loads. This paper presents an innovative self-monitoring FRP strengthening system. The system consists of two components which can be embedded in FRP materials to monitor the global and local behavior of the strengthened structure respectively. The first component of the system is designed to evaluate the applied load acting on a structure based on elongation of the FRP layer along the entire span of the structure. Success of the global system has been demonstrated using a full-scale prestressed concrete bridge girder which was loaded up to failure. The test results indicate that this type of sensor can be used to accurately determine the load prior to failure within 15 percent of the measured value. The second sensor component consists of fiber Bragg grating sensors. The sensors were used to monitor the behavior of steel double-lap shear splices tested under tensile loading up to failure. The measurements were used to identify abnormal structural behavior such as epoxy cracking and FRP debonding. Test results were also compared to numerical values obtained from a three dimensional shear-lag model which was developed to predict the sensor response.
Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing
NASA Astrophysics Data System (ADS)
Lind, Johan U.; Busbee, Travis A.; Valentine, Alexander D.; Pasqualini, Francesco S.; Yuan, Hongyan; Yadid, Moran; Park, Sung-Jin; Kotikian, Arda; Nesmith, Alexander P.; Campbell, Patrick H.; Vlassak, Joost J.; Lewis, Jennifer A.; Parker, Kevin K.
2017-03-01
Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro, have emerged as a promising alternative. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.
Fabrication of non-hexagonal close packed colloidal array on a substrate by transfer
NASA Astrophysics Data System (ADS)
Banik, Meneka; Mukherjee, Rabibrata
Self-organized colloidal arrays find application in fabrication of solar cells with advanced light management strategies. We report a simple spincoating based approach for fabricating two dimensional colloidal crystals with hexagonal and non-hexagonal close packed assembly on flat and nanopatterned substrates. The non-HCP arrays were fabricated by spin coating the particles onto soft lithographically fabricated substrates. The substrate patterns impose directionality to the particles by confining them within the grooves. We have developed a technique by which the HCP and non-HCP arrays can be transferred to any surface. For this purpose the colloidal arrays were fabricated on a UV degradable PMMA layer, resulting in transfer of the particles on UV exposure. This allows the colloidal structures to be transported across substrates irrespective of their surface energy, wettability or morphology. Since the particles are transferred without exposing it to any kind of chemical or thermal environment, it can be utilized for placing particles on top of thin film solar cells for improving their absorption efficiency.
Free-form machining for micro-imaging systems
NASA Astrophysics Data System (ADS)
Barkman, Michael L.; Dutterer, Brian S.; Davies, Matthew A.; Suleski, Thomas J.
2008-02-01
While mechanical ruling and single point diamond turning has been a mainstay of optical fabrication for many years, many types of micro-optical devices and structures are not conducive to simple diamond turning or ruling, such as, for example, microlens arrays, and optical surfaces with non-radial symmetry. More recent developments in machining technology have enabled significant expansion of fabrication capabilities. Modern machine tools can generate complex three-dimensional structures with optical quality surface finish, and fabricate structures across a dynamic range of dimensions not achievable with lithographic techniques. In particular, five-axis free-form micromachining offers a great deal of promise for realization of essentially arbitrary surface structures, including surfaces not realizable through binary or analog lithographic techniques. Furthermore, these machines can generate geometric features with optical finish on scales ranging from centimeters to micrometers with accuracies of 10s of nanometers. In this paper, we discuss techniques and applications of free-form surface machining of micro-optical elements. Aspects of diamond machine tool design to realize desired surface geometries in specific materials are discussed. Examples are presented, including fabrication of aspheric lens arrays in germanium for compact infrared imaging systems. Using special custom kinematic mounting equipment and the additional axes of the machine, the lenses were turned with surface finish better than 2 nm RMS and center to center positioning accuracy of +/-0.5 μm.
Carbon Nanotube-Based Structural Health Monitoring Sensors
NASA Technical Reports Server (NTRS)
Wincheski, Russell; Jordan, Jeffrey; Oglesby, Donald; Watkins, Anthony; Patry, JoAnne; Smits, Jan; Williams, Phillip
2011-01-01
Carbon nanotube (CNT)-based sensors for structural health monitoring (SHM) can be embedded in structures of all geometries to monitor conditions both inside and at the surface of the structure to continuously sense changes. These CNTs can be manipulated into specific orientations to create small, powerful, and flexible sensors. One of the sensors is a highly flexible sensor for crack growth detection and strain field mapping that features a very dense and highly ordered array of single-walled CNTs. CNT structural health sensors can be mass-produced, are inexpensive, can be packaged in small sizes (0.5 micron(sup 2)), require less power than electronic or piezoelectric transducers, and produce less waste heat per square centimeter than electronic or piezoelectric transducers. Chemically functionalized lithographic patterns are used to deposit and align the CNTs onto metallic electrodes. This method consistently produces aligned CNTs in the defined locations. Using photo- and electron-beam lithography, simple Cr/Au thin-film circuits are patterned onto oxidized silicon substrates. The samples are then re-patterned with a CNT-attracting, self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) to delineate the desired CNT locations between electrodes. During the deposition of the solution-suspended single- wall CNTs, the application of an electric field to the metallic contacts causes alignment of the CNTs along the field direction. This innovation is a prime candidate for smart skin technologies with applications ranging from military, to aerospace, to private industry.
1. Copy of early 20th Century lithograph looking north showing ...
1. Copy of early 20th Century lithograph looking north showing aerial view of company. Rendering owned by the Crawford Auto- aviation Museum, 10825 East Blvd, Cleveland, Ohio. - Winton Motor Carriage Company, Berea Road & Madison Avenue, Cleveland, Cuyahoga County, OH
Cao, J R; Lee, Po-Tsung; Choi, Sang-Jun; O'Brien, John D; Dapkus, P Daniel
2002-01-01
Lithographic tuning of operating wavelengths in a photonic crystal laser array is demonstrated. The photonic crystal lattice constant is varied by 2 nm between elements of the array, and a wavelength spacing of approximately 4 nm is achieved.
Shear-lag effect and its effect on the design of high-rise buildings
NASA Astrophysics Data System (ADS)
Thanh Dat, Bui; Traykov, Alexander; Traykova, Marina
2018-03-01
For super high-rise buildings, the analysis and selection of suitable structural solutions are very important. The structure has not only to carry the gravity loads (self-weight, live load, etc.), but also to resist lateral loads (wind and earthquake loads). As the buildings become taller, the demand on different structural systems dramatically increases. The article considers the division of the structural systems of tall buildings into two main categories - interior structures for which the major part of the lateral load resisting system is located within the interior of the building, and exterior structures for which the major part of the lateral load resisting system is located at the building perimeter. The basic types of each of the main structural categories are described. In particular, the framed tube structures, which belong to the second main category of exterior structures, seem to be very efficient. That type of structure system allows tall buildings resist the lateral loads. However, those tube systems are affected by shear lag effect - a nonlinear distribution of stresses across the sides of the section, which is commonly found in box girders under lateral loads. Based on a numerical example, some general conclusions for the influence of the shear-lag effect on frequencies, periods, distribution and variation of the magnitude of the internal forces in the structure are presented.
Ordered nanoparticle arrays formed on engineered chaperonin protein templates
NASA Technical Reports Server (NTRS)
McMillan, R. Andrew; Paavola, Chad D.; Howard, Jeanie; Chan, Suzanne L.; Zaluzec, Nestor J.; Trent, Jonathan D.
2002-01-01
Traditional methods for fabricating nanoscale arrays are usually based on lithographic techniques. Alternative new approaches rely on the use of nanoscale templates made of synthetic or biological materials. Some proteins, for example, have been used to form ordered two-dimensional arrays. Here, we fabricated nanoscale ordered arrays of metal and semiconductor quantum dots by binding preformed nanoparticles onto crystalline protein templates made from genetically engineered hollow double-ring structures called chaperonins. Using structural information as a guide, a thermostable recombinant chaperonin subunit was modified to assemble into chaperonins with either 3 nm or 9 nm apical pores surrounded by chemically reactive thiols. These engineered chaperonins were crystallized into two-dimensional templates up to 20 microm in diameter. The periodic solvent-exposed thiols within these crystalline templates were used to size-selectively bind and organize either gold (1.4, 5 or 10nm) or CdSe-ZnS semiconductor (4.5 nm) quantum dots into arrays. The order within the arrays was defined by the lattice of the underlying protein crystal. By combining the self-assembling properties of chaperonins with mutations guided by structural modelling, we demonstrate that quantum dots can be manipulated using modified chaperonins and organized into arrays for use in next-generation electronic and photonic devices.
Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications.
Heo, Yongjoon; Kang, Hyelim; Lee, Joon-Seok; Oh, You-Kwan; Kim, Shin-Hyun
2016-07-01
Colloidal photonic crystals possess inimitable optical properties of iridescent structural colors and unique spectral shape, which render them useful for security materials. This work reports a novel method to encrypt graphical and spectral codes in polymeric inverse opals to provide advanced security. To accomplish this, this study prepares lithographically featured micropatterns on the top surface of hydrophobic inverse opals, which serve as shadow masks against the surface modification of air cavities to achieve hydrophilicity. The resultant inverse opals allow rapid infiltration of aqueous solution into the hydrophilic cavities while retaining air in the hydrophobic cavities. Therefore, the structural color of inverse opals is regioselectively red-shifted, disclosing the encrypted graphical codes. The decoded inverse opals also deliver unique reflectance spectral codes originated from two distinct regions. The combinatorial code composed of graphical and optical codes is revealed only when the aqueous solution agreed in advance is used for decoding. In addition, the encrypted inverse opals are chemically stable, providing invariant codes with high reproducibility. In addition, high mechanical stability enables the transfer of the films onto any surfaces. This novel encryption technology will provide a new opportunity in a wide range of security applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... and plastic parts coatings; large appliance coatings; offset lithographic printing and letterpress... local air pollution control authorities information that should assist them in determining RACT for VOC... plastic parts coatings; (4) large appliance coatings; (5) offset lithographic printing and letterpress...
Organic light emitting diodes with structured electrodes
Mao, Samuel S.; Liu, Gao; Johnson, Stephen G.
2012-12-04
A cathode that contain nanostructures that extend into the organic layer of an OLED has been described. The cathode can have an array of nanotubes or a layer of nanoclusters extending out from its surface. In another arrangement, the cathode is patterned and etched to form protruding nanostructures using a standard lithographic process. Various methods for fabricating these structures are provided, all of which are compatible with large-scale manufacturing. OLEDs made with these novel electrodes have greatly enhanced electron injection, have good environmental stability.
Resonant tunneling in nanocolumns improved by quantum collimation.
Wensorra, Jakob; Indlekofer, Klaus Michael; Lepsa, Mihail Ion; Förster, Arno; Lüth, Hans
2005-12-01
We report on a quantum collimation effect based on surface depletion regions in AlAs/GaAs nanocolumns with an embedded resonant tunneling structure. The considered MBE-grown nanodevices have been fabricated by means of a top-down approach that employs a reproducible lithographic definition of the vertical nanocolumns. By analyzing the scaling properties of these nanodevices, we discuss how a collimation effect due to a saddle point in the confining potential can explain an improved device performance of the ultimately scaled structures at room temperature.
NASA Astrophysics Data System (ADS)
Cheng, Li-Chen; Bai, Wubin; Fernandez Martin, Eduardo; Tu, Kun-Hua; Ntetsikas, Konstantinos; Liontos, George; Avgeropoulos, Apostolos; Ross, C. A.
2017-04-01
The self-assembly of block copolymers with large feature sizes is inherently challenging as the large kinetic barrier arising from chain entanglement of high molecular weight (MW) polymers limits the extent over which long-range ordered microdomains can be achieved. Here, we illustrate the evolution of thin film morphology from a diblock copolymer of polystyrene-block-poly(dimethylsiloxane) exhibiting total number average MW of 123 kg mol-1, and demonstrate the formation of layers of well-ordered cylindrical microdomains under appropriate conditions of binary solvent mix ratio, commensurate film thickness, and solvent vapor annealing time. Directed self-assembly of the block copolymer within lithographically patterned trenches occurs with alignment of cylinders parallel to the sidewalls. Fabrication of ordered cobalt nanowire arrays by pattern transfer was also implemented, and their magnetic properties and domain wall behavior were characterized.
Tailoring surface properties of ArF resists thin films with functionally graded materials (FGM)
NASA Astrophysics Data System (ADS)
Takemoto, Ichiki; Ando, Nobuo; Edamatsu, Kunishige; Fuji, Yusuke; Kuwana, Koji; Hashimoto, Kazuhiko; Funase, Junji; Yokoyama, Hiroyuki
2007-03-01
Our recent research effort has been focused on new top coating-free 193nm immersion resists with regard to leaching of the resist components and lithographic performance. We have examined methacrylate-based resins that control the surface properties of ArF resists thin films by surface segregation behavior. For a better understanding of the surface properties of thin films, we prepared the six resins (Resin 1-6) that have three types fluorine containing monomers, a new monomer (Monomer A), Monomer B and Monomer C, respectively. We blended the base polymer (Resin 0) with Resin (1-6), respectively. We evaluated contact angles, surface properties and lithographic performances of the polymer blend resists. The static and receding contact angles of the resist that contains Resin (1-6) are greater than that of the base polymer (Resin 0) resist. The chemical composition of the surface of blend polymers was investigated with X-ray photoelectron spectroscopy (XPS). It was shown that there was significant segregation of the fluorine containing resins to the surface of the blend films. We analyzed Quantitative Structure-Property Relationships (QSPR) between the surface properties and the chemical composition of the surface of polymer blend resists. The addition of 10 wt% of the polymer (Resin 1-6) to the base polymer (Resin 0) did not influence the lithographic performance. Consequently, the surface properties of resist thin films can be tailored by the appropriate choice of fluorine containing polymer blends.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
... Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) because application of those... Technology (RACT) for sources covered by EPA's Control Techniques Guidelines (CTG) for offset lithographic..., unless the comment includes information claimed to be Confidential Business Information (CBI) or other...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-23
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R03-OAR-2012-0042; FRL-9702-2] Approval and... Printing Regulations AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is... Technology (RACT) for sources covered by EPA's Control Techniques Guidelines (CTG) for offset lithographic...
Self-Assembling Block Copolymer Resist Mixtures towards Lithographic Resists for Sub-10 nm Features
NASA Astrophysics Data System (ADS)
Chandler, Curran; Daga, Vikram; Watkins, James
2009-03-01
Significant improvements in 193 nm photolithography have enabled the extension of device feature sizes beyond the 45 nm and 32 nm nodes, yet uncertainty lies beyond 22 nm features as no single replacement has emerged. Here we show that low molecular weight, nonionic block copolymer surfactant blends are capable of self-assembling into highly ordered domains with feature sizes on the order of 5 nm. These surfactants, most of which lack the required χN for microphase separation on their own, exhibit strong segregation and long-range order upon addition of a component capable of multi-point hydrogen bonding that is specific for one of the blocks in the copolymer. This has been demonstrated by our SAXS data for several Pluronic (PEO-b-PPO-b-PEO) and Brij (PEO-b-[CH2]nCH3) surfactants of various molecular weights and PEO volume fractions. Furthermore, we employ these highly-ordered systems as thin film, nanolithographic etch masks for the transfer of sub-10 nm patterns into silicon-based substrates. Small molecule, hydrogen bonding additives containing aromatic or silsesquioxane structure are also used to tune etch contrast between the blocks which is important for reducing line edge roughness (LER) of such small features.
Oxide nanostructures through self-assembly
NASA Astrophysics Data System (ADS)
Aggarwal, S.; Ogale, S. B.; Ganpule, C. S.; Shinde, S. R.; Novikov, V. A.; Monga, A. P.; Burr, M. R.; Ramesh, R.; Ballarotto, V.; Williams, E. D.
2001-03-01
A prominent theme in inorganic materials research is the creation of uniformly flat thin films and heterostructures over large wafers, which can subsequently be lithographically processed into functional devices. This letter proposes an approach that will lead to thin film topographies that are directly counter to the above-mentioned philosophy. Recent years have witnessed considerable research activity in the area of self-assembly of materials, stimulated by observations of self-organized behavior in biological systems. We have fabricated uniform arrays of nonplanar surface features by a spontaneous assembly process involving the oxidation of simple metals, especially under constrained conditions on a variety of substrates, including glass and Si. In this letter we demonstrate the pervasiveness of this process through examples involving the oxidation of Pd, Cu, Fe, and In. The feature sizes can be controlled through the grain size and thickness of the starting metal thin film. Finally, we demonstrate how such submicron scale arrays can serve as templates for the design and development of self-assembled, nanoelectronic devices.
Seibert, L Alana; Miller, Joshua D; Few, Lauren R; Zeichner, Amos; Lynam, Donald R
2011-07-01
Self-report assessment of psychopathy is plagued by inconsistencies among the relations of the various psychopathy factors. We examined the factor structure of 3 prominent self-report measures of psychopathy-the Self-Report Psychopathy Scale-III (SRP-III; Williams, Paulhus, & Hare, 2007), the Levenson Self-Report Psychopathy Scale (LSRP; Levenson, Kiehl, & Fitzpatrick, 1995), and the Psychopathic Personality Inventory-R (PPI-R; Lilienfeld & Widows, 2005). A coherent 4-factor structure resulted from conducting an exploratory factor analysis (EFA) of the psychopathy subscales along with the domains from the five-factor model. Two of these factors were consistent with traditional conceptualizations of a 2-factor structure of psychopathy (i.e., Factor 1, which loaded negatively with Agreeableness; Factor 2, which loaded negatively with Conscientiousness), while 2 additional factors emerged, 1 of which emphasized low Neuroticism and 1 of which emphasized traits related to novelty/reward-seeking and dominance-related personality traits (high Extraversion). We also investigated the relations of these factors with a variety of externalizing behaviors (EB). The psychopathy scales indicative of interpersonal antagonism (i.e., Factor 1) were most consistently and strongly related to EB. Our findings are discussed in terms of the importance of a trait-based perspective in the assessment of psychopathy.
Novel agrochemical conjugates with self-assembling behaviour.
Liu, Qingtao; Graham, Bim; Hawley, Adrian; Dong, Yao-Da; Boyd, Ben J
2018-02-15
That conjugation of agrichemicals to pro-assembly hydrophobic moieties will enable enhanced compatibility and loading with host lyotropic liquid crystalline carrier matrix, and potentially self-assemble in their own right in aqueous environments. A series of lipid-like agrochemical-conjugates were synthesized using specific amphiphilic entities conjugated onto the agrochemicals, picloram and 2,4-dichlorophenoxyacetic acid (2,4-D). The self-assembly behaviour and compatibility of the novel entities when incorporated into phytantriol and monoolein-based liquid crystalline systems were examined using small angle X-ray scattering, cryo-TEM and polarized optical microscopy. Compared to agrochemical-conjugates with simple alkyl ester groups, the esterification of the agrochemicals with amphiphilic groups such as phytantriol and monoolein led to greater structural compatibility and consequently a greater loading of the agrochemicals in the liquid crystalline systems without destabilizing phase structure. Picloram-monoolein and picloram-monoelaidin can self-assemble to form lamellar structures in water. However, certain agrochemical-conjugates such as picloram-monoelaidin and picloram-PEGn-oleate showed poor compatibility with liquid crystalline systems, resulting in phase separation. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Fan; Wang, Xiangzhao; Ma, Mingying
2006-08-20
As the feature size decreases, degradation of image quality caused by wavefront aberrations of projection optics in lithographic tools has become a serious problem in the low-k1 process. We propose a novel measurement technique for in situ characterizing aberrations of projection optics in lithographic tools. Considering the impact of the partial coherence illumination, we introduce a novel algorithm that accurately describes the pattern displacement and focus shift induced by aberrations. Employing the algorithm, the measurement condition is extended from three-beam interference to two-, three-, and hybrid-beam interferences. The experiments are performed to measure the aberrations of projection optics in an ArF scanner.
Wei, Xueyong
2010-11-01
Since it was invented two decades ago, Nanosphere Lithography (NSL) has been widely studied as a low cost and flexible technique to fabricate nanostructures. Based on the registered patents and some selected papers, this review will discuss recent developments of different NSL strategies for the fabrication of ordered nanostructure arrays. The mechanism of self-assembly process and the techniques for preparing the self-assembled nanosphere template are first briefly introduced. The nanosphere templates are used either as shadow masks or as moulds for pattern transfer. Much more work now combines NSL with other lithographic techniques and material growth methods to form novel nanostructures of complex shape or various materials. Hence, this review finally gives a discussion on some future directions in NSL study.
Site-controlled InGaN/GaN single-photon-emitting diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Deng, Hui, E-mail: dengh@umich.edu; Teng, Chu-Hsiang
2016-04-11
We report single-photon emission from electrically driven site-controlled InGaN/GaN quantum dots. The device is fabricated from a planar light-emitting diode structure containing a single InGaN quantum well, using a top-down approach. The location, dimension, and height of each single-photon-emitting diode are controlled lithographically, providing great flexibility for chip-scale integration.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
... wood paneling coating facilities. Sixth, Rule 15A NCAC 02D .0961, ``Offset Lithographic Printing and Letterpress Printing'' was adopted to control VOC emissions from heatset inks, fountain solution and cleaning materials used in offset lithographic printing operations, as well as VOC emissions from heatset inks used...
An Analysis of the Lithographic Printing Occupation.
ERIC Educational Resources Information Center
Innis, Gene A.; And Others
The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the lithographic printing occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Nine duties are broken down into a…
Microfabricated magnetic structures for future medicine: from sensors to cell actuators
Vitol, Elina A; Novosad, Valentyn; Rozhkova, Elena A
2013-01-01
In this review, we discuss the prospective medical application of magnetic carriers microfabricated by top-down techniques. Physical methods allow the fabrication of a variety of magnetic structures with tightly controlled magnetic properties and geometry, which makes them very attractive for a cost-efficient mass-production in the fast growing field of nanomedicine. Stand-alone fabricated particles along with integrated devices combining lithographically defined magnetic structures and synthesized magnetic tags will be considered. Applications of microfabricated multifunctional magnetic structures for future medicinal purposes range from ultrasensitive in vitro diagnostic bioassays, DNA sequencing and microfluidic cell sorting to magnetomechanical actuation, cargo delivery, contrast enhancement and heating therapy. PMID:23148542
1. Photocopy of lithograph (from Annual Report of the Supervising ...
1. Photocopy of lithograph (from Annual Report of the Supervising Architect to the Secretary of the Treasury for the Calender Year Ending December 31, 1888. Wahsington, D.C.: Government Printing Office, 1889. Will A. Freret, Supervising Architect) THREE-QUARTER VIEW OF FRONT ELEVATION (RIVERSIDE), FLOOR PLANS - U. S. Courthouse & Post Office, Binghamton, Broome County, NY
Ferromagnetic nanowires: Field-induced self-assembly, magnetotransport and biological applications
NASA Astrophysics Data System (ADS)
Tanase, Monica
In this dissertation, a series of experiments on magnetic nanowires are described. Magnetic nanowires suspended in fluid solutions can be assembled and ordered by taking advantage of their large shape anisotropy. Magnetic manipulation and assembly techniques were developed, using electrodeposited Ni nanowires. Preorienting nanowires in a small magnetic field induced their self-assembly in continuous chains. A new technique of magnetic trapping allowed capture of single nanowires from fluid suspension on lithographically fabricated micromagnets. As described herein, the presence of an external magnetic field plays a fundamental role in all fluid assembly methods used. The dynamics of both chaining and trapping processes is described quantitatively in terms of the interplay of magnetic forces and fluid drag at low Reynolds number. Lithographic methods for addressing single nanowires for transport characterization were developed. Magnetotransport measurements were performed on individual straight and bent PtNiPt nanowires. The Pt end segments provided an oxide-free interface to the magnetic central segment. In straight nanowires, domain reversal was observed to occur via curling mode initiated in a small nucleation volume. Magnetotransport in bent nanowires allowed the investigation of a domain wall trapped at the bend. Magnetic trapping of nanowires on pre-fabricated electrodes was adapted as a successful alternative contacting technique to lithography. The self-assembly and manipulation techniques were adapted for manipulation of cells as nanowires were found to bind to cells through nonspecific adhesion mechanisms. Ni nanowires were found to outperform superparamagnetic beads in magnetic cell separations. Additionally, the large remnant magnetization of the nanowires allowed for low-field manipulation techniques. Self-assembled chains of cells were formed and single cells were localized on substrates patterned with micromagnets. A fluid flow method was developed to controllably introduce the cells in the proximity of arrays of micromagnets. Cells decorated the arrays forming patterns described well by dipolar interactions between the magnetic elements and the nanowires. Calculations of the locations favorable for trapping were performed by evaluating the energy of interaction between the array and the nanowires. A second-order mechanism of cell capture was also identified, i.e. chaining by wire-wire dipolar interaction.
Effects of Nanoimprinted Structures on the Performance of Organic Solar Cells
Gill, Hardeep Singh; Li, Lian; Ren, Haizhou; ...
2018-01-01
The effect of nanoimprinted structures on the performance of organic bulk heterojunction solar cells was investigated. The nanostructures were formed over the active layer employing the soft lithographic technique. The measured incident photon-to-current efficiency revealed that the nanostructured morphology over the active layer can efficiently enhance both light harvesting and charge carrier collection due to improvement of the absorption of incident light and the buried nanostructured cathode, respectively. The devices prepared with the imprinted nanostructures exhibited significantly higher power conversion efficiencies as compared to those of the control cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, Pragya; Srivastava, A. K.; Khattak, B. Q.
Polymethyl methacrylate (PMMA) is characterized for electron beam interactions in the resist layer in lithographic applications. PMMA thin films (free standing) were prepared by solvent casting method. These films were irradiated with 30keV electron beam at different doses. Structural and chemical properties of the films were studied by means of X-ray diffraction and Fourier transform infra-red (FTIR) spectroscopy The XRD results showed that the amorphization increases with electron beam irradiation dose. FTIR spectroscopic analysis reveals that electron beam irradiation promotes the scission of carbonyl group and depletes hydrogen and converts polymeric structure into hydrogen depleted carbon network.
Effects of Nanoimprinted Structures on the Performance of Organic Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Hardeep Singh; Li, Lian; Ren, Haizhou
The effect of nanoimprinted structures on the performance of organic bulk heterojunction solar cells was investigated. The nanostructures were formed over the active layer employing the soft lithographic technique. The measured incident photon-to-current efficiency revealed that the nanostructured morphology over the active layer can efficiently enhance both light harvesting and charge carrier collection due to improvement of the absorption of incident light and the buried nanostructured cathode, respectively. The devices prepared with the imprinted nanostructures exhibited significantly higher power conversion efficiencies as compared to those of the control cells.
Ferroelectric/Semiconductor Tunable Microstrip Patch Antenna Developed
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
2001-01-01
A lithographically printed microwave antenna that can be switched and tuned has been developed. The structure consists of a rectangular metallic "patch" radiator patterned on a thin ferroelectric film that was grown on high-resistivity silicon. Such an antenna may one day enable a single-phased array aperture to transmit and receive signals at different frequencies, or it may provide a simple way to reconfigure fractal arrays for communications and radar applications.
Interaction Structures for Narrow-Band Millimeter-Wave Communications TWTs.
1981-04-01
comb would be cut from a single piece of copper, probably by a reliable but inexpensive technique such as electroerosion or "chemical milling". All...dimensional. These features would facilitate fabrication by chemical (photo-lithographic) or laser milling as well as by electroerosion with traveling...c, d) has also been implemented since this design should be more robust as well as compatible with electroerosion cutting using a traveling-wire
Symplectic modeling of beam loading in electromagnetic cavities
Abell, Dan T.; Cook, Nathan M.; Webb, Stephen D.
2017-05-22
Simulating beam loading in radio frequency accelerating structures is critical for understanding higher-order mode effects on beam dynamics, such as beam break-up instability in energy recovery linacs. Full wave simulations of beam loading in radio frequency structures are computationally expensive, and while reduced models can ignore essential physics, it can be difficult to generalize. Here, we present a self-consistent algorithm derived from the least-action principle which can model an arbitrary number of cavity eigenmodes and with a generic beam distribution. It has been implemented in our new Open Library for Investigating Vacuum Electronics (OLIVE).
Wind loads and competition for light sculpt trees into self-similar structures.
Eloy, Christophe; Fournier, Meriem; Lacointe, André; Moulia, Bruno
2017-10-18
Trees are self-similar structures: their branch lengths and diameters vary allometrically within the tree architecture, with longer and thicker branches near the ground. These tree allometries are often attributed to optimisation of hydraulic sap transport and safety against elastic buckling. Here, we show that these allometries also emerge from a model that includes competition for light, wind biomechanics and no hydraulics. We have developed MECHATREE, a numerical model of trees growing and evolving on a virtual island. With this model, we identify the fittest growth strategy when trees compete for light and allocate their photosynthates to grow seeds, create new branches or reinforce existing ones in response to wind-induced loads. Strikingly, we find that selected trees species are self-similar and follow allometric scalings similar to those observed on dicots and conifers. This result suggests that resistance to wind and competition for light play an essential role in determining tree allometries.
Yi, Chongyue; Su, Man-Nung; Dongare, Pratiksha D; Chakraborty, Debadi; Cai, Yi-Yu; Marolf, David M; Kress, Rachael N; Ostovar, Behnaz; Tauzin, Lawrence J; Wen, Fangfang; Chang, Wei-Shun; Jones, Matthew R; Sader, John E; Halas, Naomi J; Link, Stephan
2018-06-13
The study of acoustic vibrations in nanoparticles provides unique and unparalleled insight into their mechanical properties. Electron-beam lithography of nanostructures allows precise manipulation of their acoustic vibration frequencies through control of nanoscale morphology. However, the dissipation of acoustic vibrations in this important class of nanostructures has not yet been examined. Here we report, using single-particle ultrafast transient extinction spectroscopy, the intrinsic damping dynamics in lithographically fabricated plasmonic nanostructures. We find that in stark contrast to chemically synthesized, monocrystalline nanoparticles, acoustic energy dissipation in lithographically fabricated nanostructures is solely dominated by intrinsic damping. A quality factor of Q = 11.3 ± 2.5 is observed for all 147 nanostructures, regardless of size, geometry, frequency, surface adhesion, and mode. This result indicates that the complex Young's modulus of this material is independent of frequency with its imaginary component being approximately 11 times smaller than its real part. Substrate-mediated acoustic vibration damping is strongly suppressed, despite strong binding between the glass substrate and Au nanostructures. We anticipate that these results, characterizing the optomechanical properties of lithographically fabricated metal nanostructures, will help inform their design for applications such as photoacoustic imaging agents, high-frequency resonators, and ultrafast optical switches.
Fully Tunable Silicon Nanowire Arrays Fabricated by Soft Nanoparticle Templating.
Rey, By Marcel; Elnathan, Roey; Ditcovski, Ran; Geisel, Karen; Zanini, Michele; Fernandez-Rodriguez, Miguel-Angel; Naik, Vikrant V; Frutiger, Andreas; Richtering, Walter; Ellenbogen, Tal; Voelcker, Nicolas H; Isa, Lucio
2016-01-13
We demonstrate a fabrication breakthrough to produce large-area arrays of vertically aligned silicon nanowires (VA-SiNWs) with full tunability of the geometry of the single nanowires and of the whole array, paving the way toward advanced programmable designs of nanowire platforms. At the core of our fabrication route, termed "Soft Nanoparticle Templating", is the conversion of gradually compressed self-assembled monolayers of soft nanoparticles (microgels) at a water-oil interface into customized lithographical masks to create VA-SiNW arrays by means of metal-assisted chemical etching (MACE). This combination of bottom-up and top-down techniques affords excellent control of nanowire etching site locations, enabling independent control of nanowire spacing, diameter and height in a single fabrication route. We demonstrate the fabrication of centimeter-scale two-dimensional gradient photonic crystals exhibiting continuously varying structural colors across the entire visible spectrum on a single silicon substrate, and the formation of tunable optical cavities supported by the VA-SiNWs, as unambiguously demonstrated through numerical simulations. Finally, Soft Nanoparticle Templating is combined with optical lithography to create hierarchical and programmable VA-SiNW patterns.
Huh, Junghwan; Park, Jonghyurk; Kim, Gyu Tae; Park, Jeong Young
2011-02-25
We have successfully demonstrated a ZnO nanorod-based 3D nanostructure to show a high sensitivity and very fast response/recovery to hydrogen gas. ZnO nanorods have been synthesized selectively over the pre-defined area at relatively low temperature using a simple self-catalytic solution process assisted by a lithographic method. The conductance of the ZnO nanorod device varies significantly as the concentration of the hydrogen is changed without any additive metal catalyst, revealing a high sensitivity to hydrogen gas. Its superior performance can be explained by the porous structure of its three-dimensional network and the enhanced surface reaction of the hydrogen molecules with the oxygen defects resulting from a high surface-to-volume ratio. It was found that the change of conductance follows a power law depending on the hydrogen concentration. A Langmuir isotherm following an ideal power law and a cross-over behavior of the activation energy with respect to hydrogen concentration were observed. This is a very novel and intriguing phenomenon on nanostructured materials, which suggests competitive surface reactions in ZnO nanorod gas sensors.
Luan, Congcong; Shen, Hongyao; Fu, Jianzhong
2018-01-01
Condition monitoring in polymer composites and structures based on continuous carbon fibers show overwhelming advantages over other potentially competitive sensing technologies in long-gauge measurements due to their great electromechanical behavior and excellent reinforcement property. Although carbon fibers have been developed as strain- or stress-sensing agents in composite structures through electrical resistance measurements, the electromechanical behavior under flexural loads in terms of different loading positions still lacks adequate research, which is the most common situation in practical applications. This study establishes the relationship between the fractional change in electrical resistance of carbon fibers and the external loads at different loading positions along the fibers’ longitudinal direction. An approach for real-time monitoring of flexural loads at different loading positions was presented simultaneously based on this relationship. The effectiveness and feasibility of the approach were verified by experiments on carbon fiber-embedded three-dimensional (3D) printed thermoplastic polymer beam. The error in using the provided approach to monitor the external loads at different loading positions was less than 1.28%. The study fully taps the potential of continuous carbon fibers as long-gauge sensory agents and reinforcement in the 3D-printed polymer structures. PMID:29584665
DNA packaging and ejection forces in bacteriophage
Kindt, James; Tzlil, Shelly; Ben-Shaul, Avinoam; Gelbart, William M.
2001-01-01
We calculate the forces required to package (or, equivalently, acting to eject) DNA into (from) a bacteriophage capsid, as a function of the loaded (ejected) length, under conditions for which the DNA is either self-repelling or self-attracting. Through computer simulation and analytical theory, we find the loading force to increase more than 10-fold (to tens of piconewtons) during the final third of the loading process; correspondingly, the internal pressure drops 10-fold to a few atmospheres (matching the osmotic pressure in the cell) upon ejection of just a small fraction of the phage genome. We also determine an evolution of the arrangement of packaged DNA from toroidal to spool-like structures. PMID:11707588
Zhang, Yaqiong; Yang, Puyu; Yao, Fangyi; Liu, Jie; Yu, Liangli Lucy
2018-02-01
The data presented here are related to the research article entitled "Synthesis and characterization of alkylated caseinate, and its structure-curcumin loading property relationship in water" (Zhang et al., 2018) [1]. This data article reports the detailed spectra information for 1 H NMR, 13 C NMR and UPLC-Q-TOF MS of the N-succinimidyl fatty acid esters with various alkyl chain lengths (Cn-NHSs, n = 8, 12, 14 and 16). 1 H NMR, 13 C NMR and UPLC-Q-TOF MS spectra for C16-NHS are shown as an example. Then the stacked 1 H NMR spectra of the obtained alkylated caseinates (Cn-caseinates, n = 8, 12, 14 and 16) are provided. The surface hydrophobicity index (S 0 ) of Cn-caseinates with different substitution degrees (SD) of alkyl groups is shown. Additionally, Visual appearances for the formed aqueous dispersions of curcumin-loaded native caseinate (NaCas) and Cn-caseinates self-assemblies are shown. X-ray diffraction patterns of curcumin, C16-caseinate, its physical mixture and curcumin-loaded C16-caseinate self-assemblies are examined. The re-dispersibility and short-term storage stability of the curcumin-loaded NaCas and C16-caseinate self-assemblies are also studied.
NASA Astrophysics Data System (ADS)
Noh, Kunbae
2011-12-01
Self-ordered arrangements observed in various materials systems such as anodic aluminum oxide, polystyrene nanoparticles, and block copolymer are of great interest in terms of providing new opportunities in nanofabrication field where lithographic techniques are broadly used in general. Investigations on self-assembled nano arrays to understand how to obtain periodic nano arrays in an efficient yet inexpensive way, and how to realize advanced material and device systems thereof, can lead to significant impacts on science and technology for many forefront device applications. In this thesis, various aspects of periodic nano-arrays have been discussed including novel preparations, properties and applications of anodized aluminum oxide (AAO) and PS-b-P4VP (S4VP) di-block copolymer self-assembly. First, long-range ordered AAO arrays have been demonstrated. Nanoimprint lithography (NIL) process allowed a faithful pattern transfer of the imprint mold pattern onto Al thin film, and interesting self-healing and pattern tripling phenomena were observed, which could be applicable towards fabrication of the NIL master mold having highly dense pattern over large area, useful for fabrication of a large-area substrate for predictable positioning of arrayed devices. Second, S4VP diblock copolymer self-assembly and S4VP directed AAO self-assembly have been demonstrated in the Al thin film on Si substrate. Such a novel combination of two dissimilar self-assembly techniques demonstrated a potential as a versatile tool for nanopatterning formation on a Si substrate, capable of being integrated into Si process technology. As exemplary applications, vertically aligned Ni nanowires have been synthesized into an S4VP-guided AAO membrane on a Si substrate in addition to anti-dot structured [Co/Pd]n magnetic multilayer using S4VP self assembly. Third, a highly hexagonally ordered, vertically parallel aluminum oxide nanotube array was successfully fabricated via hard anodization technique. The Al2O3 nanotube arrays so fabricated exhibit a uniform and reproducible dimension, and a quite high aspect ratio of greater than ˜1,000. Such high-aspect-ratio, mechanically robust, large-surface-area nanotube array structure can be useful for many technical applications. As a potential application in biomedical research, drug storage/controlled drug release from such AAO nanotubes was investigated, and the advantageous potential of using AAO nanotubes for biological implant surface coatings alternative to TiO2 nanotubes has been discussed.
Study-simulation of space station dynamics
NASA Technical Reports Server (NTRS)
Gaitens, M. J.
1971-01-01
Matrix algebra translator and executor /MATE/ takes equations describing structural control system environmental interaction problem for flexible spacecraft components and loads them into self programming computer.
Ma, Mingying; Wang, Xiangzhao; Wang, Fan
2006-11-10
The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy.
EUV lithographic radiation grafting of thermo-responsive hydrogel nanostructures
NASA Astrophysics Data System (ADS)
Farquet, Patrick; Padeste, Celestino; Solak, Harun H.; Gürsel, Selmiye Alkan; Scherer, Günther G.; Wokaun, Alexander
2007-12-01
Nanostructures of the thermoresponsive poly( N-isopropyl acrylamide) (PNIPAAm) and of PNIPAAm-block-poly(acrylic acid) copolymers were produced on poly(tetrafluoroethylene-co-ethyelene) (ETFE) films using extreme ultraviolet (EUV) lithographic exposure with subsequent graft-polymerization. The phase transition of PNIPAAm nanostructures at the low critical solution temperature (LCST) at 32 °C was imaged by atomic force microscopy (AFM) phase contrast measurements in pure water. Results show a higher phase contrast for samples measured below the LCST temperature than for samples above the LCST, proving that the soft PNIPAAm hydrogel transforms into a much more compact conformation above the LCST. EUV lithographic exposures were combined with the reversible addition-fragment chain transfer (RAFT)-mediated polymerization using cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agent to synthesize PNIPAAm block-copolymer nanostructures.
Jung, Min Wook; Myung, Sung; Song, Wooseok; Kang, Min-A; Kim, Sung Ho; Yang, Cheol-Soo; Lee, Sun Sook; Lim, Jongsun; Park, Chong-Yun; Lee, Jeong-O; An, Ki-Seok
2014-08-27
We have fabricated graphene-based chemical sensors with flexible heaters for the highly sensitive detection of specific gases. We believe that increasing the temperature of the graphene surface significantly enhanced the electrical signal change of the graphene-based channel, and reduced the recovery time needed to obtain a normal state of equilibrium. In addition, a simple and efficient soft lithographic patterning process was developed via surface energy modification for advanced, graphene-based flexible devices, such as gas sensors. As a proof of concept, we demonstrated the high sensitivity of NO2 gas sensors based on graphene nanosheets. These devices were fabricated using a simple soft-lithographic patterning method, where flexible graphene heaters adjacent to the channel of sensing graphene were utilized to control graphene temperature.
Melt rheological properties of nucleated PET/MWCNT nanocomposites
NASA Astrophysics Data System (ADS)
Gaonkar, Amita; Murudkar, Vrishali; Deshpande, V. D.
2018-05-01
This work investigates the effect of precipitated Polyethylene Terephthalate (p-PET) and loading of Multiwalled carbon nanotubes (MWCNT) on morphology and rheology of Polyethylene Terephthalate (PET)/MWCNT nanocomposites. As received PET and Self-Nucleated PET (Nuc-PET) nanocomposites with different loadings of multi-walled carbon nanotubes (MWCNT) were prepared by melt mixing technique. Synthesized reorganized PET crystallizes rapidly from the melt and it is used in small quantities as a self-nucleating agent to make Nuc-PET. In the present study, Rheological properties of nanocomposites are obtained and results show with increase in MWCNT loading complex viscosity of nanocomposites increases. Nonterminal solid like rheological behavior of PET nanocomposites were observed at low frequencies, which indicates the formation of the network like structures of MWCNT in nanocomposites. Morphological and rheological properties of self-nucleated PET nanocomposites improved significantly may be due to self-nucleating agent p-PET. Morphological properties were studied by Scanning Electron Microscopy (SEM). SEM shows better dispersion of MWCNT in Nuc-PET nanocomposites.
Weight optimization of large span steel truss structures with genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mojolic, Cristian; Hulea, Radu; Pârv, Bianca Roxana
2015-03-10
The paper presents the weight optimization process of the main steel truss that supports the Slatina Sport Hall roof. The structure was loaded with self-weight, dead loads, live loads, snow, wind and temperature, grouped in eleven load cases. The optimization of the structure was made using genetic algorithms implemented in a Matlab code. A total number of four different cases were taken into consideration when trying to determine the lowest weight of the structure, depending on the types of connections with the concrete structure ( types of supports, bearing modes), and the possibility of the lower truss chord nodes tomore » change their vertical position. A number of restrictions for tension, maximum displacement and buckling were enforced on the elements, and the cross sections are chosen by the program from a user data base. The results in each of the four cases were analyzed in terms of weight, element tension, element section and displacement. The paper presents the optimization process and the conclusions drawn.« less
NASA Astrophysics Data System (ADS)
Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.
2016-07-01
Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.
Amplitude and phase beam shaping for highest sensitivity in sidewall angle detection.
Cisotto, Luca; Paul Urbach, H
2017-01-01
In integrated circuits manufacturing, specific structures are used as tools to evaluate the quality of the lithographic process, and the shape of these structures is often described by a few parameters, of which in particular the sidewall angle suffers from considerable inaccuracies. Using scalar diffraction theory, we investigate whether a properly shaped cylindrically focused probing beam could increase the ability to detect tiny changes in this angle in the case of a cliff-like structure, modeled as a phase object. This paper describes the theoretical formulation used to calculate the optimized beam and compares its performance with the case of a focused plane wave.
Recent progress in plasmonic colour filters for image sensor and multispectral applications
NASA Astrophysics Data System (ADS)
Pinton, Nadia; Grant, James; Choubey, Bhaskar; Cumming, David; Collins, Steve
2016-04-01
Using nanostructured thin metal films as colour filters offers several important advantages, in particular high tunability across the entire visible spectrum and some of the infrared region, and also compatibility with conventional CMOS processes. Since 2003, the field of plasmonic colour filters has evolved rapidly and several different designs and materials, or combination of materials, have been proposed and studied. In this paper we present a simulation study for a single- step lithographically patterned multilayer structure able to provide competitive transmission efficiencies above 40% and contemporary FWHM of the order of 30 nm across the visible spectrum. The total thickness of the proposed filters is less than 200 nm and is constant for every wavelength, unlike e.g. resonant cavity-based filters such as Fabry-Perot that require a variable stack of several layers according to the working frequency, and their passband characteristics are entirely controlled by changing the lithographic pattern. It will also be shown that a key to obtaining narrow-band optical response lies in the dielectric environment of a nanostructure and that it is not necessary to have a symmetric structure to ensure good coupling between the SPPs at the top and bottom interfaces. Moreover, an analytical method to evaluate the periodicity, given a specific structure and a desirable working wavelength, will be proposed and its accuracy demonstrated. This method conveniently eliminate the need to optimize the design of a filter numerically, i.e. by running several time-consuming simulations with different periodicities.
Controlled-reflectance surfaces with film-coupled colloidal nanoantennas.
Moreau, Antoine; Ciracì, Cristian; Mock, Jack J; Hill, Ryan T; Wang, Qiang; Wiley, Benjamin J; Chilkoti, Ashutosh; Smith, David R
2012-12-06
Efficient and tunable absorption is essential for a variety of applications, such as designing controlled-emissivity surfaces for thermophotovoltaic devices, tailoring an infrared spectrum for controlled thermal dissipation and producing detector elements for imaging. Metamaterials based on metallic elements are particularly efficient as absorbing media, because both the electrical and the magnetic properties of a metamaterial can be tuned by structured design. So far, metamaterial absorbers in the infrared or visible range have been fabricated using lithographically patterned metallic structures, making them inherently difficult to produce over large areas and hence reducing their applicability. Here we demonstrate a simple method to create a metamaterial absorber by randomly adsorbing chemically synthesized silver nanocubes onto a nanoscale-thick polymer spacer layer on a gold film, making no effort to control the spatial arrangement of the cubes on the film. We show that the film-coupled nanocubes provide a reflectance spectrum that can be tailored by varying the geometry (the size of the cubes and/or the thickness of the spacer). Each nanocube is the optical analogue of a grounded patch antenna, with a nearly identical local field structure that is modified by the plasmonic response of the metal's dielectric function, and with an anomalously large absorption efficiency that can be partly attributed to an interferometric effect. The absorptivity of large surface areas can be controlled using this method, at scales out of reach of lithographic approaches (such as electron-beam lithography) that are otherwise required to manipulate matter on the nanoscale.
