Katwal, Santosh B; Gore, John C; Marois, Rene; Rogers, Baxter P
2013-09-01
We present novel graph-based visualizations of self-organizing maps for unsupervised functional magnetic resonance imaging (fMRI) analysis. A self-organizing map is an artificial neural network model that transforms high-dimensional data into a low-dimensional (often a 2-D) map using unsupervised learning. However, a postprocessing scheme is necessary to correctly interpret similarity between neighboring node prototypes (feature vectors) on the output map and delineate clusters and features of interest in the data. In this paper, we used graph-based visualizations to capture fMRI data features based upon 1) the distribution of data across the receptive fields of the prototypes (density-based connectivity); and 2) temporal similarities (correlations) between the prototypes (correlation-based connectivity). We applied this approach to identify task-related brain areas in an fMRI reaction time experiment involving a visuo-manual response task, and we correlated the time-to-peak of the fMRI responses in these areas with reaction time. Visualization of self-organizing maps outperformed independent component analysis and voxelwise univariate linear regression analysis in identifying and classifying relevant brain regions. We conclude that the graph-based visualizations of self-organizing maps help in advanced visualization of cluster boundaries in fMRI data enabling the separation of regions with small differences in the timings of their brain responses.
SELF-ORGANIZING MAPS FOR INTEGRATED ASSESSMENT OF THE MID-ATLANTIC REGION
A. new method was developed to perform an environmental assessment for the
Mid-Atlantic Region (MAR). This was a combination of the self-organizing map (SOM) neural network and principal component analysis (PCA). The method is capable of clustering ecosystems in terms of envi...
Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets.
Demartines, P; Herault, J
1997-01-01
We present a new strategy called "curvilinear component analysis" (CCA) for dimensionality reduction and representation of multidimensional data sets. The principle of CCA is a self-organized neural network performing two tasks: vector quantization (VQ) of the submanifold in the data set (input space); and nonlinear projection (P) of these quantizing vectors toward an output space, providing a revealing unfolding of the submanifold. After learning, the network has the ability to continuously map any new point from one space into another: forward mapping of new points in the input space, or backward mapping of an arbitrary position in the output space.
Goodwin, Cody R; Sherrod, Stacy D; Marasco, Christina C; Bachmann, Brian O; Schramm-Sapyta, Nicole; Wikswo, John P; McLean, John A
2014-07-01
A metabolic system is composed of inherently interconnected metabolic precursors, intermediates, and products. The analysis of untargeted metabolomics data has conventionally been performed through the use of comparative statistics or multivariate statistical analysis-based approaches; however, each falls short in representing the related nature of metabolic perturbations. Herein, we describe a complementary method for the analysis of large metabolite inventories using a data-driven approach based upon a self-organizing map algorithm. This workflow allows for the unsupervised clustering, and subsequent prioritization of, correlated features through Gestalt comparisons of metabolic heat maps. We describe this methodology in detail, including a comparison to conventional metabolomics approaches, and demonstrate the application of this method to the analysis of the metabolic repercussions of prolonged cocaine exposure in rat sera profiles.
ERIC Educational Resources Information Center
Kaya, Deniz
2017-01-01
The purpose of the study is to perform a less-dimensional thorough visualization process for the purpose of determining the images of the students on the concept of angle. The Ward clustering analysis combined with Self-Organizing Neural Network Map (SOM) has been used for the dimension process. The Conceptual Understanding Tool, which consisted…
Yu, Huibin; Song, Yonghui; Liu, Ruixia; Pan, Hongwei; Xiang, Liancheng; Qian, Feng
2014-10-01
The stabilization of latent tracers of dissolved organic matter (DOM) of wastewater was analyzed by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy coupled with self-organizing map and classification and regression tree analysis (CART) in wastewater treatment performance. DOM of water samples collected from primary sedimentation, anaerobic, anoxic, oxic and secondary sedimentation tanks in a large-scale wastewater treatment plant contained four fluorescence components: tryptophan-like (C1), tyrosine-like (C2), microbial humic-like (C3) and fulvic-like (C4) materials extracted by self-organizing map. These components showed good positive linear correlations with dissolved organic carbon of DOM. C1 and C2 were representative components in the wastewater, and they were removed to a higher extent than those of C3 and C4 in the treatment process. C2 was a latent parameter determined by CART to differentiate water samples of oxic and secondary sedimentation tanks from the successive treatment units, indirectly proving that most of tyrosine-like material was degraded by anaerobic microorganisms. C1 was an accurate parameter to comprehensively separate the samples of the five treatment units from each other, indirectly indicating that tryptophan-like material was decomposed by anaerobic and aerobic bacteria. EEM fluorescence spectroscopy in combination with self-organizing map and CART analysis can be a nondestructive effective method for characterizing structural component of DOM fractions and monitoring organic matter removal in wastewater treatment process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Self-Organizing Maps and Parton Distribution Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Holcomb, Simonetta Liuti, D. Z. Perry
2011-05-01
We present a new method to extract parton distribution functions from high energy experimental data based on a specific type of neural networks, the Self-Organizing Maps. We illustrate the features of our new procedure that are particularly useful for an anaysis directed at extracting generalized parton distributions from data. We show quantitative results of our initial analysis of the parton distribution functions from inclusive deep inelastic scattering.
NASA Astrophysics Data System (ADS)
Farsadnia, Farhad; Ghahreman, Bijan
2016-04-01
Hydrologic homogeneous group identification is considered both fundamental and applied research in hydrology. Clustering methods are among conventional methods to assess the hydrological homogeneous regions. Recently, Self-Organizing feature Map (SOM) method has been applied in some studies. However, the main problem of this method is the interpretation on the output map of this approach. Therefore, SOM is used as input to other clustering algorithms. The aim of this study is to apply a two-level Self-Organizing feature map and Ward hierarchical clustering method to determine the hydrologic homogenous regions in North and Razavi Khorasan provinces. At first by principal component analysis, we reduced SOM input matrix dimension, then the SOM was used to form a two-dimensional features map. To determine homogeneous regions for flood frequency analysis, SOM output nodes were used as input into the Ward method. Generally, the regions identified by the clustering algorithms are not statistically homogeneous. Consequently, they have to be adjusted to improve their homogeneity. After adjustment of the homogeneity regions by L-moment tests, five hydrologic homogeneous regions were identified. Finally, adjusted regions were created by a two-level SOM and then the best regional distribution function and associated parameters were selected by the L-moment approach. The results showed that the combination of self-organizing maps and Ward hierarchical clustering by principal components as input is more effective than the hierarchical method, by principal components or standardized inputs to achieve hydrologic homogeneous regions.
NASA Technical Reports Server (NTRS)
Ansari, Nirwan; Liu, Dequan
1991-01-01
A neural-network-based traffic management scheme for a satellite communication network is described. The scheme consists of two levels of management. The front end of the scheme is a derivation of Kohonen's self-organization model to configure maps for the satellite communication network dynamically. The model consists of three stages. The first stage is the pattern recognition task, in which an exemplar map that best meets the current network requirements is selected. The second stage is the analysis of the discrepancy between the chosen exemplar map and the state of the network, and the adaptive modification of the chosen exemplar map to conform closely to the network requirement (input data pattern) by means of Kohonen's self-organization. On the basis of certain performance criteria, whether a new map is generated to replace the original chosen map is decided in the third stage. A state-dependent routing algorithm, which arranges the incoming call to some proper path, is used to make the network more efficient and to lower the call block rate. Simulation results demonstrate that the scheme, which combines self-organization and the state-dependent routing mechanism, provides better performance in terms of call block rate than schemes that only have either the self-organization mechanism or the routing mechanism.
Analysis of neoplastic lesions in magnetic resonance imaging using self-organizing maps.
Mei, Paulo Afonso; de Carvalho Carneiro, Cleyton; Fraser, Stephen J; Min, Li Li; Reis, Fabiano
2015-12-15
To provide an improved method for the identification and analysis of brain tumors in MRI scans using a semi-automated computational approach, that has the potential to provide a more objective, precise and quantitatively rigorous analysis, compared to human visual analysis. Self-Organizing Maps (SOM) is an unsupervised, exploratory data analysis tool, which can automatically domain an image into selfsimilar regions or clusters, based on measures of similarity. It can be used to perform image-domain of brain tissue on MR images, without prior knowledge. We used SOM to analyze T1, T2 and FLAIR acquisitions from two MRI machines in our service from 14 patients with brain tumors confirmed by biopsies--three lymphomas, six glioblastomas, one meningioma, one ganglioglioma, two oligoastrocytomas and one astrocytoma. The SOM software was used to analyze the data from the three image acquisitions from each patient and generated a self-organized map for each containing 25 clusters. Damaged tissue was separated from the normal tissue using the SOM technique. Furthermore, in some cases it allowed to separate different areas from within the tumor--like edema/peritumoral infiltration and necrosis. In lesions with less precise boundaries in FLAIR, the estimated damaged tissue area in the resulting map appears bigger. Our results showed that SOM has the potential to be a powerful MR imaging analysis technique for the assessment of brain tumors. Copyright © 2015. Published by Elsevier B.V.
Computer-based self-organized tectonic zoning: a tentative pattern recognition for Iran
NASA Astrophysics Data System (ADS)
Zamani, Ahmad; Hashemi, Naser
2004-08-01
Conventional methods of tectonic zoning are frequently characterized by two deficiencies. The first one is the large uncertainty involved in tectonic zoning based on non-quantitative and subjective analysis. Failure to interpret accurately a large amount of data "by eye" is the second. In order to alleviate each of these deficiencies, the multivariate statistical method of cluster analysis has been utilized to seek and separate zones with similar tectonic pattern and construct automated self-organized multivariate tectonic zoning maps. This analytical method of tectonic regionalization is particularly useful for showing trends in tectonic evolution of a region that could not be discovered by any other means. To illustrate, this method has been applied for producing a general-purpose numerical tectonic zoning map of Iran. While there are some similarities between the self-organized multivariate numerical maps and the conventional maps, the cluster solution maps reveal some remarkable features that cannot be observed on the current tectonic maps. The following specific examples need to be noted: (1) The much disputed extent and rigidity of the Lut Rigid Block, described as the microplate of east Iran, is clearly revealed on the self-organized numerical maps. (2) The cluster solution maps reveal a striking similarity between this microplate and the northern Central Iran—including the Great Kavir region. (3) Contrary to the conventional map, the cluster solution maps make a clear distinction between the East Iranian Ranges and the Makran Mountains. (4) Moreover, an interesting similarity between the Azarbaijan region in the northwest and the Makran Mountains in the southeast and between the Kopet Dagh Ranges in the northeast and the Zagros Folded Belt in the southwest of Iran are revealed in the clustering process. This new approach to tectonic zoning is a starting point and is expected to be improved and refined by collection of new data. The method is also a useful tool in studying neotectonics, seismotectonics, seismic zoning, and hazard estimation of the seismogenic regions.
Self-Organizing Maps for In Silico Screening and Data Visualization.
Digles, Daniela; Ecker, Gerhard F
2011-10-01
Self-organizing maps, which are unsupervised artificial neural networks, have become a very useful tool in a wide area of disciplines, including medicinal chemistry. Here, we will focus on two applications of self-organizing maps: the use of self-organizing maps for in silico screening and for clustering and visualisation of large datasets. Additionally, the importance of parameter selection is discussed and some modifications to the original algorithm are summarised. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Visualizing human communication in business process simulations
NASA Astrophysics Data System (ADS)
Groehn, Matti; Jalkanen, Janne; Haho, Paeivi; Nieminen, Marko; Smeds, Riitta
1999-03-01
In this paper a description of business process simulation is given. Crucial part in the simulation of business processes is the analysis of social contacts between the participants. We will introduce a tool to collect log data and how this log data can be effectively analyzed using two different kind of methods: discussion flow charts and self-organizing maps. Discussion flow charts revealed the communication patterns and self-organizing maps are a very effective way of clustering the participants into development groups.
An efficient approach to the travelling salesman problem using self-organizing maps.
Vieira, Frederico Carvalho; Dória Neto, Adrião Duarte; Costa, José Alfredo Ferreira
2003-04-01
This paper presents an approach to the well-known Travelling Salesman Problem (TSP) using Self-Organizing Maps (SOM). The SOM algorithm has interesting topological information about its neurons configuration on cartesian space, which can be used to solve optimization problems. Aspects of initialization, parameters adaptation, and complexity analysis of the proposed SOM based algorithm are discussed. The results show an average deviation of 3.7% from the optimal tour length for a set of 12 TSP instances.
NASA Astrophysics Data System (ADS)
Aliouane, Leila; Ouadfeul, Sid-Ali; Rabhi, Abdessalem; Rouina, Fouzi; Benaissa, Zahia; Boudella, Amar
2013-04-01
The main goal of this work is to realize a comparison between two lithofacies segmentation techniques of reservoir interval. The first one is based on the Kohonen's Self-Organizing Map neural network machine. The second technique is based on the Walsh transform decomposition. Application to real well-logs data of two boreholes located in the Algerian Sahara shows that the Self-organizing map is able to provide more lithological details that the obtained lithofacies model given by the Walsh decomposition. Keywords: Comparison, Lithofacies, SOM, Walsh References: 1)Aliouane, L., Ouadfeul, S., Boudella, A., 2011, Fractal analysis based on the continuous wavelet transform and lithofacies classification from well-logs data using the self-organizing map neural network, Arabian Journal of geosciences, doi: 10.1007/s12517-011-0459-4 2) Aliouane, L., Ouadfeul, S., Djarfour, N., Boudella, A., 2012, Petrophysical Parameters Estimation from Well-Logs Data Using Multilayer Perceptron and Radial Basis Function Neural Networks, Lecture Notes in Computer Science Volume 7667, 2012, pp 730-736, doi : 10.1007/978-3-642-34500-5_86 3)Ouadfeul, S. and Aliouane., L., 2011, Multifractal analysis revisited by the continuous wavelet transform applied in lithofacies segmentation from well-logs data, International journal of applied physics and mathematics, Vol01 N01. 4) Ouadfeul, S., Aliouane, L., 2012, Lithofacies Classification Using the Multilayer Perceptron and the Self-organizing Neural Networks, Lecture Notes in Computer Science Volume 7667, 2012, pp 737-744, doi : 10.1007/978-3-642-34500-5_87 5) Weisstein, Eric W. "Fast Walsh Transform." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/FastWalshTransform.html
Ferles, Christos; Beaufort, William-Scott; Ferle, Vanessa
2017-01-01
The present study devises mapping methodologies and projection techniques that visualize and demonstrate biological sequence data clustering results. The Sequence Data Density Display (SDDD) and Sequence Likelihood Projection (SLP) visualizations represent the input symbolical sequences in a lower-dimensional space in such a way that the clusters and relations of data elements are depicted graphically. Both operate in combination/synergy with the Self-Organizing Hidden Markov Model Map (SOHMMM). The resulting unified framework is in position to analyze automatically and directly raw sequence data. This analysis is carried out with little, or even complete absence of, prior information/domain knowledge.
Sugii, Yuh; Kasai, Tomonari; Ikeda, Masashi; Vaidyanath, Arun; Kumon, Kazuki; Mizutani, Akifumi; Seno, Akimasa; Tokutaka, Heizo; Kudoh, Takayuki; Seno, Masaharu
2016-01-01
To identify cell-specific markers, we designed a DNA microarray platform with oligonucleotide probes for human membrane-anchored proteins. Human glioma cell lines were analyzed using microarray and compared with normal and fetal brain tissues. For the microarray analysis, we employed a spherical self-organizing map, which is a clustering method suitable for the conversion of multidimensional data into two-dimensional data and displays the relationship on a spherical surface. Based on the gene expression profile, the cell surface characteristics were successfully mirrored onto the spherical surface, thereby distinguishing normal brain tissue from the disease model based on the strength of gene expression. The clustered glioma-specific genes were further analyzed by polymerase chain reaction procedure and immunocytochemical staining of glioma cells. Our platform and the following procedure were successfully demonstrated to categorize the genes coding for cell surface proteins that are specific to glioma cells. Our assessment demonstrates that a spherical self-organizing map is a valuable tool for distinguishing cell surface markers and can be employed in marker discovery studies for the treatment of cancer.
Analysis of 2D Phase Contrast MRI in Renal Arteries by Self Organizing Maps
NASA Astrophysics Data System (ADS)
Zöllner, Frank G.; Schad, Lothar R.
We present an approach based on self organizing maps to segment renal arteries from 2D PC Cine MR, images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percu-tan transluminal angioplasty. Results show that the renal arteries could be extracted automatically. The corresponding velocity profiles show high correlation (r=0.99) compared those from manual delineated vessels. Furthermore, the method could detect possible blood flow patterns within the vessel.
NASA Astrophysics Data System (ADS)
Hong, Zixuan; Bian, Fuling
2008-10-01
Geographic space, time space and cognition space are three fundamental and interrelated spaces in geographic information systems for transportation. However, the cognition space and its relationships to the time space and geographic space are often neglected. This paper studies the relationships of these three spaces in urban transportation system from a new perspective and proposes a novel MDS-SOM transformation method which takes the advantages of the techniques of multidimensional scaling (MDS) and self-organizing map (SOM). The MDS-SOM transformation framework includes three kinds of mapping: the geographic-time transformation, the cognition-time transformation and the time-cognition transformation. The transformations in our research provide a better understanding of the interactions of these three spaces and beneficial knowledge is discovered to help the transportation analysis and decision supports.
The Topic Analysis of Hospice Care Research Using Co-word Analysis and GHSOM
NASA Astrophysics Data System (ADS)
Yang, Yu-Hsiang; Bhikshu, Huimin; Tsaih, Rua-Huan
The purpose of this study was to propose a multi-layer topic map analysis of palliative care research using co-word analysis of informetrics with Growing Hierarchical Self-Organizing Map (GHSOM). The topic map illustrated the delicate intertwining of subject areas and provided a more explicit illustration of the concepts within each subject area. We applied GHSOM, a text-mining Neural Networks tool, to obtain a hierarchical topic map. The result of the topic map may indicate that the subject area of health care science and service played an importance role in multidiscipline within the research related to palliative care.
Self-Organizing Hidden Markov Model Map (SOHMMM).
Ferles, Christos; Stafylopatis, Andreas
2013-12-01
A hybrid approach combining the Self-Organizing Map (SOM) and the Hidden Markov Model (HMM) is presented. The Self-Organizing Hidden Markov Model Map (SOHMMM) establishes a cross-section between the theoretic foundations and algorithmic realizations of its constituents. The respective architectures and learning methodologies are fused in an attempt to meet the increasing requirements imposed by the properties of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein chain molecules. The fusion and synergy of the SOM unsupervised training and the HMM dynamic programming algorithms bring forth a novel on-line gradient descent unsupervised learning algorithm, which is fully integrated into the SOHMMM. Since the SOHMMM carries out probabilistic sequence analysis with little or no prior knowledge, it can have a variety of applications in clustering, dimensionality reduction and visualization of large-scale sequence spaces, and also, in sequence discrimination, search and classification. Two series of experiments based on artificial sequence data and splice junction gene sequences demonstrate the SOHMMM's characteristics and capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Visualized analysis of mixed numeric and categorical data via extended self-organizing map.
Hsu, Chung-Chian; Lin, Shu-Han
2012-01-01
Many real-world datasets are of mixed types, having numeric and categorical attributes. Even though difficult, analyzing mixed-type datasets is important. In this paper, we propose an extended self-organizing map (SOM), called MixSOM, which utilizes a data structure distance hierarchy to facilitate the handling of numeric and categorical values in a direct, unified manner. Moreover, the extended model regularizes the prototype distance between neighboring neurons in proportion to their map distance so that structures of the clusters can be portrayed better on the map. Extensive experiments on several synthetic and real-world datasets are conducted to demonstrate the capability of the model and to compare MixSOM with several existing models including Kohonen's SOM, the generalized SOM and visualization-induced SOM. The results show that MixSOM is superior to the other models in reflecting the structure of the mixed-type data and facilitates further analysis of the data such as exploration at various levels of granularity.
A nanobiosensor for dynamic single cell analysis during microvascular self-organization.
Wang, S; Sun, J; Zhang, D D; Wong, P K
2016-10-14
The formation of microvascular networks plays essential roles in regenerative medicine and tissue engineering. Nevertheless, the self-organization mechanisms underlying the dynamic morphogenic process are poorly understood due to a paucity of effective tools for mapping the spatiotemporal dynamics of single cell behaviors. By establishing a single cell nanobiosensor along with live cell imaging, we perform dynamic single cell analysis of the morphology, displacement, and gene expression during microvascular self-organization. Dynamic single cell analysis reveals that endothelial cells self-organize into subpopulations with specialized phenotypes to form microvascular networks and identifies the involvement of Notch1-Dll4 signaling in regulating the cell subpopulations. The cell phenotype correlates with the initial Dll4 mRNA expression level and each subpopulation displays a unique dynamic Dll4 mRNA expression profile. Pharmacological perturbations and RNA interference of Notch1-Dll4 signaling modulate the cell subpopulations and modify the morphology of the microvascular network. Taken together, a nanobiosensor enables a dynamic single cell analysis approach underscoring the importance of Notch1-Dll4 signaling in microvascular self-organization.
Probabilistic self-organizing maps for continuous data.
Lopez-Rubio, Ezequiel
2010-10-01
The original self-organizing feature map did not define any probability distribution on the input space. However, the advantages of introducing probabilistic methodologies into self-organizing map models were soon evident. This has led to a wide range of proposals which reflect the current emergence of probabilistic approaches to computational intelligence. The underlying estimation theories behind them derive from two main lines of thought: the expectation maximization methodology and stochastic approximation methods. Here, we present a comprehensive view of the state of the art, with a unifying perspective of the involved theoretical frameworks. In particular, we examine the most commonly used continuous probability distributions, self-organization mechanisms, and learning schemes. Special emphasis is given to the connections among them and their relative advantages depending on the characteristics of the problem at hand. Furthermore, we evaluate their performance in two typical applications of self-organizing maps: classification and visualization.
Interval data clustering using self-organizing maps based on adaptive Mahalanobis distances.
Hajjar, Chantal; Hamdan, Hani
2013-10-01
The self-organizing map is a kind of artificial neural network used to map high dimensional data into a low dimensional space. This paper presents a self-organizing map for interval-valued data based on adaptive Mahalanobis distances in order to do clustering of interval data with topology preservation. Two methods based on the batch training algorithm for the self-organizing maps are proposed. The first method uses a common Mahalanobis distance for all clusters. In the second method, the algorithm starts with a common Mahalanobis distance per cluster and then switches to use a different distance per cluster. This process allows a more adapted clustering for the given data set. The performances of the proposed methods are compared and discussed using artificial and real interval data sets. Copyright © 2013 Elsevier Ltd. All rights reserved.
Clustering Multiple Sclerosis Subgroups with Multifractal Methods and Self-Organizing Map Algorithm
NASA Astrophysics Data System (ADS)
Karaca, Yeliz; Cattani, Carlo
Magnetic resonance imaging (MRI) is the most sensitive method to detect chronic nervous system diseases such as multiple sclerosis (MS). In this paper, Brownian motion Hölder regularity functions (polynomial, periodic (sine), exponential) for 2D image, such as multifractal methods were applied to MR brain images, aiming to easily identify distressed regions, in MS patients. With these regions, we have proposed an MS classification based on the multifractal method by using the Self-Organizing Map (SOM) algorithm. Thus, we obtained a cluster analysis by identifying pixels from distressed regions in MR images through multifractal methods and by diagnosing subgroups of MS patients through artificial neural networks.
Classifying galaxy spectra at 0.5 < z < 1 with self-organizing maps
NASA Astrophysics Data System (ADS)
Rahmani, S.; Teimoorinia, H.; Barmby, P.
2018-05-01
The spectrum of a galaxy contains information about its physical properties. Classifying spectra using templates helps elucidate the nature of a galaxy's energy sources. In this paper, we investigate the use of self-organizing maps in classifying galaxy spectra against templates. We trained semi-supervised self-organizing map networks using a set of templates covering the wavelength range from far ultraviolet to near infrared. The trained networks were used to classify the spectra of a sample of 142 galaxies with 0.5 < z < 1 and the results compared to classifications performed using K-means clustering, a supervised neural network, and chi-squared minimization. Spectra corresponding to quiescent galaxies were more likely to be classified similarly by all methods while starburst spectra showed more variability. Compared to classification using chi-squared minimization or the supervised neural network, the galaxies classed together by the self-organizing map had more similar spectra. The class ordering provided by the one-dimensional self-organizing maps corresponds to an ordering in physical properties, a potentially important feature for the exploration of large datasets.
Data-driven automated acoustic analysis of human infant vocalizations using neural network tools.
Warlaumont, Anne S; Oller, D Kimbrough; Buder, Eugene H; Dale, Rick; Kozma, Robert
2010-04-01
Acoustic analysis of infant vocalizations has typically employed traditional acoustic measures drawn from adult speech acoustics, such as f(0), duration, formant frequencies, amplitude, and pitch perturbation. Here an alternative and complementary method is proposed in which data-derived spectrographic features are central. 1-s-long spectrograms of vocalizations produced by six infants recorded longitudinally between ages 3 and 11 months are analyzed using a neural network consisting of a self-organizing map and a single-layer perceptron. The self-organizing map acquires a set of holistic, data-derived spectrographic receptive fields. The single-layer perceptron receives self-organizing map activations as input and is trained to classify utterances into prelinguistic phonatory categories (squeal, vocant, or growl), identify the ages at which they were produced, and identify the individuals who produced them. Classification performance was significantly better than chance for all three classification tasks. Performance is compared to another popular architecture, the fully supervised multilayer perceptron. In addition, the network's weights and patterns of activation are explored from several angles, for example, through traditional acoustic measurements of the network's receptive fields. Results support the use of this and related tools for deriving holistic acoustic features directly from infant vocalization data and for the automatic classification of infant vocalizations.
Li, Hang; Wang, Maolin; Gong, Ya-Nan; Yan, Aixia
2016-01-01
β-secretase (BACE1) is an aspartyl protease, which is considered as a novel vital target in Alzheimer`s disease therapy. We collected a data set of 294 BACE1 inhibitors, and built six classification models to discriminate active and weakly active inhibitors using Kohonen's Self-Organizing Map (SOM) method and Support Vector Machine (SVM) method. Each molecular descriptor was calculated using the program ADRIANA.Code. We adopted two different methods: random method and Self-Organizing Map method, for training/test set split. The descriptors were selected by F-score and stepwise linear regression analysis. The best SVM model Model2C has a good prediction performance on test set with prediction accuracy, sensitivity (SE), specificity (SP) and Matthews correlation coefficient (MCC) of 89.02%, 90%, 88%, 0.78, respectively. Model 1A is the best SOM model, whose accuracy and MCC of the test set were 94.57% and 0.98, respectively. The lone pair electronegativity and polarizability related descriptors importantly contributed to bioactivity of BACE1 inhibitor. The Extended-Connectivity Finger-Prints_4 (ECFP_4) analysis found some vitally key substructural features, which could be helpful for further drug design research. The SOM and SVM models built in this study can be obtained from the authors by email or other contacts.
Use of a Kohonen Self-Organizing Map To Classify Career Clients on the Basis of Aptitudes.
ERIC Educational Resources Information Center
Carson, Andrew D.
1999-01-01
A Kohonen Self-Organizing Map, a type of artificial neural network, was used to classify 547 counseling clients into eight categories based on aptitudes. Categories resembled the major typologies of people and jobs by Holland and others, suggesting the usefulness of self-organizing neural networks for career counseling. (SK)
Ranked centroid projection: a data visualization approach with self-organizing maps.
Yen, G G; Wu, Z
2008-02-01
The self-organizing map (SOM) is an efficient tool for visualizing high-dimensional data. In this paper, the clustering and visualization capabilities of the SOM, especially in the analysis of textual data, i.e., document collections, are reviewed and further developed. A novel clustering and visualization approach based on the SOM is proposed for the task of text mining. The proposed approach first transforms the document space into a multidimensional vector space by means of document encoding. Afterwards, a growing hierarchical SOM (GHSOM) is trained and used as a baseline structure to automatically produce maps with various levels of detail. Following the GHSOM training, the new projection method, namely the ranked centroid projection (RCP), is applied to project the input vectors to a hierarchy of 2-D output maps. The RCP is used as a data analysis tool as well as a direct interface to the data. In a set of simulations, the proposed approach is applied to an illustrative data set and two real-world scientific document collections to demonstrate its applicability.
ERIC Educational Resources Information Center
Nielsen, Sara E.; Yezierski, Ellen J.
2016-01-01
Academic tracking, placing students in different classes based on past performance, is a common feature of the American secondary school system. A longitudinal study of secondary students' chemistry self-concept scores was conducted, and one feature of the study was the presence of academic tracking. Though academic tracking is one way to group…
Interpretation of fingerprint image quality features extracted by self-organizing maps
NASA Astrophysics Data System (ADS)
Danov, Ivan; Olsen, Martin A.; Busch, Christoph
2014-05-01
Accurate prediction of fingerprint quality is of significant importance to any fingerprint-based biometric system. Ensuring high quality samples for both probe and reference can substantially improve the system's performance by lowering false non-matches, thus allowing finer adjustment of the decision threshold of the biometric system. Furthermore, the increasing usage of biometrics in mobile contexts demands development of lightweight methods for operational environment. A novel two-tier computationally efficient approach was recently proposed based on modelling block-wise fingerprint image data using Self-Organizing Map (SOM) to extract specific ridge pattern features, which are then used as an input to a Random Forests (RF) classifier trained to predict the quality score of a propagated sample. This paper conducts an investigative comparative analysis on a publicly available dataset for the improvement of the two-tier approach by proposing additionally three feature interpretation methods, based respectively on SOM, Generative Topographic Mapping and RF. The analysis shows that two of the proposed methods produce promising results on the given dataset.
Distributed Fast Self-Organized Maps for Massive Spectrophotometric Data Analysis †.
Dafonte, Carlos; Garabato, Daniel; Álvarez, Marco A; Manteiga, Minia
2018-05-03
Analyzing huge amounts of data becomes essential in the era of Big Data, where databases are populated with hundreds of Gigabytes that must be processed to extract knowledge. Hence, classical algorithms must be adapted towards distributed computing methodologies that leverage the underlying computational power of these platforms. Here, a parallel, scalable, and optimized design for self-organized maps (SOM) is proposed in order to analyze massive data gathered by the spectrophotometric sensor of the European Space Agency (ESA) Gaia spacecraft, although it could be extrapolated to other domains. The performance comparison between the sequential implementation and the distributed ones based on Apache Hadoop and Apache Spark is an important part of the work, as well as the detailed analysis of the proposed optimizations. Finally, a domain-specific visualization tool to explore astronomical SOMs is presented.
Data-driven cluster reinforcement and visualization in sparsely-matched self-organizing maps.
Manukyan, Narine; Eppstein, Margaret J; Rizzo, Donna M
2012-05-01
A self-organizing map (SOM) is a self-organized projection of high-dimensional data onto a typically 2-dimensional (2-D) feature map, wherein vector similarity is implicitly translated into topological closeness in the 2-D projection. However, when there are more neurons than input patterns, it can be challenging to interpret the results, due to diffuse cluster boundaries and limitations of current methods for displaying interneuron distances. In this brief, we introduce a new cluster reinforcement (CR) phase for sparsely-matched SOMs. The CR phase amplifies within-cluster similarity in an unsupervised, data-driven manner. Discontinuities in the resulting map correspond to between-cluster distances and are stored in a boundary (B) matrix. We describe a new hierarchical visualization of cluster boundaries displayed directly on feature maps, which requires no further clustering beyond what was implicitly accomplished during self-organization in SOM training. We use a synthetic benchmark problem and previously published microbial community profile data to demonstrate the benefits of the proposed methods.
Zhang, Yixiang; Liang, Xinqiang; Wang, Zhibo; Xu, Lixian
2015-01-01
High content of organic matter in the downstream of watersheds underscored the severity of non-point source (NPS) pollution. The major objectives of this study were to characterize and quantify dissolved organic matter (DOM) in watersheds affected by NPS pollution, and to apply self-organizing map (SOM) and parallel factor analysis (PARAFAC) to assess fluorescence properties as proxy indicators for NPS pollution and labor-intensive routine water quality indicators. Water from upstreams and downstreams was sampled to measure dissolved organic carbon (DOC) concentrations and excitation-emission matrix (EEM). Five fluorescence components were modeled with PARAFAC. The regression analysis between PARAFAC intensities (Fmax) and raw EEM measurements indicated that several raw fluorescence measurements at target excitation-emission wavelength region could provide similar DOM information to massive EEM measurements combined with PARAFAC. Regression analysis between DOC concentration and raw EEM measurements suggested that some regions in raw EEM could be used as surrogates for labor-intensive routine indicators. SOM can be used to visualize the occurrence of pollution. Relationship between DOC concentration and PARAFAC components analyzed with SOM suggested that PARAFAC component 2 might be the major part of bulk DOC and could be recognized as a proxy indicator to predict the DOC concentration. PMID:26526140
High and low density development in Puerto Rico
William A. Gould; Sebastian Martinuzzi; Olga M. Ramos Gonzalez
2008-01-01
This map shows the distribution of high and low density developed lands in Puerto Rico (Martinuzzi et al. 2007). The map was created using a mosaic of Landsat ETM+ images that range from the years 2000 to 2003. The developed land cover was classified using the Iterative Self-Organizing Data Analysis Technique (ISODATA) unsupervised classification (ERDAS 2003)....
Growing a hypercubical output space in a self-organizing feature map.
Bauer, H U; Villmann, T
1997-01-01
Neural maps project data from an input space onto a neuron position in a (often lower dimensional) output space grid in a neighborhood preserving way, with neighboring neurons in the output space responding to neighboring data points in the input space. A map-learning algorithm can achieve an optimal neighborhood preservation only, if the output space topology roughly matches the effective structure of the data in the input space. We here present a growth algorithm, called the GSOM or growing self-organizing map, which enhances a widespread map self-organization process, Kohonen's self-organizing feature map (SOFM), by an adaptation of the output space grid during learning. The GSOM restricts the output space structure to the shape of a general hypercubical shape, with the overall dimensionality of the grid and its extensions along the different directions being subject of the adaptation. This constraint meets the demands of many larger information processing systems, of which the neural map can be a part. We apply our GSOM-algorithm to three examples, two of which involve real world data. Using recently developed methods for measuring the degree of neighborhood preservation in neural maps, we find the GSOM-algorithm to produce maps which preserve neighborhoods in a nearly optimal fashion.
Portraits of self-organization in fish schools interacting with robots
NASA Astrophysics Data System (ADS)
Aureli, M.; Fiorilli, F.; Porfiri, M.
2012-05-01
In this paper, we propose an enabling computational and theoretical framework for the analysis of experimental instances of collective behavior in response to external stimuli. In particular, this work addresses the characterization of aggregation and interaction phenomena in robot-animal groups through the exemplary analysis of fish schooling in the vicinity of a biomimetic robot. We adapt global observables from statistical mechanics to capture the main features of the shoal collective motion and its response to the robot from experimental observations. We investigate the shoal behavior by using a diffusion mapping analysis performed on these global observables that also informs the definition of relevant portraits of self-organization.
NASA Astrophysics Data System (ADS)
Farsadnia, F.; Rostami Kamrood, M.; Moghaddam Nia, A.; Modarres, R.; Bray, M. T.; Han, D.; Sadatinejad, J.
2014-02-01
One of the several methods in estimating flood quantiles in ungauged or data-scarce watersheds is regional frequency analysis. Amongst the approaches to regional frequency analysis, different clustering techniques have been proposed to determine hydrologically homogeneous regions in the literature. Recently, Self-Organization feature Map (SOM), a modern hydroinformatic tool, has been applied in several studies for clustering watersheds. However, further studies are still needed with SOM on the interpretation of SOM output map for identifying hydrologically homogeneous regions. In this study, two-level SOM and three clustering methods (fuzzy c-mean, K-mean, and Ward's Agglomerative hierarchical clustering) are applied in an effort to identify hydrologically homogeneous regions in Mazandaran province watersheds in the north of Iran, and their results are compared with each other. Firstly the SOM is used to form a two-dimensional feature map. Next, the output nodes of the SOM are clustered by using unified distance matrix algorithm and three clustering methods to form regions for flood frequency analysis. The heterogeneity test indicates the four regions achieved by the two-level SOM and Ward approach after adjustments are sufficiently homogeneous. The results suggest that the combination of SOM and Ward is much better than the combination of either SOM and FCM or SOM and K-mean.
NASA Astrophysics Data System (ADS)
Larsen, L.; Watts, D.; Khurana, A.; Anderson, J. L.; Xu, C.; Merritts, D. J.
2015-12-01
The classic signal of self-organization in nature is pattern formation. However, the interactions and feedbacks that organize depositional landscapes do not always result in regular or fractal patterns. How might we detect their existence and effects in these "irregular" landscapes? Emergent landscapes such as newly forming deltaic marshes or some restoration sites provide opportunities to study the autogenic processes that organize landscapes and their physical signatures. Here we describe a quest to understand autogenic vs. allogenic controls on landscape evolution in Big Spring Run, PA, a landscape undergoing restoration from bare-soil conditions to a target wet meadow landscape. The contemporary motivation for asking questions about autogenic vs. allogenic controls is to evaluate how important initial conditions or environmental controls may be for the attainment of management objectives. However, these questions can also inform interpretation of the sedimentary record by enabling researchers to separate signals that may have arisen through self-organization processes from those resulting from environmental perturbations. Over three years at Big Spring Run, we mapped the dynamic evolution of floodplain vegetation communities and distributions of abiotic variables and topography. We used principal component analysis and transition probability analysis to detect associative interactions between vegetation and geomorphic variables and convergent cross-mapping on lidar data to detect causal interactions between biomass and topography. Exploratory statistics revealed that plant communities with distinct morphologies exerted control on landscape evolution through stress divergence (i.e., channel initiation) and promoting the accumulation of fine sediment in channels. Together, these communities participated in a negative feedback that maintains low energy and multiple channels. Because of the spatially explicit nature of this feedback, causal interactions could not be uncovered from convergent cross-mapping with this limited dataset, serving as a reminder that spatially explicit approaches for revealing causality are needed to reconstruct self-organizing mechanisms from data.
Mapping underwater sound noise and assessing its sources by using a self-organizing maps method.
Rako, Nikolina; Vilibić, Ivica; Mihanović, Hrvoje
2013-03-01
This study aims to provide an objective mapping of the underwater noise and its sources over an Adriatic coastal marine habitat by applying the self-organizing maps (SOM) method. Systematic sampling of sea ambient noise (SAN) was carried out at ten predefined acoustic stations between 2007 and 2009. Analyses of noise levels were performed for 1/3 octave band standard centered frequencies in terms of instantaneous sound pressure levels averaged over 300 s to calculate the equivalent continuous sound pressure levels. Data on vessels' presence, type, and distance from the monitoring stations were also collected at each acoustic station during the acoustic sampling. Altogether 69 noise surveys were introduced to the SOM predefined 2 × 2 array. The overall results of the analysis distinguished two dominant underwater soundscapes, associating them mainly to the seasonal changes in the nautical tourism and fishing activities within the study area and to the wind and wave action. The analysis identified recreational vessels as the dominant anthropogenic source of underwater noise, particularly during the tourist season. The method demonstrated to be an efficient tool in predicting the SAN levels based on the vessel distribution, indicating also the possibility of its wider implication for marine conservation.
Prioritization of malaria endemic zones using self-organizing maps in the Manipur state of India.
Murty, Upadhyayula Suryanarayana; Srinivasa Rao, Mutheneni; Misra, Sunil
2008-09-01
Due to the availability of a huge amount of epidemiological and public health data that require analysis and interpretation by using appropriate mathematical tools to support the existing method to control the mosquito and mosquito-borne diseases in a more effective way, data-mining tools are used to make sense from the chaos. Using data-mining tools, one can develop predictive models, patterns, association rules, and clusters of diseases, which can help the decision-makers in controlling the diseases. This paper mainly focuses on the applications of data-mining tools that have been used for the first time to prioritize the malaria endemic regions in Manipur state by using Self Organizing Maps (SOM). The SOM results (in two-dimensional images called Kohonen maps) clearly show the visual classification of malaria endemic zones into high, medium and low in the different districts of Manipur, and will be discussed in the paper.
Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M
2000-01-01
Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.
Self-organizing maps: a versatile tool for the automatic analysis of untargeted imaging datasets.
Franceschi, Pietro; Wehrens, Ron
2014-04-01
MS-based imaging approaches allow for location-specific identification of chemical components in biological samples, opening up possibilities of much more detailed understanding of biological processes and mechanisms. Data analysis, however, is challenging, mainly because of the sheer size of such datasets. This article presents a novel approach based on self-organizing maps, extending previous work in order to be able to handle the large number of variables present in high-resolution mass spectra. The key idea is to generate prototype images, representing spatial distributions of ions, rather than prototypical mass spectra. This allows for a two-stage approach, first generating typical spatial distributions and associated m/z bins, and later analyzing the interesting bins in more detail using accurate masses. The possibilities and advantages of the new approach are illustrated on an in-house dataset of apple slices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Deljanin, Isidora; Antanasijević, Davor; Vuković, Gordana; Urošević, Mira Aničić; Tomašević, Milica; Perić-Grujić, Aleksandra; Ristić, Mirjana
2015-09-01
The first investigation of the use of the Kohonen self-organizing map (SOM) which includes lead concentration and its isotopic composition in moss bags to assess the spatial and temporal patterns of lead in the urban microenvironments is presented in this paper. The moss bags experiment was carried out during 2011 in the city tunnel in Belgrade, as well as in street canyons at different heights (4, 8 and 16 m) and in public garages. The moss bags were exposed for 5 and 10 weeks. The results revealed that the 10 weeks period represents suitable exposure time in screening Pb isotopic composition in active biomonitoring analysis. The obtained results showed that the SOM analysis, by recognizing slight differences among moss samples regarding exposure time, horizontal and vertical spatial distribution, with both, contribution of stable lead isotopes and Pb concentration, could be recommended in biomonitoring analysis of lead distribution in urban microenvironments.
Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex.
Mhatre, Himanshu; Gorchetchnikov, Anatoli; Grossberg, Stephen
2012-02-01
Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. It has previously been shown how a self-organizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? This article describes a simple and general mathematical property of the trigonometry of spatial navigation which favors hexagonal patterns. The article also develops a neural model that can learn to exploit this trigonometric relationship. This GRIDSmap self-organizing map model converts path integration signals into hexagonal grid cell patterns of multiple scales. GRIDSmap creates only grid cell firing patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support an emerging unified computational framework based on a hierarchy of self-organizing maps for explaining how entorhinal-hippocampal interactions support spatial navigation. Copyright © 2010 Wiley Periodicals, Inc.
Mining chemical reactions using neighborhood behavior and condensed graphs of reactions approaches.
de Luca, Aurélie; Horvath, Dragos; Marcou, Gilles; Solov'ev, Vitaly; Varnek, Alexandre
2012-09-24
This work addresses the problem of similarity search and classification of chemical reactions using Neighborhood Behavior (NB) and Condensed Graphs of Reaction (CGR) approaches. The CGR formalism represents chemical reactions as a classical molecular graph with dynamic bonds, enabling descriptor calculations on this graph. Different types of the ISIDA fragment descriptors generated for CGRs in combination with two metrics--Tanimoto and Euclidean--were considered as chemical spaces, to serve for reaction dissimilarity scoring. The NB method has been used to select an optimal combination of descriptors which distinguish different types of chemical reactions in a database containing 8544 reactions of 9 classes. Relevance of NB analysis has been validated in generic (multiclass) similarity search and in clustering with Self-Organizing Maps (SOM). NB-compliant sets of descriptors were shown to display enhanced mapping propensities, allowing the construction of better Self-Organizing Maps and similarity searches (NB and classical similarity search criteria--AUC ROC--correlate at a level of 0.7). The analysis of the SOM clusters proved chemically meaningful CGR substructures representing specific reaction signatures.
An Example of Unsupervised Networks Kohonen's Self-Organizing Feature Map
NASA Technical Reports Server (NTRS)
Niebur, Dagmar
1995-01-01
Kohonen's self-organizing feature map belongs to a class of unsupervised artificial neural network commonly referred to as topographic maps. It serves two purposes, the quantization and dimensionality reduction of date. A short description of its history and its biological context is given. We show that the inherent classification properties of the feature map make it a suitable candidate for solving the classification task in power system areas like load forecasting, fault diagnosis and security assessment.
Valencia-Peris, Alexandra; Devís-Devís, José; García-Massó, Xavier; Lizandra, Jorge; Pérez-Gimeno, Esther; Peiró-Velert, Carmen
2016-06-01
Previous research shows contradictory findings on potential competing effects between sedentary screen media usage (SMU) and physical activity (PA). This study examined these effects on adolescent girls via self-organizing maps analysis focusing on 3 target profiles. A sample of 1,516 girls aged 12 to 18 years self-reported daily time engagement in PA (moderate and vigorous intensity) and in screen media activities (TV/video/DVD, computer, and videogames), separately and combined. Topological interrelationships from the 13 emerging maps indicated a moderate competing effect between physically active and sedentary SMU patterns. Higher SES and overweight status were linked to either active or inactive behaviors. Three target clusters were explored in more detail. Cluster 1, named temperate-media actives, showed capabilities of being active while engaging in a moderate level of SMU (TV/video/DVD mainly). In Cluster 2, named prudent-media inactives, and Cluster 3, compulsive-media inactives, a competing effect between SMU and PA emerged, being sedentary SMU behaviors responsible for a low involvement in active pursuits. SMU and PA emerge as both related and independent behaviors in girls, resulting in a moderate competing effect. Findings support the case for recommending the timing of PA and SMU for recreational purposes considering different profiles, sociodemographic factors and types of SMU.
NASA Astrophysics Data System (ADS)
Zhang, Shijun; Jing, Zhongliang; Li, Jianxun
2005-01-01
The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real-world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.
Self-Organizing-Map Program for Analyzing Multivariate Data
NASA Technical Reports Server (NTRS)
Li, P. Peggy; Jacob, Joseph C.; Block, Gary L.; Braverman, Amy J.
2005-01-01
SOM_VIS is a computer program for analysis and display of multidimensional sets of Earth-image data typified by the data acquired by the Multi-angle Imaging Spectro-Radiometer [MISR (a spaceborne instrument)]. In SOM_VIS, an enhanced self-organizing-map (SOM) algorithm is first used to project a multidimensional set of data into a nonuniform three-dimensional lattice structure. The lattice structure is mapped to a color space to obtain a color map for an image. The Voronoi cell-refinement algorithm is used to map the SOM lattice structure to various levels of color resolution. The final result is a false-color image in which similar colors represent similar characteristics across all its data dimensions. SOM_VIS provides a control panel for selection of a subset of suitably preprocessed MISR radiance data, and a control panel for choosing parameters to run SOM training. SOM_VIS also includes a component for displaying the false-color SOM image, a color map for the trained SOM lattice, a plot showing an original input vector in 36 dimensions of a selected pixel from the SOM image, the SOM vector that represents the input vector, and the Euclidean distance between the two vectors.
NASA Astrophysics Data System (ADS)
Pelikan, Erich; Vogelsang, Frank; Tolxdorff, Thomas
1996-04-01
The texture-based segmentation of x-ray images of focal bone lesions using topological maps is introduced. Texture characteristics are described by image-point correlation of feature images to feature vectors. For the segmentation, the topological map is labeled using an improved labeling strategy. Results of the technique are demonstrated on original and synthetic x-ray images and quantified with the aid of quality measures. In addition, a classifier-specific contribution analysis is applied for assessing the feature space.
Web Image Retrieval Using Self-Organizing Feature Map.
ERIC Educational Resources Information Center
Wu, Qishi; Iyengar, S. Sitharama; Zhu, Mengxia
2001-01-01
Provides an overview of current image retrieval systems. Describes the architecture of the SOFM (Self Organizing Feature Maps) based image retrieval system, discussing the system architecture and features. Introduces the Kohonen model, and describes the implementation details of SOFM computation and its learning algorithm. Presents a test example…
A Verification Method for MASOES.
Perozo, N; Aguilar Perozo, J; Terán, O; Molina, H
2013-02-01
MASOES is a 3agent architecture for designing and modeling self-organizing and emergent systems. This architecture describes the elements, relationships, and mechanisms, both at the individual and the collective levels, that favor the analysis of the self-organizing and emergent phenomenon without mathematically modeling the system. In this paper, a method is proposed for verifying MASOES from the point of view of design in order to study the self-organizing and emergent behaviors of the modeled systems. The verification criteria are set according to what is proposed in MASOES for modeling self-organizing and emerging systems and the principles of the wisdom of crowd paradigm and the fuzzy cognitive map (FCM) theory. The verification method for MASOES has been implemented in a tool called FCM Designer and has been tested to model a community of free software developers that works under the bazaar style as well as a Wikipedia community in order to study their behavior and determine their self-organizing and emergent capacities.
Zhang, WenJun
2007-07-01
Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance (similarity) measures. Results with the larger consistency will be more reliable.
Analysis of large-scale gene expression data.
Sherlock, G
2000-04-01
The advent of cDNA and oligonucleotide microarray technologies has led to a paradigm shift in biological investigation, such that the bottleneck in research is shifting from data generation to data analysis. Hierarchical clustering, divisive clustering, self-organizing maps and k-means clustering have all been recently used to make sense of this mass of data.
Gorzalczany, Marian B; Rudzinski, Filip
2017-06-07
This paper presents a generalization of self-organizing maps with 1-D neighborhoods (neuron chains) that can be effectively applied to complex cluster analysis problems. The essence of the generalization consists in introducing mechanisms that allow the neuron chain--during learning--to disconnect into subchains, to reconnect some of the subchains again, and to dynamically regulate the overall number of neurons in the system. These features enable the network--working in a fully unsupervised way (i.e., using unlabeled data without a predefined number of clusters)--to automatically generate collections of multiprototypes that are able to represent a broad range of clusters in data sets. First, the operation of the proposed approach is illustrated on some synthetic data sets. Then, this technique is tested using several real-life, complex, and multidimensional benchmark data sets available from the University of California at Irvine (UCI) Machine Learning repository and the Knowledge Extraction based on Evolutionary Learning data set repository. A sensitivity analysis of our approach to changes in control parameters and a comparative analysis with an alternative approach are also performed.