Controlled reflectance surfaces with film-coupled colloidal nanoantennas
Moreau, Antoine; Ciraci, Cristian; Mock, Jack J.; Hill, Ryan T.; Wang, Qiang; Wiley, Benjamin J.; Chilkoti, Ashutosh; Smith, David R.
2013-01-01
Efficient and tunable absorption is essential for a variety of applications, such as the design of controlled emissivity surfaces for thermophotovoltaic devices1; tailoring of the infrared spectrum for controlled thermal dissipation2; and detector elements for imaging3. Metamaterials based on metallic elements are particularly efficient as absorbing media, because both the electrical and the magnetic properties of a metamaterial can be tuned by structured design4. To date, metamaterial absorbers in the infrared or visible range have been fabricated using lithographically patterned metallic structures2,5–9, making them inherently difficult to produce over large areas and hence reducing their applicability. We demonstrate here an extraordinarily simple method to create a metamaterial absorber by randomly adsorbing chemically synthesized silver nanocubes onto a nanoscale thick polymer spacer layer on a gold film –making no effort to control the spatial arrangement of the cubes on the film– and show that the film-coupled nanocubes provide a reflectance spectrum that can be tailored by varying the geometry. Each nanocube is the optical analog of the well-known grounded patch antenna, with a nearly identical local field structure that is modified by the plasmonic response of the metal dielectric function, and with an anomalously large absorption efficiency that can be partly attributed to an interferometric effect10. The absorptivity of large surface areas can be controlled using this method, at scales out of reach of lithographic approaches like e-beam lithography otherwise required to manipulate matter at the nanometer scale. PMID:23222613
Study on Buckling of Stiff Thin Films on Soft Substrates as Functional Materials
NASA Astrophysics Data System (ADS)
Ma, Teng
In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously generated submicron buckles of film/polymer are also used as an optical mask to produce submicron periodic patterns with large filling ratio in contrast to generating only ˜100 nm edge submicron patterns in conventional near-field soft contact photolithography. This thesis aims to deepen understanding of buckling behavior of thin films on compliant substrates and, in turn, to harness the fundamental properties of such instability for diverse applications.
Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot.
Verma, V B; Stevens, Martin J; Silverman, K L; Dias, N L; Garg, A; Coleman, J J; Mirin, R P
2011-02-28
We demonstrate photon antibunching from a single lithographically defined quantum dot fabricated by electron beam lithography, wet chemical etching, and overgrowth of the barrier layers by metalorganic chemical vapor deposition. Measurement of the second-order autocorrelation function indicates g(2)(0)=0.395±0.030, below the 0.5 limit necessary for classification as a single photon source.
Computer-aided engineering system for design of sequence arrays and lithographic masks
Hubbell, Earl A.; Lipshutz, Robert J.; Morris, Macdonald S.; Winkler, James L.
1997-01-01
An improved set of computer tools for forming arrays. According to one aspect of the invention, a computer system is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files to design and/or generate lithographic masks.
ERIC Educational Resources Information Center
Palczewski, Catherine H.
2005-01-01
In 1909, at the height of the woman suffrage controversy and during the golden age of postcards, the Dunston-Weiler Lithograph Company of New York produced a twelve-card set of full-color lithographic cartoon postcards opposing woman suffrage. The postcard images reflect, and depart from, verbal arguments concerning woman suffrage prevalent during…
Improvements of self-assembly properties via homopolymer addition or block-copolymer blends
NASA Astrophysics Data System (ADS)
Chevalier, X.; Nicolet, C.; Tiron, R.; Gharbi, Ahmed; Argoud, M.; Couderc, C.; Fleury, Guillaume; Hadziioannou, G.; Iliopoulos, I.; Navarro, C.
2014-03-01
The properties of cylindrical poly(styrene-b-methylmethacrylate) (PS-b-PMMA) BCPs self-assembly in thinfilms are studied when the pure BCPs are blended either with a homopolymer or with another cylindrical PS-b-PMMA based BCP. For both of these approaches, we show that the period of the self-assembled features can be easily tuned and controlled, and that the final material presents interesting characteristics, such as the possibility to achieve thicker defects-free films, as compared to pure block-copolymers having the same period. Moreover, a statistical defectivity study based on a Delaunay triangulation and Voronoi analysis of the self-assemblies made with the different blends is described, and prove that despite their high value of polydispersity index, these blends exhibit also improved selfassembly properties (bigger monocrystalline arrangements and enhanced kinetics of defects annihilation) as compared to pure and monodisperse block-copolymers. Finally, the behavior of the blends is also compared to the ones their pure counter-part in templated approach like the contact-hole shrink to evaluate their respective process-window and response toward this physical constrain for lithographic applications.
NASA Astrophysics Data System (ADS)
Wang, Xiumin; Gao, Jianbang; Wang, Zhikun; Xu, Jianchang; Li, Chunling; Sun, Shuangqing; Hu, Songqing
2017-10-01
Dissipative particle dynamics (DPD) simulations were applied to investigate the coating repair agent dicyclopentadience (DCPD) in pH-sensitive micelles. The results show micelles self-assembled from triblock copolymers with strong hydrophobic interaction are not conducive to loading DCPD, and only micelles with weak interaction parameter can encapsulate DCPD well. After protonation, the structure of micelle was disassembled and DCPD beads have a stronger ability to shrink polymer chains and exposed to water. This work provides mesoscopic insight into self-assembly and disassembly of desired agent-loaded micelle, and might be useful for the design of new materials for agent delivery.
Diffractive phase-shift lithography photomask operating in proximity printing mode.
Cirino, Giuseppe A; Mansano, Ronaldo D; Verdonck, Patrick; Cescato, Lucila; Neto, Luiz G
2010-08-02
A phase shift proximity printing lithographic mask is designed, manufactured and tested. Its design is based on a Fresnel computer-generated hologram, employing the scalar diffraction theory. The obtained amplitude and phase distributions were mapped into discrete levels. In addition, a coding scheme using sub-cells structure was employed in order to increase the number of discrete levels, thus increasing the degree of freedom in the resulting mask. The mask is fabricated on a fused silica substrate and an amorphous hydrogenated carbon (a:C-H) thin film which act as amplitude modulation agent. The lithographic image is projected onto a resist coated silicon wafer, placed at a distance of 50 microm behind the mask. The results show a improvement of the achieved resolution--linewidth as good as 1.5 microm--what is impossible to obtain with traditional binary masks in proximity printing mode. Such achieved dimensions can be used in the fabrication of MEMS and MOEMS devices. These results are obtained with a UV laser but also with a small arc lamp light source exploring the partial coherence of this source.
Inorganic resist materials based on zirconium phosphonate for atomic force microscope lithography
NASA Astrophysics Data System (ADS)
Kang, Mankyu; Kim, Seonae; Jung, JinHyuck; Kim, Heebom; Shin, Inkyun; Jeon, Chanuk; Lee, Haiwon
2014-03-01
New inorganic resist materials based on metal complexes were investigated for atomic force microscope (AFM) lithography. Phosphoric acids are good for self-assembly because of their strong binding energy. In this work, zirconium phosphonate system are newly synthesized for spin-coatable materials in aqueous solutions and leads to negative tone pattern for improving line edge roughness. Low electron exposure by AFM lithography could generate a pattern by electrochemical reaction and cross-linking of metal-oxo complexes. It has been reported that the minimum pattern results are affected by lithographic speed, and the applied voltage between a tip and a substrate.
Stress-Constrained Structural Topology Optimization with Design-Dependent Loads
NASA Astrophysics Data System (ADS)
Lee, Edmund
Topology optimization is commonly used to distribute a given amount of material to obtain the stiffest structure, with predefined fixed loads. The present work investigates the result of applying stress constraints to topology optimization, for problems with design-depending loading, such as self-weight and pressure. In order to apply pressure loading, a material boundary identification scheme is proposed, iteratively connecting points of equal density. In previous research, design-dependent loading problems have been limited to compliance minimization. The present study employs a more practical approach by minimizing mass subject to failure constraints, and uses a stress relaxation technique to avoid stress constraint singularities. The results show that these design dependent loading problems may converge to a local minimum when stress constraints are enforced. Comparisons between compliance minimization solutions and stress-constrained solutions are also given. The resulting topologies of these two solutions are usually vastly different, demonstrating the need for stress-constrained topology optimization.
Self-equilibrated Tapered Three-stage Tensegrity Mast
NASA Astrophysics Data System (ADS)
Oh, C. L.; Choong, K. K.; Nishimura, T.; Lee, S. W.
2018-04-01
Investigation of tensegrity structures for the space application is ongoing owing to the characteristics of being lightweight and flexible. Tensegrity structures consist of struts and cables are self-stressed and stable under gravitational loading. Form-finding is an important process to obtain the configuration of tensegrity structures that are in self-equilibrated state. Form-finding of tensegrity structures involves a complex computational strategy in solving the geometrical and forces of the structures. This paper aims to form-finding for a tapered three-stage tensegrity mast. The form-finding strategy involves the assemblage of the tensegrity mast, establishment of equilibrium equations and determination of one possible set of coefficient beta. Several cases of configurations with various twist angles with range of 20°-40° are investigated. A configuration with 9 struts and 42 cables satisfying the material elastic conditions was successfully found. The scalable self-equilibrated tensegrity mast is recommended for space applications.
Lithographic qualification of high-transmission mask blank for 10nm node and beyond
NASA Astrophysics Data System (ADS)
Xu, Yongan; Faure, Tom; Viswanathan, Ramya; Lobb, Granger; Wistrom, Richard; Burns, Sean; Hu, Lin; Graur, Ioana; Bleiman, Ben; Fischer, Dan; Mignot, Yann; Sakamoto, Yoshifumi; Toda, Yusuke; Bolton, John; Bailey, Todd; Felix, Nelson; Arnold, John; Colburn, Matthew
2016-04-01
In this paper, we discuss the lithographic qualification of high transmission (High T) mask for Via and contact hole applications in 10nm node and beyond. First, the simulated MEEF and depth of focus (DoF) data are compared between the 6% and High T attnPSM masks with the transmission of High T mask blank varying from 12% to 20%. The 12% High T blank shows significantly better MEEF and larger DoF than those of 6% attnPSM mask blank, which are consistent with our wafer data. However, the simulations show no obvious advantage in MEEF and DoF when the blank transmittance is larger than 12%. From our wafer data, it has been seen that the common process window from High T mask is 40nm bigger than that from the 6% attnPSM mask. In the elongated bar structure with smaller aspect ratio, 1.26, the 12% High T mask shows significantly less develop CD pull back in the major direction. Compared to the High T mask, the optimized new illumination condition for 6% attnPSM shows limited improvement in MEEF and the DoF through pitch. In addition, by using the High T mask blank, we have also investigated the SRAF printing, side lobe printing and the resist profile through cross sections, and no patterning risk has been found for manufacturing. As part of this work new 12% High T mask blank materials and processes were developed, and a brief overview of key mask technology development results have been shared. Overall, it is concluded that the High T mask, 12% transmission, provides the most robust and extendable lithographic solution for 10nm node and beyond.
NASA Astrophysics Data System (ADS)
Joo, Hyun S.; Seo, Dong C.; Kim, Chang M.; Lim, Young T.; Cho, Seong D.; Lee, Jong B.; Song, Ji Y.; Kim, Kyoung M.; Park, Joo H.; Jung, Jae Chang; Shin, Ki S.; Bok, Cheol Kyu; Moon, Seung C.
2004-05-01
There are numerous methods being explored by lithographers to achieve the patterning of sub-90nm contact hole features. Regarding optical impact on contact imaging, various optical extension techniques such as assist features, focus drilling, phase shift masks, and off-axis illumination are being employed to improve the aerial image. One possible option for improving of the process window in contact hole patterning is resist reflow. We have already reported the resist using a ring opened polymer of maleic anhydride unit(ROMA) during the past two years in this conference. It has several good properties such as UV transmittance, PED stability, solubility and storage stability. The resist using ROMA polymer as a matrix resin showed a good lithographic performance at C/H pattern and one of the best characteristics in a ROMA polymer is the property of thermal shrinkage. It has a specific glass transition temperature(Tg) each polymers, so they made a applying of resist reflow technique to print sub-90nm C/H possible. Recently, we have researched about advanced ROMA polymer(ROMA II), which is composed of cycloolefine derivatives with existing ROMA type polymer(ROMA I), for dry etch resistance increasing, high resolution, and good thermal shrinkage property. In this paper, we will present the structure, thermal shrinkage properties, Tg control, material properties for ROMA II polymer and will show characteristics, the lithographic performance for iso and dense C/H applications of the resist using ROMA II polymer. In addition, we will discuss resist reflow data gained at C/H profile of sub-90nm sizes, which has good process window.
Leonardo's Rule, Self-Similarity, and Wind-Induced Stresses in Trees
NASA Astrophysics Data System (ADS)
Eloy, Christophe
2011-12-01
Examining botanical trees, Leonardo da Vinci noted that the total cross section of branches is conserved across branching nodes. In this Letter, it is proposed that this rule is a consequence of the tree skeleton having a self-similar structure and the branch diameters being adjusted to resist wind-induced loads.
Computer-aided engineering system for design of sequence arrays and lithographic masks
Hubbell, Earl A.; Morris, MacDonald S.; Winkler, James L.
1999-01-05
An improved set of computer tools for forming arrays. According to one aspect of the invention, a computer system (100) is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files (104) to design and/or generate lithographic masks (110).
Computer-aided engineering system for design of sequence arrays and lithographic masks
Hubbell, Earl A.; Morris, MacDonald S.; Winkler, James L.
1996-01-01
An improved set of computer tools for forming arrays. According to one aspect of the invention, a computer system (100) is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files (104) to design and/or generate lithographic masks (110).
Computer-aided engineering system for design of sequence arrays and lithographic masks
Hubbell, E.A.; Morris, M.S.; Winkler, J.L.
1999-01-05
An improved set of computer tools for forming arrays is disclosed. According to one aspect of the invention, a computer system is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files to design and/or generate lithographic masks. 14 figs.
Computer-aided engineering system for design of sequence arrays and lithographic masks
Hubbell, E.A.; Lipshutz, R.J.; Morris, M.S.; Winkler, J.L.
1997-01-14
An improved set of computer tools for forming arrays is disclosed. According to one aspect of the invention, a computer system is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files to design and/or generate lithographic masks. 14 figs.
Computer-aided engineering system for design of sequence arrays and lithographic masks
Hubbell, E.A.; Morris, M.S.; Winkler, J.L.
1996-11-05
An improved set of computer tools for forming arrays is disclosed. According to one aspect of the invention, a computer system is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files to design and/or generate lithographic masks. 14 figs.
Wu, Wensheng; Zhang, Canyang; Lin, Wenjing; Chen, Quan; Guo, Xindong; Qian, Yu; Zhang, Lijuan
2015-01-01
Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments.
Lin, Wenjing; Chen, Quan; Guo, Xindong; Qian, Yu; Zhang, Lijuan
2015-01-01
Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments. PMID:25780923
Xiong, Yuan; Zhu, Minshen; Wang, Zhenguang; Schneider, Julian; Huang, He; Kershaw, Stephen V; Zhi, Chunyi; Rogach, Andrey L
2018-05-01
A cellulose paper is used impregnated with light-emitting CdTe nanocrystals and carbon dots, and filled with a polyurethane to fabricate uniform transparent composite films with bright photoluminescence of red (R), green (G), and blue (B) (RGB) colors. A building brick-like assembly method is introduced to realize RGB multicolor emission patterns from this composite material. By sectioning out individual pixels from monochrome-emissive composite sheets, the advantage of the self-healing properties of polyurethane is taken to arrange and weld them into a RGB patterned fabric by brief exposure to ethanol. This provides an approach to form single layer RGB light-emitting pixels, such as potentially required in the display applications, without the use of any lithographic or etching processing. The method can utilize a wide range of different solution-based kinds of light-emitting materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hencken, Kenneth R.; Sartor, George B.
2004-08-03
An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.
Mobile monolithic polymer elements for flow control in microfluidic devices
Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.
2004-08-31
A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
Mobile Monolith Polymer Elements For Flow Control In Microfluidic Systems
Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.
2006-01-24
A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
Mobile monolithic polymer elements for flow control in microfluidic devices
Hasselbrink, Jr., Ernest F.; Rehm, Jason E [Alameda, CA; Shepodd, Timothy J [Livermore, CA; Kirby, Brian J [San Francisco, CA
2005-11-11
A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
Digital processing techniques and film density calibration for printing image data
Chavez, Pat S.; McSweeney, Joseph A.; Binnie, Douglas R.
1987-01-01
Satellite image data that cover a wide range of environments are being used to make prints that represent a map type product. If a wide distribution of these products is desired, they are printed using lithographic rather than photographic procedures to reduce the cost per print. Problems are encountered in the photo lab if the film products to be used for lithographic printing have the same density range and density curve characteristics as the film used for photographic printing. A method is presented that keeps the film densities within the 1.1 range required for lithographic printing, but generates film products with contrast similar to that in photographic film for the majority of data (80 percent). Also, spatial filters can be used to enhance local detail in dark and bright regions, as well as to sharpen the final image product using edge enhancement techniques.
Nonlinear Response and Residual Strength of Damaged Stiffened Shells Subjected to Combined Loads
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Britt, Vicki O.; Rose, Cheryl A.; Rankin, Charles C.
1996-01-01
The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Fuselage skins, frames stringers and failsafe straps are included in the models. Results are presented for various combinations of internal pressure and mechanical bending, vertical shear and torsion loads, and the effects of crack orientation and location on the shell response are described. These results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell, and the stress-intensity factors associated with a crack that are used to predict residual strength. The effects of representative combined loading conditions on the stress-intensity factors associated with a crack are presented. The effects of varying structural parameters on the stress-intensity factors associated with a crack, and on self-similar and non-self-similar crack-growth are also presented.
Binary colloidal structures assembled through Ising interactions
NASA Astrophysics Data System (ADS)
Khalil, Karim S.; Sagastegui, Amanda; Li, Yu; Tahir, Mukarram A.; Socolar, Joshua E. S.; Wiley, Benjamin J.; Yellen, Benjamin B.
2012-04-01
New methods for inducing microscopic particles to assemble into useful macroscopic structures could open pathways for fabricating complex materials that cannot be produced by lithographic methods. Here we demonstrate a colloidal assembly technique that uses two parameters to tune the assembly of over 20 different pre-programmed structures, including kagome, honeycomb and square lattices, as well as various chain and ring configurations. We programme the assembled structures by controlling the relative concentrations and interaction strengths between spherical magnetic and non-magnetic beads, which behave as paramagnetic or diamagnetic dipoles when immersed in a ferrofluid. A comparison of our experimental observations with potential energy calculations suggests that the lowest energy configuration within binary mixtures is determined entirely by the relative dipole strengths and their relative concentrations.
Kim, Jae Hwan Eric; Chrostowski, Lukas; Bisaillon, Eric; Plant, David V
2007-08-06
We demonstrate a Finite-Difference Time-Domain (FDTD) phase methodology to estimate resonant wavelengths in Fabry-Perot (FP) cavity structures. We validate the phase method in a conventional Vertical-Cavity Surface-Emitting Laser (VCSEL) structure using a transfer-matrix method, and compare results with a FDTD reflectance method. We extend this approach to a Sub-Wavelength Grating (SWG) and a Photonic Crystal (Phc) slab, either of which may replace one of the Distributed Bragg Reflectors (DBRs) in the VCSEL, and predict resonant conditions with varying lithographic parameters. Finally, we compare the resonant tunabilities of three different VCSEL structures, taking quality factors into account.
Kedem, Leia E; Evans, Ellen M; Chapman-Novakofski, Karen
2014-11-01
Lifestyle interventions commonly measure psychosocial beliefs as precursors to positive behavior change, but often overlook questionnaire validation. This can affect measurement accuracy if the survey has been developed for a different population, as differing behavioral influences may affect instrument validity. The present study aimed to explore psychometric properties of self-efficacy and outcome expectation scales-originally developed for younger children-in a population of female college freshmen (N = 268). Exploratory principal component analysis was used to investigate underlying data patterns and assess validity of previously published subscales. Composite scores for reliable subscales (Cronbach's α ≥ .70) were calculated to help characterize self-efficacy and outcome expectation beliefs in this population. The outcome expectation factor structure clearly comprised of positive (α = .81-.90) and negative outcomes (α = .63-.67). The self-efficacy factor structure included themes of motivation and effort (α = .75-.94), but items pertaining to hunger and availability cross-loaded often. Based on cross-loading patterns and low Cronbach's alpha values, respectively, self-efficacy items regarding barriers to healthy eating and negative outcome expectation items should be refined to improve reliability. Composite scores suggested that eating healthfully was associated with positive outcomes, but self-efficacy to do so was lower. Thus, dietary interventions for college students may be more successful by including skill-building activities to enhance self-efficacy and increase the likelihood of behavior change. © The Author(s) 2014.
Bingi, Jayachandra; Murukeshan, Vadakke Matham
2015-12-18
Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.
Kose, Samet; Sayar, Kemal; Kalelioglu, Ulgen; Aydin, Nazan; Celikel, Feryal Cam; Gulec, Huseyin; Ak, Ismail; Kirpinar, Ismet; Cloninger, C Robert
2009-01-01
Cloninger's dimensional psychobiological model of personality accounts for both normal and abnormal variation in 2 major personality components: temperament and character. Here, we examined the psychometric properties of the Turkish version of the Temperament and Character Inventory (TCI) in a healthy Turkish population, obtaining normative data for the Turkish TCI. The study was conducted in healthy volunteers at both Karadeniz Technical University School of Medicine and Atatürk University School of Medicine (n = 683). The Turkish sample had significantly lower mean scores on Novelty Seeking and Reward Dependence and higher mean scores on Harm Avoidance than the American sample. The Turkish sample had significantly lower scores on Self-Directedness, Cooperativeness, and Self-Transcendence. Self-Directedness and Harm Avoidance, Cooperativeness and Reward Dependence, and Cooperativeness and Self-Directedness were intercorrelated. The Cronbach coeficients were between 0.60 and 0.85 on temperament dimensions, and between 0.82 and 0.83 on character dimensions. The lowest Cronbach coefficients were found in Reward Dependence (0.60) and Persistence (0.62). A principal axis factor analysis with a 4-factor solution revealed the highest loadings on Novelty Seeking and Harm Avoidance and relatively weaker loadings on Reward Dependence and Persistence. A 3-factor solution for character subscales indicated the highest loadings on Cooperativeness and Self-Transcendence. The factorial structure was consistent with Cloninger's 7-factor model of personality, and test-retest indicated a good stability of scores over time. The reliability and factorial validity of the Turkish version of the TCI are therefore supported.
Damage Precursor Investigation of Fiber-Reinforced Composite Materials Under Fatigue Loads
2013-09-01
19.21, 215713. Thostenson, E. T.; Chou, T.‐W. Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing ...composite structural life and the goal of the proposed research program to develop self -responsive engineered composites. Over 80%‒90% of the life of a...composite material. It is also envisaged to investigate and develop self -responsive engineered composite materials that provide an accurate health
Inspection of lithographic mask blanks for defects
Sommargren, Gary E.
2001-01-01
A visible light method for detecting sub-100 nm size defects on mask blanks used for lithography. By using optical heterodyne techniques, detection of the scattered light can be significantly enhanced as compared to standard intensity detection methods. The invention is useful in the inspection of super-polished surfaces for isolated surface defects or particulate contamination and in the inspection of lithographic mask or reticle blanks for surface defects or bulk defects or for surface particulate contamination.
New VCSEL technology with scalability for single mode operation and densely integrated arrays
NASA Astrophysics Data System (ADS)
Zhao, Guowei; Demir, Abdullah; Freisem, Sabine; Zhang, Yu; Liu, Xiaohang; Deppe, Dennis G.
2011-06-01
Data are presented demonstrating a new lithographic vertical-cavity surface-emitting laser (VCSEL) technology, which produces simultaneous mode- and current-confinement only by lithography and epitaxial crystal growth. The devices are grown by solid source molecular beam epitaxy, and have lithographically defined sizes that vary from 3 μm to 20 μm. The lithographic process allows the devices to have high uniformity throughout the wafer and scalability to very small size. The 3 μm device shows a threshold current of 310 μA, the slope efficiency of 0.81 W/A, and the maximum output power of more than 5 mW. The 3 μm device also shows single-mode single-polarization operation without the use of surface grating, and has over 25 dB side-mode-suppression-ratio up to 1 mW of output power. The devices have low thermal resistance due to the elimination of oxide aperture. High reliability is achieved by removal of internal strain caused by the oxide, stress test shows no degradation for the 3 μm device operating at very high injection current level of 142 kA/cm2 for 1000 hours, while at this dive level commercial VCSELs fail rapidly. The lithographic VCSEL technology can lead to manufacture of reliable small size laser diode, which will have application in large area 2-D arrays and low power sensors.
Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R.; Han, InTaek; Yun, Dong-Jin
2015-01-01
A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements. PMID:26490133
Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R; Han, InTaek; Yun, Dong-Jin
2015-10-22
A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements.
Technological innovations for a sustainable business model in the semiconductor industry
NASA Astrophysics Data System (ADS)
Levinson, Harry J.
2014-09-01
Increasing costs of wafer processing, particularly for lithographic processes, have made it increasingly difficult to achieve simultaneous reductions in cost-per-function and area per device. Multiple patterning techniques have made possible the fabrication of circuit layouts below the resolution limit of single optical exposures but have led to significant increases in the costs of patterning. Innovative techniques, such as self-aligned double patterning (SADP) have enabled good device performance when using less expensive patterning equipment. Other innovations have directly reduced the cost of manufacturing. A number of technical challenges must be overcome to enable a return to single-exposure patterning using short wavelength optical techniques, such as EUV patterning.
Templated dewetting: designing entirely self-organized platforms for photocatalysis.
Altomare, Marco; Nguyen, Nhat Truong; Schmuki, Patrik
2016-12-01
Formation and dispersion of metal nanoparticles on oxide surfaces in site-specific or even arrayed configuration are key in various technological processes such as catalysis, photonics, electrochemistry and for fabricating electrodes, sensors, memory devices, and magnetic, optical, and plasmonic platforms. A crucial aspect towards an efficient performance of many of these metal/metal oxide arrangements is a reliable fabrication approach. Since the early works on graphoepitaxy in the 70s, solid state dewetting of metal films on patterned surfaces has been much explored and regarded as a most effective tool to form defined arrays of ordered metal particles on a desired substrate. While templated dewetting has been studied in detail, particularly from a mechanistic perspective on lithographically patterned Si surfaces, the resulting outstanding potential of its applications on metal oxide semiconductors, such as titania, has received only limited attention. In this perspective we illustrate how dewetting and particularly templated dewetting can be used to fabricate highly efficient metal/TiO 2 photocatalyst assemblies e.g. for green hydrogen evolution. A remarkable advantage is that the synthesis of such photocatalysts is completely based on self-ordering principles: anodic self-organized TiO 2 nanotube arrays that self-align to a highest degree of hexagonal ordering are an ideal topographical substrate for a second self-ordering process, that is, templated-dewetting of sputter-deposited metal thin films. The controllable metal/semiconductor coupling delivers intriguing features and functionalities. We review concepts inherent to dewetting and particularly templated dewetting, and outline a series of effective tools that can be synergistically interlaced to reach fine control with nanoscopic precision over the resulting metal/TiO 2 structures (in terms of e.g. high ordering, size distribution, site specific placement, alloy formation) to maximize their photocatalytic efficiency. These processes are easy to scale up and have a high throughput and great potential to be applied to fabricate not only (photo)catalytic materials but also a large palette of other functional nanostructured elements and devices.
Templated dewetting: designing entirely self-organized platforms for photocatalysis
Altomare, Marco; Nguyen, Nhat Truong
2016-01-01
Formation and dispersion of metal nanoparticles on oxide surfaces in site-specific or even arrayed configuration are key in various technological processes such as catalysis, photonics, electrochemistry and for fabricating electrodes, sensors, memory devices, and magnetic, optical, and plasmonic platforms. A crucial aspect towards an efficient performance of many of these metal/metal oxide arrangements is a reliable fabrication approach. Since the early works on graphoepitaxy in the 70s, solid state dewetting of metal films on patterned surfaces has been much explored and regarded as a most effective tool to form defined arrays of ordered metal particles on a desired substrate. While templated dewetting has been studied in detail, particularly from a mechanistic perspective on lithographically patterned Si surfaces, the resulting outstanding potential of its applications on metal oxide semiconductors, such as titania, has received only limited attention. In this perspective we illustrate how dewetting and particularly templated dewetting can be used to fabricate highly efficient metal/TiO2 photocatalyst assemblies e.g. for green hydrogen evolution. A remarkable advantage is that the synthesis of such photocatalysts is completely based on self-ordering principles: anodic self-organized TiO2 nanotube arrays that self-align to a highest degree of hexagonal ordering are an ideal topographical substrate for a second self-ordering process, that is, templated-dewetting of sputter-deposited metal thin films. The controllable metal/semiconductor coupling delivers intriguing features and functionalities. We review concepts inherent to dewetting and particularly templated dewetting, and outline a series of effective tools that can be synergistically interlaced to reach fine control with nanoscopic precision over the resulting metal/TiO2 structures (in terms of e.g. high ordering, size distribution, site specific placement, alloy formation) to maximize their photocatalytic efficiency. These processes are easy to scale up and have a high throughput and great potential to be applied to fabricate not only (photo)catalytic materials but also a large palette of other functional nanostructured elements and devices. PMID:28567258
Torres-Rendon, Jose Guillermo; Femmer, Tim; De Laporte, Laura; Tigges, Thomas; Rahimi, Khosrow; Gremse, Felix; Zafarnia, Sara; Lederle, Wiltrud; Ifuku, Shinsuke; Wessling, Matthias; Hardy, John G; Walther, Andreas
2015-05-20
A sacrificial templating process using lithographically printed minimal surface structures allows complex de novo geo-metries of delicate hydrogel materials. The hydrogel scaffolds based on cellulose and chitin nanofibrils show differences in terms of attachment of human mesenchymal stem cells, and allow their differentiation into osteogenic outcomes. The approach here serves as a first example toward designer hydrogel scaffolds viable for biomimetic tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Krainak, Michael; Merritt, Scott
2016-01-01
Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.
Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems
NASA Astrophysics Data System (ADS)
Rotermund, K.; Barch, B.; Chapman, S.; Hattori, K.; Lee, A.; Palaio, N.; Shirley, I.; Suzuki, A.; Tran, C.
2016-07-01
Cosmic microwave background (CMB) polarization experiments are increasing the number of transition edge sensor (TES) bolometers to increase sensitivity. In order to maintain low thermal loading of the sub-Kelvin stage, the frequency-domain multiplexing (FDM) factor has to increase accordingly. FDM is achieved by placing TES bolometers in series with inductor-capacitor (LC) resonators, which select the readout frequency. The multiplexing factor can be raised with a large total readout bandwidth and small frequency spacing between channels. The inductance is kept constant to maintain a uniform readout bandwidth across detectors, while the maximum acceptable value is determined by bolometer stability. Current technology relies on commercially available ceramic chip capacitors. These have high scatter in their capacitance thereby requiring large frequency spacing. Furthermore, they have high equivalent series resistance (ESR) at higher frequencies and are time consuming and tedious to hand assemble via soldering. A solution lies in lithographed, planar spiral inductors (currently in use by some experiments) combined with interdigitated capacitors on a silicon (Si) substrate. To maintain reasonable device dimensions, we have reduced trace and gap widths of the LCs to 4 \\upmu m. We increased the inductance from 16 to 60 \\upmu H to achieve a higher packing density, a requirement for FDM systems with large multiplexing factors. Additionally, the Si substrate yields low ESR values across the entire frequency range and lithography makes mass production of LC pairs possible. We reduced mutual inductance between inductors by placing them in a checkerboard pattern with the capacitors, thereby increasing physical distances between adjacent inductors. We also reduce magnetic coupling of inductors with external sources by evaporating a superconducting ground plane onto the backside of the substrate. We report on the development of lithographed LCs in the 1-5 MHz range for use with FDM systems. These resonators will be used by CMB polarization experiments such as Polarbear-2, Simons Array, and SPT-3G. Existing FDM systems have multiplexing factors up to 16× . We report the extension to 40× , i.e., Polarbear-2, and 68× , i.e., SPT-3G. We present the design criteria of Polarbear-2's LC circuits, the fabrication techniques, and the testing. Concerns such as yield, accuracy in frequency, loss, and mutual inductance between spatially neighboring channels will be discussed.
Self-locking mechanical center joint
NASA Technical Reports Server (NTRS)
Bush, H. G.; Wallsom, R. E. (Inventor)
1985-01-01
A device for connecting, rotating and locking together a pair of structural half columns is described. The device is composed of an identical pair of cylindrical hub assemblies connected at their inner faces by a spring loaded hinge; each hub assembly having a structural half column attached to its outer end. Each hub assembly has a spring loading locking ring member movably attached adjacent to its inner face and includes a latch member for holding the locking ring in a rotated position subject to the force of its spring. Each hub assembly also has a hammer member for releasing the latch on the opposing hub assembly when the hub assemblies are rotated together. The spring loaded hinge connecting the hub assemblies rotates the hub assemblies and attached structural half columns together bringing the inner faces of the opposing hub assemblies into contact with one another.
Kang, Da-Young; Moon, Jun Hyuk
2014-01-01
Supercapacitors that exhibit long cycle lives and fast charge/discharge rates are a promising energy-storage technology for next-generation mobile or wearable electronic systems. A great challenge facing the fabrication of ultrathin supercapacitor components, specifically their porous electrodes, is whether such components can be integrated with the fabrication of electronic devices, i.e., semiconductor fabrication processes. Here, we introduce the lithographic fabrication of micrometre-thick, submicrometre-pore-patterned carbon for supercapacitor electrodes. The pore patterns designed by multi-beam interference lithography and direct carbonisation of the photoresist pattern produced pore-patterned carbon films. A facile doping process was subsequently employed to introduce nitrogen atoms into the carbon, which was intended to further enhance the carbon's capacitive properties. Specifically, during these fabrication steps, we developed an approach that uses a supporting shell on the surface of the pore patterns to maintain their structural integrity. The nitrogen-doped, pore-patterned carbon electrodes exhibited an areal specific capacitance of 32.7 mF/cm2 at 0.5 mA/cm2 when used as supercapacitor electrodes, which is approximately 20 times greater than that of commercially available MWCNT films measured under the same conditions. PMID:24953307
NASA Astrophysics Data System (ADS)
Jia; Wang; Tian; Li; Xu; Jiao; Cao; Wu
2016-10-01
SiO2-based microcapsules containing hydrophobic molecules exhibited potential applications such as extrinsic self-healing, drug delivery, due to outstanding thermal and chemical stability of SiO2. However, to construct SiO2-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue, limiting their further utilization. We herein design a single-batch route, a combined interfacial and in-situ polymerization strategy, to fabricate epoxy-containing SiO2-based microcapsules with both high encapsulation loading and long-term structural stability. The final SiO2-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step. In the subsequent in-situ polymerization step, the initial SiO2-based microcapsules as seeds could efficiently harvest SiO2 precursors and primary SiO2 particles to finely tune the SiO2 wall thickness, thereby enhancing long-term structural stability of the final SiO2-based microcapsules including high thermal stability with almost no any weight loss until 250°C, and strong tolerance against nonpolar solvents such as CCl4 with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days. These SiO2-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.
A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups.
Gittins, D I; Bethell, D; Schiffrin, D J; Nichols, R J
2000-11-02
So-called bottom-up fabrication methods aim to assemble and integrate molecular components exhibiting specific functions into electronic devices that are orders of magnitude smaller than can be fabricated by lithographic techniques. Fundamental to the success of the bottom-up approach is the ability to control electron transport across molecular components. Organic molecules containing redox centres-chemical species whose oxidation number, and hence electronic structure, can be changed reversibly-support resonant tunnelling and display promising functional behaviour when sandwiched as molecular layers between electrical contacts, but their integration into more complex assemblies remains challenging. For this reason, functionalized metal nanoparticles have attracted much interest: they exhibit single-electron characteristics (such as quantized capacitance charging) and can be organized through simple self-assembly methods into well ordered structures, with the nanoparticles at controlled locations. Here we report scanning tunnelling microscopy measurements showing that organic molecules containing redox centres can be used to attach metal nanoparticles to electrode surfaces and so control the electron transport between them. Our system consists of gold nanoclusters a few nanometres across and functionalized with polymethylene chains that carry a central, reversibly reducible bipyridinium moiety. We expect that the ability to electronically contact metal nanoparticles via redox-active molecules, and to alter profoundly their tunnelling properties by charge injection into these molecules, can form the basis for a range of nanoscale electronic switches.
Fracture-resistant monolithic dental crowns.
Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian
2016-03-01
To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.
FRACTURE-RESISTANT MONOLITHIC DENTAL CROWNS
Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian
2016-01-01
Objective To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Methods Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Results Experimental measurements and XFEM predictions were self consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. Significance The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. PMID:26792623
Feng, Jie; Cavicchi, Kevin A; Heinz, Hendrik
2011-12-27
Self-assembled diblock copolymer melts on patterned substrates can induce a smaller characteristic domain spacing compared to predefined lithographic patterns and enable the manufacture of circuit boards with a high area density of computing and storage units. Monte Carlo simulation using coarse-grain models of polystyrene-b-polydimethylsiloxane shows that the generation of high-density hexagonal and square patterns is controlled by the ratio N(D) of the surface area per post and the surface area per spherical domain of neat block copolymer. N(D) represents the preferred number of block copolymer domains per post. Selected integer numbers support the formation of ordered structures on hexagonal (1, 3, 4, 7, 9) and square (1, 2, 5, 7) templates. On square templates, only smaller numbers of block copolymer domains per post support the formation of ordered arrays with significant stabilization energies relative to hexagonal morphology. Deviation from suitable integer numbers N(D) increases the likelihood of transitional morphologies between square and hexagonal. Upon increasing the spacing of posts on the substrate, square arrays, nested square arrays, and disordered hexagonal morphologies with multiple coordination numbers were identified, accompanied by a decrease in stabilization energy. Control over the main design parameter N(D) may allow an up to 7-fold increase in density of spherical block copolymer domains per surface area in comparison to the density of square posts and provide access to a wide range of high-density nanostructures to pattern electronic devices.
Study of foldable elastic tubes for large space structure applications, phase 3
NASA Technical Reports Server (NTRS)
Jones, I. W.; Mitchell, S. O.
1981-01-01
A bi-convex foldable elastic tube, suitable for use in self deploying space structures, was subjected to a series of buckling tests to deterine initial buckling loads, collapse loads, and the buckling mode. The tube is cylindrical with a cross-section that is lenticular-like with flared edges. It is capable of being flattened in the center and folded compactly, storing up strain energy in the process. Upon removal of constraint, it springs back to its original straight configuration, releasing the stored strain energy. The tests showed that this type of tube has good resistance to buckling, with the initial buckling loads all falling within or above the range of those for comparable circular cylindrical tubes.
1976-01-01
a load cell for axial load sensing. The cylindrical spring fluid housing has a self-aligning bearing installed to suit the hoist rtounting provisions...PA dJ A L4 * f5 W 7 1 ~~t~ j"H2 j "xioA"AUSCCRCO El4 "sV. 10% PLA VIE - C : NJrAUk ATK ON AA U - . j4 5’ c IIf -O a ¶ .. ~~r~eF ON *A *~ A*WMA &fi
The molecular electronic device and the biochip computer: present status.
Haddon, R C; Lamola, A A
1985-04-01
The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology-is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor conductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but biomolecules do not seem to be imbued with useful electronic properties. Molecular beam epitaxy and thin-film techniques produce electronic devices but they "engineer down" and are currently unable to generate individual molecular units. The potential of the MED/BCC field is matched only by the obstacles that must be surmounted for its realization.
The molecular electronic device and the biochip computer: present status.
Haddon, R C; Lamola, A A
1985-01-01
The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology-is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor conductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but biomolecules do not seem to be imbued with useful electronic properties. Molecular beam epitaxy and thin-film techniques produce electronic devices but they "engineer down" and are currently unable to generate individual molecular units. The potential of the MED/BCC field is matched only by the obstacles that must be surmounted for its realization. PMID:3856865
Bifactor Structure for the Categorical Chinese Rosenberg Self-Esteem Scale.
Xu, Menglin; Leung, Shing-On
2016-10-11
Recently, the bifactor model was suggested for the latent structure of the Rosenberg Self-Esteem Scale (RSES). The present paper investigates (i) the differences among bifactor, bifactor negative and other models; (ii) the effects of treating data as both categorical vs continuous; (iii) whether a problematic item in the Chinese RSES should be removed; and (iv) whether the final scoring would be affected. With a sample of 1.734 grade 4-6 school pupils in Hong Kong, we used BIC differences in addition to the usual model fit indices, and found that there was strong evidence for using the bifactor model (RMSEA = .052, 90% CI [.043, .062], CFI = .992, TLI = .984 for 9-item RSES categorical). Little difference is found between treating data as categorical or continuous for fit indices, but the factor loading patterns are better in categorical case. Keeping a problematic item has little effect on fit indices, but would lead to unexpected negative loading. The ranking of loadings within positive and negative items across different conditions are the same, which has important effects on scoring. Loadings in the method effects in the bifactor models are all positive (p < .001), which is different from previous research. All models show similar results on scoring, and support the usual simple sum score in most practice.
Liu, Shiyuan; Xu, Shuang; Wu, Xiaofei; Liu, Wei
2012-06-18
This paper proposes an iterative method for in situ lens aberration measurement in lithographic tools based on a quadratic aberration model (QAM) that is a natural extension of the linear model formed by taking into account interactions among individual Zernike coefficients. By introducing a generalized operator named cross triple correlation (CTC), the quadratic model can be calculated very quickly and accurately with the help of fast Fourier transform (FFT). The Zernike coefficients up to the 37th order or even higher are determined by solving an inverse problem through an iterative procedure from several through-focus aerial images of a specially designed mask pattern. The simulation work has validated the theoretical derivation and confirms that such a method is simple to implement and yields a superior quality of wavefront estimate, particularly for the case when the aberrations are relatively large. It is fully expected that this method will provide a useful practical means for the in-line monitoring of the imaging quality of lithographic tools.
DNA Trojan Horses: Self-Assembled Floxuridine-Containing DNA Polyhedra for Cancer Therapy.
Mou, Quanbing; Ma, Yuan; Pan, Gaifang; Xue, Bai; Yan, Deyue; Zhang, Chuan; Zhu, Xinyuan
2017-10-02
Based on their structural similarity to natural nucleobases, nucleoside analogue therapeutics were integrated into DNA strands through conventional solid-phase synthesis. By elaborately designing their sequences, floxuridine-integrated DNA strands were synthesized and self-assembled into well-defined DNA polyhedra with definite drug-loading ratios as well as tunable size and morphology. As a novel drug delivery system, these drug-containing DNA polyhedra could ideally mimic the Trojan Horse to deliver chemotherapeutics into tumor cells and fight against cancer. Both in vitro and in vivo results demonstrate that the DNA Trojan horse with buckyball architecture exhibits superior anticancer capability over the free drug and other formulations. With precise control over the drug-loading ratio and structure of the nanocarriers, the DNA Trojan horse may play an important role in anticancer treatment and exhibit great potential in translational nanomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Confinement-induced Molecular Templating and Controlled Ligation
NASA Astrophysics Data System (ADS)
Berard, Daniel; Shayegan, Marjan; Michaud, François; Henkin, Gil; Scott, Shane; Leith, Jason; Leslie, Sabrina; Leslie Lab Team
Loading and manipulating long DNA molecules within sub-50 nm cross-section nanostructures for genomic and biochemical analyses, while retaining their structural integrity, present key technological challenges to the biotechnology sector, such as device clogging and molecular breakage. We overcome these challenges by using Convex Lens-induced Confinement (CLiC) technology to gently load DNA into nanogrooves from above. Here, we demonstrate single-fluorophore visualization of custom DNA barcodes as well as efficient top-loading of DNA into sub-50 nm nanogrooves of variable topographies. We study confinement-enhanced self-ligation of polymers loaded in circular nanogrooves. Further, we use concentric, circular nanogrooves to eliminate confinement gradient-induced drift of stretched DNA.
NASA Astrophysics Data System (ADS)
Ander Arregi, Jon; Horký, Michal; Fabianová, Kateřina; Tolley, Robert; Fullerton, Eric E.; Uhlíř, Vojtěch
2018-03-01
The effects of mesoscale confinement on the metamagnetic behavior of lithographically patterned FeRh structures are investigated via Kerr microscopy. Combining the temperature- and field-dependent magnetization reversal of individual sub-micron FeRh structures provides specific phase-transition characteristics of single mesoscale objects. Relaxation of the epitaxial strain caused by patterning lowers the metamagnetic phase transition temperature by more than 15 K upon confining FeRh films below 500 nm in one lateral dimension. We also observe that the phase transition becomes highly asymmetric when comparing the cooling and heating cycles for 300 nm-wide FeRh structures. The investigation of FeRh under lateral confinement provides an interesting platform to explore emergent metamagnetic phenomena arising from the interplay of the structural, magnetic and electronic degrees of freedom at the mesoscopic length scale.
The hierarchical structure of self-reported impulsivity
Kirby, Kris N.; Finch, Julia C.