Pandey, Mayank; Pandey, Ashutosh Kumar; Mishra, Ashutosh; Tripathi, B D
2015-09-01
Present study deals with the river Ganga water quality and its impact on metal speciation in its sediments. Concentration of physico-chemical parameters was highest in summer season followed by winter and lowest in rainy season. Metal speciation study in river sediments revealed that exchangeable, reducible and oxidizable fractions were dominant in all the studied metals (Cr, Ni, Cu, Zn, Cd, Pb) except Mn and Fe. High pollution load index (1.64-3.89) recommends urgent need of mitigation measures. Self-organizing Map-Artificial Neural Network (SOM-ANN) was applied to the data set for the prediction of major point sources of pollution in the river Ganga. Copyright © 2015 Elsevier Ltd. All rights reserved.
Murakami, Tomoaki; Ueda-Arakawa, Naoko; Nishijima, Kazuaki; Uji, Akihito; Horii, Takahiro; Ogino, Ken; Yoshimura, Nagahisa
2014-03-28
To integrate parameters on spectral-domain optical coherence tomography (SD-OCT) in diabetic retinopathy (DR) based on the self-organizing map and objectively describe the macular morphologic patterns. A total of 336 consecutive eyes of 216 patients with DR for whom clear SD-OCT images were available were retrospectively reviewed. Eleven OCT parameters and the logarithm of the minimal angle of resolution (logMAR) were measured. These multidimensional data were analyzed based on the self-organizing map on which similar cases were near each other according to the degree of their similarities, followed by the objective clustering. Self-organizing maps indicated that eyes with greater retinal thickness in the central subfield had greater thicknesses in the superior and temporal subfields. Eyes with foveal serous retinal detachment (SRD) had greater thickness in the nasal or inferior subfield. Eyes with foveal cystoid spaces were arranged to the left upper corner on the two-dimensional map; eyes with foveal SRD to the left lower corner; eyes with thickened retinal parenchyma to the lower area. The following objective clustering demonstrated the unsupervised pattern recognition of macular morphologies in diabetic macular edema (DME) as well as the higher-resolution discrimination of DME per se. Multiple regression analyses showed better association of logMAR with retinal thickness in the inferior subfield in eyes with SRD and with external limiting membrane disruption in eyes with foveal cystoid spaces or thickened retinal parenchyma. The self-organizing map facilitates integrative understanding of the macular morphologic patterns and the structural/functional relationship in DR.
Neighborhoods in Development: Human Development Index and Self-Organizing Maps
ERIC Educational Resources Information Center
Rende, Sevinc; Donduran, Murat
2013-01-01
The Human Development Index (HDI) has been instrumental in broadening the discussion of economic development beyond money-metric progress, in particular, by ranking a country against other countries in terms of the well being of their citizens. We propose self-organizing maps to explore similarities among countries using the components of the HDI…
What Do Medical Students Do for Self-Care? A Student-Centered Approach to Well-Being.
Ayala, Erin E; Omorodion, Aisha M; Nmecha, Dennis; Winseman, Jeffrey S; Mason, Hyacinth R C
2017-01-01
Phenomenon: Despite the promotion of medical student health and wellness through recent program and curricular changes, research continues to show that medical education is associated with decreased well-being in medical students. Although many institutions have sought to more effectively assess and improve self-care in medical students, no self-care initiatives have been designed using the explicit perspectives of students themselves. Using concept mapping methodology, the research team created a student-generated taxonomy of self-care behaviors taken from a national sample of medical students in response to a brainstorming prompt. The research team examined how students' conceptualizations of self-care may be organized into a framework suitable for use in programming and curricular change in medical education. Ten clusters of self-care activities were identified: nourishment, hygiene, intellectual and creative health, physical activity, spiritual care, balance and relaxation, time for loved ones, big picture goals, pleasure and outside activities, and hobbies. Using results of the two-dimensional scaling analysis, students' individual self-care behaviors were organized within two orthogonal dimensions of self-care activities. Insights: This concept map of student-identified self-care activities provides a starting point for better understanding and ultimately improving medical student self-care. Students' brainstormed responses fit within a framework of varying levels of social engagement and physical-psychological health that included a wide range of solitary, social, physical, and mental health behaviors. As students' preferred self-care practices did not often include programmatic activities, medical educators may benefit from consulting this map as they plan new approaches to student self-care and in counseling individual students searching for more effective ways to ease the burdens of medical school.
A limit-cycle self-organizing map architecture for stable arm control.
Huang, Di-Wei; Gentili, Rodolphe J; Katz, Garrett E; Reggia, James A
2017-01-01
Inspired by the oscillatory nature of cerebral cortex activity, we recently proposed and studied self-organizing maps (SOMs) based on limit cycle neural activity in an attempt to improve the information efficiency and robustness of conventional single-node, single-pattern representations. Here we explore for the first time the use of limit cycle SOMs to build a neural architecture that controls a robotic arm by solving inverse kinematics in reach-and-hold tasks. This multi-map architecture integrates open-loop and closed-loop controls that learn to self-organize oscillatory neural representations and to harness non-fixed-point neural activity even for fixed-point arm reaching tasks. We show through computer simulations that our architecture generalizes well, achieves accurate, fast, and smooth arm movements, and is robust in the face of arm perturbations, map damage, and variations of internal timing parameters controlling the flow of activity. A robotic implementation is evaluated successfully without further training, demonstrating for the first time that limit cycle maps can control a physical robot arm. We conclude that architectures based on limit cycle maps can be organized to function effectively as neural controllers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multi-class ERP-based BCI data analysis using a discriminant space self-organizing map.
Onishi, Akinari; Natsume, Kiyohisa
2014-01-01
Emotional or non-emotional image stimulus is recently applied to event-related potential (ERP) based brain computer interfaces (BCI). Though the classification performance is over 80% in a single trial, a discrimination between those ERPs has not been considered. In this research we tried to clarify the discriminability of four-class ERP-based BCI target data elicited by desk, seal, spider images and letter intensifications. A conventional self organizing map (SOM) and newly proposed discriminant space SOM (ds-SOM) were applied, then the discriminabilites were visualized. We also classify all pairs of those ERPs by stepwise linear discriminant analysis (SWLDA) and verify the visualization of discriminabilities. As a result, the ds-SOM showed understandable visualization of the data with a shorter computational time than the traditional SOM. We also confirmed the clear boundary between the letter cluster and the other clusters. The result was coherent with the classification performances by SWLDA. The method might be helpful not only for developing a new BCI paradigm, but also for the big data analysis.
NASA Astrophysics Data System (ADS)
Kotsakis, A.; Choi, Y.; Souri, A.; Jeon, W.; Flynn, J. H., III
2017-12-01
From the years 2000 to 2014, Dallas-Fort Worth (DFW) has seen a decrease in ozone exceedances due to decreased emissions of ozone precursors. In this study, a wind pattern analysis was done to gain a better understanding of the meteorological patterns that have historically contributed to ozone exceedances over the DFW area. Long-term trends in ozone and the seasonal distribution of ozone exceedances were analyzed using surface monitoring data. Using a clustering algorithm called self-organizing maps, characteristic regional wind patterns from 2000-2014 were determined. For each of the wind pattern clusters, the frequency over the last 15 years and average ozone from monitors across DFW was analyzed. Finally, model simulations were performed to determine if pollution transported out of Houston affected incoming background ozone into DFW.
Ugulu, Ilker; Aydin, Halil
2016-01-01
We propose an approach to clustering and visualization of students' cognitive structural models. We use the self-organizing map (SOM) combined with Ward's clustering to conduct cluster analysis. In the study carried out on 100 subjects, a conceptual understanding test consisting of open-ended questions was used as a data collection tool. The results of analyses indicated that students constructed the aliveness concept by associating it predominantly with human. Motion appeared as the most frequently associated term with the aliveness concept. The results suggest that the aliveness concept has been constructed using anthropocentric and animistic cognitive structures. In the next step, we used the data obtained from the conceptual understanding test for training the SOM. Consequently, we propose a visualization method about cognitive structure of the aliveness concept. PMID:26819579
Identifying individual sperm whales acoustically using self-organizing maps
NASA Astrophysics Data System (ADS)
Ioup, Juliette W.; Ioup, George E.
2005-09-01
The Littoral Acoustic Demonstration Center (LADC) is a consortium at Stennis Space Center comprising the University of New Orleans, the University of Southern Mississippi, the Naval Research Laboratory, and the University of Louisiana at Lafayette. LADC deployed three Environmental Acoustic Recording System (EARS) buoys in the northern Gulf of Mexico during the summer of 2001 to study ambient noise and marine mammals. Each LADC EARS was an autonomous, self-recording buoy capable of 36 days of continuous recording of a single channel at an 11.7-kHz sampling rate (bandwidth to 5859 Hz). The hydrophone selected for this analysis was approximately 50 m from the bottom in a water depth of 800 m on the continental slope off the Mississippi River delta. This paper contains recent analysis results for sperm whale codas recorded during a 3-min period. Results are presented for the identification of individual sperm whales from their codas, using the acoustic properties of the clicks within each coda. The recorded time series, the Fourier transform magnitude, and the wavelet transform coefficients are each used separately with a self-organizing map procedure for 43 codas. All show the codas as coming from four or five individual whales. [Research supported by ONR.
Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin
2015-01-01
Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks.
Cattinelli, Isabella; Bolzoni, Elena; Barbieri, Carlo; Mari, Flavio; Martin-Guerrero, José David; Soria-Olivas, Emilio; Martinez-Martinez, José Maria; Gomez-Sanchis, Juan; Amato, Claudia; Stopper, Andrea; Gatti, Emanuele
2012-03-01
The Balanced Scorecard (BSC) is a validated tool to monitor enterprise performances against specific objectives. Through the choice and the evaluation of strategic Key Performance Indicators (KPIs), it provides a measure of the past company's outcome and allows planning future managerial strategies. The Fresenius Medical Care (FME) BSC makes use of 30 KPIs for a continuous quality improvement strategy within its dialysis clinics. Each KPI is monthly associated to a score that summarizes the clinic efficiency for that month. Standard statistical methods are currently used to analyze the BSC data and to give a comprehensive view of the corporate improvements to the top management. We herein propose the Self-Organizing Maps (SOMs) as an innovative approach to extrapolate information from the FME BSC data and to present it in an easy-readable informative form. A SOM is a computational technique that allows projecting high-dimensional datasets to a two-dimensional space (map), thus providing a compressed representation. The SOM unsupervised (self-organizing) training procedure results in a map that preserves similarity relations existing in the original dataset; in this way, the information contained in the high-dimensional space can be more easily visualized and understood. The present work demonstrates the effectiveness of the SOM approach in extracting useful information from the 30-dimensional BSC dataset: indeed, SOMs enabled both to highlight expected relationships between the KPIs and to uncover results not predictable with traditional analyses. Hence we suggest SOMs as a reliable complementary approach to the standard methods for BSC interpretation.
NASA Astrophysics Data System (ADS)
Klus, Jakub; Pořízka, Pavel; Prochazka, David; Mikysek, Petr; Novotný, Jan; Novotný, Karel; Slobodník, Marek; Kaiser, Jozef
2017-05-01
This paper presents a novel approach for processing the spectral information obtained from high-resolution elemental mapping performed by means of Laser-Induced Breakdown Spectroscopy. The proposed methodology is aimed at the description of possible elemental associations within a heterogeneous sample. High-resolution elemental mapping provides a large number of measurements. Moreover, typical laser-induced plasma spectrum consists of several thousands of spectral variables. Analysis of heterogeneous samples, where valuable information is hidden in a limited fraction of sample mass, requires special treatment. The sample under study is a sandstone-hosted uranium ore that shows irregular distribution of ore elements such as zirconium, titanium, uranium and niobium. Presented processing methodology shows the way to reduce the dimensionality of data and retain the spectral information by utilizing self-organizing maps (SOM). The spectral information from SOM is processed further to detect either simultaneous or isolated presence of elements. Conclusions suggested by SOM are in good agreement with geological studies of mineralization phases performed at the deposit. Even deeper investigation of the SOM results enables discrimination of interesting measurements and reveals new possibilities in the visualization of chemical mapping information. Suggested approach improves the description of elemental associations in mineral phases, which is crucial for the mining industry.
Data Mining in Cyber Operations
2014-07-01
information processing units intended to mimic the network of neurons in the human brain for performing pattern recognition Self- organizing maps (SOM...patterns are mined from in order to influence the learning model . An exploratory attack does not alter the training process , but rather uses other...New Jersey: Prentice Hall. 21) Kohonen, T. (1982). Self- organized formation of topologically correct feature maps. Biological Cybernetics , 43, 59–69
Oyana, Tonny J; Achenie, Luke E K; Heo, Joon
2012-01-01
The objective of this paper is to introduce an efficient algorithm, namely, the mathematically improved learning-self organizing map (MIL-SOM) algorithm, which speeds up the self-organizing map (SOM) training process. In the proposed MIL-SOM algorithm, the weights of Kohonen's SOM are based on the proportional-integral-derivative (PID) controller. Thus, in a typical SOM learning setting, this improvement translates to faster convergence. The basic idea is primarily motivated by the urgent need to develop algorithms with the competence to converge faster and more efficiently than conventional techniques. The MIL-SOM algorithm is tested on four training geographic datasets representing biomedical and disease informatics application domains. Experimental results show that the MIL-SOM algorithm provides a competitive, better updating procedure and performance, good robustness, and it runs faster than Kohonen's SOM.
NASA Astrophysics Data System (ADS)
Hsu, Kuo-Lin; Gupta, Hoshin V.; Gao, Xiaogang; Sorooshian, Soroosh; Imam, Bisher
2002-12-01
Artificial neural networks (ANNs) can be useful in the prediction of hydrologic variables, such as streamflow, particularly when the underlying processes have complex nonlinear interrelationships. However, conventional ANN structures suffer from network training issues that significantly limit their widespread application. This paper presents a multivariate ANN procedure entitled self-organizing linear output map (SOLO), whose structure has been designed for rapid, precise, and inexpensive estimation of network structure/parameters and system outputs. More important, SOLO provides features that facilitate insight into the underlying processes, thereby extending its usefulness beyond forecast applications as a tool for scientific investigations. These characteristics are demonstrated using a classic rainfall-runoff forecasting problem. Various aspects of model performance are evaluated in comparison with other commonly used modeling approaches, including multilayer feedforward ANNs, linear time series modeling, and conceptual rainfall-runoff modeling.
Oyana, Tonny J.; Achenie, Luke E. K.; Heo, Joon
2012-01-01
The objective of this paper is to introduce an efficient algorithm, namely, the mathematically improved learning-self organizing map (MIL-SOM) algorithm, which speeds up the self-organizing map (SOM) training process. In the proposed MIL-SOM algorithm, the weights of Kohonen's SOM are based on the proportional-integral-derivative (PID) controller. Thus, in a typical SOM learning setting, this improvement translates to faster convergence. The basic idea is primarily motivated by the urgent need to develop algorithms with the competence to converge faster and more efficiently than conventional techniques. The MIL-SOM algorithm is tested on four training geographic datasets representing biomedical and disease informatics application domains. Experimental results show that the MIL-SOM algorithm provides a competitive, better updating procedure and performance, good robustness, and it runs faster than Kohonen's SOM. PMID:22481977
Self-organizing neural networks--an alternative way of cluster analysis in clinical chemistry.
Reibnegger, G; Wachter, H
1996-04-15
Supervised learning schemes have been employed by several workers for training neural networks designed to solve clinical problems. We demonstrate that unsupervised techniques can also produce interesting and meaningful results. Using a data set on the chemical composition of milk from 22 different mammals, we demonstrate that self-organizing feature maps (Kohonen networks) as well as a modified version of error backpropagation technique yield results mimicking conventional cluster analysis. Both techniques are able to project a potentially multi-dimensional input vector onto a two-dimensional space whereby neighborhood relationships remain conserved. Thus, these techniques can be used for reducing dimensionality of complicated data sets and for enhancing comprehensibility of features hidden in the data matrix.
Jiang, Mingcen; Wang, Yeyao; Yang, Qi; Meng, Fansheng; Yao, Zhipeng; Cheng, Peixuan
2018-03-30
The analysis of a large number of multidimensional surface water monitoring data for extracting potential information plays an important role in water quality management. In this study, growing hierarchical self-organizing map (GHSOM) was applied to a water quality assessment of the Songhua River Basin in China using 22 water quality parameters monitored monthly from 13 monitoring sites from 2011 to 2015 (14,782 observations). The spatial and temporal features and correlation between the water quality parameters were explored, and the major contaminants were identified. The results showed that the downstream of the Second Songhua River had the worst water quality of the Songhua River Basin. The upstream and midstream of Nenjiang River and the Second Songhua River had the best. The major contaminants of the Songhua River were chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N), total phosphorus (TP), and fecal coliform (FC). In the Songhua River, the water pollution at downstream has been gradually eased in years. However, FC and biochemical oxygen demand (BOD 5 ) showed growth over time. The component planes showed that three sets of parameters had positive correlations with each other. GHSOM was found to have advantages over self-organizing maps and hierarchical clustering analysis as follows: (1) automatically generating the necessary neurons, (2) intuitively exhibiting the hierarchical inheritance relationship between the original data, and (3) depicting the boundaries of the classification much more clearly. Therefore, the application of GHSOM in water quality assessments, especially with large amounts of monitoring data, enables the extraction of more information and provides strong support for water quality management.
NASA Astrophysics Data System (ADS)
Obermayer, K.; Blasdel, G. G.; Schulten, K.
1992-05-01
We report a detailed analytical and numerical model study of pattern formation during the development of visual maps, namely, the formation of topographic maps and orientation and ocular dominance columns in the striate cortex. Pattern formation is described by a stimulus-driven Markovian process, the self-organizing feature map. This algorithm generates topologically correct maps between a space of (visual) input signals and an array of formal ``neurons,'' which in our model represents the cortex. We define order parameters that are a function of the set of visual stimuli an animal perceives, and we demonstrate that the formation of orientation and ocular dominance columns is the result of a global instability of the retinoptic projection above a critical value of these order parameters. We characterize the spatial structure of the emerging patterns by power spectra, correlation functions, and Gabor transforms, and we compare model predictions with experimental data obtained from the striate cortex of the macaque monkey with optical imaging. Above the critical value of the order parameters the model predicts a lateral segregation of the striate cortex into (i) binocular regions with linear changes in orientation preference, where iso-orientation slabs run perpendicular to the ocular dominance bands, and (ii) monocular regions with low orientation specificity, which contain the singularities of the orientation map. Some of these predictions have already been verified by experiments.
Colour segmentation of multi variants tuberculosis sputum images using self organizing map
NASA Astrophysics Data System (ADS)
Rulaningtyas, Riries; Suksmono, Andriyan B.; Mengko, Tati L. R.; Saptawati, Putri
2017-05-01
Lung tuberculosis detection is still identified from Ziehl-Neelsen sputum smear images in low and middle countries. The clinicians decide the grade of this disease by counting manually the amount of tuberculosis bacilli. It is very tedious for clinicians with a lot number of patient and without standardization for sputum staining. The tuberculosis sputum images have multi variant characterizations in colour, because of no standardization in staining. The sputum has more variants colour and they are difficult to be identified. For helping the clinicians, this research examined the Self Organizing Map method for colouring image segmentation in sputum images based on colour clustering. This method has better performance than k-means clustering which also tried in this research. The Self Organizing Map could segment the sputum images with y good result and cluster the colours adaptively.
The morphological classification of normal and abnormal red blood cell using Self Organizing Map
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Wulandari, F. S.; Faza, S.; Muchtar, M. A.; Siregar, I.
2018-02-01
Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used self-organizing map method to classify the normal and abnormal form of red blood cells in the digital image. The use of self-organizing map neural network method can be implemented to classify the normal and abnormal form of red blood cells in the input image with 93,78% accuracy testing.
Heredity and self-organization: partners in the generation and evolution of phenotypes.
Malagon, Nicolas; Larsen, Ellen
2015-01-01
In this review we examine the role of self-organization in the context of the evolution of morphogenesis. We provide examples to show that self-organized behavior is ubiquitous, and suggest it is a mechanism that can permit high levels of biodiversity without the invention of ever-increasing numbers of genes. We also examine the implications of self-organization for understanding the "internal descriptions" of organisms and the concept of a genotype-phenotype map. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Suzuki, Yutaka; Fukasawa, Mizuya; Sakata, Osamu; Kato, Hatsuhiro; Hattori, Asobu; Kato, Takaya
Vascular access for hemodialysis is a lifeline for over 280,000 chronic renal failure patients in Japan. Early detection of stenosis may facilitate long-term use of hemodialysis shunts. Stethoscope auscultation of vascular murmurs has some utility in the assessment of access patency; however, the sensitivity of this diagnostic approach is skill dependent. This study proposes a novel diagnosis support system to detect stenosis by using vascular murmurs. The system is based on a self-organizing map (SOM) and short-time maximum entropy method (STMEM) for data analysis. SOM is an artificial neural network, which is trained using unsupervised learning to produce a feature map that is useful for visualizing the analogous relationship between input data. The author recorded vascular murmurs before and after percutaneous transluminal angioplasty (PTA). The SOM-based classification was consistent with to the classification based on MEM spectral and spectrogram characteristics. The ratio of pre-PTA murmurs in the stenosis category was much higher than the post-PTA murmurs. The results suggest that the proposed method may be an effective tool in the determination of shunt stenosis.
Hadjisolomou, Ekaterini; Stefanidis, Konstantinos; Papatheodorou, George; Papastergiadou, Evanthia
2018-03-19
During the last decades, Mediterranean freshwater ecosystems, especially lakes, have been under severe pressure due to increasing eutrophication and water quality deterioration. In this article, we compared the effectiveness of different data analysis methods by assessing the contribution of environmental parameters to eutrophication processes. For this purpose, principal components analysis (PCA), cluster analysis, and a self-organizing map (SOM) were applied, using water quality data from two transboundary lakes of North Greece. SOM is considered as an advanced and powerful data analysis tool because of its ability to represent complex and nonlinear relationships among multivariate data sets. The results of PCA and cluster analysis agreed with the SOM results, although the latter provided more information because of the visualization abilities regarding the parameters' relationships. Besides nutrients that were found to be a key factor for controlling chlorophyll-a (Chl - a), water temperature was related positively with algal production, while the Secchi disk depth parameter was found to be highly important and negatively related toeutrophic conditions. In general, the SOM results were more specific and allowed direct associations between the water quality variables. Our work showed that SOMs can be used effectively in limnological studies to produce robust and interpretable results, aiding scientists and managers to cope with environmental problems such as eutrophication.
ERIC Educational Resources Information Center
Pellicer-Chenoll, Maite; Garcia-Massó, Xavier; Morales, Jose; Serra-Añó, Pilar; Solana-Tramunt, Mònica; González, Luis-Millán; Toca-Herrera, José-Luis
2015-01-01
The relationship among physical activity, physical fitness and academic achievement in adolescents has been widely studied; however, controversy concerning this topic persists. The methods used thus far to analyse the relationship between these variables have included mostly traditional lineal analysis according to the available literature. The…
Associations Across Caregiver and Care Recipient Symptoms: Self-Organizing Map and Meta-analysis.
Voutilainen, Ari; Ruokostenpohja, Nora; Välimäki, Tarja
2018-03-19
The main objective of this study was to reveal generalizable associations across caregiver burden (CGB), caregiver depression (CGD), care recipient cognitive ability (CRCA), and care recipient behavioral and psychological symptoms of dementia (BPSD). Studies published between 2004 and 2014 and reporting CGB and/or CGD together with CRCA and/or BPSD were included. Only 95 out of 1,955 studies provided enough data for data clustering with the Self-Organizing Map (SOM) and 27 of them for meta-analyses based on correlation coefficients. Caregiver and care recipient symptoms were not tightly associated with each other, except for the CGB-BPSD interaction at the individual level. SOM emphasized the cluster comprising studies reporting low CGB, low CGD, high CRCA, and few BPSD. Meta-analyses indicated high heterogeneity between the original studies. Relationships between caregiver and care recipient symptoms should be treated as situation-specific phenomena, at least when the symptoms are moderate at most. Dementia caregiving per se should not be understood as a source of stress and mental health problems. More systematic and coherent use of measures is necessary to enable a comprehensive analysis of caregiving.
NASA Astrophysics Data System (ADS)
Tosida, E. T.; Maryana, S.; Thaheer, H.; Hardiani
2017-01-01
Information technology and communication (telematics) is one of the most rapidly developing business sectors in Indonesia. It has strategic position in its contribution towards planning and implementation of developmental, economics, social, politics and defence strategies in business, communication and education. Aid absorption for the national telecommunication SMEs is relatively low; therefore, improvement is needed using analysis on business support cluster of which basis is types of business. In the study, the business support cluster analysis is specifically implemented for Indonesian telecommunication service. The data for the business are obtained from the National Census of Economic (Susenas 2006). The method used to develop cluster model is an Artificial Neural Network (ANN) system called Self-Organizing Maps (SOM) algorithm. Based on Index of Davies Bouldin (IDB), the accuracy level of the cluster model is 0.37 or can be categorized as good. The cluster model is developed to find out telecommunication business clusters that has influence towards the national economy so that it is easier for the government to supervise telecommunication business.
Assessment of self-organizing maps to analyze sole-carbon source utilization profiles.
Leflaive, Joséphine; Céréghino, Régis; Danger, Michaël; Lacroix, Gérard; Ten-Hage, Loïc
2005-07-01
The use of community-level physiological profiles obtained with Biolog microplates is widely employed to consider the functional diversity of bacterial communities. Biolog produces a great amount of data which analysis has been the subject of many studies. In most cases, after some transformations, these data were investigated with classical multivariate analyses. Here we provided an alternative to this method, that is the use of an artificial intelligence technique, the Self-Organizing Maps (SOM, unsupervised neural network). We used data from a microcosm study of algae-associated bacterial communities placed in various nutritive conditions. Analyses were carried out on the net absorbances at two incubation times for each substrates and on the chemical guild categorization of the total bacterial activity. Compared to Principal Components Analysis and cluster analysis, SOM appeared as a valuable tool for community classification, and to establish clear relationships between clusters of bacterial communities and sole-carbon sources utilization. Specifically, SOM offered a clear bidimensional projection of a relatively large volume of data and were easier to interpret than plots commonly obtained with multivariate analyses. They would be recommended to pattern the temporal evolution of communities' functional diversity.
Srinivasa, Narayan; Jiang, Qin
2013-01-01
This study describes a spiking model that self-organizes for stable formation and maintenance of orientation and ocular dominance maps in the visual cortex (V1). This self-organization process simulates three development phases: an early experience-independent phase, a late experience-independent phase and a subsequent refinement phase during which experience acts to shape the map properties. The ocular dominance maps that emerge accommodate the two sets of monocular inputs that arise from the lateral geniculate nucleus (LGN) to layer 4 of V1. The orientation selectivity maps that emerge feature well-developed iso-orientation domains and fractures. During the last two phases of development the orientation preferences at some locations appear to rotate continuously through ±180° along circular paths and referred to as pinwheel-like patterns but without any corresponding point discontinuities in the orientation gradient maps. The formation of these functional maps is driven by balanced excitatory and inhibitory currents that are established via synaptic plasticity based on spike timing for both excitatory and inhibitory synapses. The stability and maintenance of the formed maps with continuous synaptic plasticity is enabled by homeostasis caused by inhibitory plasticity. However, a prolonged exposure to repeated stimuli does alter the formed maps over time due to plasticity. The results from this study suggest that continuous synaptic plasticity in both excitatory neurons and interneurons could play a critical role in the formation, stability, and maintenance of functional maps in the cortex. PMID:23450808
ERIC Educational Resources Information Center
Lucchini, Mario; Assi, Jenny
2013-01-01
The aim of this paper is to propose multidimensional measures of deprivation and wellbeing in contemporary Switzerland, in order to overcome the limitations of standard approaches. More precisely, we have developed self organising maps (SOM) using data drawn from the 2009 Swiss Household Panel wave, in order to identify highly homogeneous clusters…
SOMFlow: Guided Exploratory Cluster Analysis with Self-Organizing Maps and Analytic Provenance.
Sacha, Dominik; Kraus, Matthias; Bernard, Jurgen; Behrisch, Michael; Schreck, Tobias; Asano, Yuki; Keim, Daniel A
2018-01-01
Clustering is a core building block for data analysis, aiming to extract otherwise hidden structures and relations from raw datasets, such as particular groups that can be effectively related, compared, and interpreted. A plethora of visual-interactive cluster analysis techniques has been proposed to date, however, arriving at useful clusterings often requires several rounds of user interactions to fine-tune the data preprocessing and algorithms. We present a multi-stage Visual Analytics (VA) approach for iterative cluster refinement together with an implementation (SOMFlow) that uses Self-Organizing Maps (SOM) to analyze time series data. It supports exploration by offering the analyst a visual platform to analyze intermediate results, adapt the underlying computations, iteratively partition the data, and to reflect previous analytical activities. The history of previous decisions is explicitly visualized within a flow graph, allowing to compare earlier cluster refinements and to explore relations. We further leverage quality and interestingness measures to guide the analyst in the discovery of useful patterns, relations, and data partitions. We conducted two pair analytics experiments together with a subject matter expert in speech intonation research to demonstrate that the approach is effective for interactive data analysis, supporting enhanced understanding of clustering results as well as the interactive process itself.
Antarctic Sea Ice-Atmosphere Interactions: A Self-organizing Map-based Perspective
NASA Astrophysics Data System (ADS)
Reusch, D. B.
2005-12-01
Interactions between the ocean, sea ice and the atmosphere are a significant component of the dynamic nature of the Earth's climate system. Self-organizing maps (SOMs), an analysis tool from the field of artificial neural networks, have been used to study variability in Antarctic sea ice extent and the West Antarctic atmospheric circulation, plus the relationship and interactions between these two systems. Self-organizing maps enable unsupervised classification of large, multivariate/multidimensional data sets, e.g., time series of the atmospheric circulation or sea-ice extent, into a fixed number of distinct generalized states or modes, organized spatially as a two-dimensional grid, that are representative of the input data. When applied to atmospheric data, the analysis yields a nonlinear classification of the continuum of atmospheric conditions. In contrast to principal component analysis, SOMs do not force orthogonality or require subjective rotations to produce interpretable patterns. Twenty four years (1973-96) of monthly sea ice extent data (10 deg longitude bands; Simmonds and Jacka, 1995) were analyzed with a 30-node SOM. The resulting set of generalized patterns concisely captures the spatial and temporal variability in this data. An example of the former is variability in the longitudinal region of greatest extent. The SOM patterns readily show that there are multiple spatial patterns corresponding to "greatest extent conditions". Temporal variability is examined by creating frequency maps (i.e., which patterns occur most often) by month. With the annual cycle still in the data, the monthly frequency maps show a cycle moving from least extent, through expansion to greatest extent and back through retreat. When plotted in "SOM space", month-to-month transitions occur at different rates of change, suggesting that there is variability in the rate of change in extent at different times of the year, e.g., retreat in January is faster than November. Twenty five years (1977-2001) of monthly 500 mb temperature and pressure data (from the ECMWF 40-year reanalysis, ERA-40) from a region centered on the Antarctic Peninsula were analyzed independently for a separate SOMs-based study. Dominant SOM temperature patterns include the expected summer warmth and winter cold, plus "dipoles" of warm Atlantic (Pacific) and cold Pacific (Atlantic) sectors (with corresponding pressure patterns). Temporally, there is the expected annual progression from warmth, through cooling and back to warmth, with no particularly predominant patterns in many of the monthly frequency maps when the full record is used. Stratifying by high/low values of the Southern Oscillation Index (SOI) suggests that the spatial patterns of cooling and warming may be related to conditions in the tropical Pacific: in a low SOI year (1987), cooling and warming both begin in the Atlantic sector, with the opposite true in a high SOI year (1989). Further study of this aspect is planned. In addition to direct comparisons of the SOM analysis results from each study, a joint SOM analysis will be done on the combined data sets, exploiting the flexibility and power of this technique. We anticipate additional useful insights into the joint variability and relationships between Antarctic sea ice and the overlying atmosphere through this expanded analysis.
Philips, Ryan T.; Chakravarthy, V. Srinivasa
2017-01-01
A remarkable accomplishment of self organizing models is their ability to simulate the development of feature maps in the cortex. Additionally, these models have been trained to tease out the differential causes of multiple feature maps, mapped on to the same output space. Recently, a Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model has been used to simulate the mapping of eccentricity and meridional angle onto orthogonal axes in the primary visual cortex (V1). This model is further probed to simulate the development of the radial bias in V1, using a training set that consists of both radial (rectangular bars of random size and orientation) as well as non-radial stimuli. The radial bias describes the preference of the visual system toward orientations that match the angular position (meridional angle) of that orientation with respect to the point of fixation. Recent fMRI results have shown that there exists a coarse scale orientation map in V1, which resembles the meridional angle map, thereby providing a plausible neural basis for the radial bias. The LISSOM model, trained for the development of the retinotopic map, on probing for orientation preference, exhibits a coarse scale orientation map, consistent with these experimental results, quantified using the circular cross correlation (rc). The rc between the orientation map developed on probing with a thin annular ring containing sinusoidal gratings with a spatial frequency of 0.5 cycles per degree (cpd) and the corresponding meridional map for the same annular ring, has a value of 0.8894. The results also suggest that the radial bias goes beyond the current understanding of a node to node correlation between the two maps. PMID:28111542
Philips, Ryan T; Chakravarthy, V Srinivasa
2016-01-01
A remarkable accomplishment of self organizing models is their ability to simulate the development of feature maps in the cortex. Additionally, these models have been trained to tease out the differential causes of multiple feature maps, mapped on to the same output space. Recently, a Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model has been used to simulate the mapping of eccentricity and meridional angle onto orthogonal axes in the primary visual cortex (V1). This model is further probed to simulate the development of the radial bias in V1, using a training set that consists of both radial (rectangular bars of random size and orientation) as well as non-radial stimuli. The radial bias describes the preference of the visual system toward orientations that match the angular position (meridional angle) of that orientation with respect to the point of fixation. Recent fMRI results have shown that there exists a coarse scale orientation map in V1, which resembles the meridional angle map, thereby providing a plausible neural basis for the radial bias. The LISSOM model, trained for the development of the retinotopic map, on probing for orientation preference, exhibits a coarse scale orientation map, consistent with these experimental results, quantified using the circular cross correlation ( r c ). The r c between the orientation map developed on probing with a thin annular ring containing sinusoidal gratings with a spatial frequency of 0.5 cycles per degree (cpd) and the corresponding meridional map for the same annular ring, has a value of 0.8894. The results also suggest that the radial bias goes beyond the current understanding of a node to node correlation between the two maps.
Self Organizing Maps for use in Deep Inelastic Scattering
NASA Astrophysics Data System (ADS)
Askanazi, Evan
2015-04-01
Self Organizing Maps are a type of artificial neural network that has been proven to be particularly useful in solving complex problems in neural biology, engineering, robotics and physics. We are attempting to use the Self Organizing Map to solve problems and probe phenomenological patterns in subatomic physics, specifically in Deep Inelastic Scattering (DIS). In DIS there is a cross section in electron hadron scattering that is dependent on the momentum fraction x of the partons in the hadron and the momentum transfer of the virtual photon exchanged. There is a soft cross part of this cross section that currently can only be found through experimentation; this soft part is comprised of Structure Functions which in turn are comprised of the Parton Distribution Functions (PDFs). We aim to use the Self Organizing Process, or SOP, to take theoretical models of these PDFs and fit it to the previous, known data. The SOP will also be used to probe the behavior of the PDFs in particular at large x values, in order to observe how they congregate. The ability of the SOPto take multidimensional data and convert it into two dimensional output is anticipated to be particularly useful in achieving this aim.
NASA Technical Reports Server (NTRS)
Niebur, D.; Germond, A.
1993-01-01
This report investigates the classification of power system states using an artificial neural network model, Kohonen's self-organizing feature map. The ultimate goal of this classification is to assess power system static security in real-time. Kohonen's self-organizing feature map is an unsupervised neural network which maps N-dimensional input vectors to an array of M neurons. After learning, the synaptic weight vectors exhibit a topological organization which represents the relationship between the vectors of the training set. This learning is unsupervised, which means that the number and size of the classes are not specified beforehand. In the application developed in this report, the input vectors used as the training set are generated by off-line load-flow simulations. The learning algorithm and the results of the organization are discussed.
Philips, Ryan T; Chakravarthy, V Srinivasa
2015-01-01
Primate vision research has shown that in the retinotopic map of the primary visual cortex, eccentricity and meridional angle are mapped onto two orthogonal axes: whereas the eccentricity is mapped onto the nasotemporal axis, the meridional angle is mapped onto the dorsoventral axis. Theoretically such a map has been approximated by a complex log map. Neural models with correlational learning have explained the development of other visual maps like orientation maps and ocular-dominance maps. In this paper it is demonstrated that activity based mechanisms can drive a self-organizing map (SOM) into such a configuration that dilations and rotations of a particular image (in this case a rectangular bar) are mapped onto orthogonal axes. We further demonstrate using the Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model, with an appropriate boundary and realistic initial conditions, that a retinotopic map which maps eccentricity and meridional angle to the horizontal and vertical axes respectively can be developed. This developed map bears a strong resemblance to the complex log map. We also simulated lesion studies which indicate that the lateral excitatory connections play a crucial role in development of the retinotopic map.
Stefanidis, Konstantinos; Papatheodorou, George
2018-01-01
During the last decades, Mediterranean freshwater ecosystems, especially lakes, have been under severe pressure due to increasing eutrophication and water quality deterioration. In this article, we compared the effectiveness of different data analysis methods by assessing the contribution of environmental parameters to eutrophication processes. For this purpose, principal components analysis (PCA), cluster analysis, and a self-organizing map (SOM) were applied, using water quality data from two transboundary lakes of North Greece. SOM is considered as an advanced and powerful data analysis tool because of its ability to represent complex and nonlinear relationships among multivariate data sets. The results of PCA and cluster analysis agreed with the SOM results, although the latter provided more information because of the visualization abilities regarding the parameters’ relationships. Besides nutrients that were found to be a key factor for controlling chlorophyll-a (Chl-a), water temperature was related positively with algal production, while the Secchi disk depth parameter was found to be highly important and negatively related toeutrophic conditions. In general, the SOM results were more specific and allowed direct associations between the water quality variables. Our work showed that SOMs can be used effectively in limnological studies to produce robust and interpretable results, aiding scientists and managers to cope with environmental problems such as eutrophication. PMID:29562675
He, Xiao-Song; Fan, Qin-Dong
2016-11-01
For the purpose of investigating the effect of landfill leachate on the characteristics of organic matter in groundwater, groundwater samples were collected near and in a landfill site, and dissolved organic matter (DOM) was extracted from the groundwater samples and characterized by excitation-emission matrix (EEM) fluorescence spectra combined with fluorescence regional integration (FRI) and self-organizing map (SOM). The results showed that the groundwater DOM comprised humic-, fulvic-, and protein-like substances. The concentration of humic-like matter showed no obvious variation for all groundwater except the sample collected in the landfill site. Fulvic-like substance content decreased when the groundwater was polluted by landfill leachates. There were two kinds of protein-like matter in the groundwater. One kind was bound to humic-like substances, and its content did not change along with groundwater pollution. However, the other kind was present as "free" molecules or else bound in proteins, and its concentration increased significantly when the groundwater was polluted by landfill leachates. The FRI and SOM methods both can characterize the composition and evolution of DOM in the groundwater. However, the SOM analysis can identify whether protein-like moieties was bound to humic-like matter.
Wind regimes and their relation to synoptic variables using self-organizing maps
NASA Astrophysics Data System (ADS)
Berkovic, Sigalit
2018-01-01
This study exemplifies the ability of the self-organizing maps (SOM) method to directly define well known wind regimes over Israel during the entire year, except summer period, at 12:00 UTC. This procedure may be applied at other hours and is highly relevant to future automatic climatological analysis and applications. The investigation is performed by analysing surface wind measurements from 53 Israel Meteorological Service stations. The relation between the synoptic variables and the wind regimes is revealed from the averages of ECMWF ERA-INTERIM reanalysis variables for each SOM wind regime. The inspection of wind regimes and their average geopotential anomalies has shown that wind regimes relate to the gradient of the pressure anomalies, rather than to the specific isobars pattern. Two main wind regimes - strong western and the strong eastern or northern - are well known over this region. The frequencies of the regimes according to seasons is verified. Strong eastern regimes are dominant during winter, while strong western regimes are frequent in all seasons.
Mari, Montse; Nadal, Martí; Schuhmacher, Marta; Domingo, José L
2010-04-15
Kohonen's self-organizing maps (SOM) is one of the most popular artificial neural network models. In this study, SOM were used to assess the potential relationships between polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) congener profiles in environmental (soil, herbage, and ambient air) and biological (plasma, adipose tissue, and breast milk) samples, and the emissions of a hazardous waste incinerator (HWI) in Spain. The visual examination of PCDD/F congener profiles of most environmental and biological samples did not allow finding out any differences between monitors. However, the global SOM analysis of environmental and biological samples showed that the weight of the PCDD/F stack emissions of the HWI on the environmental burden and on the exposure of the individuals living in the surroundings was not significant in relation to the background levels. The results confirmed the small influence of the HWI emissions of PCDD/Fs on the environment and the population living in the neighborhood.
Analysis of Vehicle-Following Heterogeneity Using Self-Organizing Feature Maps
Cheu, Ruey Long; Guo, Xiucheng; Romo, Alicia
2014-01-01
A self-organizing feature map (SOM) was used to represent vehicle-following and to analyze the heterogeneities in vehicle-following behavior. The SOM was constructed in such a way that the prototype vectors represented vehicle-following stimuli (the follower's velocity, relative velocity, and gap) while the output signals represented the response (the follower's acceleration). Vehicle trajectories collected at a northbound segment of Interstate 80 Freeway at Emeryville, CA, were used to train the SOM. The trajectory information of two selected pairs of passenger cars was then fed into the trained SOM to identify similar stimuli experienced by the followers. The observed responses, when the stimuli were classified by the SOM into the same category, were compared to discover the interdriver heterogeneity. The acceleration profile of another passenger car was analyzed in the same fashion to observe the interdriver heterogeneity. The distribution of responses derived from data sets of car-following-car and car-following-truck, respectively, was compared to ascertain inter-vehicle-type heterogeneity. PMID:25538767
High-resolution Self-Organizing Maps for advanced visualization and dimension reduction.
Saraswati, Ayu; Nguyen, Van Tuc; Hagenbuchner, Markus; Tsoi, Ah Chung
2018-05-04
Kohonen's Self Organizing feature Map (SOM) provides an effective way to project high dimensional input features onto a low dimensional display space while preserving the topological relationships among the input features. Recent advances in algorithms that take advantages of modern computing hardware introduced the concept of high resolution SOMs (HRSOMs). This paper investigates the capabilities and applicability of the HRSOM as a visualization tool for cluster analysis and its suitabilities to serve as a pre-processor in ensemble learning models. The evaluation is conducted on a number of established benchmarks and real-world learning problems, namely, the policeman benchmark, two web spam detection problems, a network intrusion detection problem, and a malware detection problem. It is found that the visualization resulted from an HRSOM provides new insights concerning these learning problems. It is furthermore shown empirically that broad benefits from the use of HRSOMs in both clustering and classification problems can be expected. Copyright © 2018 Elsevier Ltd. All rights reserved.
Semi-automatic mapping of linear-trending bedforms using 'Self-Organizing Maps' algorithm
NASA Astrophysics Data System (ADS)
Foroutan, M.; Zimbelman, J. R.
2017-09-01
Increased application of high resolution spatial data such as high resolution satellite or Unmanned Aerial Vehicle (UAV) images from Earth, as well as High Resolution Imaging Science Experiment (HiRISE) images from Mars, makes it necessary to increase automation techniques capable of extracting detailed geomorphologic elements from such large data sets. Model validation by repeated images in environmental management studies such as climate-related changes as well as increasing access to high-resolution satellite images underline the demand for detailed automatic image-processing techniques in remote sensing. This study presents a methodology based on an unsupervised Artificial Neural Network (ANN) algorithm, known as Self Organizing Maps (SOM), to achieve the semi-automatic extraction of linear features with small footprints on satellite images. SOM is based on competitive learning and is efficient for handling huge data sets. We applied the SOM algorithm to high resolution satellite images of Earth and Mars (Quickbird, Worldview and HiRISE) in order to facilitate and speed up image analysis along with the improvement of the accuracy of results. About 98% overall accuracy and 0.001 quantization error in the recognition of small linear-trending bedforms demonstrate a promising framework.
Dai, Lijun; Wang, Lingqing; Li, Lianfang; Liang, Tao; Zhang, Yongyong; Ma, Chuanxin; Xing, Baoshan
2018-04-15
Heavy metals in lake sediment have become a great concern because their remobilization has frequently occurred under hydrodynamic disturbance in shallow lakes. In this study, heavy metals (Cr, Cu, Cd, Pb, and Zn) concentrations in the surface and core sediments of the largest freshwater lake in China, Poyang Lake, were investigated. Geostatistical prediction maps of heavy metals distribution in the surface sediment were completed as well as further data mining. Based on the prediction maps, the ranges of Cr, Cu, Cd, Pb, and Zn concentrations in the surface sediments of the entire lake were 96.2-175.2, 38.3-127.6, 0.2-2.3, 22.5-77.4, and 72.3-254.4mg/kg, respectively. A self-organizing map (SOM) was applied to find the inner element relation of heavy metals in the sediment cores. K-means clustering of the self-organizing map was also completed to define the Euclidian distance of heavy metals in the sediment cores. The geoaccumulation index (I geo ) for Poyang Lake indicated a varying degree of heavy metal contamination in the surface sediment, especially for Cu. The heavy metal contamination in the sediment profiles had similar pollution levels as those of surface sediment, except for Cd. Correlation matrix mapping and principal component analysis (PCA) were used to support the idea that Cr, Pb, and Zn may be mainly derived from both lithogenic and human activities, such as atmospheric and river inflow transportation, whereas Cu and Cd may be mainly contributed from anthropogenic sources, such as mining activities and fertilizer application. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Andre M.
2009-07-17
The advanced geospatial information extraction and analysis capabilities of a Geographic Information System (GISs) and Artificial Neural Networks (ANNs), particularly Self-Organizing Maps (SOMs), provide a topology-preserving means for reducing and understanding complex data relationships in the landscape. The Adaptive Landscape Classification Procedure (ALCP) is presented as an adaptive and evolutionary capability where varying types of data can be assimilated to address different management needs such as hydrologic response, erosion potential, habitat structure, instrumentation placement, and various forecast or what-if scenarios. This paper defines how the evaluation and analysis of spatial and/or temporal patterns in the landscape can provide insight intomore » complex ecological, hydrological, climatic, and other natural and anthropogenic-influenced processes. Establishing relationships among high-dimensional datasets through neurocomputing based pattern recognition methods can help 1) resolve large volumes of data into a structured and meaningful form; 2) provide an approach for inferring landscape processes in areas that have limited data available but exhibit similar landscape characteristics; and 3) discover the value of individual variables or groups of variables that contribute to specific processes in the landscape. Classification of hydrologic patterns in the landscape is demonstrated.« less
Universality in the Evolution of Orientation Columns in the Visual Cortex
Kaschube, Matthias; Schnabel, Michael; Löwel, Siegrid; Coppola, David M.; White, Leonard E.; Wolf, Fred
2011-01-01
The brain’s visual cortex processes information concerning form, pattern, and motion within functional maps that reflect the layout of neuronal circuits. We analyzed functional maps of orientation preference in the ferret, tree shrew, and galago—three species separated since the basal radiation of placental mammals more than 65 million years ago—and found a common organizing principle. A symmetry-based class of models for the self-organization of cortical networks predicts all essential features of the layout of these neuronal circuits, but only if suppressive long-range interactions dominate development. We show mathematically that orientation-selective long-range connectivity can mediate the required interactions. Our results suggest that self-organization has canalized the evolution of the neuronal circuitry underlying orientation preference maps into a single common design. PMID:21051599
Wang, Yeuh-Bin; Liu, Chen-Wuing; Lee, Jin-Jing
2015-08-01
To elucidate the historical improvement and advanced measure of river water quality in the Taipei metropolitan area, this study applied the self-organizing map (SOM) technique with factor analysis (FA) to differentiate the spatiotemporal distribution of natural and anthropogenic processes on river water-quality variation spanning two decades. The SOM clustered river water quality into five groups: very low pollution, low pollution, moderate pollution, high pollution, and very high pollution. FA was then used to extract four latent factors that dominated water quality from 1991 to 2011 including three anthropogenic process factors (organic, industrial, and copper pollution) and one natural process factor [suspended solids (SS) pollution]. The SOM revealed that the water quality improved substantially over time. However, the downstream river water quality was still classified as high pollution because of an increase in anthropogenic activity. FA showed the spatiotemporal pattern of each factor score decreasing over time, but the organic pollution factor downstream of the Tamsui River, as well as the SS factor scores in the upstream major tributary (the Dahan Stream), remained within the high pollution level. Therefore, we suggest that public sewage-treatment plants should be upgraded from their current secondary biological processing to advanced treatment processing. The conservation of water and soil must also be reinforced to decrease the SS loading of the Dahan Stream from natural erosion processes in the future.
Self-organizing maps for learning the edit costs in graph matching.
Neuhaus, Michel; Bunke, Horst
2005-06-01
Although graph matching and graph edit distance computation have become areas of intensive research recently, the automatic inference of the cost of edit operations has remained an open problem. In the present paper, we address the issue of learning graph edit distance cost functions for numerically labeled graphs from a corpus of sample graphs. We propose a system of self-organizing maps (SOMs) that represent the distance measuring spaces of node and edge labels. Our learning process is based on the concept of self-organization. It adapts the edit costs in such a way that the similarity of graphs from the same class is increased, whereas the similarity of graphs from different classes decreases. The learning procedure is demonstrated on two different applications involving line drawing graphs and graphs representing diatoms, respectively.
NASA Astrophysics Data System (ADS)
Fustes, D.; Manteiga, M.; Dafonte, C.; Arcay, B.; Ulla, A.; Smith, K.; Borrachero, R.; Sordo, R.
2013-11-01
Aims: A new method applied to the segmentation and further analysis of the outliers resulting from the classification of astronomical objects in large databases is discussed. The method is being used in the framework of the Gaia satellite Data Processing and Analysis Consortium (DPAC) activities to prepare automated software tools that will be used to derive basic astrophysical information that is to be included in final Gaia archive. Methods: Our algorithm has been tested by means of simulated Gaia spectrophotometry, which is based on SDSS observations and theoretical spectral libraries covering a wide sample of astronomical objects. Self-organizing maps networks are used to organize the information in clusters of objects, as homogeneously as possible according to their spectral energy distributions, and to project them onto a 2D grid where the data structure can be visualized. Results: We demonstrate the usefulness of the method by analyzing the spectra that were rejected by the SDSS spectroscopic classification pipeline and thus classified as "UNKNOWN". First, our method can help distinguish between astrophysical objects and instrumental artifacts. Additionally, the application of our algorithm to SDSS objects of unknown nature has allowed us to identify classes of objects with similar astrophysical natures. In addition, the method allows for the potential discovery of hundreds of new objects, such as white dwarfs and quasars. Therefore, the proposed method is shown to be very promising for data exploration and knowledge discovery in very large astronomical databases, such as the archive from the upcoming Gaia mission.
NASA Astrophysics Data System (ADS)
Liew, Keng-Hou; Lin, Yu-Shih; Chang, Yi-Chun; Chu, Chih-Ping
2013-12-01
Examination is a traditional way to assess learners' learning status, progress and performance after a learning activity. Except the test grade, a test sheet hides some implicit information such as test concepts, their relationships, importance, and prerequisite. The implicit information can be extracted and constructed a concept map for considering (1) the test concepts covered in the same question means these test concepts have strong relationships, and (2) questions in the same test sheet means the test concepts are relative. Concept map has been successfully employed in many researches to help instructors and learners organize relationships among concepts. However, concept map construction depends on experts who need to take effort and time for the organization of the domain knowledge. In addition, the previous researches regarding to automatic concept map construction are limited to consider all learners of a class, which have not considered personalized learning. To cope with this problem, this paper proposes a new approach to automatically extract and construct concept map based on implicit information in a test sheet. Furthermore, the proposed approach also can help learner for self-assessment and self-diagnosis. Finally, an example is given to depict the effectiveness of proposed approach.
Improving Security for SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps.
Moya, José M; Araujo, Alvaro; Banković, Zorana; de Goyeneche, Juan-Mariano; Vallejo, Juan Carlos; Malagón, Pedro; Villanueva, Daniel; Fraga, David; Romero, Elena; Blesa, Javier
2009-01-01
The reliable operation of modern infrastructures depends on computerized systems and Supervisory Control and Data Acquisition (SCADA) systems, which are also based on the data obtained from sensor networks. The inherent limitations of the sensor devices make them extremely vulnerable to cyberwarfare/cyberterrorism attacks. In this paper, we propose a reputation system enhanced with distributed agents, based on unsupervised learning algorithms (self-organizing maps), in order to achieve fault tolerance and enhanced resistance to previously unknown attacks. This approach has been extensively simulated and compared with previous proposals.
Improving Security for SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps
Moya, José M.; Araujo, Álvaro; Banković, Zorana; de Goyeneche, Juan-Mariano; Vallejo, Juan Carlos; Malagón, Pedro; Villanueva, Daniel; Fraga, David; Romero, Elena; Blesa, Javier
2009-01-01
The reliable operation of modern infrastructures depends on computerized systems and Supervisory Control and Data Acquisition (SCADA) systems, which are also based on the data obtained from sensor networks. The inherent limitations of the sensor devices make them extremely vulnerable to cyberwarfare/cyberterrorism attacks. In this paper, we propose a reputation system enhanced with distributed agents, based on unsupervised learning algorithms (self-organizing maps), in order to achieve fault tolerance and enhanced resistance to previously unknown attacks. This approach has been extensively simulated and compared with previous proposals. PMID:22291569
Innovation and application of ANN in Europe demonstrated by Kohonen maps
NASA Technical Reports Server (NTRS)
Goser, Karl
1994-01-01
One of the most important contributions to neural networks comes from Kohonen, Helsinki/Espoo, Finland, who had the idea of self-organizating maps in 1981. He verified his idea by an algorithm of which many applications make use of. The impetus for this idea came from biology, a field where the Europeans have always been very active at several research laboratories. The challenge was to model the self-organization found in the brain. Today one goal is the development of more sophisticated neurons which model the biological neurons more exactly. They should come to a better performance of neural nets with only a few complex neurons instead of many simple ones. A lot of application concepts arise from this idea: Kohonen himself applied it to speech recognition, but the project did not overcome much more than the recognition of the numerals one to ten at that time. A more promising application for self-organizing maps is process control and process monitoring. Several proposals were made which concern parameter classification of semiconductor technologies, design of integrated circuits, and control of chemical processes. Self-organizing maps were applied to robotics. The neural concept was introduced into electric power systems. At Dortmund we are working on a system which has to monitor the quality and the reliability of gears and electrical motors in equipment installed in coal mines. The results are promising and the probability to apply the system in the field is very high. A special feature of the system is that linguistic rules which are embedded in a fuzzy controller analyze the data of the self-organizing map in regard to life expectation of the gears. It seems that the fuzzy technique will introduce the technology of neural networks in a tandem mode. These technologies together with the genetic algorithms start to form the attractive field of computational intelligence.
NASA Astrophysics Data System (ADS)
Lee, S.; Maharani, Y. N.; Ki, S. J.
2015-12-01
The application of Self-Organizing Map (SOM) to analyze social vulnerability to recognize the resilience within sites is a challenging tasks. The aim of this study is to propose a computational method to identify the sites according to their similarity and to determine the most relevant variables to characterize the social vulnerability in each cluster. For this purposes, SOM is considered as an effective platform for analysis of high dimensional data. By considering the cluster structure, the characteristic of social vulnerability of the sites identification can be fully understand. In this study, the social vulnerability variable is constructed from 17 variables, i.e. 12 independent variables which represent the socio-economic concepts and 5 dependent variables which represent the damage and losses due to Merapi eruption in 2010. These variables collectively represent the local situation of the study area, based on conducted fieldwork on September 2013. By using both independent and dependent variables, we can identify if the social vulnerability is reflected onto the actual situation, in this case, Merapi eruption 2010. However, social vulnerability analysis in the local communities consists of a number of variables that represent their socio-economic condition. Some of variables employed in this study might be more or less redundant. Therefore, SOM is used to reduce the redundant variable(s) by selecting the representative variables using the component planes and correlation coefficient between variables in order to find the effective sample size. Then, the selected dataset was effectively clustered according to their similarities. Finally, this approach can produce reliable estimates of clustering, recognize the most significant variables and could be useful for social vulnerability assessment, especially for the stakeholder as decision maker. This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea. Keywords: Self-organizing map, Component Planes, Correlation coefficient, Cluster analysis, Sites identification, Social vulnerability, Merapi eruption 2010
A Graphical, Self-Organizing Approach to Classifying Electronic Meeting Output.
ERIC Educational Resources Information Center
Orwig, Richard E.; Chen, Hsinchun; Nunamaker, Jay F., Jr.
1997-01-01
Describes research using an artificial intelligence approach in the application of a Kohonen Self-Organizing Map (SOM) to the problem of classification of electronic brainstorming output and an evaluation of the results. The graphical representation of textual data produced by the Kohonen SOM suggests many opportunities for improving information…
Self-mapping in treating suicide ideation: a case study.
Robertson, Lloyd Hawkeye
2011-03-01
This case study traces the development and use of a self-mapping exercise in the treatment of a youth who had been at risk for re-attempting suicide. A life skills exercise was modified to identify units of culture called memes from which a map of the youth's self was prepared. A successful treatment plan followed the mapping exercise. The process of self-map construction is presented along with an interpretive analysis. It is suggested that therapists from a range of perspectives could use this technique in assessment and treatment.
Using Machine Learning Techniques in the Analysis of Oceanographic Data
NASA Astrophysics Data System (ADS)
Falcinelli, K. E.; Abuomar, S.
2017-12-01
Acoustic Doppler Current Profilers (ADCPs) are oceanographic tools capable of collecting large amounts of current profile data. Using unsupervised machine learning techniques such as principal component analysis, fuzzy c-means clustering, and self-organizing maps, patterns and trends in an ADCP dataset are found. Cluster validity algorithms such as visual assessment of cluster tendency and clustering index are used to determine the optimal number of clusters in the ADCP dataset. These techniques prove to be useful in analysis of ADCP data and demonstrate potential for future use in other oceanographic applications.
Topological mappings of video and audio data.
Fyfe, Colin; Barbakh, Wesam; Ooi, Wei Chuan; Ko, Hanseok
2008-12-01
We review a new form of self-organizing map which is based on a nonlinear projection of latent points into data space, identical to that performed in the Generative Topographic Mapping (GTM).(1) But whereas the GTM is an extension of a mixture of experts, this model is an extension of a product of experts.(2) We show visualisation and clustering results on a data set composed of video data of lips uttering 5 Korean vowels. Finally we note that we may dispense with the probabilistic underpinnings of the product of experts and derive the same algorithm as a minimisation of mean squared error between the prototypes and the data. This leads us to suggest a new algorithm which incorporates local and global information in the clustering. Both ot the new algorithms achieve better results than the standard Self-Organizing Map.
NASA Astrophysics Data System (ADS)
Carneiro, C.; Fraser, S. J.; Crosta, A. P.; Silva, A.; Barros, C.
2011-12-01
Regional airborne geophysical data sets are being collected worldwide to promote mineral exploration and resource development. These data sets often are collected over highly prospective terranes, where access is limited or there are environmental concerns. Such regional surveys typically consist of two or more sensor packages being flown in an aircraft over the survey area and vast amounts of near-continuous data can be acquired in a relatively short time. Increasingly, there is also a need to process such data in a timely fashion to demonstrate the data's value and indicate the potential return or value of the survey to the funding agency. To assist in the timely analysis of such regional data sets, we have used an exploratory data mining approach: the Self Organizing Map (SOM). Because SOM is based on vector quantization and measures of vector similarity, it is an ideal tool to analyze a data set consisting of disparate geophysical input parameters to look for relationships and trends. We report on our use of SOM to analyze part of a regional airborne geophysical survey collected over the prospective Anapu-Tuere region of the Brazilian Amazon. Magnetic and spectrometric gamma ray data were used as input to our SOM analysis, and the results used to discriminate and identify various rock types and produce a "pseudo" geological map over the study area. The ability of SOM to define discrete domains of rock-types with similar properties allowed us to expand upon existing geological knowledge of the area for mapping purposes; and, often it was the combination of the magnetic and radiometric responses that identified a lithology's unique response. One particular unit was identified that had an association with known gold mineralization, which consequently highlighted the prospectivity of that unit elsewhere in the survey area. Our results indicate that SOM can be used for the semi-automatic analysis of regional airborne geophysical data to assist in geological mapping and the identification of potentially significant relationships.
NASA Astrophysics Data System (ADS)
Karmakar, Mampi; Maiti, Saumen; Singh, Amrita; Ojha, Maheswar; Maity, Bhabani Sankar
2017-07-01
Modeling and classification of the subsurface lithology is very important to understand the evolution of the earth system. However, precise classification and mapping of lithology using a single framework are difficult due to the complexity and the nonlinearity of the problem driven by limited core sample information. Here, we implement a joint approach by combining the unsupervised and the supervised methods in a single framework for better classification and mapping of rock types. In the unsupervised method, we use the principal component analysis (PCA), K-means cluster analysis (K-means), dendrogram analysis, Fuzzy C-means (FCM) cluster analysis and self-organizing map (SOM). In the supervised method, we use the Bayesian neural networks (BNN) optimized by the Hybrid Monte Carlo (HMC) (BNN-HMC) and the scaled conjugate gradient (SCG) (BNN-SCG) techniques. We use P-wave velocity, density, neutron porosity, resistivity and gamma ray logs of the well U1343E of the Integrated Ocean Drilling Program (IODP) Expedition 323 in the Bering Sea slope region. While the SOM algorithm allows us to visualize the clustering results in spatial domain, the combined classification schemes (supervised and unsupervised) uncover the different patterns of lithology such of as clayey-silt, diatom-silt and silty-clay from an un-cored section of the drilled hole. In addition, the BNN approach is capable of estimating uncertainty in the predictive modeling of three types of rocks over the entire lithology section at site U1343. Alternate succession of clayey-silt, diatom-silt and silty-clay may be representative of crustal inhomogeneity in general and thus could be a basis for detail study related to the productivity of methane gas in the oceans worldwide. Moreover, at the 530 m depth down below seafloor (DSF), the transition from Pliocene to Pleistocene could be linked to lithological alternation between the clayey-silt and the diatom-silt. The present results could provide the basis for the detailed study to get deeper insight into the Bering Sea' sediment deposition and sequence.
Yasuda, Akihito; Onuki, Yoshinori; Kikuchi, Shingo; Takayama, Kozo
2010-11-01
The quality by design concept in pharmaceutical formulation development requires establishment of a science-based rationale and a design space. We integrated thin-plate spline (TPS) interpolation and Kohonen's self-organizing map (SOM) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline powders were prepared based on the standard formulation. The angle of repose, compressibility, cohesion, and dispersibility were measured as the response variables. These responses were predicted quantitatively on the basis of a nonlinear TPS. A large amount of data on these powders was generated and classified into several clusters using an SOM. The experimental values of the responses were predicted with high accuracy, and the data generated for the powders could be classified into several distinctive clusters. The SOM feature map allowed us to analyze the global and local correlations between causal factors and powder characteristics. For instance, the quantities of microcrystalline cellulose (MCC) and magnesium stearate (Mg-St) were classified distinctly into each cluster, indicating that the quantities of MCC and Mg-St were crucial for determining the powder characteristics. This technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline powder formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Comparison of Classifier Architectures for Online Neural Spike Sorting.
Saeed, Maryam; Khan, Amir Ali; Kamboh, Awais Mehmood
2017-04-01
High-density, intracranial recordings from micro-electrode arrays need to undergo Spike Sorting in order to associate the recorded neuronal spikes to particular neurons. This involves spike detection, feature extraction, and classification. To reduce the data transmission and power requirements, on-chip real-time processing is becoming very popular. However, high computational resources are required for classifiers in on-chip spike-sorters, making scalability a great challenge. In this review paper, we analyze several popular classifiers to propose five new hardware architectures using the off-chip training with on-chip classification approach. These include support vector classification, fuzzy C-means classification, self-organizing maps classification, moving-centroid K-means classification, and Cosine distance classification. The performance of these architectures is analyzed in terms of accuracy and resource requirement. We establish that the neural networks based Self-Organizing Maps classifier offers the most viable solution. A spike sorter based on the Self-Organizing Maps classifier, requires only 7.83% of computational resources of the best-reported spike sorter, hierarchical adaptive means, while offering a 3% better accuracy at 7 dB SNR.
Liu, Yuedan; Xia, Chunlei; Fan, Zhongya; Wu, Renren; Chen, Xianglin; Liu, Zuoyi
2018-01-01
Movement behaviors of an indicator species, Daphnia magna , in response to contaminants have been implemented to monitor environmental disturbances. Complexity in movement tracks of Daphnia magna was characterized by use of fractal dimension and self-organizing map. The individual movement tracks of D. magna were continuously recorded for 24 hours before and after treatments with toluene at the concentration of 10 mg/L, respectively. The general complexity in movement tracks (10 minutes) was characterized by fractal dimension. Results showed that average fractal dimension of movement tracks was decreased from 1.62 to 1.22 after treatments. The instantaneous movement parameters of movement segments in 5 s were input into the self-organizing map to investigate the swimming pattern changes under stresses of toluene. Abnormal behaviors of D. magna are more frequently observed after treatments than before treatments. Computational methods in ecological informatics could be utilized to obtain the useful information in behavioral data of D. magna and would be further applied as an in situ monitoring tool in water environment.
Stacked Multilayer Self-Organizing Map for Background Modeling.
Zhao, Zhenjie; Zhang, Xuebo; Fang, Yongchun
2015-09-01
In this paper, a new background modeling method called stacked multilayer self-organizing map background model (SMSOM-BM) is proposed, which presents several merits such as strong representative ability for complex scenarios, easy to use, and so on. In order to enhance the representative ability of the background model and make the parameters learned automatically, the recently developed idea of representative learning (or deep learning) is elegantly employed to extend the existing single-layer self-organizing map background model to a multilayer one (namely, the proposed SMSOM-BM). As a consequence, the SMSOM-BM gains several merits including strong representative ability to learn background model of challenging scenarios, and automatic determination for most network parameters. More specifically, every pixel is modeled by a SMSOM, and spatial consistency is considered at each layer. By introducing a novel over-layer filtering process, we can train the background model layer by layer in an efficient manner. Furthermore, for real-time performance consideration, we have implemented the proposed method using NVIDIA CUDA platform. Comparative experimental results show superior performance of the proposed approach.
Multiscale visual quality assessment for cluster analysis with self-organizing maps
NASA Astrophysics Data System (ADS)
Bernard, Jürgen; von Landesberger, Tatiana; Bremm, Sebastian; Schreck, Tobias
2011-01-01
Cluster analysis is an important data mining technique for analyzing large amounts of data, reducing many objects to a limited number of clusters. Cluster visualization techniques aim at supporting the user in better understanding the characteristics and relationships among the found clusters. While promising approaches to visual cluster analysis already exist, these usually fall short of incorporating the quality of the obtained clustering results. However, due to the nature of the clustering process, quality plays an important aspect, as for most practical data sets, typically many different clusterings are possible. Being aware of clustering quality is important to judge the expressiveness of a given cluster visualization, or to adjust the clustering process with refined parameters, among others. In this work, we present an encompassing suite of visual tools for quality assessment of an important visual cluster algorithm, namely, the Self-Organizing Map (SOM) technique. We define, measure, and visualize the notion of SOM cluster quality along a hierarchy of cluster abstractions. The quality abstractions range from simple scalar-valued quality scores up to the structural comparison of a given SOM clustering with output of additional supportive clustering methods. The suite of methods allows the user to assess the SOM quality on the appropriate abstraction level, and arrive at improved clustering results. We implement our tools in an integrated system, apply it on experimental data sets, and show its applicability.
NASA Astrophysics Data System (ADS)
Zeng, Xiangming; He, Ruoying; Zong, Haibo
2017-08-01
Based on long-term realistic ocean circulation hindcast for in the Bohai, Yellow, and East China Seas, 45 years (1961-2005) of sea surface salinity data were analyzed using Self-Organizing Maps (SOM) to have a better understanding of the Changjiang Diluted Water (CDW) variation. Three spatial patterns were revealed by the SOM: normal, transition, and extension. The normal pattern mainly occurs from December to May while the CDW hugs China's east coast closely and flows southward. The extension pattern is dominant from June to October when the CDW extends northwestward toward Jeju Island in an omega shape. The transition pattern prevails for the rest of the year. Pattern-averaged temperature, circulation, and chlorophyll-a concentration show significant differences. CDW area and its eastern most extension were explored as a function of the Changjiang runoff and regional upwelling index. We found that Changjiang runoff and upwelling index can be reasonable predictors for the overall CDW area, while ambient circulation determines the distribution and structure of the CDW, and thus the CDW eastern most extension.
Nakayama, Hokuto; Sakamoto, Tomoaki; Okegawa, Yuki; Kaminoyama, Kaori; Fujie, Manabu; Ichihashi, Yasunori; Kurata, Tetsuya; Motohashi, Ken; Al-Shehbaz, Ihsan; Sinha, Neelima; Kimura, Seisuke
2018-02-19
Because natural variation in wild species is likely the result of local adaptation, it provides a valuable resource for understanding plant-environmental interactions. Rorippa aquatica (Brassicaceae) is a semi-aquatic North American plant with morphological differences between several accessions, but little information available on any physiological differences. Here, we surveyed the transcriptomes of two R. aquatica accessions and identified cryptic physiological differences between them. We first reconstructed a Rorippa phylogeny to confirm relationships between the accessions. We performed large-scale RNA-seq and de novo assembly; the resulting 87,754 unigenes were then annotated via comparisons to different databases. Between-accession physiological variation was identified with transcriptomes from both accessions. Transcriptome data were analyzed with principal component analysis and self-organizing map. Results of analyses suggested that photosynthetic capability differs between the accessions. Indeed, physiological experiments revealed between-accession variation in electron transport rate and the redox state of the plastoquinone pool. These results indicated that one accession may have adapted to differences in temperature or length of the growing season.
A ground truth based comparative study on clustering of gene expression data.
Zhu, Yitan; Wang, Zuyi; Miller, David J; Clarke, Robert; Xuan, Jianhua; Hoffman, Eric P; Wang, Yue
2008-05-01
Given the variety of available clustering methods for gene expression data analysis, it is important to develop an appropriate and rigorous validation scheme to assess the performance and limitations of the most widely used clustering algorithms. In this paper, we present a ground truth based comparative study on the functionality, accuracy, and stability of five data clustering methods, namely hierarchical clustering, K-means clustering, self-organizing maps, standard finite normal mixture fitting, and a caBIG toolkit (VIsual Statistical Data Analyzer--VISDA), tested on sample clustering of seven published microarray gene expression datasets and one synthetic dataset. We examined the performance of these algorithms in both data-sufficient and data-insufficient cases using quantitative performance measures, including cluster number detection accuracy and mean and standard deviation of partition accuracy. The experimental results showed that VISDA, an interactive coarse-to-fine maximum likelihood fitting algorithm, is a solid performer on most of the datasets, while K-means clustering and self-organizing maps optimized by the mean squared compactness criterion generally produce more stable solutions than the other methods.
NASA Astrophysics Data System (ADS)
Abdi, Abdi M.; Szu, Harold H.
2003-04-01
With the growing rate of interconnection among computer systems, network security is becoming a real challenge. Intrusion Detection System (IDS) is designed to protect the availability, confidentiality and integrity of critical network information systems. Today"s approach to network intrusion detection involves the use of rule-based expert systems to identify an indication of known attack or anomalies. However, these techniques are less successful in identifying today"s attacks. Hackers are perpetually inventing new and previously unanticipated techniques to compromise information infrastructure. This paper proposes a dynamic way of detecting network intruders on time serious data. The proposed approach consists of a two-step process. Firstly, obtaining an efficient multi-user detection method, employing the recently introduced complexity minimization approach as a generalization of a standard ICA. Secondly, we identified unsupervised learning neural network architecture based on Kohonen"s Self-Organizing Map for potential functional clustering. These two steps working together adaptively will provide a pseudo-real time novelty detection attribute to supplement the current intrusion detection statistical methodology.
Li, Zhifei; Qin, Dongliang
2014-01-01
In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation. PMID:24790572
Li, Zhifei; Qin, Dongliang; Yang, Feng
2014-01-01
In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation.
Asymmetric neighborhood functions accelerate ordering process of self-organizing maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ota, Kaiichiro; Aoki, Takaaki; Kurata, Koji
2011-02-15
A self-organizing map (SOM) algorithm can generate a topographic map from a high-dimensional stimulus space to a low-dimensional array of units. Because a topographic map preserves neighborhood relationships between the stimuli, the SOM can be applied to certain types of information processing such as data visualization. During the learning process, however, topological defects frequently emerge in the map. The presence of defects tends to drastically slow down the formation of a globally ordered topographic map. To remove such topological defects, it has been reported that an asymmetric neighborhood function is effective, but only in the simple case of mapping one-dimensionalmore » stimuli to a chain of units. In this paper, we demonstrate that even when high-dimensional stimuli are used, the asymmetric neighborhood function is effective for both artificial and real-world data. Our results suggest that applying the asymmetric neighborhood function to the SOM algorithm improves the reliability of the algorithm. In addition, it enables processing of complicated, high-dimensional data by using this algorithm.« less
Molecular subtyping of bladder cancer using Kohonen self-organizing maps
Borkowska, Edyta M; Kruk, Andrzej; Jedrzejczyk, Adam; Rozniecki, Marek; Jablonowski, Zbigniew; Traczyk, Magdalena; Constantinou, Maria; Banaszkiewicz, Monika; Pietrusinski, Michal; Sosnowski, Marek; Hamdy, Freddie C; Peter, Stefan; Catto, James WF; Kaluzewski, Bogdan
2014-01-01
Kohonen self-organizing maps (SOMs) are unsupervised Artificial Neural Networks (ANNs) that are good for low-density data visualization. They easily deal with complex and nonlinear relationships between variables. We evaluated molecular events that characterize high- and low-grade BC pathways in the tumors from 104 patients. We compared the ability of statistical clustering with a SOM to stratify tumors according to the risk of progression to more advanced disease. In univariable analysis, tumor stage (log rank P = 0.006) and grade (P < 0.001), HPV DNA (P < 0.004), Chromosome 9 loss (P = 0.04) and the A148T polymorphism (rs 3731249) in CDKN2A (P = 0.02) were associated with progression. Multivariable analysis of these parameters identified that tumor grade (Cox regression, P = 0.001, OR.2.9 (95% CI 1.6–5.2)) and the presence of HPV DNA (P = 0.017, OR 3.8 (95% CI 1.3–11.4)) were the only independent predictors of progression. Unsupervised hierarchical clustering grouped the tumors into discreet branches but did not stratify according to progression free survival (log rank P = 0.39). These genetic variables were presented to SOM input neurons. SOMs are suitable for complex data integration, allow easy visualization of outcomes, and may stratify BC progression more robustly than hierarchical clustering. PMID:25142434
Ye, Chen; Li, Siyue; Yang, Yuyi; Shu, Xiao; Zhang, Jiaquan; Zhang, Quanfa
2015-01-01
The ~350 km2 water level fluctuation zone (WLFZ) in the Three Gorges Reservoir (TGR) of China, situated at the intersection of terrestrial and aquatic ecosystems, experiences a great hydrological change with prolonged winter inundation. Soil samples were collected in 12 sites pre- (September 2008) and post submergence (June 2009) in the WLFZ and analyzed for soil nutrients. Self-organizing map (SOM) and statistical analysis including multi-way ANOVA, paired-T test, and stepwise least squares multiple regression were employed to determine the spatio-temporal variations of soil nutrients in relation to submergence, and their correlations with soil physical characteristics. Results showed significant spatial variability in nutrients along ~600 km long shoreline of the TGR before and after submergence. There were higher contents of organic matter, total nitrogen (TN), and nitrate (NO3-) in the lower reach and total phosphorus (TP) in the upper reach that were primarily due to the spatial variations in soil particle size composition and anthropogenic activities. Submergence enhanced soil available potassium (K), while significantly decreased soil N, possibly due to the alterations of soil particle size composition and increase in soil pH. In addition, SOM analysis determined important roles of soil pH value, bulk density, soil particle size (i.e., silt and sand) and nutrients (TP, TK, and AK) on the spatial and temporal variations in soil quality. Our results suggest that urban sewage and agricultural runoffs are primary pollutants that affect soil nutrients in the WLFZ of TGR. PMID:25789612
Alexandridis, Thomas K; Tamouridou, Afroditi Alexandra; Pantazi, Xanthoula Eirini; Lagopodi, Anastasia L; Kashefi, Javid; Ovakoglou, Georgios; Polychronos, Vassilios; Moshou, Dimitrios
2017-09-01
In the present study, the detection and mapping of Silybum marianum (L.) Gaertn. weed using novelty detection classifiers is reported. A multispectral camera (green-red-NIR) on board a fixed wing unmanned aerial vehicle (UAV) was employed for obtaining high-resolution images. Four novelty detection classifiers were used to identify S. marianum between other vegetation in a field. The classifiers were One Class Support Vector Machine (OC-SVM), One Class Self-Organizing Maps (OC-SOM), Autoencoders and One Class Principal Component Analysis (OC-PCA). As input features to the novelty detection classifiers, the three spectral bands and texture were used. The S. marianum identification accuracy using OC-SVM reached an overall accuracy of 96%. The results show the feasibility of effective S. marianum mapping by means of novelty detection classifiers acting on multispectral UAV imagery.
Using patient data similarities to predict radiation pneumonitis via a self-organizing map
NASA Astrophysics Data System (ADS)
Chen, Shifeng; Zhou, Sumin; Yin, Fang-Fang; Marks, Lawrence B.; Das, Shiva K.
2008-01-01
This work investigates the use of the self-organizing map (SOM) technique for predicting lung radiation pneumonitis (RP) risk. SOM is an effective method for projecting and visualizing high-dimensional data in a low-dimensional space (map). By projecting patients with similar data (dose and non-dose factors) onto the same region of the map, commonalities in their outcomes can be visualized and categorized. Once built, the SOM may be used to predict pneumonitis risk by identifying the region of the map that is most similar to a patient's characteristics. Two SOM models were developed from a database of 219 lung cancer patients treated with radiation therapy (34 clinically diagnosed with Grade 2+ pneumonitis). The models were: SOMall built from all dose and non-dose factors and, for comparison, SOMdose built from dose factors alone. Both models were tested using ten-fold cross validation and Receiver Operating Characteristics (ROC) analysis. Models SOMall and SOMdose yielded ten-fold cross-validated ROC areas of 0.73 (sensitivity/specificity = 71%/68%) and 0.67 (sensitivity/specificity = 63%/66%), respectively. The significant difference between the cross-validated ROC areas of these two models (p < 0.05) implies that non-dose features add important information toward predicting RP risk. Among the input features selected by model SOMall, the two with highest impact for increasing RP risk were: (a) higher mean lung dose and (b) chemotherapy prior to radiation therapy. The SOM model developed here may not be extrapolated to treatment techniques outside that used in our database, such as several-field lung intensity modulated radiation therapy or gated radiation therapy.
NASA Astrophysics Data System (ADS)
Wheeler, K. I.; Levia, D. F., Jr.; Hudson, J. E.
2017-12-01
As trees undergo autumnal processes such as resorption, senescence, and leaf abscission, the dissolved organic matter (DOM) contribution of leaf litter leachate to streams changes. However, little research has investigated how the fluorescent DOM (FDOM) changes throughout the autumn and how this differs inter- and intraspecifically. Two of the major impacts of global climate change on forested ecosystems include altering phenology and causing forest community species and subspecies composition restructuring. We examined changes in FDOM in leachate from American beech (Fagus grandifolia Ehrh.) leaves in Maryland, Rhode Island, Vermont, and North Carolina and yellow poplar (Liriodendron tulipifera L.) leaves from Maryland throughout three different phenophases: green, senescing, and freshly abscissed. Beech leaves from Maryland and Rhode Island have previously been identified as belonging to the same distinct genetic cluster and beech trees from Vermont and the study site in North Carolina from the other. FDOM in samples was characterized using excitation-emission matrices (EEMs) and a six-component parallel factor analysis (PARAFAC) model was created to identify components. Self-organizing maps (SOMs) were used to visualize variation and patterns in the PARAFAC component proportions of the leachate samples. Phenophase and species had the greatest influence on determining where a sample mapped on the SOM when compared to genetic clusters and geographic origin. Throughout senescence, FDOM from all the trees transitioned from more protein-like components to more humic-like ones. Percent greenness of the sampled leaves and the proportion of the tyrosine-like component 1 were found to significantly differ between the two genetic beech clusters. This suggests possible differences in photosynthesis and resorption between the two genetic clusters of beech. The use of SOMs to visualize differences in patterns of senescence between the different species and genetic populations proved to be useful in ways that other multivariate analysis techniques lack.
Weyer-Menkhoff, I; Thrun, M C; Lötsch, J
2018-05-01
Pain in response to noxious cold has a complex molecular background probably involving several types of sensors. A recent observation has been the multimodal distribution of human cold pain thresholds. This study aimed at analysing reproducibility and stability of this observation and further exploration of data patterns supporting a complex background. Pain thresholds to noxious cold stimuli (range 32-0 °C, tonic: temperature decrease -1 °C/s, phasic: temperature decrease -8 °C/s) were acquired in 148 healthy volunteers. The probability density distribution was analysed using machine-learning derived methods implemented as Gaussian mixture modeling (GMM), emergent self-organizing maps and self-organizing swarms of data agents. The probability density function of pain responses was trimodal (mean thresholds at 25.9, 18.4 and 8.0 °C for tonic and 24.5, 18.1 and 7.5 °C for phasic stimuli). Subjects' association with Gaussian modes was consistent between both types of stimuli (weighted Cohen's κ = 0.91). Patterns emerging in self-organizing neuronal maps and swarms could be associated with different trends towards decreasing cold pain sensitivity in different Gaussian modes. On self-organizing maps, the third Gaussian mode emerged as particularly distinct. Thresholds at, roughly, 25 and 18 °C agree with known working temperatures of TRPM8 and TRPA1 ion channels, respectively, and hint at relative local dominance of either channel in respective subjects. Data patterns suggest involvement of further distinct mechanisms in cold pain perception at lower temperatures. Findings support data science approaches to identify biologically plausible hints at complex molecular mechanisms underlying human pain phenotypes. Sensitivity to pain is heterogeneous. Data-driven computational research approaches allow the identification of subgroups of subjects with a distinct pattern of sensitivity to cold stimuli. The subgroups are reproducible with different types of noxious cold stimuli. Subgroups show pattern that hints at distinct and inter-individually different types of the underlying molecular background. © 2018 European Pain Federation - EFIC®.
Ge Detector Data Classification with Neural Networks
NASA Astrophysics Data System (ADS)
Wilson, Carly; Martin, Ryan; Majorana Collaboration
2014-09-01
The Majorana Demonstrator experiment is searching for neutrinoless double beta-decay using p-type point contact PPC germanium detectors at the Sanford Underground Research Facility, in South Dakota. Pulse shape discrimination can be used in PPC detectors to distinguish signal-like events from backgrounds. This research program explored the possibility of building a self-organizing map that takes data collected from germanium detectors and classifies the events as either signal or background. Self organizing maps are a type of neural network that are self-learning and less susceptible to being biased from imperfect training data. We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science, the Particle and Nuclear Astrophysics Program of the National Science Foundation and the Russian Foundation for Basic Research.
Assessment of Ice Shape Roughness Using a Self-Orgainizing Map Approach
NASA Technical Reports Server (NTRS)
Mcclain, Stephen T.; Kreeger, Richard E.
2013-01-01
Self-organizing maps are neural-network techniques for representing noisy, multidimensional data aligned along a lower-dimensional and nonlinear manifold. For a large set of noisy data, each element of a finite set of codebook vectors is iteratively moved in the direction of the data closest to the winner codebook vector. Through successive iterations, the codebook vectors begin to align with the trends of the higher-dimensional data. Prior investigations of ice shapes have focused on using self-organizing maps to characterize mean ice forms. The Icing Research Branch has recently acquired a high resolution three dimensional scanner system capable of resolving ice shape surface roughness. A method is presented for the evaluation of surface roughness variations using high-resolution surface scans based on a self-organizing map representation of the mean ice shape. The new method is demonstrated for 1) an 18-in. NACA 23012 airfoil 2 AOA just after the initial ice coverage of the leading 5 of the suction surface of the airfoil, 2) a 21-in. NACA 0012 at 0AOA following coverage of the leading 10 of the airfoil surface, and 3) a cold-soaked 21-in.NACA 0012 airfoil without ice. The SOM method resulted in descriptions of the statistical coverage limits and a quantitative representation of early stages of ice roughness formation on the airfoils. Limitations of the SOM method are explored, and the uncertainty limits of the method are investigated using the non-iced NACA 0012 airfoil measurements.
Paganoni, C.A.; Chang, K.C.; Robblee, M.B.
2006-01-01
A significant data quality challenge for highly variant systems surrounds the limited ability to quantify operationally reasonable limits on the data elements being collected and provide reasonable threshold predictions. In many instances, the number of influences that drive a resulting value or operational range is too large to enable physical sampling for each influencer, or is too complicated to accurately model in an explicit simulation. An alternative method to determine reasonable observation thresholds is to employ an automation algorithm that would emulate a human analyst visually inspecting data for limits. Using the visualization technique of self-organizing maps (SOM) on data having poorly understood relationships, a methodology for determining threshold limits was developed. To illustrate this approach, analysis of environmental influences that drive the abundance of a target indicator species (the pink shrimp, Farfantepenaeus duorarum) provided a real example of applicability. The relationship between salinity and temperature and abundance of F. duorarum is well documented, but the effect of changes in water quality upstream on pink shrimp abundance is not well understood. The highly variant nature surrounding catch of a specific number of organisms in the wild, and the data available from up-stream hydrology measures for salinity and temperature, made this an ideal candidate for the approach to provide a determination about the influence of changes in hydrology on populations of organisms.
NASA Astrophysics Data System (ADS)
Paganoni, Christopher A.; Chang, K. C.; Robblee, Michael B.
2006-05-01
A significant data quality challenge for highly variant systems surrounds the limited ability to quantify operationally reasonable limits on the data elements being collected and provide reasonable threshold predictions. In many instances, the number of influences that drive a resulting value or operational range is too large to enable physical sampling for each influencer, or is too complicated to accurately model in an explicit simulation. An alternative method to determine reasonable observation thresholds is to employ an automation algorithm that would emulate a human analyst visually inspecting data for limits. Using the visualization technique of self-organizing maps (SOM) on data having poorly understood relationships, a methodology for determining threshold limits was developed. To illustrate this approach, analysis of environmental influences that drive the abundance of a target indicator species (the pink shrimp, Farfantepenaeus duorarum) provided a real example of applicability. The relationship between salinity and temperature and abundance of F. duorarum is well documented, but the effect of changes in water quality upstream on pink shrimp abundance is not well understood. The highly variant nature surrounding catch of a specific number of organisms in the wild, and the data available from up-stream hydrology measures for salinity and temperature, made this an ideal candidate for the approach to provide a determination about the influence of changes in hydrology on populations of organisms.
Scarselli, Franco; Tsoi, Ah Chung; Hagenbuchner, Markus; Noi, Lucia Di
2013-12-01
This paper proposes the combination of two state-of-the-art algorithms for processing graph input data, viz., the probabilistic mapping graph self organizing map, an unsupervised learning approach, and the graph neural network, a supervised learning approach. We organize these two algorithms in a cascade architecture containing a probabilistic mapping graph self organizing map, and a graph neural network. We show that this combined approach helps us to limit the long-term dependency problem that exists when training the graph neural network resulting in an overall improvement in performance. This is demonstrated in an application to a benchmark problem requiring the detection of spam in a relatively large set of web sites. It is found that the proposed method produces results which reach the state of the art when compared with some of the best results obtained by others using quite different approaches. A particular strength of our method is its applicability towards any input domain which can be represented as a graph. Copyright © 2013 Elsevier Ltd. All rights reserved.
Concept mapping as an approach for expert-guided model building: The example of health literacy.
Soellner, Renate; Lenartz, Norbert; Rudinger, Georg
2017-02-01
Concept mapping served as the starting point for the aim of capturing the comprehensive structure of the construct of 'health literacy.' Ideas about health literacy were generated by 99 experts and resulted in 105 statements that were subsequently organized by 27 experts in an unstructured card sorting. Multidimensional scaling was applied to the sorting data and a two and three-dimensional solution was computed. The three dimensional solution was used in subsequent cluster analysis and resulted in a concept map of nine "clusters": (1) self-regulation, (2) self-perception, (3) proactive approach to health, (4) basic literacy and numeracy skills, (5) information appraisal, (6) information search, (7) health care system knowledge and acting, (8) communication and cooperation, and (9) beneficial personality traits. Subsequently, this concept map served as a starting point for developing a "qualitative" structural model of health literacy and a questionnaire for the measurement of health literacy. On the basis of questionnaire data, a "quantitative" structural model was created by first applying exploratory factor analyses (EFA) and then cross-validating the model with confirmatory factor analyses (CFA). Concept mapping proved to be a highly valuable tool for the process of model building up to translational research in the "real world". Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hao, Ming; Rohrdantz, Christian; Janetzko, Halldór; Keim, Daniel; Dayal, Umeshwar; Haug, Lars-Erik; Hsu, Mei-Chun
2012-01-01
Twitter currently receives over 190 million tweets (small text-based Web posts) and manufacturing companies receive over 10 thousand web product surveys a day, in which people share their thoughts regarding a wide range of products and their features. A large number of tweets and customer surveys include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for determining customer sentiments. To explore high-volume customer feedback streams, we integrate three time series-based visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel idea of term associations that identify attributes, verbs, and adjectives frequently occurring together; and (3) new pixel cell-based sentiment calendars, geo-temporal map visualizations and self-organizing maps to identify co-occurring and influential opinions. We have combined these techniques into a well-fitted solution for an effective analysis of large customer feedback streams such as for movie reviews (e.g., Kung-Fu Panda) or web surveys (buyers).
Studies on Manfred Eigen's model for the self-organization of information processing.
Ebeling, W; Feistel, R
2018-05-01
In 1971, Manfred Eigen extended the principles of Darwinian evolution to chemical processes, from catalytic networks to the emergence of information processing at the molecular level, leading to the emergence of life. In this paper, we investigate some very general characteristics of this scenario, such as the valuation process of phenotypic traits in a high-dimensional fitness landscape, the effect of spatial compartmentation on the valuation, and the self-organized transition from structural to symbolic genetic information of replicating chain molecules. In the first part, we perform an analysis of typical dynamical properties of continuous dynamical models of evolutionary processes. In particular, we study the mapping of genotype to continuous phenotype spaces following the ideas of Wright and Conrad. We investigate typical features of a Schrödinger-like dynamics, the consequences of the high dimensionality, the leading role of saddle points, and Conrad's extra-dimensional bypass. In the last part, we discuss in brief the valuation of compartment models and the self-organized emergence of molecular symbols at the beginning of life.
Macromolecular target prediction by self-organizing feature maps.
Schneider, Gisbert; Schneider, Petra
2017-03-01
Rational drug discovery would greatly benefit from a more nuanced appreciation of the activity of pharmacologically active compounds against a diverse panel of macromolecular targets. Already, computational target-prediction models assist medicinal chemists in library screening, de novo molecular design, optimization of active chemical agents, drug re-purposing, in the spotting of potential undesired off-target activities, and in the 'de-orphaning' of phenotypic screening hits. The self-organizing map (SOM) algorithm has been employed successfully for these and other purposes. Areas covered: The authors recapitulate contemporary artificial neural network methods for macromolecular target prediction, and present the basic SOM algorithm at a conceptual level. Specifically, they highlight consensus target-scoring by the employment of multiple SOMs, and discuss the opportunities and limitations of this technique. Expert opinion: Self-organizing feature maps represent a straightforward approach to ligand clustering and classification. Some of the appeal lies in their conceptual simplicity and broad applicability domain. Despite known algorithmic shortcomings, this computational target prediction concept has been proven to work in prospective settings with high success rates. It represents a prototypic technique for future advances in the in silico identification of the modes of action and macromolecular targets of bioactive molecules.
NASA Astrophysics Data System (ADS)
Starkey, Andrew; Usman Ahmad, Aliyu; Hamdoun, Hassan
2017-10-01
This paper investigates the application of a novel method for classification called Feature Weighted Self Organizing Map (FWSOM) that analyses the topology information of a converged standard Self Organizing Map (SOM) to automatically guide the selection of important inputs during training for improved classification of data with redundant inputs, examined against two traditional approaches namely neural networks and Support Vector Machines (SVM) for the classification of EEG data as presented in previous work. In particular, the novel method looks to identify the features that are important for classification automatically, and in this way the important features can be used to improve the diagnostic ability of any of the above methods. The paper presents the results and shows how the automated identification of the important features successfully identified the important features in the dataset and how this results in an improvement of the classification results for all methods apart from linear discriminatory methods which cannot separate the underlying nonlinear relationship in the data. The FWSOM in addition to achieving higher classification accuracy has given insights into what features are important in the classification of each class (left and right-hand movements), and these are corroborated by already published work in this area.
Kireeva, N; Baskin, I I; Gaspar, H A; Horvath, D; Marcou, G; Varnek, A
2012-04-01
Here, the utility of Generative Topographic Maps (GTM) for data visualization, structure-activity modeling and database comparison is evaluated, on hand of subsets of the Database of Useful Decoys (DUD). Unlike other popular dimensionality reduction approaches like Principal Component Analysis, Sammon Mapping or Self-Organizing Maps, the great advantage of GTMs is providing data probability distribution functions (PDF), both in the high-dimensional space defined by molecular descriptors and in 2D latent space. PDFs for the molecules of different activity classes were successfully used to build classification models in the framework of the Bayesian approach. Because PDFs are represented by a mixture of Gaussian functions, the Bhattacharyya kernel has been proposed as a measure of the overlap of datasets, which leads to an elegant method of global comparison of chemical libraries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, L L; Liu, M J; Ma, M
2015-09-28
The central task of this study was to mine the gene-to-medium relationship. Adequate knowledge of this relationship could potentially improve the accuracy of differentially expressed gene mining. One of the approaches to differentially expressed gene mining uses conventional clustering algorithms to identify the gene-to-medium relationship. Compared to conventional clustering algorithms, self-organization maps (SOMs) identify the nonlinear aspects of the gene-to-medium relationships by mapping the input space into another higher dimensional feature space. However, SOMs are not suitable for huge datasets consisting of millions of samples. Therefore, a new computational model, the Function Clustering Self-Organization Maps (FCSOMs), was developed. FCSOMs take advantage of the theory of granular computing as well as advanced statistical learning methodologies, and are built specifically for each information granule (a function cluster of genes), which are intelligently partitioned by the clustering algorithm provided by the DAVID_6.7 software platform. However, only the gene functions, and not their expression values, are considered in the fuzzy clustering algorithm of DAVID. Compared to the clustering algorithm of DAVID, these experimental results show a marked improvement in the accuracy of classification with the application of FCSOMs. FCSOMs can handle huge datasets and their complex classification problems, as each FCSOM (modeled for each function cluster) can be easily parallelized.
Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Yamamoto, Rie; Takayama, Kozo
2013-01-01
The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and a design space. We integrated thin-plate spline (TPS) interpolation and Kohonen's self-organizing map (SOM) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared based on a standard formulation. The tensile strength, disintegration time, and stability of these variables were measured as response variables. These responses were predicted quantitatively based on nonlinear TPS. A large amount of data on these tablets was generated and classified into several clusters using an SOM. The experimental values of the responses were predicted with high accuracy, and the data generated for the tablets were classified into several distinct clusters. The SOM feature map allowed us to analyze the global and local correlations between causal factors and tablet characteristics. The results of this study suggest that increasing the proportion of microcrystalline cellulose (MCC) improved the tensile strength and the stability of tensile strength of these theophylline tablets. In addition, the proportion of MCC has an optimum value for disintegration time and stability of disintegration. Increasing the proportion of magnesium stearate extended disintegration time. Increasing the compression force improved tensile strength, but degraded the stability of disintegration. This technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulations.
NASA Astrophysics Data System (ADS)
Wang, Nini; Yin, Jianchuan
2017-12-01
A precipitation-based regionalization for the Tibetan Plateau (TP) was investigated for regional precipitation trend analysis and frequency analysis using data from 1113 grid points covering the period 1900-2014. The results utilizing self-organizing map (SOM) network suggest that four clusters of precipitation coherent zones can be identified, including the southwestern edge, the southern edge, the southeastern region, and the north central region. Regionalization results of the SOM network satisfactorily represent the influences of the atmospheric circulation systems such as the East Asian summer monsoon, the south Asian summer monsoon, and the mid-latitude westerlies. Regionalization results also well display the direct impacts of physical geographical features of the TP such as orography, topography, and land-sea distribution. Regional-scale annual precipitation trend as well as regional differences of annual and seasonal total precipitation were investigated by precipitation index such as precipitation concentration index (PCI) and Standardized Anomaly Index (SAI). Results demonstrate significant negative long-term linear trends in southeastern TP and the north central part of the TP, indicating arid and semi-arid regions in the TP are getting drier. The empirical mode decomposition (EMD) method shows an evolution of the main cycle with 4 and 12 months for all the representative grids of four sub-regions. The cross-wavelet analysis suggests that predominant and effective period of Indian Ocean Dipole (IOD) on monthly precipitation is around ˜12 months, except for the representative grid of the northwestern region.
Spatial assessment of water quality using chemometrics in the Pearl River Estuary, China
NASA Astrophysics Data System (ADS)
Wu, Meilin; Wang, Youshao; Dong, Junde; Sun, Fulin; Wang, Yutu; Hong, Yiguo
2017-03-01
A cruise was commissioned in the summer of 2009 to evaluate water quality in the Pearl River Estuary (PRE). Chemometrics such as Principal Component Analysis (PCA), Cluster analysis (CA) and Self-Organizing Map (SOM) were employed to identify anthropogenic and natural influences on estuary water quality. The scores of stations in the surface layer in the first principal component (PC1) were related to NH4-N, PO4-P, NO2-N, NO3-N, TP, and Chlorophyll a while salinity, turbidity, and SiO3-Si in the second principal component (PC2). Similarly, the scores of stations in the bottom layers in PC1 were related to PO4-P, NO2-N, NO3-N, and TP, while salinity, Chlorophyll a, NH4-N, and SiO3-Si in PC2. Results of the PCA identified the spatial distribution of the surface and bottom water quality, namely the Guangzhou urban reach, Middle reach, and Lower reach of the estuary. Both cluster analysis and PCA produced the similar results. Self-organizing map delineated the Guangzhou urban reach of the Pearl River that was mainly influenced by human activities. The middle and lower reaches of the PRE were mainly influenced by the waters in the South China Sea. The information extracted by PCA, CA, and SOM would be very useful to regional agencies in developing a strategy to carry out scientific plans for resource use based on marine system functions.