2010-01-01
The hierarchical structure of 95 self-reported impulsivity items, along with delay-discount rates for money, was examined. A large sample of college students participated in the study (N = 407). Items represented every previously proposed dimension of self-reported impulsivity. Exploratory PCA yielded at least 7 interpretable components: Prepared/Careful, Impetuous, Divertible, Thrill and Risk Seeking, Happy-Go-Lucky, Impatiently Pleasure Seeking, and Reserved. Discount rates loaded on Impatiently Pleasure Seeking, and correlated with the impulsiveness and venturesomeness scales from the I7 (Eysenck, Pearson, Easting, & Allsopp, 1985). The hierarchical emergence of the components was explored, and we show how this hierarchical structure may help organize conflicting dimensions found in previous analyses. Finally, we argue that the discounting model (Ainslie, 1975) provides a qualitative framework for understanding the dimensions of impulsivity. PMID:20224803
Dynamics of Helium-Loaded Grain Boundaries under Shear Deformation in α-Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Fei; Yang, Li; Heinisch, Howard L.
2014-03-30
The defects produced in collision cascades will interact with microstructural features in materials, such as GBs and dislocations. The coupled motion of GBs under stress has been widely observed in simulations and experiments. Two symmetric tilt GBs with a common <110> tilt axis (Σ3 and Σ11) in bcc iron are used to investigate the coupled motion of GBs under shear deformation. Also, we have explored the effect of self-interstitial atoms (SIAs) loading on the GB motion, with different concentrations of interstitials randomly inserted around the GB plane. The simulation results show that the interstitial loading reduces the critical stress ofmore » the GB coupled motion for the Σ3 GB. Furthermore, the interstitials and vacancies are inserted randomly at the GB plane and at a distance of 1 nm away from the GB plane, respectively, to understand the self-healing mechanism of GBs under stress. The behavior of the defect-loaded GBs depends on the GB structure. The loaded interstitials in the Σ3 GB easily form <111> interstitial clusters that do not move along with the GB. The vacancies in the Σ3 GB impede the GB motion. However, the interstitials move along with the Σ11 GB and annihilate with vacancies when the GB moves into the vacancy-rich region, leading to the self-healing and damage recovery of the Σ11 GB.« less
Self-aligning biaxial load frame
Ward, M.B.; Epstein, J.S.; Lloyd, W.R.
1994-01-18
An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed cross head, and by alignment and linear motion elements of one load assembly relative to the load frame. 3 figures.
Self-aligning biaxial load frame
Ward, Michael B.; Epstein, Jonathan S.; Lloyd, W. Randolph
1994-01-01
An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed crosshead, and by alignment and linear motion elements of one load assembly relative to the load frame.
Modeling, Fabrication, and Analysis of Vertical Conduction Gallium Nitride Fin MOSFET
NASA Astrophysics Data System (ADS)
Tahhan, Maher Bishara
Gallium Nitride has seen much interest in the field of electronics due to its large bandgap and high mobility. In the field of power electronics, this combination leads to a low on-resistance for a given breakdown voltage. To take full advantage of this, vertical conduction transistors in GaN can give high breakdown voltages independent of chip area, leading to transistors with nominally low on resistance with high breakdown at a low cost. Acknowledging this, a vertical transistor design is presented with a small footprint area. This design utilizes a fin structure as a double gated insulated MESFET with electrons flowing from the top of the fin downward. The transistor's characteristics and design is initially explored via simulation and modelling. In this modelling, it is found that the narrow dimension of the fin must be sub-micron to allow for the device to be turned off with no leakage current and have a positive threshold voltage. Several process modules are developed and integrated to fabricate the device. A smooth vertical etch leaving low damage to the surfaces is demonstrated and characterized, preventing micromasking during the GaN dry etch. Methods of removing damage from the dry etch are tested, including regrowth and wet etching. Several hard masks were developed to be used in conjunction with this GaN etch for various requirements of the process, such as material constraints and self-aligning a metal contact. Multiple techniques are tested to deposit and pattern the gate oxide and metal to ensure good contact with the channel without causing unwanted shorts. To achieve small fin dimensions, a self-aligned transistor process flow is presented allowing for smaller critical dimensions at increased fabrication tolerances by avoiding the use of lithographic steps that require alignments to very high accuracy. In the case of the device design presented, the fins are lithographically defined at the limit of i-line stepper system. From this single lithography, the sources are formed, fins are etched, and the gate insulator and metal are deposited. The first functional fabricated devices are presented, but exhibit a few differences from the model. A threshold voltage of -6 V, was measured, with an ID of 5 kA/cm2 at 3 V, and Ron of 0.6 mO/cm 2. The current is limited by the Schottky nature of the top contacts and show a turn-on voltage as a result. These measurements are comparable to recently published GaN fin MOSFET data, whose devices were defined by e-beam lithography. This dissertation work sought to show that a vertical conduction fin MOSFET can be fabricated on GaN. Furthermore, it aimed to provide a self-aligned process that does not require e-beam lithography. With further development, such devices can be designed to hold large voltages while maintaining a small footprint.
Han, Sangkwon; Bae, Hyung Jong; Kim, Junhoi; Shin, Sunghwan; Choi, Sung-Eun; Lee, Sung Hoon; Kwon, Sunghoon; Park, Wook
2012-11-20
A QR-coded microtaggant for the anti-counterfeiting of drugs is proposed that can provide high capacity and error-correction capability. It is fabricated lithographically in a microfluidic channel with special consideration of the island patterns in the QR Code. The microtaggant is incorporated in the drug capsule ("on-dose authentication") and can be read by a simple smartphone QR Code reader application when removed from the capsule and washed free of drug. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
He, Yuan; Li, Xiang; Que, Long
2012-10-01
Optically transparent anodic aluminum oxide (AAO) nanostructure thin film has been successfully fabricated from lithographically patterned aluminum on indium tin oxide (ITO) glass substrates for the first time, indicating the feasibility to integrate the AAO nanostructures with microdevices or microfluidics for a variety of applications. Both one-step and two-step anodization processes using sulfuric acid and oxalic acid have been utilized for fabricating the AAO nanostructure thin film. The optical properties of the fabricated AAO nanostructure thin film have been evaluated and analyzed.
NASA Astrophysics Data System (ADS)
Sim, Jai S.; Zhou, You; Ramanathan, Shriram
2012-10-01
We demonstrate a robust lithographic patterning method to fabricate self-supported sub-50 nm VO2 membranes that undergo a phase transition. Utilizing such self-supported membranes, we directly observed a shift in the metal-insulator transition temperature arising from stress relaxation and consistent opening of the hysteresis. Electric double layer transistors were then fabricated with the membranes and compared to thin film devices. The ionic liquid allowed reversible modulation of channel resistance and distinguishing bulk processes from the surface effects. From the shift in the metal-insulator transition temperature, the carrier density doped through electrolyte gating is estimated to be 1 × 1020 cm-3. Hydrogen annealing studies showed little difference in resistivity between the film and the membrane indicating rapid diffusion of hydrogen in the vanadium oxide rutile lattice consistent with previous observations. The ability to fabricate electrically-wired, suspended VO2 ultra-thin membranes creates new opportunities to study mesoscopic size effects on phase transitions and may also be of interest in sensor devices.
Self-Oscillating Josephson Quantum Heat Engine
NASA Astrophysics Data System (ADS)
Marchegiani, G.; Virtanen, P.; Giazotto, F.; Campisi, M.
2016-11-01
The design of a mesoscopic self-oscillating heat engine that works thanks to purely quantum effects is presented. The proposed scheme is amenable to experimental implementation with current state-of-the-art nanotechnology and materials. One of the main features of the structure is its versatility: The engine can deliver work to a generic load without galvanic contact. This versatility makes it a promising building block for low-temperature on-chip energy-management applications. The heat engine consists of a circuit featuring a thermoelectric element based on a ferromagnetic insulator-superconductor tunnel junction and a Josephson weak link that realizes a purely quantum dc-ac converter. This makeup enables the contactless transfer of work to the load (a generic RL circuit). The performance of the heat engine is investigated as a function of the thermal gradient applied to the thermoelectric junction. Power up to 1 pW can be delivered to a load RL=10 Ω .
Sanders, David M.; Decker, Derek E.
1999-01-01
Optical patterns and lithographic techniques are used as part of a process to embed parallel and evenly spaced conductors in the non-planar surfaces of an insulator to produce high gradient insulators. The approach extends the size that high gradient insulating structures can be fabricated as well as improves the performance of those insulators by reducing the scale of the alternating parallel lines of insulator and conductor along the surface. This fabrication approach also substantially decreases the cost required to produce high gradient insulators.
Wooh, Sanghyuk; Yoon, Hyunsik; Jung, Jae-Hyun; Lee, Yong-Gun; Koh, Jai Hyun; Lee, Byoungho; Kang, Yong Soo; Char, Kookheon
2013-06-11
3D TiO2 photoanodes in dye-sensitized solar cells (DSCs) are fabricated by the soft lithographic technique for efficient light trapping. An extended strategy to the construction of randomized pyramid structure is developed by the conventional wet-etching of a silicon wafer for low-cost fabrication. Moreover, the futher enhancement of light absorption resulting in photocurrent increase is achieved by combining the 3D photoanode with a conventional scattering layer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Verevkin, Yu K.; Klimov, A. Yu; Gribkov, B. A.; Petryakov, V. N.; Koposova, E. V.; Olaizola, Santiago M.
2008-11-01
By using the interference of pulsed radiation and a complete lithographic cycle, phase masks on quartz and antireflection structures on quartz and silicon are produced. The transmission of radiation through a corrugated vacuum—solid interface is calculated by solving rigorously an integral equation with the help of a computer program for parameters close to experimental parameters. The results of measurements are in good agreement with calculations. The methods developed in the paper can be used for manufacturing optical and semiconductor devices.
Morales, Alfredo M [Livermore, CA; Gonzales, Marcela [Seattle, WA
2006-03-07
The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.
Novel self-sensing carbon nanotube-based composites for rehabilitation of structural steel members
NASA Astrophysics Data System (ADS)
Ahmed, Shafique; Doshi, Sagar; Schumacher, Thomas; Thostenson, Erik T.; McConnell, Jennifer
2016-02-01
Fatigue and fracture are among the most critical forms of damage in metal structures. Fatigue damage can initiate from microscopic defects (e.g., surface scratches, voids in welds, and internal defects) and initiate a crack. Under cyclic loading, these cracks can grow and reach a critical level to trigger fracture of the member which leads to compromised structural integrity and, in some cases, catastrophic failure of the entire structure. In our research, we are investigating a solution using carbon nanotube-based sensing composites, which have the potential to simultaneously rehabilitate and monitor fatigue-cracked structural members. These composites consist of a fiber-reinforced polymer (FRP) layer and a carbon nanotube-based sensing layer, which are integrated to form a novel structural self-sensing material. The sensing layer is composed of a non-woven aramid fabric that is coated with carbon nanotubes (CNT) to form an electrically conductive network that is extremely sensitive to detecting deformation as well as damage accumulation via changes in the resistance of the CNT network. In this paper, we introduce the sensing concept, describe the manufacturing of a model sensing prototype, and discuss a set of small-scale laboratory experiments to examine the load-carrying capacity and damage sensing response.
Bingi, Jayachandra; Murukeshan, Vadakke Matham
2015-01-01
Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. PMID:26679513
Self-assembled nanoparticles comprising aptide-SN38 conjugates for use in targeted cancer therapy
NASA Astrophysics Data System (ADS)
Kim, Hyungjun; Lee, Yonghyun; Kang, Sukmo; Choi, Minsuk; Lee, Soyoung; Kim, Sunghyun; Gujrati, Vipul; Kim, Jinjoo; Jon, Sangyong
2016-12-01
Self-assembled nanoparticles (NPs) have been intensively utilized as cancer drug delivery carriers because hydrophobic anticancer drugs may be efficiently loaded into the particle cores. In this study, we synthesized and evaluated the therapeutic index of self-assembled NPs chemically conjugated to a fibronectin extra domain B-specific peptide (APTEDB) and an anticancer agent SN38. The APTEDB-SN38 formed self-assembled structures with a diameter of 58 ± 3 nm in an aqueous solution and displayed excellent drug loading, solubility, and stability properties. A pharmacokinetic study revealed that the blood circulation half-life of SN38 following injection of the APTEDB-SN38 NPs was markedly higher than that of the small molecule CPT-11. The APTEDB-SN38 NPs delivered SN38 to tumor sites by both passive and active targeting. Finally, the APTEDB-SN38 NPs exhibited potent antitumor activities and low toxicities against EDB-expressing tumors (LLC, U87MG) in mice. This system merits further preclinical and clinical investigations for SN38 delivery.
Energy-dissipating and self-repairing SMA-ECC composite material system
NASA Astrophysics Data System (ADS)
Li, Xiaopeng; Li, Mo; Song, Gangbing
2015-02-01
Structural component ductility and energy dissipation capacity are crucial factors for achieving reinforced concrete structures more resistant to dynamic loading such as earthquakes. Furthermore, limiting post-event residual damage and deformation allows for immediate re-operation or minimal repairs. These desirable characteristics for structural ‘resilience’, however, present significant challenges due to the brittle nature of concrete, its deformation incompatibility with ductile steel, and the plastic yielding of steel reinforcement. Here, we developed a new composite material system that integrates the unique ductile feature of engineered cementitious composites (ECC) with superelastic shape memory alloy (SMA). In contrast to steel reinforced concrete (RC) and SMA reinforced concrete (SMA-RC), the SMA-ECC beams studied in this research exhibited extraordinary energy dissipation capacity, minimal residual deformation, and full self-recovery of damage under cyclic flexural loading. We found that the tensile strain capacity of ECC, tailored up to 5.5% in this study, allows it to work compatibly with superelastic SMA. Furthermore, the distributed microcracking damage mechanism in ECC is critical for sufficient and reliable recovery of damage upon unloading. This research demonstrates the potential of SMA-ECC for improving resilience of concrete structures under extreme hazard events.
Fabrication of photonic amorphous diamonds for terahertz-wave applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komiyama, Yuichiro; Abe, Hiroyuki; Kamimura, Yasushi
2016-05-09
A recently proposed photonic bandgap material, named “photonic amorphous diamond” (PAD), was fabricated in a terahertz regime, and its terahertz-wave propagation properties were investigated. The PAD structure was fabricated from acrylic resin mixed with alumina powder, using laser lithographic, micro-additive manufacturing technique. After fabrication, the resulting structure was dewaxed and sintered. The formation of a photonic bandgap at around 0.45 THz was demonstrated by terahertz time-domain spectroscopy. Reflecting the disordered nature of the random network structure, diffusive terahertz-wave propagation was observed in the passbands; the scattering mean-free path decreased as the frequency approached the band edge. The mean-free paths evaluated atmore » the band edges were close to the Ioffe-Regel threshold value for wave localization.« less
Two-photon polymerization as a structuring technology in production: future or fiction?
NASA Astrophysics Data System (ADS)
Harnisch, Emely Marie; Schmitt, Robert
2017-02-01
Two-photon polymerization (TPP) has become an established generative fabrication technique for individual, up to three-dimensional micro- and nanostructures. Due to its high resolution beyond the diffraction limit, its writing speed is limited and in most cases, very special structures are fabricated in small quantities. With regard to the trends of the optical market towards higher efficiencies, miniaturization and higher functionalities, there is a high demand for so called intelligent light management systems, including also individual optical elements. Here, TPP could offer a fabrication technique, enabling higher complexities of structures than conventional cutting and lithographic technologies do. But how can TPP opened up for production? In the following, some approaches to establish TPP as a mastering technique for molding are presented against this background.
WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES
Robertson-Shersby-Harvie, R.B.; Dain, J.
1956-11-13
This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.
Ga Lithography in Sputtered Niobium for Superconductive Micro and Nanowires.
Henry, Michael David; Lewis, Rupert M.; Wolfley, Steven L.; ...
2014-08-18
This work demonstrates the use of FIB implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 um by and 10 um and 100 um by 100 um, demonstrate that doses above than 7.5 x 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic techniquemore » is demonstrated by fabrication of nanowires 75 nm wide by 10 um long connected to 50 um wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature, Tc =7.7 K, was measured using MPMS. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.« less
Suryana, Mona; Shanmugarajah, Jegan V; Maniam, Sivakumar M; Grenci, Gianluca
2017-08-17
Infrared (IR) spectro-microscopy of living biological samples is hampered by the absorption of water in the mid-IR range and by the lack of suitable microfluidic devices. Here, a protocol for the fabrication of plastic microfluidic devices is demonstrated, where soft lithographic techniques are used to embed transparent Calcium Fluoride (CaF2) view-ports in connection with observation chamber(s). The method is based on a replica casting approach, where a polydimethylsiloxane (PDMS) mold is produced through standard lithographic procedures and then used as the template to produce a plastic device. The plastic device features ultraviolet/visible/infrared (UV/Vis/IR) -transparent windows made of CaF2 to allow for direct observation with visible and IR light. The advantages of the proposed method include: a reduced need for accessing a clean room micro-fabrication facility, multiple view-ports, an easy and versatile connection to an external pumping system through the plastic body, flexibility of the design, e.g., open/closed channels configuration, and the possibility to add sophisticated features such as nanoporous membranes.
Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings
NASA Astrophysics Data System (ADS)
Li, Zhongyang; Palacios, Edgar; Butun, Serkan; Kocer, Hasan; Aydin, Koray
2015-10-01
Resonant absorbers based on nanostructured materials are promising for variety of applications including optical filters, thermophotovoltaics, thermal emitters, and hot-electron collection. One of the significant challenges for such micro/nanoscale featured medium or surface, however, is costly lithographic processes for structural patterning which restricted from industrial production of complex designs. Here, we demonstrate lithography-free, broadband, polarization-independent optical absorbers based on a three-layer ultrathin film composed of subwavelength chromium (Cr) and oxide film coatings. We have measured almost perfect absorption as high as 99.5% across the entire visible regime and beyond (400-800 nm). In addition to near-ideal absorption, our absorbers exhibit omnidirectional independence for incidence angle over ±60 degrees. Broadband absorbers introduced in this study perform better than nanostructured plasmonic absorber counterparts in terms of bandwidth, polarization and angle independence. Improvements of such “blackbody” samples based on uniform thin-film coatings is attributed to extremely low quality factor of asymmetric highly-lossy Fabry-Perot cavities. Such broadband absorber designs are ultrathin compared to carbon nanotube based black materials, and does not require lithographic processes. This demonstration redirects the broadband super absorber design to extreme simplicity, higher performance and cost effective manufacturing convenience for practical industrial production.
Three-dimensional invisibility cloaks functioning at terahertz frequencies
NASA Astrophysics Data System (ADS)
Cao, Wei; Zhou, Fan; Liang, Dachuan; Gu, Jianqiang; Han, Jiaguang; Sun, Cheng; Zhang, Weili
2014-05-01
Quasi-three-dimensional invisibility cloaks, comprised of either homogeneous or inhomogeneous media, are experimentally demonstrated in the terahertz regime. The inhomogeneous cloak was lithographically fabricated using a scalable Projection Microstereolithography process. The triangular cloaking structure has a total thickness of 4.4 mm, comprised of 220 layers of 20 μm thickness. The cloak operates at a broad frequency range between 0.3 and 0.6 THz, and is placed over an α-lactose monohydrate absorber with rectangular shape. Characterized using angular-resolved reflection terahertz time-domain spectroscopy, the results indicate that the terahertz invisibility cloak has successfully concealed both the geometrical and spectroscopic signatures of the absorber, making it undetectable to the observer. The homogeneous cloaking device made from birefringent crystalline sapphire features a large concealed volume, low loss, and broad bandwidth. It is capable of hiding objects with a dimension nearly an order of magnitude larger than that of its lithographic counterpart, but without involving complex and time-consuming cleanroom processing. The cloak device was made from two 20-mm-thick high-purity sapphire prisms. The cloaking region has a maximum height 1.75 mm with a volume of approximately 5% of the whole sample. The reflected TM beam from the cloak shows nearly the same profile as that reflected by a flat mirror.
Directed deposition of inorganic oxide networks on patterned polymer templates
NASA Astrophysics Data System (ADS)
Ford, Thomas James Robert
Inspired by nature, we have successfully directed the deposition of inorganic oxide materials on polymer templates via a combination of top-down and bottom-up fabrication methods. We have functionally mimicked the hierarchical silica exoskeletons of diatoms, where specialized proteins chaperone the condensation of silicic acid into nanoscale silica networks confined by microscopic vesicle walls. We replaced the proteins with functionally analogous polyamines and vesicles with lithographically defined polymer templates. We grafted the polyamines either to the surface or throughout the template by changing the template chemistry and altering our grafting strategy. Exposure to an inorganic oxide precursor solution led to electrostatic aggregation at the polyamine chains, catalyzing hydrolysis and condensation to form long-range inorganic oxide nanoparticle networks. Grafted to epoxy surfaces, swelling effects and the hyperbranched brush morphology lead to the formation of nanofruit features that generated thin, conformal inorganic coatings. When the polyamines were grafted throughout hydrogel templates, we obtained composite networks that yielded faithful inorganic replicas of the original patterns. By varying the polyamine chain length and combustion parameters, we controlled the nanoparticle size, morphology, and crystalline phase. The polyamine morphology affected the resulting inorganic network in both fabrication schemes and we could control the depostion over multiple length scales. Because our methods were compatible with a variety of lithographic methods, we were able to generate inorganic replicas of 1D, 2D, and 3D polymer structures. These may be used for a wide range of applications, including sensing, catalysis, photonic, phononic, photovoltaic, and others that require well-defined inorganic structures.
NASA Astrophysics Data System (ADS)
Brochu, Christine; Larouche, André; Hark, Robert
Shell thickness is an important quality factor for lithographic and anodizing quality aluminum alloys. Increasing pressure is placed on casting plants to produce a thinner shell zone for these alloys. This study, based on plant trials and mathematical modelling highlights the most significant parameters influencing shell zone formation. Results obtained show the importance of metal temperature and distribution and mould metal level on shell zone formation. As an answer to specific plant problems, this study led to the development of improved metal distribution systems for DC casting of litho and anodizing quality alloys.
Cycloolefin/cyanoacrylate (COCA) copolymers for 193-nm and 157-nm lithography
NASA Astrophysics Data System (ADS)
Dammel, Ralph R.; Sakamuri, Raj; Lee, Sang-Ho; Rahman, Dalil; Kudo, Takanori; Romano, Andrew R.; Rhodes, Larry F.; Lipian, John-Henry; Hacker, Cheryl; Barnes, Dennis A.
2002-07-01
The copolymerization reaction between methyl cyanoacrylate (MCA) and a variety of cycloolefins (CO) was investigated. Cycololefin/cyanoacrylate (COCA) copolymers were obtained in good yields and with lithographically interesting molecular weights for all cycoolefins studied. Anionic MCA homopolymerization could be largely suppressed using acetic acid. Based on NMR data, the copolymerization may tend to a 1:1 CO:MCA incorporation ratio but further work with better suppression of the anionic component is needed to confirm this. Lithographic tests on copolymers of appropriately substituted norbornenes and MCA showed semi-dense and isolated line performance down to 90 nm.
Yang, Chuan; Liu, Shao Qiong; Venkataraman, Shrinivas; Gao, Shu Jun; Ke, Xiyu; Chia, Xin Tian; Hedrick, James L; Yang, Yi Yan
2015-06-28
Amphiphilic polycarbonate/PEG copolymer with a star-like architecture was designed to facilitate a unique supramolecular transformation of micelles to vesicles in aqueous solution for the efficient delivery of anticancer drugs. The star-shaped amphipilic block copolymer was synthesized by initiating the ring-opening polymerization of trimethylene carbonate (TMC) from methyl cholate through a combination of metal-free organo-catalytic living ring-opening polymerization and post-polymerization chain-end derivatization strategies. Subsequently, the self-assembly of the star-like polymer in aqueous solution into nanosized vesicles for anti-cancer drug delivery was studied. DOX was physically encapsulated into vesicles by dialysis and drug loading level was significant (22.5% in weight) for DOX. Importantly, DOX-loaded nanoparticles self-assembled from the star-like copolymer exhibited greater kinetic stability and higher DOX loading capacity than micelles prepared from cholesterol-initiated diblock analogue. The advantageous disparity is believed to be due to the transformation of micelles (diblock copolymer) to vesicles (star-like block copolymer) that possess greater core space for drug loading as well as the ability of such supramolecular structures to encapsulate DOX. DOX-loaded vesicles effectively inhibited the proliferation of 4T1, MDA-MB-231 and BT-474 cells, with IC50 values of 10, 1.5 and 1.0mg/L, respectively. DOX-loaded vesicles injected into 4T1 tumor-bearing mice exhibited enhanced accumulation in tumor tissue due to the enhanced permeation and retention (EPR) effect. Importantly, DOX-loaded vesicles demonstrated greater tumor growth inhibition than free DOX without causing significant body weight loss or cardiotoxicity. The unique ability of the star-like copolymer emanating from the methyl cholate core provided the requisite modification in the block copolymer interfacial curvature to generate vesicles of high loading capacity for DOX with significant kinetic stability that have potential for use as an anti-cancer drug delivery carrier for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Bioengineered-inorganic nanosystems for nanophotonics and bio-nanotechnology
NASA Astrophysics Data System (ADS)
Leong, Kirsty; Zin, Melvin T.; Ma, Hong; Huang, Fei; Sarikaya, Mehmet; Jen, Alex K.
2008-08-01
Here we nanoengineered tunable quantum dot and cationic conjugated polymer nanoarrays based on surface plasmon enhanced fluorescence where we achieved a 15-fold and 25-fold increase in their emission intensities, respectively. These peptide mediated hybrid systems were fabricated by horizontally tuning the localized surface plasmon resonance of gold nanoarrays and laterally tuning the distance of the fluorophore from the metal surface. This approach permits a comprehensive control both laterally (i.e., lithographically defined gold nanoarrays) and vertically (i.e., QD/CCP-metal distance) of the collectively behaving QD-NP and CP-NP assemblies by way of biomolecular recognition. The highest photoluminescence was achieved when the quantum dots and cationic conjugated polymers were self-assembled at a distance of 16.00 nm and 18.50 nm from the metal surface, respectively. Specifically, we demonstrated the spectral tuning of plasmon resonant metal nanoarrays and the self-assembly of protein-functionalized QDs/CCPs in a step-wise fashion with a concomitant incremental increase in separation from the metal surface through biotin-streptavidin spacer units. These well-controlled self-assembled patterned arrays provide highly organized architectures for improving optoelectronic devices and/or increasing the sensitivity of bio-chemical sensors.
Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots
NASA Astrophysics Data System (ADS)
Bracher, Gregor; Schraml, Konrad; Blauth, Mäx; Wierzbowski, Jakob; López, Nicolás Coca; Bichler, Max; Müller, Kai; Finley, Jonathan J.; Kaniber, Michael
2014-07-01
We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ˜ 10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured by the quantum dots ˜ 25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μ m to 1 μ m, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L i is varied. A splitting ratio of 50:50 is observed for L i ˜ 9 ± 1 μ m and 1 μ m wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.
Weerapol, Yotsanan; Limmatvapirat, Sontaya; Nunthanid, Jurairat; Sriamornsak, Pornsak
2014-04-01
A simple but novel mixed surfactant system was designed to fabricate a self-nanoemulsifying drug delivery system (SNEDDS) based on hydrophilic-lipophilic balance (HLB) value. The impacts of HLB and molecular structure of surfactants on the formation of SNEDDS were investigated. After screening various oils and surfactants, nifedipine (NDP)-loaded liquid SNEDDS was formulated with Imwitor(®) 742 as oil and Tween(®)/Span(®) or Cremophor(®)/Span(®) as mixed surfactant. Droplet size of the emulsions obtained after dispersing SNEDDS containing Tween(®)/Span(®) in aqueous medium was independent of the HLB of a mixed surfactant. The use of the Cremophor(®)/Span(®) blend gave nanosized emulsion at higher HLB. The structure of the surfactant was found to influence the emulsion droplet size. Solid SNEDDS was then prepared by adsorbing NDP-loaded liquid SNEDDS comprising Cremophor(®) RH40/Span(®) 80 onto Aerosil(®) 200 or Aerosil(®) R972 as inert solid carrier. Solid SNEDDS formulations using higher amounts (30-50% w/w) of Aerosil(®) 200 exhibited good flow properties with smooth surface and preserved the self-emulsifying properties of liquid SNEDDS. Differential scanning calorimetry and X-ray diffraction studies of solid SNEDDS revealed the transformation of the crystalline structure of NDP due to its molecular dispersion state. In vitro dissolution study demonstrated higher dissolution of NDP from solid SNEDDS compared with NDP powder.
Reversal of the asymmetry in a cylindrical coaxial capacitively coupled Ar/Cl 2 plasma
Upadhyay, Janardan; Im, Do; Popović, Svetozar; ...
2015-10-08
The reduction of the asymmetry in the plasma sheath voltages of a cylindrical coaxial capacitively coupled plasma is crucial for efficient surface modification of the inner surfaces of concave three-dimensional structures, including superconducting radio frequency cavities. One critical asymmetry effect is the negative dc self-bias, formed across the inner electrode plasma sheath due to its lower surface area compared to the outer electrode. The effect on the self-bias potential with the surface enhancement by geometric modification on the inner electrode structure is studied. The shapes of the inner electrodes are chosen as cylindrical tube, large and small pitch bellows, andmore » disc-loaded corrugated structure (DLCS). The dc self-bias measurements for all these shapes were taken at different process parameters in Ar/Cl 2 discharge. Lastly, the reversal of the negative dc self-bias potential to become positive for a DLCS inner electrode was observed and the best etch rate is achieved due to the reduction in plasma asymmetry.« less
Halloysite clay nanotubes for controlled delivery of chemically active agents
NASA Astrophysics Data System (ADS)
Abdullayev, Elshard
In this work we explored the capabilities of halloysite nanotubes as capsules for encapsulation and controlled delivery of the chemically and biologically active substances. Halloysite is a two-layered aluminosilicate which has a predominantly hollow tubular structure in the submicron range and is chemically similar to kaolinite [1, 2]. In the first section of this work, we analyzed the structure of the halloysite nanotubes as well as its capability to encapsulate and deliver biologically and chemically active agents, similarities and differences between release characteristics of different agents and how these differences relate with their chemical structure. Models were used to describe the release characteristics of the active agents. Study of the interaction between loaded agents and halloysite nanotubes provides better understanding of the release characteristics of the loaded agents and how halloysite can be implemented for technological and medical applications. The second part of the work deals with self-healing coatings produced on the basis of halloysite nanotubes loaded with corrosion inhibitors. Self-healing coatings are one of the effective methods to protect metals from corrosion and deterioration. The difference between self-healing coatings and the usual coatings is the ability of the first to recover after the formation of the damages due to external or internal stresses. High efficiency of the self- healing coatings produced by halloysite nanotubes were demonstrated on 110 Copper alloys and 2024 aluminum alloys. Controlled delivery of the corrosion inhibitors with additional encapsulation of the halloysite nanotubes by synthesizing stoppers at tube endings was also demonstrated. Additional encapsulation of the halloysite nanotubes may be necessary when slow release of the loaded agents is required or rapid convection of the liquid in the surrounding environment takes place (since this may cause rapid release of the loaded agents without additional encapsulation). The third part of this work deals with pharmaceutical applications of the halloysite nanotubes. Toxicity analysis was performed by using MCF-7 and HeLa cells since this is the main issue to be considered before using halloysite for any technological and medical applications. Halloysite nanotubes were readily taken up by the cells and cells survived for a reasonably long time after uptake indicating the biocompatible nature of the halloysite nanotubes. The possibility to encapsulate glycerol, a skin moisturizing agent, was also demonstrated for pharmaceutical applications. It was shown that halloysite has a huge capability for encapsulating a wide range of pharmaceuticals and effectively deliver over a long time range which may increase the quality of pharmaceutical products.
Photonic crystals at visible, x-ray, and terahertz frequencies
NASA Astrophysics Data System (ADS)
Prasad, Tushar
Photonic crystals are artificial structures with a periodically varying refractive index. This property allows photonic crystals to control the propagation of photons, making them desirable components for novel photonic devices. Photonic crystals are also termed as "semiconductors of light", since they control the flow of electromagnetic radiation similar to the way electrons are excited in a semiconductor crystal. The scale of periodicity in the refractive index determines the frequency (or wavelength) of the electromagnetic waves that can be manipulated. This thesis presents a detailed analysis of photonic crystals at visible, x-ray, and terahertz frequencies. Self-assembly and spin-coating methods are used to fabricate colloidal photonic crystals at visible frequencies. Their dispersion characteristics are examined through theoretical as well as experimental studies. Based on their peculiar dispersion property called the superprism effect, a sensor that can detect small quantities of chemical substances is designed. A photonic crystal that can manipulate x-rays is fabricated by using crystals of a non-toxic plant virus as templates. Calculations show that these metallized three-dimensional crystals can find utility in x-ray optical systems. Terahertz photonic crystal slabs are fabricated by standard lithographic and etching techniques. In-plane superprism effect and out-of-plane guided resonances are studied by terahertz time-domain spectroscopy, and verified by numerical simulations.
Sullivan, K T; Zhu, C; Tanaka, D J; Kuntz, J D; Duoss, E B; Gash, A E
2013-02-14
This work combines electrophoretic deposition (EPD) with direct-ink writing (DIW) to prepare thin films of Al/CuO thermites onto patterned two- and three-dimensional silver electrodes. DIW was used to write the electrodes using a silver nanoparticle ink, and EPD was performed in a subsequent step to deposit the thermite onto the conductive electrodes. Unlike conventional lithographic techniques, DIW is a low-cost and versatile alternative to print fine-featured electrodes, and adds the benefit of printing self-supported three-dimensional structures. EPD provides a method for depositing the composite thermite only onto the conductive electrodes, and with controlled thicknesses, which provides fine spatial and mass control, respectively. EPD has previously been shown to produce well-mixed thermite composites which can pack to reasonably high densities without the need for any postprocessing. Homogeneous mixing is particularly important in reactive composities, where good mixing can enhance the reaction kinetics by decreasing the transport distance between the components. Several two- and three-dimensional designs were investigated to highlight the versatility of using DIW and EPD together. In addition to energetic applications, we anticipate that this combination of techniques will have a variety of other applications, which would benefit from the controlled placement of a thin film of one material onto a conductive architecture of a second material.
Transient dynamic analysis of the Bao'An Stadium
NASA Astrophysics Data System (ADS)
Knight, David; Whitefield, Rowan; Nhieu, Eric; Tahmasebinia, Faham; Ansourian, Peter; Alonso-Marroquin, Fernando
2016-08-01
Bao'An Stadium is a unique structure that utilises 54m span cantilevers with tensioned members to support the roof. This report involves a simplified finite element model of Bao'An stadium using Strand7 to analyse the effects of deflections, buckling and earthquake loading. Modelling the cantilevers of the original structure with a double curvature was problematic due to unrealistic deflections and no total mass participation using the Spectral Response Solver. To rectify this, a simplified symmetrical stadium was created and the cable free length attribute was used to induce tension in the inner ring and bottom chord members to create upwards deflection. Further, in place of the Spectral Response Solver, the Transient Linear Dynamic Solver was inputted with an El-Centro earthquake. The stadium's response to a 0.20g earthquake and self-weight indicated the deflections satisfied AS1170.0, the loading in the columns was below the critical buckling load, and all structural members satisfied AS4100.
Photothermal heating in metal-embedded microtools for material transport
NASA Astrophysics Data System (ADS)
Villangca, Mark; Palima, Darwin; Bañas, Andrew; Glückstad, Jesper
2016-03-01
Material transport is an important mechanism in microfluidics and drug delivery. The methods and solutions found in literature involve passively diffusing structures, microneedles and chemically fueled structures. In this work, we make use of optically actuated microtools with embedded metal layer as heating element for controlled loading and release. The new microtools take advantage of the photothermal-induced convection current to load and unload cargo. We also discuss some challenges encountered in realizing a self-contained polymerized microtool. Microfluidic mixing, fluid flow control and convection currents have been demonstrated both experimentally and numerically for static metal thin films or passively floating nanoparticles. Here we show an integration of aforementioned functionalities in an optically fabricated and actuated microtool. As proof of concept, we demonstrate loading and unloading of beads. This can be extended to controlled transport and release of genetic material, bio-molecules, fluorescent dyes. We envisioned these microtools to be an important addition to the portfolio of structure-mediated contemporary biophotonics.
Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development.
Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek
2011-02-25
The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.
Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development
Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek
2011-01-01
The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering. PMID:28880002
Laser figuring for the generation of analog micro-optics and kineform surfaces
NASA Technical Reports Server (NTRS)
Gratrix, Edward J.
1993-01-01
To date, there have been many techniques used to generate micro-optic structures in glass or other materials. Using methods common to the lithographic industry, the manufacturing technique known as 'binary optics,' has demonstrated the use of diffractive optics in a variety of micro-optic applications. It is well established that diffractive structures have limited capability when applied in a design more suited for a refractive element. For applications that demand fast, highly efficient, broadband designs, we have developed a technique which uses laser figuring to generate the refractive micro-optical surface. This paper describes the technique used to fabricate refractive micro-optics. Recent results of micro-optics in CdZnTe focal planes are shown.
Laser direct writing of thin-film copper structures as a modification of lithographic processes
NASA Astrophysics Data System (ADS)
Meyer, F.; Ostendorf, A.; Stute, U.
2007-04-01
This paper presents a flexible, mask-free and efficient technique for UV-laser micropatterning of photosensitive resist by laser direct writing (LDW). Photo resist spun on gold sputtered silicon wafers has been laser structured by a scanner guided 266nm DPSSL and electroplated. Ablation behaviour and optimum seed layer preparation in relation to parameters like pulse energy, scanning speed and number of scanned cycles and the electroplating results are discussed. The resulting adhesive strength was measured by a µ-sear device and the gold seed layer-plated copper interface investigated by SEM and EDX to explain correlation to identified bonding behaviour. Improved adhesive strength was observed with higher laser pulse energy and reduced number of cycle.
Electronic transport properties of suspended few-nm black phosphorus nanoribbons
NASA Astrophysics Data System (ADS)
Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; Jothi Thiruraman, Priyanka; Meunier, Vincent; Drndic, Marija
Theoretical studies of few-nm wide black phosphorus nanoribbons have revealed highly tunable, width-dependent properties such as modulation of bandgap magnitude and carrier mobility. Due to the atmospheric instability of black phosphorus in the few-layer regime and a lack of suitable lithographic patterning techniques, these structures have yet to be reported. Here, we demonstrate the fabrication of few-nm wide and thick black phosphorus nanoribbons via in situ electron beam nanosculpting. We also present in situ orientation- and width-dependent two-terminal electronic transport measurements of these structures. These measurements yield valuable insight into the semiconducting properties of black phosphorus and its associated lower-dimensional nanostructures. NIH Grant R21HG007856, NSF Grant EFRI 2-DARE (EFRI-1542707).
Morales, Alfredo M.; Gonzales, Marcela
2004-06-15
The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.
Jeon, Seokwoo; Shir, Daniel J.; Nam, Yun Suk; ...
2007-05-08
This paper introduces approaches that combine micro/nanomolding, or nanoimprinting, techniques with proximity optical phase mask lithographic methods to form three dimensional (3D) nanostructures in thick, transparent layers of photopolymers. The results demonstrate three strategies of this type, where molded relief structures in these photopolymers represent (i) fine (<1 μm) features that serve as the phase masks for their own exposure, (ii) coarse features (>1 μm) that are used with phase masks to provide access to large structure dimensions, and (iii) fine structures that are used together phase masks to achieve large, multilevel phase modulations. Several examples are provided, together withmore » optical modeling of the fabrication process and the transmission properties of certain of the fabricated structures. Lastly, these approaches provide capabilities in 3D fabrication that complement those of other techniques, with potential applications in photonics, microfluidics, drug delivery and other areas.« less
Metal hierarchical patterning by direct nanoimprint lithography
Radha, Boya; Lim, Su Hui; Saifullah, Mohammad S. M.; Kulkarni, Giridhar U.
2013-01-01
Three-dimensional hierarchical patterning of metals is of paramount importance in diverse fields involving photonics, controlling surface wettability and wearable electronics. Conventionally, this type of structuring is tedious and usually involves layer-by-layer lithographic patterning. Here, we describe a simple process of direct nanoimprint lithography using palladium benzylthiolate, a versatile metal-organic ink, which not only leads to the formation of hierarchical patterns but also is amenable to layer-by-layer stacking of the metal over large areas. The key to achieving such multi-faceted patterning is hysteretic melting of ink, enabling its shaping. It undergoes transformation to metallic palladium under gentle thermal conditions without affecting the integrity of the hierarchical patterns on micro- as well as nanoscale. A metallic rice leaf structure showing anisotropic wetting behavior and woodpile-like structures were thus fabricated. Furthermore, this method is extendable for transferring imprinted structures to a flexible substrate to make them robust enough to sustain numerous bending cycles. PMID:23446801
Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler
NASA Astrophysics Data System (ADS)
Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing
2016-05-01
Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated.
Halloysite clay nanotubes for resveratrol delivery to cancer cells.
Vergaro, Viviana; Lvov, Yuri M; Leporatti, Stefano
2012-09-01
Halloysite is natural aluminosilicate clay with hollow tubular structure which allows loading with low soluble drugs using their saturated solutions in organic solvents. Resveratrol, a polyphenol known for having antioxidant and antineoplastic properties, is loaded inside these clay nanotubes lumens. Release time of 48 h is demonstrated. Spectroscopic and ζ-potential measurements are used to study the drug loading/release and for monitoring the nanotube layer-by-layer (LbL) coating with polyelectrolytes for further release control. Resveratrol-loaded clay nanotubes are added to breast cell cultures for toxicity tests. Halloysite functionalization with LbL polyelectrolyte multilayers remarkably decrease nanotube self-toxicity. MTT measurements performed with a neoplastic cell lines model system (MCF-7) as function of the resveratrol-loaded nanotubes concentration and incubation time indicate that drug-loaded halloysite strongly increase of cytotoxicity leading to cell apoptosis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LC Filters for FDM Readout of the X-IFU TES Calorimeter Instrument on Athena
NASA Astrophysics Data System (ADS)
Bruijn, Marcel P.; van der Linden, Anton J.; Ferrari, Lorenza; Gottardi, Luciano; van der Kuur, Jan; den Hartog, Roland H.; Akamatsu, Hiroki; Jackson, Brian D.
2018-05-01
The current status of lithographic superconducting LC filters for use in the Athena-X-IFU instrument is described. We present the fabrication process and characterization results at room temperature, 4 K and 50 mK. We also present an optimization study of the quality topics, where finite element modeling is used together with experimental validation structures. For the a-Si:H-based capacitors and Nb-based coils, presently the component fabrication yield is about 99% and the effective series resistance at 50 mK is lower than 1.5 mΩ.
Fabrication and etching processes of silicon-based PZT thin films
NASA Astrophysics Data System (ADS)
Zhao, Hongjin; Liu, Yanxiang; Liu, Jianshe; Ren, Tian-Ling; Liu, Li-Tian; Li, Zhijian
2001-09-01
Lead-zirconate-titanate (PZT) thin films on silicon were prepared by a sol-gel method. Phase characterization and crystal orientation of the films were investigated by x-ray diffraction analysis (XRD). It was shown that the PZT thin films had a perfect perovskite structure after annealed at a low temperature of 600 degrees C. PZT thin films were chemically etched using HCl/HF solution through typical semiconductor lithographic process, and the etching condition was optimized. The scanning electron microscopy results indicated that the PZT thin film etching problem was well solved for the applications of PZT thin film devices.
NASA Technical Reports Server (NTRS)
Sanchez, A.; Davis, C. F., Jr.; Liu, K. C.; Javan, A.
1978-01-01
A theoretical analysis of the metal-oxide-metal (MOM) antenna/diode as a detector of microwave and infrared radiation is presented with the experimental verification conducted in the far infrared. It is shown that the detectivity at room temperature can be as high as 10 to the 10th per W Hz exp 1/2 at frequencies of 10 to the 14th Hz in the infrared. As a result, design guidelines are obtained for the lithographic fabrication of thin-film MOM structures that are to operate in the 10-micron region of the infrared spectrum.
Superconducting properties of lithographic lead break junctions
NASA Astrophysics Data System (ADS)
Weber, David; Scheer, Elke
2018-01-01
We have fabricated mechanically controlled break junction samples made of lead (Pb) by means of state-of-the-art nanofabrication methods: electron beam lithography and physical vapour deposition. The electrical and magnetic properties were characterized in a {}3{He} cryostat and showed a hard superconducting gap. Temperature and magnetic field dependence of tunnel contacts were compared and quantitatively described by including either thermal broadening of the density of states or pair breaking in the framework of a Skalski model, respectively. We show point contact spectra of few-atom contacts and present tunneling spectra exhibiting a superconducting double-gap structure.
Micromachined integrated quantum circuit containing a superconducting qubit
NASA Astrophysics Data System (ADS)
Brecht, Teresa; Chu, Yiwen; Axline, Christopher; Pfaff, Wolfgang; Blumoff, Jacob; Chou, Kevin; Krayzman, Lev; Frunzio, Luigi; Schoelkopf, Robert
We demonstrate a functional multilayer microwave integrated quantum circuit (MMIQC). This novel hardware architecture combines the high coherence and isolation of three-dimensional structures with the advantages of integrated circuits made with lithographic techniques. We present fabrication and measurement of a two-cavity/one-qubit prototype, including a transmon coupled to a three-dimensional microwave cavity micromachined in a silicon wafer. It comprises a simple MMIQC with competitive lifetimes and the ability to perform circuit QED operations in the strong dispersive regime. Furthermore, the design and fabrication techniques that we have developed are extensible to more complex quantum information processing devices.
Invited Article: Progress in coherent lithography using table-top extreme ultraviolet lasers
NASA Astrophysics Data System (ADS)
Li, W.; Urbanski, L.; Marconi, M. C.