Visualizing the Topical Structure of the Medical Sciences: A Self-Organizing Map Approach
Skupin, André; Biberstine, Joseph R.; Börner, Katy
2013-01-01
Background We implement a high-resolution visualization of the medical knowledge domain using the self-organizing map (SOM) method, based on a corpus of over two million publications. While self-organizing maps have been used for document visualization for some time, (1) little is known about how to deal with truly large document collections in conjunction with a large number of SOM neurons, (2) post-training geometric and semiotic transformations of the SOM tend to be limited, and (3) no user studies have been conducted with domain experts to validate the utility and readability of the resulting visualizations. Our study makes key contributions to all of these issues. Methodology Documents extracted from Medline and Scopus are analyzed on the basis of indexer-assigned MeSH terms. Initial dimensionality is reduced to include only the top 10% most frequent terms and the resulting document vectors are then used to train a large SOM consisting of over 75,000 neurons. The resulting two-dimensional model of the high-dimensional input space is then transformed into a large-format map by using geographic information system (GIS) techniques and cartographic design principles. This map is then annotated and evaluated by ten experts stemming from the biomedical and other domains. Conclusions Study results demonstrate that it is possible to transform a very large document corpus into a map that is visually engaging and conceptually stimulating to subject experts from both inside and outside of the particular knowledge domain. The challenges of dealing with a truly large corpus come to the fore and require embracing parallelization and use of supercomputing resources to solve otherwise intractable computational tasks. Among the envisaged future efforts are the creation of a highly interactive interface and the elaboration of the notion of this map of medicine acting as a base map, onto which other knowledge artifacts could be overlaid. PMID:23554924
Chen, Qiuwen; Rui, Han; Li, Weifeng; Zhang, Yanhui
2014-06-01
Algal blooms are a serious problem in waters, which damage aquatic ecosystems and threaten drinking water safety. However, the outbreak mechanism of algal blooms is very complex with great uncertainty, especially for large water bodies where environmental conditions have obvious variation in both space and time. This study developed an innovative method which integrated a self-organizing map (SOM) and fuzzy information diffusion theory to comprehensively analyze algal bloom risks with uncertainties. The Lake Taihu was taken as study case and the long-term (2004-2010) on-site monitoring data were used. The results showed that algal blooms in Taihu Lake were classified into four categories and exhibited obvious spatial-temporal patterns. The lake was mainly characterized by moderate bloom but had high uncertainty, whereas severe blooms with low uncertainty were observed in the northwest part of the lake. The study gives insight on the spatial-temporal dynamics of algal blooms, and should help government and decision-makers outline policies and practices on bloom monitoring and prevention. The developed method provides a promising approach to estimate algal bloom risks under uncertainties. Copyright © 2014 Elsevier B.V. All rights reserved.
Reducing breast biopsies by ultrasonographic analysis and a modified self-organizing map
NASA Astrophysics Data System (ADS)
Zheng, Yi; Greenleaf, James F.; Gisvold, John J.
1997-05-01
Recent studies suggest that visual evaluation of ultrasound images could decrease negative biopsies of breast cancer diagnosis. However, visual evaluation requires highly experienced breast sonographers. The objective of this study is to develop computerized radiologist assistant to reduce breast biopsies needed for evaluating suspected breast cancer. The approach of this study utilizes a neural network and tissue features extracted from digital sonographic breast images. The features include texture parameters of breast images: characteristics of echoes within and around breast lesions, and geometrical information of breast tumors. Clusters containing only benign lesions in the feature space are then identified by a modified self- organizing map. This newly developed neural network objectively segments population distributions of lesions and accurately establishes benign and equivocal regions.t eh method was applied to high quality breast sonograms of a large number of patients collected with a controlled procedure at Mayo Clinic. The study showed that the number of biopsies in this group of women could be decreased by 40 percent to 59 percent with high confidence and that no malignancies would have been included in the nonbiopsied group. The advantages of this approach are that it is robust, simple, and effective and does not require highly experienced sonographers.
Kim, Kwang Baek; Kim, Chang Won
2015-01-01
Accurate measures of liver fat content are essential for investigating hepatic steatosis. For a noninvasive inexpensive ultrasonographic analysis, it is necessary to validate the quantitative assessment of liver fat content so that fully automated reliable computer-aided software can assist medical practitioners without any operator subjectivity. In this study, we attempt to quantify the hepatorenal index difference between the liver and the kidney with respect to the multiple severity status of hepatic steatosis. In order to do this, a series of carefully designed image processing techniques, including fuzzy stretching and edge tracking, are applied to extract regions of interest. Then, an unsupervised neural learning algorithm, the self-organizing map, is designed to establish characteristic clusters from the image, and the distribution of the hepatorenal index values with respect to the different levels of the fatty liver status is experimentally verified to estimate the differences in the distribution of the hepatorenal index. Such findings will be useful in building reliable computer-aided diagnostic software if combined with a good set of other characteristic feature sets and powerful machine learning classifiers in the future.
Kim, Kwang Baek
2015-01-01
Accurate measures of liver fat content are essential for investigating hepatic steatosis. For a noninvasive inexpensive ultrasonographic analysis, it is necessary to validate the quantitative assessment of liver fat content so that fully automated reliable computer-aided software can assist medical practitioners without any operator subjectivity. In this study, we attempt to quantify the hepatorenal index difference between the liver and the kidney with respect to the multiple severity status of hepatic steatosis. In order to do this, a series of carefully designed image processing techniques, including fuzzy stretching and edge tracking, are applied to extract regions of interest. Then, an unsupervised neural learning algorithm, the self-organizing map, is designed to establish characteristic clusters from the image, and the distribution of the hepatorenal index values with respect to the different levels of the fatty liver status is experimentally verified to estimate the differences in the distribution of the hepatorenal index. Such findings will be useful in building reliable computer-aided diagnostic software if combined with a good set of other characteristic feature sets and powerful machine learning classifiers in the future. PMID:26247023
Pellicer-Chenoll, Maite; Garcia-Massó, Xavier; Morales, Jose; Serra-Añó, Pilar; Solana-Tramunt, Mònica; González, Luis-Millán; Toca-Herrera, José-Luis
2015-06-01
The relationship among physical activity, physical fitness and academic achievement in adolescents has been widely studied; however, controversy concerning this topic persists. The methods used thus far to analyse the relationship between these variables have included mostly traditional lineal analysis according to the available literature. The aim of this study was to perform a visual analysis of this relationship with self-organizing maps and to monitor the subject's evolution during the 4 years of secondary school. Four hundred and forty-four students participated in the study. The physical activity and physical fitness of the participants were measured, and the participants' grade point averages were obtained from the five participant institutions. Four main clusters representing two primary student profiles with few differences between boys and girls were observed. The clustering demonstrated that students with higher energy expenditure and better physical fitness exhibited lower body mass index (BMI) and higher academic performance, whereas those adolescents with lower energy expenditure exhibited worse physical fitness, higher BMI and lower academic performance. With respect to the evolution of the students during the 4 years, ∼25% of the students originally clustered in a negative profile moved to a positive profile, and there was no movement in the opposite direction. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
The characteristic analysis of Korean August rainfall using Self-Organizing Maps
NASA Astrophysics Data System (ADS)
Lee, S. H.; Seo, K. H.; Kim, J.
2016-12-01
The characteristics of the low-level pressure pattern during Korean August rainfall have been investigated using a neural network-based cluster analysis called self-organizing map (SOM). On the basis of various SOM mode analyses, five major phases of low-level pressure pattern are dynamically identified. The first mode occurs with a distinct circulation state corresponding to a strengthened subtropical high to the south of Korea and migratory low passing though north of Korea. The cold, dry inflow from the north by the cyclonic anomaly and warm, moist air produced by the WNPSH demonstrate the convective instability that provides reasonably intense precipitation over the Korean Peninsula. The second mode represents that low-level anticyclonic anomaly is located to the south of Korea and low-level anticyclonic anomaly is located over the Sea of Okhotsk. The two high pressure pattern conflict with each other forming front, which is identified as the frontal precipitation. The third mode represents local instability with no specific large-scale environmental condition; weak low-level jets, weak upper-level jets, no front, and no typhoon. The fourth mode is typhoon near Taiwan suppling a lot of water vapor in the Korean peninsula to be unloaded precipitation. This can be represented as an indirect-typhoon mode. The fifth mode can be classified as direct-typhoon mode, which typhoon passes though the Korea.
Molecular subtyping of bladder cancer using Kohonen self-organizing maps.
Borkowska, Edyta M; Kruk, Andrzej; Jedrzejczyk, Adam; Rozniecki, Marek; Jablonowski, Zbigniew; Traczyk, Magdalena; Constantinou, Maria; Banaszkiewicz, Monika; Pietrusinski, Michal; Sosnowski, Marek; Hamdy, Freddie C; Peter, Stefan; Catto, James W F; Kaluzewski, Bogdan
2014-10-01
Kohonen self-organizing maps (SOMs) are unsupervised Artificial Neural Networks (ANNs) that are good for low-density data visualization. They easily deal with complex and nonlinear relationships between variables. We evaluated molecular events that characterize high- and low-grade BC pathways in the tumors from 104 patients. We compared the ability of statistical clustering with a SOM to stratify tumors according to the risk of progression to more advanced disease. In univariable analysis, tumor stage (log rank P = 0.006) and grade (P < 0.001), HPV DNA (P < 0.004), Chromosome 9 loss (P = 0.04) and the A148T polymorphism (rs 3731249) in CDKN2A (P = 0.02) were associated with progression. Multivariable analysis of these parameters identified that tumor grade (Cox regression, P = 0.001, OR.2.9 (95% CI 1.6-5.2)) and the presence of HPV DNA (P = 0.017, OR 3.8 (95% CI 1.3-11.4)) were the only independent predictors of progression. Unsupervised hierarchical clustering grouped the tumors into discreet branches but did not stratify according to progression free survival (log rank P = 0.39). These genetic variables were presented to SOM input neurons. SOMs are suitable for complex data integration, allow easy visualization of outcomes, and may stratify BC progression more robustly than hierarchical clustering. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Russo, Tommaso; Scardi, Michele; Cataudella, Stefano
2014-01-01
We propose a new graphical approach to the analysis of multi-temporal morphological and ecological data concerning the life history of fish, which can typically serves models in ecomorphological investigations because they often undergo significant ontogenetic changes. These changes can be very complex and difficult to describe, so that visualization, abstraction and interpretation of the underlying relationships are often impeded. Therefore, classic ecomorphological analyses of covariation between morphology and ecology, performed by means of multivariate techniques, may result in non-exhaustive models. The Self Organizing map (SOM) is a new, effective approach for pursuing this aim. In this paper, lateral outlines of larval stages of gilthead sea bream (Sparus aurata) and dusky grouper (Epinephelus marginatus) were recorded and broken down using by means of Elliptic Fourier Analysis (EFA). Gut contents of the same specimens were also collected and analyzed. Then, shape and trophic habits data were examined by SOM, which allows both a powerful visualization of shape changes and an easy comparison with trophic habit data, via their superimposition onto the trained SOM. Thus, the SOM provides a direct visual approach for matching morphological and ecological changes during fish ontogenesis. This method could be used as a tool to extract and investigate relationships between shape and other sinecological or environmental variables, which cannot be taken into account simultaneously using conventional statistical methods. PMID:24466185
NASA Astrophysics Data System (ADS)
Abbas, M.; Jardani, A.; Soueid Ahmed, A.; Revil, A.; Brigaud, L.; Bégassat, Ph.; Dupont, J. P.
2017-11-01
Mapping the redox potential of shallow aquifers impacted by hydrocarbon contaminant plumes is important for the characterization and remediation of such contaminated sites. The redox potential of groundwater is indicative of the biodegradation of hydrocarbons and is important in delineating the shapes of contaminant plumes. The self-potential method was used to reconstruct the redox potential of groundwater associated with an organic-rich contaminant plume in northern France. The self-potential technique is a passive technique consisting in recording the electrical potential distribution at the surface of the Earth. A self-potential map is essentially the sum of two contributions, one associated with groundwater flow referred to as the electrokinetic component, and one associated with redox potential anomalies referred to as the electroredox component (thermoelectric and diffusion potentials are generally negligible). A groundwater flow model was first used to remove the electrokinetic component from the observed self-potential data. Then, a residual self-potential map was obtained. The source current density generating the residual self-potential signals is assumed to be associated with the position of the water table, an interface characterized by a change in both the electrical conductivity and the redox potential. The source current density was obtained through an inverse problem by minimizing a cost function including a data misfit contribution and a regularizer. This inversion algorithm allows the determination of the vertical and horizontal components of the source current density taking into account the electrical conductivity distribution of the saturated and non-saturated zones obtained independently by electrical resistivity tomography. The redox potential distribution was finally determined from the inverted residual source current density. A redox map was successfully built and the estimated redox potential values correlated well with in-situ measurements.
NASA Astrophysics Data System (ADS)
Wheeler, K. I.; Levia, D. F.; Hudson, J. E.
2017-09-01
In autumn, the dissolved organic matter (DOM) contribution of leaf litter leachate to streams in forested watersheds changes as trees undergo resorption, senescence, and leaf abscission. Despite its biogeochemical importance, little work has investigated how leaf litter leachate DOM changes throughout autumn and how any changes might differ interspecifically and intraspecifically. Since climate change is expected to cause vegetation migration, it is necessary to learn how changes in forest composition could affect DOM inputs via leaf litter leachate. We examined changes in leaf litter leachate fluorescent DOM (FDOM) from American beech (
A Neurocomputational Account of Taxonomic Responding and Fast Mapping in Early Word Learning
ERIC Educational Resources Information Center
Mayor, Julien; Plunkett, Kim
2010-01-01
We present a neurocomputational model with self-organizing maps that accounts for the emergence of taxonomic responding and fast mapping in early word learning, as well as a rapid increase in the rate of acquisition of words observed in late infancy. The quality and efficiency of generalization of word-object associations is directly related to…
Self-Organizing Maps-based ocean currents forecasting system.
Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir
2016-03-16
An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training.
Self-Organizing Maps-based ocean currents forecasting system
Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir
2016-01-01
An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training. PMID:26979129
Personal sleep pattern visualization using sequence-based kernel self-organizing map on sound data.
Wu, Hongle; Kato, Takafumi; Yamada, Tomomi; Numao, Masayuki; Fukui, Ken-Ichi
2017-07-01
We propose a method to discover sleep patterns via clustering of sound events recorded during sleep. The proposed method extends the conventional self-organizing map algorithm by kernelization and sequence-based technologies to obtain a fine-grained map that visualizes the distribution and changes of sleep-related events. We introduced features widely applied in sound processing and popular kernel functions to the proposed method to evaluate and compare performance. The proposed method provides a new aspect of sleep monitoring because the results demonstrate that sound events can be directly correlated to an individual's sleep patterns. In addition, by visualizing the transition of cluster dynamics, sleep-related sound events were found to relate to the various stages of sleep. Therefore, these results empirically warrant future study into the assessment of personal sleep quality using sound data. Copyright © 2017 Elsevier B.V. All rights reserved.
Complex Networks in Psychological Models
NASA Astrophysics Data System (ADS)
Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.
We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.
Self-organization and clustering algorithms
NASA Technical Reports Server (NTRS)
Bezdek, James C.
1991-01-01
Kohonen's feature maps approach to clustering is often likened to the k or c-means clustering algorithms. Here, the author identifies some similarities and differences between the hard and fuzzy c-Means (HCM/FCM) or ISODATA algorithms and Kohonen's self-organizing approach. The author concludes that some differences are significant, but at the same time there may be some important unknown relationships between the two methodologies. Several avenues of research are proposed.
Self-organized criticality in single-neuron excitability
NASA Astrophysics Data System (ADS)
Gal, Asaf; Marom, Shimon
2013-12-01
We present experimental and theoretical arguments, at the single-neuron level, suggesting that neuronal response fluctuations reflect a process that positions the neuron near a transition point that separates excitable and unexcitable phases. This view is supported by the dynamical properties of the system as observed in experiments on isolated cultured cortical neurons, as well as by a theoretical mapping between the constructs of self-organized criticality and membrane excitability biophysics.
A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations
NASA Astrophysics Data System (ADS)
Reboux, Sylvain; Schrader, Birte; Sbalzarini, Ivo F.
2012-05-01
We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection-diffusion, the Burgers equation, the Buckley-Leverett five-spot problem, and curvature-driven level-set surface refinement.
Bressington, Daniel T; Wong, Wai-Kit; Lam, Kar Kei Claire; Chien, Wai Tong
2018-01-01
Student nurses are provided with a great deal of knowledge within university, but they can find it difficult to relate theory to nursing practice. This study aimed to test the appropriateness and feasibility of assessing Novak's concept mapping as an educational strategy to strengthen the theory-practice link, encourage meaningful learning and enhance learning self-efficacy in nursing students. This pilot study utilised a mixed-methods quasi-experimental design. The study was conducted in a University school of Nursing in Hong Kong. A total of 40 third-year pre-registration Asian mental health nursing students completed the study; 12 in the concept mapping (CM) group and 28 in the usual teaching methods (UTM) group. The impact of concept mapping was evaluated thorough analysis of quantitative changes in students' learning self-efficacy, analysis of the structure and contents of the concept maps (CM group), a quantitative measure of students' opinions about their reflective learning activities and content analysis of qualitative data from reflective written accounts (CM group). There were no significant differences in self-reported learning self-efficacy between the two groups (p=0.38). The concept mapping helped students identify their current level of understanding, but the increased awareness may cause an initial drop in learning self-efficacy. The results highlight that most CM students were able to demonstrate meaningful learning and perceived that concept mapping was a useful reflective learning strategy to help them to link theory and practice. The results provide preliminary evidence that the concept mapping approach can be useful to help mental health nursing students visualise their learning progress and encourage the integration of theoretical knowledge with clinical knowledge. Combining concept mapping data with quantitative measures and qualitative reflective journal data appears to be a useful way of assessing and understanding the effectiveness of concept mapping. Future studies should utilise a larger sample size and consider using the approach as a targeted intervention immediately before and during clinical learning placements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chavez-Alvarez, Rocio; Chavoya, Arturo; Mendez-Vazquez, Andres
2014-01-01
DNA microarrays and cell cycle synchronization experiments have made possible the study of the mechanisms of cell cycle regulation of Saccharomyces cerevisiae by simultaneously monitoring the expression levels of thousands of genes at specific time points. On the other hand, pattern recognition techniques can contribute to the analysis of such massive measurements, providing a model of gene expression level evolution through the cell cycle process. In this paper, we propose the use of one of such techniques –an unsupervised artificial neural network called a Self-Organizing Map (SOM)–which has been successfully applied to processes involving very noisy signals, classifying and organizing them, and assisting in the discovery of behavior patterns without requiring prior knowledge about the process under analysis. As a test bed for the use of SOMs in finding possible relationships among genes and their possible contribution in some biological processes, we selected 282 S. cerevisiae genes that have been shown through biological experiments to have an activity during the cell cycle. The expression level of these genes was analyzed in five of the most cited time series DNA microarray databases used in the study of the cell cycle of this organism. With the use of SOM, it was possible to find clusters of genes with similar behavior in the five databases along two cell cycles. This result suggested that some of these genes might be biologically related or might have a regulatory relationship, as was corroborated by comparing some of the clusters obtained with SOMs against a previously reported regulatory network that was generated using biological knowledge, such as protein-protein interactions, gene expression levels, metabolism dynamics, promoter binding, and modification, regulation and transport of proteins. The methodology described in this paper could be applied to the study of gene relationships of other biological processes in different organisms. PMID:24699245
Using self-organizing maps to develop ambient air quality classifications: a time series example
2014-01-01
Background Development of exposure metrics that capture features of the multipollutant environment are needed to investigate health effects of pollutant mixtures. This is a complex problem that requires development of new methodologies. Objective Present a self-organizing map (SOM) framework for creating ambient air quality classifications that group days with similar multipollutant profiles. Methods Eight years of day-level data from Atlanta, GA, for ten ambient air pollutants collected at a central monitor location were classified using SOM into a set of day types based on their day-level multipollutant profiles. We present strategies for using SOM to develop a multipollutant metric of air quality and compare results with more traditional techniques. Results Our analysis found that 16 types of days reasonably describe the day-level multipollutant combinations that appear most frequently in our data. Multipollutant day types ranged from conditions when all pollutants measured low to days exhibiting relatively high concentrations for either primary or secondary pollutants or both. The temporal nature of class assignments indicated substantial heterogeneity in day type frequency distributions (~1%-14%), relatively short-term durations (<2 day persistence), and long-term and seasonal trends. Meteorological summaries revealed strong day type weather dependencies and pollutant concentration summaries provided interesting scenarios for further investigation. Comparison with traditional methods found SOM produced similar classifications with added insight regarding between-class relationships. Conclusion We find SOM to be an attractive framework for developing ambient air quality classification because the approach eases interpretation of results by allowing users to visualize classifications on an organized map. The presented approach provides an appealing tool for developing multipollutant metrics of air quality that can be used to support multipollutant health studies. PMID:24990361
Wavelet analysis of polarization maps of polycrystalline biological fluids networks
NASA Astrophysics Data System (ADS)
Ushenko, Y. A.
2011-12-01
The optical model of human joints synovial fluid is proposed. The statistic (statistic moments), correlation (autocorrelation function) and self-similar (Log-Log dependencies of power spectrum) structure of polarization two-dimensional distributions (polarization maps) of synovial fluid has been analyzed. It has been shown that differentiation of polarization maps of joint synovial fluid with different physiological state samples is expected of scale-discriminative analysis. To mark out of small-scale domain structure of synovial fluid polarization maps, the wavelet analysis has been used. The set of parameters, which characterize statistic, correlation and self-similar structure of wavelet coefficients' distributions of different scales of polarization domains for diagnostics and differentiation of polycrystalline network transformation connected with the pathological processes, has been determined.
Analysis of short single rest/activation epoch fMRI by self-organizing map neural network
NASA Astrophysics Data System (ADS)
Erberich, Stephan G.; Dietrich, Thomas; Kemeny, Stefan; Krings, Timo; Willmes, Klaus; Thron, Armin; Oberschelp, Walter
2000-04-01
Functional magnet resonance imaging (fMRI) has become a standard non invasive brain imaging technique delivering high spatial resolution. Brain activation is determined by magnetic susceptibility of the blood oxygen level (BOLD effect) during an activation task, e.g. motor, auditory and visual tasks. Usually box-car paradigms have 2 - 4 rest/activation epochs with at least an overall of 50 volumes per scan in the time domain. Statistical test based analysis methods need a large amount of repetitively acquired brain volumes to gain statistical power, like Student's t-test. The introduced technique based on a self-organizing neural network (SOM) makes use of the intrinsic features of the condition change between rest and activation epoch and demonstrated to differentiate between the conditions with less time points having only one rest and one activation epoch. The method reduces scan and analysis time and the probability of possible motion artifacts from the relaxation of the patients head. Functional magnet resonance imaging (fMRI) of patients for pre-surgical evaluation and volunteers were acquired with motor (hand clenching and finger tapping), sensory (ice application), auditory (phonological and semantic word recognition task) and visual paradigms (mental rotation). For imaging we used different BOLD contrast sensitive Gradient Echo Planar Imaging (GE-EPI) single-shot pulse sequences (TR 2000 and 4000, 64 X 64 and 128 X 128, 15 - 40 slices) on a Philips Gyroscan NT 1.5 Tesla MR imager. All paradigms were RARARA (R equals rest, A equals activation) with an epoch width of 11 time points each. We used the self-organizing neural network implementation described by T. Kohonen with a 4 X 2 2D neuron map. The presented time course vectors were clustered by similar features in the 2D neuron map. Three neural networks were trained and used for labeling with the time course vectors of one, two and all three on/off epochs. The results were also compared by using a Kolmogorov-Smirnov statistical test of all 66 time points. To remove non- periodical time courses from training an auto-correlation function and bandwidth limiting Fourier filtering in combination with Gauss temporal smoothing was used. None of the trained maps, with one, two and three epochs, were significantly different which indicates that the feature space of only one on/off epoch is sufficient to differentiate between the rest and task condition. We found, that without pre-processing of the data no meaningful results can be achieved because of the huge amount of the non-activated and background voxels represents the majority of the features and is therefore learned by the SOM. Thus it is crucial to remove unnecessary capacity load of the neural network by selection of the training input, using auto-correlation function and/or Fourier spectrum analysis. However by reducing the time points to one rest and one activation epoch either strong auto- correlation or a precise periodical frequency is vanishing. Self-organizing maps can be used to separate rest and activation epochs of with only a 1/3 of the usually acquired time points. Because of the nature of the SOM technique, the pattern or feature separation, only the presence of a state change between the conditions is necessary for differentiation. Also the variance of the individual hemodynamic response function (HRF) and the variance of the spatial different regional cerebral blood flow (rCBF) is learned from the subject and not compared with a fixed model done by statistical evaluation. We found that reducing the information to only a few time points around the BOLD effect was not successful due to delays of rCBF and the insufficient extension of the BOLD feature in the time space. Especially for patient routine observation and pre-surgical planing a reduced scan time is of interest.
Control of the NASA Langley 16-Foot Transonic Tunnel with the Self-Organizing Feature Map
NASA Technical Reports Server (NTRS)
Motter, Mark A.
1998-01-01
A predictive, multiple model control strategy is developed based on an ensemble of local linear models of the nonlinear system dynamics for a transonic wind tunnel. The local linear models are estimated directly from the weights of a Self Organizing Feature Map (SOFM). Local linear modeling of nonlinear autonomous systems with the SOFM is extended to a control framework where the modeled system is nonautonomous, driven by an exogenous input. This extension to a control framework is based on the consideration of a finite number of subregions in the control space. Multiple self organizing feature maps collectively model the global response of the wind tunnel to a finite set of representative prototype controls. These prototype controls partition the control space and incorporate experimental knowledge gained from decades of operation. Each SOFM models the combination of the tunnel with one of the representative controls, over the entire range of operation. The SOFM based linear models are used to predict the tunnel response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal. Each SOFM provides a codebook representation of the tunnel dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the minimization of a similarity metric which is the essence of the self organizing feature of the map. Thus, the SOFM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme than selects the best available model for the applied control. Experimental results of controlling the wind tunnel, with the proposed method, during operational runs where strict research requirements on the control of the Mach number were met, are presented. Comparison to similar runs under the same conditions with the tunnel controlled by either the existing controller or an expert operator indicate the superiority of the method.
Mapping Rock and Soil Units in the MPF IMP SuperPan Using a Kohonen Self Organizing Map
NASA Technical Reports Server (NTRS)
Farrand, W.; Merenyi, E.; Murchie, S.; Barnouin-Jha, O.; Johnson, J.
2004-01-01
The 1997 Mars Pathfinder mission provided information on a site in the Ares Vallis floodplain. Initial analysis of multispectral data from the Imager for Mars Pathfinder (IMP) indicated the presence of only a single rock type, the 'gray rock' spectral class and various coated variants thereof (e.g., 'maroon rock'). Continued analysis of the IMP 'SuperPan' mosaic has confirmed multiple examples of a second 'black rock' spectral class existing as small cobbles in the near field and as boulders in the far field. These results are consistent with recent analysis of MGS Thermal Emission Spectrometer (TES) data which indicates that there is likely a mix of both 'Surface Type 1' (ST1) and 'Surface Type 2' (ST2) spectral classes at the MPF landing site. Nominally, the black rock spectral class would correspond to ST1 (basalts) and 'gray rock' would correspond to ST2 (andesites). Orbital remote sensing has also revealed the pervasive presence of layering on Mars. Recently it was suggested that there are extensive outcrops of the black rock spectral class in the SuperPan far field on the flanks of the Twin Peaks and on the rim of Big Crater. These authors suggested that these exposures represented outcrops of black rock from beneath a surficial, flood deposited layer. In this work, we have reexamined the MPF IMP SuperPan mosaic using an artificial neural network self organizing map (SOM) processing architecture in order to classify the distribution of spectral classes within the SuperPan. In this paper, we present initial results from that work and draw specific attention to a subset of the identified spectral classes in order to address questions relating to whether there are extensive exposures of black rock in the IMP far field, what other materials might be exposed in the far field, and what evidence there is for subsurface layering at the MPF landing site.
Predictive Multiple Model Switching Control with the Self-Organizing Map
NASA Technical Reports Server (NTRS)
Motter, Mark A.
2000-01-01
A predictive, multiple model control strategy is developed by extension of self-organizing map (SOM) local dynamic modeling of nonlinear autonomous systems to a control framework. Multiple SOMs collectively model the global response of a nonautonomous system to a finite set of representative prototype controls. Each SOM provides a codebook representation of the dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the global minimization of a similarity metric. The SOM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme that selects the best available model for the applied control. SOM based linear models are used to predict the response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal.
Applying CBR to machine tool product configuration design oriented to customer requirements
NASA Astrophysics Data System (ADS)
Wang, Pengjia; Gong, Yadong; Xie, Hualong; Liu, Yongxian; Nee, Andrew Yehching
2017-01-01
Product customization is a trend in the current market-oriented manufacturing environment. However, deduction from customer requirements to design results and evaluation of design alternatives are still heavily reliant on the designer's experience and knowledge. To solve the problem of fuzziness and uncertainty of customer requirements in product configuration, an analysis method based on the grey rough model is presented. The customer requirements can be converted into technical characteristics effectively. In addition, an optimization decision model for product planning is established to help the enterprises select the key technical characteristics under the constraints of cost and time to serve the customer to maximal satisfaction. A new case retrieval approach that combines the self-organizing map and fuzzy similarity priority ratio method is proposed in case-based design. The self-organizing map can reduce the retrieval range and increase the retrieval efficiency, and the fuzzy similarity priority ratio method can evaluate the similarity of cases comprehensively. To ensure that the final case has the best overall performance, an evaluation method of similar cases based on grey correlation analysis is proposed to evaluate similar cases to select the most suitable case. Furthermore, a computer-aided system is developed using MATLAB GUI to assist the product configuration design. The actual example and result on an ETC series machine tool product show that the proposed method is effective, rapid and accurate in the process of product configuration. The proposed methodology provides a detailed instruction for the product configuration design oriented to customer requirements.
Catchment classification by runoff behaviour with self-organizing maps (SOM)
NASA Astrophysics Data System (ADS)
Ley, R.; Casper, M. C.; Hellebrand, H.; Merz, R.
2011-09-01
Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (ERCs) and flow duration curves of 53 gauged catchments in Rhineland-Palatinate, Germany, for the period from 1993 to 2008, covering a huge variability of weather and runoff conditions. The spatio-temporal variability of event-runoff coefficients and flow duration curves are assumed to represent how different catchments "transform" rainfall into runoff. From the runoff coefficients and flow duration curves we derive 12 signature indices describing various aspects of catchment response behaviour to characterise each catchment. Hydrological similarity of catchments is defined by high similarities of their indices. We identify, analyse and describe hydrologically similar catchments by cluster analysis using Self-Organizing Maps (SOM). As a result of the cluster analysis we get five clusters of similarly behaving catchments where each cluster represents one differentiated class of catchments. As catchment response behaviour is supposed to be dependent on its physiographic and climatic characteristics, we compare groups of catchments clustered by response behaviour with clusters of catchments based on catchment properties. Results show an overlap of 67% between these two pools of clustered catchments which can be improved using the topologic correctness of SOMs.
Catchment classification by runoff behaviour with self-organizing maps (SOM)
NASA Astrophysics Data System (ADS)
Ley, R.; Casper, M. C.; Hellebrand, H.; Merz, R.
2011-03-01
Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (ERCs) and flow duration curves of 53 gauged catchments in Rhineland-Palatinate, Germany, for the period from 1993 to 2008, covering a huge variability of weather and runoff conditions. The spatio-temporal variability of event-runoff coefficients and flow duration curves are assumed to represent how different catchments "transform" rainfall into runoff. From the runoff coefficients and flow duration curves we derive 12 signature indices describing various aspects of catchment response behaviour to characterise each catchment. Hydrological similarity of catchments is defined by high similarities of their indices. We identify, analyse and describe hydrologically similar catchments by cluster analysis using Self-Organizing Maps (SOM). As a result of the cluster analysis we get five clusters of similarly behaving catchments where each cluster represents one differentiated class of catchments. As catchment response behaviour is supposed to be dependent on its physiographic and climatic characteristics, we compare groups of catchments clustered by response behaviour with clusters of catchments based on catchment properties. Results show an overlap of 67% between these two pools of clustered catchments which can be improved using the topologic correctness of SOMs.
The novel approach to the biomonitor survey using one- and two-dimensional Kohonen networks.
Deljanin, Isidora; Antanasijević, Davor; Urošević, Mira Aničić; Tomašević, Milica; Perić-Grujić, Aleksandra; Ristić, Mirjana
2015-10-01
To compare the applicability of the leaves of horse chestnut (Aesculus hippocastanum) and linden (Tilia spp.) as biomonitors of trace element concentrations, a coupled approach of one- and two-dimensional Kohonen networks was applied for the first time. The self-organizing networks (SONs) and the self-organizing maps (SOMs) were applied on the database obtained for the element accumulation (Cr, Fe, Ni, Cu, Zn, Pb, V, As, Cd) and the SOM for the Pb isotopes in the leaves for a multiyear period (2002-2006). A. hippocastanum seems to be a more appropriate biomonitor since it showed more consistent results in the analysis of trace elements and Pb isotopes. The SOM proved to be a suitable and sensitive tool for assessing differences in trace element concentrations and for the Pb isotopic composition in leaves of different species. In addition, the SON provided more clear data on seasonal and temporal accumulation of trace elements in the leaves and could be recommended complementary to the SOM analysis of trace elements in biomonitoring studies.
Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju
2015-01-01
Indoor location-based services (iLBS) are extremely dynamic and changeable, and include numerous resources and mobile devices. In particular, the network infrastructure requires support for high scalability in the indoor environment, and various resource lookups are requested concurrently and frequently from several locations based on the dynamic network environment. A traditional map-based centralized approach for iLBSs has several disadvantages: it requires global knowledge to maintain a complete geographic indoor map; the central server is a single point of failure; it can also cause low scalability and traffic congestion; and it is hard to adapt to a change of service area in real time. This paper proposes a self-organizing and fully distributed platform for iLBSs. The proposed self-organizing distributed platform provides a dynamic reconfiguration of locality accuracy and service coverage by expanding and contracting dynamically. In order to verify the suggested platform, scalability performance according to the number of inserted or deleted nodes composing the dynamic infrastructure was evaluated through a simulation similar to the real environment. PMID:26016908
Jiang, Li; Tetrick, Lois E
2016-09-01
The present study introduced a preliminary measure of employee safety motivation based on the definition of self-determination theory from Fleming (2012) research and validated the structure of self-determined safety motivation (SDSM) by surveying 375 employees in a Chinese high-risk organization. First, confirmatory factor analysis (CFA) was used to examine the factor structure of SDSM, and indices of five-factor model CFA met the requirements. Second, a nomological network was examined to provide evidence of the construct validity of SDSM. Beyond construct validity, the analysis also produced some interesting results concerning the relationship between leadership antecedents and safety motivation, and between safety motivation and safety behavior. Autonomous motivation was positively related to transformational leadership, negatively related to abusive supervision, and positively related to safety behavior. Controlled motivation with the exception of introjected regulation was negatively related to transformational leadership, positively related to abusive supervision, and negatively related to safety behavior. The unique role of introjected regulation and future research based on self-determination theory were discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adding dynamic rules to self-organizing fuzzy systems
NASA Technical Reports Server (NTRS)
Buhusi, Catalin V.
1992-01-01
This paper develops a Dynamic Self-Organizing Fuzzy System (DSOFS) capable of adding, removing, and/or adapting the fuzzy rules and the fuzzy reference sets. The DSOFS background consists of a self-organizing neural structure with neuron relocation features which will develop a map of the input-output behavior. The relocation algorithm extends the topological ordering concept. Fuzzy rules (neurons) are dynamically added or released while the neural structure learns the pattern. The DSOFS advantages are the automatic synthesis and the possibility of parallel implementation. A high adaptation speed and a reduced number of neurons is needed in order to keep errors under some limits. The computer simulation results are presented in a nonlinear systems modelling application.
Feature-based alert correlation in security systems using self organizing maps
NASA Astrophysics Data System (ADS)
Kumar, Munesh; Siddique, Shoaib; Noor, Humera
2009-04-01
The security of the networks has been an important concern for any organization. This is especially important for the defense sector as to get unauthorized access to the sensitive information of an organization has been the prime desire for cyber criminals. Many network security techniques like Firewall, VPN Concentrator etc. are deployed at the perimeter of network to deal with attack(s) that occur(s) from exterior of network. But any vulnerability that causes to penetrate the network's perimeter of defense, can exploit the entire network. To deal with such vulnerabilities a system has been evolved with the purpose of generating an alert for any malicious activity triggered against the network and its resources, termed as Intrusion Detection System (IDS). The traditional IDS have still some deficiencies like generating large number of alerts, containing both true and false one etc. By automatically classifying (correlating) various alerts, the high-level analysis of the security status of network can be identified and the job of network security administrator becomes much easier. In this paper we propose to utilize Self Organizing Maps (SOM); an Artificial Neural Network for correlating large amount of logged intrusion alerts based on generic features such as Source/Destination IP Addresses, Port No, Signature ID etc. The different ways in which alerts can be correlated by Artificial Intelligence techniques are also discussed. . We've shown that the strategy described in the paper improves the efficiency of IDS by better correlating the alerts, leading to reduced false positives and increased competence of network administrator.
Ice Shape Characterization Using Self-Organizing Maps
NASA Technical Reports Server (NTRS)
McClain, Stephen T.; Tino, Peter; Kreeger, Richard E.
2011-01-01
A method for characterizing ice shapes using a self-organizing map (SOM) technique is presented. Self-organizing maps are neural-network techniques for representing noisy, multi-dimensional data aligned along a lower-dimensional and possibly nonlinear manifold. For a large set of noisy data, each element of a finite set of codebook vectors is iteratively moved in the direction of the data closest to the winner codebook vector. Through successive iterations, the codebook vectors begin to align with the trends of the higher-dimensional data. In information processing, the intent of SOM methods is to transmit the codebook vectors, which contains far fewer elements and requires much less memory or bandwidth, than the original noisy data set. When applied to airfoil ice accretion shapes, the properties of the codebook vectors and the statistical nature of the SOM methods allows for a quantitative comparison of experimentally measured mean or average ice shapes to ice shapes predicted using computer codes such as LEWICE. The nature of the codebook vectors also enables grid generation and surface roughness descriptions for use with the discrete-element roughness approach. In the present study, SOM characterizations are applied to a rime ice shape, a glaze ice shape at an angle of attack, a bi-modal glaze ice shape, and a multi-horn glaze ice shape. Improvements and future explorations will be discussed.
Development of self-compressing BLSOM for comprehensive analysis of big sequence data.
Kikuchi, Akihito; Ikemura, Toshimichi; Abe, Takashi
2015-01-01
With the remarkable increase in genomic sequence data from various organisms, novel tools are needed for comprehensive analyses of available big sequence data. We previously developed a Batch-Learning Self-Organizing Map (BLSOM), which can cluster genomic fragment sequences according to phylotype solely dependent on oligonucleotide composition and applied to genome and metagenomic studies. BLSOM is suitable for high-performance parallel-computing and can analyze big data simultaneously, but a large-scale BLSOM needs a large computational resource. We have developed Self-Compressing BLSOM (SC-BLSOM) for reduction of computation time, which allows us to carry out comprehensive analysis of big sequence data without the use of high-performance supercomputers. The strategy of SC-BLSOM is to hierarchically construct BLSOMs according to data class, such as phylotype. The first-layer BLSOM was constructed with each of the divided input data pieces that represents the data subclass, such as phylotype division, resulting in compression of the number of data pieces. The second BLSOM was constructed with a total of weight vectors obtained in the first-layer BLSOMs. We compared SC-BLSOM with the conventional BLSOM by analyzing bacterial genome sequences. SC-BLSOM could be constructed faster than BLSOM and cluster the sequences according to phylotype with high accuracy, showing the method's suitability for efficient knowledge discovery from big sequence data.
NASA Astrophysics Data System (ADS)
Li, Dong; Tang, Cheng; Xia, Chunlei; Zhang, Hua
2017-02-01
Artificial reefs (ARs) are effective means to maintain fishery resources and to restore ecological environment in coastal waters. ARs have been widely constructed along the Chinese coast. However, understanding of benthic habitats in the vicinity of ARs is limited, hindering effective fisheries and aquacultural management. Multibeam echosounder (MBES) is an advanced acoustic instrument capable of efficiently generating large-scale maps of benthic environments at fine resolutions. The objective of this study is to develop a technical approach to characterize, classify, and map shallow coastal areas with ARs using an MBES. An automated classification method is designed and tested to process bathymetric and backscatter data from MBES and transform the variables into simple, easily visualized maps. To reduce the redundancy in acoustic variables, a principal component analysis (PCA) is used to condense the highly collinear dataset. An acoustic benthic map of bottom sediments is classified using an iterative self-organizing data analysis technique (ISODATA). The approach is tested with MBES surveys in a 1.15 km2 fish farm with a high density of ARs off the Yantai coast in northern China. Using this method, 3 basic benthic habitats (sandy bottom, muddy sediments, and ARs) are distinguished. The results of the classification are validated using sediment samples and underwater surveys. Our study shows that the use of MBES is an effective method for acoustic mapping and classification of ARs.
Nalavany, Blace Arthur; Carawan, Lena Williams; Rennick, Robyn A
2011-01-01
Concept mapping (a mixed qualitative-quantitative methodology) was used to describe and understand the psychosocial experiences of adults with confirmed and self-identified dyslexia. Using innovative processes of art and photography, Phase 1 of the study included 15 adults who participated in focus groups and in-depth interviews and were asked to elucidate their experiences with dyslexia. On index cards, 75 statements and experiences with dyslexia were recorded. The second phase of the study included 39 participants who sorted these statements into self-defined categories and rated each statement to reflect their personal experiences to produce a visual representation, or concept map, of their experience. The final concept map generated nine distinct cluster themes: Organization Skills for Success; Finding Success; A Good Support System Makes the Difference; On Being Overwhelmed; Emotional Downside; Why Can't They See It?; Pain, Hurt, and Embarrassment From Past to Present; Fear of Disclosure; and Moving Forward. Implications of these findings are discussed.
Leydesdorff, Loet; Kogler, Dieter Franz; Yan, Bowen
2017-01-01
The Cooperative Patent Classifications (CPC) recently developed cooperatively by the European and US Patent Offices provide a new basis for mapping patents and portfolio analysis. CPC replaces International Patent Classifications (IPC) of the World Intellectual Property Organization. In this study, we update our routines previously based on IPC for CPC and use the occasion for rethinking various parameter choices. The new maps are significantly different from the previous ones, although this may not always be obvious on visual inspection. We provide nested maps online and a routine for generating portfolio overlays on the maps; a new tool is provided for "difference maps" between patent portfolios of organizations or firms. This is illustrated by comparing the portfolios of patents granted to two competing firms-Novartis and MSD-in 2016. Furthermore, the data is organized for the purpose of statistical analysis.
A proto-architecture for innate directionally selective visual maps.
Adams, Samantha V; Harris, Chris M
2014-01-01
Self-organizing artificial neural networks are a popular tool for studying visual system development, in particular the cortical feature maps present in real systems that represent properties such as ocular dominance (OD), orientation-selectivity (OR) and direction selectivity (DS). They are also potentially useful in artificial systems, for example robotics, where the ability to extract and learn features from the environment in an unsupervised way is important. In this computational study we explore a DS map that is already latent in a simple artificial network. This latent selectivity arises purely from the cortical architecture without any explicit coding for DS and prior to any self-organising process facilitated by spontaneous activity or training. We find DS maps with local patchy regions that exhibit features similar to maps derived experimentally and from previous modeling studies. We explore the consequences of changes to the afferent and lateral connectivity to establish the key features of this proto-architecture that support DS.
A novel data-mining approach leveraging social media to monitor consumer opinion of sitagliptin.
Akay, Altug; Dragomir, Andrei; Erlandsson, Björn-Erik
2015-01-01
A novel data mining method was developed to gauge the experience of the drug Sitagliptin (trade name Januvia) by patients with diabetes mellitus type 2. To this goal, we devised a two-step analysis framework. Initial exploratory analysis using self-organizing maps was performed to determine structures based on user opinions among the forum posts. The results were a compilation of user's clusters and their correlated (positive or negative) opinion of the drug. Subsequent modeling using network analysis methods was used to determine influential users among the forum members. These findings can open new avenues of research into rapid data collection, feedback, and analysis that can enable improved outcomes and solutions for public health and important feedback for the manufacturer.
Samecka-Cymerman, A; Stankiewicz, A; Kolon, K; Kempers, A J
2009-07-01
Concentrations of the elements Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in the leaves and bark of Robinia pseudoacacia and the soil in which it grew, in the town of Oleśnica (SW Poland) and at a control site. We selected this town because emission from motor vehicles is practically the only source of air pollution, and it seemed interesting to evaluate its influence on soil and plants. The self-organizing feature map (SOFM) yielded distinct groups of soils and R. pseudoacacia leaves and bark, depending on traffic intensity. Only the map classifying bark samples identified an additional group of highly polluted sites along the main highway from Wrocław to Warszawa. The bark of R. pseudoacacia seems to be a better bioindicator of long-term cumulative traffic pollution in the investigated area, while leaves are good indicators of short-term seasonal accumulation trends.
Multistrategy Self-Organizing Map Learning for Classification Problems
Hasan, S.; Shamsuddin, S. M.
2011-01-01
Multistrategy Learning of Self-Organizing Map (SOM) and Particle Swarm Optimization (PSO) is commonly implemented in clustering domain due to its capabilities in handling complex data characteristics. However, some of these multistrategy learning architectures have weaknesses such as slow convergence time always being trapped in the local minima. This paper proposes multistrategy learning of SOM lattice structure with Particle Swarm Optimisation which is called ESOMPSO for solving various classification problems. The enhancement of SOM lattice structure is implemented by introducing a new hexagon formulation for better mapping quality in data classification and labeling. The weights of the enhanced SOM are optimised using PSO to obtain better output quality. The proposed method has been tested on various standard datasets with substantial comparisons with existing SOM network and various distance measurement. The results show that our proposed method yields a promising result with better average accuracy and quantisation errors compared to the other methods as well as convincing significant test. PMID:21876686
Micro-Laser-Induced Breakdown Spectroscopy (Micro-LIBS) Study on Ancient Roman Mortars.
Pagnotta, Stefano; Lezzerini, Marco; Ripoll-Seguer, Laura; Hidalgo, Montserrat; Grifoni, Emanuela; Legnaioli, Stefano; Lorenzetti, Giulia; Poggialini, Francesco; Palleschi, Vincenzo
2017-04-01
The laser-induced breakdown spectroscopy (LIBS) technique was used for analyzing the composition of an ancient Roman mortar (5th century A.D.), exploiting an experimental setup which allows the determination of the compositions of binder and aggregate in few minutes, without the need for sample treatment. Four thousand LIBS spectra were acquired from an area of 10 mm 2 , with a 50 µm lateral resolution. The elements of interest in the mortar sample (H, C, O, Na, Mg, Al, Si, K, Ca, Ti, Mn, Fe) were detected and mapped. The collected data graphically shown as compositional images were interpreted using different statistical approaches for the determination of the chemical composition of the binder and aggregate fraction. The methods of false color imaging, blind separation, and self-organizing maps were applied and their results are discussed in this paper. In particular, the method based on the use of self-organizing maps gives well interpretable results in very short times, without any reduction in the dimensionality of the system.
Use of the self-organizing feature map to diagnose abnormal engineering change
NASA Astrophysics Data System (ADS)
Lu, Ruei-Shan; Wu, Zhi-Ting; Peng, Kuo-Wei; Yu, Tai-Yi
2015-07-01
This study established identification manners with self-organizing feature map (SOM) to achieve the goal of monitoring Engineering Change (EC) based on historical data of a company that specializes in computers and peripherals. The product life cycle of this company is 3-6 months. The historical data were divided into three parts, each covering four months. The first part, comprising 2,343 records from January to April (the training period), comprise the Control Group. The second and third parts comprise Experimental Groups (EG) 1 and 2, respectively. For EG 1 and 2, the successful rate of recognizing information on abnormal ECs was approximately 96% and 95%, respectively. This paper shows the importance and screening procedures of abnormal engineering change for a particular company specializing in computers and peripherals.
Comparison between genetic algorithm and self organizing map to detect botnet network traffic
NASA Astrophysics Data System (ADS)
Yugandhara Prabhakar, Shinde; Parganiha, Pratishtha; Madhu Viswanatham, V.; Nirmala, M.
2017-11-01
In Cyber Security world the botnet attacks are increasing. To detect botnet is a challenging task. Botnet is a group of computers connected in a coordinated fashion to do malicious activities. Many techniques have been developed and used to detect and prevent botnet traffic and the attacks. In this paper, a comparative study is done on Genetic Algorithm (GA) and Self Organizing Map (SOM) to detect the botnet network traffic. Both are soft computing techniques and used in this paper as data analytics system. GA is based on natural evolution process and SOM is an Artificial Neural Network type, uses unsupervised learning techniques. SOM uses neurons and classifies the data according to the neurons. Sample of KDD99 dataset is used as input to GA and SOM.
ERIC Educational Resources Information Center
Gustafsson, Lennart; Paplinski, Andrew
2004-01-01
Autism is a developmental disorder with possibly multiple pathophysiologies. It has been theorized that cortical feature maps in individuals with autism are inadequate for forming abstract codes and representations. Cortical feature maps make it possible to classify stimuli, such as phonemes of speech, disregarding incidental detail. Hierarchies…
Piloting the membranolytic activities of peptides with a self-organizing map.
Lin, Yen-Chu; Hiss, Jan A; Schneider, Petra; Thelesklaf, Peter; Lim, Yi Fan; Pillong, Max; Koehler, Fabian M; Dittrich, Petra S; Halin, Cornelia; Wessler, Silja; Schneider, Gisbert
2014-10-13
Antimicrobial peptides (AMPs) show remarkable selectivity toward lipid membranes and possess promising antibiotic potential. Their modes of action are diverse and not fully understood, and innovative peptide design strategies are needed to generate AMPs with improved properties. We present a de novo peptide design approach that resulted in new AMPs possessing low-nanomolar membranolytic activities. Thermal analysis revealed an entropy-driven mechanism of action. The study demonstrates sustained potential of advanced computational methods for designing peptides with the desired activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling the human mental lexicon with self-organizing feature maps
NASA Astrophysics Data System (ADS)
Wittenburg, Peter; Frauenfelder, Uli H.
1992-10-01
Recent efforts to model the remarkable ability of humans to recognize speech and words are described. Different techniques including the use of neural nets for representing phonological similarity between words in the lexicon with self organizing algorithms are discussed. Simulations using the standard Kohonen algorithm are presented to illustrate some problems confronted with this technique in modeling similarity relations of form in the human mental lexicon. Alternative approaches that can potentially deal with some of these limitations are sketched.