2015-12-01
Compact (table top) lasers emitting at wavelengths below 50 nm had expanded the spectrum of applications in the extreme ultraviolet (EUV). Among them, the high-flux, highly coherent laser sources enabled lithographic approaches with distinctive characteristics. In this review, we will describe the implementation of a compact EUV lithography system capable of printing features with sub-50 nm resolution using Talbot imaging. This compact system is capable of producing consistent defect-free samples in a reliable and effective manner. Examples of different patterns and structures fabricated with this method will be presented.
NASA Astrophysics Data System (ADS)
Zhai, Jiali; Scoble, Judith A.; Li, Nan; Lovrecz, George; Waddington, Lynne J.; Tran, Nhiem; Muir, Benjamin W.; Coia, Gregory; Kirby, Nigel; Drummond, Calum J.; Mulet, Xavier
2015-02-01
Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles were demonstrated to have high affinity for an EGFR target in a ligand binding assay.Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles were demonstrated to have high affinity for an EGFR target in a ligand binding assay. Electronic supplementary information (ESI) available: Fig. S1-S4. See DOI: 10.1039/c4nr05200e
2015-10-01
Materials; CRC Press, 1997. (70) Zhang, Y.; Zheng, L.; Sun , G.; Zhan, Z.; Liao, K. Failure Mechanisms of Carbon Nanotube Fibers under Different...Buehler, M. J. Mesoscale Modeling of Mechanics of Carbon Nanotubes: Self-Assembly, Self-Folding, and Fracture . J. Mater. Res. 2006, 21 (11), 2855–2869...close surface contact between CNTs to substantially improve the load transfer and mechanical properties. We also revealed that extremely low
WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson-Shersby-Harvie, R.B.; Dain, J.
1956-11-13
This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength doesmore » in wave-guides loaded by means of corrugations.« less
Analytical calculation on the determination of steep side wall angles from far field measurements
NASA Astrophysics Data System (ADS)
Cisotto, Luca; Pereira, Silvania F.; Urbach, H. Paul
2018-06-01
In the semiconductor industry, the performance and capabilities of the lithographic process are evaluated by measuring specific structures. These structures are often gratings of which the shape is described by a few parameters such as period, middle critical dimension, height, and side wall angle (SWA). Upon direct measurement or retrieval of these parameters, the determination of the SWA suffers from considerable inaccuracies. Although the scattering effects that steep SWAs have on the illumination can be obtained with rigorous numerical simulations, analytical models constitute a very useful tool to get insights into the problem we are treating. In this paper, we develop an approach based on analytical calculations to describe the scattering of a cliff and a ridge with steep SWAs. We also propose a detection system to determine the SWAs of the structures.
Photoresist Design for Elastomeric Light Tunable Photonic Devices
Nocentini, Sara; Martella, Daniele; Parmeggiani, Camilla; Wiersma, Diederik S.
2016-01-01
An increasing interest in tunable photonic structures is growing within the photonic community. The usage of Liquid Crystalline Elastomer (LCE) structures in the micro-scale has been motivated by the potential to remotely control their properties. In order to design elastic photonic structures with a three-dimensional lithographic technique, an analysis of the different mixtures used in the micro-printing process is required. Previously reported LCE microstructures suffer damage and strong swelling as a limiting factor of resolution. In this article, we reported a detailed study on the writing process with four liquid crystalline photoresists, in which the percentage of crosslinker is gradually increased. The experiments reveal that exploiting the crosslinking degree is a possible means in which to obtain suspended lines with good resolution, quite good rigidity, and good elasticity, thereby preserving the possibility of deformation by light irradiation. PMID:28773646
Photoresist Design for Elastomeric Light Tunable Photonic Devices.
Nocentini, Sara; Martella, Daniele; Parmeggiani, Camilla; Wiersma, Diederik S
2016-06-29
An increasing interest in tunable photonic structures is growing within the photonic community. The usage of Liquid Crystalline Elastomer (LCE) structures in the micro-scale has been motivated by the potential to remotely control their properties. In order to design elastic photonic structures with a three-dimensional lithographic technique, an analysis of the different mixtures used in the micro-printing process is required. Previously reported LCE microstructures suffer damage and strong swelling as a limiting factor of resolution. In this article, we reported a detailed study on the writing process with four liquid crystalline photoresists, in which the percentage of crosslinker is gradually increased. The experiments reveal that exploiting the crosslinking degree is a possible means in which to obtain suspended lines with good resolution, quite good rigidity, and good elasticity, thereby preserving the possibility of deformation by light irradiation.
Controlled surface functionality of magnetic nanoparticles by layer-by-layer assembled nano-films
NASA Astrophysics Data System (ADS)
Choi, Daheui; Son, Boram; Park, Tai Hyun; Hong, Jinkee
2015-04-01
Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated.Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07373h
NASA Astrophysics Data System (ADS)
tongqing, Wu; liang, Li; xinjian, Liu; Xu, nianchun; Tian, Mao
2018-03-01
Self-balanced method is carried out on the large diameter rock-socketed filling piles of high-pile wharf at Inland River, to explore the distribution laws of load-displacement curve, pile internal force, pile tip friction resistance and pile side friction resistance under load force. The results showed that: the tip resistance of S1 and S2 test piles accounted for 53.4% and 53.6% of the pile bearing capacity, respectively, while the total side friction resistance accounted for 46.6% and 46.4% of the pile bearing capacity, respectively; both the pile tip friction resistance and pile side friction resistance can be fully played, and reach to the design requirements. The reasonability of large diameter rock-socketed filling design is verified through test analysis, which can provide basis for the optimization of high-pile wharf structural type, thus reducing the wharf project cost, and also providing reference for the similar large diameter rock-socketed filling piles of high-pile wharf at Inland River.
Azevedo, Sara; Costa, Ana M S; Andersen, Amanda; Choi, Insung S; Birkedal, Henrik; Mano, João F
2017-07-01
Inspired by the mussel byssus adhesiveness, a highly hydrated polymeric structure is designed to combine, for the first time, a set of interesting features for load-bearing purposes. These characteristics include: i) a compressive strength and stiffness in the MPa range, ii) toughness and the ability to recover it upon successive cyclic loading, iii) the ability to quickly self-heal upon rupture, iv) the possibility of administration through minimally invasive techniques, such as by injection, v) the swelling ratio being adjusted to space-filling applications, and vi) cytocompatibility. Owing to these characteristics and the mild conditions employed, the encapsulation of very unstable and sensitive cargoes is possible, highlighting their potential to researchers in the biomedical field for the repair of load-bearing soft tissues, or to be used as an encapsulation platform for a variety of biological applications such as disease models for drug screening and therapies in a more realistic mechanical environment. Moreover, given the simplicity of this methodology and the enhanced mechanical performance, this strategy can be expanded to applications in other fields, such as agriculture and electronics. As such, it is anticipated that the proposed strategy will constitute a new, versatile, and cost-effective tool to produce engineered polymeric structures for both science and technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-organization and feedback effects in the shock compressed media
NASA Astrophysics Data System (ADS)
Khantuleva, Tatyana
2005-07-01
New theoretical approach to the transport in condensed matter far from equilibrium combines methods of statistical mechanics and cybernetic physics in order to construct closed mathematical model of a system with self-organization and self-regulation. Mesoscopic effects are considered as a result of the structure formation and the feedback effects in an open system under dynamic loading. Nonequilibrium state equations had been involved to incorporate the velocity dispersion. Integrodifferential balance equations describe both wave and dissipative transport properties. Boundary conditions determine the internal scale spectra. The model is completed by the feedback that introduces the structure evolution basing the methods of cybernetic physics. The obtained results open a wide prospective for the control methods in applications to new technologies, intellectual systems and prediction of catastrophic phenomena.
Development of a self-managed loaded exercise programme for rotator cuff tendinopathy.
Littlewood, Chris; Malliaras, Peter; Mawson, Sue; May, Stephen; Walters, Stephen
2013-12-01
This paper describes a self-managed loaded exercise programme which has been designed to address the pain and disability associated with rotator cuff tendinopathy. The intervention has been developed with reference to current self-management theory and with reference to the emerging benefit of loaded exercise for tendinopathy. This self-managed loaded exercise programme is being evaluated within the mixed methods SELF study (ISRCTN 84709751) which includes a pragmatic randomised controlled trial conducted within the UK National Health Service. Copyright © 2012 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Popov, Igor; Đurišić, Ivana; Belić, Milivoj R.
2017-12-01
Engineering of materials at the atomic level is one of the most important aims of nanotechnology. The unprecedented ability of scanning probe microscopy to address individual atoms opened up the possibilities for nanomanipulation and nanolitography of surfaces and later on of two-dimensional materials. While the state-of-the-art scanning probe lithographic methods include, primarily, adsorption, desorption and repositioning of adatoms and molecules on substrates or tailoring nanoribbons by etching of trenches, the precise modification of the intrinsic atomic structure of materials is yet to be advanced. Here we introduce a new concept, scanning probe microscopy with a rotating tip, for engineering of the atomic structure of membranes based on two-dimensional materials. In order to indicate the viability of the concept, we present our theoretical research, which includes atomistic modeling, molecular dynamics simulations, Fourier analysis and electronic transport calculations. While stretching can be employed for fabrication of atomic chains only, our comprehensive molecular dynamics simulations indicate that nanomanipulation by scanning probe microscopy with a rotating tip is capable of assembling a wide range of topological defects in two-dimensional materials in a rather controllable and reproducible manner. We analyze two possibilities. In the first case the probe tip is retracted from the membrane while in the second case the tip is released beneath the membrane allowing graphene to freely relax and self-heal the pore made by the tip. The former approach with the tip rotation can be achieved experimentally by rotation of the sample, which is equivalent to rotation of the tip, whereas irradiation of the membrane by nanoclusters can be utilized for the latter approach. The latter one has the potential to yield a yet richer diversity of topological defects on account of a lesser determinacy. If successfully realized experimentally the concept proposed here could be an important step toward controllable nanostructuring of two-dimensional materials.
Popov, Igor; Đurišić, Ivana; Belić, Milivoj R
2017-12-08
Engineering of materials at the atomic level is one of the most important aims of nanotechnology. The unprecedented ability of scanning probe microscopy to address individual atoms opened up the possibilities for nanomanipulation and nanolitography of surfaces and later on of two-dimensional materials. While the state-of-the-art scanning probe lithographic methods include, primarily, adsorption, desorption and repositioning of adatoms and molecules on substrates or tailoring nanoribbons by etching of trenches, the precise modification of the intrinsic atomic structure of materials is yet to be advanced. Here we introduce a new concept, scanning probe microscopy with a rotating tip, for engineering of the atomic structure of membranes based on two-dimensional materials. In order to indicate the viability of the concept, we present our theoretical research, which includes atomistic modeling, molecular dynamics simulations, Fourier analysis and electronic transport calculations. While stretching can be employed for fabrication of atomic chains only, our comprehensive molecular dynamics simulations indicate that nanomanipulation by scanning probe microscopy with a rotating tip is capable of assembling a wide range of topological defects in two-dimensional materials in a rather controllable and reproducible manner. We analyze two possibilities. In the first case the probe tip is retracted from the membrane while in the second case the tip is released beneath the membrane allowing graphene to freely relax and self-heal the pore made by the tip. The former approach with the tip rotation can be achieved experimentally by rotation of the sample, which is equivalent to rotation of the tip, whereas irradiation of the membrane by nanoclusters can be utilized for the latter approach. The latter one has the potential to yield a yet richer diversity of topological defects on account of a lesser determinacy. If successfully realized experimentally the concept proposed here could be an important step toward controllable nanostructuring of two-dimensional materials.
Phylogeny mandalas of birds using the lithographs of John Gould's folio bird books.
Hasegawa, Masami; Kuroda, Sayako
2017-12-01
The phylogeny mandala, which is a circular phylogeny with photos or drawings of species, is a suitable way to show visually how the biodiversity has developed in the course of evolution as clarified by the molecular phylogenetics. In this article, in order to demonstrate the recent progress of avian molecular phylogenetics, six phylogeny mandalas of various taxonomic groups of birds are presented with the lithographs of John Gould's folio bird books; i.e., (1) whole Aves, (2) Passeriformes, (3) Paradisaeidae in Corvoidea (Passeriformes), (4) Meliphagoidea (Passeriformes), (5) Trochili in Apodiformes, and (6) Galliformes. Copyright © 2016 Elsevier Inc. All rights reserved.
Lithographed spectrometers for tomographic line mapping of the Epoch of Reionization
NASA Astrophysics Data System (ADS)
O'Brient, R.; Bock, J. J.; Bradford, C. M.; Crites, A.; Duan, R.; Hailey-Dunsheath, S.; Hunacek, J.; LeDuc, R.; Shirokoff, E.; Staniszewski, Z.; Turner, A.; Zemcov, M.
2014-08-01
The Tomographic Ionized carbon Mapping Experiment (TIME) is a multi-phased experiment that will topographically map [CII] emission from the Epoch of Reionization. We are developing lithographed spectrometers that couple to TES bolometers in anticipation of the second generation instrument. Our design intentionally mirrors many features of the parallel SuperSpec project, inductively coupling power from a trunk-line microstrip onto half-wave resonators. The resonators couple to a rat-race hybrids that feeds TES bolometers. Our 25 channel prototype shows spectrally positioned lines roughly matching design with a receiver optical efficiency of 15-20%, a level that is dominated by loss in components outside the spectrometer.
NASA Astrophysics Data System (ADS)
Paulsson, Adisa; Xing, Kezhao; Fosshaug, Hans; Lundvall, Axel; Bjoernberg, Charles; Karlsson, Johan
2005-05-01
A continuing improvement in resist process is a necessity for high-end photomask fabrication. In advanced chemically amplified resist systems the lithographic performance is strongly influenced by diffusion of acid and acid quencher (i.e. bases). Beside the resist properties, e.g. size and volatility of the photoacid, the process conditions play important roles for the diffusion control. Understanding and managing these properties influences lithographic characteristics on the photomask such as CD uniformity, CD and pitch linearity, resolution, substrate contamination, clear-dark bias and iso-dense bias. In this paper we have investigated effects on the lithographic characteristics with respect to post exposure bake conditions, when using the chemically amplified resist FEP-171. We used commercially available mask blanks from the Hoya Mask Blank Division with NTAR7 chrome and an optimized resist thickness for the 248 nm laser tool at 3200Å. The photomasks were exposed on the optical DUV (248nm) Sigma7300 pattern generator. Additionally, we investigated the image stability between exposure and post exposure bake. Unlike in wafer fabrication, photomask writing requires several hours, making the resist susceptible to image blur and acid latent image degradation.
Organic antireflective coatings for 193-nm lithography
NASA Astrophysics Data System (ADS)
Trefonas, Peter, III; Blacksmith, Robert F.; Szmanda, Charles R.; Kavanagh, Robert J.; Adams, Timothy G.; Taylor, Gary N.; Coley, Suzanne; Pohlers, Gerd
1999-06-01
Organic anti-reflective coatings (ARCs) continue to play an important role in semiconductor manufacturing. These materials provide a convenient means of greatly reducing the resist photospeed swing and reflective notching. In this paper, we describe a novel class of ARC materials optimized for lithographic applications using 193 nm exposure tools. These ARCs are based upon polymers containing hydroxyl-alkyl methacrylate monomers for crosslinkable sites, styrene for a chromophore at 193 nm, and additional alkyl-methacrylate monomers as property modifiers. A glycouril crosslinker and a thermally-activated acidic catalyst provide a route to forming an impervious crosslinked film activate data high bake temperatures. ARC compositions can be adjusted to optimize the film's real and imaginary refractive indices. Selection of optimal target indices for 193 nm lithographic processing through simulations is described. Potential chromophores for 193 nm were explored using ZNDO modeling. We show how these theoretical studies were combined with material selection criteria to yield a versatile organic anti-reflectant film, Shipley 193 G0 ARC. Lithographic process data indicates the materials is capable of supporting high resolution patterning, with the line features displaying a sharp resist/ARC interface with low line edge roughness. The resist Eo swing is successfully reduced from 43 percent to 6 percent.
Study on a new self-sensing magnetorheological elastomer bearing
NASA Astrophysics Data System (ADS)
Li, Rui; Zhou, Mengjiao; Wang, Minglian; Yang, Ping-an
2018-06-01
The complexity of a semi-active vibration isolation system results in the difficulty of realizing its role on impact load effectively. Thus, a new self-sensing bearing based on modified anisotropic magnetorheological elastomer (MRE) is proposed in this study. This self-sensing bearing was fabricated by dispersed multi-walled carbon nanotubes and carbonyl iron particles into polydimethylsiloxane matrix under a magnetic field. The working conditions of the bearing were analyzed and decoupled. An optimal structure size of the bearing was selected and used for setting up the experiment test system. The self-sensing characteristic of the MRE bearing under the multi-field coupling of load and magnetic fields was then investigated by this test system. Results showed that the resistance of the modified MRE, in which a preload was applied by the bearing, could change approximately 28%-56% under extrusion force, mechanical force, and external magnetic field. The vibration isolation performance was tested based on the self-sensing characteristic. The bearing had excellent mechanical properties, which could reduce at least 30% of vibration. Thus, the modified MRE of the magnetorheological elastomer bearing could be simultaneously used as an actuator and a sensor.
Development and modeling of self-deployable structures
NASA Astrophysics Data System (ADS)
Neogi, Depankar
Deployable space structures are prefabricated structures which can be transformed from a closed, compact configuration to a predetermined expanded form in which they are stable and can bear loads. The present research effort investigates a new family of deployable structures, called the Self-Deployable Structures (SDS). Unlike other deployable structures, which have rigid members, the SDS members are flexible while the connecting joints are rigid. The joints store the predefined geometry of the deployed structure in the collapsed state. The SDS is stress-free in both deployed and collapsed configurations and results in a self-standing structure which acquires its structural properties after a chemical reaction. Reliability of deployment is one of the most important features of the SDS, since it does not rely on mechanisms that can lock during deployment. The unit building block of these structures is the self-deployable structural element (SDSE). Several SDSE members can be linked to generate a complex building block such as a triangular or a tetrahedral structure. Different SDSE and SDS concepts are investigated in the research work, and the performance of SDS's are experimentally and theoretically explored. Triangular and tetrahedral prototype SDS have been developed and presented. Theoretical efforts include modeling the behavior of 2-dimensional SDSs. Using this design tool, engineers can study the effects of different packing configurations and deployment sequence; and perform optimization on the collapsed state of a structure with different external constraints. The model also predicts if any lockup or entanglement occurs during deployment.
NASA Technical Reports Server (NTRS)
Hairr, John W.; Huang, Jui-Ten; Ingram, J. Edward; Shah, Bharat M.
1992-01-01
The ISPAN Program (Interactive Stiffened Panel Analysis) is an interactive design tool that is intended to provide a means of performing simple and self contained preliminary analysis of aircraft primary structures made of composite materials. The program combines a series of modules with the finite element code DIAL as its backbone. Four ISPAN Modules were developed and are documented. These include: (1) flat stiffened panel; (2) curved stiffened panel; (3) flat tubular panel; and (4) curved geodesic panel. Users are instructed to input geometric and material properties, load information and types of analysis (linear, bifurcation buckling, or post-buckling) interactively. The program utilizing this information will generate finite element mesh and perform analysis. The output in the form of summary tables of stress or margins of safety, contour plots of loads or stress, and deflected shape plots may be generalized and used to evaluate specific design.
NASA Astrophysics Data System (ADS)
Nishikawa, Kazutaka; Kishida, Yoshihiro; Ito, Kota; Tamura, Shin-ichi; Takeda, Yasuhiko
2017-11-01
Nanoparticles (NPs) of vanadium dioxide (VO2) in the metal state exhibit localized surface plasmon resonance (LSPR) at 1200-1600 nm, which fills the gap between the absorption ranges of silicon and the LSPR of conventional transparent conductor NPs (ZnO:Al, In2O3:Sn, etc.). However, two issues of the lithographic process for NP formation and the metal-insulator transition temperature (69 °C) higher than room temperature have made it difficult to use VO2 NPs for applications such as energy conversion devices, near infrared (NIR) light detectors, and bio-therapy. In this study, we developed a self-growing process for tungsten (W)-doped VO2 NPs that are in the metal state at room temperature, using sputter deposition and post-lamp annealing. The changes in the LSPR peak wavelengths with the NP size were well controlled by changing the deposited film thickness and oxygen pressure during the post-annealing treatment. The presented results resolve the difficulties of using the metal-insulator transition material VO2 for practical NIR utilization.
Hentschel, Carsten; Fontein, Florian; Stegemann, Linda; Hoeppener, Christiane; Fuchs, Harald; Hoeppener, Stefanie
2014-01-01
Summary A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) is explored with three different processes: 1) a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2) a chemical process induced by oxygen plasma etching as well as 3) a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL), which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern. PMID:25247126
CMOL: A New Concept for Nanoelectronics
NASA Astrophysics Data System (ADS)
Likharev, Konstantin
2005-03-01
I will review the recent work on devices and architectures for future hybrid semiconductor/molecular integrated circuits, in particular those of ``CMOL'' variety [1]. Such circuits would combine an advanced CMOS subsystem fabricated by the usual lithographic patterning, two layers of parallel metallic nanowires formed, e.g., by nanoimprint, and two-terminal molecular devices self-assembled on the nanowire crosspoints. Estimates show that this powerful combination may allow CMOL circuits to reach an unparalleled density (up to 10^12 functions per cm^2) and ultrahigh rate of information processing (up to 10^20 operations per second on a single chip), at acceptable power dissipation. The main challenges on the way toward practical CMOL technology are: (i) reliable chemically-directed self-assembly of mid-size organic molecules, and (ii) the development of efficient defect-tolerant architectures for CMOL circuits. Our recent work has shown that such architectures may be developed not only for terabit-scale memories and naturally defect-tolerant mixed-signal neuromorphic networks, but (rather unexpectedly) also for FPGA-style digital Boolean circuits. [1] For details, see http://rsfq1.physics.sunysb.edu/˜likharev/nano/Springer04.pdf
Foundations of low-temperature plasma enhanced materials synthesis and etching
NASA Astrophysics Data System (ADS)
Oehrlein, Gottlieb S.; Hamaguchi, Satoshi
2018-02-01
Low temperature plasma (LTP)-based synthesis of advanced materials has played a transformational role in multiple industries, including the semiconductor industry, liquid crystal displays, coatings and renewable energy. Similarly, the plasma-based transfer of lithographically defined resist patterns into other materials, e.g. silicon, SiO2, Si3N4 and other electronic materials, has led to the production of nanometer scale devices that are the basis of the information technology, microsystems, and many other technologies based on patterned films or substrates. In this article we review the scientific foundations of both LTP-based materials synthesis at low substrate temperature and LTP-based isotropic and directional etching used to transfer lithographically produced resist patterns into underlying materials. We cover the fundamental principles that are the basis of successful application of the LTP techniques to technological uses and provide an understanding of technological factors that may control or limit material synthesis or surface processing with the use of LTP. We precede these sections with a general discussion of plasma surface interactions, the LTP-generated particle fluxes including electrons, ions, radicals, excited neutrals and photons that simultaneously contact and modify surfaces. The surfaces can be in the line of sight of the discharge or hidden from direct interaction for structured substrates. All parts of the article are extensively referenced, which is intended to help the reader study the topics discussed here in more detail.
NASA Astrophysics Data System (ADS)
Mileham, Jeffrey; Tanaka, Yasushi; Anberg, Doug; Owen, David M.; Lee, Byoung-Ho; Bouche, Eric
2016-03-01
Within the semiconductor lithographic process, alignment control is one of the most critical considerations. In order to realize high device performance, semiconductor technology is approaching the 10 nm design rule, which requires progressively smaller overlay budgets. Simultaneously, structures are expanding in the 3rd dimension, thereby increasing the potential for inter-layer distortion. For these reasons, device patterning is becoming increasingly difficult as the portion of the overlay budget attributed to process-induced variation increases. After lithography, overlay gives valuable feedback to the lithography tool; however overlay measurements typically have limited density, especially at the wafer edge, due to throughput considerations. Moreover, since overlay is measured after lithography, it can only react to, but not predict the process-induced overlay. This study is a joint investigation in a high-volume manufacturing environment of the portion of overlay associated with displacement induced by a single process across many chambers. Displacement measurements are measured by Coherent Gradient Sensing (CGS) interferometry, which generates high-density displacement maps (>3 million points on a 300 mm wafer) such that the stresses induced die-by-die and process-by-process can be tracked in detail. The results indicate the relationship between displacement and overlay shows the ability to forecast overlay values before the lithographic process. Details of the correlation including overlay/displacement range, and lot-to-lot displacement variability are considered.
Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates.
Gao, Long; Chen, Li; Wei, Hong; Xu, Hongxing
2018-06-14
Fabricating plasmonic nanowire waveguides and circuits by lithographic fabrication methods is highly desired for nanophotonic circuitry applications. Here we report an approach for fabricating metal nanowire networks by using electron beam lithography and metal film deposition techniques. The gold nanowire structures are fabricated on quartz substrates without using any adhesion layer but coated with a thin layer of Al2O3 film for immobilization. The thermal annealing during the Al2O3 deposition process decreases the surface plasmon loss. In a Y-shaped gold nanowire network, the surface plasmons can be routed to different branches by controlling the polarization of the excitation light, and the routing behavior is dependent on the length of the main nanowire. Simulated electric field distributions show that the zigzag distribution of the electric field in the nanowire network determines the surface plasmon routing. By using two laser beams to excite surface plasmons in a Y-shaped nanowire network, the output intensity can be modulated by the interference of surface plasmons, which can be used to design Boolean logic gates. We experimentally demonstrate that AND, OR, XOR and NOT gates can be realized in three-terminal nanowire networks, and NAND, NOR and XNOR gates can be realized in four-terminal nanowire networks. This work takes a step toward the fabrication of on-chip integrated plasmonic circuits.
Comprehensive analysis of line-edge and line-width roughness for EUV lithography
NASA Astrophysics Data System (ADS)
Bonam, Ravi; Liu, Chi-Chun; Breton, Mary; Sieg, Stuart; Seshadri, Indira; Saulnier, Nicole; Shearer, Jeffrey; Muthinti, Raja; Patlolla, Raghuveer; Huang, Huai
2017-03-01
Pattern transfer fidelity is always a major challenge for any lithography process and needs continuous improvement. Lithographic processes in semiconductor industry are primarily driven by optical imaging on photosensitive polymeric material (resists). Quality of pattern transfer can be assessed by quantifying multiple parameters such as, feature size uniformity (CD), placement, roughness, sidewall angles etc. Roughness in features primarily corresponds to variation of line edge or line width and has gained considerable significance, particularly due to shrinking feature sizes and variations of features in the same order. This has caused downstream processes (Etch (RIE), Chemical Mechanical Polish (CMP) etc.) to reconsider respective tolerance levels. A very important aspect of this work is relevance of roughness metrology from pattern formation at resist to subsequent processes, particularly electrical validity. A major drawback of current LER/LWR metric (sigma) is its lack of relevance across multiple downstream processes which effects material selection at various unit processes. In this work we present a comprehensive assessment of Line Edge and Line Width Roughness at multiple lithographic transfer processes. To simulate effect of roughness a pattern was designed with periodic jogs on the edges of lines with varying amplitudes and frequencies. There are numerous methodologies proposed to analyze roughness and in this work we apply them to programmed roughness structures to assess each technique's sensitivity. This work also aims to identify a relevant methodology to quantify roughness with relevance across downstream processes.
First wall structural analysis of the aqueous self-cooled blanket concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, D.A.; Steiner, D.; Embrechts, M.J.
1986-11-01
A recently proposed blanket concept using water coolant with dissolved lithium compounds for breeding employs water cooled first walls. Water cooled first walls for blankets have also been proposed for some solid breeder blankets. Design options for water cooled first walls are examined in this paper. Four geometries and three materials are analyzed for water coolant at 300/sup 0/C and 13.8 MPa (2000 psi). Maximum neutron wall loads (with surface heat loads being 25% of neutron wall load) are determined for each geometry and material combination. Of the materials studied, only vanadium alloy is found to be capable of withstandingmore » high wall loads (>10MW/m/sup 2/ neutron and >2.5 MW/m/sup 2/ heat).« less
Hydrostatic self-aligning axial/torsional mechanism
O'Connor, Daniel G.; Gerth, Howard L.
1990-01-01
The present invention is directed to a self-aligning axial/torsional loading mechanism for testing the strength of brittle materials which are sensitive to bending moments. Disposed inside said self-aligning loading mechanism is a frictionless hydrostatic ball joint with a flexure ring to accommodate torsional loads through said ball joint.
Self-Assembly of Supramolecular Composites under Cylindrical Confinement
NASA Astrophysics Data System (ADS)
Bai, Peter; Thorkelsson, Kari; Ercius, Peter; Xu, Ting
2014-03-01
Block copolymer (BCP) or BCP-based supramolecules are useful platforms to direct nanoparticle (NP) assemblies. However, the variety of NP assemblies is rather limited in comparison to those shown by DNA-guided approach. By subjecting supramolecular nanocomposites to 2-D cylindrical confinement afforded by anodic aluminum oxide membranes, a range of new NP assemblies such as stacked rings, and single and double helices can be readily obtained, as confirmed by TEM and TEM tomography. At low NP loadings (3 v%), the nanostructure conforms to the supramolecule morphology. However, at higher NP loadings (6-9 v%), the nanostructure deviates significantly from the morphology of supramolecular nanocomposites in bulk or in thin film, suggesting that frustrated NP packing, in addition to simple supramolecule templating, may play a significant role in the self-assembly process. The present studies demonstrate that 2-D confinement can be an effective means to tailor self-assembled NP structures and may open further opportunities to manipulate the macroscopic properties of NP assemblies.
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Valco, Mark J.
2000-01-01
This paper introduces a simple "Rule of Thumb" (ROT) method to estimate the load capacity of foil air journal bearings, which are self-acting compliant-surface hydrodynamic bearings being considered for Oil-Free turbo-machinery applications such as gas turbine engines. The ROT is based on first principles and data available in the literature and it relates bearing load capacity to the bearing size and speed through an empirically based load capacity coefficient, D. It is shown that load capacity is a linear function of bearing surface velocity and bearing projected area. Furthermore, it was found that the load capacity coefficient, D, is related to the design features of the bearing compliant members and operating conditions (speed and ambient temperature). Early bearing designs with basic or "first generation" compliant support elements have relatively low load capacity. More advanced bearings, in which the compliance of the support structure is tailored, have load capacities up to five times those of simpler designs. The ROT enables simplified load capacity estimation for foil air journal bearings and can guide development of new Oil-Free turbomachinery systems.
Wei, Xi; Syed, Abeer; Mao, Pan; Han, Jongyoon; Song, Yong-Ak
2016-01-01
Polydimethylsiloxane (PDMS) is the prevailing building material to make microfluidic devices due to its ease of molding and bonding as well as its transparency. Due to the softness of the PDMS material, however, it is challenging to use PDMS for building nanochannels. The channels tend to collapse easily during plasma bonding. In this paper, we present an evaporation-driven self-assembly method of silica colloidal nanoparticles to create nanofluidic junctions with sub-50 nm pores between two microchannels. The pore size as well as the surface charge of the nanofluidic junction is tunable simply by changing the colloidal silica bead size and surface functionalization outside of the assembled microfluidic device in a vial before the self-assembly process. Using the self-assembly of nanoparticles with a bead size of 300 nm, 500 nm, and 900 nm, it was possible to fabricate a porous membrane with a pore size of ~45 nm, ~75 nm and ~135 nm, respectively. Under electrical potential, this nanoporous membrane initiated ion concentration polarization (ICP) acting as a cation-selective membrane to concentrate DNA by ~1,700 times within 15 min. This non-lithographic nanofabrication process opens up a new opportunity to build a tunable nanofluidic junction for the study of nanoscale transport processes of ions and molecules inside a PDMS microfluidic chip. PMID:27023724
2017-01-01
Traditional techniques of active thermography require an external source of energy used for excitation, usually in the form of high power lamps or ultrasonic devices. In this paper, the author presents an alternative approach based on the self-heating effect observable in polymer-based structures during cyclic loading. The presented approach is based on, firstly, determination of bending resonance frequencies of a tested structure, and then, on excitation of a structure with a multi-harmonic signal constructed from the harmonics with frequencies of determined resonances. Following this, heating-up of a tested structure occurs in the location of stress concentration and mechanical energy dissipation due to the viscoelastic response of a structure. By applying multi-harmonic signal, one ensures coverage of the structure by such heated regions. The concept is verified experimentally on artificially damaged composite specimens. The results demonstrate the presented approach and indicate its potential, especially when traditional methods of excitation with an external structure for thermographic inspection cannot be applied. PMID:29283430
Katunin, Andrzej
2017-12-28
Traditional techniques of active thermography require an external source of energy used for excitation, usually in the form of high power lamps or ultrasonic devices. In this paper, the author presents an alternative approach based on the self-heating effect observable in polymer-based structures during cyclic loading. The presented approach is based on, firstly, determination of bending resonance frequencies of a tested structure, and then, on excitation of a structure with a multi-harmonic signal constructed from the harmonics with frequencies of determined resonances. Following this, heating-up of a tested structure occurs in the location of stress concentration and mechanical energy dissipation due to the viscoelastic response of a structure. By applying multi-harmonic signal, one ensures coverage of the structure by such heated regions. The concept is verified experimentally on artificially damaged composite specimens. The results demonstrate the presented approach and indicate its potential, especially when traditional methods of excitation with an external structure for thermographic inspection cannot be applied.
Making Wide-IF SIS Mixers with Suspended Metal-Beam Leads
NASA Technical Reports Server (NTRS)
Kaul, Anupama; Bumble, Bruce; Lee, Karen; LeDuc, Henry; Rice, Frank; Zmuidzinas, Jonas
2005-01-01
A process that employs silicon-on-insulator (SOI) substrates and silicon (Si) micromachining has been devised for fabricating wide-intermediate-frequency-band (wide-IF) superconductor/insulator/superconductor (SIS) mixer devices that result in suspended gold beam leads used for radio-frequency grounding. The mixers are formed on 25- m-thick silicon membranes. They are designed to operate in the 200 to 300 GHz frequency band, wherein wide-IF receivers for tropospheric- chemistry and astrophysical investigations are necessary. The fabrication process can be divided into three sections: 1. The front-side process, in which SIS devices with beam leads are formed on a SOI wafer; 2. The backside process, in which the SOI wafer is wax-mounted onto a carrier wafer, then thinned, then partitioned into individual devices; and 3. The release process, in which the individual devices are separated using a lithographic dicing technique. The total thickness of the starting 4-in. (10.16-cm)-diameter SOI wafer includes 25 m for the Si device layer, 0.5 m for the buried oxide (BOX) layer, and 350 m the for Si-handle layer. The front-side process begins with deposition of an etch-stop layer of SiO2 or AlN(x), followed by deposition of a Nb/Al- AlN(x) /Nb trilayer in a load-locked DC magnetron sputtering system. The lithography for four of a total of five layers is performed in a commercial wafer-stepping apparatus. Diagnostic test dies are patterned concurrently at certain locations on the wafer, alongside the mixer devices, using a different mask set. The conventional, self-aligned lift-off process is used to pattern the SIS devices up to the wire level.
Stochastic clustering of material surface under high-heat plasma load
NASA Astrophysics Data System (ADS)
Budaev, Viacheslav P.
2017-11-01
The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.
NASA Astrophysics Data System (ADS)
Dye, S. A.; Johnson, W. L.; Plachta, D. W.; Mills, G. L.; Buchanan, L.; Kopelove, A. B.
2014-11-01
Improvements in cryogenic propellant storage are needed to achieve reduced or Zero Boil Off of cryopropellants, critical for long duration missions. Techniques for reducing heat leak into cryotanks include using passive multi-layer insulation (MLI) and vapor cooled or actively cooled thermal shields. Large scale shields cannot be supported by tank structural supports without heat leak through the supports. Traditional MLI also cannot support shield structural loads, and separate shield support mechanisms add significant heat leak. Quest Thermal Group and Ball Aerospace, with NASA SBIR support, have developed a novel Load Bearing multi-layer insulation (LBMLI) capable of self-supporting thermal shields and providing high thermal performance. We report on the development of LBMLI, including design, modeling and analysis, structural testing via vibe and acoustic loading, calorimeter thermal testing, and Reduced Boil-Off (RBO) testing on NASA large scale cryotanks. LBMLI uses the strength of discrete polymer spacers to control interlayer spacing and support the external load of an actively cooled shield and external MLI. Structural testing at NASA Marshall was performed to beyond maximum launch profiles without failure. LBMLI coupons were thermally tested on calorimeters, with superior performance to traditional MLI on a per layer basis. Thermal and structural tests were performed with LBMLI supporting an actively cooled shield, and comparisons are made to the performance of traditional MLI and thermal shield supports. LBMLI provided a 51% reduction in heat leak per layer over a previously tested traditional MLI with tank standoffs, a 38% reduction in mass, and was advanced to TRL5. Active thermal control using LBMLI and a broad area cooled shield offers significant advantages in total system heat flux, mass and structural robustness for future Reduced Boil-Off and Zero Boil-Off cryogenic missions with durations over a few weeks.
Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery
Bennet, Devasier; Marimuthu, Mohana; Kim, Sanghyo; An, Jeongho
2012-01-01
Antioxidant (quercetin) and hypoglycemic (voglibose) drug-loaded poly-D,L-lactideco-glycolide nanoparticles were successfully synthesized using the solvent evaporation method. The dual drug-loaded nanoparticles were incorporated into a scaffold film using a solvent casting method, creating a controlled transdermal drug-delivery system. Key features of the film formulation were achieved utilizing several ratios of excipients, including polyvinyl alcohol, polyethylene glycol, hyaluronic acid, xylitol, and alginate. The scaffold film showed superior encapsulation capability and swelling properties, with various potential applications, eg, the treatment of diabetes-associated complications. Structural and light scattering characterization confirmed a spherical shape and a mean particle size distribution of 41.3 nm for nanoparticles in the scaffold film. Spectroscopy revealed a stable polymer structure before and after encapsulation. The thermoresponsive swelling properties of the film were evaluated according to temperature and pH. Scaffold films incorporating dual drug-loaded nanoparticles showed remarkably high thermoresponsivity, cell compatibility, and ex vivo drug-release behavior. In addition, the hybrid film formulation showed enhanced cell adhesion and proliferation. These dual drug-loaded nanoparticles incorporated into a scaffold film may be promising for development into a transdermal drug-delivery system. PMID:22888222
Resist development status for immersion lithography
NASA Astrophysics Data System (ADS)
Tsuji, Hiromitsu; Yoshida, Masaaki; Ishizuka, Keita; Hirano, Tomoyuki; Endo, Kotaro; Sato, Mitsuru
2005-05-01
Immersion lithography has already demonstrated superior performance for next generation semiconductor manufacturing, while some challenges with contact immersion fluids and resist still remain. There are many interactions to be considered with regards to the solid and liquid interface. Resist elusion in particular requires very careful attention since the impact on the lens and fluid supply system in exposure tool could pose a significant risk at the manufacturing stage. TOK developed a screening procedure to detect resist elution of ion species down to ppb levels during non and post exposure steps. It was found that the PAG cation elution is affected by molecular weight and structure while the PAG anion elution was dependent on the molecular structure and mobility. In this paper, lithographic performance is also discussed with the low elution type resist.
Selective buckling via states of self-stress in topological metamaterials
Paulose, Jayson; Meeussen, Anne S.; Vitelli, Vincenzo
2015-01-01
States of self-stress—tensions and compressions of structural elements that result in zero net forces—play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices. PMID:26056303
Realizing three-dimensional artificial spin ice by stacking planar nano-arrays
NASA Astrophysics Data System (ADS)
Chern, Gia-Wei; Reichhardt, Charles; Nisoli, Cristiano
2014-01-01
Artificial spin ice is a frustrated magnetic two-dimensional nano-material, recently employed to study variety of tailor-designed unusual collective behaviours. Recently proposed extensions to three dimensions are based on self-assembly techniques and allow little control over geometry and disorder. We present a viable design for the realization of a three-dimensional artificial spin ice with the same level of precision and control allowed by lithographic nano-fabrication of the popular two-dimensional case. Our geometry is based on layering already available two-dimensional artificial spin ice and leads to an arrangement of ice-rule-frustrated units, which is topologically equivalent to that of the tetrahedra in a pyrochlore lattice. Consequently, we show, it exhibits a genuine ice phase and its excitations are, as in natural spin ice materials, magnetic monopoles interacting via Coulomb law.
A Biomimetic Structural Health Monitoring Approach Using Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi
2012-07-01
A self-sensing nanocomposite material has been developed to track the presence of damage in complex composite structures. Multiwalled carbon nanotubes are integrated with polymer matrix to develop a novel bonding material with sensing capabilities. The changes of the piezoresistance in the presence of damage are used to monitor the condition of bonded joints, where the usual bonding material is replaced by the self-sensing nanocomposite. The feasibility of this concept is investigated through experiments conducted on single-lap joints subject to monotonic tensile loading conditions. The results show that the self-sensing nanocomposite is sensitive to crack propagation within the matrix material. An acoustic emission-based sensing technique has been used to validate these results and shows good correlation with damage growth. A digital image correlation system is used to measure the shear strain field in the joint area.
Landsat Image Map Production Methods at the U. S. Geological Survey
Kidwell, R.D.; Binnie, D.R.; Martin, S.
1987-01-01
To maintain consistently high quality in satellite image map production, the U. S. Geological Survey (USGS) has developed standard procedures for the photographic and digital production of Landsat image mosaics, and for lithographic printing of multispectral imagery. This paper gives a brief review of the photographic, digital, and lithographic procedures currently in use for producing image maps from Landsat data. It is shown that consistency in the printing of image maps is achieved by standardizing the materials and procedures that affect the image detail and color balance of the final product. Densitometric standards are established by printing control targets using the pressplates, inks, pre-press proofs, and paper to be used for printing.
Computational overlay metrology with adaptive data analytics
NASA Astrophysics Data System (ADS)
Schmitt-Weaver, Emil; Subramony, Venky; Ullah, Zakir; Matsunobu, Masazumi; Somasundaram, Ravin; Thomas, Joel; Zhang, Linmiao; Thul, Klaus; Bhattacharyya, Kaustuve; Goossens, Ronald; Lambregts, Cees; Tel, Wim; de Ruiter, Chris
2017-03-01
With photolithography as the fundamental patterning step in the modern nanofabrication process, every wafer within a semiconductor fab will pass through a lithographic apparatus multiple times. With more than 20,000 sensors producing more than 700GB of data per day across multiple subsystems, the combination of a light source and lithographic apparatus provide a massive amount of information for data analytics. This paper outlines how data analysis tools and techniques that extend insight into data that traditionally had been considered unmanageably large, known as adaptive analytics, can be used to show how data collected before the wafer is exposed can be used to detect small process dependent wafer-towafer changes in overlay.
Single Wall Carbon Nanotube-Based Structural Health Sensing Materials
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Ingram, JoAnne L.; Jordan, Jeffrey D.; Wincheski, Russell A.; Smits, Jan M.; Williams, Phillip A.
2004-01-01
Single wall carbon nanotube (SWCNT)-based materials represent the future aerospace vehicle construction material of choice based primarily on predicted strength-to-weight advantages and inherent multifunctionality. The multifunctionality of SWCNTs arises from the ability of the nanotubes to be either metallic or semi-conducting based on their chirality. Furthermore, simply changing the environment around a SWCNT can change its conducting behavior. This phenomenon is being exploited to create sensors capable of measuring several parameters related to vehicle structural health (i.e. strain, pressure, temperature, etc.) The structural health monitor is constructed using conventional electron-beam lithographic and photolithographic techniques to place specific electrode patterns on a surface. SWCNTs are then deposited between the electrodes using a dielectrophoretic alignment technique. Prototypes have been constructed on both silicon and polyimide substrates, demonstrating that surface-mountable and multifunctional devices based on SWCNTs can be realized.
Zhu, Xuelian; Xu, Yongan; Yang, Shu
2007-12-10
We present a quantitative study of the distortion from a threeterm diamond-like structure fabricated in SU8 polymer by four-beam holographic lithography. In the study of the refraction effect, theory suggests that the lattice in SU8 should be elongated in the [111] direction but have no distortion in the (111) plane, and each triangular-like hole array in the (111) plane would rotate by ~30 degrees away from that in air. Our experiments agree with the prediction on the periodicity in the (111) plane and the rotation due to refraction effect, however, we find that the film shrinkage during lithographic process has nearly compensated the predicted elongation in the [111] direction. In study of photonic bandgap (PBG) properties of silicon photonic crystals templated by the SU8 structure, we find that the distortion has decreased quality of PBG.
ERIC Educational Resources Information Center
Nahl, Diane
2010-01-01
New users of virtual environments face a steep learning curve, requiring persistence and determination to overcome challenges experienced while acclimatizing to the demands of avatar-mediated behavior. Concurrent structured self-reports can be used to monitor the personal affective and cognitive struggles involved in virtual world adaptation to…
The structure of coping among older adults living with HIV/AIDS and depressive symptoms
Hansen, Nathan B; Harrison, Blair; Fambro, Stacy; Bodnar, Sara; Heckman, Timothy G; Sikkema, Kathleen J
2013-01-01
One-third of adults living with HIV/AIDS are over the age of 50. This study evaluated the structure of coping among 307 older adults living with HIV/AIDS. Participants completed 61 coping items and measures of anxiety, depression, loneliness, and coping self-efficacy. Exploratory factor analyses retained 40 coping items loading on five specific first order factors (Distancing Avoidance, Social Support Seeking, Self-Destructive Avoidance, Spiritual Coping, and Solution-Focused Coping) and two general second order factors (Active and Avoidant Coping). Factors demonstrated good reliability and validity. Results suggest that general coping factors should be considered with specific factors when measuring coping among older adults. PMID:22453164
Structure of block copolymer micelles in the presence of co-solvents
NASA Astrophysics Data System (ADS)
Robertson, Megan; Wang, Shu; Le, Kim Mai; Piemonte, Rachele; Madsen, Louis
2015-03-01
Amphiphilic block copolymer micelles in water are under broad exploration for drug delivery applications due to their high loading capacity and targeted drug delivery. We aim to understand the kinetic and thermodynamic processes that underlie the self-assembly of diblock copolymer micelle systems. The present work focuses on diblock copolymers containing poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic polymer), which spontaneously self-assemble into spherical micelles in water. Addition of a common good solvent (a co-solvent) for both of the constituting blocks, such as tetrahydrofuran (THF), reduces the interfacial tension at the core-corona interface. We are currently investigating the effect of this phenomenon on the micelle structural properties, using scattering experiments and nuclear magnetic resonance. We have characterized the hydrodynamic radius, core radius, corona thickness, aggregation number, degree of swelling of the micelle core with the co-solvent, and unimer (free chain) concentration, as a function of the co-solvent concentration. Fundamental knowledge from these studies will inform design of drug delivery systems by allowing us to tailor micelle properties for optimal cargo loading.
Influencing the structure of block copolymer micelles with small molecule additives
NASA Astrophysics Data System (ADS)
Robertson, Megan; Singh, Avantika; Cooksey, Tyler; Kidd, Bryce; Piemonte, Rachele; Wang, Shu; Mai Le, Kim; Madsen, Louis
Amphiphilic block copolymer micelles in water are under broad exploration for drug delivery applications due to their high loading capacity and targeted drug delivery. We aim to understand the kinetic and thermodynamic processes that underlie the self-assembly of diblock copolymer micelle systems. The present work focuses on diblock copolymers containing poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic polymer), which spontaneously self-assemble into spherical micelles in water. Addition of a common good solvent (a co-solvent) for both of the constituting blocks, such as tetrahydrofuran (THF), reduces the interfacial tension at the core-corona interface. We are currently investigating the effect of this phenomenon on the micelle structural properties, using small-angle scattering and nuclear magnetic resonance. We have characterized the hydrodynamic radius, core radius, corona thickness, aggregation number, degree of swelling of the micelle core with the co-solvent, and unimer (free chain) concentration, as a function of the co-solvent concentration. Fundamental knowledge from these studies will inform design of drug delivery systems by allowing us to tailor micelle properties for optimal cargo loading.
Carbon fiber epoxy composites for both strengthening and health monitoring of structures.
Salvado, Rita; Lopes, Catarina; Szojda, Leszek; Araújo, Pedro; Gorski, Marcin; Velez, Fernando José; Castro-Gomes, João; Krzywon, Rafal
2015-05-06
This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the "wet process", which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring.
Carbon Fiber Epoxy Composites for Both Strengthening and Health Monitoring of Structures
Salvado, Rita; Lopes, Catarina; Szojda, Leszek; Araújo, Pedro; Gorski, Marcin; Velez, Fernando José; Castro-Gomes, João; Krzywon, Rafal
2015-01-01
This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the “wet process”, which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring. PMID:25954955
Behl, Gautam; Kumar, Parveen; Sikka, Manisha; Fitzhenry, Laurence; Chhikara, Aruna
2018-03-01
Polymeric self-assemblies formed by non-covalent interactions such as hydrophobic interactions, hydrogen bonding, π-π stacking, host-guest and electrostatic interactions have been utilised widely and exhibit controlled release of encapsulated drug. Beside carrier-carrier interactions, small molecule amphiphiles exhibiting carrier-drug interactions have recently been an area of interest for cancer drug delivery, as most of the hydrophobic anti-tumour drugs are aromatic and exhibit π-π conjugated structure. In the present study PEG-coumarin (PC) conjugates forming self-assembled nanoaggregates were synthesised with PEG (polyethylene glycol) as hydrophilic block and coumarin as small molecule lipophilic segment. Curcumin (CUR) as model conjugated aromatic drug was loaded in to the nanoaggregates via dual hydrophobic and π-π stacking interactions. The interactions between the conjugates and CUR, drug release profile and in vitro anti-tumour efficacy were investigated in detail. CUR-loaded nanoaggregate self-assembly was driven by π-π interactions and a maximum loading level of about 18 wt.% (~60 % encapsulation efficiency) was achieved. The average hydrodynamic diameter (D av ) was in the range of 120-160 nm and a spherical morphology was observed by transmission electron microscopy (TEM). A sustained release of CUR was observed for 90 h. Cytotoxicity evaluation of CUR-loaded nanoaggregates on pancreatic cancer cell lines indicated higher efficacy, IC 50 ~11 and ~15 μM as compared to free CUR, IC 50 ~14 and ~20 μM on human pancreatic carcinoma (MIA PaCa-2) and human pancreatic duct epithelioid carcinoma (PANC-1) cell lines respectively. PC conjugates provided a new strategy of fabricating nanoparticles for drug delivery and may form the basis for the development of advanced biomaterials in near future.
Indium Growth and Island Height Control on Si Submonolayer Phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jizhou
2009-01-01
Nanotechnology refers any technique that involves about object with nanoscale (10 -9 m) or even smaller. It has become more and more important in recently years and has changed our world dramatically. Most of modern electronic devices today should thanks to the miniaturizing driven by development of nanotechnology. Recent years, more and more governments are investing huge amount of money in research related to nanotechnology. There are two major reasons that nanostructure is so fascinate. The first one is the miniaturizing. It is obvious that if we can make products smaller without losing the features, we can save the costmore » and increase the performance dramatically. For an example, the first computer in the world, ENIAC, which occupied several rooms, is less powerful than the cheapest calculator today. Today's chips with sizes of less than half an inch contain millions of basic units. All these should thank to the development of nanotechnology. The other reason is that when we come to nanoscale, there are many new effects due to the quantum effect which can't be found in large systems. For an example, quantum dots (QDs) are systems which sizes are below 1μm(10 -6m) and restricted in three dimensions. There are many interesting quantum effects in QDs, including discrete energy levels, and interdot coupling. Due to these properties and their small sizes, QDs have varies potential applications such as quantum computing, probe, light emitting device, solar cells, and laser. To meet the requirement of the nanoelectrical applications, the QDs must be grown highly uniformly because their property is highly dependent on their sizes. The major methods to grow uniform QDs include epitaxial, and lithograph. Lithography is a process to make patterns on a thin film by selectively removing certain parts of the film. Using this method, people have good control over size, location and spacing of QDs. For an example, the Extreme ultraviolet lithography (EUVL) have a wave length of 13.4 nm so it can curve on the surface of an sample to make structure as small as the order of 10 nm. however, lithograph usually causes permanent damages to the surface and in many cases the QDs are damaged during the lithograph and therefore result in high percentage of defects. Quantum size effect has attracted more and more interests in surface science due to many of its effects. One of its effects is the height preference in film growing and the resulting possibility of uniformly sized self-assemble nanostructure. The experiment of Pb islands on In 4x1 phase shows that both the height and the width can be controlled by proper growth conditions, which expands the growth dimensions from 1 to 2. This discover leads us to study the In/Pb interface. In Ch.3, we found that the Pb islands growing on In 4x1-Si(111) surface which have uniform height due to QSE and uniform width due to the constriction of In 4x1 lattice have unexpected stability. These islands are stable in even RT, unlike usual nanostructures on Pb/Si surface which are stable only at low temperature. Since similar structures are usually grown at low temperature, this discovery makes the grown structures closer to technological applications. It also shows the unusual of In/Pb interface. Then we studied the In islands grown on Pb-α-√3x√3-Si(111) phase in Ch.4. These islands have fcc structure in the first few layers, and then convert to bct structure. The In fcc islands have sharp height preference due to QSE like Pb islands. However, the preferred height is different (7 layer for Pb on Si 7x7 and 4 layer for Pb on In 4x1), due to the difference of interface. The In islands structure prefers to be bct than fcc with coverage increase. It is quantitatively supported by first-principle calculation. Unexpectedly, the In islands grown on various of In interfaces didn't show QSE effects and phase transition from fcc and bct structures as on the Pb-α interface (Ch.6). In g(s) curve there is no clear oscillations in the g(s) curve as the In on Pb-α phase. This may be due to the extra mobility of In atoms, which causes the In bct islands to grow too fast to be observed in diffraction or STM (Ch.5). From these experiments we can see the importance of Pb-α phase in growth of In islands. It is the best interface to grow In islands in the phases we have experimented. Recent experiments show that the Existence of Pb will decrease the diffusion speed of In. In Ch.6 we have shown that In atoms diffusion is so fast that the bct spots are not visible in diffraction. But when we put some Pb onto the In surface, we can see the bct spots, although very weak. So Pb should play an role in slowing down the indium atoms diffusion. The interaction of Pb and In may play a role, but it is still not fully understood. So the general conclusion of this thesis is that In/Pb interface has extraordinary properties and may have potential in self-assembling growth.« less
Pandav, Gunja; Durand, William J; Ellison, Christopher J; Willson, C Grant; Ganesan, Venkat
2015-12-21
Recently, alignment of block copolymer domains has been achieved using a topographically patterned substrate with a sidewall preferential to one of the blocks. This strategy has been suggested as an option to overcome the patterning resolution challenges facing chemoepitaxy strategies, which utilize chemical stripes with a width of about half the period of block copolymer to orient the equilibrium morphologies. In this work, single chain in mean field simulation methodology was used to study the self assembly of symmetric block copolymers on topographically patterned substrates with sidewall interactions. Random copolymer brushes grafted to the background region (space between patterns) were modeled explicitly. The effects of changes in pattern width, film thicknesses and strength of sidewall interaction on the resulting morphologies were examined and the conditions which led to perpendicular morphologies required for lithographic applications were identified. A number of density multiplication schemes were studied in order to gauge the efficiency with which the sidewall pattern can guide the self assembly of block copolymers. The results indicate that such a patterning technique can potentially utilize pattern widths of the order of one-two times the period of block copolymer and still be able to guide ordering of the block copolymer domains up to 8X density multiplication.
Energy Storage and Dissipation in Random Copolymers during Biaxial Loading
NASA Astrophysics Data System (ADS)
Cho, Hansohl; Boyce, Mary
2012-02-01
Random copolymers composed of hard and soft segments in a glassy and rubbery state at the ambient conditions exhibit phase-separated morphologies which can be tailored to provide hybrid mechanical behaviors of the constituents. Here, phase-separated copolymers with hard and soft contents which form co-continuous structures are explored through experiments and modeling. The mechanics of the highly dissipative yet resilient behavior of an exemplar polyurea are studied under biaxial loading. The hard phase governs the initially stiff response followed by a highly dissipative viscoplasticity where dissipation arises from viscous relaxation as well as structural breakdown in the network structure that still provides energy storage resulting in the shape recovery. The soft phase provides additional energy storage that drives the resilience in high strain rate events. Biaxial experiments reveal the anisotropy and loading history dependence of energy storage and dissipation, validating the three-dimensional predictive capabilities of the microstructurally-based constitutive model. The combination of a highly dissipative and resilient behavior provides a versatile material for a myriad of applications ranging from self-healing microcapsules to ballistic protective coatings.
Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracher, Gregor; Schraml, Konrad; Blauth, Mäx
2014-07-21
We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ∼10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured bymore » the quantum dots ∼25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μm to 1 μm, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L{sub i} is varied. A splitting ratio of 50:50 is observed for L{sub i}∼9±1 μm and 1 μm wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.« less
Proton-beam writing channel based on an electrostatic accelerator
NASA Astrophysics Data System (ADS)
Lapin, A. S.; Rebrov, V. A.; Kolin'ko, S. V.; Salivon, V. F.; Ponomarev, A. G.
2016-09-01
We have described the structure of the proton-beam writing channel as a continuation of a nuclear scanning microprobe channel. The problem of the accuracy of positioning a probe by constructing a new high-frequency electrostatic scanning system has been solved. Special attention has been paid to designing the probe-forming system and its various configurations have been considered. The probe-forming system that best corresponds to the conditions of the lithographic process has been found based on solving the problem of optimizing proton beam formation. A system for controlling beam scanning using multifunctional module of integrated programmable logic systems has been developed.
Lithography-Free Fabrication of Core-Shell GaAs Nanowire Tunnel Diodes.
Darbandi, A; Kavanagh, K L; Watkins, S P
2015-08-12
GaAs core-shell p-n junction tunnel diodes were demonstrated by combining vapor-liquid-solid growth with gallium oxide deposition by atomic layer deposition for electrical isolation. The characterization of an ensemble of core-shell structures was enabled by the use of a tungsten probe in a scanning electron microscope without the need for lithographic processing. Radial tunneling transport was observed, exhibiting negative differential resistance behavior with peak-to-valley current ratios of up to 3.1. Peak current densities of up to 2.1 kA/cm(2) point the way to applications in core-shell photovoltaics and tunnel field effect transistors.
Lithographic dry development using optical absorption
Olynick, Deirdre; Schuck, P. James; Schmidt, Martin
2013-08-20
A novel approach to dry development of exposed photo resist is described in which a photo resist layer is exposed to a visible light source in order to remove the resist in the areas of exposure. The class of compounds used as the resist material, under the influence of the light source, undergoes a chemical/structural change such that the modified material becomes volatile and is thus removed from the resist surface. The exposure process is carried out for a time sufficient to ablate the exposed resist layer down to the layer below. A group of compounds found to be useful in this process includes aromatic calixarenes.
Chang, Run; Sun, Linlin; Webster, Thomas J
2015-01-01
Osteosarcoma is the most frequent primary malignant form of bone cancer, comprising 30% of all bone cancer cases. The objective of this in vitro study was to develop a treatment against osteosarcoma with higher selectivity toward osteosarcoma cells and lower cytotoxicity toward normal healthy osteoblast cells. Curcumin (or diferuloylmethane) has been found to have antioxidant and anticancer effects by multiple cellular pathways. However, it has lower water solubility and a higher degradation rate in alkaline conditions. In this study, the amphiphilic peptide C18GR7RGDS was used as a curcumin carrier in aqueous solution. This peptide contains a hydrophobic aliphatic tail group leading to their self-assembly by hydrophobic interactions, as well as a hydrophilic head group composed of an arginine-rich and an arginine-glycine-aspartic acid structure. Through characterization by transmission electron microscopy, self-assembled structures of spherical amphiphilic nanoparticles (APNPs) with diameters of 10-20 nm in water and phosphate-buffered saline were observed, but this structure dissociated when the pH value was reduced to 4. Using a method of codissolution with acetic acid and dialysis tubing, the solubility of curcumin was enhanced and a homogeneous solution was formed in the presence of APNPs. Successful encapsulation of curcumin in APNPs was then confirmed by Fourier transform infrared and X-ray diffraction analyses. The cytotoxicity and cellular uptake of the APNP/curcumin complexes on both osteosarcoma and normal osteoblast cell lines were also evaluated by methyl-thiazolyl-tetrazolium assays and confocal fluorescence microscopy. The results showed that the curcumin-loaded APNPs had significant selective cytotoxicity against MG-63 osteosarcoma cells when compared with normal osteoblasts. We have demonstrated for the first time that APNPs can encapsulate hydrophobic curcumin in their hydrophobic cores, and curcumin-loaded APNPs could be an innovative treatment for the selective inhibition of osteosarcoma cells.
Chang, Run; Sun, Linlin; Webster, Thomas J
2015-01-01
Osteosarcoma is the most frequent primary malignant form of bone cancer, comprising 30% of all bone cancer cases. The objective of this in vitro study was to develop a treatment against osteosarcoma with higher selectivity toward osteosarcoma cells and lower cytotoxicity toward normal healthy osteoblast cells. Curcumin (or diferuloylmethane) has been found to have antioxidant and anticancer effects by multiple cellular pathways. However, it has lower water solubility and a higher degradation rate in alkaline conditions. In this study, the amphiphilic peptide C18GR7RGDS was used as a curcumin carrier in aqueous solution. This peptide contains a hydrophobic aliphatic tail group leading to their self-assembly by hydrophobic interactions, as well as a hydrophilic head group composed of an arginine-rich and an arginine-glycine-aspartic acid structure. Through characterization by transmission electron microscopy, self-assembled structures of spherical amphiphilic nanoparticles (APNPs) with diameters of 10–20 nm in water and phosphate-buffered saline were observed, but this structure dissociated when the pH value was reduced to 4. Using a method of codissolution with acetic acid and dialysis tubing, the solubility of curcumin was enhanced and a homogeneous solution was formed in the presence of APNPs. Successful encapsulation of curcumin in APNPs was then confirmed by Fourier transform infrared and X-ray diffraction analyses. The cytotoxicity and cellular uptake of the APNP/curcumin complexes on both osteosarcoma and normal osteoblast cell lines were also evaluated by methyl-thiazolyl-tetrazolium assays and confocal fluorescence microscopy. The results showed that the curcumin-loaded APNPs had significant selective cytotoxicity against MG-63 osteosarcoma cells when compared with normal osteoblasts. We have demonstrated for the first time that APNPs can encapsulate hydrophobic curcumin in their hydrophobic cores, and curcumin-loaded APNPs could be an innovative treatment for the selective inhibition of osteosarcoma cells. PMID:26005346
Cancer in printing workers in Denmark.
Lynge, E; Rix, B A; Villadsen, E; Andersen, I; Hink, M; Olsen, E; Møller, U L; Silfverberg, E
1995-01-01
OBJECTIVES--To study the cancer incidence in printing workers in Denmark. METHODS--The cohort of 15,534 men and 3593 women working in the printing industry in 1970 were followed up for death, emigrations, and incident cancer cases until the end of 1987. Their cancer incidence was compared with that of all economically active people in Denmark. The smoking and drinking habits reported by members of the printing trade unions at a survey in 1972 were compared with habits reported by members of other trade unions. RESULTS--Lung, bladder, renal pelvis, and primary liver cancers were in excess among the printing workers. The excess risks of lung cancer among the factory workers in newspaper and magazine production, of bladder cancer in typographers in printing establishments, of renal pelvis cancer in typographers and lithographers, and of primary liver cancer among lithographers and bookbinders exceeded those expected based on the reported smoking and drinking habits. CONCLUSION--Our results indicate, in line with a previous study from Manchester, that work with rotary letterpress printing was associated with an increased risk of lung cancer. The inconsistent results from studies on bladder cancer in printing workers may point to a risk confined to a certain subgroup. The sixfold risk of primary liver cancer in Danish lithographers warrants studies in other countries. PMID:8535493
Sato, Takeshi; Uto, Koichiro; Aoyagi, Takao; Ebara, Mitsuhiro
2016-01-01
This work describes an intriguing strategy for the creation of arbitrarily shaped hydrogels utilizing a self-healing template (SHT). A SHT was loaded with a photo-crosslinkable monomer, PEG diacrylate (PEGDA), and then ultraviolet light (UV) crosslinked after first shaping. The SHT template was removed by simple washing with water, leaving behind the hydrogel in the desired physical shape. A hierarchical 3D structure such as “Matreshka” boxes were successfully prepared by simply repeating the “self-healing” and “photo-irradiation” processes. We have also explored the potential of the SHT system for the manipulation of cells. PMID:28773983
Leonardo's branching rule in trees: How self-similar structures resist wind
NASA Astrophysics Data System (ADS)
Eloy, Christophe
2011-11-01
In his notebooks, Leonardo da Vinci observed that ``all the branches of a tree at every stage of its height when put together are equal in thickness to the trunk,'' which means that the total cross-sectional area of branches is conserved across branching nodes. The usual explanation for this rule involves vascular transport of sap, but this argument is questionable because the portion of wood devoted to transport varies across species and can be as low as 5%. It is proposed here that Leonardo's rule is a consequence of the tree skeleton having a self-similar structure and the branch diameters being adjusted to resist wind-induced loads. To address this problem, a continuous model is first considered by neglecting the geometrical details of branching and wind incident angles. The robustness of this analytical model is then assessed with numerical simulations on tree skeletons generated with a simple branching rule producing self-similar structures. This study was supported by the European Union through the fellowship PIOF-GA-2009-252542.
Measuring Cognitive Load: A Comparison of Self-Report and Physiological Methods
ERIC Educational Resources Information Center
Joseph, Stacey
2013-01-01
This study explored three methods to measure cognitive load in a learning environment using four logic puzzles that systematically varied in level of intrinsic cognitive load. Participants' perceived intrinsic load was simultaneously measured with a self-report measure-a traditional subjective measure-and two objective, physiological measures…
ERIC Educational Resources Information Center
Efendioglu, Akin
2016-01-01
The aim of this study is to investigate pre-service teacher's cognitive load types (intrinsic load-IL, extraneous load-EL, and germane load-GL), academic achievements, and affective characteristics (attitude and self-efficacy) at two stages of experimental learning processes. The first and the second groups used explanatory instructional…
NASA Astrophysics Data System (ADS)
Cheng, Jing; Lawson, Richard A.; Yeh, Wei-Ming; Jarnagin, Nathan D.; Peters, Andrew; Tolbert, Laren M.; Henderson, Clifford L.
2012-03-01
Directed self-assembly (DSA) of block copolymers is a promising technology for extending the patterning capability of current lithographic exposure tools. For example, production of sub-40 nm pitch features using 193nm exposure technologies is conceivably possible using DSA methods without relying on time consuming, challenging, and expensive multiple patterning schemes. Significant recent work has focused on demonstration of the ability to produce large areas of regular grating structures with low numbers of defects using self-assembly of poly(styrene)-b-poly(methyl methacrylate) copolymers (PS-b-PMMA). While these recent results are promising and have shown the ability to print pitches approaching 20 nm using DSA, the ability to advance to even smaller pitches will be dependent upon the ability to develop new block copolymers with higher χ values and the associated alignment and block removal processes required to achieve successful DSA with these new materials. This paper reports on work focused on identifying higher χ block copolymers and their associated DSA processes for sub-20 nm pitch patterning. In this work, DSA using polystyrene-b-polyacid materials has been explored. Specifically, it is shown that poly(styrene)-b-poly(acrylic acid) copolymers (PS-b-PAA) is one promising material for achieving substantially smaller pitch patterns than those possible with PS-b-PMMA while still utilizing simple hydrocarbon polymers. In fact, it is anticipated that much of the learning that has been done with the PS-b-PMMA system, such as development of highly selective plasma etch block removal procedures, can be directly leveraged or transferred to the PS-b-PAA system. Acetone vapor annealing of PS-b-PAA (Mw=16,000 g/mol with 50:50 mole ratio of PS:PAA) and its self-assembly into a lamellar morphology is demonstrated to generate a pattern pitch size (L0) of 21 nm. The χ value for PS-b-PAA was estimated from fingerprint pattern pitch data to be approximately 0.18 which is roughly 4.5 times greater than the χ for PS-b-PMMA (χPS-b-PMMA ~ 0.04).
Wafer plane inspection with soft resist thresholding
NASA Astrophysics Data System (ADS)
Hess, Carl; Shi, Rui-fang; Wihl, Mark; Xiong, Yalin; Pang, Song
2008-10-01
Wafer Plane Inspection (WPI) is an inspection mode on the KLA-Tencor TeraScaTM platform that uses the high signalto- noise ratio images from the high numerical aperture microscope, and then models the entire lithographic process to enable defect detection on the wafer plane[1]. This technology meets the needs of some advanced mask manufacturers to identify the lithographically-significant defects while ignoring the other non-lithographically-significant defects. WPI accomplishes this goal by performing defect detection based on a modeled image of how the mask features would actually print in the photoresist. There are several advantages to this approach: (1) the high fidelity of the images provide a sensitivity advantage over competing approaches; (2) the ability to perform defect detection on the wafer plane allows one to only see those defects that have a printing impact on the wafer; (3) the use of modeling on the lithographic portion of the flow enables unprecedented flexibility to support arbitrary illumination profiles, process-window inspection in unit time, and combination modes to find both printing and non-printing defects. WPI is proving to be a valuable addition to the KLA-Tencor detection algorithm suite. The modeling portion of WPI uses a single resist threshold as the final step in the processing. This has been shown to be adequate on several advanced customer layers, but is not ideal for all layers. Actual resist chemistry has complicated processes including acid and base-diffusion and quench that are not consistently well-modeled with a single resist threshold. We have considered the use of an advanced resist model for WPI, but rejected it because the burdensome requirements for the calibration of the model were not practical for reticle inspection. This paper describes an alternative approach that allows for a "soft" resist threshold to be applied that provides a more robust solution for the most challenging processes. This approach is just finishing beta testing with a customer developing advanced node designs.
Self-Adaptive Stepsize Search Applied to Optimal Structural Design
NASA Astrophysics Data System (ADS)
Nolle, L.; Bland, J. A.
Structural engineering often involves the design of space frames that are required to resist predefined external forces without exhibiting plastic deformation. The weight of the structure and hence the weight of its constituent members has to be as low as possible for economical reasons without violating any of the load constraints. Design spaces are usually vast and the computational costs for analyzing a single design are usually high. Therefore, not every possible design can be evaluated for real-world problems. In this work, a standard structural design problem, the 25-bar problem, has been solved using self-adaptive stepsize search (SASS), a relatively new search heuristic. This algorithm has only one control parameter and therefore overcomes the drawback of modern search heuristics, i.e. the need to first find a set of optimum control parameter settings for the problem at hand. In this work, SASS outperforms simulated-annealing, genetic algorithms, tabu search and ant colony optimization.
The Physics of Ultracold Sr2 Molecules: Optical Production and Precision Measurement
NASA Astrophysics Data System (ADS)
Osborn, Christopher Butler
Colloidal quantum dots have desirable optical properties which can be exploited to realize a variety of photonic devices and functionalities. However, colloidal dots have not had a pervasive utility in photonic devices because of the absence of patterning methods. The electronic chip industry is highly successful due to the well-established lithographic procedures. In this thesis we borrow ideas from the semiconductor industry to develop lithographic techniques that can be used to pattern colloidal quantum dots while ensuring that the optical properties of the quantum dots are not affected by the process. In this thesis we have developed colloidal quantum dot based waveguide structures for amplification and switching applications for all-optical signal processing. We have also developed colloidal quantum dot based light emitting diodes. We successfully introduced CdSe/ZnS quantum dots into a UV curable photo-resist, which was then patterned to realize active devices. In addition, "passive" devices (devices without quantum dots) were integrated to "active" devices via waveguide couplers. Use of photo-resist devices offers two distinct advantages. First, they have low scattering loss and secondly, they allow good fiber to waveguide coupling efficiency due to the low refractive index which allows for large waveguide cross-sections while supporting single mode operation. Practical planar photonic devices and circuits incorporating both active and passive structures can now be realized, now that we have patterning capabilities of quantum dots while maintaining the original optical attributes of the system. In addition to the photo-resist host, we also explored the incorporation of colloidal quantum dots into a dielectric silicon dioxide and silicon nitride one-dimensional microcavity structures using low temperature plasma enhanced chemical vapor deposition. This material system can be used to realize microcavity light emitting diodes that can be realized on any substrate. As a proof of concept demonstration we show a 1550 nm emitting all-dielectric vertical cavity structure embedded with PbS quantum dots. Enhancement in spontaneous emission from the dots embedded in the microcavity is also demonstrated.
Stift, M; Hunter, B D; Shaw, B; Adam, A; Hoebe, P N; Mable, B K
2013-01-01
Newly formed selfing lineages may express recessive genetic load and suffer inbreeding depression. This can have a genome-wide genetic basis, or be due to loci linked to genes under balancing selection. Understanding the genetic architecture of inbreeding depression is important in the context of the maintenance of self-incompatibility and understanding the evolutionary dynamics of S-alleles. We addressed this using North-American subspecies of Arabidopsis lyrata. This species is normally self-incompatible and outcrossing, but some populations have undergone a transition to selfing. The goals of this study were to: (1) quantify the strength of inbreeding depression in North-American populations of A. lyrata; and (2) disentangle the relative contribution of S-linked genetic load compared with overall inbreeding depression. We enforced selfing in self-incompatible plants with known S-locus genotype by treatment with CO2, and compared the performance of selfed vs outcrossed progeny. We found significant inbreeding depression for germination rate (δ=0.33), survival rate to 4 weeks (δ=0.45) and early growth (δ=0.07), but not for flowering rate. For two out of four S-alleles in our design, we detected significant S-linked load reflected by an under-representation of S-locus homozygotes in selfed progeny. The presence or absence of S-linked load could not be explained by the dominance level of S-alleles. Instead, the random nature of the mutation process may explain differences in the recessive deleterious load among lineages. PMID:22892638
NASA Astrophysics Data System (ADS)
Marshaline Seles, M.; Suryanarayanan, R.; Vivek, S. S.; Dhinakaran, G.
2017-07-01
The conventional concrete when used for structures having dense congested reinforcement, the problems such as external compaction and vibration needs special attention. In such case, the self compacting concrete (SCC) which has the properties like flow ability, passing and filling ability would be an obvious answer. All those SCC flow behavior was governed by EFNARC specifications. In present study, the combination type of SCC was prepared by replacing cement with silica fume (SF) and metakaolin (MK) along with optimum dosages of chemical admixtures. From the fresh property test, cube compressive strength and cylinder split tensile strength, optimum ternary mix was obtained. In order to study the flexural behavior, the optimum ternary mix was taken in which beam specimens of size 1200 mm x 100 mm x 200 mm was designed as singly reinforced section according to IS: 456-2000, Limit state method. Finally the comparative experimental analysis was made between conventional RCC and SCC beams of same grade in terms of flexural strength namely yield load & ultimate load, load- deflection curve, crack size and pattern respectively.
Self-regulating control of parasitic loads in a fuel cell power system
NASA Technical Reports Server (NTRS)
Vasquez, Arturo (Inventor)
2011-01-01
A fuel cell power system comprises an internal or self-regulating control of a system or device requiring a parasitic load. The internal or self-regulating control utilizes certain components and an interconnection scheme to produce a desirable, variable voltage potential (i.e., power) to a system or device requiring parasitic load in response to varying operating conditions or requirements of an external load that is connected to a primary fuel cell stack of the system. Other embodiments comprise a method of designing such a self-regulated control scheme and a method of operating such a fuel cell power system.
NASA Astrophysics Data System (ADS)
Daglar, Bihter; Demirel, Gokcen Birlik; Khudiyev, Tural; Dogan, Tamer; Tobail, Osama; Altuntas, Sevde; Buyukserin, Fatih; Bayindir, Mehmet
2014-10-01
The melt-infiltration technique enables the fabrication of complex nanostructures for a wide range of applications in optics, electronics, biomaterials, and catalysis. Here, anemone-like nanostructures are produced for the first time under the surface/interface principles of melt-infiltration as a non-lithographic method. Functionalized anodized aluminum oxide (AAO) membranes are used as templates to provide large-area production of nanostructures, and polycarbonate (PC) films are used as active phase materials. In order to understand formation dynamics of anemone-like structures finite element method (FEM) simulations are performed and it is found that wetting behaviour of the polymer is responsible for the formation of cavities at the caps of the structures. These nanostructures are examined in the surface-enhanced-Raman-spectroscopy (SERS) experiment and they exhibit great potential in this field. Reproducible SERS signals are detected with relative standard deviations (RSDs) of 7.2-12.6% for about 10 000 individual spots. SERS measurements are demonstrated at low concentrations of Rhodamine 6G (R6G), even at the picomolar level, with an enhancement factor of ~1011. This high enhancement factor is ascribed to the significant electric field enhancement at the cavities of nanostructures and nanogaps between them, which is supported by finite difference time-domain (FDTD) simulations. These novel nanostructured films can be further optimized to be used in chemical and plasmonic sensors and as a single molecule SERS detection platform.The melt-infiltration technique enables the fabrication of complex nanostructures for a wide range of applications in optics, electronics, biomaterials, and catalysis. Here, anemone-like nanostructures are produced for the first time under the surface/interface principles of melt-infiltration as a non-lithographic method. Functionalized anodized aluminum oxide (AAO) membranes are used as templates to provide large-area production of nanostructures, and polycarbonate (PC) films are used as active phase materials. In order to understand formation dynamics of anemone-like structures finite element method (FEM) simulations are performed and it is found that wetting behaviour of the polymer is responsible for the formation of cavities at the caps of the structures. These nanostructures are examined in the surface-enhanced-Raman-spectroscopy (SERS) experiment and they exhibit great potential in this field. Reproducible SERS signals are detected with relative standard deviations (RSDs) of 7.2-12.6% for about 10 000 individual spots. SERS measurements are demonstrated at low concentrations of Rhodamine 6G (R6G), even at the picomolar level, with an enhancement factor of ~1011. This high enhancement factor is ascribed to the significant electric field enhancement at the cavities of nanostructures and nanogaps between them, which is supported by finite difference time-domain (FDTD) simulations. These novel nanostructured films can be further optimized to be used in chemical and plasmonic sensors and as a single molecule SERS detection platform. Electronic supplementary information (ESI) available: SEM images of the AAO membrane and bare polymer film, FEM simulations of anemone-like polymeric nanopillars depending on the time and pressure, and detailed calculation of the enhancement factor both including experimental and theoretical approaches. See DOI: 10.1039/c4nr03909b
Perspectives from the NSF-sponsored workshop on Grand Challenges in Nanomaterials
NASA Astrophysics Data System (ADS)
Hull, Robert
2004-03-01
At an NSF-sponsored workshop in June 2003, about seventy research leaders in the field of nanomaterials met to discuss, explore and identify future new directions and critical needs ("Grand Challenges") for the next decade and beyond. The key pervasive theme that was identified was the need to develop techniques for assembly of nanoscaled materials over multiple lengths scales, at the levels of efficiency, economy, and precision necessary to realize broad new classes of applications in such diverse technologies as electronics, computation, telecommunications, data storage, energy storage / transmission / generation, health care, transportation, civil infrastructure, military applications, national security, and the environment. Elements of this strategy include development of new self-assembly and lithographic techniques; biologically-mediated synthesis; three-dimensional atomic-scale measurement of structure, properties and chemistry; harnessing of the sub-atomic properties of materials such as electron spin and quantum interactions; new computational methods that span all relevant length- and time- scales; a fundamental understanding of acceptable / achievable "fault tolerance" at the nanoscale; and methods for real-time and distributed sensing of nanoscale assembly. A parallel theme was the need to provide education concerning the potential, applications, and benefits of nanomaterials to all components of society and all levels of the educational spectrum. This talk will summarize the conclusions and recommendations from this workshop, and illustrate the future potential of this field through presentation of selected break-through results provided by workshop participants.
High performance EUV multilayer structures insensitive to capping layer optical parameters.
Pelizzo, Maria Guglielmina; Suman, Michele; Monaco, Gianni; Nicolosi, Piergiorgio; Windt, David L
2008-09-15
We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.
Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography.
Scharnweber, Tim; Truckenmüller, Roman; Schneider, Andrea M; Welle, Alexander; Reinhardt, Martina; Giselbrecht, Stefan
2011-04-07
Microstructuring of polydimethylsiloxane (PDMS) is a key step for many lab-on-a-chip (LOC) applications. In general, the structure is generated by casting the liquid prepolymer against a master. The production of the master in turn calls for special equipment and know how. Furthermore, a given master only allows the reproduction of the defined structure. We report on a simple, cheap and practical method to produce microstructures in already cured PDMS by direct UV-lithography followed by chemical development. Due to the available options during the lithographic process like multiple exposures, the method offers a high design flexibility granting easy access to complex and stepped structures. Furthermore, no master is needed and the use of pre-cured PDMS allows processing at ambient (light) conditions. Features down to approximately 5 µm and a depth of 10 µm can be realised. As a proof of principle, we demonstrate the feasibility of the process by applying the structures to various established soft lithography techniques.
Cross-Linker Unbinding and Self-Similarity in Bundled Cytoskeletal Networks
NASA Astrophysics Data System (ADS)
Lieleg, O.; Bausch, A. R.
2007-10-01
The macromechanical properties of purely bundled in vitro actin networks are not only determined by the micromechanical properties of individual bundles but also by molecular unbinding events of the actin-binding protein (ABP) fascin. Under high mechanical load the network elasticity depends on the forced unbinding of individual ABPs in a rate dependent manner. Cross-linker unbinding in combination with the structural self-similarity of the network enables the introduction of a concentration-time superposition principle—broadening the mechanically accessible frequency range over 8 orders of magnitude.
Electrical and Optical Characterization of Nanowire based Semiconductor Devices
NASA Astrophysics Data System (ADS)
Ayvazian, Talin
This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl 2 in methanol a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mu eff) by an order of magnitude and increase of the Ion/I off ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl2 in methanol- a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mueff<) by an order of magnitude and increase of the Ion/Ioff ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 °C x 1h enhanced grain growth confirmed by structural characterization including X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Raman Spectroscopy. Correspondingly the light emission intensity and EQE improved due to this grain growth. Kelvin probe force microscopy (KPFM) was utilized to understand mechanism of light emission in CdSe nanowires. Arrays of CdTe nanowires were electrodeposited using LPNE process where the elec- trodeposition of pc-CdTe was carried out at two temperatures: 20 °C (cold) and 55 °C (hot). Transmission electron microscopy (TEM) and X-ray diffraction (XRD) re- sults revealed higher crystallinity, larger grain size and presence of Te for nanowires prepared at 55°C compared to nanowires deposited at 20°C. Nanowires prepared at 55°C showed higher electrical conductivity and enhanced electroluminescence proper- ties, including higher light emission intensity and improved External Quantum Efficiency (EQE). Electrical conduction mechanism also investigated for CdTe nanowires. Thermionic emission over schottky barrier height was identified as the dominant charge transport mechanism in pc-CdTe nanowires.°C x 1h enhanced grain growth confirmed by structural characterization including X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Raman Spectroscopy. Correspondingly the light emission intensity and EQE improved due to this grain growth. Kelvin probe force microscopy (KPFM) was utilized to understand mechanism of light emission in CdSe nanowires. Arrays of CdTe nanowires were electrodeposited using LPNE process where the electrodeposition of pc-CdTe was carried out at two temperatures: 20 °C (cold) and 55 °C (hot). Transmission electron microscopy (TEM) and X-ray diffraction (XRD) re- sults revealed higher crystallinity, larger grain size and presence of Te for nanowires prepared at 55°C compared to nanowires deposited at 20°C. Nanowires prepared at 55°C showed higher electrical conductivity and enhanced electroluminescence properties, including higher light emission intensity and improved External Quantum Efficiency (EQE). Electrical conduction mechanism also investigated for CdTe nanowires. Thermionic emission over schottky barrier height was identified as the dominant charge transport mechanism in pc-CdTe nanowires.
Hybrid system of unbonded post-tensioned CLT panels and light-frame wood shear walls
T. Ho; T. Dao; S. Aaleti; J. van de Lindt; Douglas Rammer
2016-01-01
Cross-laminated timber (CLT) is a relatively new type of massive timber system that has shown to possess excellent mechanical properties and structural behavior in building construction. When post-tensioned with high-strength tendons, CLT panels perform well under cyclic loadings because of two key characteristics: their rocking behavior and self-centering capacity....
Self Diagnostic Adhesive for Bonded Joints in Aircraft Structures
2016-10-04
validated under the fatigue/dynamic loading condition. 3) Both SEM (Spectral Element Modeling) and FEM ( Finite Element Modeling) simulation of the...Sensors ..................................................................... 22 Parametric Study of Sensor Performance via Finite Element Simulation...The frequency range that we are interested is around 800 kHz. Conventional linear finite element method (FEM) requires a very fine spatial
Quantitative self-assembly prediction yields targeted nanomedicines
NASA Astrophysics Data System (ADS)
Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.
2018-02-01
Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.
Potential roughness near lithographically fabricated atom chips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krueger, P.; Laboratoire Kastler Brossel, Ecole Normale Superieure, 24 Rue Lhomond, F-75005 Paris; Andersson, L. M.
2007-12-15
Potential roughness has been reported to severely impair experiments in magnetic microtraps. We show that these obstacles can be overcome as we measure disorder potentials that are reduced by two orders of magnitude near lithographically patterned high-quality gold layers on semiconductor atom chip substrates. The spectrum of the remaining field variations exhibits a favorable scaling. A detailed analysis of the magnetic field roughness of a 100-{mu}m-wide wire shows that these potentials stem from minute variations of the current flow caused by local properties of the wire rather than merely from rough edges. A technique for further reduction of potential roughnessmore » by several orders of magnitude based on time-orbiting magnetic fields is outlined.« less
NASA Astrophysics Data System (ADS)
Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan
2014-09-01
This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.
Limbers, Christine A; Newman, Daniel A; Varni, James W
2008-07-01
The objective of the present study was to examine the factorial invariance of the PedsQL 4.0 Generic Core Scales for child self-report across 11,433 children ages 5-18 with chronic health conditions and healthy children. Multigroup Confirmatory Factor Analysis was performed specifying a five-factor model. Two multigroup structural equation models, one with constrained parameters and the other with unconstrained parameters, were proposed in order to compare the factor loadings across children with chronic health conditions and healthy children. Metric invariance (i.e., equal factor loadings) was demonstrated based on stability of the Comparative Fit Index (CFI) between the two models, and several additional indices of practical fit including the root mean squared error of approximation, the Non-normed Fit Index, and the Parsimony Normed Fit Index. The findings support an equivalent five-factor structure on the PedsQL 4.0 Generic Core Scales across healthy and chronic health condition groups. These findings suggest that when differences are found across chronic health condition and healthy groups when utilizing the PedsQL, these differences are more likely real differences in self-perceived health-related quality of life, rather than differences in interpretation of the PedsQL items as a function of health status.
Quantum dots in single electron transistors with ultrathin silicon-on-insulator structures
NASA Astrophysics Data System (ADS)
Ihara, S.; Andreev, A.; Williams, D. A.; Kodera, T.; Oda, S.
2015-07-01
We report on fabrication and transport properties of lithographically defined single quantum dots (QDs) in single electron transistors with ultrathin silicon-on-insulator (SOI) substrate. We observed comparatively large charging energy E C ˜ 20 meV derived from the stability diagram at a temperature of 4.2 K. We also carried out three-dimensional calculations of the capacitance matrix and transport properties through the QD for the real structure geometry and found an excellent quantitative agreement with experiment of the calculated main parameters of stability diagram (charging energy, period of Coulomb oscillations, and asymmetry of the diamonds). The obtained results confirm fabrication of well-defined integrated QDs as designed with ultrathin SOI that makes it possible to achieve relatively large QD charging energies, which is useful for stable and high temperature operation of single electron devices.
Very low-loss passive fiber-to-chip coupling with tapered fibers.
Paatzsch, T; Smaglinski, I; Abraham, M; Bauer, H D; Hempelmann, U; Neumann, G; Mrozynski, G; Kerndlmaier, W
1997-07-20
A novel passive fiber-to-chip coupling based on the use of fiber tapers embedded in a guiding structure is proposed. By beam-propagation calculations it is verified that this new coupling method exhibits a very low insertion loss. Major advantages of the proposed method compared with butt coupling are demonstrated by simulation results: first, tolerance requirements for the fibers, e.g., diameter variations and core eccentricity, and for fabrication of the alignment structure are reduced by at least 1 order of magnitude. Second, coupling to waveguides of nearly arbitrary dimensions and refractive indices seems to be possible. Experimental results on thermal drawing of fiber tapers are presented and used as input data for the simulations. A concept for fabrication of the new coupling method with the Lithographic Galvanik Abformung (LIGA) technique is presented.
NASA Astrophysics Data System (ADS)
Seoud, Ahmed; Kim, Juhwan; Ma, Yuansheng; Jayaram, Srividya; Hong, Le; Chae, Gyu-Yeol; Lee, Jeong-Woo; Park, Dae-Jin; Yune, Hyoung-Soon; Oh, Se-Young; Park, Chan-Ha
2018-03-01
Sub-resolution assist feature (SRAF) insertion techniques have been effectively used for a long time now to increase process latitude in the lithography patterning process. Rule-based SRAF and model-based SRAF are complementary solutions, and each has its own benefits, depending on the objectives of applications and the criticality of the impact on manufacturing yield, efficiency, and productivity. Rule-based SRAF provides superior geometric output consistency and faster runtime performance, but the associated recipe development time can be of concern. Model-based SRAF provides better coverage for more complicated pattern structures in terms of shapes and sizes, with considerably less time required for recipe development, although consistency and performance may be impacted. In this paper, we introduce a new model-assisted template extraction (MATE) SRAF solution, which employs decision tree learning in a model-based solution to provide the benefits of both rule-based and model-based SRAF insertion approaches. The MATE solution is designed to automate the creation of rules/templates for SRAF insertion, and is based on the SRAF placement predicted by model-based solutions. The MATE SRAF recipe provides optimum lithographic quality in relation to various manufacturing aspects in a very short time, compared to traditional methods of rule optimization. Experiments were done using memory device pattern layouts to compare the MATE solution to existing model-based SRAF and pixelated SRAF approaches, based on lithographic process window quality, runtime performance, and geometric output consistency.
NASA Astrophysics Data System (ADS)
Bigoni, Davide; Kirillov, Oleg N.; Misseroni, Diego; Noselli, Giovanni; Tommasini, Mirko
2018-07-01
Flutter instability in elastic structures subject to follower load, the most important cases being the famous Beck's and Pflüger's columns (two elastic rods in a cantilever configuration, with an additional concentrated mass at the end of the rod in the latter case), have attracted, and still attract, a thorough research interest. In this field, the most important issue is the validation of the model itself of follower force, a nonconservative action which was harshly criticized and never realized in practice for structures with diffused elasticity. An experimental setup to introduce follower tangential forces at the end of an elastic rod was designed, realized, validated, and tested, in which the follower action is produced by exploiting Coulomb friction on an element (a freely-rotating wheel) in sliding contact against a flat surface (realized by a conveyor belt). It is therefore shown that follower forces can be realized in practice and the first experimental evidence is given for both the flutter and divergence instabilities occurring in the Pflüger's column. In particular, load thresholds for the two instabilities are measured and the detrimental effect of dissipation on the critical load for flutter is experimentally demonstrated, while a slight increase in load is found for the divergence instability. The presented approach to follower forces discloses new horizons for testing self-oscillating structures and for exploring and documenting dynamic instabilities possible when nonconservative loads are applied.