Clustering Similarity Digest Bloom Filters in Self-Organizing Maps
2012-12-01
www.sciencedirect.com/science/article/ pii/S1742287610000368 [4] M. Rogers, J . Goldman, R. Mislan, T. Wedge, and S. Debrota, “Computer forensics field triage...1990. [9] T. Kohonen, S. Kaski, K. Lagus, J . Salojarvi, J . Honkela, V. Paatero, and A. Saarela, “Self organization of a massive document collection...the IEEE-INNS-ENNS Interna- tional Joint Conference on, vol. 6, 2000, pp. 15 –19 vol.6. [12] G. Salton , A. Wong, and C. Yang, “A vector space model for
Oscillating Adriatic temperature and salinity regimes mapped using the Self-Organizing Maps method
NASA Astrophysics Data System (ADS)
Matić, Frano; Kovač, Žarko; Vilibić, Ivica; Mihanović, Hrvoje; Morović, Mira; Grbec, Branka; Leder, Nenad; Džoić, Tomislav
2017-01-01
This paper aims to document salinity and temperature regimes in the middle and south Adriatic Sea by applying the Self-Organizing Maps (SOM) method to the available long-term temperature and salinity series. The data were collected on a seasonal basis between 1963 and 2011 in two dense water collecting depressions, Jabuka Pit and Southern Adriatic Pit, and over the Palagruža Sill. Seasonality was removed prior to the analyses. Salinity regimes have been found to oscillate rapidly between low-salinity and high-salinity SOM solutions, ascribed to the advection of Western and Eastern Mediterranean waters, respectively. Transient salinity regimes normally lasted less than a season, while temperature transient regimes lasted longer. Salinity regimes prolonged their duration after the major basin-wide event, the Eastern Mediterranean Transient, in the early 1990s. A qualitative relationship between high-salinity regimes and dense water formation and dynamics has been documented. The SOM-based analyses have a large capacity for classifying the oscillating ocean regimes in a basin, which, in the case of the Adriatic Sea, beside climate forcing, is an important driver of biogeochemical changes that impacts trophic relations, appearance and abundance of alien organisms, and fisheries, etc.
Implementation of visual data mining for unsteady blood flow field in an aortic aneurysm.
Morizawa, Seiichiro; Shimoyama, Koji; Obayashi, Shigeru; Funamoto, Kenichi; Hayase, Toshiyuki
2011-12-01
This study was performed to determine the relations between the features of wall shear stress and aneurysm rupture. For this purpose, visual data mining was performed in unsteady blood flow simulation data for an aortic aneurysm. The time-series data of wall shear stress given at each grid point were converted to spatial and temporal indices, and the grid points were sorted using a self-organizing map based on the similarity of these indices. Next, the results of cluster analysis were mapped onto the real space of the aortic aneurysm to specify the regions that may lead to aneurysm rupture. With reference to previous reports regarding aneurysm rupture, the visual data mining suggested specific hemodynamic features that cause aneurysm rupture. GRAPHICAL ABSTRACT:
SOM guided fuzzy logic prospectivity model for gold in the Häme Belt, southwestern Finland
NASA Astrophysics Data System (ADS)
Leväniemi, Hanna; Hulkki, Helena; Tiainen, Markku
2017-04-01
This study investigated gold prospectivity in the Paleoproterozoic Häme Belt, located in southwestern Finland. The Häme Belt comprises calc-alkaline and tholeitic volcanic rocks, migmatites, granitoids, and mafic to ultramafic intrusions. Mineral exploration in the region has resulted in the discovery of several gold occurrences during recent decades; however, no prospectivity modeling for gold has yet been conducted. This study integrated till geochemical and geophysical data to examine and extract data characteristics critical for gold occurrences. Modeling was guided by self-organizing map (SOM) analysis to define essential data associations and to aid in model input data selection and generation. The final fuzzy logic prospectivity model map yielded high predictability values for most known Au or Cu-Au occurrences, but also highlighted new targets for exploration.
Hinder, Lucy M; Park, Meeyoung; Rumora, Amy E; Hur, Junguk; Eichinger, Felix; Pennathur, Subramaniam; Kretzler, Matthias; Brosius, Frank C; Feldman, Eva L
2017-09-01
Treating insulin resistance with pioglitazone normalizes renal function and improves small nerve fibre function and architecture; however, it does not affect large myelinated nerve fibre function in mouse models of type 2 diabetes (T2DM), indicating that pioglitazone affects the body in a tissue-specific manner. To identify distinct molecular pathways regulating diabetic peripheral neuropathy (DPN) and nephropathy (DN), as well those affected by pioglitazone, we assessed DPN and DN gene transcript expression in control and diabetic mice with or without pioglitazone treatment. Differential expression analysis and self-organizing maps were then used in parallel to analyse transcriptome data. Differential expression analysis showed that gene expression promoting cell death and the inflammatory response was reversed in the kidney glomeruli but unchanged or exacerbated in sciatic nerve by pioglitazone. Self-organizing map analysis revealed that mitochondrial dysfunction was normalized in kidney and nerve by treatment; however, conserved pathways were opposite in their directionality of regulation. Collectively, our data suggest inflammation may drive large fibre dysfunction, while mitochondrial dysfunction may drive small fibre dysfunction in T2DM. Moreover, targeting both of these pathways is likely to improve DN. This study supports growing evidence that systemic metabolic changes in T2DM are associated with distinct tissue-specific metabolic reprogramming in kidney and nerve and that these changes play a critical role in DN and small fibre DPN pathogenesis. These data also highlight the potential dangers of a 'one size fits all' approach to T2DM therapeutics, as the same drug may simultaneously alleviate one complication while exacerbating another. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Kanzaki, Norie; Kataoka, Takahiro; Etani, Reo; Sasaoka, Kaori; Kanagawa, Akihiro; Yamaoka, Kiyonori
2017-01-01
In our previous studies, we found that low-dose radiation inhibits oxidative stress-induced diseases due to increased antioxidants. Although these effects of low-dose radiation were demonstrated, further research was needed to clarify the effects. However, the analysis of oxidative stress is challenging, especially that of low levels of oxidative stress, because antioxidative substances are intricately involved. Thus, we proposed an approach for analysing oxidative liver damage via use of a self-organizing map (SOM)-a novel and comprehensive technique for evaluating hepatic and antioxidative function. Mice were treated with radon inhalation, irradiated with X-rays, or subjected to intraperitoneal injection of alcohol. We evaluated the oxidative damage levels in the liver from the SOM results for hepatic function and antioxidative substances. The results showed that the effects of low-dose irradiation (radon inhalation at a concentration of up to 2000 Bq/m 3 , or X-irradiation at a dose of up to 2.0 Gy) were comparable with the effect of alcohol administration at 0.5 g/kg bodyweight. Analysis using the SOM to discriminate small changes was made possible by its ability to 'learn' to adapt to unexpected changes. Moreover, when using a spherical SOM, the method comprehensively examined liver damage by radon, X-ray, and alcohol. We found that the types of liver damage caused by radon, X-rays, and alcohol have different characteristics. Therefore, our approaches would be useful as a method for evaluating oxidative liver damage caused by radon, X-rays and alcohol. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Self-organizing map models of language acquisition
Li, Ping; Zhao, Xiaowei
2013-01-01
Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic parallel distributed processing architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper, we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development. We suggest future directions in which these models can be extended, to better connect with behavioral and neural data, and to make clear predictions in testing relevant psycholinguistic theories. PMID:24312061
CrowdMapping: A Crowdsourcing-Based Terminology Mapping Method for Medical Data Standardization.
Mao, Huajian; Chi, Chenyang; Huang, Boyu; Meng, Haibin; Yu, Jinghui; Zhao, Dongsheng
2017-01-01
Standardized terminology is the prerequisite of data exchange in analysis of clinical processes. However, data from different electronic health record systems are based on idiosyncratic terminology systems, especially when the data is from different hospitals and healthcare organizations. Terminology standardization is necessary for the medical data analysis. We propose a crowdsourcing-based terminology mapping method, CrowdMapping, to standardize the terminology in medical data. CrowdMapping uses a confidential model to determine how terminologies are mapped to a standard system, like ICD-10. The model uses mappings from different health care organizations and evaluates the diversity of the mapping to determine a more sophisticated mapping rule. Further, the CrowdMapping model enables users to rate the mapping result and interact with the model evaluation. CrowdMapping is a work-in-progress system, we present initial results mapping terminologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masters, Daniel; Steinhardt, Charles; Faisst, Andreas
2015-11-01
Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selectedmore » to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-31
... participate for that calendar month. The Exchange pays a per- contract MAP Subsidy to any Exchange member... Provider Subsidy is a per contract fee payable by the Exchange to Eligible Market Access Providers \\3\\ for... currently pays a monthly subsidy of $0.10 (the ``Subsidy Rate'') to Eligible MAPs for each Eligible Contract...
Spherical self-organizing map using efficient indexed geodesic data structure.
Wu, Yingxin; Takatsuka, Masahiro
2006-01-01
The two-dimensional (2D) Self-Organizing Map (SOM) has a well-known "border effect". Several spherical SOMs which use lattices of the tessellated icosahedron have been proposed to solve this problem. However, existing data structures for such SOMs are either not space efficient or are time consuming when searching the neighborhood. We introduce a 2D rectangular grid data structure to store the icosahedron-based geodesic dome. Vertices relationships are maintained by their positions in the data structure rather than by immediate neighbor pointers or an adjacency list. Increasing the number of neurons can be done efficiently because the overhead caused by pointer updates is reduced. Experiments show that the spherical SOM using our data structure, called a GeoSOM, runs with comparable speed to the conventional 2D SOM. The GeoSOM also reduces data distortion due to removal of the boundaries. Furthermore, we developed an interface to project the GeoSOM onto the 2D plane using a cartographic approach, which gives users a global view of the spherical data map. Users can change the center of the 2D data map interactively. In the end, we compare the GeoSOM to the other spherical SOMs by space complexity and time complexity.
An incremental anomaly detection model for virtual machines.
Zhang, Hancui; Chen, Shuyu; Liu, Jun; Zhou, Zhen; Wu, Tianshu
2017-01-01
Self-Organizing Map (SOM) algorithm as an unsupervised learning method has been applied in anomaly detection due to its capabilities of self-organizing and automatic anomaly prediction. However, because of the algorithm is initialized in random, it takes a long time to train a detection model. Besides, the Cloud platforms with large scale virtual machines are prone to performance anomalies due to their high dynamic and resource sharing characters, which makes the algorithm present a low accuracy and a low scalability. To address these problems, an Improved Incremental Self-Organizing Map (IISOM) model is proposed for anomaly detection of virtual machines. In this model, a heuristic-based initialization algorithm and a Weighted Euclidean Distance (WED) algorithm are introduced into SOM to speed up the training process and improve model quality. Meanwhile, a neighborhood-based searching algorithm is presented to accelerate the detection time by taking into account the large scale and high dynamic features of virtual machines on cloud platform. To demonstrate the effectiveness, experiments on a common benchmark KDD Cup dataset and a real dataset have been performed. Results suggest that IISOM has advantages in accuracy and convergence velocity of anomaly detection for virtual machines on cloud platform.
An incremental anomaly detection model for virtual machines
Zhang, Hancui; Chen, Shuyu; Liu, Jun; Zhou, Zhen; Wu, Tianshu
2017-01-01
Self-Organizing Map (SOM) algorithm as an unsupervised learning method has been applied in anomaly detection due to its capabilities of self-organizing and automatic anomaly prediction. However, because of the algorithm is initialized in random, it takes a long time to train a detection model. Besides, the Cloud platforms with large scale virtual machines are prone to performance anomalies due to their high dynamic and resource sharing characters, which makes the algorithm present a low accuracy and a low scalability. To address these problems, an Improved Incremental Self-Organizing Map (IISOM) model is proposed for anomaly detection of virtual machines. In this model, a heuristic-based initialization algorithm and a Weighted Euclidean Distance (WED) algorithm are introduced into SOM to speed up the training process and improve model quality. Meanwhile, a neighborhood-based searching algorithm is presented to accelerate the detection time by taking into account the large scale and high dynamic features of virtual machines on cloud platform. To demonstrate the effectiveness, experiments on a common benchmark KDD Cup dataset and a real dataset have been performed. Results suggest that IISOM has advantages in accuracy and convergence velocity of anomaly detection for virtual machines on cloud platform. PMID:29117245
NASA Astrophysics Data System (ADS)
Şahingil, Mehmet C.; Aslan, Murat Š.
2013-10-01
Infrared guided missile seekers utilizing pulse width modulation in target tracking is one of the threats against air platforms. To be able to achieve a "soft-kill" protection of own platform against these type of threats, one needs to examine carefully the seeker operating principle with its special electronic counter-counter measure (ECCM) capability. One of the cost-effective ways of soft kill protection is to use flare decoys in accordance with an optimized dispensing program. Such an optimization requires a good understanding of the threat seeker, capabilities of the air platform and engagement scenario information between them. Modeling and simulation is very powerful tool to achieve a valuable insight and understand the underlying phenomenology. A careful interpretation of simulation results is crucial to infer valuable conclusions from the data. In such an interpretation there are lots of factors (features) which affect the results. Therefore, powerful statistical tools and pattern recognition algorithms are of special interest in the analysis. In this paper, we show how self-organizing maps (SOMs), which is one of those powerful tools, can be used in analyzing the effectiveness of various flare dispensing programs against a PWM seeker. We perform several Monte Carlo runs for a typical engagement scenario in a MATLAB-based simulation environment. In each run, we randomly change the flare dispending program and obtain corresponding class: "successful" or "unsuccessful", depending on whether the corresponding flare dispensing program deceives the seeker or not, respectively. Then, in the analysis phase, we use SOMs to interpret and visualize the results.
A new look at patient satisfaction: learning from self-organizing maps.
Voutilainen, Ari; Kvist, Tarja; Sherwood, Paula R; Vehviläinen-Julkunen, Katri
2014-01-01
To some extent, results always depend on the methods used, and the complete picture of the phenomenon of interest can be drawn only by combining results of different data processing techniques. This emphasizes the use of a wide arsenal of methods for processing and analyzing patient satisfaction surveys. The purpose of this study was to introduce the self-organizing map (SOM) to nursing science and to illustrate the use of the SOM with patient satisfaction data. The SOM is a widely used artificial neural network suitable for clustering and exploring all kind of data sets. The study was partly a secondary analysis of data collected for the Attractive and Safe Hospital Study from four Finnish hospitals in 2008 and 2010 using the Revised Humane Caring Scale. The sample consisted of 5,283 adult patients. The SOM was used to cluster the data set according to (a) respondents and (b) questionnaire items. The SOM was also used as a preprocessor for multinomial logistic regression. An analysis of missing data was carried out to improve the data interpretation. Combining results of the two SOMs and the logistic regression revealed associations between the level of satisfaction, different components of satisfaction, and item nonresponse. The common conception that the relationship between patient satisfaction and age is positive may partly be due to positive association between the tendency of item nonresponse and age. The SOM proved to be a useful method for clustering a questionnaire data set even when the data set was low dimensional per se. Inclusion of empty responses in analyses may help to detect possible misleading noncausative relationships.
Ali, Shahin S.; Shao, Jonathan; Lary, David J.; Kronmiller, Brent A.; Shen, Danyu; Strem, Mary D.; Amoako-Attah, Ishmael; Akrofi, Andrew Yaw; Begoude, B.A. Didier; ten Hoopen, G. Martijn; Coulibaly, Klotioloma; Kebe, Boubacar Ismaël; Melnick, Rachel L.; Guiltinan, Mark J.; Tyler, Brett M.; Meinhardt, Lyndel W.
2017-01-01
Phytophthora megakarya (Pmeg) and Phytophthora palmivora (Ppal) are closely related species causing cacao black pod rot. Although Ppal is a cosmopolitan pathogen, cacao is the only known host of economic importance for Pmeg. Pmeg is more virulent on cacao than Ppal. We sequenced and compared the Pmeg and Ppal genomes and identified virulence-related putative gene models (PGeneM) that may be responsible for their differences in host specificities and virulence. Pmeg and Ppal have estimated genome sizes of 126.88 and 151.23 Mb and PGeneM numbers of 42,036 and 44,327, respectively. The evolutionary histories of Pmeg and Ppal appear quite different. Postspeciation, Ppal underwent whole-genome duplication whereas Pmeg has undergone selective increases in PGeneM numbers, likely through accelerated transposable element-driven duplications. Many PGeneMs in both species failed to match transcripts and may represent pseudogenes or cryptic genetic reservoirs. Pmeg appears to have amplified specific gene families, some of which are virulence-related. Analysis of mycelium, zoospore, and in planta transcriptome expression profiles using neural network self-organizing map analysis generated 24 multivariate and nonlinear self-organizing map classes. Many members of the RxLR, necrosis-inducing phytophthora protein, and pectinase genes families were specifically induced in planta. Pmeg displays a diverse virulence-related gene complement similar in size to and potentially of greater diversity than Ppal but it remains likely that the specific functions of the genes determine each species’ unique characteristics as pathogens. PMID:28186564
Code of Federal Regulations, 2010 CFR
2010-04-01
... UNDER THE INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Construction § 900.122 What does an... information available about the construction project, including construction drawings, maps, engineering... tribal organization to review all plans, specifications, engineering reports, cost estimates, and other...
NASA Astrophysics Data System (ADS)
Kang, Seung-Ho; Lee, Sang-Hee; Chon, Tae-Soo
2012-02-01
In recent decades, the behavior of Caenorhabditis elegans ( C. elegans) has been extensively studied to understand the respective roles of neural control and biomechanics. Thus far, however, only a few studies on the simulation modeling of C. elegans swimming behavior have been conducted because it is mathematically difficult to describe its complicated behavior. In this study, we built two hidden Markov models (HMMs), corresponding to the movements of C. elegans in a controlled environment with no chemical treatment and in a formaldehyde-treated environment (0.1 ppm), respectively. The movement was characterized by a series of shape patterns of the organism, taken every 0.25 s for 40 min. All shape patterns were quantified by branch length similarity (BLS) entropy and classified into seven patterns by using the self-organizing map (SOM) and the k-means clustering algorithm. The HMM coupled with the SOM was successful in accurately explaining the organism's behavior. In addition, we briefly discussed the possibility of using the HMM together with BLS entropy to develop bio-monitoring systems for real-time applications to determine water quality.
Self-organizing map (SOM) of space acceleration measurement system (SAMS) data.
Sinha, A; Smith, A D
1999-01-01
In this paper, space acceleration measurement system (SAMS) data have been classified using self-organizing map (SOM) networks without any supervision; i.e., no a priori knowledge is assumed regarding input patterns belonging to a certain class. Input patterns are created on the basis of power spectral densities of SAMS data. Results for SAMS data from STS-50 and STS-57 missions are presented. Following issues are discussed in details: impact of number of neurons, global ordering of SOM weight vectors, effectiveness of a SOM in data classification, and effects of shifting time windows in the generation of input patterns. The concept of 'cascade of SOM networks' is also developed and tested. It has been found that a SOM network can successfully classify SAMS data obtained during STS-50 and STS-57 missions.
Clustering of self-organizing map identifies five distinct medulloblastoma subgroups.
Cao, Changjun; Wang, Wei; Jiang, Pucha
2016-01-01
Medulloblastoma is one the most malignant paediatric brain tumours. Molecular subgrouping these medulloblastomas will not only help identify specific cohorts for certain treatment but also improve confidence in prognostic prediction. Currently, there is a consensus of the existences of four distinct subtypes of medulloblastoma. We proposed a novel bioinformatics method, clustering of self-organizing map, to determine the subgroups and their molecular diversity. Microarray expression profiles of 46 medulloblastoma samples were analysed and five clusters with distinct demographics, clinical outcome and transcriptional profiles were identified. The previously reported Wnt subgroup was identified as expected. Three other novel subgroups were proposed for later investigation. Our findings underscore the value of SOM clustering for discovering the medulloblastoma subgroups. When the suggested subdivision has been confirmed in large cohorts, this method should serve as a part of routine classification of clinical samples.
Self-organizing map (SOM) of space acceleration measurement system (SAMS) data
NASA Technical Reports Server (NTRS)
Sinha, A.; Smith, A. D.
1999-01-01
In this paper, space acceleration measurement system (SAMS) data have been classified using self-organizing map (SOM) networks without any supervision; i.e., no a priori knowledge is assumed regarding input patterns belonging to a certain class. Input patterns are created on the basis of power spectral densities of SAMS data. Results for SAMS data from STS-50 and STS-57 missions are presented. Following issues are discussed in details: impact of number of neurons, global ordering of SOM weight vectors, effectiveness of a SOM in data classification, and effects of shifting time windows in the generation of input patterns. The concept of 'cascade of SOM networks' is also developed and tested. It has been found that a SOM network can successfully classify SAMS data obtained during STS-50 and STS-57 missions.
Characterizing synoptic and cloud variability in the northern atlantic using self-organizing maps
NASA Astrophysics Data System (ADS)
Fish, Carly
Low-level clouds have a significant influence on the Earth's radiation budget and it is thus imperative to understand their behavior within the marine boundary layer (MBL). The cloud properties in the Northeast Atlantic region are highly variable in space and time and are a research focus for many atmospheric scientists. Characterizing the synoptic patterns in the region through the implementation of self-organizing maps (SOMs) enables a climatological grasp of cloud and atmospheric fields. ERA -- Interim and MODIS provide the platform to explore the variability in the Northeast Atlantic for over 30 years of data. Station data comes from CAP -- MBL on Graciosa Island in the Azores, which lies in a strong gradient of cloud and other atmospheric fields, offer an opportunity to incorporate an observational aspect for the years of 2009 and 2010.
Self-organizing map classifier for stressed speech recognition
NASA Astrophysics Data System (ADS)
Partila, Pavol; Tovarek, Jaromir; Voznak, Miroslav
2016-05-01
This paper presents a method for detecting speech under stress using Self-Organizing Maps. Most people who are exposed to stressful situations can not adequately respond to stimuli. Army, police, and fire department occupy the largest part of the environment that are typical of an increased number of stressful situations. The role of men in action is controlled by the control center. Control commands should be adapted to the psychological state of a man in action. It is known that the psychological changes of the human body are also reflected physiologically, which consequently means the stress effected speech. Therefore, it is clear that the speech stress recognizing system is required in the security forces. One of the possible classifiers, which are popular for its flexibility, is a self-organizing map. It is one type of the artificial neural networks. Flexibility means independence classifier on the character of the input data. This feature is suitable for speech processing. Human Stress can be seen as a kind of emotional state. Mel-frequency cepstral coefficients, LPC coefficients, and prosody features were selected for input data. These coefficients were selected for their sensitivity to emotional changes. The calculation of the parameters was performed on speech recordings, which can be divided into two classes, namely the stress state recordings and normal state recordings. The benefit of the experiment is a method using SOM classifier for stress speech detection. Results showed the advantage of this method, which is input data flexibility.
Pilly, Praveen K.; Grossberg, Stephen
2013-01-01
Medial entorhinal grid cells and hippocampal place cells provide neural correlates of spatial representation in the brain. A place cell typically fires whenever an animal is present in one or more spatial regions, or places, of an environment. A grid cell typically fires in multiple spatial regions that form a regular hexagonal grid structure extending throughout the environment. Different grid and place cells prefer spatially offset regions, with their firing fields increasing in size along the dorsoventral axes of the medial entorhinal cortex and hippocampus. The spacing between neighboring fields for a grid cell also increases along the dorsoventral axis. This article presents a neural model whose spiking neurons operate in a hierarchy of self-organizing maps, each obeying the same laws. This spiking GridPlaceMap model simulates how grid cells and place cells may develop. It responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with one or more firing fields that match neurophysiological data about these cells and their development in juvenile rats. The place cells represent much larger spaces than the grid cells, which enable them to support navigational behaviors. Both self-organizing maps amplify and learn to categorize the most frequent and energetic co-occurrences of their inputs. The current results build upon a previous rate-based model of grid and place cell learning, and thus illustrate a general method for converting rate-based adaptive neural models, without the loss of any of their analog properties, into models whose cells obey spiking dynamics. New properties of the spiking GridPlaceMap model include the appearance of theta band modulation. The spiking model also opens a path for implementation in brain-emulating nanochips comprised of networks of noisy spiking neurons with multiple-level adaptive weights for controlling autonomous adaptive robots capable of spatial navigation. PMID:23577130
New adaptive color quantization method based on self-organizing maps.
Chang, Chip-Hong; Xu, Pengfei; Xiao, Rui; Srikanthan, Thambipillai
2005-01-01
Color quantization (CQ) is an image processing task popularly used to convert true color images to palletized images for limited color display devices. To minimize the contouring artifacts introduced by the reduction of colors, a new competitive learning (CL) based scheme called the frequency sensitive self-organizing maps (FS-SOMs) is proposed to optimize the color palette design for CQ. FS-SOM harmonically blends the neighborhood adaptation of the well-known self-organizing maps (SOMs) with the neuron dependent frequency sensitive learning model, the global butterfly permutation sequence for input randomization, and the reinitialization of dead neurons to harness effective utilization of neurons. The net effect is an improvement in adaptation, a well-ordered color palette, and the alleviation of underutilization problem, which is the main cause of visually perceivable artifacts of CQ. Extensive simulations have been performed to analyze and compare the learning behavior and performance of FS-SOM against other vector quantization (VQ) algorithms. The results show that the proposed FS-SOM outperforms classical CL, Linde, Buzo, and Gray (LBG), and SOM algorithms. More importantly, FS-SOM achieves its superiority in reconstruction quality and topological ordering with a much greater robustness against variations in network parameters than the current art SOM algorithm for CQ. A most significant bit (MSB) biased encoding scheme is also introduced to reduce the number of parallel processing units. By mapping the pixel values as sign-magnitude numbers and biasing the magnitudes according to their sign bits, eight lattice points in the color space are condensed into one common point density function. Consequently, the same processing element can be used to map several color clusters and the entire FS-SOM network can be substantially scaled down without severely scarifying the quality of the displayed image. The drawback of this encoding scheme is the additional storage overhead, which can be cut down by leveraging on existing encoder in an overall lossy compression scheme.
NASA Astrophysics Data System (ADS)
Park, K.; Hahm, D.; Lee, D. G.; Rhee, T. S.; Kim, H. C.
2014-12-01
The Amundsen Sea, Antarctica, has been known for one of the most susceptible region to the current climate change such as sea ice melting and sea surface temperature change. In the Southern Ocean, a predominant amount of primary production is occurring in the continental shelf region. Phytoplankton blooms take place during the austral summer due to the limited sunlit and sea ice cover. Thus, quantifying the variation of summer season net community production (NCP) in the Amundsen Sea is essential to analyze the influence of climate change to the variation of biogeochemical cycle in the Southern Ocean. During the past three years of 2011, 2012 and 2014 in austral summer, we have conducted underway observations of ΔO2/Ar and derived NCP of the Amundsen Sea. Despite the importance of NCP for understanding biological carbon cycle of the ocean, the observations are rather limited to see the spatio-temporal variation in the Amundsen Sea. Therefore, we applied self-organizing map (SOM) analysis to expand our observed data sets and estimate the NCP during the summer season. SOM analysis, a type of artificial neural network, has been proved to be a useful method for extracting and classifying features in geoscience. In oceanography, SOM has applied for the analysis of various properties of the seawater such as sea surface temperature, chlorophyll concentration, pCO2, and NCP. Especially it is useful to expand a spatial coverage of direct measurements or to estimate properties whose satellite observations are technically or spatially limited. In this study, we estimate summer season NCP and find a variables set which optimally delineates the NCP variation in the Amundsen Sea as well. Moreover, we attempt to analyze the interannual variation of the Amundsen Sea NCP by taking climatological factors into account for the SOM analysis.
Zeng, Jing; Gao, Qiguo; Shi, Songmei; Lian, Xiaoping; Converse, Richard; Zhang, Hecui; Yang, Xiaohong; Ren, Xuesong; Chen, Song; Zhu, Liquan
2017-04-01
Angiosperms have developed self-incompatibility (SI) systems to reject self-pollen, thereby promoting outcrossing. The Brassicaceae belongs to typical sporophytic system, having a single S-locus controlled SI response, and was chosen as a model system to study SI-related intercellular signal transduction. In this regard, the downstream factor of EXO70A1 was unknown. Here, protein two-dimensional electrophoresis (2-DE) method and coupled with matrix-assisted laser desorption ionization/time of flight of flight mass spectrometry (MALDI-TOF -MS) and peptide mass fingerprinting (PMF) was used to further explore the mechanism of SI responses in Brassica oleracea L. var. capitata L. at protein level. To further confirm the time point of protein profile change, total proteins were collected from B. oleracea pistils at 0 min, 1 h, and 2 h after self-pollination. In total 902, 1088 and 1023 protein spots were separated in 0 min, 1 h and 2 h 2-DE maps, respectively. Our analyses of self-pollination profiles indicated that proteins mainly changed at 1 h post-pollination in B. oleracea. Moreover, 1077 protein spots were separated in cross-pollinated 1 h (CP) pistil 2-DE map. MALDI-TOF-MS and PMF successfully identified 34 differentially-expressed proteins (DEPs) in SP and CP 1 h 2-DE maps. Gene ontology and KEGG analysis revealed an array of proteins grouped in the following categories: stress and defense response (35%), protein metabolism (18%), carbohydrate and energy metabolism (12%), regulation of translation (9%), pollen tube development (12%), transport (9%) and cytoskeletal (6%). Sets of DEPs identified specifically in SP or only up-regulated expressed in CP pistils were chosen for funther investigating in floral organs and during the process of self- and cross-pollination. The function of these DEPs in terms of their potential involvement in SI in B. oleracea is discussed.
Portis, E; Mauromicale, G; Mauro, R; Acquadro, A; Scaglione, D; Lanteri, S
2009-12-01
The genome organization of globe artichoke (Cynara cardunculus var. scolymus), unlike other species belonging to Asteraceae (=Compositae) family (i.e. sunflower, lettuce and chicory), remains largely unexplored. The species is highly heterozygous and suffers marked inbreeding depression when forced to self-fertilize. Thus a two-way pseudo-testcross represents the optimal strategy for linkage analysis. Here, we report linkage maps based on the progeny of a cross between globe artichoke (C. cardunculus var. scolymus) and cultivated cardoon (C. cardunculus var. altilis). The population was genotyped using a variety of PCR-based marker platforms, resulting in the identification of 708 testcross markers suitable for map construction. The male map consisted of 177 loci arranged in 17 major linkage groups, spanning 1,015.5 cM, while female map was built with 326 loci arranged into 20 major linkage groups, spanning 1,486.8 cM. The presence of 84 loci shared between these maps and those previously developed from a cross within globe artichoke allowed for map alignment and the definition of 17 homologous linkage groups, corresponding to the haploid number of the species. This will provide a favourable property for QTL scanning; furthermore, as 25 mapped markers (8%) correspond to coding regions, it has an additional value as functional map and might represent an important genetic tool for candidate gene studies in globe artichoke.
Recognizing explosion sites with a self-organizing network for unsupervised learning
NASA Astrophysics Data System (ADS)
Tarvainen, Matti
1999-06-01
A self-organizing neural network model has been developed for identifying mining explosion locations in different environments in Finland and adjacent areas. The main advantage of the method is its ability to automatically find a suitable network structure and naturally correctly identify explosions as such. The explosion site recognition was done using extracted waveform attributes of various kind event records from the small-aperture array FINESS in Finland. The recognition was done by using P-S phase arrival differences and rough azimuth estimates to provide a first robust epicentre location. This, in turn, leads to correct mining district identification where more detailed tuning was performed using different phase amplitude and signal-to-noise attributes. The explosions studied here originated in mines and quarries located in Finland, coast of Estonia and in the St. Petersburg area, Russia. Although the Helsinki bulletins in 1995 and 1996 listed 1649 events in these areas, analysis was restricted to the 380 (ML≥2) events which, besides, were found in the reviewed event bulletins (REB) of the CTBTO/UN prototype international data centre (pIDC) in Arlington, VA, USA. These 380 events with different attributes were selected for the learning stage. Because no `ground-truth' information was available the corresponding mining, `code' coordinates used earlier to compile Helsinki bulletins were utilized instead. The novel self-organizing method was tested on 18 new event recordings in the mentioned area in January-February 1997, out of which 15 were connected to correct mines. The misconnected three events were those which did not have all matching attributes in the self-organizing maps (SOMs) network.
Peiró-Velert, Carmen; Valencia-Peris, Alexandra; González, Luis M; García-Massó, Xavier; Serra-Añó, Pilar; Devís-Devís, José
2014-01-01
Screen media usage, sleep time and socio-demographic features are related to adolescents' academic performance, but interrelations are little explored. This paper describes these interrelations and behavioral profiles clustered in low and high academic performance. A nationally representative sample of 3,095 Spanish adolescents, aged 12 to 18, was surveyed on 15 variables linked to the purpose of the study. A Self-Organizing Maps analysis established non-linear interrelationships among these variables and identified behavior patterns in subsequent cluster analyses. Topological interrelationships established from the 15 emerging maps indicated that boys used more passive videogames and computers for playing than girls, who tended to use mobile phones to communicate with others. Adolescents with the highest academic performance were the youngest. They slept more and spent less time using sedentary screen media when compared to those with the lowest performance, and they also showed topological relationships with higher socioeconomic status adolescents. Cluster 1 grouped boys who spent more than 5.5 hours daily using sedentary screen media. Their academic performance was low and they slept an average of 8 hours daily. Cluster 2 gathered girls with an excellent academic performance, who slept nearly 9 hours per day, and devoted less time daily to sedentary screen media. Academic performance was directly related to sleep time and socioeconomic status, but inversely related to overall sedentary screen media usage. Profiles from the two clusters were strongly differentiated by gender, age, sedentary screen media usage, sleep time and academic achievement. Girls with the highest academic results had a medium socioeconomic status in Cluster 2. Findings may contribute to establishing recommendations about the timing and duration of screen media usage in adolescents and appropriate sleep time needed to successfully meet the demands of school academics and to improve interventions targeting to affect behavioral change.
NASA Astrophysics Data System (ADS)
Bauer, Klaus; Pussak, Marcin; Stiller, Manfred; Bujakowski, Wieslaw
2014-05-01
Self-organizing maps (SOM) are neural network techniques which can be used for the joint interpretation of multi-disciplinary data sets. In this investigation we apply SOM within a geothermal exploration project using 3D seismic reflection data. The study area is located in the central part of the Polish basin. Several sedimentary target horizons were identified at this location based on fluid flow rate measurements in the geothermal research well Kompina-2. The general objective is a seismic facies analysis and characterization of the major geothermal target reservoir. A 3D seismic reflection experiment with a sparse acquisition geometry was carried out around well Kompina-2. Conventional signal processing (amplitude corrections, filtering, spectral whitening, deconvolution, static corrections, muting) was followed by normal-moveout (NMO) stacking, and, alternatively, by common-reflection-surface (CRS) stacking. Different signal attributes were then derived from the stacked images including root-mean-square (RMS) amplitude, instantaneous frequency and coherency. Furthermore, spectral decomposition attributes were calculated based on the continuous wavelet transform. The resulting attribute maps along major target horizons appear noisy after the NMO stack and clearly structured after the CRS stack. Consequently, the following SOM-based multi-parameter signal attribute analysis was applied only to the CRS images. We applied our SOM work flow, which includes data preparation, unsupervised learning, segmentation of the trained SOM using image processing techniques, and final application of the learned knowledge. For the Lower Jurassic target horizon Ja1 we derived four different clusters with distinct seismic attribute signatures. As the most striking feature, a corridor parallel to a fault system was identified, which is characterized by decreased RMS amplitudes and low frequencies. In our interpretation we assume that this combination of signal properties can be explained by increased fracture porosity and enhanced fluid saturation within this part of the Lower Jurassic sandstone horizon. Hence, we suggest that a future drilling should be carried out within this compartment of the reservoir.
Peiró-Velert, Carmen; Valencia-Peris, Alexandra; González, Luis M.; García-Massó, Xavier; Serra-Añó, Pilar; Devís-Devís, José
2014-01-01
Screen media usage, sleep time and socio-demographic features are related to adolescents' academic performance, but interrelations are little explored. This paper describes these interrelations and behavioral profiles clustered in low and high academic performance. A nationally representative sample of 3,095 Spanish adolescents, aged 12 to 18, was surveyed on 15 variables linked to the purpose of the study. A Self-Organizing Maps analysis established non-linear interrelationships among these variables and identified behavior patterns in subsequent cluster analyses. Topological interrelationships established from the 15 emerging maps indicated that boys used more passive videogames and computers for playing than girls, who tended to use mobile phones to communicate with others. Adolescents with the highest academic performance were the youngest. They slept more and spent less time using sedentary screen media when compared to those with the lowest performance, and they also showed topological relationships with higher socioeconomic status adolescents. Cluster 1 grouped boys who spent more than 5.5 hours daily using sedentary screen media. Their academic performance was low and they slept an average of 8 hours daily. Cluster 2 gathered girls with an excellent academic performance, who slept nearly 9 hours per day, and devoted less time daily to sedentary screen media. Academic performance was directly related to sleep time and socioeconomic status, but inversely related to overall sedentary screen media usage. Profiles from the two clusters were strongly differentiated by gender, age, sedentary screen media usage, sleep time and academic achievement. Girls with the highest academic results had a medium socioeconomic status in Cluster 2. Findings may contribute to establishing recommendations about the timing and duration of screen media usage in adolescents and appropriate sleep time needed to successfully meet the demands of school academics and to improve interventions targeting to affect behavioral change. PMID:24941009
Aires-de-Sousa, João; Aires-de-Sousa, Luisa
2003-01-01
We propose representing individual positions in DNA sequences by virtual potentials generated by other bases of the same sequence. This is a compact representation of the neighbourhood of a base. The distribution of the virtual potentials over the whole sequence can be used as a representation of the entire sequence (SEQREP code). It is a flexible code, with a length independent of the sequence size, does not require previous alignment, and is convenient for processing by neural networks or statistical techniques. To evaluate its biological significance, the SEQREP code was used for training Kohonen self-organizing maps (SOMs) in two applications: (a) detection of Alu sequences, and (b) classification of sequences encoding for HIV-1 envelope glycoprotein (env) into subtypes A-G. It was demonstrated that SOMs clustered sequences belonging to different classes into distinct regions. For independent test sets, very high rates of correct predictions were obtained (97% in the first application, 91% in the second). Possible areas of application of SEQREP codes include functional genomics, phylogenetic analysis, detection of repetitions, database retrieval, and automatic alignment. Software for representing sequences by SEQREP code, and for training Kohonen SOMs is made freely available from http://www.dq.fct.unl.pt/qoa/jas/seqrep. Supplementary material is available at http://www.dq.fct.unl.pt/qoa/jas/seqrep/bioinf2002
NASA Astrophysics Data System (ADS)
Gregoire, Alexandre David
2011-07-01
The goal of this research was to accurately predict the ultimate compressive load of impact damaged graphite/epoxy coupons using a Kohonen self-organizing map (SOM) neural network and multivariate statistical regression analysis (MSRA). An optimized use of these data treatment tools allowed the generation of a simple, physically understandable equation that predicts the ultimate failure load of an impacted damaged coupon based uniquely on the acoustic emissions it emits at low proof loads. Acoustic emission (AE) data were collected using two 150 kHz resonant transducers which detected and recorded the AE activity given off during compression to failure of thirty-four impacted 24-ply bidirectional woven cloth laminate graphite/epoxy coupons. The AE quantification parameters duration, energy and amplitude for each AE hit were input to the Kohonen self-organizing map (SOM) neural network to accurately classify the material failure mechanisms present in the low proof load data. The number of failure mechanisms from the first 30% of the loading for twenty-four coupons were used to generate a linear prediction equation which yielded a worst case ultimate load prediction error of 16.17%, just outside of the +/-15% B-basis allowables, which was the goal for this research. Particular emphasis was placed upon the noise removal process which was largely responsible for the accuracy of the results.
Nurmohamadi, Maryam; Pourghassem, Hossein
2014-05-01
The utilization of antibiotics produced by Clavulanic acid (CA) is an increasing need in medicine and industry. Usually, the CA is created from the fermentation of Streptomycen Clavuligerus (SC) bacteria. Analysis of visual and morphological features of SC bacteria is an appropriate measure to estimate the growth of CA. In this paper, an automatic and fast CA production level estimation algorithm based on visual and structural features of SC bacteria instead of statistical methods and experimental evaluation by microbiologist is proposed. In this algorithm, structural features such as the number of newborn branches, thickness of hyphal and bacterial density and also color features such as acceptance color levels are extracted from the SC bacteria. Moreover, PH and biomass of the medium provided by microbiologists are considered as specified features. The level of CA production is estimated by using a new application of Self-Organizing Map (SOM), and a hybrid model of genetic algorithm with back propagation network (GA-BPN). The proposed algorithm is evaluated on four carbonic resources including malt, starch, wheat flour and glycerol that had used as different mediums of bacterial growth. Then, the obtained results are compared and evaluated with observation of specialist. Finally, the Relative Error (RE) for the SOM and GA-BPN are achieved 14.97% and 16.63%, respectively. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Mills, Susan L; Bergeron, Kim; Pérez, Guillermina
2015-10-08
Self-management support (SMS) is an essential component of public health approaches to chronic conditions. Given increasing concerns about health equity, the needs of diverse populations must be considered. This study examined potential solutions for addressing the gaps in self-management support initiatives for underserved populations. Stakeholders representing government, nongovernment organizations, Aboriginal communities, health authorities, medical practices, and research institutions generated, sorted, and rated ideas on what could be done to improve self-management support for underserved populations. Concept mapping was used to facilitate the collection and organization of the data and to generate conceptual maps. Participants generated 92 ideas that were sorted into 11 clusters (foster partnerships, promote integrated community care, enhance health care provider training, shift government policy, support community development, increase community education, enable client engagement, incorporate client support systems, recognize client capacity, tailor self-management support programs, and develop client skills, training, and tools) and grouped into system, community, and individual levels within a partnership framework. The strategy can stimulate public health dialogue and be a roadmap for developing SMS initiatives. It has the potential to address SMS and chronic condition inequities in underserved populations in several ways: 1) by targeting populations that have greater inequities, 2) by advocating for shifts in government policies that create and perpetuate inequities, 3) by promoting partnerships that may increase the number of SMS initiatives for underserved groups, and 4) by promoting training and engagement that increase the relevance, uptake, and overall effectiveness of SMS.
NASA Astrophysics Data System (ADS)
Bauer, K.; Pratt, R. G.; Haberland, C.; Weber, M.
2008-10-01
Crosshole seismic experiments were conducted to study the in-situ properties of gas hydrate bearing sediments (GHBS) in the Mackenzie Delta (NW Canada). Seismic tomography provided images of P velocity, anisotropy, and attenuation. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. Application to the Mallik data reveals four major litho-types: (1) GHBS, (2) sands, (3) shale/coal interlayering, and (4) silt. The signature of seismic P wave characteristics distinguished for the GHBS (high velocities, strong anisotropy and attenuation) is new and can be used for new exploration strategies to map and quantify gas hydrates.
Principal semantic components of language and the measurement of meaning.
Samsonovich, Alexei V; Samsonovic, Alexei V; Ascoli, Giorgio A
2010-06-11
Metric systems for semantics, or semantic cognitive maps, are allocations of words or other representations in a metric space based on their meaning. Existing methods for semantic mapping, such as Latent Semantic Analysis and Latent Dirichlet Allocation, are based on paradigms involving dissimilarity metrics. They typically do not take into account relations of antonymy and yield a large number of domain-specific semantic dimensions. Here, using a novel self-organization approach, we construct a low-dimensional, context-independent semantic map of natural language that represents simultaneously synonymy and antonymy. Emergent semantics of the map principal components are clearly identifiable: the first three correspond to the meanings of "good/bad" (valence), "calm/excited" (arousal), and "open/closed" (freedom), respectively. The semantic map is sufficiently robust to allow the automated extraction of synonyms and antonyms not originally in the dictionaries used to construct the map and to predict connotation from their coordinates. The map geometric characteristics include a limited number ( approximately 4) of statistically significant dimensions, a bimodal distribution of the first component, increasing kurtosis of subsequent (unimodal) components, and a U-shaped maximum-spread planar projection. Both the semantic content and the main geometric features of the map are consistent between dictionaries (Microsoft Word and Princeton's WordNet), among Western languages (English, French, German, and Spanish), and with previously established psychometric measures. By defining the semantics of its dimensions, the constructed map provides a foundational metric system for the quantitative analysis of word meaning. Language can be viewed as a cumulative product of human experiences. Therefore, the extracted principal semantic dimensions may be useful to characterize the general semantic dimensions of the content of mental states. This is a fundamental step toward a universal metric system for semantics of human experiences, which is necessary for developing a rigorous science of the mind.
Zuriaga, Elena; Molina, Laura; Badenes, María Luisa; Romero, Carlos
2012-06-01
S-locus products (S-RNase and F-box proteins) are essential for the gametophytic self-incompatibility (GSI) specific recognition in Prunus. However, accumulated genetic evidence suggests that other S-locus unlinked factors are also required for GSI. For instance, GSI breakdown was associated with a pollen-part mutation unlinked to the S-locus in the apricot (Prunus armeniaca L.) cv. 'Canino'. Fine-mapping of this mutated modifier gene (M-locus) and the synteny analysis of the M-locus within the Rosaceae are here reported. A segregation distortion loci mapping strategy, based on a selectively genotyped population, was used to map the M-locus. In addition, a bacterial artificial chromosome (BAC) contig was constructed for this region using overlapping oligonucleotides probes, and BAC-end sequences (BES) were blasted against Rosaceae genomes to perform micro-synteny analysis. The M-locus was mapped to the distal part of chr.3 flanked by two SSR markers within an interval of 1.8 cM corresponding to ~364 Kb in the peach (Prunus persica L. Batsch) genome. In the integrated genetic-physical map of this region, BES were mapped against the peach scaffold_3 and BACs were anchored to the apricot map. Micro-syntenic blocks were detected in apple (Malus × domestica Borkh.) LG17/9 and strawberry (Fragaria vesca L.) FG6 chromosomes. The M-locus fine-scale mapping provides a solid basis for self-compatibility marker-assisted selection and for positional cloning of the underlying gene, a necessary goal to elucidate the pollen rejection mechanism in Prunus. In a wider context, the syntenic regions identified in peach, apple and strawberry might be useful to interpret GSI evolution in Rosaceae.
NASA Astrophysics Data System (ADS)
Nanda, Trushnamayee; Sahoo, Bhabagrahi; Chatterjee, Chandranath
2017-06-01
The Kohonen Self-Organizing Map (KSOM) estimator is prescribed as a useful tool for infilling the missing data in hydrometeorology. However, in this study, when the performance of the KSOM estimator is tested for gap-filling in the streamflow, rainfall, evapotranspiration (ET), and temperature timeseries data, collected from 30 gauging stations in India under missing data situations, it is felt that the KSOM modeling performance could be further improved. Consequently, this study tries to answer the research questions as to whether the length of record of the historical data and its variability has any effect on the performance of the KSOM? Whether inclusion of temporal distribution of timeseries data and the nature of outliers in the KSOM framework enhances its performance further? Subsequently, it is established that the KSOM framework should include the coefficient of variation of the datasets for determination of the number of map units, without considering it as a single value function of the sample data size. This could help to upscale and generalize the applicability of KSOM for varied hydrometeorological data types.
A universal approach to the study of nonlinear systems
NASA Astrophysics Data System (ADS)
Hwa, Rudolph C.
2004-07-01
A large variety of nonlinear systems have been treated by a common approach that emphasizes the fluctuation of spatial patterns. By using the same method of analysis it is possible to discuss the chaotic behaviors of quark jets and logistic map in the same language. Critical behaviors of quark-hadron phase transition in heavy-ion collisions and of photon production at the threshold of lasing can also be described by a common scaling behavior. The universal approach also makes possible an insight into the recently discovered phenomenon of wind reversal in cryogenic turbulence as a manifestation of self-organized criticality.
2015-12-01
use of social network analysis (SNA) has allowed the military to map dark networks of terrorist organizations and selectively target key elements...data to improve SC. 14. SUBJECT TERMS social network analysis, dark networks, light networks, dim networks, security cooperation, Southeast Asia...task may already exist. Recently, the use of social network analysis (SNA) has allowed the military to map dark networks of terrorist organizations
String tightening as a self-organizing phenomenon.
Banerjee, Bonny
2007-09-01
The phenomenon of self-organization has been of special interest to the neural network community throughout the last couple of decades. In this paper, we study a variant of the self-organizing map (SOM) that models the phenomenon of self-organization of the particles forming a string when the string is tightened from one or both of its ends. The proposed variant, called the string tightening self-organizing neural network (STON), can be used to solve certain practical problems, such as computation of shortest homotopic paths, smoothing paths to avoid sharp turns, computation of convex hull, etc. These problems are of considerable interest in computational geometry, robotics path-planning, artificial intelligence (AI) (diagrammatic reasoning), very large scale integration (VLSI) routing, and geographical information systems. Given a set of obstacles and a string with two fixed terminal points in a 2-D space, the STON model continuously tightens the given string until the unique shortest configuration in terms of the Euclidean metric is reached. The STON minimizes the total length of a string on convergence by dynamically creating and selecting feature vectors in a competitive manner. Proof of correctness of this anytime algorithm and experimental results obtained by its deployment have been presented in the paper.
Employing Geodatabases for Planetary Mapping Conduct - Requirements, Concepts and Solutions
NASA Technical Reports Server (NTRS)
vanGasselt, Stephan; Nass, A.
2010-01-01
Planetary geologic mapping has become complex in terms of merging and co-registering a variety of different datasets for analysis and mapping. But it has also become more convenient when it comes to conducting actual (geoscientific) mapping with the help of desktop Geographic Information Systems (GIS). The complexity and variety of data, however, are major issues that need to be taken care of in order to provide mappers with a consistent and easy-to-use mapping basis. Furthermore, a high degree of functionality and interoperability of various commercial and open-source GIS and remote sensing applications allow mappers to organize map data, map components and attribute data in a more sophisticated and intuitional way when compared to workflows 15 years ago. Integration of mapping results of different groups becomes an awkward task as each mapper follows his/her own style, especially if mapping conduct is not coordinated and organized programmatically. Problems of data homogenization start with various interpretations and implementations of planetary map projections and reference systems which form the core component of any mapping and analysis work. If the data basis is inconsistent, mapping results in terms of objects georeference become hard to integrate. Apart from data organization and referencing issues, which are important on the mapping as well as the data-processing side of every project, the organization of planetary geologic map units and attributes, as well as their representation within a common GIS environment, are key components that need to be taken care of in a consistent and persistent way.