Tendon biomechanics and mechanobiology - a mini-review of basic concepts and recent advancements
Wang, James H-C.; Guo, Qianping; Li, Bin
2011-01-01
Due to their unique hierarchical structure and composition, tendons possess characteristic biomechanical properties, including high mechanical strength and viscoelasticity, which enable them to carry and transmit mechanical loads (muscular forces) effectively. Tendons are also mechano-responsive by adaptively changing their structure and function in response to altered mechanical loading conditions. In general, mechanical loading at physiological levels is beneficial to tendons, but excessive loading or disuse of tendons is detrimental. This mechano-adaptability is due to the cells present in tendons. Tendon fibroblasts (tenocytes) are the dominant tendon cells responsible for tendon homeostasis and repair. Tendon stem cells (TSCs), which were recently discovered, also play a vital role in tendon maintenance and repair by virtue of their ability to self-renew and differentiate into tenocytes. TSCs may also be responsible for chronic tendon injury, or tendinopathy, by undergoing aberrant differentiation into non-tenocytes in response to excessive mechanical loading. Thus, it is necessary to devise optimal rehabilitation protocols in order to enhance tendon healing while reducing scar tissue formation and tendon adhesions. Moreover, along with scaffolds that can mimic tendon matrix environments and platelet-rich plasma (PRP), which serves as a source of growth factors, TSCs may be the optimal cell type for enhancing repair of injured tendons. PMID:21925835
Tendon biomechanics and mechanobiology--a minireview of basic concepts and recent advancements.
Wang, James H-C; Guo, Qianping; Li, Bin
2012-01-01
Due to their unique hierarchical structure and composition, tendons possess characteristic biomechanical properties, including high mechanical strength and viscoelasticity, which enable them to carry and transmit mechanical loads (muscular forces) effectively. Tendons are also mechanoresponsive by adaptively changing their structure and function in response to altered mechanical loading conditions. In general, mechanical loading at physiological levels is beneficial to tendons, but excessive loading or disuse of tendons is detrimental. This mechanoadaptability is due to the cells present in tendons. Tendon fibroblasts (tenocytes) are the dominant tendon cells responsible for tendon homeostasis and repair. Tendon stem cells (TSCs), which were recently discovered, also play a vital role in tendon maintenance and repair by virtue of their ability to self-renew and differentiate into tenocytes. TSCs may also be responsible for chronic tendon injury, or tendinopathy, by undergoing aberrant differentiation into nontenocytes in response to excessive mechanical loading. Thus, it is necessary to devise optimal rehabilitation protocols to enhance tendon healing while reducing scar tissue formation and tendon adhesions. Moreover, along with scaffolds that can mimic tendon matrix environments and platelet-rich plasma, which serves as a source of growth factors, TSCs may be the optimal cell type for enhancing repair of injured tendons. Copyright © 2012 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Realizing three-dimensional artificial spin ice by stacking planar nano-arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chern, Gia-Wei; Reichhardt, Charles; Nisoli, Cristiano
2014-01-06
Artificial spin ice is a frustrated magnetic two-dimensional nano-material, recently employed to study variety of tailor-designed unusual collective behaviours. Recently proposed extensions to three dimensions are based on self-assembly techniques and allow little control over geometry and disorder. We present a viable design for the realization of a three-dimensional artificial spin ice with the same level of precision and control allowed by lithographic nano-fabrication of the popular two-dimensional case. Our geometry is based on layering already available two-dimensional artificial spin ice and leads to an arrangement of ice-rule-frustrated units, which is topologically equivalent to that of the tetrahedra in amore » pyrochlore lattice. Consequently, we show, it exhibits a genuine ice phase and its excitations are, as in natural spin ice materials, magnetic monopoles interacting via Coulomb law.« less
Leakage and field emission in side-gate graphene field effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Bartolomeo, A., E-mail: dibant@sa.infn.it; Iemmo, L.; Romeo, F.
We fabricate planar graphene field-effect transistors with self-aligned side-gate at 100 nm from the 500 nm wide graphene conductive channel, using a single lithographic step. We demonstrate side-gating below 1 V with conductance modulation of 35% and transconductance up to 0.5 mS/mm at 10 mV drain bias. We measure the planar leakage along the SiO{sub 2}/vacuum gate dielectric over a wide voltage range, reporting rapidly growing current above 15 V. We unveil the microscopic mechanisms driving the leakage, as Frenkel-Poole transport through SiO{sub 2} up to the activation of Fowler-Nordheim tunneling in vacuum, which becomes dominant at higher voltages. We report a field-emission current densitymore » as high as 1 μA/μm between graphene flakes. These findings are important for the miniaturization of atomically thin devices.« less
González, Lina M.; Ruder, Warren C.; Leduc, Philip R.; Messner, William C.
2014-01-01
Herein, we demonstrate the control of magnetotactic bacteria through the application of magnetic field gradients with real-time visualization. We accomplish this control by integrating a pair of macroscale Helmholtz coils and lithographically fabricated nanoscale islands composed of permalloy (Ni80Fe20). This system enabled us to guide and steer amphitrichous Magnetospirillum magneticum strain AMB-1 to specific location via magnetic islands. The geometries of the islands allowed us to have control over the specific magnetic field gradients on the bacteria. We estimate that magnetotactic bacteria located less than 1 μm from the edge of a diamond shaped island experience a maximum force of approximately 34 pN, which engages the bacteria without trapping them. Our system could be useful for a variety of applications including magnetic fabrication, self-assembly, and probing the sensing apparatus of magnetotactic bacteria. PMID:24553101
High performance Ω-gated Ge nanowire MOSFET with quasi-metallic source/drain contacts.
Burchhart, T; Zeiner, C; Hyun, Y J; Lugstein, A; Hochleitner, G; Bertagnolli, E
2010-10-29
Ge nanowires (NWs) about 2 µm long and 35 nm in diameter are grown heteroepitaxially on Si(111) substrates in a hot wall low-pressure chemical vapor deposition (LP-CVD) system using Au as a catalyst and GeH(4) as precursor. Individual NWs are contacted to Cu pads via e-beam lithography, thermal evaporation and lift-off techniques. Self-aligned and atomically sharp quasi-metallic copper-germanide source/drain contacts are achieved by a thermal activated phase formation process. The Cu(3)Ge segments emerge from the Cu contact pads through axial diffusion of Cu which was controlled in situ by SEM, thus the active channel length of the MOSFET is adjusted without any restrictions from a lithographic process. Finally the conductivity of the channel is enhanced by Ga(+) implantation leading to a high performance Ω-gated Ge-NW MOSFET with saturation currents of a few microamperes.
NASA Astrophysics Data System (ADS)
Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong
2016-05-01
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
Fabrication, Densification, and Replica Molding of 3D Carbon Nanotube Microstructures
Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A. John
2012-01-01
The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques 1, 2, and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization 3. PMID:22806089
Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.
Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A John
2012-07-02
The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques (1, 2), and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization (3).
An incentive-based distributed mechanism for scheduling divisible loads in tree networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, T. E.; Grosu, D.
The underlying assumption of Divisible Load Scheduling (DLS) theory is that the pro-cessors composing the network are obedient, i.e., they do not “cheat” the scheduling algorithm. This assumption is unrealistic if the processors are owned by autonomous, self-interested organizations that have no a priori motivation for cooperation and they will manipulate the algorithm if it is beneficial to do so. In this paper, we address this issue by designing a distributed mechanism for scheduling divisible loads in tree net-works, called DLS-T, which provides incentives to processors for reporting their true processing capacity and executing their assigned load at full processingmore » capacity. We prove that the DLS-T mechanism computes the optimal allocation in an ex post Nash equilibrium. Finally, we simulate and study the mechanism under various network structures and processor parameters.« less
Self-organized dynamics in local load-sharing fiber bundle models.
Biswas, Soumyajyoti; Chakrabarti, Bikas K
2013-10-01
We study the dynamics of a local load-sharing fiber bundle model in two dimensions under an external load (which increases with time at a fixed slow rate) applied at a single point. Due to the local load-sharing nature, the redistributed load remains localized along the boundary of the broken patch. The system then goes to a self-organized state with a stationary average value of load per fiber along the (increasing) boundary of the broken patch (damaged region) and a scale-free distribution of avalanche sizes and other related quantities are observed. In particular, when the load redistribution is only among nearest surviving fiber(s), the numerical estimates of the exponent values are comparable with those of the Manna model. When the load redistribution is uniform along the patch boundary, the model shows a simple mean-field limit of this self-organizing critical behavior, for which we give analytical estimates of the saturation load per fiber values and avalanche size distribution exponent. These are in good agreement with numerical simulation results.
In Situ Loading of Drugs into Mesoporous Silica SBA-15.
Wan, Mi Mi; Li, Yan Yan; Yang, Tian; Zhang, Tao; Sun, Xiao Dan; Zhu, Jian Hua
2016-04-25
In a new strategy for loading drugs into mesoporous silica, a hydrophilic (heparin) or hydrophobic drug (ibuprofen) is encapsulated directly in a one-pot synthesis by evaporation-induced self-assembly. In situ drug loading significantly cuts down the preparation time and dramatically increases the loaded amount and released fraction of the drug, and appropriate drug additives favor a mesoporous structure of the vessels. Drug loading was verified by FTIR spectroscopy and release tests, which revealed much longer release with a larger amount of heparin or ibuprofen compared to postloaded SBA-15. Besides, the in vitro anticoagulation properties of the released heparin and the biocompatibility of the vessels were carefully assessed, including activated partial thromboplastin time, thrombin time, hemolysis, platelet adhesion experiments, and the morphologies of red blood cells. A concept of new drug-release agents with soft core and hard shell is proposed and offers guidance for the design of novel drug-delivery systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Responsive polymer-based colloids for drug delivery and bioconversion
NASA Astrophysics Data System (ADS)
Kudina, Olena
Responsive polymer-based colloids (RPBC) are the colloidal structures containing responsive polymeric component which is able to adapt its physico-chemical properties to the environment by undergoing chemical and/or conformational changes. The goal of the dissertation is to develop and characterize several groups of RPBC with different morphological complexity and explore their potential in drug delivery and bioconversion. The role of RPBC morphology for these specific applications is discussed in details. Three groups of RPBC were fabricated: i. polymeric micelles; ii. mixed polymeric micelles; iii. hybrid polymer-inorganic particles. All fabricated RPBCs contain polymeric component in their structure. The dissertation investigates how the changes of the responsive polymeric component properties are reflected in morphologies of RPBC. The first group of RPBC, polymeric micelles, was formed by the self-assembly of amphiphilic invertible polymers (AIPs) synthesized in our group. AIPs self-assemble into invertible micellar assemblies (IMAs) in solvents of different polarity. In this work, IMAs ability to invert the structure as a response to the change in solvent polarity was demonstrated using 1H NMR spectroscopy and SANS. It was shown that the IMAs incorporate hydrophobic cargo either in the core or in the shell, depending on the chemical structure of cargo molecules. Following in vitro study demonstrates that loaded with drug (curcumin) IMAs are cytotoxic to osteosarcoma cells. Mixed polymeric micelles represent another, more complex, RPBC morphologies studied in the dissertation. Mixed micelles were fabricated from AIPs and amphiphilic oligomers synthesized from pyromellitic dianhydride, polyethylene glycol methyl ethers, and alkanols/cholesterol. The combination of selected AIP and oligomers based on cholesterol results in mixed micelles with an increased drug-loading capacity (from 10% w/w loaded curcumin in single component IMAs to 26%w/w in mixed micelles). Even more complex colloids are hybrid polymer-inorganic particles, the third RPBC group studied in dissertation. Material was designed as core--shell particles with superparamagnetic core engulfed by grafted polymer brushes. These particles were loaded with enzymes (cellulases), thus, are turned into enzymogels for cellulose bioconversion. The study demonstrates that such RPBCs can be used multiple times during hydrolysis and provide an about four-fold increase in glucose production in comparison to free enzymes.
Voice Use Among Music Theory Teachers: A Voice Dosimetry and Self-Assessment Study.
Schiller, Isabel S; Morsomme, Dominique; Remacle, Angélique
2017-07-25
This study aimed (1) to investigate music theory teachers' professional and extra-professional vocal loading and background noise exposure, (2) to determine the correlation between vocal loading and background noise, and (3) to determine the correlation between vocal loading and self-evaluation data. Using voice dosimetry, 13 music theory teachers were monitored for one workweek. The parameters analyzed were voice sound pressure level (SPL), fundamental frequency (F0), phonation time, vocal loading index (VLI), and noise SPL. Spearman correlation was used to correlate vocal loading parameters (voice SPL, F0, and phonation time) and noise SPL. Each day, the subjects self-assessed their voice using visual analog scales. VLI and self-evaluation data were correlated using Spearman correlation. Vocal loading parameters and noise SPL were significantly higher in the professional than in the extra-professional environment. Voice SPL, phonation time, and female subjects' F0 correlated positively with noise SPL. VLI correlated with self-assessed voice quality, vocal fatigue, and amount of singing and speaking voice produced. Teaching music theory is a profession with high vocal demands. More background noise is associated with increased vocal loading and may indirectly increase the risk for voice disorders. Correlations between VLI and self-assessments suggest that these teachers are well aware of their vocal demands and feel their effect on voice quality and vocal fatigue. Visual analog scales seem to represent a useful tool for subjective vocal loading assessment and associated symptoms in these professional voice users. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zha, Yikun; Wei, Jingsong; Gan, Fuxi
2013-09-01
Maskless laser direct writing lithography has been applied in the fabrication of optical elements and electric-optical devices. With the development of technology, the feature size of the elements and devices is required to reduce down to nanoscale. Increasing the numerical aperture of converging lens and shortening the laser wavelength are good methods to obtain the small spot and reduce the feature size to nanoscale, while this will cause the reduction of the depth of focus. The reduction of depth of focus will lead to some difficulties in the focusing and tracking servo controlling during the high speed laser direct writing lithography. In this work, the combination of the diffractive optical elements and the nonlinear absorption inorganic resist thin films cannot only extend the depth of focus, but also reduce the feature size of the lithographic marks down to nanoscale. By using the five-zone annular phase-only binary pupil filter as the diffractive optical elements and AgInSbTe as the nonlinear absorption inorganic resist thin film, the depth of focus cannot only extend to 7.39 times that of the focused spot, but also reduce the lithographic feature size down to 54.6 nm. The ill-effect of sidelobe on the lithography is also eliminated by the nonlinear reverse saturable absorption and the phase change threshold lithographic characteristics.
Liu, Liyao; Zhou, Cuiping; Xia, Xuejun; Liu, Yuling
2016-01-01
Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs) loaded with insulin following insulin-phospholipid complex preparation, with the aim of developing a method for oral insulin delivery. Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin-phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats. Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant hypoglycemic effect. The relative pharmacological bioavailability following oral administration of L/C NPs was 6.01%. With the aid of phospholipid-complexation techniques, some hydrophilic peptides, such as insulin, can be successfully entrapped into L/C NPs, which could improve oral bioavailability, time-dependent release, and therapeutic activity.
Liu, Liyao; Zhou, Cuiping; Xia, Xuejun; Liu, Yuling
2016-01-01
Purpose Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs) loaded with insulin following insulin–phospholipid complex preparation, with the aim of developing a method for oral insulin delivery. Methods Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin–phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats. Results Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant hypoglycemic effect. The relative pharmacological bioavailability following oral administration of L/C NPs was 6.01%. Conclusion With the aid of phospholipid-complexation techniques, some hydrophilic peptides, such as insulin, can be successfully entrapped into L/C NPs, which could improve oral bioavailability, time-dependent release, and therapeutic activity. PMID:26966360
NASA Astrophysics Data System (ADS)
Yan, S.; Xiao, Z. F.; Lin, M. Y.; Niu, J.
2018-04-01
Beam-column joints are important parts of a main frame structure. Mechanical properties of beam-column joints have a great influence on dynamic performances of the frame structure. Shape memory alloy (SMA) as a new type of intelligent metal materials has wide applications in civil engineering. The paper aims at proposing a novel beam-column joint reinforced with pre-stressed SMA tendons to increase its dynamic performance. Based on the finite element analysis (FEA) software ABAQUS, a numerical simulation for 6 beam-column scaled models considering different SMA reinforcement ratios and pre-stress levels was performed, focusing on bearing capacities, energy-dissipation and self-centering capacities, etc. These models were numerically tested under a pseudo-static load on the beam end, companying a constant vertical compressive load on the top of the column. The numerical results show that the proposed SMA-reinforced joint has a significantly increased bearing capacity and a good self-centering capability after unloading even though the energy-dissipation capacity becomes smaller due the less residual deformation. The concept and mechanism of the novel joint can be used as an important reference for civil engineering applications.
Mechanical modeling of self-expandable stent fabricated using braiding technology.
Kim, Ju Hyun; Kang, Tae Jin; Yu, Woong-Ryeol
2008-11-14
The mechanical behavior of a stent is one of the important factors involved in ensuring its opening within arterial conduits. This study aimed to develop a mechanical model for designing self-expandable stents fabricated using braiding technology. For this purpose, a finite element model was constructed by developing a preprocessing program for the three-dimensional geometrical modeling of the braiding structure inside stents, and validated for various stents with different braiding structures. The constituent wires (Nitinol) in the braided stents were assumed to be superelastic material and their mechanical behavior was incorporated into the finite element software through a user material subroutine (VUMAT in ABAQUS) employing a one-dimensional superelastic model. For the verification of the model, several braided stents were manufactured using an automated braiding machine and characterized focusing on their compressive behavior. It was observed that the braided stents showed a hysteresis between their loading and unloading behavior when a compressive load was applied to the braided tube. Through the finite element analysis, it was concluded that the current mechanical model can appropriately predict the mechanical behavior of braided stents including such hysteretic behavior, and that the hysteresis was caused by the slippage between the constituent wires and their superelastic property.
Smart Textiles for Strengthening of Structures
NASA Astrophysics Data System (ADS)
Górski, Marcin; Krzywoń, Rafał; Dawczyński, Szymon; Szojda, Leszek; Salvado, Rita; Lopes, Catarina; Araujo, Pedro; Velez, Fernando Jose; Castro-Gomes, Joao
2016-11-01
This paper presents results of mechanical tests on a prototype of an innovative structural strengthening in form of self-monitoring fabric. Smart textile employs carbon fibers conductivity for measuring strains while monitoring changes of electric resistance under increasing load. A general solution was tested in a series of calibrating tests on strengthening of small size concrete slabs. Promising results of simple specimen, has encouraged the research team to perform the next tests using mastered carbon fibre reinforced fabric. Main tests were performed on natural scale RC beam. Smart textile proved its efficiency in both: strengthening and monitoring of strains during load increase. New strengthening proposal was given 10% increase of loading capacity and the readings of strain changes were similar to those obtained in classical methods. In order to calibrate the prototype and to define range limits of solution usability, textile sensor was tested in areas of large deformations (timber beam) and aswell as very small strains (bridge bearing block). In both cases, the prototype demonstrated excellent performance in the range of importance for structural engineering. This paper also presents an example of use of the smart strengthening in situ, in a real life conditions.
Spontaneous formation of nanostructures inside inkjet-printed colloidal drops
NASA Astrophysics Data System (ADS)
Yang, Xin; Thorne, Nathaniel; Sun, Ying
2013-11-01
Nanostructures formed in inkjet-printed colloidal drops are systematically examined with different substrates and ink formulations. Various deposition patterns from multi-ring, radial spoke, firework to spider web, foam and island structures are observed. With a high particle loading, deposition transitions from multi-ring near the drop edge to spider web and finally to foam and islands in the center of the drop with 20 nm sulfate-modified polystyrene particles. At the same particle loading, 200 nm particles self-assemble into radial spokes at the drop edge and islands in the center, due to reduced contact line pinning resulted from less particles. In drops with a low particle concentration, due to fingering instability of the contact line, 20 nm particles form radial spokes enclosed by a ring, while 200 nm particles assemble into firework-like structures without a ring. Moreover, at a high particle loading, ruptures are observed on the multi-ring structure formed by 20 nm carboxylic-modified particles, due to stronger capillary forces from the contact line. Furthermore, for a drop printed on a less hydrophilic substrate, the interparticle interactions enable a more uniform deposition rather than complex nanostructures.
Miniaturized power limiter metasurface based on Fano-type resonance and Babinet principle.
Loo, Y L; Wang, H G; Zhang, H; Ong, C K
2016-09-05
In this work, we present a miniaturize power limiter, a device with size smaller than that required by the working frequency, made of coupled self-complementary electric inductive-capacitive (CELC) resonator and original electric inductive-capacitive (ELC) structure. We also make use of Babinet principle to ensure both CELC and ELC are resonating at the same frequency. The CELC structure is loaded with a Schottky diode to achieve the effect of a nonlinear power limiter. The constructive interference of CELC and ELC structure produces a new Fano-type resonance peak at a lower frequency. The Fano peak is sharp and able to concentrate electric field at a region between the inner and outer metallic patch of the metastructure, hence enhancing the nonlinear properties of the loaded diode. The Fano peak enhances the maximum isolation of the power limiter due to the local field enhancement at where the diode is loaded. Numerical simulation and experiment are conducted in the S-band frequency to verify the power limiting effect of the device designed and to discuss the formation of Fano peak. The power limiter designed has a maximum isolation of 8.4 dB and a 3-dB isolation bandwidth of 6%.
Magnetic assembly and annealing of colloidal lattices and superlattices.
Tierno, Pietro
2014-07-08
The ability to assemble mesoscopic colloidal lattices above a surface is important for fundamental studies related with nucleation and crystallization but also for a variety of technological applications in photonics and microengineering. Current techniques based on particle sedimentation above a lithographic template are limited by a slow deposition process and by the use of static templates, which make difficult to implement fast annealing procedures. Here it is demonstrated a method to realize and anneal a series of colloidal lattices displaying triangular, honeycomb, or kagome-like symmetry above a structure magnetic substrate. By using a binary mixture of particles, superlattices can be realized increasing further the variety and complexity of the colloidal patterns which can be produced.
Magnetization Ratchet in Cylindrical Nanowires.
Bran, Cristina; Berganza, Eider; Fernandez-Roldan, Jose A; Palmero, Ester M; Meier, Jessica; Calle, Esther; Jaafar, Miriam; Foerster, Michael; Aballe, Lucia; Fraile Rodriguez, Arantxa; P Del Real, Rafael; Asenjo, Agustina; Chubykalo-Fesenko, Oksana; Vazquez, Manuel
2018-05-31
The unidirectional motion of information carriers such as domain walls in magnetic nanostrips is a key feature for many future spintronic applications based on shift registers. This magnetic ratchet effect has so far been achieved in a limited number of complex nanomagnetic structures, for example, by lithographically engineered pinning sites. Here we report on a simple remagnetization ratchet originated in the asymmetric potential from the designed increasing lengths of magnetostatically coupled ferromagnetic segments in FeCo/Cu cylindrical nanowires. The magnetization reversal in neighboring segments propagates sequentially in steps starting from the shorter segments, irrespective of the applied field direction. This natural and efficient ratchet offers alternatives for the design of three-dimensional advanced storage and logic devices.
Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing.
Yilmazoglu, O; Popp, A; Pavlidis, D; Schneider, J J; Garth, D; Schüttler, F; Battenberg, G
2012-03-02
We report a simple method for the micro-nano integration of flexible, vertically aligned multiwalled CNT arrays sandwiched between a top and bottom carbon layer via a porous alumina (Al(2)O(3)) template approach. The electromechanical properties of the flexible CNT arrays have been investigated under mechanical stress conditions. First experiments show highly sensitive piezoresistive sensors with a resistance decrease of up to ∼35% and a spatial resolution of <1 mm. The results indicate that these CNT structures can be utilized for tactile sensing components. They also confirm the feasibility of accessing and utilizing nanoscopic CNT bundles via lithographic processing. The method involves room-temperature processing steps and standard microfabrication techniques.
Photolithographic surface micromachining of polydimethylsiloxane (PDMS).
Chen, Weiqiang; Lam, Raymond H W; Fu, Jianping
2012-01-21
A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O(2) plasma treatment to PDMS to activate its surface to overcome the challenge of poor photoresist adhesion on PDMS for photolithography. Our photolithographic PDMS surface micromachining technique is compatible with conventional soft lithography techniques and other silicon-based surface and bulk micromachining methods. To illustrate the general application of our method, we demonstrated fabrication of large microfiltration membranes and free-standing beam structures in PDMS.
Photolithographic surface micromachining of polydimethylsiloxane (PDMS)
Chen, Weiqiang; Lam, Raymond H. W.
2014-01-01
A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O2 plasma treatment to PDMS to activate its surface to overcome the challenge of poor photoresist adhesion on PDMS for photolithography. Our photolithographic PDMS surface micromachining technique is compatible with conventional soft lithography techniques and other silicon-based surface and bulk micromachining methods. To illustrate the general application of our method, we demonstrated fabrications of large microfiltration membranes and free-standing beam structures in PDMS. PMID:22089984
Silicon microfabricated beam expander
NASA Astrophysics Data System (ADS)
Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.
2015-03-01
The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.
Deep X-ray lithography for the fabrication of microstructures at ELSA
NASA Astrophysics Data System (ADS)
Pantenburg, F. J.; Mohr, J.
2001-07-01
Two beamlines at the Electron Stretcher Accelerator (ELSA) of Bonn University are dedicated for the production of microstructures by deep X-ray lithography with synchrotron radiation. They are equipped with state-of-the-art X-ray scanners, maintained and used by Forschungszentrum Karlsruhe. Polymer microstructure heights between 30 and 3000 μm are manufactured regularly for research and industrial projects. This requires different characteristic energies. Therefore, ELSA operates routinely at 1.6, 2.3 and 2.7 GeV, for high-resolution X-ray mask fabrication, deep and ultra-deep X-ray lithography, respectively. The experimental setup, as well as the structure quality of deep and ultra deep X-ray lithographic microstructures are described.
NASA Technical Reports Server (NTRS)
Estes, R. H.
1977-01-01
A computer software system is described which computes global numerical solutions of the integro-differential Laplace tidal equations, including dissipation terms and ocean loading and self-gravitation effects, for arbitrary diurnal and semidiurnal tidal constituents. The integration algorithm features a successive approximation scheme for the integro-differential system, with time stepping forward differences in the time variable and central differences in spatial variables. Solutions for M2, S2, N2, K2, K1, O1, P1 tidal constituents neglecting the effects of ocean loading and self-gravitation and a converged M2, solution including ocean loading and self-gravitation effects are presented in the form of cotidal and corange maps.
Shell tile thermal protection system
NASA Technical Reports Server (NTRS)
Macconochie, I. O.; Lawson, A. G.; Kelly, H. N. (Inventor)
1984-01-01
A reusable, externally applied thermal protection system for use on aerospace vehicles subject to high thermal and mechanical stresses utilizes a shell tile structure which effectively separates its primary functions as an insulator and load absorber. The tile consists of structurally strong upper and lower metallic shells manufactured from materials meeting the thermal and structural requirements incident to tile placement on the spacecraft. A lightweight, high temperature package of insulation is utilized in the upper shell while a lightweight, low temperature insulation is utilized in the lower shell. Assembly of the tile which is facilitated by a self-locking mechanism, may occur subsequent to installation of the lower shell on the spacecraft structural skin.
Inert Reassessment Document for Ammonium Nitrate
Magnesium nitrate is used in preservation. Other uses for magnesium nitrate include use as a catalyst in the manufacture of petrochemicals, as a densensitizer for lithographic plates and in pyrotechnics.
Inverse axial mounting stiffness design for lithographic projection lenses.
Wen-quan, Yuan; Hong-bo, Shang; Wei, Zhang
2014-09-01
In order to balance axial mounting stiffness of lithographic projection lenses and the image quality under dynamic working conditions, an easy inverse axial mounting stiffness design method is developed in this article. Imaging quality deterioration at the wafer under different axial vibration levels is analyzed. The desired image quality can be determined according to practical requirements, and axial vibrational tolerance of each lens is solved with the damped least-squares method. Based on adaptive interval adjustment, a binary search algorithm, and the finite element method, the axial mounting stiffness of each lens can be traveled in a large interval, and converges to a moderate numerical solution which makes the axial vibrational amplitude of the lens converge to its axial vibrational tolerance. Model simulation is carried out to validate the effectiveness of the method.
Measuring cognitive load during procedural skills training with colonoscopy as an exemplar.
Sewell, Justin L; Boscardin, Christy K; Young, John Q; Ten Cate, Olle; O'Sullivan, Patricia S
2016-06-01
Few studies have investigated cognitive factors affecting learning of procedural skills in medical education. Cognitive load theory, which focuses on working memory, is highly relevant, but methods for measuring cognitive load during procedural training are not well understood. Using colonoscopy as an exemplar, we used cognitive load theory to develop a self-report instrument to measure three types of cognitive load (intrinsic, extraneous and germane load) and to provide evidence for instrument validity. We developed the instrument (the Cognitive Load Inventory for Colonoscopy [CLIC]) using a multi-step process. It included 19 items measuring three types of cognitive load, three global rating items and demographics. We then conducted a cross-sectional survey that was administered electronically to 1061 gastroenterology trainees in the USA. Participants completed the CLIC following a colonoscopy. The two study phases (exploratory and confirmatory) each lasted for 10 weeks during the 2014-2015 academic year. Exploratory factor analysis determined the most parsimonious factor structure; confirmatory factor analysis assessed model fit. Composite measures of intrinsic, extraneous and germane load were compared across years of training and with global rating items. A total of 477 (45.0%) invitees participated (116 in the exploratory study and 361 in the confirmatory study) in 154 (95.1%) training programmes. Demographics were similar to national data from the USA. The most parsimonious factor structure included three factors reflecting the three types of cognitive load. Confirmatory factor analysis verified that a three-factor model was the best fit. Intrinsic, extraneous and germane load items had high internal consistency (Cronbach's alpha 0.90, 0.87 and 0.96, respectively) and correlated as expected with year in training and global assessment of cognitive load. The CLIC measures three types of cognitive load during colonoscopy training. Evidence of validity is provided. Although CLIC items relate to colonoscopy, the development process we detail can be used to adapt the instrument for use in other learning settings in medical education. © 2016 John Wiley & Sons Ltd.
Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure
Nayak, Ashok K.; Mishra, Aseem; Jena, Bhabani S.; Mishra, Barada K.; Subudhi, Umakanta
2016-01-01
Controlled conversion of right-handed B-DNA to left-handed Z-DNA is one of the greatest conformational transitions in biology. Recently, the B-Z transition has been explored from nanotechnological points of view and used as the driving machinery of many nanomechanical devices. Using a combination of CD spectroscopy, fluorescence spectroscopy, and PAGE, we demonstrate that low concentration of lanthanum chloride can mediate B-to-Z transition in self-assembled Y-shaped branched DNA (bDNA) structure. The transition is sensitive to the sequence and structure of the bDNA. Thermal melting and competitive dye binding experiments suggest that La3+ ions are loaded to the major and minor grooves of DNA and stabilize the Z-conformation. Our studies also show that EDTA and EtBr play an active role in reversing the transition from Z-to-B DNA. PMID:27241949
Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure
NASA Astrophysics Data System (ADS)
Nayak, Ashok K.; Mishra, Aseem; Jena, Bhabani S.; Mishra, Barada K.; Subudhi, Umakanta
2016-05-01
Controlled conversion of right-handed B-DNA to left-handed Z-DNA is one of the greatest conformational transitions in biology. Recently, the B-Z transition has been explored from nanotechnological points of view and used as the driving machinery of many nanomechanical devices. Using a combination of CD spectroscopy, fluorescence spectroscopy, and PAGE, we demonstrate that low concentration of lanthanum chloride can mediate B-to-Z transition in self-assembled Y-shaped branched DNA (bDNA) structure. The transition is sensitive to the sequence and structure of the bDNA. Thermal melting and competitive dye binding experiments suggest that La3+ ions are loaded to the major and minor grooves of DNA and stabilize the Z-conformation. Our studies also show that EDTA and EtBr play an active role in reversing the transition from Z-to-B DNA.
Geng, Zhaohui; Ogbolu, Yolanda; Wang, Jichuan; Hinds, Pamela S; Qian, Huijuan; Yuan, Changrong
2018-02-14
Better self-management control in cancer survivors would benefit their functional status, quality of life, and health service utilization. Factors such as self-efficacy, social support, and coping style are important predictors of self-management behaviors of cancer survivors; however, the impact of these factors on self-management behaviors has not yet been empirically tested in Chinese cancer survivors. The aim of this study was to examine how self-efficacy, social support, and coping style affect specific self-management behaviors. A secondary data analysis was completed from a cross-sectional study. A total of 764 cancer survivors were recruited in the study. Validated instruments were used to assess patients' self-efficacy, social support, and coping style. Structural equation modeling (SEM) was used to test the hypothesis. The SEM model fits the data very well, with root mean square error of approximation (RMSEA) of 0.034; close-fit test cannot reject the hypothesis of root mean square error of approximation of 0.05 or less, comparative fit index of 0.91, Tucker-Lewis index of 0.90, and weighted root mean square residual of 0.82. For the measurement models in the SEM, all items loaded highly on their underlying first-order factors, and the first-order factors loaded highly on their underlying second-order factors (self-efficacy and social support, respectively). The model demonstrated that self-efficacy and social support directly and indirectly, via coping style, affect 3 self-management behaviors (ie, communication, exercise, and information seeking). Our results provide evidence that self-efficacy and social support impose significant direct effects, as well as indirect effects via copying style, on the self-management of cancer survivors. Our findings may help nurses to further improve their care of cancer survivors in terms of their self-management behaviors, specifically communication, exercise, and information seeking.
NASA Astrophysics Data System (ADS)
Li, Chuanwei; Kong, Yingxiao; Jiang, Wenchong; Wang, Zhiyong; Li, Linan; Wang, Shibin
2017-06-01
The wrinkling of a silicon monoxide thin film on a compliant poly(dimethylsiloxane) (PDMS) substrate structure was experimentally investigated in this study. The self-expansion effect of PDMS during film deposition was utilized to impose a pretensile strain on the structure through a specially made fixture. A laser scanning confocal microscope (LSCM) system with an in situ heating stage was employed for the real-time measurement. The Young’s modulus of the silicon monoxide thin film as well as the PDMS substrate was measured on the basis of the elasticity theory. Moreover, the effects of temperature variations on geometric parameters in the postbuckling state, such as wavelength and amplitude, were analyzed. It was proved that wavelength is relatively immune to thermal loads, while amplitude is much more sensitive.
Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes.
Kang, Myungshim; Chakraborty, Kaushik; Loverde, Sharon M
2018-06-25
We report here on long-time all-atomistic molecular dynamics simulations of functional supramolecular nanotubes composed by the self-assembly of peptide-drug amphiphiles (DAs). These DAs have been shown to possess an inherently high drug loading of the hydrophobic anticancer drug camptothecin. We probe the self-assembly mechanism from random with ∼0.4 μs molecular dynamics simulations. Furthermore, we also computationally characterize the interfacial structure, directionality of π-π stacking, and water dynamics within several peptide-drug nanotubes with diameters consistent with the reported experimental nanotube diameter. Insight gained should inform the future design of these novel anticancer drug delivery systems.
Block Copolymers: Synthesis and Applications in Nanotechnology
NASA Astrophysics Data System (ADS)
Lou, Qin
This study is focused on the synthesis and study of (block) copolymers using reversible deactivation radical polymerizations (RDRPs), including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, two primary areas of study are undertaken: (1) a proof-of-concept application of lithographic block copolymers, and (2) the mechanistic study of the deposition of titania into block copolymer templates for the production of well-ordered titania nanostructures. Block copolymers have the ability to undergo microphase separation, with an average size of each microphase ranging from tens to hundreds of nanometers. As such, block copolymers have been widely considered for nanotechnological applications over the past two decades. The development of materials for various nanotechnologies has become an increasingly studied area as improvements in many applications, such as those found in the semiconductor and photovoltaic industries are constantly being sought. Significant growth in developments of new synthetic methods ( i.e. RDRPs) has allowed the production of block copolymers with molecular (and sometimes atomic) definition. In turn, this has greatly expanded the use of block copolymers in nanotechnology. Herein, we describe the synthesis of statistical and block copolymers of 193 nm photolithography methacrylate and acrylate resist monomers with norbornyl and adamantyl moieties using RAFT polymerization.. For these resist (block) copolymers, the phase separation behaviors were examined by atomic force microscopy (AFM). End groups were removed from the polymers to avoid complications during the photolithography since RAFT end groups absorb visible light. Poly(glycidyl methacrylate-block-polystyrene) (PGMA-b-PS) was synthesize by ATRP and demonstrated that this block copolymer acts as both a lithographic UV (365 nm) photoresist and a self-assembly material. The PGMA segments can undergo cationic ring-opening crosslinking and can act as a negative-tone photoresist. The PGMA-b-PS thin films were also studied for phase separation with ˜25 nm patterns using transmission electron microscopy (TEM). Poly(styrene-block-4-vinyl pyridine) (PS-b-P4VP) block copolymer thin films are shown to form perpendicular cylinder phase separated structures, and these may be used to template the formation of ordered titania nanostructures with sub-50 nm diameters on either silicon or indium tin oxide (ITO) substrates. A study of the mechanism of TiO2 formation within the P4VP cylinder phase was developed and tested. It was found that the titania nanostructure morphology is affected by pH and deposition temperatures, and successful deposition required the cross-linking of the P4VP phase in order to obtain individual nanostructures.
High-power broadband plasma maser with magnetic self-insulation
NASA Astrophysics Data System (ADS)
Litvin, Vitaliy O.; Loza, Oleg T.
2018-01-01
Presented in this paper are the results of a particle-in-cell modelling of a novel high-power microwave (HPM) source which combines the properties of two devices. The first prototype is a magnetically insulated transmission line oscillator (MILO), an HPM self-oscillator which does not need an external magnetic field and irradiates a narrow spectrum depending on its iris-loaded slow-wave structure. The second prototype is a plasma maser, a Cherenkov HPM amplifier driven by a high-current relativistic electron beam propagating in a strong external magnetic field in plasma which acts as a slow-wave structure. The radiation frequency of plasma masers mainly depends on an easily variable plasma concentration; hence, their spectrum may overlap a few octaves. The plasma-based HPM device described in this paper operates without an external magnetic field: it looks like an MILO in which the iris-loaded slow-wave structure is substituted by a hollow plasma tube. The small pulse duration of ˜1.5 ns prevents a feedback rise in the 20-cm long generation section so that the device operates as a noise amplifier. Unlike conventional ultra wideband generators, the spectrum depends not only on the pulse duration but mainly on plasma, so the operation frequency of the device ranges within 12 GHz. For irradiated frequencies above 2 GHz, the total pulse energy efficiency of 7% is demonstrated at the HPM power level ˜1 GW.
NASA Astrophysics Data System (ADS)
Welch, Kevin; Leonard, Jerry; Jones, Richard D.
2010-08-01
Increasingly stringent requirements on the performance of diffractive optical elements (DOEs) used in wafer scanner illumination systems are driving continuous improvements in their associated manufacturing processes. Specifically, these processes are designed to improve the output pattern uniformity of off-axis illumination systems to minimize degradation in the ultimate imaging performance of a lithographic tool. In this paper, we discuss performance improvements in both photolithographic patterning and RIE etching of fused silica diffractive optical structures. In summary, optimized photolithographic processes were developed to increase critical dimension uniformity and featuresize linearity across the substrate. The photoresist film thickness was also optimized for integration with an improved etch process. This etch process was itself optimized for pattern transfer fidelity, sidewall profile (wall angle, trench bottom flatness), and across-wafer etch depth uniformity. Improvements observed with these processes on idealized test structures (for ease of analysis) led to their implementation in product flows, with comparable increases in performance and yield on customer designs.
Making structures for cell engineering.
Wilkinson, C D W
2004-10-22
This is a mainly historical account of the events, methods and artifacts arising from my collaboration with Adam Curtis over the past twenty years to make exercise grounds for biological cells. Initially the structures were made in fused silica by photo-lithography and dry etching. The need to make micron-sized features in biodegradable polymers, led to the development of embossing techniques. Some cells response to grooves only a few tens of nanometers deep--this led to a desire to find the response of cells to features of nanometric size overall. Regular arrays of such features were made using electron beam lithography for definition of the pattern. Improvements were made in the lithographic techniques to allow arrays to be defined over areas bigger than 1 cm2. Structures with microelectrodes arranged inside guiding grooves to allow the formation of sparse predetermined networks of neurons were made. It is concluded that the creation of pattern, as in vivo, in assemblies of regrown cells in scaffolds may well be necessary in advanced cell engineering applications.
Litvinov, Julia; Wang, Yi-Ju; George, Jinnie; Chinwangso, Pawilai; Brankovic, Stanko; Willson, Richard C.; Litvinov, Dmitri
2013-01-01
This paper describes synthesis of ultrathin pinhole-free insulating aluminum oxide layers for electronic device protection in corrosive liquid environments, such as phosphate buffered saline (PBS) or clinical fluids, to enable emerging biomedical applications such as biomolecular sensors. A pinhole-free 25-nm thick amorphous aluminum oxide layer has been achieved using ultra-high vacuum DC magnetron reactive sputtering of aluminum in oxygen/argon plasma followed by oxygen plasma post-processing. Deposition parameters were optimized to achieve the best corrosion protection of lithographically defined device structures. Electrochemical deposition of copper through the aluminum oxide layers was used to detect the presence (or absence) of pinholes. FTIR, XPS, and spectroscopic ellipsometry were used to characterize the material properties of the protective layers. Electrical resistance of the copper device structures protected by the aluminum oxide layers and exposed to a PBS solution was used as a metric to evaluate the long-term stability of these device structures. PMID:23682201
Self-assembled stable sponge-type nanocarries for Brucea javanica oil delivery.
Zou, Aihua; Li, Yawen; Chen, Yiyin; Angelova, Angelina; Garamus, Vasil M; Li, Na; Drechsler, Markus; Angelov, Borislav; Gong, Yabin
2017-05-01
Sponge-type nanocarriers (spongosomes) are produced upon dispersion of a liquid crystalline sponge phase formed by self-assembly of an amphiphilic lipid in excess aqueous phase. The inner organization of the spongosomes is built-up by randomly ordered bicontinuous lipid membranes and their surfaces are stabilized by alginate chains providing stealth properties and colloidal stability. The present study elaborates spongosomes for improved encapsulation of Brucea javanica oil (BJO), a traditional Chinese medicine that may strongly inhibit proliferation and metastasis of various cancers. The inner structural organization and the morphology characteristics of BJO-loaded nanocarriers at varying quantities of BJO were determined by cryogenic transmission electron microscopy (Cryo-TEM), small angle X-ray scattering (SAXS) and dynamic light scattering (DLS). Additionally, the drug loading and drug release profiles for BJO-loaded spongosome systems also were determined. We found that the sponge-type liquid crystalline lipid membrane organization provides encapsulation efficiency rate of BJO as high as 90%. In vitro cytotoxicity and apoptosis study of BJO spongosome nanoparticles with A549 cells demonstrated enhanced anti-tumor efficiency. These results suggest potential clinical applications of the obtained safe spongosome formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
The Rosenberg Self-Esteem Scale: a bifactor answer to a two-factor question?
McKay, Michael T; Boduszek, Daniel; Harvey, Séamus A
2014-01-01
Despite its long-standing and widespread use, disagreement remains regarding the structure of the Rosenberg Self-Esteem Scale (RSES). In particular, concern remains regarding the degree to which the scale assesses self-esteem as a unidimensional or multidimensional (positive and negative self-esteem) construct. Using a sample of 3,862 high school students in the United Kingdom, 4 models were tested: (a) a unidimensional model, (b) a correlated 2-factor model in which the 2 latent variables are represented by positive and negative self-esteem, (c) a hierarchical model, and (d) a bifactor model. The totality of results including item loadings, goodness-of-fit indexes, reliability estimates, and correlations with self-efficacy measures all supported the bifactor model, suggesting that the 2 hypothesized factors are better understood as "grouping" factors rather than as representative of latent constructs. Accordingly, this study supports the unidimensionality of the RSES and the scoring of all 10 items to produce a global self-esteem score.
High heat-flux self-rotating plasma-facing component: Concept and loading test in TEXTOR
NASA Astrophysics Data System (ADS)
Terra, A.; Sergienko, G.; Hubeny, M.; Huber, A.; Mertens, Ph.; Philipps, V.; The Textor Team
2015-08-01
This contribution reports on the concept of a circular self-rotating and temperature self-stabilising plasma-facing component (PFC), and test of a related prototype in TEXTOR tokamak. This PFC uses the Lorentz force induced by plasma current and magnet field (J × B) to create a torque applied on metallic discs which produce a rotational movement. Additional thermionic current, present at high operation temperatures, brings additional temperature stabilisation ability. This self-rotating disk limiter was exposed to plasma in the TEXTOR tokamak under different radial positions to vary the heat flux. This disk structure shows the interesting ability to stabilise its maximum temperature through the fact that the self-induced rotation is modulated by the thermal emission current. It was observed that the rotation speed increased following both the current collected by the limiter, and the temperature of the tungsten disks.
NASA Astrophysics Data System (ADS)
Hamilton, Andrew Lawrence
We have used self-consistent field theory to study the morphological characteristics of blends of miktoarm block copolymers and homopolymers. More specifically, we have studied the effects of segregation strength, miktoarm block copolymer composition, and homopolymer size and volume fraction on the phase diagrams of these systems. A15 domains with discrete A-monomer spherical domains were found to be stable with A-monomer loading fractions of at least as high as 52%. Hexagonally-packed cylindrical domains were found to be stable at A-monomer loadings of at least as high as 72%. These findings represent a significant improvement from the loading fractions of 43% and 60% reported by Lynd et al. for spherical and cylindrical domains in neat miktoarm block copolymers, respectively. It is also quite possible that even greater loading fractions are achievable in systems too large for our simulations. These results predict exciting new materials for next-generation thermoplastic elastomers, since the ideal TPE has a large loading of A monomers in discrete, crystalline or glassy domains, surrounded by a continuous matrix of elastomeric B domains. Additionally, we have performed SCFT simulations modelled after experimental blends of polystyrene and polyisoprene-based miktoarm block copolymers and homopolymers. Certain experimental samples showed fascinating new "bricks and mortar" phases and swollen asymmetric lamellar phases. In both cases, the A domains are highly swollen with homopolymer, forcing the miktoarm block copolymer to segregate near the interface and adopt the role of a surfactant. The resulting structures maintain separate A and B domains, but lack long-range order. While it is not possible to study these mesophases using SCFT, since they lack long-range order and therefore well-defined symmetry, our SCFT results show the onset of macrophase separation at similar homopolymer loadings, for both the bricks and mortar phases and the highly swollen lamellae. This supports the theory that both phases are fluctuation-induced mesophases, similar to microemulsions in character, that lie in between the typical ordered structures and full macrophase separation.
NASA Astrophysics Data System (ADS)
Hohenberger, Erik; Freitag, Nathan; Korampally, Venumadhav
2017-07-01
We report on a facile and low cost fabrication approach for structures—gratings and enclosed nanochannels, through simple solution processed chemistries in conjunction with nanotransfer printing techniques. The ink formulation primarily consisting of an organosilicate polymeric network with a small percentage of added 3-aminopropyl triethoxysilane crosslinker allows one to obtain robust structures that are not only stable towards high temperature processing steps as high as 550 °C but also exhibit exceptional stability against a host of organic solvent washes. No discernable structure distortion was observed compared to the as-printed structures (room temperature processed) when printed structures were subjected to temperatures as high as 550 °C. We further demonstrate the applicability of this technique towards the fabrication of more complex nanostructures such as enclosed channels through a double transfer method, leveraging the exceptional room temperature cross-linking ability of the printed structures and their subsequent resistance to dissolution in organic solvent washes. The exceptional temperature and physico-chemical stability of the nanotransfer printed structures makes this a useful fabrication tool that may be applied as is, or integrated with conventional lithographic techniques for the large area fabrication of functional nanostructures and devices.
Mechanics of evolving thin film structures
NASA Astrophysics Data System (ADS)
Liang, Jim
In the Stranski-Krastanov system, the lattice mismatch between the film and the substrate causes the film to break into islands. During annealing, both the surface energy and the elastic energy drive the islands to coarsen. Motivated by several related studies, we suggest that stable islands should form when a stiff ceiling is placed at a small gap above the film. We show that the role of elasticity is reversed: with the ceiling, the total elastic energy stored in the system increases as the islands coarsen laterally. Consequently, the islands select an equilibrium size to minimize the combined elastic energy and surface energy. In lithographically-induced self-assembly, when a two-phase fluid confined between parallel substrates is subjected to an electric field, one phase can self-assemble into a triangular lattice of islands in another phase. We describe a theory of the stability of the island lattice. The islands select the equilibrium diameter to minimize the combined interface energy and electrostatic energy. Furthermore, we study compressed SiGe thin film islands fabricated on a glass layer, which itself lies on a silicon wafer. Upon annealing, the glass flows, and the islands relax. A small island relaxes by in-plane expansion. A large island, however, wrinkles at the center before the in-plane relaxation arrives. The wrinkles may cause significant tensile stress in the island, leading to fracture. We model the island by the von Karman plate theory and the glass layer by the Reynolds lubrication theory. Numerical simulations evolve the in-plane expansion and the wrinkles simultaneously. We determine the critical island size, below which in-plane expansion prevails over wrinkling. Finally, in devices that integrate dissimilar materials in small dimensions, crack extension in one material often accompanies inelastic deformation in another. We analyze a channel crack advancing in an elastic film under tension, while an underlayer creeps. We use a two-dimensional shear lag model to approximate the three-dimensional fracture process. Based on the computational results, we propose new experiments to measure fracture toughness and creep laws in small structures. Similarly, we study delayed crack initiation, steady crack growth, and transient crack growth when the underlayer is viscoelastic.
Development of mass production technology for block copolymer lithographic materials
NASA Astrophysics Data System (ADS)
Himi, Toshiyuki; Matsuki, Ryota; Kosaka, Terumasa; Ogaki, Ryosuke; Kawaguchi, Yukio; Shimizu, Tetsuo
2017-03-01
We have successfully synthesized various and over wide range molecular weight block copolymers (BCPs): these are polystyrene(PS)-polymethylmethacrylate(PMMA) as general components and poly(4-trimethylsilylstyrene)(PTMSS)- poly(4-hydroxystyrene)(PHS) system as very strong segregated components (high chi) and multiblock type of those copolymers which form the microphase-separated structure pattern using living anionic polymerizing method by which the size of polymer can be precisely controlled. In addition, we were able to observe alternating lamellar and cylinder structures which were formed by our various BCPs using small angle X-ray scattering (SAXS). Moreover, we have successfully developed new apparatus for high volume manufacturing including our original technologies such as purification of monomer, improvement of wetted surface, and mechanical technology for high vacuum. And we have successfully synthesized all the BCPs with narrow molecular weight distribution (PDI <1.1) with large-scale apparatus.
Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee
2009-01-14
The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.
Assembly of ordered colloidal aggregrates by electric-field-induced fluid flow
Yeh, Syun-Ru; Seul, Michael; Shraiman, Boris I.
2017-01-01
Suspensions of colloidal particles form a variety of ordered planar structures at an interface in response to an a.c. or d.c. electric field applied normal to the interface1–3. This field-induced pattern formation can be useful, for example, in the processing of materials. Here we explore the origin of the ordering phenomenon. We present evidence suggesting that the long-ranged attraction between particles which causes aggregation is mediated by electric-field-induced fluid flow. We have imaged an axially symmetric flow field around individual particles on a uniform electrode surface. The flow is induced by distortions in the applied electric field owing to inhomogeneities in the ‘double layer’ of ions and counterions at the electrode surface. The beads themselves can create these inhomogeneities, or alternatively, we can modify the electrode surfaces by lithographic patterning so as to introduce specified patterns into the aggregated structures. PMID:28943661
Chen, Shih-Yung; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi; Wang, Yuh-Lin
2011-09-07
Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.
NASA Astrophysics Data System (ADS)
Chen, Shih-Yung; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi; Wang, Yuh-Lin
2011-09-01
Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.
Lithographic performance comparison with various RET for 45-nm node with hyper NA
NASA Astrophysics Data System (ADS)
Adachi, Takashi; Inazuki, Yuichi; Sutou, Takanori; Kitahata, Yasuhisa; Morikawa, Yasutaka; Toyama, Nobuhito; Mohri, Hiroshi; Hayashi, Naoya
2006-05-01
In order to realize 45 nm node lithography, strong resolution enhancement technology (RET) and water immersion will be needed. In this research, we discussed about various RET performance comparison for 45 nm node using 3D rigorous simulation. As a candidate, we chose binary mask (BIN), several kinds of attenuated phase-shifting mask (att-PSM) and chrome-less phase-shifting lithography mask (CPL). The printing performance was evaluated and compared for each RET options, after the optimizing illumination conditions, mask structure and optical proximity correction (OPC). The evaluation items of printing performance were CD-DOF, contrast-DOF, conventional ED-window and MEEF, etc. It's expected that effect of mask 3D topography becomes important at 45 nm node, so we argued about not only the case of ideal structures, but also the mask topography error effects. Several kinds of mask topography error were evaluated and we confirmed how these errors affect to printing performance.
Thomas, S.; Kuiper, B.; Hu, J.; ...
2017-10-27
With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO 3 films by the deposition of a SrTiO 3 capping layer, which can be lithographically patterned to achieve local control. Here, using a scanning Sagnac magnetic microscope, we show an increasemore » in the Curie temperature of SrRuO 3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. Lastly, this capping-layer-based technique may open new possibilities for developing functional oxide materials.« less
Thomas, S; Kuiper, B; Hu, J; Smit, J; Liao, Z; Zhong, Z; Rijnders, G; Vailionis, A; Wu, R; Koster, G; Xia, J
2017-10-27
With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO_{3} films by the deposition of a SrTiO_{3} capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show an increase in the Curie temperature of SrRuO_{3} due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.
Method to fabricate a tilted logpile photonic crystal
Williams, John D.; Sweatt, William C.
2010-10-26
A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.
Self-Alining End Supports for Energy Absorber
NASA Technical Reports Server (NTRS)
Alfaro-Bou, E.; Eichelberger, C. P.; Fasanella, E.
1986-01-01
Simple devices stabilize axially-loaded compressive members. Energyabsorbing column held by two end supports, which stabilize column and tolerate misalinement. Column absorbs excess load by collapsing lengthwise. Self-alining supports small, lightweight, and almost maintenance-free. Their use eliminates alinement problem, opening up more applications and providing higher reliability for compressively-loaded energy absorbers.
Engineering cellular fibers for musculoskeletal soft tissues using directed self-assembly.
Schiele, Nathan R; Koppes, Ryan A; Chrisey, Douglas B; Corr, David T
2013-05-01
Engineering strategies guided by developmental biology may enhance and accelerate in vitro tissue formation for tissue engineering and regenerative medicine applications. In this study, we looked toward embryonic tendon development as a model system to guide our soft tissue engineering approach. To direct cellular self-assembly, we utilized laser micromachined, differentially adherent growth channels lined with fibronectin. The micromachined growth channels directed human dermal fibroblast cells to form single cellular fibers, without the need for a provisional three-dimensional extracellular matrix or scaffold to establish a fiber structure. Therefore, the resulting tissue structure and mechanical characteristics were determined solely by the cells. Due to the self-assembly nature of this approach, the growing fibers exhibit some key aspects of embryonic tendon development, such as high cellularity, the rapid formation (within 24 h) of a highly organized and aligned cellular structure, and the expression of cadherin-11 (indicating direct cell-to-cell adhesions). To provide a dynamic mechanical environment, we have also developed and characterized a method to apply precise cyclic tensile strain to the cellular fibers as they develop. After an initial period of cellular fiber formation (24 h postseeding), cyclic strain was applied for 48 h, in 8-h intervals, with tensile strain increasing from 0.7% to 1.0%, and at a frequency of 0.5 Hz. Dynamic loading dramatically increased cellular fiber mechanical properties with a nearly twofold increase in both the linear region stiffness and maximum load at failure, thereby demonstrating a mechanism for enhancing cellular fiber formation and mechanical properties. Tissue engineering strategies, designed to capture key aspects of embryonic development, may provide unique insight into accelerated maturation of engineered replacement tissue, and offer significant advances for regenerative medicine applications in tendon, ligament, and other fibrous soft tissues.
Heuts, Peter H T G; de Bie, Rob A; Dijkstra, Arie; Aretz, Karin; Vlaeyen, Johan W S; Schouten, Hubert J A; Hopman-Rock, Marijke; van Weel, Chris; van Schayck, Constant P
2005-05-01
To develop a self-report measure for assessment of the stage of change in patients with osteoarthritis, in order to identify patients who would benefit from a self-management programme. According to the 'stages of change' model a questionnaire was developed with three groups of items corresponding to the precontemplation stage (Pre), the contemplation (Cont) and the action (Act) stage. Internal consistency and factor structure of this questionnaire were investigated by assessing Cronbach's alphas and by performing factor analysis. The questionnaire was offered to 273 patients who entered a randomized clinical trial on self-management in a general health care setting. Factor analysis revealed that most items corresponded to the a priori described groups, while some items were not loading on the presumed factor. In each subgroup some items were deleted, resulting in a 15-item questionnaire. After this item reduction Cronbach's alphas were 0.72 (Pre), 0.76 (Cont) and 0.79 (Act) and all factor loadings were satisfactory (above 0.35). Classification revealed some differences between parts of the total group, for example in the proportion of patients in the preparation stage (recruited by general practitioner = 33.6%; advertisement = 49.2%). The Stages of Change Questionnaire in Osteoarthritis, a 15-item questionnaire to assess the 'stage of change' of a patient with osteoarthritis showed good internal consistency and adequate factor structure. These findings warrant further studies on validity and applicability in a clinical context.
Many Body Effects on Particle Diffusion in Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Dell, Zachary E.; Schweizer, Kenneth S.
2014-03-01
Recent statistical mechanical theories of nanoparticle motion in polymer melts and networks have focused on the dilute particle limit. By combining PRISM theory predictions for microscopic structural correlations, and a new formulation of self-consistent dynamical mode coupling theory, we extend dilute theories to finite filler loading. As a minimalist model, the polymer dynamics are first assumed to be unperturbed by the presence of the nanoparticles. The long time particle diffusivity in unentangled and entangled melts is determined as a function of polymer tube diameter and radius of gyration, nanoparticle diameter, and polymer-filler attraction strength under both constant volume and constant pressure situations. The influence of nanocomposite statistical structure (depletion, steric stabilization, bridging) on dynamics is also investigated. Using recent theoretical developments for predicting tube diameters in nanocomposites, the consequences of filler-induced tube dilation on nanoparticle motion is established. In entangled melts, increasing filler loading first modestly speeds up diffusion, and then dramatically when the inter-filler separation becomes smaller than the tube diameter. At very high loadings, a filler glass transition is generically predicted.
Beta cell device using icosahedral boride compounds
Aselage, Terrence L.; Emin, David
2002-01-01
A beta cell for converting beta-particle energies into electrical energy having a semiconductor junction that incorporates an icosahedral boride compound selected from B.sub.12 As.sub.2, B.sub.12 P.sub.2, elemental boron having an .alpha.-rhombohedral structure, elemental boron having a .beta.-rhombohedral structure, and boron carbides of the chemical formula B.sub.12-x C.sub.3-x, where 0.15
Self-healing nanocomposite using shape memory polymer and carbon nanotubes
NASA Astrophysics Data System (ADS)
Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi
2013-04-01
Carbon fiber reinforced composites are used in a wide range of applications in aerospace, mechanical, and civil structures. Due to the nature of material, most damage in composites, such as delaminations, are always barely visible to the naked eye, which makes it difficult to detect and repair. The investigation of biological systems has inspired the development and characterization of self-healing composites. This paper presents the development of a new type of self-healing material in order to impede damage progression and conduct in-situ damage repair in composite structures. Carbon nanotubes, which are highly conductive materials, are mixed with shape memory polymer to develop self-healing capability. The developed polymeric material is applied to carbon fiber reinforced composites to automatically heal the delamination between different layers. The carbon fiber reinforced composite laminates are manufactured using high pressure molding techniques. Tensile loading is applied to double cantilever beam specimens using an MTS hydraulic test frame. A direct current power source is used to generate heat within the damaged area. The application of thermal energy leads to re-crosslinking in shape memory polymers. Experimental results showed that the developed composite materials are capable of healing the matrix cracks and delaminations in the bonded areas of the test specimens. The developed self-healing material has the potential to be used as a novel structural material in mechanical, civil, aerospace applications.
Brochu, Alice B. W.; Craig, Stephen L.; Reichert, William M.
2010-01-01
The goal of this review is to introduce the biomaterials community to the emerging field of self-healing materials, and also to suggest how one could utilize and modify self-healing approaches to develop new classes of biomaterials. A brief discussion of the in vivo mechanical loading and resultant failures experienced by biomedical implants is followed by presentation of the self-healing methods for combating mechanical failure. If conventional composite materials that retard failure may be considered zeroth generation self-healing materials, then taxonomically-speaking, first generation self-healing materials describe approaches that “halt” and “fill” damage, whereas second generation self-healing materials strive to “fully restore” the pre-failed material structure. In spite of limited commercial use to date, primarily because the technical details have not been suitably optimized, it is likely from a practical standpoint that first generation approaches will be the first to be employed commercially, whereas second generation approaches may take longer to implement. For self-healing biomaterials the optimization of technical considerations is further compounded by the additional constraints of toxicity and biocompatibility, necessitating inclusion of separate discussions of design criteria for self-healing biomaterials. PMID:21171168
Printing and Related Support Activities Sector (NAICS 323)
Find environmental regulatory and compliance information for the printing sector, including NESHAPs for paper surface coating, RCRA hazardous waste guide for small business, and a pollution prevention guidance for lithographic and screen printing
Self-diagnosis of structures strengthened with hybrid carbon-fiber-reinforced polymer sheets
NASA Astrophysics Data System (ADS)
Wu, Z. S.; Yang, C. Q.; Harada, T.; Ye, L. P.
2005-06-01
The correlation of mechanical and electrical properties of concrete beams strengthened with hybrid carbon-fiber-reinforced polymer (HCFRP) sheets is studied in this paper. Two types of concrete beams, with and without reinforcing bars, are strengthened with externally bonded HCFRP sheets, which have a self-structural health monitoring function due to the electrical conduction and piezoresistivity of carbon fibers. Parameters investigated include the volume fractions and types of carbon fibers. According to the investigation, it is found that the hybridization of uniaxial HCFRP sheets with several different types of carbon fibers is a viable method for enhancing the mechanical properties and obtaining a built-in damage detection function for concrete structures. The changes in electrical resistance during low strain ranges before the rupture of carbon fibers are generally smaller than 1%. Nevertheless, after the gradual ruptures of carbon fibers, the electrical resistance increases remarkably with the strain in a step-wise manner. For the specimens without reinforcing bars, the electrical behaviors are not stable, especially during the low strain ranges. However, the electrical behaviors of the specimens with reinforcing bars are relatively stable, and the whole range of self-sensing function of the HCFRP-strengthened RC structures has realized the conceptual design of the HCFRP sensing models and is confirmed by the experimental investigations. The relationships between the strain/load and the change in electrical resistance show the potential self-monitoring capacity of HCFRP reinforcements used for strengthening concrete structures.
Lithographic VCSEL array multimode and single mode sources for sensing and 3D imaging
NASA Astrophysics Data System (ADS)
Leshin, J.; Li, M.; Beadsworth, J.; Yang, X.; Zhang, Y.; Tucker, F.; Eifert, L.; Deppe, D. G.
2016-05-01
Sensing applications along with free space data links can benefit from advanced laser sources that produce novel radiation patterns and tight spectral control for optical filtering. Vertical-cavity surface-emitting lasers (VCSELs) are being developed for these applications. While oxide VCSELs are being produced by most companies, a new type of oxide-free VCSEL is demonstrating many advantages in beam pattern, spectral control, and reliability. These lithographic VCSELs offer increased power density from a given aperture size, and enable dense integration of high efficiency and single mode elements that improve beam pattern. In this paper we present results for lithographic VCSELs and describes integration into military systems for very low cost pulsed applications, as well as continuouswave applications in novel sensing applications. The VCSELs are being developed for U.S. Army for soldier weapon engagement simulation training to improve beam pattern and spectral control. Wavelengths in the 904 nm to 990 nm ranges are being developed with the spectral control designed to eliminate unwanted water absorption bands from the data links. Multiple beams and radiation patterns based on highly compact packages are being investigated for improved target sensing and transmission fidelity in free space data links. These novel features based on the new VCSEL sources are also expected to find applications in 3-D imaging, proximity sensing and motion control, as well as single mode sensors such as atomic clocks and high speed data transmission.
Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly
NASA Astrophysics Data System (ADS)
Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min
2017-03-01
The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena.
Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly
Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min
2017-01-01
The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena. PMID:28266537
Ardestani, M S; Niknami, S; Hidarnia, A; Hajizadeh, E
2016-08-18
This research examined the validity and reliability of a researcher-developed questionnaire based on Social Cognitive Theory (SCT) to assess the physical activity behaviour of Iranian adolescent girls (SCT-PAIAGS). Psychometric properties of the SCT-PAIAGS were assessed by determining its face validity, content and construct validity as well as its reliability. In order to evaluate factor structure, cross-sectional research was conducted on 400 high-school girls in Tehran. Content validity index, content validity ratio and impact score for the SCT-PAIAGS varied between 0.97-1, 0.91-1 and 4.6-4.9 respectively. Confirmatory factor analysis approved a six-factor structure comprising self-efficacy, self-regulation, family support, friend support, outcome expectancy and self-efficacy to overcoming impediments. Factor loadings, t-values and fit indices showed that the SCT model was fitted to the data. Cronbach's α-coefficient ranged from 0.78 to 0.85 and intraclass correlation coefficient from 0.73 to 0.90.
Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits
Tu, Fan; Drost, Martin; Szenti, Imre; Kiss, Janos; Kónya, Zoltan
2017-01-01
We report on the fabrication of carbon nanotubes (CNTs) at predefined positions and controlled morphology, for example, as individual nanotubes or as CNT forests. Electron beam induced deposition (EBID) with subsequent autocatalytic growth (AG) was applied to lithographically produce catalytically active seeds for the localized growth of CNTs via chemical vapor deposition (CVD). With the precursor Fe(CO)5 we were able to fabricate clean iron deposits via EBID and AG. After the proof-of-principle that these Fe deposits indeed act as seeds for the growth of CNTs, the influence of significant EBID/AG parameters on the deposit shape and finally the yield and morphology of the grown CNTs was investigated in detail. Based on these results, the parameters could be optimized such that EBID point matrixes (6 × 6) were fabricated on a silica surface whereby at each predefined site only one CNT was produced. Furthermore, the localized fabrication of CNT forests was targeted and successfully achieved on an Al2O3 layer on a silicon sample. A peculiar lift-up of the Fe seed structures as “flakes” was observed and the mechanism was discussed. Finally, a proof-of-principle was presented showing that EBID deposits from the precursor Co(CO)3NO are also very effective catalysts for the CNT growth. Even though the metal content (Co) of the latter is reduced in comparison to the Fe deposits, effective CNT growth was observed for the Co-containing deposits at lower CVD temperatures than for the corresponding Fe deposits. PMID:29259874
NASA Astrophysics Data System (ADS)
Smith, L. W.; Al-Taie, H.; Sfigakis, F.; See, P.; Lesage, A. A. J.; Xu, B.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.
2014-07-01
The properties of conductance in one-dimensional (1D) quantum wires are statistically investigated using an array of 256 lithographically identical split gates, fabricated on a GaAs/AlGaAs heterostructure. All the split gates are measured during a single cooldown under the same conditions. Electron many-body effects give rise to an anomalous feature in the conductance of a one-dimensional quantum wire, known as the "0.7 structure" (or "0.7 anomaly"). To handle the large data set, a method of automatically estimating the conductance value of the 0.7 structure is developed. Large differences are observed in the strength and value of the 0.7 structure [from 0.63 to 0.84×(2e2/h)], despite the constant temperature and identical device design. Variations in the 1D potential profile are quantified by estimating the curvature of the barrier in the direction of electron transport, following a saddle-point model. The 0.7 structure appears to be highly sensitive to the specific confining potential within individual devices.
Lithographic Printing Via Two-Photon Polymerization of Engineered Foams
Herman, Matthew J.; Peterson, Dominic; Henderson, Kevin; ...
2017-11-29
Understanding deuterium-tritium mix in capsules is critical to achieving fusion within inertial confined fusion experiments. One method of understanding how the mix of hydrogen fuels can be controlled is by creating various structured deuterated foams and filling the capsule with liquid tritium. Historically, these materials have been a stochastically structured gas-blown foam. Later, to improve the uniformity of this material, pore formers have been used which are then chemically removed, leaving behind a foam of monodisperse voids. However, this technique is still imperfect in that fragments of the pore templating particles may not be completely removed and the void distributionmore » may not be uniform over the size scale of the capsule. Recently, advances in three-dimensional printing suggest that it can be used to create microlattices and capsule walls in one single print. Demonstrated in this paper are proof-of-concept microlattices produced using two-photon polymerization with submicrometer resolution of various structures as well as a microlattice-containing capsule. Finally, with this technology, complete control of the mixing structure is possible, amenable to modeling and easily modified for tailored target design.« less
Lu, Bin; Harley, Ronald G.; Du, Liang; Yang, Yi; Sharma, Santosh K.; Zambare, Prachi; Madane, Mayura A.
2014-06-17
A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.
NASA Astrophysics Data System (ADS)
Patel, K. C.; Ruiz, R.; Lille, J.; Wan, L.; Dobiz, E.; Gao, H.; Robertson, N.; Albrecht, T. R.
2012-03-01
Directed self-assembly is emerging as a promising technology to define sub-20nm features. However, a straightforward path to scale block copolymer lithography to single-digit fabrication remains challenging given the diverse material properties found in the wide spectrum of self-assembling materials. A vast amount of block copolymer research for industrial applications has been dedicated to polystyrene-b-methyl methacrylate (PS-b-PMMA), a model system that displays multiple properties making it ideal for lithography, but that is limited by a weak interaction parameter that prevents it from scaling to single-digit lithography. Other block copolymer materials have shown scalability to much smaller dimensions, but at the expense of other material properties that could delay their insertion into industrial lithographic processes. We report on a line doubling process applied to block copolymer patterns to double the frequency of PS-b-PMMA line/space features, demonstrating the potential of this technique to reach single-digit lithography. We demonstrate a line-doubling process that starts with directed self-assembly of PS-b-PMMA to define line/space features. This pattern is transferred into an underlying sacrificial hard-mask layer followed by a growth of self-aligned spacers which subsequently serve as hard-masks for transferring the 2x frequency doubled pattern to the underlying substrate. We applied this process to two different block copolymer materials to demonstrate line-space patterns with a half pitch of 11nm and 7nm underscoring the potential to reach single-digit critical dimensions. A subsequent patterning step with perpendicular lines can be used to cut the fine line patterns into a 2-D array of islands suitable for bit patterned media. Several integration challenges such as line width control and line roughness are addressed.
The Relationship of Scaffolding on Cognitive Load in an Online Self-Regulated Learning Environment
ERIC Educational Resources Information Center
Danilenko, Eugene Paul
2010-01-01
Scaffolding learners in self-regulated learning environments is a topic of increasing importance as implementation of online learning grows. Since cognitive overload in hypermedia environments can be a problem for some learners, instructional design strategies can be used to decrease extraneous load or encourage germane load in order to help…
ERIC Educational Resources Information Center
Lee, Hyunjeong
2014-01-01
This study investigated a reliable and valid method for measuring cognitive load during learning through comparing various types of cognitive load measurements: electroencephalography (EEG), self-reporting, and learning outcome. A total of 43 college-level students underwent watching a documentary delivered in English or in Korean. EEG was…
ERIC Educational Resources Information Center
Ong, Chiek Pin; Tasir, Zaidatun
2015-01-01
The aim of the research is to study the information retention among trainee teachers using a self-instructional printed module based on Cognitive Load Theory for learning spreadsheet software. Effective pedagogical considerations integrating the theoretical concepts related to cognitive load are reflected in the design and development of the…
Trauma Coping Self-Efficacy: A Context Specific Self-Efficacy Measure for Traumatic Stress
Benight, Charles C.; Shoji, Kotaro; James, Lori E.; Waldrep, Edward E.; Delahanty, Douglas L.; Cieslak, Roman
2015-01-01
The psychometric properties of a Trauma Coping Self-Efficacy (CSE-T) scale that assesses general trauma-related coping self-efficacy perceptions were assessed. Measurement equivalence was assessed using several different samples: hospitalized trauma patients (n1 = 74, n2 = 69, n3 = 60), three samples of disaster survivors (n1 = 273, n2 = 227, n3 = 138), and trauma exposed college students (N = 242). This is the first multi-sample evaluation of the psychometric properties for a general trauma-related CSE measure. Results showed that a brief and parsimonious 9-item version of the CSE performed well across the samples with a robust factor structure; factor structure and factor loadings were similar across study samples. The 9-item scale CSE-T demonstrated measurement equivalence across samples indicating that the underlying concept of general post-traumatic CSE is organized in a similar manner in the different trauma-exposed groups. These results offer strong support for cross-event construct validity of the CSE-T scale. Associations of the CSE-T with important expected covariates showed significant evidence for convergent validity. Finally, discriminant validity was also supported. Replication of the factor structure, internal reliability, and other evidence for construct validity is a critical next step for future research. PMID:26524542
ERIC Educational Resources Information Center
Dich, Nadya; Doan, Stacey; Evans, Gary
2015-01-01
The present study examined the concurrent and prospective, longitudinal effects of childhood negative emotionality and self-regulation on allostatic load (AL), a physiological indicator of chronic stress. We hypothesized that negative emotionality in combination with poor self-regulation would predict elevated AL. Mothers reported on children's…
Laser-induced Forward Transfer of Ag Nanopaste.
Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C Y; Piqué, Alberto
2016-03-31
Over the past decade, there has been much development of non-lithographic methods(1-3) for printing metallic inks or other functional materials. Many of these processes such as inkjet(3) and laser-induced forward transfer (LIFT)(4) have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)(5-9), has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip.
Laser-induced Forward Transfer of Ag Nanopaste
Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C. Y.; Piqué, Alberto
2016-01-01
Over the past decade, there has been much development of non-lithographic methods1-3 for printing metallic inks or other functional materials. Many of these processes such as inkjet3 and laser-induced forward transfer (LIFT)4 have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)5-9, has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip. PMID:27077645
Optimized operation of dielectric laser accelerators: Single bunch
NASA Astrophysics Data System (ADS)
Hanuka, Adi; Schächter, Levi
2018-05-01
We introduce a general approach to determine the optimal charge, efficiency and gradient for laser driven accelerators in a self-consistent way. We propose a way to enhance the operational gradient of dielectric laser accelerators by leverage of beam-loading effect. While the latter may be detrimental from the perspective of the effective gradient experienced by the particles, it can be beneficial as the effective field experienced by the accelerating structure, is weaker. As a result, the constraint imposed by the damage threshold fluence is accordingly weakened and our self-consistent approach predicts permissible gradients of ˜10 GV /m , one order of magnitude higher than previously reported experimental results—with unbunched pulse of electrons. Our approach leads to maximum efficiency to occur for higher gradients as compared with a scenario in which the beam-loading effect on the material is ignored. In any case, maximum gradient does not occur for the same conditions that maximum efficiency does—a trade-off set of parameters is suggested.
Hwang, Sung Hoon; Miller, Joseph B; Shahsavari, Rouzbeh
2017-10-25
Many natural materials, such as nacre and dentin, exhibit multifunctional mechanical properties via structural interplay between compliant and stiff constituents arranged in a particular architecture. Herein, we present, for the first time, the bottom-up synthesis and design of strong, tough, and self-healing composite using simple but universal spherical building blocks. Our composite system is composed of calcium silicate porous nanoparticles with unprecedented monodispersity over particle size, particle shape, and pore size, which facilitate effective loading and unloading with organic sealants, resulting in 258% and 307% increases in the indentation hardness and elastic modulus of the compacted composite. Furthermore, heating the damaged composite triggers the controlled release of the nanoconfined sealant into the surrounding area, enabling moderate recovery in strength and toughness. This work paves the path towards fabricating a novel class of biomimetic composites using low-cost spherical building blocks, potentially impacting bone-tissue engineering, insulation, refractory and constructions materials, and ceramic matrix composites.
Herberg, Samuel; Varghai, Daniel; Cheng, Yuxuan; Dikina, Anna D.; Dang, Phuong N.; Rolle, Marsha W.; Alsberg, Eben
2018-01-01
Emerging biomimetic tissue engineering strategies aim to partially recapitulate fundamental events that transpire during embryonic skeletal development; namely, cellular self-organization and targeted morphogenetic pathway activation. Here, we describe self-assembled, scaffold-free human mesenchymal stem cell (hMSC) rings featuring microparticle-mediated presentation of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2). We tested the hypothesis that spatiotemporally-controlled dual presentation of TGF-β1 and BMP-2 is superior in modulating in vitro endochondral ossification of high-density cellular constructs compared to single morphogen delivery. hMSC rings were engineered by seeding cells with microparticles presenting (1) TGF-β1, (2) BMP-2, or (3) TGF-β1 + BMP-2 in custom agarose wells to facilitate self-assembly within 2 d, followed by horizontal culture on glass tubes for 5 weeks. At day 2, hMSC rings across groups revealed homogenous cellular organization mimetic of early mesenchymal condensation with no evidence of new matrix or mineral deposition. Significant early chondrogenic and osteogenic priming occurred with TGF-β1 + BMP-2 presentation compared to single morphogen-loaded groups. By week 5, TGF-β1-loaded hMSC rings had undergone chondrogenesis, while presentation of BMP-2 alone or in conjunction with TGF-β1 stimulated chondrogenesis, chondrocyte hypertrophy, and osteogenesis indicative of endochondral ossification. Importantly, tissue mineralization was most compelling with TGF-β1 + BMP-2 loading. Lastly, hMSC ring 'building blocks' were shown to efficiently fuse into tubes within 6 d post self-assembly. The resulting tubular tissue units exhibited structural integrity, highlighting the translational potential of this advanced biomimetic technology for potential early implantation in long bone defects. PMID:29577017
Derenskyi, Vladimir; Gomulya, Widianta; Talsma, Wytse; Salazar-Rios, Jorge Mario; Fritsch, Martin; Nirmalraj, Peter; Riel, Heike; Allard, Sybille; Scherf, Ullrich; Loi, Maria A
2017-06-01
In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self-assembly of semiconducting single walled carbon nanotubes (s-SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s-SWNTs from raw mixtures. In this work the authors functionalized the polymer with side chains containing thiols, to obtain chemical self-assembly of the selected s-SWNTs on substrates with prepatterned gold electrodes. The authors show that the full side functionalization of the conjugated polymer with thiol groups partially disrupts the s-SWNTs selection, with the presence of metallic tubes in the dispersion. However, the authors determine that the selectivity can be recovered either by tuning the number of thiol groups in the polymer, or by modulating the polymer/SWNTs proportions. As demonstrated by optical and electrical measurements, the polymer containing 2.5% of thiol groups gives the best s-SWNT purity. Field-effect transistors with various channel lengths, using networks of SWNTs and individual tubes, are fabricated by direct chemical self-assembly of the SWNTs/thiolated-polyfluorenes on substrates with lithographically defined electrodes. The network devices show superior performance (mobility up to 24 cm 2 V -1 s -1 ), while SWNTs devices based on individual tubes show an unprecedented (100%) yield for working devices. Importantly, the SWNTs assembled by mean of the thiol groups are stably anchored to the substrate and are resistant to external perturbation as sonication in organic solvents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Hongchun; Niu, Yongsheng
2018-08-01
A novel amphiphilic block polymer poly(ethylene glycol)-poly(propylene carbonate)-poly(ethylene glycol) (PEG-PPC-PEG) was synthesized via the dicyclohexylcarbodiimide condensation reaction of double PEG-bis-amine and HOOC-PPC-COOH. The obtained copolymer was characterized by NMR to determine its structure. Using the PEG-PPC-PEG as the carrier and using doxorubicin (DOX) as a model drug, DOX-loaded nanoparticles with core shell structure were synthesized by self-assembly in water. The nanoparticles properties such as particle size, drug loading, encapsulation efficiency (EE) and drug release behavior were investigated as a function of the hydrophobic block length of PPC segments and compared with each other. The results showed that the EE was up to 88.8%. Nanoparticles were found to have a certain effect on the controlled release of DOX. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Downey, Austin; Garcia-Macias, Enrique; D'Alessandro, Antonella; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo
2017-04-01
Interest in the concept of self-sensing structural materials has grown in recent years due to its potential to enable continuous low-cost monitoring of next-generation smart-structures. The development of cement-based smart sensors appears particularly well suited for monitoring applications due to their numerous possible field applications, their ease of use and long-term stability. Additionally, cement-based sensors offer a unique opportunity for structural health monitoring of civil structures because of their compatibility with new or existing infrastructure. Particularly, the addition of conductive carbon nanofillers into a cementitious matrix provides a self-sensing structural material with piezoresistive characteristics sensitive to deformations. The strain-sensing ability is achieved by correlating the external loads with the variation of specific electrical parameters, such as the electrical resistance or impedance. Selection of the correct electrical parameter for measurement to correlate with features of interest is required for the condition assessment task. In this paper, we investigate the potential of using altering electrical potential in cement-based materials doped with carbon nanotubes to measure strain and detect damage in concrete structures. Experimental validation is conducted on small-scale specimens including a steel-reinforced beam of conductive cement paste. Comparisons are made with constant electrical potential and current methods commonly found in the literature. Experimental results demonstrate the ability of the changing electrical potential at detecting features important for assessing the condition of a structure.
Finite element analysis of provisional structures of implant-supported complete prostheses.
Carneiro, Bruno Albuquerque; de Brito, Rui Barbosa; França, Fabiana Mantovani Gomes
2014-04-01
The use of provisional resin implant-supported complete dentures is a fast and safe procedure to restore mastication and esthetics of patients soon after surgery and during the adaptation phase to the new denture. This study assessed stress distribution of provisional implant-supported fixed dentures and the all-on-4 concept using self-curing acrylic resin (Tempron) and bis-acrylic resin (Luxatemp) to simulate functional loads through the three-dimensional finite element method. Solidworks software was used to build three-dimensional models using acrylic resin (Tempron, model A) and bis-acrylic resin (Luxatemp, model B) for denture captions. Two loading patterns were applied on each model: (1) right unilateral axial loading of 150 N on the occlusal surfaces of posterior teeth and (2) oblique loading vector of 150 N at 45°. The results showed that higher stress was found on the bone crest below oblique load application with a maximum value of 187.57 MPa on model A and 167.45 MPa on model B. It was concluded that model B improved stress distribution on the denture compared with model A.
Lo Coco, Gianluca; Mannino, Giuseppe; Salerno, Laura; Oieni, Veronica; Di Fratello, Carla; Profita, Gabriele; Gullo, Salvatore
2018-01-01
All versions of the Inventory of Interpersonal Problems (IIP) are broadly used to measure people's interpersonal functioning. The aims of the current study are: (a) to examine the psychometric properties and factor structure of the Italian version of the Inventory of Interpersonal Problems-short version (IIP-32); and (b) to evaluate its associations with core symptoms of different eating disorders. One thousand two hundred and twenty three participants ( n = 623 non-clinical and n = 600 clinical participants with eating disorders and obesity) filled out the Inventory of Interpersonal Problems-short version (IIP-32) along with measures of self-esteem (Rosenberg Self-Esteem Scale, RSES), psychological functioning (Outcome Questionnaire, OQ-45), and eating disorders (Eating Disorder Inventory, EDI-3). The present study examined the eight-factor structure of the IIP-32 with Confirmatory Factor Analysis (CFA) and Exploratory Structural Equation Modeling (ESEM). ESEM was also used to test the measurement invariance of the IIP-32 across clinical and non-clinical groups. It was found that CFA had unsatisfactory model fit, whereas the corresponding ESEM solution provided a better fit to the observed data. However, six target factor loadings tend to be modest, and ten items showed cross-loadings higher than 0.30. The configural and metric invariance as well as the scalar and partial strict invariance of the IIP-32 were supported across clinical and non-clinical groups. The internal consistency of the IIP-32 was acceptable and the construct validity was confirmed by significant correlations between IIP-32, RSES, and OQ-45. Furthermore, overall interpersonal difficulties were consistently associated with core eating disorder symptoms, whereas interpersonal styles that reflect the inability to form close relationships, social awkwardness, the inability to be assertive, and a tendency to self-sacrificing were positively associated with general psychological maladjustment. Although further validation of the Italian version of the IIP-32 is needed to support these findings, the results on its cross-cultural validity are promising.
Replication of Holograms with Corn Syrup by Rubbing
Mejias-Brizuela, Nildia Y.; Olivares-Pérez, Arturo; Ortiz-Gutiérrez, Mauricio
2012-01-01
Corn syrup films are used to replicate holograms in order to fabricate micro-structural patterns without the toxins commonly found in photosensitive salts and dyes. We use amplitude and relief masks with lithographic techniques and rubbing techniques in order to transfer holographic information to corn syrup material. Holographic diffraction patterns from holographic gratings and computer Fourier holograms fabricated with corn syrup are shown. We measured the diffraction efficiency parameter in order to characterize the film. The versatility of this material for storage information is promising. Holographic gratings achieved a diffraction efficiency of around 8.4% with an amplitude mask and 36% for a relief mask technique. Preliminary results using corn syrup as an emulsion for replicating holograms are also shown in this work.
Research development of thermal aberration in 193nm lithography exposure system
NASA Astrophysics Data System (ADS)
Wang, Yueqiang; Liu, Yong
2014-08-01
Lithographic exposure is the key process in the manufacture of the integrated circuit, and the performance of exposure system decides the level of microelectronic manufacture technology. Nowadays, the 193nm ArF immersion exposure tool is widely used by the IC manufacturer. With the uniformity of critical dimension (CDU) and overlay become tighter and the requirement for throughput become higher, the thermal aberration caused by lens material and structure absorbing the laser energy cannot be neglected. In this paper, we introduce the efforts and methods that researcher on thermal aberration and its control. Further, these methods were compared to show their own pros and cons. Finally we investigated the challenges of thermal aberration control for state of the art technologies.
Temperament Factor Structure in Fragile X Syndrome: The Children's Behavior Questionnaire
Roberts, Jane E.; Tonnsen, Bridgette L.; Robinson, Marissa; McQuillin, Samuel D.; Hatton, Deborah D.
2014-01-01
Early patterns of temperament lay the foundation for a variety of developmental constructs such as self-regulation, psychopathology, and resilience. Children with fragile X syndrome (FXS) display unique patterns of temperament compared to age-matched clinical and non-clinical samples, and early patterns of temperament have been associated with later anxiety in this population. Despite these unique patterns in FXS and recent reports of atypical factor structure of temperament questionnaires in Williams Syndrome (Leyfer, John, Woodruff-Borden, & Mervis, 2012), no studies have examined the latent factor structure of temperament scales in FXS to ensure measurement validity in this sample. The present study used confirmatory factor analysis to examine the factor structure of a well-validated parent-reported temperament questionnaire, the Children's Behavior Questionnaire (Rothbart, Ahadi, Hershey, & Fisher, 2001), in a sample of 90 males with FXS ages 3-9 years. Our data produced a similar, but not identical, three-factor model that retained the original CBQ factors of negative affectivity, effortful control, and extraversion/surgency. In particular, our FXS sample demonstrated stronger factor loadings for fear and shyness than previously reported loadings in non-clinical samples, consistent with reports of poor social approach and elevated anxiety in this population. Although the original factor structure of the Children's Behavior Questionnaire is largely retained in children with FXS, differences in factor loading magnitudes may reflect phenotypic characteristics of the syndrome. These findings may inform future developmental and translational research efforts. PMID:24380785
Li, Yan; Jiang, Chunlan; Wang, Zaicheng; Luo, Puguang
2016-01-01
Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene)/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature. PMID:28774056
Multimodal and self-healable interfaces enable strong and tough graphene-derived materials
NASA Astrophysics Data System (ADS)
Liu, Yilun; Xu, Zhiping
2014-10-01
Recent studies have shown that graphene-derived materials not only feature outstanding multifunctional properties, but also act as model materials to implant nanoscale structural engineering insights into their macroscopic performance optimization. In this work, we explore strengthening and toughening strategies of this class of materials by introducing multimodal crosslinks, including long, strong and short, self-healable ones. We identify two failure modes by fracturing functionalized graphene sheets or their crosslinks, and the role of brick-and-mortar hierarchy in mechanical enhancement. Theoretical analysis and atomistic simulation results show that multimodal crosslinks synergistically transfer tensile load to enhance the strength, whereas reversible rupture and formation of healable crosslinks improve the toughness. These findings lay the ground for future development of high-performance paper-, fiber- or film-like macroscopic materials from low-dimensional structures with engineerable interfaces.
Motion Control of Urea-Powered Biocompatible Hollow Microcapsules.
Ma, Xing; Wang, Xu; Hahn, Kersten; Sánchez, Samuel
2016-03-22
The quest for biocompatible microswimmers powered by compatible fuel and with full motion control over their self-propulsion is a long-standing challenge in the field of active matter and microrobotics. Here, we present an active hybrid microcapsule motor based on Janus hollow mesoporous silica microparticles powered by the biocatalytic decomposition of urea at physiological concentrations. The directional self-propelled motion lasts longer than 10 min with an average velocity of up to 5 body lengths per second. Additionally, we control the velocity of the micromotor by chemically inhibiting and reactivating the enzymatic activity of urease. The incorporation of magnetic material within the Janus structure provides remote magnetic control on the movement direction. Furthermore, the mesoporous/hollow structure can load both small molecules and larger particles up to hundreds of nanometers, making the hybrid micromotor an active and controllable drug delivery microsystem.
NASA Technical Reports Server (NTRS)
Wallace, T. A.; Yamakov, V. I.; Hochhalter, J. D.; Leser, W. P.; Warner, J. E.; Newman, J. A.; Purja Pun, G. P.; Mishin, Y.
2015-01-01
Fundamental changes to aero-vehicle management require the utilization of automated health monitoring of vehicle structural components. A novel method is the use of self-sensing materials, which contain embedded sensory particles (SP). SPs are micron-sized pieces of shape-memory alloy that undergo transformation when the local strain reaches a prescribed threshold. The transformation is a result of a spontaneous rearrangement of the atoms in the crystal lattice under intensified stress near damaged locations, generating acoustic waves of a specific spectrum that can be detected by a suitably placed sensor. The sensitivity of the method depends on the strength of the emitted signal and its propagation through the material. To study the transition behavior of the sensory particle inside a metal matrix under load, a simulation approach based on a coupled atomistic-continuum model is used. The simulation results indicate a strong dependence of the particle's pseudoelastic response on its crystallographic orientation with respect to the loading direction and suggest possible ways of optimizing particle sensitivity. The technology of embedded sensory particles will serve as the key element in an autonomous structural health monitoring system that will constantly monitor for damage initiation in service, which will enable quick detection of unforeseen damage initiation in real-time and during onground inspections.
Piezoresistivity, mechanisms and model of cement-based materials with CNT/NCB composite fillers
NASA Astrophysics Data System (ADS)
Zhang, Liqing; Ding, Siqi; Dong, Sufen; Li, Zhen; Ouyang, Jian; Yu, Xun; Han, Baoguo
2017-12-01
The use of conductive cement-based materials as sensors has attracted intense interest over past decades. In this paper, carbon nanotube (CNT)/nano carbon black (NCB) composite fillers made by electrostatic self-assembly are used to fabricate conductive cement-based materials. Electrical and piezoresistive properties of the fabricated cement-based materials are investigated. Effect of filler content, load amplitudes and rate on piezoresistive property within elastic regime and piezoresistive behaviors during compressive loading to destruction are explored. Finally, a model describing piezoresistive property of cement-based materials with CNT/NCB composite fillers is established based on the effective conductive path and tunneling effect theory. The research results demonstrate that filler content and load amplitudes have obvious effect on piezoresistive property of the composites materials, while load rate has little influence on piezoresistive property. During compressive loading to destruction, the composites also show sensitive piezoresistive property. Therefore, the cement-based composites can be used to monitor the health state of structures during their whole life. The built model can well describe the piezoresistive property of the composites during compressive loading to destruction. The good match between the model and experiment data indicates that tunneling effect actually contributes to piezoresistive phenomenon.