NASA Astrophysics Data System (ADS)
Hernawati, Kuswari; Insani, Nur; Bambang S. H., M.; Nur Hadi, W.; Sahid
2017-08-01
This research aims to mapping the 33 (thirty-three) provinces in Indonesia, based on the data on air, water and soil pollution, as well as social demography and geography data, into a clustered model. The method used in this study was unsupervised method that combines the basic concept of Kohonen or Self-Organizing Feature Maps (SOFM). The method is done by providing the design parameters for the model based on data related directly/ indirectly to pollution, which are the demographic and social data, pollution levels of air, water and soil, as well as the geographical situation of each province. The parameters used consists of 19 features/characteristics, including the human development index, the number of vehicles, the availability of the plant's water absorption and flood prevention, as well as geographic and demographic situation. The data used were secondary data from the Central Statistics Agency (BPS), Indonesia. The data are mapped into SOFM from a high-dimensional vector space into two-dimensional vector space according to the closeness of location in term of Euclidean distance. The resulting outputs are represented in clustered grouping. Thirty-three provinces are grouped into five clusters, where each cluster has different features/characteristics and level of pollution. The result can used to help the efforts on prevention and resolution of pollution problems on each cluster in an effective and efficient way.
Razali, Sheriza Mohd; Marin, Arnaldo; Nuruddin, Ahmad Ainuddin; Shafri, Helmi Zulhaidi Mohd; Hamid, Hazandy Abdul
2014-01-01
Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions. PMID:24811079
Razali, Sheriza Mohd; Marin, Arnaldo; Nuruddin, Ahmad Ainuddin; Shafri, Helmi Zulhaidi Mohd; Hamid, Hazandy Abdul
2014-05-07
Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions.
NASA Astrophysics Data System (ADS)
Bustamam, A.; Aldila, D.; Fatimah, Arimbi, M. D.
2017-07-01
One of the most widely used clustering method, since it has advantage on its robustness, is Self-Organizing Maps (SOM) method. This paper discusses the application of SOM method on Human Papillomavirus (HPV) DNA which is the main cause of cervical cancer disease, the most dangerous cancer in developing countries. We use 18 types of HPV DNA-based on the newest complete genome. By using open-source-based program R, clustering process can separate 18 types of HPV into two different clusters. There are two types of HPV in the first cluster while 16 others in the second cluster. The analyzing result of 18 types HPV based on the malignancy of the virus (the difficultness to cure). Two of HPV types the first cluster can be classified as tame HPV, while 16 others in the second cluster are classified as vicious HPV.
FPGA implementation of self organizing map with digital phase locked loops.
Hikawa, Hiroomi
2005-01-01
The self-organizing map (SOM) has found applicability in a wide range of application areas. Recently new SOM hardware with phase modulated pulse signal and digital phase-locked loops (DPLLs) has been proposed (Hikawa, 2005). The system uses the DPLL as a computing element since the operation of the DPLL is very similar to that of SOM's computation. The system also uses square waveform phase to hold the value of the each input vector element. This paper discuss the hardware implementation of the DPLL SOM architecture. For effective hardware implementation, some components are redesigned to reduce the circuit size. The proposed SOM architecture is described in VHDL and implemented on field programmable gate array (FPGA). Its feasibility is verified by experiments. Results show that the proposed SOM implemented on the FPGA has a good quantization capability, and its circuit size very small.
Segmentation of Natural Gas Customers in Industrial Sector Using Self-Organizing Map (SOM) Method
NASA Astrophysics Data System (ADS)
Masbar Rus, A. M.; Pramudita, R.; Surjandari, I.
2018-03-01
The usage of the natural gas which is non-renewable energy, needs to be more efficient. Therefore, customer segmentation becomes necessary to set up a marketing strategy to be right on target or to determine an appropriate fee. This research was conducted at PT PGN using one of data mining method, i.e. Self-Organizing Map (SOM). The clustering process is based on the characteristic of its customers as a reference to create the customer segmentation of natural gas customers. The input variables of this research are variable of area, type of customer, the industrial sector, the average usage, standard deviation of the usage, and the total deviation. As a result, 37 cluster and 9 segment from 838 customer data are formed. These 9 segments then employed to illustrate the general characteristic of the natural gas customer of PT PGN.
Characterization of suicidal behaviour with self-organizing maps.
Leiva-Murillo, José M; López-Castromán, Jorge; Baca-García, Enrique
2013-01-01
The study of the variables involved in suicidal behavior is important from a social, medical, and economical point of view. Given the high number of potential variables of interest, a large population of subjects must be analysed in order to get conclusive results. In this paper, we describe a method based on self-organizing maps (SOMs) for finding the most relevant variables even when their relation to suicidal behavior is strongly nonlinear. We have applied the method to a cohort with more than 8,000 subjects and 600 variables and discovered four groups of variables involved in suicidal behavior. According to the results, there are four main groups of risk factors that characterize the population of suicide attempters: mental disorders, alcoholism, impulsivity, and childhood abuse. The identification of specific subpopulations of suicide attempters is consistent with current medical knowledge and may provide a new avenue of research to improve the management of suicidal cases.
Identifying regions of interest in medical images using self-organizing maps.
Teng, Wei-Guang; Chang, Ping-Lin
2012-10-01
Advances in data acquisition, processing and visualization techniques have had a tremendous impact on medical imaging in recent years. However, the interpretation of medical images is still almost always performed by radiologists. Developments in artificial intelligence and image processing have shown the increasingly great potential of computer-aided diagnosis (CAD). Nevertheless, it has remained challenging to develop a general approach to process various commonly used types of medical images (e.g., X-ray, MRI, and ultrasound images). To facilitate diagnosis, we recommend the use of image segmentation to discover regions of interest (ROI) using self-organizing maps (SOM). We devise a two-stage SOM approach that can be used to precisely identify the dominant colors of a medical image and then segment it into several small regions. In addition, by appropriately conducting the recursive merging steps to merge smaller regions into larger ones, radiologists can usually identify one or more ROIs within a medical image.
[Application of Kohonen Self-Organizing Feature Maps in QSAR of human ADMET and kinase data sets].
Hegymegi-Barakonyi, Bálint; Orfi, László; Kéri, György; Kövesdi, István
2013-01-01
QSAR predictions have been proven very useful in a large number of studies for drug design, such as kinase inhibitor design as targets for cancer therapy, however the overall predictability often remains unsatisfactory. To improve predictability of ADMET features and kinase inhibitory data, we present a new method using Kohonen's Self-Organizing Feature Map (SOFM) to cluster molecules based on explanatory variables (X) and separate dissimilar ones. We calculated SOFM clusters for a large number of molecules with human ADMET and kinase inhibitory data, and we showed that chemically similar molecules were in the same SOFM cluster, and within such clusters the QSAR models had significantly better predictability. We used also target variables (Y, e.g. ADMET) jointly with X variables to create a novel type of clustering. With our method, cells of loosely coupled XY data could be identified and separated into different model building sets.
FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data.
Van Gassen, Sofie; Callebaut, Britt; Van Helden, Mary J; Lambrecht, Bart N; Demeester, Piet; Dhaene, Tom; Saeys, Yvan
2015-07-01
The number of markers measured in both flow and mass cytometry keeps increasing steadily. Although this provides a wealth of information, it becomes infeasible to analyze these datasets manually. When using 2D scatter plots, the number of possible plots increases exponentially with the number of markers and therefore, relevant information that is present in the data might be missed. In this article, we introduce a new visualization technique, called FlowSOM, which analyzes Flow or mass cytometry data using a Self-Organizing Map. Using a two-level clustering and star charts, our algorithm helps to obtain a clear overview of how all markers are behaving on all cells, and to detect subsets that might be missed otherwise. R code is available at https://github.com/SofieVG/FlowSOM and will be made available at Bioconductor. © 2015 International Society for Advancement of Cytometry.
Autonomous Data Collection Using a Self-Organizing Map.
Faigl, Jan; Hollinger, Geoffrey A
2018-05-01
The self-organizing map (SOM) is an unsupervised learning technique providing a transformation of a high-dimensional input space into a lower dimensional output space. In this paper, we utilize the SOM for the traveling salesman problem (TSP) to develop a solution to autonomous data collection. Autonomous data collection requires gathering data from predeployed sensors by moving within a limited communication radius. We propose a new growing SOM that adapts the number of neurons during learning, which also allows our approach to apply in cases where some sensors can be ignored due to a lower priority. Based on a comparison with available combinatorial heuristic algorithms for relevant variants of the TSP, the proposed approach demonstrates improved results, while also being less computationally demanding. Moreover, the proposed learning procedure can be extended to cases where particular sensors have varying communication radii, and it can also be extended to multivehicle planning.
Vector representation of user's view using self-organizing map
NASA Astrophysics Data System (ADS)
Ae, Tadashi; Yamaguchi, Tomohisa; Monden, Eri; Kawabata, Shunji; Kamitani, Motoki
2004-05-01
There exist various objects, such as pictures, music, texts, etc., around our environment. We have a view for these objects by looking, reading or listening. Our view is concerned with our behaviors deeply, and is very important to understand our behaviors. Therefore, we propose a method which acquires a view as a vector, and apply the vector to sequence generation. We focus on sequences of the data of which a user selects from a multimedia database containing pictures, music, movie, etc.. These data cannot be stereotyped because user's view for them changes by each user. Therefore, we represent the structure of the multimedia database as the vector representing user's view and the stereotyped vector, and acquire sequences containing the structure as elements. We demonstrate a city-sequence generation system which reflects user's intension as an application of sequence generation containing user's view. We apply the self-organizing map to this system to represent user's view.
Spectral mapping of soil organic matter
NASA Technical Reports Server (NTRS)
Kristof, S. J.; Baumgardner, M. F.; Johannsen, C. J.
1974-01-01
Multispectral remote sensing data were examined for use in the mapping of soil organic matter content. Computer-implemented pattern recognition techniques were used to analyze data collected in May 1969 and May 1970 by an airborne multispectral scanner over a 40-km flightline. Two fields within the flightline were selected for intensive study. Approximately 400 surface soil samples from these fields were obtained for organic matter analysis. The analytical data were used as training sets for computer-implemented analysis of the spectral data. It was found that within the geographical limitations included in this study, multispectral data and automatic data processing techniques could be used very effectively to delineate and map surface soils areas containing different levels of soil organic matter.
Self-organizing adaptive map: autonomous learning of curves and surfaces from point samples.
Piastra, Marco
2013-05-01
Competitive Hebbian Learning (CHL) (Martinetz, 1993) is a simple and elegant method for estimating the topology of a manifold from point samples. The method has been adopted in a number of self-organizing networks described in the literature and has given rise to related studies in the fields of geometry and computational topology. Recent results from these fields have shown that a faithful reconstruction can be obtained using the CHL method only for curves and surfaces. Within these limitations, these findings constitute a basis for defining a CHL-based, growing self-organizing network that produces a faithful reconstruction of an input manifold. The SOAM (Self-Organizing Adaptive Map) algorithm adapts its local structure autonomously in such a way that it can match the features of the manifold being learned. The adaptation process is driven by the defects arising when the network structure is inadequate, which cause a growth in the density of units. Regions of the network undergo a phase transition and change their behavior whenever a simple, local condition of topological regularity is met. The phase transition is eventually completed across the entire structure and the adaptation process terminates. In specific conditions, the structure thus obtained is homeomorphic to the input manifold. During the adaptation process, the network also has the capability to focus on the acquisition of input point samples in critical regions, with a substantial increase in efficiency. The behavior of the network has been assessed experimentally with typical data sets for surface reconstruction, including suboptimal conditions, e.g. with undersampling and noise. Copyright © 2012 Elsevier Ltd. All rights reserved.
Iwasaki, Yuki; Abe, Takashi; Wada, Kennosuke; Wada, Yoshiko; Ikemura, Toshimichi
2013-11-20
With the remarkable increase of genomic sequence data of microorganisms, novel tools are needed for comprehensive analyses of the big sequence data available. The self-organizing map (SOM) is an effective tool for clustering and visualizing high-dimensional data, such as oligonucleotide composition on one map. By modifying the conventional SOM, we developed batch-learning SOM (BLSOM), which allowed classification of sequence fragments (e.g., 1 kb) according to phylotypes, solely depending on oligonucleotide composition. Metagenomics studies of uncultivable microorganisms in clinical and environmental samples should allow extensive surveys of genes important in life sciences. BLSOM is most suitable for phylogenetic assignment of metagenomic sequences, because fragmental sequences can be clustered according to phylotypes, solely depending on oligonucleotide composition. We first constructed oligonucleotide BLSOMs for all available sequences from genomes of known species, and by mapping metagenomic sequences on these large-scale BLSOMs, we can predict phylotypes of individual metagenomic sequences, revealing a microbial community structure of uncultured microorganisms, including viruses. BLSOM has shown that influenza viruses isolated from humans and birds clearly differ in oligonucleotide composition. Based on this host-dependent oligonucleotide composition, we have proposed strategies for predicting directional changes of virus sequences and for surveilling potentially hazardous strains when introduced into humans from non-human sources.
Jędrkiewicz, Renata; Tsakovski, Stefan; Lavenu, Aurore; Namieśnik, Jacek; Tobiszewski, Marek
2018-02-01
Novel methodology for grouping and ranking with application of self-organizing maps and multicriteria decision analysis is presented. The dataset consists of 22 objects that are analytical procedures applied to furan determination in food samples. They are described by 10 variables, referred to their analytical performance, environmental and economic aspects. Multivariate statistics analysis allows to limit the amount of input data for ranking analysis. Assessment results show that the most beneficial procedures are based on microextraction techniques with GC-MS final determination. It is presented how the information obtained from both tools complement each other. The applicability of combination of grouping and ranking is also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Self-Organization Activities of College Students: Challenges and Opportunities
ERIC Educational Resources Information Center
Shmurygina, Natalia; Bazhenova, Natalia; Bazhenov, Ruslan; Nikolaeva, Natalia; Tcytcarev, Andrey
2016-01-01
The article provides the analysis of self-organization activities of college students related to their participation in youth associations activities. The purpose of research is to disclose a degree of students' activities demonstration based on self-organization processes, assessment of existing self-organization practices of the youth,…
ERIC Educational Resources Information Center
Lopez, Enrique J.; Nandagopal, Kiruthiga; Shavelson, Richard J.; Szu, Evan; Penn, John
2013-01-01
This study sought to identify ethnically diverse students' study strategies in organic chemistry and their relationships to course outcomes. Study diaries, concept maps, and problem sets were used to assess study outcomes. Findings show that students engage in four commonly used reviewing-type strategies, regardless of ethnic group affiliation.…
SOMBI: Bayesian identification of parameter relations in unstructured cosmological data
NASA Astrophysics Data System (ADS)
Frank, Philipp; Jasche, Jens; Enßlin, Torsten A.
2016-11-01
This work describes the implementation and application of a correlation determination method based on self organizing maps and Bayesian inference (SOMBI). SOMBI aims to automatically identify relations between different observed parameters in unstructured cosmological or astrophysical surveys by automatically identifying data clusters in high-dimensional datasets via the self organizing map neural network algorithm. Parameter relations are then revealed by means of a Bayesian inference within respective identified data clusters. Specifically such relations are assumed to be parametrized as a polynomial of unknown order. The Bayesian approach results in a posterior probability distribution function for respective polynomial coefficients. To decide which polynomial order suffices to describe correlation structures in data, we include a method for model selection, the Bayesian information criterion, to the analysis. The performance of the SOMBI algorithm is tested with mock data. As illustration we also provide applications of our method to cosmological data. In particular, we present results of a correlation analysis between galaxy and active galactic nucleus (AGN) properties provided by the SDSS catalog with the cosmic large-scale-structure (LSS). The results indicate that the combined galaxy and LSS dataset indeed is clustered into several sub-samples of data with different average properties (for example different stellar masses or web-type classifications). The majority of data clusters appear to have a similar correlation structure between galaxy properties and the LSS. In particular we revealed a positive and linear dependency between the stellar mass, the absolute magnitude and the color of a galaxy with the corresponding cosmic density field. A remaining subset of data shows inverted correlations, which might be an artifact of non-linear redshift distortions.
An adaptable neuromorphic model of orientation selectivity based on floating gate dynamics
Gupta, Priti; Markan, C. M.
2014-01-01
The biggest challenge that the neuromorphic community faces today is to build systems that can be considered truly cognitive. Adaptation and self-organization are the two basic principles that underlie any cognitive function that the brain performs. If we can replicate this behavior in hardware, we move a step closer to our goal of having cognitive neuromorphic systems. Adaptive feature selectivity is a mechanism by which nature optimizes resources so as to have greater acuity for more abundant features. Developing neuromorphic feature maps can help design generic machines that can emulate this adaptive behavior. Most neuromorphic models that have attempted to build self-organizing systems, follow the approach of modeling abstract theoretical frameworks in hardware. While this is good from a modeling and analysis perspective, it may not lead to the most efficient hardware. On the other hand, exploiting hardware dynamics to build adaptive systems rather than forcing the hardware to behave like mathematical equations, seems to be a more robust methodology when it comes to developing actual hardware for real world applications. In this paper we use a novel time-staggered Winner Take All circuit, that exploits the adaptation dynamics of floating gate transistors, to model an adaptive cortical cell that demonstrates Orientation Selectivity, a well-known biological phenomenon observed in the visual cortex. The cell performs competitive learning, refining its weights in response to input patterns resembling different oriented bars, becoming selective to a particular oriented pattern. Different analysis performed on the cell such as orientation tuning, application of abnormal inputs, response to spatial frequency and periodic patterns reveal close similarity between our cell and its biological counterpart. Embedded in a RC grid, these cells interact diffusively exhibiting cluster formation, making way for adaptively building orientation selective maps in silicon. PMID:24765062
NASA Astrophysics Data System (ADS)
Unglert, K.; Radić, V.; Jellinek, A. M.
2016-06-01
Variations in the spectral content of volcano seismicity related to changes in volcanic activity are commonly identified manually in spectrograms. However, long time series of monitoring data at volcano observatories require tools to facilitate automated and rapid processing. Techniques such as self-organizing maps (SOM) and principal component analysis (PCA) can help to quickly and automatically identify important patterns related to impending eruptions. For the first time, we evaluate the performance of SOM and PCA on synthetic volcano seismic spectra constructed from observations during two well-studied eruptions at Klauea Volcano, Hawai'i, that include features observed in many volcanic settings. In particular, our objective is to test which of the techniques can best retrieve a set of three spectral patterns that we used to compose a synthetic spectrogram. We find that, without a priori knowledge of the given set of patterns, neither SOM nor PCA can directly recover the spectra. We thus test hierarchical clustering, a commonly used method, to investigate whether clustering in the space of the principal components and on the SOM, respectively, can retrieve the known patterns. Our clustering method applied to the SOM fails to detect the correct number and shape of the known input spectra. In contrast, clustering of the data reconstructed by the first three PCA modes reproduces these patterns and their occurrence in time more consistently. This result suggests that PCA in combination with hierarchical clustering is a powerful practical tool for automated identification of characteristic patterns in volcano seismic spectra. Our results indicate that, in contrast to PCA, common clustering algorithms may not be ideal to group patterns on the SOM and that it is crucial to evaluate the performance of these tools on a control dataset prior to their application to real data.
Serrien, Ben; Hohenauer, Erich; Clijsen, Ron; Taube, Wolfgang; Baeyens, Jean-Pierre; Küng, Ursula
2017-11-01
How humans maintain balance and change postural control due to age, injury, immobility or training is one of the basic questions in motor control. One of the problems in understanding postural control is the large set of degrees of freedom in the human motor system. Therefore, a self-organizing map (SOM), a type of artificial neural network, was used in the present study to extract and visualize information about high-dimensional balance strategies before and after a 6-week slackline training intervention. Thirteen subjects performed a flamingo and slackline balance task before and after the training while full body kinematics were measured. Range of motion, velocity and frequency of the center of mass and joint angles from the pelvis, trunk and lower leg (45 variables) were calculated and subsequently analyzed with an SOM. Subjects increased their standing time significantly on the flamingo (average +2.93 s, Cohen's d = 1.04) and slackline (+9.55 s, d = 3.28) tasks, but the effect size was more than three times larger in the slackline. The SOM analysis, followed by a k-means clustering and marginal homogeneity test, showed that the balance coordination pattern was significantly different between pre- and post-test for the slackline task only (χ 2 = 82.247; p < 0.001). The shift in balance coordination on the slackline could be characterized by an increase in range of motion and a decrease in velocity and frequency in nearly all degrees of freedom simultaneously. The observation of low transfer of coordination strategies to the flamingo task adds further evidence for the task-specificity principle of balance training, meaning that slackline training alone will be insufficient to increase postural control in other challenging situations.
Self organising maps for visualising and modelling
2012-01-01
The paper describes the motivation of SOMs (Self Organising Maps) and how they are generally more accessible due to the wider available modern, more powerful, cost-effective computers. Their advantages compared to Principal Components Analysis and Partial Least Squares are discussed. These allow application to non-linear data, are not so dependent on least squares solutions, normality of errors and less influenced by outliers. In addition there are a wide variety of intuitive methods for visualisation that allow full use of the map space. Modern problems in analytical chemistry include applications to cultural heritage studies, environmental, metabolomic and biological problems result in complex datasets. Methods for visualising maps are described including best matching units, hit histograms, unified distance matrices and component planes. Supervised SOMs for classification including multifactor data and variable selection are discussed as is their use in Quality Control. The paper is illustrated using four case studies, namely the Near Infrared of food, the thermal analysis of polymers, metabolomic analysis of saliva using NMR, and on-line HPLC for pharmaceutical process monitoring. PMID:22594434
Hsu, Arthur L; Tang, Sen-Lin; Halgamuge, Saman K
2003-11-01
Current Self-Organizing Maps (SOMs) approaches to gene expression pattern clustering require the user to predefine the number of clusters likely to be expected. Hierarchical clustering methods used in this area do not provide unique partitioning of data. We describe an unsupervised dynamic hierarchical self-organizing approach, which suggests an appropriate number of clusters, to perform class discovery and marker gene identification in microarray data. In the process of class discovery, the proposed algorithm identifies corresponding sets of predictor genes that best distinguish one class from other classes. The approach integrates merits of hierarchical clustering with robustness against noise known from self-organizing approaches. The proposed algorithm applied to DNA microarray data sets of two types of cancers has demonstrated its ability to produce the most suitable number of clusters. Further, the corresponding marker genes identified through the unsupervised algorithm also have a strong biological relationship to the specific cancer class. The algorithm tested on leukemia microarray data, which contains three leukemia types, was able to determine three major and one minor cluster. Prediction models built for the four clusters indicate that the prediction strength for the smaller cluster is generally low, therefore labelled as uncertain cluster. Further analysis shows that the uncertain cluster can be subdivided further, and the subdivisions are related to two of the original clusters. Another test performed using colon cancer microarray data has automatically derived two clusters, which is consistent with the number of classes in data (cancerous and normal). JAVA software of dynamic SOM tree algorithm is available upon request for academic use. A comparison of rectangular and hexagonal topologies for GSOM is available from http://www.mame.mu.oz.au/mechatronics/journalinfo/Hsu2003supp.pdf
NASA Astrophysics Data System (ADS)
Nakaoka, S.; Telszewski, M.; Nojiri, Y.; Yasunaka, S.; Miyazaki, C.; Mukai, H.; Usui, N.
2013-09-01
This study uses a neural network technique to produce maps of the partial pressure of oceanic carbon dioxide (pCO2sea) in the North Pacific on a 0.25° latitude × 0.25° longitude grid from 2002 to 2008. The pCO2sea distribution was computed using a self-organizing map (SOM) originally utilized to map the pCO2sea in the North Atlantic. Four proxy parameters - sea surface temperature (SST), mixed layer depth, chlorophyll a concentration, and sea surface salinity (SSS) - are used during the training phase to enable the network to resolve the nonlinear relationships between the pCO2sea distribution and biogeochemistry of the basin. The observed pCO2sea data were obtained from an extensive dataset generated by the volunteer observation ship program operated by the National Institute for Environmental Studies (NIES). The reconstructed pCO2sea values agreed well with the pCO2sea measurements, with the root-mean-square error ranging from 17.6 μatm (for the NIES dataset used in the SOM) to 20.2 μatm (for independent dataset). We confirmed that the pCO2sea estimates could be improved by including SSS as one of the training parameters and by taking into account secular increases of pCO2sea that have tracked increases in atmospheric CO2. Estimated pCO2sea values accurately reproduced pCO2sea data at several time series locations in the North Pacific. The distributions of pCO2sea revealed by 7 yr averaged monthly pCO2sea maps were similar to Lamont-Doherty Earth Observatory pCO2sea climatology, allowing, however, for a more detailed analysis of biogeochemical conditions. The distributions of pCO2sea anomalies over the North Pacific during the winter clearly showed regional contrasts between El Niño and La Niña years related to changes of SST and vertical mixing.
Landscape patterns from mathematical morphology on maps with contagion
Kurt Riitters; Peter Vogt; Pierre Soille; Christine Estreguil
2009-01-01
The perceived realism of simulated maps with contagion (spatial autocorrelation) has led to their use for comparing landscape pattern metrics and as habitat maps for modeling organism movement across landscapes. The objective of this study was to conduct a neutral model analysis of pattern metrics defined by morphological spatial pattern analysis (MSPA) on maps with...
Meteor tracking via local pattern clustering in spatio-temporal domain
NASA Astrophysics Data System (ADS)
Kukal, Jaromír.; Klimt, Martin; Švihlík, Jan; Fliegel, Karel
2016-09-01
Reliable meteor detection is one of the crucial disciplines in astronomy. A variety of imaging systems is used for meteor path reconstruction. The traditional approach is based on analysis of 2D image sequences obtained from a double station video observation system. Precise localization of meteor path is difficult due to atmospheric turbulence and other factors causing spatio-temporal fluctuations of the image background. The proposed technique performs non-linear preprocessing of image intensity using Box-Cox transform as recommended in our previous work. Both symmetric and asymmetric spatio-temporal differences are designed to be robust in the statistical sense. Resulting local patterns are processed by data whitening technique and obtained vectors are classified via cluster analysis and Self-Organized Map (SOM).
Automatic analysis and classification of surface electromyography.
Abou-Chadi, F E; Nashar, A; Saad, M
2001-01-01
In this paper, parametric modeling of surface electromyography (EMG) algorithms that facilitates automatic SEMG feature extraction and artificial neural networks (ANN) are combined for providing an integrated system for the automatic analysis and diagnosis of myopathic disorders. Three paradigms of ANN were investigated: the multilayer backpropagation algorithm, the self-organizing feature map algorithm and a probabilistic neural network model. The performance of the three classifiers was compared with that of the old Fisher linear discriminant (FLD) classifiers. The results have shown that the three ANN models give higher performance. The percentage of correct classification reaches 90%. Poorer diagnostic performance was obtained from the FLD classifier. The system presented here indicates that surface EMG, when properly processed, can be used to provide the physician with a diagnostic assist device.
Cube Kohonen self-organizing map (CKSOM) model with new equations in organizing unstructured data.
Lim, Seng Poh; Haron, Habibollah
2013-09-01
Surface reconstruction by using 3-D data is used to represent the surface of an object and perform important tasks. The type of data used is important and can be described as either structured or unstructured. For unstructured data, there is no connectivity information between data points. As a result, incorrect shapes will be obtained during the imaging process. Therefore, the data should be reorganized by finding the correct topology so that the correct shape can be obtained. Previous studies have shown that the Kohonen self-organizing map (KSOM) could be used to solve data organizing problems. However, 2-D Kohonen maps are limited because they are unable to cover the whole surface of closed 3-D surface data. Furthermore, the neurons inside the 3-D KSOM structure should be removed in order to create a correct wireframe model. This is because only the outside neurons are used to represent the surface of an object. The aim of this paper is to use KSOM to organize unstructured data for closed surfaces. KSOM isused in this paper by testing its ability to organize medical image data because KSOM is mostly used in constructing engineering field data. Enhancements are added to the model by introducing class number and the index vector, and new equations are created. Various grid sizes and maximum iterations are tested in the experiments. Based on the results, the number of redundancies is found to be directly proportional to the grid size. When we increase the maximum iterations, the surface of the image becomes smoother. An area formula is used and manual calculations are performed to validate the results. This model is implemented and images are created using Dev C++ and GNUPlot.
SOM Classification of Martian TES Data
NASA Technical Reports Server (NTRS)
Hogan, R. C.; Roush, T. L.
2002-01-01
A classification scheme based on unsupervised self-organizing maps (SOM) is described. Results from its application to the ASU mineral spectral database are presented. Applications to the Martian Thermal Emission Spectrometer data are discussed. Additional information is contained in the original extended abstract.
ADME-Space: a new tool for medicinal chemists to explore ADME properties.
Bocci, Giovanni; Carosati, Emanuele; Vayer, Philippe; Arrault, Alban; Lozano, Sylvain; Cruciani, Gabriele
2017-07-25
We introduce a new chemical space for drugs and drug-like molecules, exclusively based on their in silico ADME behaviour. This ADME-Space is based on self-organizing map (SOM) applied to 26,000 molecules. Twenty accurate QSPR models, describing important ADME properties, were developed and, successively, used as new molecular descriptors not related to molecular structure. Applications include permeability, active transport, metabolism and bioavailability studies, but the method can be even used to discuss drug-drug interactions (DDIs) or it can be extended to additional ADME properties. Thus, the ADME-Space opens a new framework for the multi-parametric data analysis in drug discovery where all ADME behaviours of molecules are condensed in one map: it allows medicinal chemists to simultaneously monitor several ADME properties, to rapidly select optimal ADME profiles, retrieve warning on potential ADME problems and DDIs or select proper in vitro experiments.
NASA Astrophysics Data System (ADS)
Ledger, Antoinette Frances
This study sought to examine whether collaborative concept mapping would affect the achievement, science self-efficacy and attitude toward science of female eighth grade science students. The research questions are: (1) Will the use of collaborative concept mapping affect the achievement of female students in science? (2) Will the use of collaborative concept mapping affect the science self-efficacy of female students? (3) Will the use of collaborative concept mapping affect the attitudes of females toward science? The study was quasi-experimental and utilized a pretest-posttest design for both experimental and control groups. Eighth grade female and male students from three schools in a large northeastern school district participated in this study. The achievement test consisted of 10 multiple choice and two open-response questions and used questions from state-wide and national assessments as well as teacher-constructed items. A 29 item Likert type instrument (McMillan, 1992) was administered to measure science self-efficacy and attitude toward science. The study was of 12 weeks duration. During the study, experimental group students were asked to perform collaborative concept map construction in single sex dyads using specific terms designated by the classroom teacher and the researcher. During classroom visitations, student perceptions of collaborative concept mapping were collected and were used to provide insight into the results of the quantitative data analysis. Data from the pre and posttest instruments were analyzed for both experimental and control groups using t-tests. Additionally, the three teachers were interviewed and their perceptions of the study were also used to gain insight into the results of the study. The analysis of data showed that experimental group females showed significantly higher gains in achievement than control group females. An additional analysis of data showed experimental group males showed significantly greater gains in achievement than experimental group females. The analysis of science self-efficacy data showed that neither experimental nor control group females increased their scores pre to posttest, both showed small decreases in scores. However, the posttest scores of the experimental group females were significantly higher than the posttest scores of the control group females. The analysis of the attitude toward science survey data showed that the scores of the experimental group females did not change from pre to posttest. However, scores of the control group females declined from pre to posttest. (Abstract shortened by UMI.)
An Information-Theoretic-Cluster Visualization for Self-Organizing Maps.
Brito da Silva, Leonardo Enzo; Wunsch, Donald C
2018-06-01
Improved data visualization will be a significant tool to enhance cluster analysis. In this paper, an information-theoretic-based method for cluster visualization using self-organizing maps (SOMs) is presented. The information-theoretic visualization (IT-vis) has the same structure as the unified distance matrix, but instead of depicting Euclidean distances between adjacent neurons, it displays the similarity between the distributions associated with adjacent neurons. Each SOM neuron has an associated subset of the data set whose cardinality controls the granularity of the IT-vis and with which the first- and second-order statistics are computed and used to estimate their probability density functions. These are used to calculate the similarity measure, based on Renyi's quadratic cross entropy and cross information potential (CIP). The introduced visualizations combine the low computational cost and kernel estimation properties of the representative CIP and the data structure representation of a single-linkage-based grouping algorithm to generate an enhanced SOM-based visualization. The visual quality of the IT-vis is assessed by comparing it with other visualization methods for several real-world and synthetic benchmark data sets. Thus, this paper also contains a significant literature survey. The experiments demonstrate the IT-vis cluster revealing capabilities, in which cluster boundaries are sharply captured. Additionally, the information-theoretic visualizations are used to perform clustering of the SOM. Compared with other methods, IT-vis of large SOMs yielded the best results in this paper, for which the quality of the final partitions was evaluated using external validity indices.
Friedel, Michael J.
2011-01-01
Few studies attempt to model the range of possible post-fire hydrologic and geomorphic hazards because of the sparseness of data and the coupled, nonlinear, spatial, and temporal relationships among landscape variables. In this study, a type of unsupervised artificial neural network, called a self-organized map (SOM), is trained using data from 540 burned basins in the western United States. The sparsely populated data set includes variables from independent numerical landscape categories (climate, land surface form, geologic texture, and post-fire condition), independent landscape classes (bedrock geology and state), and dependent initiation processes (runoff, landslide, and runoff and landslide combination) and responses (debris flows, floods, and no events). Pattern analysis of the SOM-based component planes is used to identify and interpret relations among the variables. Application of the Davies-Bouldin criteria following k-means clustering of the SOM neurons identified eight conceptual regional models for focusing future research and empirical model development. A split-sample validation on 60 independent basins (not included in the training) indicates that simultaneous predictions of initiation process and response types are at least 78% accurate. As climate shifts from wet to dry conditions, forecasts across the burned landscape reveal a decreasing trend in the total number of debris flow, flood, and runoff events with considerable variability among individual basins. These findings suggest the SOM may be useful in forecasting real-time post-fire hazards, and long-term post-recovery processes and effects of climate change scenarios.
Mat-Desa, Wan N S; Ismail, Dzulkiflee; NicDaeid, Niamh
2011-10-15
Three different medium petroleum distillate (MPD) products (white spirit, paint brush cleaner, and lamp oil) were purchased from commercial stores in Glasgow, Scotland. Samples of 10, 25, 50, 75, 90, and 95% evaporated product were prepared, resulting in 56 samples in total which were analyzed using gas chromatography-mass spectrometry. Data sets from the chromatographic patterns were examined and preprocessed for unsupervised multivariate analyses using principal component analysis (PCA), hierarchical cluster analysis (HCA), and a self organizing feature map (SOFM) artificial neural network. It was revealed that data sets comprised of higher boiling point hydrocarbon compounds provided a good means for the classification of the samples and successfully linked highly weathered samples back to their unevaporated counterpart in every case. The classification abilities of SOFM were further tested and validated for their predictive abilities where one set of weather data in each case was withdrawn from the sample set and used as a test set of the retrained network. This revealed SOFM to be an outstanding mechanism for sample discrimination and linkage over the more conventional PCA and HCA methods often suggested for such data analysis. SOFM also has the advantage of providing additional information through the evaluation of component planes facilitating the investigation of underlying variables that account for the classification. © 2011 American Chemical Society
Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei
2016-08-03
Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic.
Self-organizing maps based on limit cycle attractors.
Huang, Di-Wei; Gentili, Rodolphe J; Reggia, James A
2015-03-01
Recent efforts to develop large-scale brain and neurocognitive architectures have paid relatively little attention to the use of self-organizing maps (SOMs). Part of the reason for this is that most conventional SOMs use a static encoding representation: each input pattern or sequence is effectively represented as a fixed point activation pattern in the map layer, something that is inconsistent with the rhythmic oscillatory activity observed in the brain. Here we develop and study an alternative encoding scheme that instead uses sparsely-coded limit cycles to represent external input patterns/sequences. We establish conditions under which learned limit cycle representations arise reliably and dominate the dynamics in a SOM. These limit cycles tend to be relatively unique for different inputs, robust to perturbations, and fairly insensitive to timing. In spite of the continually changing activity in the map layer when a limit cycle representation is used, map formation continues to occur reliably. In a two-SOM architecture where each SOM represents a different sensory modality, we also show that after learning, limit cycles in one SOM can correctly evoke corresponding limit cycles in the other, and thus there is the potential for multi-SOM systems using limit cycles to work effectively as hetero-associative memories. While the results presented here are only first steps, they establish the viability of SOM models based on limit cycle activity patterns, and suggest that such models merit further study. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quality assessment of data discrimination using self-organizing maps.
Mekler, Alexey; Schwarz, Dmitri
2014-10-01
One of the important aspects of the data classification problem lies in making the most appropriate selection of features. The set of variables should be small and, at the same time, should provide reliable discrimination of the classes. The method for the discriminating power evaluation that enables a comparison between different sets of variables will be useful in the search for the set of variables. A new approach to feature selection is presented. Two methods of evaluation of the data discriminating power of a feature set are suggested. Both of the methods implement self-organizing maps (SOMs) and the newly introduced exponents of the degree of data clusterization on the SOM. The first method is based on the comparison of intraclass and interclass distances on the map. Another method concerns the evaluation of the relative number of best matching unit's (BMUs) nearest neighbors of the same class. Both methods make it possible to evaluate the discriminating power of a feature set in cases when this set provides nonlinear discrimination of the classes. Current algorithms in program code can be downloaded for free at http://mekler.narod.ru/Science/Articles_support.html, as well as the supporting data files. Copyright © 2014 Elsevier Inc. All rights reserved.
USING SELF-ORGANIZING MAPS TO EXPLORE PATTERNS IN SPECIES RICHNESS AND PROTECTION
The combination of species distributions with abiotic and landscape variables using Geographic Information Systems can be used to help prioritize areas for biodiversity protection, although the number of variables and complexity of the relationships between them can prove difficu...
Cytoskeletal self-organization in neuromorphogenesis.
Dehmelt, Leif
2014-01-01
Self-organization of dynamic microtubules via interactions with associated motors plays a critical role in spindle formation. The microtubule-based mechanisms underlying other aspects of cellular morphogenesis, such as the formation and development of protrusions from neuronal cells is less well understood. In a recent study, we investigated the molecular mechanism that underlies the massive reorganization of microtubules induced in non-neuronal cells by expression of the neuronal microtubule stabilizer MAP2c. In that study we directly observed cortical dynein complexes and how they affect the dynamic behavior of motile microtubules in living cells. We found that stationary dynein complexes transiently associate with motile microtubules near the cell cortex and that their rapid turnover facilitates efficient microtubule transport. Here, we discuss our findings in the larger context of cellular morphogenesis with specific focus on self-organizing principles from which cellular shape patterns such as the thin protrusions of neurons can emerge.
Cytoskeletal self-organization in neuromorphogenesis
Dehmelt, Leif
2014-01-01
Self-organization of dynamic microtubules via interactions with associated motors plays a critical role in spindle formation. The microtubule-based mechanisms underlying other aspects of cellular morphogenesis, such as the formation and development of protrusions from neuronal cells is less well understood. In a recent study, we investigated the molecular mechanism that underlies the massive reorganization of microtubules induced in non-neuronal cells by expression of the neuronal microtubule stabilizer MAP2c. In that study we directly observed cortical dynein complexes and how they affect the dynamic behavior of motile microtubules in living cells. We found that stationary dynein complexes transiently associate with motile microtubules near the cell cortex and that their rapid turnover facilitates efficient microtubule transport. Here, we discuss our findings in the larger context of cellular morphogenesis with specific focus on self-organizing principles from which cellular shape patterns such as the thin protrusions of neurons can emerge. PMID:24847718
Analysis of mass incident diffusion in Weibo based on self-organization theory
NASA Astrophysics Data System (ADS)
Pan, Jun; Shen, Huizhang
2018-02-01
This study introduces some theories and methods of self-organization system to the research of the diffusion mechanism of mass incidents in Weibo (Chinese Twitter). Based on the analysis on massive Weibo data from Songjiang battery factory incident happened in 2013 and Jiiangsu Qidong OJI PAPER incident happened in 2012, we find out that diffusion system of mass incident in Weibo satisfies Power Law, Zipf's Law, 1/f noise and Self-similarity. It means this system is the self-organization criticality system and dissemination bursts can be understood as one kind of Self-organization behavior. As the consequence, self-organized criticality (SOC) theory can be used to explain the evolution of mass incident diffusion and people may come up with the right strategy to control such kind of diffusion if they can handle the key ingredients of Self-organization well. Such a study is of practical importance which can offer opportunities for policy makers to have good management on these events.
NASA Astrophysics Data System (ADS)
Madokoro, H.; Tsukada, M.; Sato, K.
2013-07-01
This paper presents an unsupervised learning-based object category formation and recognition method for mobile robot vision. Our method has the following features: detection of feature points and description of features using a scale-invariant feature transform (SIFT), selection of target feature points using one class support vector machines (OC-SVMs), generation of visual words using self-organizing maps (SOMs), formation of labels using adaptive resonance theory 2 (ART-2), and creation and classification of categories on a category map of counter propagation networks (CPNs) for visualizing spatial relations between categories. Classification results of dynamic images using time-series images obtained using two different-size robots and according to movements respectively demonstrate that our method can visualize spatial relations of categories while maintaining time-series characteristics. Moreover, we emphasize the effectiveness of our method for category formation of appearance changes of objects.
Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps.
Mortazavi, Ali; Pepke, Shirley; Jansen, Camden; Marinov, Georgi K; Ernst, Jason; Kellis, Manolis; Hardison, Ross C; Myers, Richard M; Wold, Barbara J
2013-12-01
We tested whether self-organizing maps (SOMs) could be used to effectively integrate, visualize, and mine diverse genomics data types, including complex chromatin signatures. A fine-grained SOM was trained on 72 ChIP-seq histone modifications and DNase-seq data sets from six biologically diverse cell lines studied by The ENCODE Project Consortium. We mined the resulting SOM to identify chromatin signatures related to sequence-specific transcription factor occupancy, sequence motif enrichment, and biological functions. To highlight clusters enriched for specific functions such as transcriptional promoters or enhancers, we overlaid onto the map additional data sets not used during training, such as ChIP-seq, RNA-seq, CAGE, and information on cis-acting regulatory modules from the literature. We used the SOM to parse known transcriptional enhancers according to the cell-type-specific chromatin signature, and we further corroborated this pattern on the map by EP300 (also known as p300) occupancy. New candidate cell-type-specific enhancers were identified for multiple ENCODE cell types in this way, along with new candidates for ubiquitous enhancer activity. An interactive web interface was developed to allow users to visualize and custom-mine the ENCODE SOM. We conclude that large SOMs trained on chromatin data from multiple cell types provide a powerful way to identify complex relationships in genomic data at user-selected levels of granularity.
Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps
Mortazavi, Ali; Pepke, Shirley; Jansen, Camden; Marinov, Georgi K.; Ernst, Jason; Kellis, Manolis; Hardison, Ross C.; Myers, Richard M.; Wold, Barbara J.
2013-01-01
We tested whether self-organizing maps (SOMs) could be used to effectively integrate, visualize, and mine diverse genomics data types, including complex chromatin signatures. A fine-grained SOM was trained on 72 ChIP-seq histone modifications and DNase-seq data sets from six biologically diverse cell lines studied by The ENCODE Project Consortium. We mined the resulting SOM to identify chromatin signatures related to sequence-specific transcription factor occupancy, sequence motif enrichment, and biological functions. To highlight clusters enriched for specific functions such as transcriptional promoters or enhancers, we overlaid onto the map additional data sets not used during training, such as ChIP-seq, RNA-seq, CAGE, and information on cis-acting regulatory modules from the literature. We used the SOM to parse known transcriptional enhancers according to the cell-type-specific chromatin signature, and we further corroborated this pattern on the map by EP300 (also known as p300) occupancy. New candidate cell-type-specific enhancers were identified for multiple ENCODE cell types in this way, along with new candidates for ubiquitous enhancer activity. An interactive web interface was developed to allow users to visualize and custom-mine the ENCODE SOM. We conclude that large SOMs trained on chromatin data from multiple cell types provide a powerful way to identify complex relationships in genomic data at user-selected levels of granularity. PMID:24170599
Statistical Significance of Optical Map Alignments
Sarkar, Deepayan; Goldstein, Steve; Schwartz, David C.
2012-01-01
Abstract The Optical Mapping System constructs ordered restriction maps spanning entire genomes through the assembly and analysis of large datasets comprising individually analyzed genomic DNA molecules. Such restriction maps uniquely reveal mammalian genome structure and variation, but also raise computational and statistical questions beyond those that have been solved in the analysis of smaller, microbial genomes. We address the problem of how to filter maps that align poorly to a reference genome. We obtain map-specific thresholds that control errors and improve iterative assembly. We also show how an optimal self-alignment score provides an accurate approximation to the probability of alignment, which is useful in applications seeking to identify structural genomic abnormalities. PMID:22506568
NASA Astrophysics Data System (ADS)
Dobrynin, D. V.; Rozhnov, V. V.; Saveliev, A. A.; Sukhova, O. V.; Yachmennikova, A. A.
2017-12-01
Methods of analysis of the results got from satellite tracking of large terrestrial mammals differ in the level of their integration with additional geographic data. The reliable fine-scale cartographic basis for assessing specific wildlife habitats can be developed through the interpretation of multispectral remote sensing data and extrapolation of the results to the entire estimated species range. Topographic maps were ordinated according to classified features using self-organizing maps (Kohonen's SOM). The satellite image of the Ussuriiskyi Nature Reserve area was interpreted for the analysis of movement conditions for seven wild Amur tigers ( Panthera tigris altaica) equipped with GPS collars. 225 SOM classes for cartographic visualization are sufficient for the detailed mapping of all natural complexes that were identified as a result of interpretation. During snow-free periods, tigers preferred deciduous and shrub associations at lower elevations, as well as mixed forests in the valleys of streams that are adjacent to sparse forests and shrub watershed in the mountain ranges; during heavy snow periods, the animals preferred the entire range of plant communities in different relief types, except for open sites in meadows and abandoned fields at foothills. The border zones of different biotopes were typically used by the tigers during all seasons. Amur tigers preferred coniferous forests for long-term movements.
Use of GIS Mapping as a Public Health Tool—From Cholera to Cancer
Musa, George J.; Chiang, Po-Huang; Sylk, Tyler; Bavley, Rachel; Keating, William; Lakew, Bereketab; Tsou, Hui-Chen; Hoven, Christina W.
2013-01-01
The field of medical geographic information systems (Medical GIS) has become extremely useful in understanding the bigger picture of public health. The discipline holds a substantial capacity to understand not only differences, but also similarities in population health all over the world. The main goal of marrying the disciplines of medical geography, public health and informatics is to understand how countless health issues impact populations, and the trends by which these populations are affected. From the 1990s to today, this practical approach has become a valued and progressive system in analyzing medical and epidemiological phenomena ranging from cholera to cancer. The instruments supporting this field include geographic information systems (GIS), disease surveillance, big data, and analytical approaches like the Geographical Analysis Machine (GAM), Dynamic Continuous Area Space Time Analysis (DYCAST), cellular automata, agent-based modeling, spatial statistics and self-organizing maps. The positive effects on disease mapping have proven to be tremendous as these instruments continue to have a great impact on the mission to improve worldwide health care. While traditional uses of GIS in public health are static and lacking real-time components, implementing a space-time animation in these instruments will be monumental as technology and data continue to grow. PMID:25114567
Use of GIS Mapping as a Public Health Tool-From Cholera to Cancer.
Musa, George J; Chiang, Po-Huang; Sylk, Tyler; Bavley, Rachel; Keating, William; Lakew, Bereketab; Tsou, Hui-Chen; Hoven, Christina W
2013-01-01
The field of medical geographic information systems (Medical GIS) has become extremely useful in understanding the bigger picture of public health. The discipline holds a substantial capacity to understand not only differences, but also similarities in population health all over the world. The main goal of marrying the disciplines of medical geography, public health and informatics is to understand how countless health issues impact populations, and the trends by which these populations are affected. From the 1990s to today, this practical approach has become a valued and progressive system in analyzing medical and epidemiological phenomena ranging from cholera to cancer. The instruments supporting this field include geographic information systems (GIS), disease surveillance, big data, and analytical approaches like the Geographical Analysis Machine (GAM), Dynamic Continuous Area Space Time Analysis (DYCAST), cellular automata, agent-based modeling, spatial statistics and self-organizing maps. The positive effects on disease mapping have proven to be tremendous as these instruments continue to have a great impact on the mission to improve worldwide health care. While traditional uses of GIS in public health are static and lacking real-time components, implementing a space-time animation in these instruments will be monumental as technology and data continue to grow.
Teacher-Directed and Student-Mediated Textbook Comprehension Strategies.
ERIC Educational Resources Information Center
Reynolds, Catharine J.; Salend, Spencer J.
1990-01-01
The article describes teacher-directed and student-mediated comprehension strategies to improve the text comprehension skills of mainstreamed students with mild disabilities. Techniques include advance organizers, study guides, color coding, oral reading, critical thinking maps, and self-questioning techniques. Guidelines are offered for assessing…
Self-Organizing Map With Time-Varying Structure to Plan and Control Artificial Locomotion.
Araujo, Aluizio F R; Santana, Orivaldo V
2015-08-01
This paper presents an algorithm, self-organizing map-state trajectory generator (SOM-STG), to plan and control legged robot locomotion. The SOM-STG is based on an SOM with a time-varying structure characterized by constructing autonomously close-state trajectories from an arbitrary number of robot postures. Each trajectory represents a cyclical movement of the limbs of an animal. The SOM-STG was designed to possess important features of a central pattern generator, such as rhythmic pattern generation, synchronization between limbs, and swapping between gaits following a single command. The acquisition of data for SOM-STG is based on learning by demonstration in which the data are obtained from different demonstrator agents. The SOM-STG can construct one or more gaits for a simulated robot with six legs, can control the robot with any of the gaits learned, and can smoothly swap gaits. In addition, SOM-STG can learn to construct a state trajectory form observing an animal in locomotion. In this paper, a dog is the demonstrator agent.
Deriving photometric redshifts using fuzzy archetypes and self-organizing maps - I. Methodology
NASA Astrophysics Data System (ADS)
Speagle, Joshua S.; Eisenstein, Daniel J.