Novel Diels-Alder based self-healing epoxies for aerospace composites
NASA Astrophysics Data System (ADS)
Coope, T. S.; Turkenburg, D. H.; Fischer, H. R.; Luterbacher, R.; van Bracht, H.; Bond, I. P.
2016-08-01
Epoxy resins containing Diels-Alder (DA) furan and maleimide moieties are presented with the capability to self-heal after exposure to an external heat source. A conventional epoxy amine system has been combined with furfuryl and maleimide functional groups in a two-step process, to avoid major side-reactions, and the concentration of a thermo-reversibly binding cross-linker was considered to balance thermoset and thermoplastic behaviours, and the subsequent self-healing performance. In the context of self-repair technologies an inbuilt ‘intrinsic’ self-healing system is deemed favourable as the healing agent can be placed in known ‘hot spot’ regions (i.e. skin-stringer run outs, ply drops and around drilled holes) where operational damage predominately occurs in load bearing aerospace structures. In this study, the mechanical and self-healing performance of furan functionalised epoxy resins containing varying amounts (10, 20, 30 or 40 pph) of bismaleimide were investigated using a bulk epoxy polymer tapered double cantilever beam test specimen geometry. Two forms, a thin film and a bulk material, were evaluated to account for future integration methods into fibre reinforced polymer (FRP) composites. The highest healing efficiency, with respect to the obtained initial load value, was observed from the 20 pph bulk material derivative. The polymers were successful in achieving consistent multiple (three) healing cycles when heated at 150 °C for 5 min. This novel investigated DA material exhibits favourable processing characteristics for FRP composites as preliminary studies have shown successful coextrution with reinforcing fibres to form free standing films and dry fibre impregnation.
Load regulating expansion fixture
Wagner, Lawrence M.; Strum, Michael J.
1998-01-01
A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.
Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi
2016-01-01
The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections in the early stage.
Confirmatory factor analysis of the Appraisal of Self-Care Agency Scale - Revised 1
Stacciarini, Thaís Santos Guerra; Pace, Ana Emilia
2017-01-01
ABSTRACT Objective: to analyze the factor structure of the Appraisal of Self-Care Agency Scale-Revised (ASAS-R), adapted for Brazil. Method: methodological study conducted with 150 individuals with diabetes mellitus cared for by the Family Health Strategy, most of whom are elderly with low educational levels. The test of the hypothesis concerning the confirmatory factor composition of the ASAS-R was performed using latent variables structural equations. Results: the model’s goodness-of-fit indexes were satisfactory (χ2 = 259.19; χ2/g.l = 2.97, p < 0.001; GFI = 0.85; RMR = 0.07; RMSEA = 0.09); the factor loads were greater than 0.40; and most item-to-factor-correlations presented moderate to strong magnitude (0.34 to 0.58); total alpha value was 0.74, while the alpha of the three factors were 0.69, 0.38 and 0.69, respectively. Conclusion: the scale’s factor structure presented satisfactory validity and reliability results, with the exception of one factor. Application of this scale to samples of the general population is desirable in order to strengthen analyses of internal consistency and the dimensionality of the factor structure. This study is expected to contribute to further studies addressing the self-care agency construct and the development of the ASAS-R. PMID:28146182
Mohamed, Rachid; Raman, Maitreyi; Anderson, John; McLaughlin, Kevin; Rostom, Alaa; Coderre, Sylvain
2014-03-01
Although workplace workload assessments exist in different fields, an endoscopy-specific workload assessment tool is lacking. To validate such a workload tool and use it to map the progression of novice trainees in gastroenterology in performing their first endoscopies. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) workload assessment tool was completed by eight novice trainees in gastroenterology and 10 practicing gastroenterologists⁄surgeons. An exploratory factor analysis was performed to construct a streamlined endoscopy-specific task load index, which was subsequently validated. The 'Endoscopy Task Load Index' was used to monitor progression of trainee exertion and self-assessed performance over their first 40 procedures. From the factor analysis of the NASA-TLX, two principal components emerged: a measure of exertion and a measure of self-efficacy. These items became the components of the newly validated Endoscopy Task Load Index. There was a steady decline in self-perceived exertion over the training period, which was more rapid for gastroscopy than colonoscopy. The self-efficacy scores for gastroscopy rapidly increased over the first few procedures, reaching a plateau after this period of time. For colonoscopy, there was a progressive increase in reported self-efficacy over the first three quartiles of procedures, followed by a drop in self-efficacy scores over the final quartile. The present study validated an Endoscopy Task Load Index that can be completed in <1 min. Practical implications of such a tool in endoscopy education include identifying periods of higher perceived exertion among novice endoscopists, facilitating appropriate levels of guidance from trainers.
Fabricating nanowire devices on diverse substrates by simple transfer-printing methods.
Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin
2010-06-01
The fabrication of nanowire (NW) devices on diverse substrates is necessary for applications such as flexible electronics, conformable sensors, and transparent solar cells. Although NWs have been fabricated on plastic and glass by lithographic methods, the choice of device substrates is severely limited by the lithographic process temperature and substrate properties. Here we report three new transfer-printing methods for fabricating NW devices on diverse substrates including polydimethylsiloxane, Petri dishes, Kapton tapes, thermal release tapes, and many types of adhesive tapes. These transfer-printing methods rely on the differences in adhesion to transfer NWs, metal films, and devices from weakly adhesive donor substrates to more strongly adhesive receiver substrates. Electrical characterization of fabricated NW devices shows that reliable ohmic contacts are formed between NWs and electrodes. Moreover, we demonstrated that Si NW devices fabricated by the transfer-printing methods are robust piezoresistive stress sensors and temperature sensors with reliable performance.
Technology of focus detection for 193nm projection lithographic tool
NASA Astrophysics Data System (ADS)
Di, Chengliang; Yan, Wei; Hu, Song; Xu, Feng; Li, Jinglong
2012-10-01
With the shortening printing wavelength and increasing numerical aperture of lithographic tool, the depth of focus(DOF) sees a rapidly drop down trend, reach a scale of several hundred nanometers while the repeatable accuracy of focusing and leveling must be one-tenth of DOF, approximately several dozen nanometers. For this feature, this article first introduces several focusing technology, Obtained the advantages and disadvantages of various methods by comparing. Then get the accuracy of dual-grating focusing method through theoretical calculation. And the dual-grating focusing method based on photoelastic modulation is divided into coarse focusing and precise focusing method to analyze, establishing image processing model of coarse focusing and photoelastic modulation model of accurate focusing. Finally, focusing algorithm is simulated with MATLAB. In conclusion dual-grating focusing method shows high precision, high efficiency and non-contact measurement of the focal plane, meeting the demands of focusing in 193nm projection lithography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yap, K.P.; Lamontagne, B.; Delage, A.
2006-05-15
We present a technique to lithographically define and fabricate all required optical facets on a silicon-on-insulator photonic integrated circuit by an inductively coupled plasma etch process. This technique offers 1 {mu}m positioning accuracy of the facets at any location within the chip and eliminates the need of polishing. Facet fabrication consists of two separate steps to ensure sidewall verticality and minimize attack on the end surfaces of the waveguides. Protection of the waveguides by a thermally evaporated aluminum layer before the 40-70 {mu}m deep optical facet etching has been proven essential in assuring the facet smoothness and integrity. Both scanningmore » electron microscopy analysis and optical measurement results show that the quality of the facets prepared by this technique is comparable to the conventional facets prepared by polishing.« less
Wu, Shuwen; Li, Jinhui; Zhang, Guoping; Yao, Yimin; Li, Gang; Sun, Rong; Wong, Chingping
2017-01-25
The continuous evolution toward flexible electronics with mechanical robust property and restoring structure simultaneously places high demand on a set of polymeric material substrate. Herein, we describe a composite material composed of a polyurethane based on Diels-Alder chemistry (PU-DA) covalently linked with functionalized graphene nanosheets (FGNS), which shows mechanical robust and infrared (IR) laser self-healing properties at ambient conditions and is therefore suitable for flexible substrate applications. The mechanical strength can be tuned by varying the amount of FGNS and breaking strength can reach as high as 36 MPa with only 0.5 wt % FGNS loading. On rupture, the initial mechanical properties are restored with more than 96% healing efficiency after 1 min irradiation time by 980 nm IR laser. Especially, this is the highest value of healing efficiency reported in the self-healable materials based on DA chemistry systems until now, and the composite exhibits a high volume resistivity up to 5.6 × 10 11 Ω·cm even the loading of FGNS increased to 1.0 wt %. Moreover, the conductivity of the broken electric circuit which was fabricated by silver paste drop-cast on the healable composite substrate was completely recovered via IR laser irradiating bottom substrate mimicking human skin. These results demonstrate that the FGNS-PU-DA nanocomposite can be used as self-healing flexible substrate for the next generation of intelligent flexible electronics.
Self-heating forecasting for thick laminate specimens in fatigue
NASA Astrophysics Data System (ADS)
Lahuerta, F.; Westphal, T.; Nijssen, R. P. L.
2014-12-01
Thick laminate sections can be found from the tip to the root in most common wind turbine blade designs. Obtaining accurate and reliable design data for thick laminates is subject of investigations, which include experiments on thick laminate coupons. Due to the poor thermal conductivity properties of composites and the material self-heating that occurs during the fatigue loading, high temperature gradients may appear through the laminate thickness. In the case of thick laminates in high load regimes, the core temperature might influence the mechanical properties, leading to premature failures. In the present work a method to forecast the self-heating of thick laminates in fatigue loading is presented. The mechanical loading is related with the laminate self-heating, via the cyclic strain energy and the energy loss ratio. Based on this internal volumetric heat load a thermal model is built and solved to obtain the temperature distribution in the transient state. Based on experimental measurements of the energy loss factor for 10mm thick coupons, the method is described and the resulting predictions are compared with experimental surface temperature measurements on 10 and 30mm UD thick laminate specimens.
Variability of individual genetic load: consequences for the detection of inbreeding depression.
Restoux, Gwendal; Huot de Longchamp, Priscille; Fady, Bruno; Klein, Etienne K
2012-03-01
Inbreeding depression is a key factor affecting the persistence of natural populations, particularly when they are fragmented. In species with mixed mating systems, inbreeding depression can be estimated at the population level by regressing the average progeny fitness by the selfing rate of their mothers. We applied this method using simulated populations to investigate how population genetic parameters can affect the detection power of inbreeding depression. We simulated individual selfing rates and genetic loads from which we computed fitness values. The regression method yielded high statistical power, inbreeding depression being detected as significant (5 % level) in 92 % of the simulations. High individual variation in selfing rate and high mean genetic load led to better detection of inbreeding depression while high among-individual variation in genetic load made it more difficult to detect inbreeding depression. For a constant sampling effort, increasing the number of progenies while decreasing the number of individuals per progeny enhanced the detection power of inbreeding depression. We discuss the implication of among-mother variability of genetic load and selfing rate on inbreeding depression studies.
Self-folding polymeric containers for encapsulation and delivery of drugs
Fernandes, Rohan; Gracias, David H.
2012-01-01
Self-folding broadly refers to self-assembly processes wherein thin films or interconnected planar templates curve, roll-up or fold into three dimensional (3D) structures such as cylindrical tubes, spirals, corrugated sheets or polyhedra. The process has been demonstrated with metallic, semiconducting and polymeric films and has been used to curve tubes with diameters as small as 2 nm and fold polyhedra as small as 100 nm, with a surface patterning resolution of 15 nm. Self-folding methods are important for drug delivery applications since they provide a means to realize 3D, biocompatible, all-polymeric containers with well-tailored composition, size, shape, wall thickness, porosity, surface patterns and chemistry. Self-folding is also a highly parallel process, and it is possible to encapsulate or self-load therapeutic cargo during assembly. A variety of therapeutic cargos such as small molecules, peptides, proteins, bacteria, fungi and mammalian cells have been encapsulated in self-folded polymeric containers. In this review, we focus on self-folding of all-polymeric containers. We discuss the mechanistic aspects of self-folding of polymeric containers driven by differential stresses or surface tension forces, the applications of self-folding polymers in drug delivery and we outline future challenges. PMID:22425612
Microintaglio Printing for Soft Lithography-Based in Situ Microarrays
Biyani, Manish; Ichiki, Takanori
2015-01-01
Advances in lithographic approaches to fabricating bio-microarrays have been extensively explored over the last two decades. However, the need for pattern flexibility, a high density, a high resolution, affordability and on-demand fabrication is promoting the development of unconventional routes for microarray fabrication. This review highlights the development and uses of a new molecular lithography approach, called “microintaglio printing technology”, for large-scale bio-microarray fabrication using a microreactor array (µRA)-based chip consisting of uniformly-arranged, femtoliter-size µRA molds. In this method, a single-molecule-amplified DNA microarray pattern is self-assembled onto a µRA mold and subsequently converted into a messenger RNA or protein microarray pattern by simultaneously producing and transferring (immobilizing) a messenger RNA or a protein from a µRA mold to a glass surface. Microintaglio printing allows the self-assembly and patterning of in situ-synthesized biomolecules into high-density (kilo-giga-density), ordered arrays on a chip surface with µm-order precision. This holistic aim, which is difficult to achieve using conventional printing and microarray approaches, is expected to revolutionize and reshape proteomics. This review is not written comprehensively, but rather substantively, highlighting the versatility of microintaglio printing for developing a prerequisite platform for microarray technology for the postgenomic era. PMID:27600226
Faustini, Marco; Drisko, Glenna L; Letailleur, Alban A; Montiel, Rafael Salas; Boissière, Cédric; Cattoni, Andrea; Haghiri-Gosnet, Anne Marie; Lerondel, Gilles; Grosso, David
2013-02-07
We report the simple preparation of ultra-thin self-assembled nanoperforated titanium calcium oxide films and their use as reactive nanomasks for selective dry etching of silicon. This novel reactive nanomask is composed of TiO(2) in which up to 50% of Ti was replaced by Ca (Ca(x)Ti(1-x)O(2-x)). The system was prepared by evaporation induced self-assembly of dip-coated solution of CaCl(2), TiCl(4) and poly(butadiene-block-ethylene oxide) followed by 5 min of thermal treatment at 500 °C in air. The mask exhibits enhanced selectivity by forming a CaF(2) protective layer in the presence of a chemically reactive fluorinated plasma. In particular it is demonstrated that ordered nano-arrays of dense Si pillars, or deep cylindrical wells, with high aspect ratio i.e. lateral dimensions as small as 20 nm and height up to 200 nm, can be formed. Both wells and pillars were formed by tuning the morphology and the homogeneity of the deposited mask. The mask preparation is extremely fast and simple, low-cost and easily scalable. Its combination with reactive ion etching constitutes one of the first examples of what can be achieved when sol-gel chemistry is coupled with top-down technologies. The resulting Si nanopatterns and nanostructures are of high interest for applications in many fields of nanotechnology including electronics and optics. This work extends and diversifies the toolbox of nanofabrication methods.
NASA Astrophysics Data System (ADS)
Carpenter, Corinne L.; Delaney, Kris T.; Laachi, Nabil; Fredrickson, Glenn H.
2015-03-01
Directed self-assembly (DSA) of block copolymers has attracted attention for its use as a simple, cost- effective patterning tool for creating vertical interconnect access (VIA) channels in nanoelectronic devices.1, 2 This technique supplements existing lithographic technologies to allow for the creation of high-resolution cylindrical holes whose diameter and placement can be precisely controlled. In this study, we use self-consistent field theory (SCFT) simulations to investigate the equilibrium configurations of under-filled DSA systems with air-polymer interactions. We report on a series of SCFT simulations of our three species (PMMA-b-PS diblock and air) model in cylindrical confinement to explore the role of template diameter, under-fill fraction (i.e. volume fraction of air), air-polymer surface interaction and polymer-side wall/substrate interactions on equilibrium morphologies in an under-filled template with a free top surface. We identify parameters and system configurations where a meniscus appears and explore cases with PMMA-attractive, PS-attractive, and all-neutral walls to understand the effects of wall properties on meniscus geometry and DSA morphology. An important outcome is an understanding of the parameters that control the contact angle of the meniscus with the wall, as it is one of the simplest quantitative measures of the meniscus shape. Ultimately, we seek to identify DSA formulations, templates, and surface treatments with predictable central cylinder diameter and a shallow contact angle, as these factors would facilitate broad process windows and ease of manufacturing.
Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing.
Morozov, Giora I; Zhao, Huaying; Mage, Michael G; Boyd, Lisa F; Jiang, Jiansheng; Dolan, Michael A; Venna, Ramesh; Norcross, Michael A; McMurtrey, Curtis P; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H
2016-02-23
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.
Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8 + T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities ofmore » TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.« less
Zheng, Guangchao; Kaefer, Katharina; Mourdikoudis, Stefanos; Polavarapu, Lakshminarayana; Vaz, Belén; Cartmell, Samantha E; Bouleghlimat, Azzedine; Buurma, Niklaas J; Yate, Luis; de Lera, Ángel R; Liz-Marzán, Luis M; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge
2015-01-15
We present a novel strategy based on the immobilization of palladium nanoparticles (Pd NPs) on filter paper for development of a catalytic system with high efficiency and recyclability. Oleylamine-capped Pd nanoparticles, dispersed in an organic solvent, strongly adsorb on cellulose filter paper, which shows a great ability to wick fluids due to its microfiber structure. Strong van der Waals forces and hydrophobic interactions between the particles and the substrate lead to nanoparticle immobilization, with no desorption upon further immersion in any solvent. The prepared Pd NP-loaded paper substrates were tested for several model reactions such as the oxidative homocoupling of arylboronic acids, the Suzuki cross-coupling reaction, and nitro-to-amine reduction, and they display efficient catalytic activity and excellent recyclability and reusability. This approach of using NP-loaded paper substrates as reusable catalysts is expected to open doors for new types of catalytic support for practical applications.
Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing
Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.; ...
2016-02-11
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8 + T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities ofmore » TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.« less
Smith, Kenneth J; Davy, Jeanette A; Rosenberg, Donald L
2010-04-01
This study examined alternative seven-, five-, and three-factor structures for the Academic Motivation Scale, with data from a large convenience sample of 2,078 students matriculating in various business courses at three AACSB-accredited regional comprehensive universities. In addition, the invariance of the scale's factor structure between male and female students and between undergraduate and Master's of Business Administration students was investigated. Finally, the internal consistency of the items loading on each of the seven AMS subscales was assessed as well as whether the correlations among the subscales supported a continuum of self-determination. Results for the full sample as well as the targeted subpopulations supported the seven factor configuration of the scale with adequate model fit achieved for all but the MBA student group. The data also generated acceptable internal consistency statistics for all of the subscales. However, in line with a number of previous studies, the correlations between subscales failed to fully support the scale's simplex structure as proposed by self-determination theory.
Dich, Nadya; Doan, Stacey N; Evans, Gary W
2015-01-01
While emotionality is often thought of as a risk factor, differential susceptibility theory argues that emotionality reflects susceptibility to both positive and negative environmental influences. The present study explored whether emotional children might be more susceptible to the effects of both high and low maternal responsiveness on allostatic load, a physiological indicator of chronic stress. Participants were 226 mother and child dyads. Mothers reported on children's emotionality at child age 9. Maternal responsiveness was measured at age 13 using self-reports and behavioral observation. Allostatic load was measured at age 13 and 17 using neuroendocrine, cardiovascular, and metabolic biomarkers. Emotionality was associated with higher allostatic load if self-reported responsiveness was low, but with lower allostatic load, when self-reported responsiveness was high. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.
Stepwise molding, etching, and imprinting to form libraries of nanopatterned substrates.
Zhao, Zhi; Cai, Yangjun; Liao, Wei-Ssu; Cremer, Paul S
2013-06-04
Herein, we describe a novel colloidal lithographic strategy for the stepwise patterning of planar substrates with numerous complex and unique designs. In conjunction with colloidal self-assembly, imprint molding, and capillary force lithography, reactive ion etching was used to create complex libraries of nanoscale features. This combinatorial strategy affords the ability to develop an exponentially increasing number of two-dimensional nanoscale patterns with each sequential step in the process. Specifically, dots, triangles, circles, and lines could be assembled on the surface separately and in combination with each other. Numerous architectures are obtained for the first time with high uniformity and reproducibility. These hexagonal arrays were made from polystyrene and gold features, whereby each surface element could be tuned from the micrometer size scale down to line widths of ~35 nm. The patterned area could be 1 cm(2) or even larger. The techniques described herein can be combined with further steps to make even larger libraries. Moreover, these polymer and metal features may prove useful in optical, sensing, and electronic applications.
Multiresonant layered plasmonic films
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.
Multi-resonant nanoplasmonic films have numerous applications in areas such as nonlinear optics, sensing, and tamper indication. While techniques such as focused ion beam milling and electron beam lithography can produce high-quality multi-resonant films, these techniques are expensive, serial processes that are difficult to scale at the manufacturing level. Here, we present the fabrication of multi-resonant nanoplasmonic films using a layered stacking technique. Periodically-spaced gold nanocup substrates were fabricated using self-assembled polystyrene nanospheres followed by oxygen plasma etching and metal deposition via magnetron sputter coating. By adjusting etch parameters and initial nanosphere size, it was possible to achieve an optical responsemore » ranging from the visible to the near-infrared. Singly resonant, flexible films were first made by performing peel-off using an adhesive-coated polyolefin film. Through stacking layers of the nanofilm, we demonstrate fabrication of multi-resonant films at a fraction of the cost and effort as compared to top-down lithographic techniques.« less
Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays.
Gopinath, Ashwin; Rothemund, Paul W K
2014-12-23
Artificial DNA nanostructures, such as DNA origami, have great potential as templates for the bottom-up fabrication of both biological and nonbiological nanodevices at a resolution unachievable by conventional top-down approaches. However, because origami are synthesized in solution, origami-templated devices cannot easily be studied or integrated into larger on-chip architectures. Electrostatic self-assembly of origami onto lithographically defined binding sites on Si/SiO2 substrates has been achieved, but conditions for optimal assembly have not been characterized, and the method requires high Mg2+ concentrations at which most devices aggregate. We present a quantitative study of parameters affecting origami placement, reproducibly achieving single-origami binding at 94±4% of sites, with 90% of these origami having an orientation within ±10° of their target orientation. Further, we introduce two techniques for converting electrostatic DNA-surface bonds to covalent bonds, allowing origami arrays to be used under a wide variety of Mg2+-free solution conditions.
NASA Astrophysics Data System (ADS)
Shim, Hyun-Woo; Lee, Ji-Hye; Choi, Chang-Hyoung; Song, Hwan-Moon; Kim, Bo-Yeol; Kim, Dong-Pyo; Lee, Chang-Soo
2007-12-01
The patterning of biomolecules in well-defined microstructures is critical issue for the development of biosensors and biochips. However, the fabrication of microstructures with well-ordered and spatially discrete forms to provide the patterned surface for the immobilization of biomolecules is difficult because of the lack of distinct physical and chemical barriers separating patterns. This study present rapid biomolecule patterning using micromolding in capillaries (MIMIC), soft-lithographic fabrication of PEG microstructures for prevention of nonspecific binding as a biological barrier, and self assembled polymeric thin film for efficient immobilization of proteins or cells. For the proof of concept, protein (FITC-BSA), bacteria (E.coli BL21-pET23b-GFP) were used for biomolecules patterning on polyelectrolyte coated surface within PEG microstructures. The novel approach of MIMIC combined with LbL coating provides a general platform for patterning a broad range of materials because it can be easily applied to various substrates such as glass, silicon, silicon dioxide, and polymers.
A three-dimensional optical photonic crystal with designed point defects
NASA Astrophysics Data System (ADS)
Qi, Minghao; Lidorikis, Elefterios; Rakich, Peter T.; Johnson, Steven G.; Joannopoulos, J. D.; Ippen, Erich P.; Smith, Henry I.
2004-06-01
Photonic crystals offer unprecedented opportunities for miniaturization and integration of optical devices. They also exhibit a variety of new physical phenomena, including suppression or enhancement of spontaneous emission, low-threshold lasing, and quantum information processing. Various techniques for the fabrication of three-dimensional (3D) photonic crystals-such as silicon micromachining, wafer fusion bonding, holographic lithography, self-assembly, angled-etching, micromanipulation, glancing-angle deposition and auto-cloning-have been proposed and demonstrated with different levels of success. However, a critical step towards the fabrication of functional 3D devices, that is, the incorporation of microcavities or waveguides in a controllable way, has not been achieved at optical wavelengths. Here we present the fabrication of 3D photonic crystals that are particularly suited for optical device integration using a lithographic layer-by-layer approach. Point-defect microcavities are introduced during the fabrication process and optical measurements show they have resonant signatures around telecommunications wavelengths (1.3-1.5µm). Measurements of reflectance and transmittance at near-infrared are in good agreement with numerical simulations.
Integrated wide-angle scanner based on translating a curved mirror of acylindrical shape.
Sabry, Yasser M; Khalil, Diaa; Saadany, Bassam; Bourouina, Tarik
2013-06-17
A wide angle microscanning architecture is presented in which the angular deflection is achieved by displacing the principle axis of a curved silicon micromirror of acylindrical shape, with respect to the incident beam optical axis. The micromirror curvature is designed to overcome the possible deformation of the scanned beam spot size during scanning. In the presented architecture, the optical axis of the beam lays in-plane with respect to the substrate opening the door for a completely integrated and self-aligned miniaturized scanner. A micro-optical bench scanning device, based on translating a 200 μm focal length micromirror by an electrostatic comb-drive actuator, is implemented on a silicon chip. The microelectromechanical system has a resonance frequency of 329 Hz and a quality factor of 22. A single-mode optical fiber is used as the optical source and inserted into a micromachined groove fabricated and lithographically aligned with the microbench. Optical deflection angles up to 110 degrees are demonstrated.
DSA process window expansion with novel DSA track hardware
NASA Astrophysics Data System (ADS)
Harumoto, Masahiko; Stokes, Harold; Tanaka, Yuji; Kaneyama, Koji; Pieczulewski, Chalres; Asai, Masaya; Argoud, Maxime; Servin, Isabelle; Chamiot-Maitral, Gaëlle; Claveau, Guillaume; Tiron, Raluca; Cayrefourcq, Ian
2017-03-01
PS-b-PMMA block copolymer is a well-known DSA material, and there are many DSA patterning methods that make effective the use of such 1st generation materials. Consequently, this variety of patterning methods opens a wide array of possibilities for DSA application[1-4]. Last year, during the inaugural International DSA Symposium, researchers and lithographers concurred on common key issues for DSA patterning methods such as: defect density, LWR, placement error, etc. Defect density was specifically expressed as the biggest obstacle for new processes. Coat-Develop track systems contribute to the DSA pattern fabrication and also influence the DSA pattern performances[4]. In this study, defectivity was investigated using an atmosphere-controlled chamber on the SOKUDO DUO track. As an initial step for expanding the DSA process window, fingerprint patterns were used for various atmospheric conditions during DSA self-assembly annealing. In this study, we will demonstrate an improved DSA process window, and then we will discuss the mechanism for this atmospheric effect.
Hohenberger, Erik; Freitag, Nathan; Rosenmann, Daniel; ...
2017-04-19
Here, we present a facile method for fabricating nanostructured silver films containing a high density of nanoscopic gap features through a surface directed phenomenon utilizing nanoporous scaffolds rather than through traditional lithographic patterning processes. This method enables tunability of the silver film growth by simply adjusting the formulation and processing conditions of the nanoporous film prior to metallization. We further demonstrate that this process can produce nanoscopic gaps in thick (100 nm) silver films supporting localized surface plasmon resonance with large field amplification within the gaps while enabling launching of propagating surface plasmons within the silver grains. These enhanced fieldsmore » provide metal enhanced fluorescence with enhancement factors as high as 21 times compared to glass, as well as enable visualization of single fluorophore emission. This work provides a low-cost rapid approach for producing novel nanostructures capable of broadband fluorescence amplification, with potential applications including plasmonic and fluorescence based optical sensing and imaging applications.« less
Mikulincer, Mario; Dolev, Tamar; Shaver, Phillip R
2004-12-01
The authors conducted 2 studies of attachment-related variations in thought suppression. Participants were asked, or not asked, to suppress thoughts about a relationship breakup and then to perform a Stroop task under high or low cognitive load. The dependent variables were the rebound, of previously suppressed separation-related thoughts (Study 1) and the accessibility of self-traits (Study 2). Under low cognitive load, avoidant individuals did not show any rebound of separation-related thoughts and activated positive self-representations. Under high cognitive load, avoidant participants failed to suppress thoughts of separation and were more likely to activate negative self-representations. Attachment anxiety was associated with high activation of negative self-representations and unremitting separation-related thoughts. The results are discussed in terms of the hidden vulnerabilities of avoidant individuals. ((c) 2004 APA, all rights reserved).
Structural and optical properties of Mg2 Ni Hx switchable mirrors upon hydrogen loading
NASA Astrophysics Data System (ADS)
Lohstroh, W.; Westerwaal, R. J.; van Mechelen, J. L. M.; Chacon, C.; Johansson, E.; Dam, B.; Griessen, R.
2004-10-01
The structural, thermodynamic and optical properties of Mg2Ni thin films covered with Pd are investigated upon exposure to hydrogen. Similar to bulk, thin films of metallic Mg2Ni take up 4 hydrogen per formula unit and semiconducting transparent Mg2NiH4-δ is formed. The dielectric function γ˜ of Mg2Ni and fully loaded Mg2NiH4-δ is determined from reflection and transmission measurements using a Drude-Lorentz parametrization. Besides the two “normal” optical states of a switchable mirror—metallic reflecting and semiconducting transparent— Mg2NiHx exhibit a third “black” state at intermediate hydrogen concentrations with low reflection and essentially zero transmission. This state originates from a subtle interplay of the optical properties of the constituent materials and a self-organized double layering of the film during loading. Mg2NiH4-δ preferentially nucleates at the film/substrate interface and not—as intuitively expected—close to the catalytic Pd capping layer. Using γ˜Mg2Ni and γ˜Mg2NiH4 and this loading sequence, the optical response at all hydrogen concentrations can be described quantitatively. The uncommon hydrogen loading sequence is confirmed by x-ray diffraction and hydrogen profiling using the resonant nuclear reaction H1(N15,αγ)C12 . Pressure-composition isotherms suggest that the formation of Mg2NiH4-δ at the film/substrate interface is mainly due to locally enhanced kinetics.
NASA Astrophysics Data System (ADS)
Grobman, Warren D.
2002-07-01
Dramatically increasing mask set costs, long-loop design-fabrication iterations, and lithography of unprecedented complexity and cost threaten to disrupt time-accepted IC industry progression as described by Moore"s Law. Practical and cost-effective IC manufacturing below the 100nm technology node presents significant and unique new challenges spanning multiple disciplines and overlapping traditionally separable components of the design-through-chip manufacturing flow. Lithographic and other process complexity is compounded by design, mask, and infrastructure technologies, which do not sufficiently account for increasingly stringent and complex manufacturing issues. Deep subwavelength and atomic-scale process and device physics effects increasingly invade and impact the design flow strongly at a time when the pressures for increased design productivity are escalating at a superlinear rate. Productivity gaps, both upstream in design and downstream in fabrication, are anticipated by many to increase due to dramatic increases in inherent complexity of the design-to-chip equation. Furthermore, the cost of lithographic equipment is increasing at an aggressive compound growth rate so large that we can no longer economically derive the benefit of the increased number of circuits per unit area unless we extend the life of lithographic equipment for more generations, and deeper into the subwavelength regime. Do these trends unambiguously lead to the conclusion that we need a revolution in design and design-process integration to enable the sub-100nm nodes? Or is such a premise similar to other well-known predictions of technology brick walls that never came true?
Allostatic Load and Health in the Older Population of England: A Crossed-Lagged Analysis
Read, Sanna; Grundy, Emily
2014-01-01
Objective Allostatic load, a composite measure of accumulated physical wear and tear, has been proposed as an early sign of physiological dysregulation predictive of health problems, functional limitation, and disability. However, much previous research has been cross sectional and few studies consider repeated measures. We investigate the directionality of associations between allostatic load, self-rated health, and a measure of physical function (walking speed). Methods The sample included men and women 60 and older who participated in Wave 2 (2004) and Wave 4 (2008) of the English Longitudinal Study of Ageing (n = 6132 in Wave 2). Allostatic load was measured with nine biomarkers using a multisystem summary approach. Self-rated health was measured using a global 5 point summary indicator. Time to walk 8 ft was used as a measure of function. We fitted and tested autoregressive cross-lagged models between the allostatic load measure, self-rated health, and walking speed in Waves 2 and 4. Models were adjusted for age, sex, educational level, and smoking status at Wave 2 and for time-varying indicators of marital status, wealth, physical activity, and social support. Results Allostatic load predicted slower walking speed (standardized estimate = −0.08, 95% confidence interval [CI] = −0.10 to −0.05). Better self-rated health predicted faster walking speed (standardized estimate = 0.11, 95% CI = 0.08-0.13) as well as lower allostatic load (standardized estimate = −0.15, 95% CI = −0.22 to −0.09), whereas paths from allostatic load and walking speed to self-rated health were weaker (standardized estimates = −0.05 [95% CI = −0.07 to −0.02] and 0.06 [95% CI = 0.04–0.08]). Conclusions Allostatic load can be a useful risk indicator of subsequent poor health or function. PMID:25153937
Limbers, Christine A; Newman, Daniel A; Varni, James W
2008-01-01
The utilization of health-related quality of life (HRQOL) measurement in an effort to improve pediatric health and well-being and determine the value of health care services has grown dramatically over the past decade. The paradigm shift toward patient-reported outcomes (PROs) in clinical trials has provided the opportunity to emphasize the value and essential need for pediatric patient self-report. In order for HRQOL/PRO comparisons to be meaningful for subgroup analyses, it is essential to demonstrate factorial invariance. This study examined age subgroup factorial invariance of child self-report for ages 5 to 16 years on more than 8,500 children utilizing the PedsQL 4.0 Generic Core Scales. Multigroup Confirmatory Factor Analysis (MGCFA) was performed specifying a five-factor model. Two multigroup structural equation models, one with constrained parameters and the other with unconstrained parameters, were proposed to compare the factor loadings across the age subgroups. Metric invariance (i.e., equal factor loadings) across the age subgroups was demonstrated based on stability of the Comparative Fit Index between the two models, and several additional indices of practical fit including the Root Mean Squared Error of Approximation, the Non-Normed Fit Index, and the Parsimony Normed Fit Index. The findings support an equivalent five-factor structure across the age subgroups. Based on these data, it can be concluded that children across the age subgroups in this study interpreted items on the PedsQL 4.0 Generic Core Scales in a similar manner regardless of their age.
Career Opportunities Through Apprenticeship.
ERIC Educational Resources Information Center
Grau, Glen, Ed.; Kerlan, Julius H., Ed.
The information contained within this booklet describes for high school students the occupation itself, training terms, and desirable qualifications for the sixteen most active apprenticeable trades, namely: electrical wireman, carpenter, plumer, machinist, pipefitter, auto mechanic, lithographer, sheet metal worker, pressman, floor coverer,…
Chicago, Burlington, & Quincy R.R car works aurora, ILL. Photocopy ...
Chicago, Burlington, & Quincy R.R car works aurora, ILL. Photocopy of an undated lithograph based on an ambrotype by D.C. Pratt, C. 1857 - Chicago, Burlington & Quincy Railroad, Roundhouse & Shops, Broadway & Spring Streets, Aurora, Kane County, IL
Calculation of wake vortex structures in the near-field wake behind cruising aircraft
NASA Astrophysics Data System (ADS)
Ehret, T.; Oertel, H.
Wake flows behind cruising aircraft influence the distribution of the exhaust gases. A three-dimensional vortex filament method was developed to calculate the vortex structures and the velocity field of the vorticity dominated wake flows as an integration of the Biot-Savart law. For three-dimensional vortex filament calculations, self-induction singularities were prevented using a finite vortex core for each vortex filament. Numerical simulations show the vortex structures and the velocity field in the wake behind a cruising Boeing 747 as a result of the integration of the Biot-Savart law. It is further shown how the structures of the fully rolled-up trailing vortices depend on the wing span loading, i.e. the circulation distribution.
Llaurens, Violaine; Gonthier, Lucy; Billiard, Sylvain
2009-11-01
Inbreeding depression and mating systems evolution are closely linked, because the purging of deleterious mutations and the fitness of individuals may depend on outcrossing vs. selfing rates. Further, the accumulation of deleterious mutations may vary among genomic regions, especially for genes closely linked to loci under balancing selection. Sporophytic self-incompatibility (SSI) is a common genetic mechanism in angiosperm that enables hermaphrodite plants to avoid selfing and promote outcrossing. The SSI phenotype is determined by the S locus and may depend on dominance relationships among alleles. Since most individuals are heterozygous at the S locus and recombination is suppressed in the S-locus region, it has been suggested that deleterious mutations could accumulate at genes linked to the S locus, generating a "sheltered load." In this article, we first theoretically investigate the conditions generating sheltered load in SSI. We show that deleterious mutations can accumulate in linkage with specific S alleles, and particularly if those S alleles are dominant. Second, we looked for the presence of sheltered load in Arabidopsis halleri using CO(2) gas treatment to overcome self-incompatibility. By examining the segregation of S alleles and measuring the relative fitness of progeny, we found significant sheltered load associated with the most dominant S allele (S15) of three S alleles tested. This sheltered load seems to be expressed at several stages of the life cycle and to have a larger effect than genomic inbreeding depression.
Load regulating expansion fixture
Wagner, L.M.; Strum, M.J.
1998-12-15
A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.
Satturwar, Prashant; Eddine, Mohamad Nasser; Ravenelle, François; Leroux, Jean-Christophe
2007-03-01
The objective of the present study was to investigate the influence of chemical structure and molecular weight of pH-sensitive block copolymers on their self-assembling properties, the loading and the release of candesartan cilexetil (CDN). Block copolymers of poly(ethylene glycol) and t-butyl methacrylate, iso-butyl acrylate, n-butyl acrylate or propyl methacrylate were synthesized by atom transfer radical polymerization. pH-sensitivity was obtained by hydrolysis of t-butyl groups. The poorly water-soluble drug CDN was incorporated in the micelles and the in vitro drug release was evaluated as a function of pH. The critical aggregation concentration of hydrolyzed copolymers (pK(a)=6.2-6.6) was higher compared to the unhydrolyzed ones. Dynamic light scattering studies and atomic force microscopy images revealed uniform size micelles with aggregation numbers ranging from 60 to 160. The entrapment efficiency of CDN was generally found to be above 90%, with drug loading levels reaching approximately 20% (w/w). Differential scanning calorimetry studies showed the amorphous nature of entrapped CDN. The release of CDN from pH-sensitive micelles was triggered upon an increase in pH from 1.2 to 7.2. These findings suggest that the PEG-b-poly(alkyl(meth)acrylate-co-methacrylic acid)s can self-assemble to form micelles which exhibit high loading capacities for CDN and release the drug in a pH-dependent fashion.
Mohamed, Rachid; Raman, Maitreyi; Anderson, John; McLaughlin, Kevin; Rostom, Alaa; Coderre, Sylvain
2014-01-01
BACKGROUND: Although workplace workload assessments exist in different fields, an endoscopy-specific workload assessment tool is lacking. OBJECTIVE: To validate such a workload tool and use it to map the progression of novice trainees in gastroenterology in performing their first endoscopies. METHODS: The National Aeronautics and Space Administration Task Load Index (NASA-TLX) workload assessment tool was completed by eight novice trainees in gastroenterology and 10 practicing gastroenterologists/surgeons. An exploratory factor analysis was performed to construct a streamlined endoscopy-specific task load index, which was subsequently validated. The ‘Endoscopy Task Load Index’ was used to monitor progression of trainee exertion and self-assessed performance over their first 40 procedures. RESULTS: From the factor analysis of the NASA-TLX, two principal components emerged: a measure of exertion and a measure of self-efficacy. These items became the components of the newly validated Endoscopy Task Load Index. There was a steady decline in self-perceived exertion over the training period, which was more rapid for gastroscopy than colonoscopy. The self-efficacy scores for gastroscopy rapidly increased over the first few procedures, reaching a plateau after this period of time. For colonoscopy, there was a progressive increase in reported self-efficacy over the first three quartiles of procedures, followed by a drop in self-efficacy scores over the final quartile. DISCUSSION: The present study validated an Endoscopy Task Load Index that can be completed in <1 min. Practical implications of such a tool in endoscopy education include identifying periods of higher perceived exertion among novice endoscopists, facilitating appropriate levels of guidance from trainers. PMID:24619638
Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.
Abusomwan, Uyiosa A; Sitti, Metin
2014-10-14
Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.
Reinhardt, Hendrik; Peschke, Patrick; Riedel, René; Hampp, Norbert
2018-07-27
Laser-induced periodic surface structures (LIPSS) with a periodicity of 351 nm are generated in the negative photoresist SU8 by single nanosecond laser pulse impact. Friction scans indicate the periodic pattern to comprise alternating regions of crosslinked and non-crosslinked SU8. Intriguingly, even minor mechanical stimuli in the order of nanonewtons cause the unfolding or rather the deletion of the characteristic periodic pattern similarly to the release of a pre-loaded spring. This feature combined with high resilience to heat and photon irradiation makes SU8-LIPSS attractive for applications such as mechanical stress monitors, self-destructing memory and passive micro actuators.
NASA Astrophysics Data System (ADS)
Reinhardt, Hendrik; Peschke, Patrick; Riedel, René; Hampp, Norbert
2018-07-01
Laser-induced periodic surface structures (LIPSS) with a periodicity of 351 nm are generated in the negative photoresist SU8 by single nanosecond laser pulse impact. Friction scans indicate the periodic pattern to comprise alternating regions of crosslinked and non-crosslinked SU8. Intriguingly, even minor mechanical stimuli in the order of nanonewtons cause the unfolding or rather the deletion of the characteristic periodic pattern similarly to the release of a pre-loaded spring. This feature combined with high resilience to heat and photon irradiation makes SU8-LIPSS attractive for applications such as mechanical stress monitors, self-destructing memory and passive micro actuators.
LIU, GUOHUI; CHEN, XI; ZHOU, WU; YANG, SHUHUA; YE, SHUNAN; CAO, FAQI; LIU, YI; XIONG, YUAN
2016-01-01
Aqueous human placenta extract (HPE) has been previously used to treat chronic soft tissue ulcer; however, the optimal dosage of HPE has yet to be elucidated. The present study investigated a novel nanofiber gel composed through layer-by-layer (LbL) self-assembly, in which HPE was encapsulated. IKVAV, RGD, RAD16 and FGL-PA were screened and combined to produce an optimal vehicle nanofiber gel through LbL assembly. Subsequently, the aqueous HPE was encapsulated into this nanofiber at the appropriate concentration, and the morphology, particle size, drug loading efficacy, encapsulation rate, release efficiency and structure validation were detected. The encapsulation efficiency of all three HPE samples was >90%, the nanofiber gel exhibited a slow releasing profile, and the structure of HPE encapsulated in the nanofiber gel was unvaried. In conclusion, this type of novel composite nanocapsules may offer a promising delivery system for HPE. PMID:27073463
NASA Astrophysics Data System (ADS)
Oh, Dongyeop X.; Cha, Yun Jeong; Nguyen, Hoang-Linh; Je, Hwa Heon; Jho, Yong Seok; Hwang, Dong Soo; Yoon, Dong Ki
2016-03-01
Chitin is one of the most abundant biomaterials in nature, with 1010 tons produced annually as hierarchically organized nanofibril fillers to reinforce the exoskeletons of arthropods. This green and cheap biomaterial has attracted great attention due to its potential application to reinforce biomedical materials. Despite that, its practical use is limited since the extraction of chitin nanofibrils requires surface modification involving harsh chemical treatments, leading to difficulties in reproducing their natural prototypal hierarchical structure, i.e. chiral nematic phase. Here, we develop a chemical etching-free approach using calcium ions, called “natural way”, to disintegrate the chitin nanofibrils while keeping the essential moiety for the self-assembly, ultimately resulting in the reproduction of chitin’s natural chiral structure in a polymeric matrix. This chiral chitin nanostructure exceptionally toughens the composite. Our resultant chiral nematic phase of chitin materials can contribute to the understanding and use of the reinforcing strategy in nature.
Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R
2017-12-12
Using molecular simulations, we investigate the relationship between the pore-averaged and position-dependent self-diffusivity of a fluid adsorbed in a strongly attractive pore as a function of loading. Previous work (Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Connection between thermodynamics and dynamics of simple fluids in highly attractive pores. Langmuir 2013, 29, 14527-14535, doi: 10.1021/la4037327) established that pore-averaged self-diffusivity in the multilayer adsorption regime, where the fluid exhibits a dense film at the pore surface and a lower density interior pore region, is nearly constant as a function of loading. Here we show that this puzzling behavior can be understood in terms of how loading affects the fraction of particles that reside in the film and interior pore regions as well as their distinct dynamics. Specifically, the insensitivity of pore-averaged diffusivity to loading arises from the approximate cancellation of two factors: an increase in the fraction of particles in the higher diffusivity interior pore region with loading and a corresponding decrease in the particle diffusivity in that region. We also find that the position-dependent self-diffusivities scale with the position-dependent density. We present a model for predicting the pore-average self-diffusivity based on the position-dependent self-diffusivity, which captures the unusual characteristics of pore-averaged self-diffusivity in strongly attractive pores over several orders of magnitude.