2017-07-01
We propose a method to substantially increase the flexibility and power of template fitting-based photometric redshifts by transforming a large number of galaxy spectral templates into a corresponding collection of 'fuzzy archetypes' using a suitable set of perturbative priors designed to account for empirical variation in dust attenuation and emission-line strengths. To bypass widely separated degeneracies in parameter space (e.g. the redshift-reddening degeneracy), we train self-organizing maps (SOMs) on large 'model catalogues' generated from Monte Carlo sampling of our fuzzy archetypes to cluster the predicted observables in a topologically smooth fashion. Subsequent sampling over the SOM then allows full reconstruction of the relevant probability distribution functions (PDFs). This combined approach enables the multimodal exploration of known variation among galaxy spectral energy distributions with minimal modelling assumptions. We demonstrate the power of this approach to recover full redshift PDFs using discrete Markov chain Monte Carlo sampling methods combined with SOMs constructed from Large Synoptic Survey Telescope ugrizY and Euclid YJH mock photometry.
Lu, Bin; Harley, Ronald G.; Du, Liang; Yang, Yi; Sharma, Santosh K.; Zambare, Prachi; Madane, Mayura A.
2014-06-17
A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.
Oyama, Katsunori; Sakatani, Kaoru
2016-01-01
Simultaneous monitoring of brain activity with near-infrared spectroscopy and electroencephalography allows spatiotemporal reconstruction of the hemodynamic response regarding the concentration changes in oxyhemoglobin and deoxyhemoglobin that are associated with recorded brain activity such as cognitive functions. However, the accuracy of state estimation during mental arithmetic tasks is often different depending on the length of the segment for sampling of NIRS and EEG signals. This study compared the results of a self-organizing map and ANOVA, which were both used to assess the accuracy of state estimation. We conducted an experiment with a mental arithmetic task performed by 10 participants. The lengths of the segment in each time frame for observation of NIRS and EEG signals were compared with the 30-s, 1-min, and 2-min segment lengths. The optimal segment lengths were different for NIRS and EEG signals in the case of classification of feature vectors into the states of performing a mental arithmetic task and being at rest.
Asfahani, J; Ahmad, Z; Ghani, B Abdul
2018-07-01
An approach based on self organizing map (SOM) artificial neural networks is proposed herewith oriented towards interpreting nuclear and electrical well logging data. The well logging measurements of Kodana well in Southern Syria have been interpreted by applying the proposed approach. Lithological cross-section model of the basaltic environment has been derived and four different kinds of basalt have been consequently distinguished. The four basalts are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products- clay. The results obtained by SOM artificial neural networks are in a good agreement with the previous published results obtained by other different techniques. The SOM approach is practiced successfully in the case study of the Kodana well logging data, and can be therefore recommended as a suitable and effective approach for handling huge well logging data with higher number of variables required for lithological discrimination purposes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nkiaka, E; Nawaz, N R; Lovett, J C
2016-07-01
Hydro-meteorological data is an important asset that can enhance management of water resources. But existing data often contains gaps, leading to uncertainties and so compromising their use. Although many methods exist for infilling data gaps in hydro-meteorological time series, many of these methods require inputs from neighbouring stations, which are often not available, while other methods are computationally demanding. Computing techniques such as artificial intelligence can be used to address this challenge. Self-organizing maps (SOMs), which are a type of artificial neural network, were used for infilling gaps in a hydro-meteorological time series in a Sudano-Sahel catchment. The coefficients of determination obtained were all above 0.75 and 0.65 while the average topographic error was 0.008 and 0.02 for rainfall and river discharge time series, respectively. These results further indicate that SOMs are a robust and efficient method for infilling missing gaps in hydro-meteorological time series.
NASA Astrophysics Data System (ADS)
Itzá Balam, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2018-03-01
Two main stages of seismic modeling are geological model building and numerical computation of seismic response for the model. The quality of the computed seismic response is partly related to the type of model that is built. Therefore, the model building approaches become as important as seismic forward numerical methods. For this purpose, three petrophysical facies (sands, shales and limestones) are extracted from reflection seismic data and some seismic attributes via the clustering method called Self-Organizing Maps (SOM), which, in this context, serves as a geological model building tool. This model with all its properties is the input to the Optimal Implicit Staggered Finite Difference (OISFD) algorithm to create synthetic seismograms for poroelastic, poroacoustic and elastic media. The results show a good agreement between observed and 2-D synthetic seismograms. This demonstrates that the SOM classification method enables us to extract facies from seismic data and allows us to integrate the lithology at the borehole scale with the 2-D seismic data.
Dutt-Mazumder, Aviroop; Button, Chris; Robins, Anthony; Bartlett, Roger
2011-12-01
Recent studies have explored the organization of player movements in team sports using a range of statistical tools. However, the factors that best explain the performance of association football teams remain elusive. Arguably, this is due to the high-dimensional behavioural outputs that illustrate the complex, evolving configurations typical of team games. According to dynamical system analysts, movement patterns in team sports exhibit nonlinear self-organizing features. Nonlinear processing tools (i.e. Artificial Neural Networks; ANNs) are becoming increasingly popular to investigate the coordination of participants in sports competitions. ANNs are well suited to describing high-dimensional data sets with nonlinear attributes, however, limited information concerning the processes required to apply ANNs exists. This review investigates the relative value of various ANN learning approaches used in sports performance analysis of team sports focusing on potential applications for association football. Sixty-two research sources were summarized and reviewed from electronic literature search engines such as SPORTDiscus, Google Scholar, IEEE Xplore, Scirus, ScienceDirect and Elsevier. Typical ANN learning algorithms can be adapted to perform pattern recognition and pattern classification. Particularly, dimensionality reduction by a Kohonen feature map (KFM) can compress chaotic high-dimensional datasets into low-dimensional relevant information. Such information would be useful for developing effective training drills that should enhance self-organizing coordination among players. We conclude that ANN-based qualitative analysis is a promising approach to understand the dynamical attributes of association football players.
A High Density Consensus Map of Rye (Secale cereale L.) Based on DArT Markers
Myśków, Beata; Stojałowski, Stefan; Heller-Uszyńska, Katarzyna; Góralska, Magdalena; Brągoszewski, Piotr; Uszyński, Grzegorz; Kilian, Andrzej; Rakoczy-Trojanowska, Monika
2011-01-01
Background Rye (Secale cereale L.) is an economically important crop, exhibiting unique features such as outstanding resistance to biotic and abiotic stresses and high nutrient use efficiency. This species presents a challenge to geneticists and breeders due to its large genome containing a high proportion of repetitive sequences, self incompatibility, severe inbreeding depression and tissue culture recalcitrance. The genomic resources currently available for rye are underdeveloped in comparison with other crops of similar economic importance. The aim of this study was to create a highly saturated, multilocus linkage map of rye via consensus mapping, based on Diversity Arrays Technology (DArT) markers. Methodology/Principal Findings Recombinant inbred lines (RILs) from 5 populations (564 in total) were genotyped using DArT markers and subjected to linkage analysis using Join Map 4.0 and Multipoint Consensus 2.2 software. A consensus map was constructed using a total of 9703 segregating markers. The average chromosome map length ranged from 199.9 cM (2R) to 251.4 cM (4R) and the average map density was 1.1 cM. The integrated map comprised 4048 loci with the number of markers per chromosome ranging from 454 for 7R to 805 for 4R. In comparison with previously published studies on rye, this represents an eight-fold increase in the number of loci placed on a consensus map and a more than two-fold increase in the number of genetically mapped DArT markers. Conclusions/Significance Through the careful choice of marker type, mapping populations and the use of software packages implementing powerful algorithms for map order optimization, we produced a valuable resource for rye and triticale genomics and breeding, which provides an excellent starting point for more in-depth studies on rye genome organization. PMID:22163026
Complementary and conventional medicine: a concept map
Baldwin, Carol M; Kroesen, Kendall; Trochim, William M; Bell, Iris R
2004-01-01
Background Despite the substantive literature from survey research that has accumulated on complementary and alternative medicine (CAM) in the United States and elsewhere, very little research has been done to assess conceptual domains that CAM and conventional providers would emphasize in CAM survey studies. The objective of this study is to describe and interpret the results of concept mapping with conventional and CAM practitioners from a variety of backgrounds on the topic of CAM. Methods Concept mapping, including free sorts, ratings, and multidimensional scaling was used to organize conceptual domains relevant to CAM into a visual "cluster map." The panel consisted of CAM providers, conventional providers, and university faculty, and was convened to help formulate conceptual domains to guide the development of a CAM survey for use with United States military veterans. Results Eight conceptual clusters were identified: 1) Self-assessment, Self-care, and Quality of Life; 2) Health Status, Health Behaviors; 3) Self-assessment of Health; 4) Practical/Economic/ Environmental Concerns; 5) Needs Assessment; 6) CAM vs. Conventional Medicine; 7) Knowledge of CAM; and 8) Experience with CAM. The clusters suggest panelists saw interactions between CAM and conventional medicine as a critical component of the current medical landscape. Conclusions Concept mapping provided insight into how CAM and conventional providers view the domain of health care, and was shown to be a useful tool in the formulation of CAM-related conceptual domains. PMID:15018623
NASA Astrophysics Data System (ADS)
Omenzetter, Piotr; de Lautour, Oliver R.
2010-04-01
Developed for studying long, periodic records of various measured quantities, time series analysis methods are inherently suited and offer interesting possibilities for Structural Health Monitoring (SHM) applications. However, their use in SHM can still be regarded as an emerging application and deserves more studies. In this research, Autoregressive (AR) models were used to fit experimental acceleration time histories from two experimental structural systems, a 3- storey bookshelf-type laboratory structure and the ASCE Phase II SHM Benchmark Structure, in healthy and several damaged states. The coefficients of the AR models were chosen as damage sensitive features. Preliminary visual inspection of the large, multidimensional sets of AR coefficients to check the presence of clusters corresponding to different damage severities was achieved using Sammon mapping - an efficient nonlinear data compression technique. Systematic classification of damage into states based on the analysis of the AR coefficients was achieved using two supervised classification techniques: Nearest Neighbor Classification (NNC) and Learning Vector Quantization (LVQ), and one unsupervised technique: Self-organizing Maps (SOM). This paper discusses the performance of AR coefficients as damage sensitive features and compares the efficiency of the three classification techniques using experimental data.
Twitmographics: Learning the Emergent Properties of the Twitter Community
NASA Astrophysics Data System (ADS)
Cheong, Marc; Lee, Vincent
This paper presents a framework for discovery of the emergent properties of users of the Twitter microblogging platform. The novelty of our methodology is the use of machine-learning methods to deduce user demographic information and online usage patterns and habits not readily apparent from the raw messages posted on Twitter. This is different from existing social network analysis performed on de facto social networks such as Face-book, in the sense that we use publicly available metadata from Twitter messages to explore the inherent characteristics about different segments of the Twitter community, in a simple yet effective manner. Our framework is coupled with the self-organizing map visualization method, and tested on a corpus of messages which deal with issues of socio politi-cal and economic impact, to gain insight into the properties of human interaction via Twitter as a medium for computer-mediated self-expression.
Ivanov, I V; Shvabsky, O R; Minulin, I B
2017-11-01
The article presents the analysis of the results of internal audits (self-rating) in medical organizations implemented on the basis of Proposals (practical guidelines) of the Roszdravnadzor concerning organization of inner control of quality and safety of medical activities in medical organization (hospital). The self-rating was implemented by the medical organizations themselves according the common criteria of the Proposals as provided the following plan: planning of self-rating, collection and processing of data, application of self-rating, analysis of obtained results, preparation of report. The article uses the results of self-rating of medical organizations corresponding to following criteria: profile of activity-multi-field hospital-number of beds more than 350-state property. The self-rating was implemented according to 11 basic parts of the Proposals. The criteria were developed for every part. The evaluation lists developed on the basis of the given Proposals permitted to medical organizations to independently establish problems in their activities. Within the framework of implemented self-rating medical organizations mentioned the directions of activity related to personnel management, identification of personality of patient, support of epidemiological and surgical safety as having significant discrepancies with the Proposals and requiring implementation of improvement measures.
NASA Astrophysics Data System (ADS)
Heuer, A.; Casper, M. C.; Vohland, M.
2009-04-01
Processes in natural systems and the resulting patterns occur in ecological space and time. To study natural structures and to understand the functional processes it is necessary to identify the relevant spatial and temporal space at which these all occur; or with other words to isolate spatial and temporal patterns. In this contribution we will concentrate on the spatial aspects of agro-ecological data analysis. Data were derived from two agricultural plots, each of about 5 hectares, in the area of Newel, located in Western Palatinate, Germany. The plots had been conventionally cultivated with a crop rotation of winter rape, winter wheat and spring barley. Data about physical and chemical soil properties, vegetation and topography were i) collected by measurements in the field during three vegetation periods (2005-2008) and/or ii) derived from hyperspectral image data, acquired by a HyMap airborne imaging sensor (2005). To detect spatial variability within the plots, we applied three different approaches that examine and describe relationships among data. First, we used variography to get an overview of the data. A comparison of the experimental variograms facilitated to distinguish variables, which seemed to occur in related or dissimilar spatial space. Second, based on data available in raster-format basic cell statistics were conducted, using a geographic information system. Here we could make advantage of the powerful classification and visualization tool, which supported the spatial distribution of patterns. Third, we used an approach that is being used for visualization of complex highly dimensional environmental data, the Kohonen self-organizing map. The self-organizing map (SOM) uses multidimensional data that gets further reduced in dimensionality (2-D) to detect similarities in data sets and correlation between single variables. One of SOM's advantages is its powerful visualization capability. The combination of the three approaches leads to comprehensive and reasonable results, which will be presented in detail. It can be concluded, that the chosen strategy made it possible to complement preliminary findings, to validate the results of a single approach and to clearly delineate spatial patterns.
Comparative analysis of model behaviour for flood prediction purposes using Self-Organizing Maps
NASA Astrophysics Data System (ADS)
Herbst, M.; Casper, M. C.; Grundmann, J.; Buchholz, O.
2009-03-01
Distributed watershed models constitute a key component in flood forecasting systems. It is widely recognized that models because of their structural differences have varying capabilities of capturing different aspects of the system behaviour equally well. Of course, this also applies to the reproduction of peak discharges by a simulation model which is of particular interest regarding the flood forecasting problem. In our study we use a Self-Organizing Map (SOM) in combination with index measures which are derived from the flow duration curve in order to examine the conditions under which three different distributed watershed models are capable of reproducing flood events present in the calibration data. These indices are specifically conceptualized to extract data on the peak discharge characteristics of model output time series which are obtained from Monte-Carlo simulations with the distributed watershed models NASIM, LARSIM and WaSIM-ETH. The SOM helps to analyze this data by producing a discretized mapping of their distribution in the index space onto a two dimensional plane such that their pattern and consequently the patterns of model behaviour can be conveyed in a comprehensive manner. It is demonstrated how the SOM provides useful information about details of model behaviour and also helps identifying the model parameters that are relevant for the reproduction of peak discharges and thus for flood prediction problems. It is further shown how the SOM can be used to identify those parameter sets from among the Monte-Carlo data that most closely approximate the peak discharges of a measured time series. The results represent the characteristics of the observed time series with partially superior accuracy than the reference simulation obtained by implementing a simple calibration strategy using the global optimization algorithm SCE-UA. The most prominent advantage of using SOM in the context of model analysis is that it allows to comparatively evaluating the data from two or more models. Our results highlight the individuality of the model realizations in terms of the index measures and shed a critical light on the use and implementation of simple and yet too rigorous calibration strategies.
Self-enhancement learning: target-creating learning and its application to self-organizing maps.
Kamimura, Ryotaro
2011-05-01
In this article, we propose a new learning method called "self-enhancement learning." In this method, targets for learning are not given from the outside, but they can be spontaneously created within a neural network. To realize the method, we consider a neural network with two different states, namely, an enhanced and a relaxed state. The enhanced state is one in which the network responds very selectively to input patterns, while in the relaxed state, the network responds almost equally to input patterns. The gap between the two states can be reduced by minimizing the Kullback-Leibler divergence between the two states with free energy. To demonstrate the effectiveness of this method, we applied self-enhancement learning to the self-organizing maps, or SOM, in which lateral interactions were added to an enhanced state. We applied the method to the well-known Iris, wine, housing and cancer machine learning database problems. In addition, we applied the method to real-life data, a student survey. Experimental results showed that the U-matrices obtained were similar to those produced by the conventional SOM. Class boundaries were made clearer in the housing and cancer data. For all the data, except for the cancer data, better performance could be obtained in terms of quantitative and topological errors. In addition, we could see that the trustworthiness and continuity, referring to the quality of neighborhood preservation, could be improved by the self-enhancement learning. Finally, we used modern dimensionality reduction methods and compared their results with those obtained by the self-enhancement learning. The results obtained by the self-enhancement were not superior to but comparable with those obtained by the modern dimensionality reduction methods.
NASA Astrophysics Data System (ADS)
Chen, I.-Ting; Chang, Li-Chiu; Chang, Fi-John
2018-01-01
In this study, we propose a soft-computing methodology to visibly explore the spatio-temporal groundwater variations of the Kuoping River basin in southern Taiwan. The self-organizing map (SOM) is implemented to investigate the interactive mechanism between surface water and groundwater over the river basin based on large high-dimensional data sets coupled with their occurrence times. We find that extracting the occurrence time from each 30-day moving average data set in the clustered neurons of the SOM is a crucial step to learn the spatio-temporal interaction between surface water and groundwater. We design 2-D Topological Bubble Map to summarize all the groundwater values of four aquifers in a neuron, which can visibly explore the major features of the groundwater in the vertical direction. The constructed SOM topological maps nicely display that: (1) the groundwater movement, in general, extends from the eastern area to the western, where groundwater in the eastern area can be easily recharged from precipitation in wet seasons and discharged into streams during dry seasons due to the high permeability in this area; (2) the water movements in the four aquifers of the study area are quite different, and the seasonal variations of groundwater in the second and third aquifers are larger than those of the others; and (3) the spatial distribution and seasonal variations of groundwater and surface water are comprehensively linked together over the constructed maps to present groundwater characteristics and the interrelation between groundwater and surface water. The proposed modeling methodology not only can classify the large complex high-dimensional data sets into visible topological maps to effectively facilitate the quantitative status of regional groundwater resources but can also provide useful elaboration for future groundwater management.
Russian Character Recognition using Self-Organizing Map
NASA Astrophysics Data System (ADS)
Gunawan, D.; Arisandi, D.; Ginting, F. M.; Rahmat, R. F.; Amalia, A.
2017-01-01
The World Tourism Organization (UNWTO) in 2014 released that there are 28 million visitors who visit Russia. Most of the visitors might have problem in typing Russian word when using digital dictionary. This is caused by the letters, called Cyrillic that used by the Russian and the countries around it, have different shape than Latin letters. The visitors might not familiar with Cyrillic. This research proposes an alternative way to input the Cyrillic words. Instead of typing the Cyrillic words directly, camera can be used to capture image of the words as input. The captured image is cropped, then several pre-processing steps are applied such as noise filtering, binary image processing, segmentation and thinning. Next, the feature extraction process is applied to the image. Cyrillic letters recognition in the image is done by utilizing Self-Organizing Map (SOM) algorithm. SOM successfully recognizes 89.09% Cyrillic letters from the computer-generated images. On the other hand, SOM successfully recognizes 88.89% Cyrillic letters from the image captured by the smartphone’s camera. For the word recognition, SOM successfully recognized 292 words and partially recognized 58 words from the image captured by the smartphone’s camera. Therefore, the accuracy of the word recognition using SOM is 83.42%
Schönweiler, R; Kaese, S; Möller, S; Rinscheid, A; Ptok, M
1996-12-05
Neuronal networks are computer-based techniques for the evaluation and control of complex information systems and processes. So far, they have been used in engineering, telecommunications, artificial speech and speech recognition. A new approach in neuronal network is the self-organizing map (Kohonen map). In the phase of 'learning', the map adapts to the patterns of the primary signals. If, the phase of 'using the map', the input signal hits the field of the primary signals, it resembles them and is called a 'winner'. In our study, we recorded the cries of newborns and young infants using digital audio tape (DAT) and a high quality microphone. The cries were elicited by tactile stimuli wearing headphones. In 27 cases, delayed auditory feedback was presented to the children using a headphone and an additional three-head tape-recorder. Spectrographic characteristics of the cries were classified by 20-step bark spectra and then applied to the neuronal networks. It was possible to recognize similarities of different cries of the same children as well as interindividual differences, which are also audible to experienced listeners. Differences were obvious in profound hearing loss. We know much about the cries of both healthy and sick infants, but a reliable investigation regimen, which can be used for clinical routine purposes, has yet not been developed. If, in the future, it becomes possible to classify spectrographic characteristics automatically, even if they are not audible, neuronal networks may be helpful in the early diagnosis of infant diseases.
Opinion: Clarifying Two Controversies about Information Mapping's Method.
ERIC Educational Resources Information Center
Horn, Robert E.
1992-01-01
Describes Information Mapping, a methodology for the analysis, organization, sequencing, and presentation of information and explains three major parts of the method: (1) content analysis, (2) project life-cycle synthesis and integration of the content analysis, and (3) sequencing and formatting. Major criticisms of the methodology are addressed.…
HelpfulMed: Intelligent Searching for Medical Information over the Internet.
ERIC Educational Resources Information Center
Chen, Hsinchun; Lally, Ann M.; Zhu, Bin; Chau, Michael
2003-01-01
Discussion of the information needs of medical professionals and researchers focuses on the architecture of a Web portal designed to integrate advanced searching and indexing algorithms, an automatic thesaurus, and self-organizing map technologies to provide searchers with fine-grained results. Reports results of evaluation of spider algorithms…
Kohonen Self-Organizing Maps in Validity Maintenance for Automated Scoring of Constructed Response.
ERIC Educational Resources Information Center
Williamson, David M.; Bejar, Isaac I.
As the automated scoring of constructed responses reaches operational status, monitoring the scoring process becomes a primary concern, particularly if automated scoring is intended to operate completely unassisted by humans. Using actual candidate selections from the Architectural Registration Examination (n=326), this study uses Kohonen…
NASA Astrophysics Data System (ADS)
Thompson, A. M.; Stauffer, R. M.; Young, G. S.
2015-12-01
Ozone (O3) trends analysis is typically performed with monthly or seasonal averages. Although this approach works well for stratospheric or total O3, uncertainties in tropospheric O3 amounts may be large due to rapid meteorological changes near the tropopause and in the lower free troposphere (LFT) where pollution has a days-weeks lifetime. We use self-organizing maps (SOM), a clustering technique, as an alternative for creating tropospheric climatologies from O3 soundings. In a previous study of 900 tropical ozonesondes, clusters representing >40% of profiles deviated > 1-sigma from mean O3. Here SOM are based on 15 years of data from four sites in the contiguous US (CONUS; Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA). Ozone profiles from 2 - 12 km are used to evaluate the impact of tropopause variability on climatology; 2 - 6 km O3 profile segments are used for the LFT. Near-tropopause O3 is twice the mean O3 mixing ratio in three clusters of 2 - 12 km O3, representing > 15% of profiles at each site. Large mid and lower-tropospheric O3 deviations from monthly means are found in clusters of both 2 - 12 and 2 - 6 km O3. Positive offsets result from pollution and stratosphere-to-troposphere exchange. In the LFT the lowest tropospheric O3 is associated with subtropical air. Some clusters include profiles with common seasonality but other factors, e.g., tropopause height or LFT column amount, characterize other SOM nodes. Thus, as for tropical profiles, CONUS O3 averages can be a poor choice for a climatology.
NASA Astrophysics Data System (ADS)
Wei, C. Z.; Blaschke, T.
2016-10-01
With the increasing acceleration of urbanization, the degeneration of the environment and the Urban Heat Island (UHI) has attracted more and more attention. Quantitative delineation of UHI has become crucial for a better understanding of the interregional interaction between urbanization processes and the urban environment system. First of all, our study used medium resolution Chinese satellite data-HJ-1B as the Earth Observation data source to derive parameters, including the percentage of Impervious Surface Areas, Land Surface Temperature, Land Surface Albedo, Normalized Differential Vegetation Index, and object edge detector indicators (Mean of Inner Border, Mean of Outer border) in the city of Guangzhou, China. Secondly, in order to establish a model to delineate the local climate zones of UHI, we used the Principal Component Analysis to explore the correlations between all these parameters, and estimate their contributions to the principal components of UHI zones. Finally, depending on the results of the PCA, we chose the most suitable parameters to classify the urban climate zones based on a Self-Organization Map (SOM). The results show that all six parameters are closely correlated with each other and have a high percentage of cumulative (95%) in the first two principal components. Therefore, the SOM algorithm automatically categorized the city of Guangzhou into five classes of UHI zones using these six spectral, structural and climate parameters as inputs. UHI zones have distinguishable physical characteristics, and could potentially help to provide the basis and decision support for further sustainable urban planning.
NASA Astrophysics Data System (ADS)
Underwood, Kristen L.; Rizzo, Donna M.; Schroth, Andrew W.; Dewoolkar, Mandar M.
2017-12-01
Given the variable biogeochemical, physical, and hydrological processes driving fluvial sediment and nutrient export, the water science and management communities need data-driven methods to identify regions prone to production and transport under variable hydrometeorological conditions. We use Bayesian analysis to segment concentration-discharge linear regression models for total suspended solids (TSS) and particulate and dissolved phosphorus (PP, DP) using 22 years of monitoring data from 18 Lake Champlain watersheds. Bayesian inference was leveraged to estimate segmented regression model parameters and identify threshold position. The identified threshold positions demonstrated a considerable range below and above the median discharge—which has been used previously as the default breakpoint in segmented regression models to discern differences between pre and post-threshold export regimes. We then applied a Self-Organizing Map (SOM), which partitioned the watersheds into clusters of TSS, PP, and DP export regimes using watershed characteristics, as well as Bayesian regression intercepts and slopes. A SOM defined two clusters of high-flux basins, one where PP flux was predominantly episodic and hydrologically driven; and another in which the sediment and nutrient sourcing and mobilization were more bimodal, resulting from both hydrologic processes at post-threshold discharges and reactive processes (e.g., nutrient cycling or lateral/vertical exchanges of fine sediment) at prethreshold discharges. A separate DP SOM defined two high-flux clusters exhibiting a bimodal concentration-discharge response, but driven by differing land use. Our novel framework shows promise as a tool with broad management application that provides insights into landscape drivers of riverine solute and sediment export.
Risk groups in children under six months of age using self-organizing maps.
Schilithz, A O C; Kale, P L; Gama, S G N; Nobre, F F
2014-06-01
Fetal and infant growth tends to follow irregular patterns and, particularly in developing countries, these patterns are greatly influenced by unfavorable living conditions and interactions with complications during pregnancy. The aim of this study was to identify groups of children with different risk profiles for growth development. The study sample comprised 496 girls and 508 boys under six months of age from 27 pediatric primary health care units in the city of Rio de Janeiro, Brazil. Data were obtained through interviews with the mothers and by reviewing each child's health card. An unsupervised learning, know as a self-organizing map (SOM) and a K-means algorithm were used for cluster analysis to identify groups of children. Four groups of infants were identified. The first (139) consisted of infants born exclusively by cesarean delivery, and their mothers were exclusively multiparous; the highest prevalences of prematurity and low birthweight, a high prevalence of exclusive breastfeeding and a low proportion of hospitalization were observed for this group. The second (247 infants) and the third (298 infants) groups had the best and worst perinatal and infant health indicators, respectively. The infants of the fourth group (318) were born heavier, had a low prevalence of exclusive breastfeeding, and had a higher rate of hospitalization. Using a SOM, it was possible to identify children with common features, although no differences between groups were found with respect to the adequacy of postnatal weight. Pregnant women and children with characteristics similar to those of group 3 require early intervention and more attention in public policy. Copyright © 2014. Published by Elsevier Ireland Ltd.
Atmospheric Drivers of Greenland Surface Melt Revealed by Self-Organizing Maps
NASA Technical Reports Server (NTRS)
Mioduszewski, J. R.; Rennermalm, A. K.; Hammann, A.; Tedesco, M.; Noble, E. U.; Stroeve, J. C.; Mote, T. L.
2016-01-01
Recent acceleration in surface melt on the Greenland ice sheet (GrIS) has occurred concurrently with a rapidly warming Arctic and has been connected to persistent, anomalous atmospheric circulation patterns over Greenland. To identify synoptic setups favoring enhanced GrIS surface melt and their decadal changes, we develop a summer Arctic synoptic climatology by employing self-organizing maps. These are applied to daily 500 hPa geopotential height fields obtained from the Modern Era Retrospective Analysis for Research and Applications reanalysis, 1979-2014. Particular circulation regimes are related to meteorological conditions and GrIS surface melt estimated with outputs from the Modèle Atmosphérique Régional. Our results demonstrate that the largest positive melt anomalies occur in concert with positive height anomalies near Greenland associated with wind, temperature, and humidity patterns indicative of strong meridional transport of heat and moisture. We find an increased frequency in a 500 hPa ridge over Greenland coinciding with a 63% increase in GrIS melt between the 1979-1988 and 2005-2014 periods, with 75.0% of surface melt changes attributed to thermodynamics, 17% to dynamics, and 8.0% to a combination. We also confirm that the 2007-2012 time period has the largest dynamic forcing relative of any period but also demonstrate that increased surface energy fluxes, temperature, and moisture separate from dynamic changes contributed more to melt even during this period. This implies that GrIS surface melt is likely to continue to increase in response to an ever warmer future Arctic, regardless of future atmospheric circulation patterns.
Dejean, Alain; Azémar, Frédéric; Céréghino, Régis; Leponce, Maurice; Corbara, Bruno; Orivel, Jérôme; Compin, Arthur
2016-08-01
Ants, the most abundant taxa among canopy-dwelling animals in tropical rainforests, are mostly represented by territorially dominant arboreal ants (TDAs) whose territories are distributed in a mosaic pattern (arboreal ant mosaics). Large TDA colonies regulate insect herbivores, with implications for forestry and agronomy. What generates these mosaics in vegetal formations, which are dynamic, still needs to be better understood. So, from empirical research based on 3 Cameroonian tree species (Lophira alata, Ochnaceae; Anthocleista vogelii, Gentianaceae; and Barteria fistulosa, Passifloraceae), we used the Self-Organizing Map (SOM, neural network) to illustrate the succession of TDAs as their host trees grow and age. The SOM separated the trees by species and by size for L. alata, which can reach 60 m in height and live several centuries. An ontogenic succession of TDAs from sapling to mature trees is shown, and some ecological traits are highlighted for certain TDAs. Also, because the SOM permits the analysis of data with many zeroes with no effect of outliers on the overall scatterplot distributions, we obtained ecological information on rare species. Finally, the SOM permitted us to show that functional groups cannot be selected at the genus level as congeneric species can have very different ecological niches, something particularly true for Crematogaster spp., which include a species specifically associated with B. fistulosa, nondominant species and TDAs. Therefore, the SOM permitted the complex relationships between TDAs and their growing host trees to be analyzed, while also providing new information on the ecological traits of the ant species involved. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Vest, Joshua R
The United States has invested nearly a billion dollars in creating community health information organizations (HIOs) to foster health information exchange. Community HIOs provide exchange services to health care organizations within a distinct geographic area. While geography is a key organizing principle for community HIOs, it is unclear if geography is an effective method for organization or what challenges are created by a geography-based approach to health information exchange. This study describes the extent of reported community HIO coverage in the United States and explores the practical and policy implications of overlaps and gaps in HIO service areas. Furthermore, because self-reported service areas may not accurately reflect the true extent of HIOs activities, this study maps the actual markets for health services included in each HIO. An inventory of operational community HIOs that included self-reported geographic markets and participating organizations was face-validated using a crowd-sourcing approach. Aggregation of the participating hospitals' individual health care markets provided the total geographic market served by each community HIO. Mapping and overlay analyses using geographic information system methods described the extent of community HIO activity in the United States. Evidence suggests that community HIOs may be inefficiently distributed. Parts of the United States have multiple, overlapping HIOs, while others do not have any providing health information exchange services. In markets served by multiple community HIOs, 45% of hospitals were participants of only one HIO. The current geography of community HIO activity does not provide comprehensive patient information to providers, nor community-wide information for public health agencies. The discord between the self-reported and market geography of community HIOs raises concerns about the potential effectiveness of health information exchange, illustrates the limitations of geography as an organizing principle, and indicates operational challenges facing those leading and working with community HIOs.
Visualizing Intrapopulation Hematopoietic Cell Heterogeneity with Self-Organizing Maps of SIMS Data.
Mirshafiee, Vahid; Harley, Brendan A C; Kraft, Mary L
2018-05-07
Characterization of the heterogeneity within stem cell populations, which affects their differentiation potential, is necessary for the design of artificial cultures for stem cell expansion. In this study, we assessed whether self-organizing maps (SOMs) of single-cell time-of-flight secondary ion mass spectrometry (TOF-SIMS) data provide insight into the spectral, and thus the related functional heterogeneity between and within three hematopoietic cell populations. SOMs were created of TOF-SIMS data from individual hematopoietic stem and progenitor cells (HSPCs), lineage-committed common lymphoid progenitors (CLPs), and fully differentiated B cells that had been isolated from murine bone marrow via conventional flow cytometry. The positions of these cells on the SOMs and the spectral variation between adjacent map units, shown on the corresponding unified distance matrix (U-matrix), indicated the CLPs exhibited the highest intrapopulation spectral variation, regardless of the age of the donor mice. SOMs of HSPCs, CLPs, and B cells isolated from young and old mice using the same surface antigen profiles revealed the HSPCs exhibited the most age-related spectral variation, whereas B cells exhibited the least. These results demonstrate that SOMs of single-cell spectra enable characterizing the heterogeneity between and within cell populations that lie along distinct differentiation pathways.
Self-organizing feature maps for dynamic control of radio resources in CDMA microcellular networks
NASA Astrophysics Data System (ADS)
Hortos, William S.
1998-03-01
The application of artificial neural networks to the channel assignment problem for cellular code-division multiple access (CDMA) cellular networks has previously been investigated. CDMA takes advantage of voice activity and spatial isolation because its capacity is only interference limited, unlike time-division multiple access (TDMA) and frequency-division multiple access (FDMA) where capacities are bandwidth-limited. Any reduction in interference in CDMA translates linearly into increased capacity. To satisfy the high demands for new services and improved connectivity for mobile communications, microcellular and picocellular systems are being introduced. For these systems, there is a need to develop robust and efficient management procedures for the allocation of power and spectrum to maximize radio capacity. Topology-conserving mappings play an important role in the biological processing of sensory inputs. The same principles underlying Kohonen's self-organizing feature maps (SOFMs) are applied to the adaptive control of radio resources to minimize interference, hence, maximize capacity in direct-sequence (DS) CDMA networks. The approach based on SOFMs is applied to some published examples of both theoretical and empirical models of DS/CDMA microcellular networks in metropolitan areas. The results of the approach for these examples are informally compared to the performance of algorithms, based on Hopfield- Tank neural networks and on genetic algorithms, for the channel assignment problem.
Rosenfeld, Simon
2013-01-01
Complex biological systems manifest a large variety of emergent phenomena among which prominent roles belong to self-organization and swarm intelligence. Generally, each level in a biological hierarchy possesses its own systemic properties and requires its own way of observation, conceptualization, and modeling. In this work, an attempt is made to outline general guiding principles in exploration of a wide range of seemingly dissimilar phenomena observed in large communities of individuals devoid of any personal intelligence and interacting with each other through simple stimulus-response rules. Mathematically, these guiding principles are well captured by the Global Consensus Theorem (GCT) equally applicable to neural networks and to Lotka-Volterra population dynamics. Universality of the mechanistic principles outlined by GCT allows for a unified approach to such diverse systems as biological networks, communities of social insects, robotic communities, microbial communities, communities of somatic cells, social networks and many other systems. Another cluster of universal laws governing the self-organization in large communities of locally interacting individuals is built around the principle of self-organized criticality (SOC). The GCT and SOC, separately or in combination, provide a conceptual basis for understanding the phenomena of self-organization occurring in large communities without involvement of a supervisory authority, without system-wide informational infrastructure, and without mapping of general plan of action onto cognitive/behavioral faculties of its individual members. Cancer onset and proliferation serves as an important example of application of these conceptual approaches. In this paper, the point of view is put forward that apparently irreconcilable contradictions between two opposing theories of carcinogenesis, that is, the Somatic Mutation Theory and the Tissue Organization Field Theory, may be resolved using the systemic approaches provided by GST and SOC. PMID:23471309
[Utilization of Big Data in Medicine and Future Outlook].
Kinosada, Yasutomi; Uematsu, Machiko; Fujiwara, Takuya
2016-03-01
"Big data" is a new buzzword. The point is not to be dazzled by the volume of data, but rather to analyze it, and convert it into insights, innovations, and business value. There are also real differences between conventional analytics and big data. In this article, we show some results of big data analysis using open DPC (Diagnosis Procedure Combination) data in areas of the central part of JAPAN: Toyama, Ishikawa, Fukui, Nagano, Gifu, Aichi, Shizuoka, and Mie Prefectures. These 8 prefectures contain 51 medical administration areas called the second medical area. By applying big data analysis techniques such as k-means, hierarchical clustering, and self-organizing maps to DPC data, we can visualize the disease structure and detect similarities or variations among the 51 second medical areas. The combination of a big data analysis technique and open DPC data is a very powerful method to depict real figures on patient distribution in Japan.
Temporal abstraction for the analysis of intensive care information
NASA Astrophysics Data System (ADS)
Hadad, Alejandro J.; Evin, Diego A.; Drozdowicz, Bartolomé; Chiotti, Omar
2007-11-01
This paper proposes a scheme for the analysis of time-stamped series data from multiple monitoring devices of intensive care units, using Temporal Abstraction concepts. This scheme is oriented to obtain a description of the patient state evolution in an unsupervised way. The case of study is based on a dataset clinically classified with Pulmonary Edema. For this dataset a trends based Temporal Abstraction mechanism is proposed, by means of a Behaviours Base of time-stamped series and then used in a classification step. Combining this approach with the introduction of expert knowledge, using Fuzzy Logic, and multivariate analysis by means of Self-Organizing Maps, a states characterization model is obtained. This model is feasible of being extended to different patients groups and states. The proposed scheme allows to obtain intermediate states descriptions through which it is passing the patient and that could be used to anticipate alert situations.
Peng, Mingguo; Li, Huajie; Li, Dongdong; Du, Erdeng; Li, Zhihong
2017-06-01
Carbon nanotubes (CNTs) were utilized to adsorb DOM in micro-polluted water. The characteristics of DOM adsorption on CNTs were investigated based on UV 254 , TOC, and fluorescence spectrum measurements. Based on PARAFAC (parallel factor) analysis, four fluorescent components were extracted, including one protein-like component (C4) and three humic acid-like components (C1, C2, and C3). The adsorption isotherms, kinetics, and thermodynamics of DOM adsorption on CNTs were further investigated. A Freundlich isotherm model fit the adsorption data well with high values of correlation. As a type of macro-porous and meso-porous adsorbent, CNTs preferably adsorb humic acid-like substances rather than protein-like substances. The increasing temperature will speed up the adsorption process. The self-organizing map (SOM) analysis further explains the fluorescent properties of water samples. The results provide a new insight into the adsorption behaviour of DOM fluorescent components on CNTs.
NASA Technical Reports Server (NTRS)
Boyer, K. L.; Wuescher, D. M.; Sarkar, S.
1991-01-01
Dynamic edge warping (DEW), a technique for recovering reasonably accurate disparity maps from uncalibrated stereo image pairs, is presented. No precise knowledge of the epipolar camera geometry is assumed. The technique is embedded in a system including structural stereopsis on the front end and robust estimation in digital photogrammetry on the other for the purpose of self-calibrating stereo image pairs. Once the relative camera orientation is known, the epipolar geometry is computed and the system can use this information to refine its representation of the object space. Such a system will find application in the autonomous extraction of terrain maps from stereo aerial photographs, for which camera position and orientation are unknown a priori, and for online autonomous calibration maintenance for robotic vision applications, in which the cameras are subject to vibration and other physical disturbances after calibration. This work thus forms a component of an intelligent system that begins with a pair of images and, having only vague knowledge of the conditions under which they were acquired, produces an accurate, dense, relative depth map. The resulting disparity map can also be used directly in some high-level applications involving qualitative scene analysis, spatial reasoning, and perceptual organization of the object space. The system as a whole substitutes high-level information and constraints for precise geometric knowledge in driving and constraining the early correspondence process.
NASA Astrophysics Data System (ADS)
Zimmermann, Robert; Brandmeier, Melanie; Andreani, Louis; Gloaguen, Richard
2015-04-01
Remote sensing data can provide valuable information about ore deposits and their alteration zones at surface level. High spectral and spatial resolution of the data is essential for detailed mapping of mineral abundances and related structures. Carbonatites are well known for hosting economic enrichments in REE, Ta, Nb and P (Jones et al. 2013). These make them a preferential target for exploration for those critical elements. In this study we show how combining geomorphic, textural and spectral data improves classification result. We selected a site with a well-known occurrence in northern Namibia: the Epembe dyke. For analysis LANDSAT 8, SRTM and airborne hyperspectral (HyMap) data were chosen. The overlapping data allows a multi-scale and multi-resolution approach. Results from data analysis were validated during fieldwork in 2014. Data was corrected for atmospherical and geometrical effects. Image classification, mineral mapping and tectonic geomorphology allow a refinement of the geological map by lithological mapping in a second step. Detailed mineral abundance maps were computed using spectral unmixing techniques. These techniques are well suited to map abundances of carbonate minerals, but not to discriminate the carbonatite itself from surrounding rocks with similar spectral signatures. Thus, geometric indices were calculated using tectonic geomorphology and textures. For this purpose the TecDEM-toolbox (SHAHZAD & GLOAGUEN 2011) was applied to the SRTM-data for geomorphic analysis. Textural indices (e.g. uniformity, entropy, angular second moment) were derived from HyMap and SRTM by a grey-level co-occurrence matrix (CLAUSI 2002). The carbonatite in the study area is ridge-forming and shows a narrow linear feature in the textural bands. Spectral and geometric information were combined using kohonen Self-Organizing Maps (SOM) for unsupervised clustering. The resulting class spectra were visually compared and interpreted. Classes with similar signatures were merged according to geological context. The major conclusions are: 1. Carbonate minerals can be mapped using spectral unmixing techniques. 2. Carbonatites are associated with specific geometric pattern 3. The combination of spectral and geometric information improves classification result and reduces misclassification. References Clausi, D. A. (2002): An analysis of co-occurrence texture statistics as a function of grey-level quantization. - Canadian Journal of Remote Sensing, 28 (1), 45-62 Jones, A. P., Genge, M. and Carmody, L (2013): Carbonate Melts and Carbonatites. - Reviews in Mineralogy & Geochemistry, 75, 289-322 Shahzad, F. & Gloaguen, R. (2011): TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 2: Surface dynamics and basin analysis. - Computers and Geosciences, 37 (2), 261-271
Cornélio, Marilia Estevam; Godin, Gaston; Rodrigues, Roberta; Agondi, Rúbia; Spana, Thaís; Gallani, Maria-Cecilia
2013-08-01
Despite strong evidence for a relationship between high salt intake and hypertension, plus the widespread recommendations for dietary salt restriction among hypertensive subjects, there are no nursing studies describing effective theory-based interventions. To describe a systematic process for development of a theory-based nursing intervention that is aimed at reducing salt intake among hypertensive women, by applying the 'intervention mapping' protocol. We developed our intervention following the six steps of the 'intervention mapping' protocol: assessing needs, creating a matrix of change objectives, selecting theoretical methods and practical applications, defining the intervention programme, organizing the adoption and implementation plan, and defining the evaluation plan. Addition of salt during cooking is identified as the main source for salt consumption, plus women are identified as the people responsible for cooking meals at home. In our study, the motivational predictors of this behaviour were self-efficacy and habit. Guided practice, verbal persuasion, coping barriers, consciousness-raising and counter-conditioning were the theoretical methods we selected for enhancing self-efficacy and promoting habit change, respectively. Brainstorming, role-playing, cookbook use, measuring spoon use, label reading, hands-on skill-building activities and reinforcement phone calls were the chosen practical applications. We designed our intervention programme, and then organized the adoption and implementation plans. Finally, we generated a plan to evaluate our intervention. 'Intervention mapping' was a feasible methodological framework to guide the development of a theory-based nursing intervention for dietary salt reduction among hypertensive women.
Molecular and cellular organization of taste neurons in adult Drosophila pharynx
Chen, Yu-Chieh (David); Dahanukar, Anupama
2017-01-01
SUMMARY The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide road maps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors. PMID:29212040
NASA Astrophysics Data System (ADS)
Burzynski, A. M.; Anderson, S. W.; Morrison, K.; LeWinter, A. L.; Patrick, M. R.; Orr, T. R.; Finnegan, D. C.
2014-12-01
Nested within the Halema'uma'u Crater on the summit of Kīlauea Volcano, the active lava lake of Overlook Crater poses hazards to local residents and Hawaii Volcanoes National Park visitors. Since its formation in March 2008, the lava lake has enlarged to +28,500 m2 and has been closely monitored by researchers at the USGS Hawaiian Volcano Observatory (HVO). Time-lapse images, collected via visible and thermal infrared cameras, reveal thin crustal plates, separated by incandescent cracks, moving across the lake surface as lava circulates beneath. We hypothesize that changes in size, shape, velocity, and patterns of these crustal plates are related to other eruption processes at the volcano. Here we present a methodology to identify characteristic lava lake surface patterns from thermal infrared video footage using a self-organizing maps (SOM) algorithm. The SOM is an artificial neural network that performs unsupervised clustering and enables us to visualize the relationships between groups of input patterns on a 2-dimensional grid. In a preliminary trial, we input ~4 hours of thermal infrared time-lapse imagery collected on December 16-17, 2013 during a transient deflation-inflation deformation event at a rate of one frame every 10 seconds. During that same time period, we also acquired a series of one-second terrestrial laser scans (TLS) every 30 seconds to provide detailed topography of the lava lake surface. We identified clusters of characteristic thermal patterns using a self-organizing maps algorithm within the Matlab SOM Toolbox. Initial results from two SOMs, one large map (81 nodes) and one small map (9 nodes), indicate 4-6 distinct groups of thermal patterns. We compare these surface patterns with lava lake surface slope and crustal plate velocities derived from concurrent TLS surveys and with time series of other eruption variables, including outgassing rates and inflation-deflation events. This methodology may be applied to the continuous stream of thermal video footage at Kīlauea to expand the breadth of eruption information we are able to obtain from a remote thermal infrared camera and may potentially allow for the recognition of lava lake patterns as a proxy for other eruption parameters.
NASA Astrophysics Data System (ADS)
Lode, Axel U. J.; Diorico, Fritz S.; Wu, RuGway; Molignini, Paolo; Papariello, Luca; Lin, Rui; Lévêque, Camille; Exl, Lukas; Tsatsos, Marios C.; Chitra, R.; Mauser, Norbert J.
2018-05-01
We consider laser-pumped one-dimensional two-component bosons in a parabolic trap embedded in a high-finesse optical cavity. Above a threshold pump power, the photons that populate the cavity modify the effective atom trap and mediate a coupling between the two components of the Bose–Einstein condensate. We calculate the ground state of the laser-pumped system and find different stages of self-organization depending on the power of the laser. The modified potential and the laser-mediated coupling between the atomic components give rise to rich many-body physics: an increase of the pump power triggers a self-organization of the atoms while an even larger pump power causes correlations between the self-organized atoms—the BEC becomes fragmented and the reduced density matrix acquires multiple macroscopic eigenvalues. In this fragmented superradiant state, the atoms can no longer be described as two-level systems and the mapping of the system to the Dicke model breaks down.
Heterogeneity of shale documented by micro-FTIR and image analysis.
Chen, Yanyan; Mastalerz, Maria; Schimmelmann, Arndt
2014-12-01
In this study, four New Albany Shale Devonian and Mississippian samples, with vitrinite reflectance [Ro ] values ranging from 0.55% to 1.41%, were analyzed by micro-FTIR mapping of chemical and mineralogical properties. One additional postmature shale sample from the Haynesville Shale (Kimmeridgian, Ro = 3.0%) was included to test the limitation of the method for more mature substrates. Relative abundances of organic matter and mineral groups (carbonates, quartz and clays) were mapped across selected microscale regions based on characteristic infrared peaks and demonstrated to be consistent with corresponding bulk compositional percentages. Mapped distributions of organic matter provide information on the organic matter abundance and the connectivity of organic matter within the overall shale matrix. The pervasive distribution of organic matter mapped in the New Albany Shale sample MM4 is in agreement with this shale's high total organic carbon abundance relative to other samples. Mapped interconnectivity of organic matter domains in New Albany Shale samples is excellent in two early mature shale samples having Ro values from 0.55% to 0.65%, then dramatically decreases in a late mature sample having an intermediate Ro of 1.15% and finally increases again in the postmature sample, which has a Ro of 1.41%. Swanson permeabilities, derived from independent mercury intrusion capillary pressure porosimetry measurements, follow the same trend among the four New Albany Shale samples, suggesting that micro-FTIR, in combination with complementary porosimetric techniques, strengthens our understanding of porosity networks. In addition, image processing and analysis software (e.g. ImageJ) have the capability to quantify organic matter and total organic carbon - valuable parameters for highly mature rocks, because they cannot be analyzed by micro-FTIR owing to the weakness of the aliphatic carbon-hydrogen signal. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Wang, Ji-Wei; Wei, Chang-Nian; Harada, Koichi; Minamoto, Keiko; Ueda, Kimiyo; Cui, Hong-Wei; Zhang, Cheng-Gang; Cui, Zhi-Ting; Ueda, Atsushi
2011-06-01
When predicting volunteer intention, much attention is paid to the volunteer organization environment (VOE). Given that self-efficacy and motivation have emerged as important predictors of volunteer intention, we adopted a combination of ideas of Bandura's social cognitive theory and Ajzen's theory of planned behavior integrating VOE, self-efficacy and motivation to examine their effects on volunteer intention and to determine whether self-efficacy and motivation mediate the relationship between VOE and volunteer intention. The subjects of this study consisted of 198 community health volunteers in Shanghai city, China. Exploratory factor analysis was performed to identify the factor structure using standard principal component analysis. Six new factors were revealed, including two VOE factors, relation with organization and support from government; two motivation factors, personal attitude and social recognition; self-efficacy and volunteer intention. The results of a hierarchical regression analysis indicated that relation with organization accounted for 14.8% of the variance in volunteer intention, and support from government failed to add significantly to variance in volunteer intention; self-efficacy and personal attitude motivation partially mediated the effects of relation with organization on volunteer intention; social recognition motivation did not mediate the relationship between relation with organization and volunteer intention; and relation with organization, self-efficacy and personal attitude motivation accounted for 33.7% of the variance in volunteer intention. These results provide support for self-efficacy and personal attitude motivation as mediators and provide preliminary insight into the potential mechanisms for predicting volunteer intention and improving volunteering by integrating VOE, self-efficacy and motivation factors.
2008-01-01
CCA-MAP algorithm are analyzed. Further, we discuss the design considerations of the discussed cooperative localization algorithms to compare and...MAP and CCA-MAP to compare and evaluate their performance. Then a preliminary design analysis is given to address the implementation requirements and...plus précis, avec un nombre inférieur de nœuds ancres, comparativement aux autres types de schémas de localisation. En réalité, les algorithmes de
ERIC Educational Resources Information Center
Cabrera, James C.; Albrecht, Charles F., Jr.
This book provides a road map for readers to plan and develop their careers. It suggests self-assessment, setting short- and long-term goals, and working toward identified goals in short increments. Beyond careers, attention is paid to lifestyles and personal values. The book is organized in 17 chapters that cover the following topics: (1) the…
Dysphonia Detected by Pattern Recognition of Spectral Composition.
ERIC Educational Resources Information Center
Leinonen, Lea; And Others
1992-01-01
This study analyzed production of a long vowel sound within Finnish words by normal or dysphonic voices, using the Self-Organizing Map, the artificial neural network algorithm of T. Kohonen which produces two-dimensional representations of speech. The method was found to be both sensitive and specific in the detection of dysphonia. (Author/JDD)
Kohonen Self-Organizing Feature Maps as a Means to Benchmark College and University Websites
ERIC Educational Resources Information Center
Cooper, Cameron; Burns, Andrew
2007-01-01
Websites for colleges and universities have become the primary means for students to obtain information in the college search process. Consequently, institutions of higher education should target their websites toward prospective and current students' needs, interests, and tastes. Numerous parameters must be determined in creating a school website…
Downscaled rainfall projections in south Florida using self-organizing maps.
Sinha, Palash; Mann, Michael E; Fuentes, Jose D; Mejia, Alfonso; Ning, Liang; Sun, Weiyi; He, Tao; Obeysekera, Jayantha
2018-04-20
We make future projections of seasonal precipitation characteristics in southern Florida using a statistical downscaling approach based on Self Organized Maps. Our approach is applied separately to each three-month season: September-November; December-February; March-May; and June-August. We make use of 19 different simulations from the Coupled Model Inter-comparison Project, phase 5 (CMIP5) and generate an ensemble of 1500 independent daily precipitation surrogates for each model simulation, yielding a grand ensemble of 28,500 total realizations for each season. The center and moments (25%ile and 75%ile) of this distribution are used to characterize most likely scenarios and their associated uncertainties. This approach is applied to 30-year windows of daily mean precipitation for both the CMIP5 historical simulations (1976-2005) and the CMIP5 future (RCP 4.5) projections. For the latter case, we examine both the "near future" (2021-2050) and "far future" (2071-2100) periods for three scenarios (RCP2.6, RCP4.5, and RCP8.5). Copyright © 2018 Elsevier B.V. All rights reserved.
Tao, Shi-Yang; Zhong, Bu-Qing; Lin, Yan; Ma, Jin; Zhou, Yongzhang; Hou, Hong; Zhao, Long; Sun, Zaijin; Qin, Xiaopeng; Shi, Huading
2017-07-01
The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 128 surface soil samples from Xiangfen County, northern China. The total mass concentration of these PAHs ranged from 52 to 10,524ng/g, with a mean of 723ng/g. Four-ring PAHs contributed almost 50% of the total PAH burden. A self-organizing map and positive matrix factorization were applied to investigate the spatial distribution and source apportionment of PAHs. Three emission sources of PAHs were identified, namely, coking ovens (21.9%), coal/biomass combustion (60.1%), and anthracene oil (18.0%). High concentrations of low-molecular-weight PAHs were particularly apparent in the coking plant zone in the region around Gucheng Town. High-molecular-weight PAHs mainly originated from coal/biomass combustion around Gucheng Town, Xincheng Town, and Taosi Town. PAHs in the soil of Xiangfen County are unlikely to pose a significant cancer risk for the population. Copyright © 2017 Elsevier Inc. All rights reserved.
Deep SOMs for automated feature extraction and classification from big data streaming
NASA Astrophysics Data System (ADS)
Sakkari, Mohamed; Ejbali, Ridha; Zaied, Mourad
2017-03-01
In this paper, we proposed a deep self-organizing map model (Deep-SOMs) for automated features extracting and learning from big data streaming which we benefit from the framework Spark for real time streams and highly parallel data processing. The SOMs deep architecture is based on the notion of abstraction (patterns automatically extract from the raw data, from the less to more abstract). The proposed model consists of three hidden self-organizing layers, an input and an output layer. Each layer is made up of a multitude of SOMs, each map only focusing at local headmistress sub-region from the input image. Then, each layer trains the local information to generate more overall information in the higher layer. The proposed Deep-SOMs model is unique in terms of the layers architecture, the SOMs sampling method and learning. During the learning stage we use a set of unsupervised SOMs for feature extraction. We validate the effectiveness of our approach on large data sets such as Leukemia dataset and SRBCT. Results of comparison have shown that the Deep-SOMs model performs better than many existing algorithms for images classification.
Using self-organizing maps to classify humpback whale song units and quantify their similarity.
Allen, Jenny A; Murray, Anita; Noad, Michael J; Dunlop, Rebecca A; Garland, Ellen C
2017-10-01
Classification of vocal signals can be undertaken using a wide variety of qualitative and quantitative techniques. Using east Australian humpback whale song from 2002 to 2014, a subset of vocal signals was acoustically measured and then classified using a Self-Organizing Map (SOM). The SOM created (1) an acoustic dictionary of units representing the song's repertoire, and (2) Cartesian distance measurements among all unit types (SOM nodes). Utilizing the SOM dictionary as a guide, additional song recordings from east Australia were rapidly (manually) transcribed. To assess the similarity in song sequences, the Cartesian distance output from the SOM was applied in Levenshtein distance similarity analyses as a weighting factor to better incorporate unit similarity in the calculation (previously a qualitative process). SOMs provide a more robust and repeatable means of categorizing acoustic signals along with a clear quantitative measurement of sound type similarity based on acoustic features. This method can be utilized for a wide variety of acoustic databases especially those containing very large datasets and can be applied across the vocalization research community to help address concerns surrounding inconsistency in manual classification.
NASA Astrophysics Data System (ADS)
Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata
2015-04-01
The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.
Jin, Y-H; Kawamura, A; Park, S-C; Nakagawa, N; Amaguchi, H; Olsson, J
2011-10-01
Environmental monitoring data for planning, implementing and evaluating the Total Maximum Daily Loads (TMDL) management system have been measured at about 8-day intervals in a number of rivers in Korea since 2004. In the present study, water quality parameters such as Suspended Solids (SS), Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO), Total Nitrogen (TN), and Total Phosphorus (TP) and the corresponding runoff were collected from six stations in the Yeongsan River basin for six years and transformed into monthly mean values. With the primary objective to understand spatiotemporal characteristics of the data, a methodologically systematic application of a Self-Organizing Map (SOM) was made. The SOM application classified the environmental monitoring data into nine clusters showing exclusively distinguishable patterns. Data frequency at each station on a monthly basis identified the spatiotemporal distribution for the first time in the study area. Consequently, the SOM application provided useful information that the sub-basin containing a metropolitan city is associated with deteriorating water quality and should be monitored and managed carefully during spring and summer for water quality improvement in the river basin.
A Granular Self-Organizing Map for Clustering and Gene Selection in Microarray Data.
Ray, Shubhra Sankar; Ganivada, Avatharam; Pal, Sankar K
2016-09-01
A new granular self-organizing map (GSOM) is developed by integrating the concept of a fuzzy rough set with the SOM. While training the GSOM, the weights of a winning neuron and the neighborhood neurons are updated through a modified learning procedure. The neighborhood is newly defined using the fuzzy rough sets. The clusters (granules) evolved by the GSOM are presented to a decision table as its decision classes. Based on the decision table, a method of gene selection is developed. The effectiveness of the GSOM is shown in both clustering samples and developing an unsupervised fuzzy rough feature selection (UFRFS) method for gene selection in microarray data. While the superior results of the GSOM, as compared with the related clustering methods, are provided in terms of β -index, DB-index, Dunn-index, and fuzzy rough entropy, the genes selected by the UFRFS are not only better in terms of classification accuracy and a feature evaluation index, but also statistically more significant than the related unsupervised methods. The C-codes of the GSOM and UFRFS are available online at http://avatharamg.webs.com/software-code.
Novel techniques for characterization of hydrocarbon emission sources in the Barnett Shale
NASA Astrophysics Data System (ADS)
Nathan, Brian Joseph
Changes in ambient atmospheric hydrocarbon concentrations can have both short-term and long-term effects on the atmosphere and on human health. Thus, accurate characterization of emissions sources is critically important. The recent boom in shale gas production has led to an increase in hydrocarbon emissions from associated processes, though the exact extent is uncertain. As an original quantification technique, a model airplane equipped with a specially-designed, open-path methane sensor was flown multiple times over a natural gas compressor station in the Barnett Shale in October 2013. A linear optimization was introduced to a standard Gaussian plume model in an effort to determine the most probable emission rate coming from the station. This is shown to be a suitable approach given an ideal source with a single, central plume. Separately, an analysis was performed to characterize the nonmethane hydrocarbons in the Barnett during the same period. Starting with ambient hourly concentration measurements of forty-six hydrocarbon species, Lagrangian air parcel trajectories were implemented in a meteorological model to extend the resolution of these measurements and achieve domain-fillings of the region for the period of interest. A self-organizing map (a type of unsupervised classification) was then utilized to reduce the dimensionality of the total multivariate set of grids into characteristic one-dimensional signatures. By also introducing a self-organizing map classification of the contemporary wind measurements, the spatial hydrocarbon characterizations are analyzed for periods with similar wind conditions. The accuracy of the classification is verified through assessment of observed spatial mixing ratio enhancements of key species, through site-comparisons with a related long-term study, and through a random forest analysis (an ensemble learning method of supervised classification) to determine the most important species for defining key classes. The hydrocarbon classification is shown to have performed very well in identifying expected signatures near and downwind-of oil and gas facilities with active permits, which showcases this method's usefulness for future regional hydrocarbon source-apportionment analyses.
Ortega, Ryan A.; Brame, Cynthia J.
2015-01-01
Concept mapping was developed as a method of displaying and organizing hierarchical knowledge structures. Using the new, multidimensional presentation software Prezi, we have developed a new teaching technique designed to engage higher-level skills in the cognitive domain. This tool, synthesis mapping, is a natural evolution of concept mapping, which utilizes embedding to layer information within concepts. Prezi’s zooming user interface lets the author of the presentation use both depth as well as distance to show connections between data, ideas, and concepts. Students in the class Biology of Cancer created synthesis maps to illustrate their knowledge of tumorigenesis. Students used multiple organizational schemes to build their maps. We present an analysis of student work, placing special emphasis on organization within student maps and how the organization of knowledge structures in student maps can reveal strengths and weaknesses in student understanding or instruction. We also provide a discussion of best practices for instructors who would like to implement synthesis mapping in their classrooms. PMID:25917385
Mapping model behaviour using Self-Organizing Maps
NASA Astrophysics Data System (ADS)
Herbst, M.; Gupta, H. V.; Casper, M. C.
2009-03-01
Hydrological model evaluation and identification essentially involves extracting and processing information from model time series. However, the type of information extracted by statistical measures has only very limited meaning because it does not relate to the hydrological context of the data. To overcome this inadequacy we exploit the diagnostic evaluation concept of Signature Indices, in which model performance is measured using theoretically relevant characteristics of system behaviour. In our study, a Self-Organizing Map (SOM) is used to process the Signatures extracted from Monte-Carlo simulations generated by the distributed conceptual watershed model NASIM. The SOM creates a hydrologically interpretable mapping of overall model behaviour, which immediately reveals deficits and trade-offs in the ability of the model to represent the different functional behaviours of the watershed. Further, it facilitates interpretation of the hydrological functions of the model parameters and provides preliminary information regarding their sensitivities. Most notably, we use this mapping to identify the set of model realizations (among the Monte-Carlo data) that most closely approximate the observed discharge time series in terms of the hydrologically relevant characteristics, and to confine the parameter space accordingly. Our results suggest that Signature Index based SOMs could potentially serve as tools for decision makers inasmuch as model realizations with specific Signature properties can be selected according to the purpose of the model application. Moreover, given that the approach helps to represent and analyze multi-dimensional distributions, it could be used to form the basis of an optimization framework that uses SOMs to characterize the model performance response surface. As such it provides a powerful and useful way to conduct model identification and model uncertainty analyses.
Mapping model behaviour using Self-Organizing Maps
NASA Astrophysics Data System (ADS)
Herbst, M.; Gupta, H. V.; Casper, M. C.
2008-12-01
Hydrological model evaluation and identification essentially depends on the extraction of information from model time series and its processing. However, the type of information extracted by statistical measures has only very limited meaning because it does not relate to the hydrological context of the data. To overcome this inadequacy we exploit the diagnostic evaluation concept of Signature Indices, in which model performance is measured using theoretically relevant characteristics of system behaviour. In our study, a Self-Organizing Map (SOM) is used to process the Signatures extracted from Monte-Carlo simulations generated by a distributed conceptual watershed model. The SOM creates a hydrologically interpretable mapping of overall model behaviour, which immediately reveals deficits and trade-offs in the ability of the model to represent the different functional behaviours of the watershed. Further, it facilitates interpretation of the hydrological functions of the model parameters and provides preliminary information regarding their sensitivities. Most notably, we use this mapping to identify the set of model realizations (among the Monte-Carlo data) that most closely approximate the observed discharge time series in terms of the hydrologically relevant characteristics, and to confine the parameter space accordingly. Our results suggest that Signature Index based SOMs could potentially serve as tools for decision makers inasmuch as model realizations with specific Signature properties can be selected according to the purpose of the model application. Moreover, given that the approach helps to represent and analyze multi-dimensional distributions, it could be used to form the basis of an optimization framework that uses SOMs to characterize the model performance response surface. As such it provides a powerful and useful way to conduct model identification and model uncertainty analyses.
Organic–Inorganic Eu3+/Tb3+ codoped hybrid films for temperature mapping in integrated circuits
Brites, Carlos D. S.; Lima, Patrícia P.; Silva, Nuno J. O.; Millán, Angel; Amaral, Vitor S.; Palacio, Fernando; Carlos, Luís D.
2013-01-01
The continuous decrease on the geometric size of electronic devices and integrated circuits generates higher local power densities and localized heating problems that cannot be characterized by conventional thermographic techniques. Here, a self-referencing intensity-based molecular thermometer involving a di-ureasil organic-inorganic hybrid thin film co-doped with Eu3+ and Tb3+ tris (β-diketonate) chelates is used to obtain the temperature map of a FR4 printed wiring board with spatio-temporal resolutions of 0.42 μm/4.8 ms. PMID:24790938
NASA Astrophysics Data System (ADS)
Maack Rasmussen, Thorkild; Brethes, Anaïs; Pierpaolo Guarnieri, Pierpaolo; Bauer, Tobias
2017-04-01
Data from a high-resolution airborne SkyTEM time-domain electromagnetic survey conducted in central East Greenland were analysed. An analysis based on utilization of a Self Organizing Map procedure for response curve characterization and analyses based on data inversion and modelling are presented. The survey was flown in 2013 along the eastern margin of the Jameson Land basin with the purpose of base metal exploration and with sulphide mineralization as target. The survey area comprises crystalline basement to the East and layered Early Triassic to Jurassic sediments to the West. The layers are dipping a few degrees towards West. The Triassic sequence is 1 to 2 km thick and mostly of continental origin. The fluviatile Early Triassic arkoses and conglomerates, the Upper Triassic grey limestone and black shale beds and overlying gypsiferous sandstones and mudstones are known to host disseminated sulphides. E-W oriented lines were flown with an average terrain clearance of 30m and a separation of 300m. The data were initially processed and inverted by SkyTEM Aps. The conductivity models showed some conductive layers as well as induced polarization (IP) effects in the data. IP effects in TEM data reflect the relaxation of polarized charges in the ground which can be good indicators of the presence of metallic particles. Some of these locations were drilled during the following field season but unfortunately did not reveal the presence of mineralization. The aim of this study is therefore to understand the possible causes of these IP effects. Electrical charge accumulation in the ground can be related to the presence of sulphides, oxides or graphite or to the presence of clays or fibrous minerals. Permafrost may also cause IP effects and is then expected to be associated with a highly resistive subsurface. Several characteristics of the transient curves (IP indicators) of the SkyTEM survey were extracted and analysed by using the Kohonen Self-Organizing Map (SOM) technique. SOM is a type of neural network algorithm developed for analysis of non-linear relationships in multivariate data. The basic idea of SOM is to provide a method for easy visualizing of multi-dimensional data. The SOM may be viewed as a two-dimensional grid onto which multi-dimensional input data are projected or mapped from a multi-dimensional space. The space dimension is equal to the number of analysed variables containing the geo-referenced IP indicators that characterise the transient curves. Input data that are similar or close to each other, irrespectively of their geographic location, are mapped to the same or adjacent position in the SOM. Data that belongs to a particular cluster in the SOM space are afterwards mapped into a geographical space. Characteristics of the IP effects can therefore be mapped and spatially compared with the geology of the area. Once IP were identified and located, Cole-Cole parameters were recovered from the airborne TEM data in specific locations by inversion of the TEM data. An interpretation of the derived models is discussed in relation to possible causes of the observed IP effects.
Nadal, Martí; Kumar, Vikas; Schuhmacher, Marta; Domingo, José L
2006-08-01
A risk map of the chemical/petrochemical industrial area of Tarragona (Catalonia, Spain) was designed following a two-stage procedure. The first step was the creation of a ranking system (Hazard Index) for a number of different inorganic and organic pollutants: heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polychlorinated aromatic hydrocarbons (PAHs) by applying self-organizing maps (SOM) to persistence, bioaccumulation and toxicity properties of the chemicals. PCBs seemed to be the most hazardous compounds, while the light PAHs showed the minimum values. Subsequently, an Integral Risk Index was developed taking into account the Hazard Index and the concentrations of all pollutants in soil samples collected in the assessed area of Tarragona. Finally, a risk map was elaborated by representing the spatial distribution of the Integral Risk Index with a geographic information system (GIS). The results of the present study seem to indicate that the development of an integral risk map might be useful to help in making-decision processes concerning environmental pollutants.
Random waves in the brain: Symmetries and defect generation in the visual cortex
NASA Astrophysics Data System (ADS)
Schnabel, M.; Kaschube, M.; Löwel, S.; Wolf, F.
2007-06-01
How orientation maps in the visual cortex of the brain develop is a matter of long standing debate. Experimental and theoretical evidence suggests that their development represents an activity-dependent self-organization process. Theoretical analysis [1] exploring this hypothesis predicted that maps at an early developmental stage are realizations of Gaussian random fields exhibiting a rigorous lower bound for their densities of topological defects, called pinwheels. As a consequence, lower pinwheel densities, if observed in adult animals, are predicted to develop through the motion and annihilation of pinwheel pairs. Despite of being valid for a large class of developmental models this result depends on the symmetries of the models and thus of the predicted random field ensembles. In [1] invariance of the orientation map's statistical properties under independent space rotations and orientation shifts was assumed. However, full rotation symmetry appears to be broken by interactions of cortical neurons, e.g. selective couplings between groups of neurons with collinear orientation preferences [2]. A recently proposed new symmetry, called shift-twist symmetry [3], stating that spatial rotations have to occur together with orientation shifts in order to be an appropriate symmetry transformation, is more consistent with this organization. Here we generalize our random field approach to this important symmetry class. We propose a new class of shift-twist symmetric Gaussian random fields and derive the general correlation functions of this ensemble. It turns out that despite strong effects of the shift-twist symmetry on the structure of the correlation functions and on the map layout the lower bound on the pinwheel densities remains unaffected, predicting pinwheel annihilation in systems with low pinwheel densities.
Price, Joyce A; Kent, Sue; Cox, Sharon A; McCauley, Sharon M; Parekh, Janki; Klein, Catherine J
2014-08-01
Standards of Excellence in Nutrition and Dietetics for an Organization is a self-assessment tool to measure and evaluate an organization's program, services, and initiatives that identify and distinguish the Registered Dietitian Nutritionist (RDN) brand as the professional expert in food and nutrition. The Standards of Excellence will serve as a road map to recognize RDNs as leaders and collaborators. Standards of Excellence criteria apply to all practice segments of nutrition and dietetics: health care, education and research, business and industry, and community nutrition and public health. Given the membership's call to action to be recognized for their professional expertise, the Academy of Nutrition and Dietetics Quality Management Committee developed four Standards of Excellence in Nutrition and Dietetics for Organizations: Quality of Leadership, Quality of Organization, Quality of Practice, and Quality of Outcomes. Within each standard, specific indicators provide strategies for an organization to demonstrate excellence. The Academy will develop a self-evaluation scoring tool to assist the organization in applying and implementing one or more of the strategies in the Standards of Excellence indicators. The organization can use the self-assessment tool to establish itself as a Center of Excellence in Nutrition and Dietetics. The role examples illustrate initiatives RDNs and organizations can take to identify themselves as a Center of Excellence in Nutrition and Dietetics. Achieving the Excellence level is an important collaborative initiative between nutrition and dietetics organizations and the Academy to provide increased autonomy, supportive management, respect within peers and community, opportunities for professional development, support for further education, and compensation for the RDN. For purposes of the Standards, "organization" means workplace or practice setting. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nguyen, Tuyen Van; Cho, Woon-Seok; Kim, Hungsoo; Jung, Il Hyo; Kim, YongKuk; Chon, Tae-Soo
2014-03-01
Definition of ecological integrity based on community analysis has long been a critical issue in risk assessment for sustainable ecosystem management. In this work, two indices (i.e., Shannon index and exergy) were selected for the analysis of community properties of benthic macroinvertebrate community in streams in Korea. For this purpose, the means and variances of both indices were analyzed. The results found an extra scope of structural and functional properties in communities in response to environmental variabilities and anthropogenic disturbances. The combination of these two parameters (four indices) was feasible in identification of disturbance agents (e.g., industrial pollution or organic pollution) and specifying states of communities. The four-aforementioned parameters (means and variances of Shannon index and exergy) were further used as input data in a self-organizing map for the characterization of water quality. Our results suggested that Shannon index and exergy in combination could be utilized as a suitable reference system and would be an efficient tool for assessment of the health of aquatic ecosystems exposed to environmental disturbances.
Shinde, Santosh P; Banerjee, Amit Kumar; Arora, Neelima; Murty, U S N; Sripathi, Venkateswara Rao; Pal-Bhadra, Manika; Bhadra, Utpal
2015-03-01
Combating viral diseases has been a challenging task since time immemorial. Available molecular approaches are limited and not much effective for this daunting task. MicroRNA based therapies have shown promise in recent times. MicroRNAs are tiny non-coding RNAs that regulate translational repression of target mRNA in highly specific manner. In this study, we have determined the target regions for human and viral microRNAs in the conserved genomic regions of selected viruses of Flaviviridae family using miRanda and performed a comparative target selectivity analysis among them. Specific target regions were determined and they were compared extensively among themselves by exploring their position to determine the vicinity. Based on the multiplicity and cooperativity analysis, interaction maps were developed manually to represent the interactions between top-ranking miRNAs and genomes of the viruses considered in this study. Self-organizing map (SOM) was used to cluster the best-ranked microRNAs based on the vital physicochemical properties. This study will provide deep insight into the interrelation of the viral and human microRNAs interactions with the selected Flaviviridae genomes and will help to identify cross-species microRNA targets on the viral genome.
StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams.
Wu, Yingcai; Chen, Zhutian; Sun, Guodao; Xie, Xiao; Cao, Nan; Liu, Shixia; Cui, Weiwei
2017-10-18
Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.
Self-organization in chronic pain: a concept analysis.
Monsivais, Diane
2005-01-01
The purpose of this article is to examine the concept of self-organization in chronic pain using Rodgers' (2000) evolutionary approach. This article describes the antecedents, attributes, and consequences of self-organization in chronic pain. Self-organization in chronic pain may be achieved through the attributes of being believed, accessing credible resources, and taking action and responsibility. Self-organization occurs when the patient with pain develops a transformed identity, new insights, and is an active, in-control participant in care. Chronic pain is a common and costly problem, and recognition of the key attributes of self-organization in this condition is an important step in promoting positive health outcomes. Rehabilitation nurses play a key role in providing credible resources and working with the patient to take action and responsibility.
Bahrami, Sheyda; Shamsi, Mousa
2017-01-01
Functional magnetic resonance imaging (fMRI) is a popular method to probe the functional organization of the brain using hemodynamic responses. In this method, volume images of the entire brain are obtained with a very good spatial resolution and low temporal resolution. However, they always suffer from high dimensionality in the face of classification algorithms. In this work, we combine a support vector machine (SVM) with a self-organizing map (SOM) for having a feature-based classification by using SVM. Then, a linear kernel SVM is used for detecting the active areas. Here, we use SOM for feature extracting and labeling the datasets. SOM has two major advances: (i) it reduces dimension of data sets for having less computational complexity and (ii) it is useful for identifying brain regions with small onset differences in hemodynamic responses. Our non-parametric model is compared with parametric and non-parametric methods. We use simulated fMRI data sets and block design inputs in this paper and consider the contrast to noise ratio (CNR) value equal to 0.6 for simulated datasets. fMRI simulated dataset has contrast 1-4% in active areas. The accuracy of our proposed method is 93.63% and the error rate is 6.37%.
Functional organization of glomerular maps in the mouse accessory olfactory bulb
Hammen, Gary F.; Turaga, Diwakar; Holy, Timothy E.; Meeks, Julian P.
2014-01-01
Summary The mammalian accessory olfactory system (AOS) extracts information about species, sex, and individual identity from social odors, but its functional organization remains unclear. We imaged presynaptic Ca2+ signals in vomeronasal inputs to the accessory olfactory bulb (AOB) during peripheral stimulation using light sheet microscopy. Urine- and steroid-responsive glomeruli densely innervated the anterior AOB. Glomerular activity maps for sexually mature female mouse urine overlapped maps for juvenile and/or gonadectomized urine of both sexes, whereas maps for sexually mature male urine were highly distinct. Further spatial analysis revealed a complicated organization involving selective juxtaposition and dispersal of functionally-grouped glomerular classes. Glomeruli that were similarly tuned to urines were often closely associated, whereas more disparately tuned glomeruli were selectively dispersed. Maps to a panel of sulfated steroid odorants identified tightly-juxtaposed groups that were disparately tuned and dispersed groups that were similarly tuned. These results reveal a modular, non-chemotopic spatial organization in the AOB. PMID:24880215
The Wellbeing of the Self's Personality: A Structural Analysis
ERIC Educational Resources Information Center
Levy, Shlomit; Sabbagh, Clara
2008-01-01
Leaning on the formal faceted definition of wellbeing (Levy and Guttman (1975) "Social Indicators Research," 2, 361-388), a mapping sentence is provided for defining the universe of observations of the wellbeing of the self-expanding on personality aspects. The structure of the interrelationships among the variables of the expanded…
A concept mapping study on organic food consumers in Shanghai, China.
Hasimu, Huliyeti; Marchesini, Sergio; Canavari, Maurizio
2017-01-01
Despite some similarities with developed countries, the growth of organic market in China seems to follow a different path. Thus, important questions are how Chinese urban consumers perceive organic food, and what are the main concepts associated to the organic attribute. We aimed at representing in graphic form the network of mental associations with the organic concept. We used an adapted version of the "Brand concept mapping" method to acquire, process, and draw individual concept networks perceived by 50 organic food consumers in Shanghai. We then analyzed the data using network and cluster analysis to create aggregated maps for two distinct groups of consumers. Similarly to their peers in developed countries, Chinese consumers perceive organic food as healthy, safe and expensive. However, organic is not necessarily synonymous with natural produce in China, also due to a translation of the term that conveys the idea of a "technology advanced" product. Organic overlaps with the green food label in terms of image and positioning in the market, since they are easily associated and often confused. The two groups we identified show clear differences in the way the organic concept is associated to other concepts and features. The study provides useful information for practitioners: marketers of organic products in China should invest in communication to emphasize the differences with Green Food products and they should consider the possibility of segmenting organic consumers; Chinese policy makers should consider implementing information campaigns aimed at achieving a better understanding of the features of these quality labels among consumers. For researchers, the study confirms that the BCM method is effective and its integration with network and cluster analysis improves the interpretation of individual and aggregated maps. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
Hausfeld, Lars; Valente, Giancarlo; Formisano, Elia
2014-08-01
When multivariate pattern decoding is applied to fMRI studies entailing more than two experimental conditions, a most common approach is to transform the multiclass classification problem into a series of binary problems. Furthermore, for decoding analyses, classification accuracy is often the only outcome reported although the topology of activation patterns in the high-dimensional features space may provide additional insights into underlying brain representations. Here we propose to decode and visualize voxel patterns of fMRI datasets consisting of multiple conditions with a supervised variant of self-organizing maps (SSOMs). Using simulations and real fMRI data, we evaluated the performance of our SSOM-based approach. Specifically, the analysis of simulated fMRI data with varying signal-to-noise and contrast-to-noise ratio suggested that SSOMs perform better than a k-nearest-neighbor classifier for medium and large numbers of features (i.e. 250 to 1000 or more voxels) and similar to support vector machines (SVMs) for small and medium numbers of features (i.e. 100 to 600voxels). However, for a larger number of features (>800voxels), SSOMs performed worse than SVMs. When applied to a challenging 3-class fMRI classification problem with datasets collected to examine the neural representation of three human voices at individual speaker level, the SSOM-based algorithm was able to decode speaker identity from auditory cortical activation patterns. Classification performances were similar between SSOMs and other decoding algorithms; however, the ability to visualize decoding models and underlying data topology of SSOMs promotes a more comprehensive understanding of classification outcomes. We further illustrated this visualization ability of SSOMs with a re-analysis of a dataset examining the representation of visual categories in the ventral visual cortex (Haxby et al., 2001). This analysis showed that SSOMs could retrieve and visualize topography and neighborhood relations of the brain representation of eight visual categories. We conclude that SSOMs are particularly suited for decoding datasets consisting of more than two classes and are optimally combined with approaches that reduce the number of voxels used for classification (e.g. region-of-interest or searchlight approaches). Copyright © 2014. Published by Elsevier Inc.
Gonthier, Lucy; Blassiau, Christelle; Mörchen, Monika; Cadalen, Thierry; Poiret, Matthieu; Hendriks, Theo; Quillet, Marie-Christine
2013-08-01
High-density genetic maps were constructed for loci involved in nuclear male sterility (NMS1-locus) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L.). The mapping population consisted of 389 F1' individuals derived from a cross between two plants, K28 (male-sterile) and K59 (pollen-fertile), both heterozygous at the S-locus. This F1' mapping population segregated for both male sterility (MS) and strong self-incompatibility (SI) phenotypes. Phenotyping F1' individuals for MS allowed us to map the NMS1-locus to linkage group (LG) 5, while controlled diallel and factorial crosses to identify compatible/incompatible phenotypes mapped the S-locus to LG2. To increase the density of markers around these loci, bulked segregant analysis was used. Bulks and parental plants K28 and K59 were screened using amplified fragment length polymorphism (AFLP) analysis, with a complete set of 256 primer combinations of EcoRI-ANN and MseI-CNN. A total of 31,000 fragments were generated, of which 2,350 showed polymorphism between K59 and K28. Thirteen AFLP markers were identified close to the NMS1-locus and six in the vicinity of the S-locus. From these AFLP markers, eight were transformed into sequence-characterized amplified region (SCAR) markers and of these five showed co-dominant polymorphism. The chromosomal regions containing the NMS1-locus and the S-locus were each confined to a region of 0.8 cM. In addition, we mapped genes encoding proteins similar to S-receptor kinase, the female determinant of sporophytic SI in the Brasicaceae, and also markers in the vicinity of the putative S-locus of sunflower, but none of these genes or markers mapped close to the chicory S-locus.
Klink, Agnieszka; Polechońska, Ludmiła; Cegłowska, Aurelia; Stankiewicz, Andrzej
2016-07-01
The contents of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in leaves of Typha latifolia (broadleaf cattail), water and bottom sediment from 72 study sites designated in different regions of Poland were determined using atomic absorption spectrometry. The aim of the study was to evaluate potential use of T. latifolia in biomonitoring of trace metal pollution. The self-organizing feature map (SOFM) identifying groups of sampling sites with similar concentrations of metals in cattail leaves was able to classify study sites according to similar use and potential sources of pollution. Maps prepared for water and bottom sediment showed corresponding groups of sampling sites which suggested similarity of samples features. High concentrations of Fe, Cd, Cu, and Ni were characteristic for industrial areas. Elevated Pb concentrations were noted in regions with intensive vehicle traffic, while high Mn and Zn contents were reported in leaves from the agricultural area. Manganese content in leaves of T. latifolia was high irrespectively of the concentrations in bottom sediments and water so cattail can be considered the leaf accumulator of Mn. Once trained, SOFMs can be applied in ecological investigations and could form a future basis for recognizing the type of pollution in aquatic environments by analyzing the concentrations of elements in T. latifolia.
ERIC Educational Resources Information Center
Ennis, Kim; Priebe, Carly; Sharipova, Mayya; West, Kim
2012-01-01
Revealing the core of a teaching philosophy is the key to a concise and meaningful philosophy statement, but it can be an elusive goal. This paper offers a visual, kinesthetic, and holistic process for expanding the horizons of self-reflection, self-analysis, and self-knowledge. Mystery montage, a variation of visual mapping, storyboarding, and…
NASA Technical Reports Server (NTRS)
Stauffer, Ryan M.; Thompson, Anne M.; Young, George S.
2016-01-01
Sonde-based climatologies of tropospheric ozone (O3) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O3 climatologies average measurements by latitude or region, and season. A recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical sites found that clusters of O3 mixing ratio profiles are an excellent way to capture O3variability and link meteorological influences to O3 profiles. Clusters correspond to distinct meteorological conditions, e.g., convection, subsidence, cloud cover, and transported pollution. Here the SOM technique is extended to four long-term U.S. sites (Boulder, CO; Huntsville, AL; Trinidad Head, CA; and Wallops Island, VA) with4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of 3 3 SOM (nine clusters). Ateach site, SOM clusters together O3 profiles with similar tropopause height, 500 hPa height temperature, and amount of tropospheric and total column O3. Cluster means are compared to monthly O3 climatologies.For all four sites, near-tropopause O3 is double (over +100 parts per billion by volume; ppbv) the monthly climatological O3 mixing ratio in three clusters that contain 1316 of profiles, mostly in winter and spring.Large midtropospheric deviations from monthly means (6 ppbv, +710 ppbv O3 at 6 km) are found in two of the most populated clusters (combined 3639 of profiles). These two clusters contain distinctly polluted(summer) and clean O3 (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O3 averages are often poor representations of U.S. O3 profile statistics.
Stauffer, Ryan M.; Thompson, Anne M.; Young, George S.
2018-01-01
Sonde-based climatologies of tropospheric ozone (O3) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O3 climatologies average measurements by latitude or region, and season. Recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical sites found clusters of O3 mixing ratio profiles are an excellent way to capture O3 variability and link meteorological influences to O3 profiles. Clusters correspond to distinct meteorological conditions, e.g. convection, subsidence, cloud cover, and transported pollution. Here, the SOM technique is extended to four long-term U.S. sites (Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA) with 4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of 3×3 SOM (nine clusters). At each site, SOM clusters together O3 profiles with similar tropopause height, 500 hPa height/temperature, and amount of tropospheric and total column O3. Cluster means are compared to monthly O3 climatologies. For all four sites, near-tropopause O3 is double (over +100 parts per billion by volume; ppbv) the monthly climatological O3 mixing ratio in three clusters that contain 13 – 16% of profiles, mostly in winter and spring. Large mid-tropospheric deviations from monthly means (−6 ppbv, +7 – 10 ppbv O3 at 6 km) are found in two of the most populated clusters (combined 36 – 39% of profiles). These two clusters contain distinctly polluted (summer) and clean O3 (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O3 averages are often poor representations of U.S. O3 profile statistics. PMID:29619288
Stauffer, Ryan M; Thompson, Anne M; Young, George S
2016-02-16
Sonde-based climatologies of tropospheric ozone (O 3 ) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O 3 climatologies average measurements by latitude or region, and season. Recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical sites found clusters of O 3 mixing ratio profiles are an excellent way to capture O 3 variability and link meteorological influences to O 3 profiles. Clusters correspond to distinct meteorological conditions, e.g. convection, subsidence, cloud cover, and transported pollution. Here, the SOM technique is extended to four long-term U.S. sites (Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA) with 4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of 3×3 SOM (nine clusters). At each site, SOM clusters together O 3 profiles with similar tropopause height, 500 hPa height/temperature, and amount of tropospheric and total column O 3 . Cluster means are compared to monthly O 3 climatologies. For all four sites, near-tropopause O 3 is double (over +100 parts per billion by volume; ppbv) the monthly climatological O 3 mixing ratio in three clusters that contain 13 - 16% of profiles, mostly in winter and spring. Large mid-tropospheric deviations from monthly means (-6 ppbv, +7 - 10 ppbv O 3 at 6 km) are found in two of the most populated clusters (combined 36 - 39% of profiles). These two clusters contain distinctly polluted (summer) and clean O 3 (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O 3 averages are often poor representations of U.S. O 3 profile statistics.
Herrero-Herrero, María; García-Massó, Xavier; Martínez-Corralo, Carlos; Prades-Piñón, Josep; Sanchis-Alfonso, Vicente
2017-09-01
The aim of this study was to determine whether the most physically active adolescents have better lower limb control. 31 high school students (12 males and 19 females) participated in this study. The Anterior Knee Pain Scale was used to find any cases of knee pain. Only subjects with high scores were selected, to exclude those with knee pain or lower limb injuries. Single Leg Squat and Tuck Jump Assessment were used to evaluate movements with two cameras in a two-dimensional assessment. The IPAQ Questionnaire was used to score the physical activity and to classify it into MET total, MET moderate activity, MET vigorous activity and MET walking. These scores were related to knee angle at landing, age and body mass index by self-organizing maps analysis. The subjects were classified into 4 clusters and the descriptive statistics of the different clusters were determined to find any differences. The subjects in cluster 3 were classified as those with the highest risk factors of suffering lower limb musculoskeletal disorders or knee pain, even though injuries do not only depend on quality of movement. Physical activity was not related to healthy movements during jump and single leg squat. Physical activity alone cannot be an indicator of good quality lower limb movement, as the knee valgus angle plays a determining role, as it could also depend on neuromuscular control and anatomical characteristics. The analytical method described in the study could be used by physical education teachers to detect potential risk factors for musculoskeletal problems in the lower limbs, especially in the knees.
NASA Astrophysics Data System (ADS)
Nigro, M. A.; Cassano, J. J.; Wille, J.; Bromwich, D. H.; Lazzara, M. A.
2015-12-01
An accurate representation of the atmospheric boundary layer in numerical weather prediction models is important for predicting turbulence and energy exchange in the atmosphere. This study uses two years of observations from a 30-m automatic weather station (AWS) installed on the Ross Ice Shelf, Antarctica to evaluate forecasts from the Antarctic Mesoscale Prediction System (AMPS), a numerical weather prediction system based on the polar version of the Weather Research and Forecasting (Polar WRF) model that uses the MYJ planetary boundary layer scheme and that primarily supports the extensive aircraft operations of the U.S. Antarctic Program. The 30-m AWS has six levels of instrumentation, providing vertical profiles of temperature, wind speed, and wind direction. The observations show the atmospheric boundary layer over the Ross Ice Shelf is stable approximately 80% of the time, indicating the influence of the permanent ice surface in this region. The observations from the AWS are further analyzed using the method of self-organizing maps (SOM) to identify the range of potential temperature profiles that occur over the Ross Ice Shelf. The SOM analysis identified 30 patterns, which range from strong inversions to slightly unstable profiles. The corresponding AMPS forecasts were evaluated for each of the 30 patterns to understand the accuracy of the AMPS near surface layer under different atmospheric conditions. The results indicate that under stable conditions AMPS with MYJ under predicts the inversion strength by as much as 7.4 K over the 30-m depth of the tower and over predicts the near surface wind speed by as much as 3.8 m s-1. Conversely, under slightly unstable conditions, AMPS predicts both the inversion strength and near surface wind speeds with reasonable accuracy.
ERIC Educational Resources Information Center
Ninness, Chris; Lauter, Judy L.; Coffee, Michael; Clary, Logan; Kelly, Elizabeth; Rumph, Marilyn; Rumph, Robin; Kyle, Betty; Ninness, Sharon K.
2012-01-01
Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study…
Fire-climate interactions in forests of the American Pacific Coast
Valerie Trouet; Alan H. Taylor; Andrew M. Carleton; Carl N. Skinner
2006-01-01
We investigate relationships between climate and wildfire activity between 1929 and 2004 in Pacific coast forests of the United States. Self-Organizing Mapping (SOM) of annual area burned in National Forests (NF) in California, Oregon, and Washington identifies three contiguous NF groups and a fourth group of NF traversed by major highways. Large fire years in all...
Interconnected growing self-organizing maps for auditory and semantic acquisition modeling.
Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J
2014-01-01
Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic-semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory-semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model.
Transition Characteristic Analysis of Traffic Evolution Process for Urban Traffic Network
Chen, Hong; Li, Yang
2014-01-01
The characterization of the dynamics of traffic states remains fundamental to seeking for the solutions of diverse traffic problems. To gain more insights into traffic dynamics in the temporal domain, this paper explored temporal characteristics and distinct regularity in the traffic evolution process of urban traffic network. We defined traffic state pattern through clustering multidimensional traffic time series using self-organizing maps and construct a pattern transition network model that is appropriate for representing and analyzing the evolution progress. The methodology is illustrated by an application to data flow rate of multiple road sections from Network of Shenzhen's Nanshan District, China. Analysis and numerical results demonstrated that the methodology permits extracting many useful traffic transition characteristics including stability, preference, activity, and attractiveness. In addition, more information about the relationships between these characteristics was extracted, which should be helpful in understanding the complex behavior of the temporal evolution features of traffic patterns. PMID:24982969
Differences in soil biological activity by terrain types at the sub-field scale in central Iowa US
Kaleita, Amy L.; Schott, Linda R.; Hargreaves, Sarah K.; ...
2017-07-07
Soil microbial communities are structured by biogeochemical processes that occur at many different spatial scales, which makes soil sampling difficult. Because soil microbial communities are important in nutrient cycling and soil fertility, it is important to understand how microbial communities function within the heterogeneous soil landscape. In this study, a self-organizing map was used to determine whether landscape data can be used to characterize the distribution of microbial biomass and activity in order to provide an improved understanding of soil microbial community function. Points within a row crop field in south-central Iowa were clustered via a self-organizing map using sixmore » landscape properties into three separate landscape clusters. Twelve sampling locations per cluster were chosen for a total of 36 locations. After the soil samples were collected, the samples were then analysed for various metabolic indicators, such as nitrogen and carbon mineralization, extractable organic carbon, microbial biomass, etc. It was found that sampling locations located in the potholes and toe slope positions had significantly greater microbial biomass nitrogen and carbon, total carbon, total nitrogen and extractable organic carbon than the other two landscape position clusters, while locations located on the upslope did not differ significantly from the other landscape clusters. However, factors such as nitrate, ammonia, and nitrogen and carbon mineralization did not differ significantly across the landscape. Altogether, this research demonstrates the effectiveness of a terrain-based clustering method for guiding soil sampling of microbial communities.« less
Differences in soil biological activity by terrain types at the sub-field scale in central Iowa US
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaleita, Amy L.; Schott, Linda R.; Hargreaves, Sarah K.
Soil microbial communities are structured by biogeochemical processes that occur at many different spatial scales, which makes soil sampling difficult. Because soil microbial communities are important in nutrient cycling and soil fertility, it is important to understand how microbial communities function within the heterogeneous soil landscape. In this study, a self-organizing map was used to determine whether landscape data can be used to characterize the distribution of microbial biomass and activity in order to provide an improved understanding of soil microbial community function. Points within a row crop field in south-central Iowa were clustered via a self-organizing map using sixmore » landscape properties into three separate landscape clusters. Twelve sampling locations per cluster were chosen for a total of 36 locations. After the soil samples were collected, the samples were then analysed for various metabolic indicators, such as nitrogen and carbon mineralization, extractable organic carbon, microbial biomass, etc. It was found that sampling locations located in the potholes and toe slope positions had significantly greater microbial biomass nitrogen and carbon, total carbon, total nitrogen and extractable organic carbon than the other two landscape position clusters, while locations located on the upslope did not differ significantly from the other landscape clusters. However, factors such as nitrate, ammonia, and nitrogen and carbon mineralization did not differ significantly across the landscape. Altogether, this research demonstrates the effectiveness of a terrain-based clustering method for guiding soil sampling of microbial communities.« less
Analysis of dark matter axion clumps with spherical symmetry
NASA Astrophysics Data System (ADS)
Schiappacasse, Enrico D.; Hertzberg, Mark P.
2018-01-01
Recently there has been much interest in the spatial distribution of light scalar dark matter, especially axions, throughout the universe. When the local gravitational interactions between the scalar modes are sufficiently rapid, it can cause the field to re-organize into a BEC of gravitationally bound clumps. While these clumps are stable when only gravitation is included, the picture is complicated by the presence of the axion's attractive self-interactions, which can potentially cause the clumps to collapse. Here we perform a detailed stability analysis to determine under what conditions the clumps are stable. In this paper we focus on spherical configurations, leaving aspherical configurations for future work. We identify branches of clump solutions of the axion-gravity-self-interacting system and study their stability properties. We find that clumps that are (spatially) large are stable, while clumps that are (spatially) small are unstable and may collapse. Furthermore, there is a maximum number of particles that can be in a clump. We map out the full space of solutions, which includes quasi-stable axitons, and clarify how a recent claim in the literature of a new ultra-dense branch of stable solutions rests on an invalid use of the non-relativistic approximation. We also consider repulsive self-interactions that may arise from a generic scalar dark matter candidate, finding a single stable branch that extends to arbitrary particle number.
The directed self-assembly for the surface patterning by electron beam II
NASA Astrophysics Data System (ADS)
Nakagawa, Sachiko T.
2015-03-01
When a low-energy electron beam (EB) or a low-energy ion beam (IB) irradiates a crystal of zincblende (ZnS)-type as crystalline Si (c-Si), a very similar {311} planar defect is often observed. Here, we used a molecular dynamics simulation for a c-Si that included uniformly distributed Frenkel-pairs, assuming a wide beam and sparse distribution of defects caused by each EB. We observed the formation of ? linear defects, which agglomerate to form planar defects labeled with the Miller index {311} as well as the case of IB irradiation. These were identified by a crystallographic analysis called pixel mapping (PM) method. The PM had suggested that self-interstitial atoms may be stabilized on a specific frame of a lattice made of invisible metastable sites in the ZnS-type crystal. This agglomeration appears as {311} planar defects. It was possible at a much higher temperature than room temperature,for example, at 1000 K. This implies that whatever disturbance may bring many SIAs in a ZnS-type crystal, elevated lattice vibration promotes self-organization of the SIAs to form {311} planar defects according to the frame of metastable lattice as is guided by a chart presented by crystallography.
Identification of lithofacies using Kohonen self-organizing maps
Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.
2002-01-01
Lithofacies identification is a primary task in reservoir characterization. Traditional techniques of lithofacies identification from core data are costly, and it is difficult to extrapolate to non-cored wells. We present a low-cost automated technique using Kohonen self-organizing maps (SOMs) to identify systematically and objectively lithofacies from well log data. SOMs are unsupervised artificial neural networks that map the input space into clusters in a topological form whose organization is related to trends in the input data. A case study used five wells located in Appleton Field, Escambia County, Alabama (Smackover Formation, limestone and dolomite, Oxfordian, Jurassic). A five-input, one-dimensional output approach is employed, assuming the lithofacies are in ascending/descending order with respect to paleoenvironmental energy levels. To consider the possible appearance of new logfacies not seen in training mode, which may potentially appear in test wells, the maximum number of outputs is set to 20 instead of four, the designated number of lithosfacies in the study area. This study found eleven major clusters. The clusters were compared to depositional lithofacies identified by manual core examination. The clusters were ordered by the SOM in a pattern consistent with environmental gradients inferred from core examination: bind/boundstone, grainstone, packstone, and wackestone. This new approach predicted lithofacies identity from well log data with 78.8% accuracy which is more accurate than using a backpropagation neural network (57.3%). The clusters produced by the SOM are ordered with respect to paleoenvironmental energy levels. This energy-related clustering provides geologists and petroleum engineers with valuable geologic information about the logfacies and their interrelationships. This advantage is not obtained in backpropagation neural networks and adaptive resonance theory neural networks. ?? 2002 Elsevier Science Ltd. All rights reserved.
Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology
NASA Astrophysics Data System (ADS)
Parard, G.; Charantonis, A. A.; Rutgerson, A.
2015-06-01
Studies of coastal seas in Europe have noted the high variability of the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes, complicates the accurate estimation of these mechanisms. This is particularly pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been characterized in as much detail as in the open oceans. In addition, the joint availability of in situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, we used the SOMLO (self-organizing multiple linear output; Sasse et al., 2013) methodology, which combines two existing methods (i.e. self-organizing maps and multiple linear regression) to estimate the ocean surface partial pressure of CO2 (pCO2) in the Baltic Sea from the remotely sensed sea surface temperature, chlorophyll, coloured dissolved organic matter, net primary production, and mixed-layer depth. The outputs of this research have a horizontal resolution of 4 km and cover the 1998-2011 period. These outputs give a monthly map of the Baltic Sea at a very fine spatial resolution. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in situ measurements and a root mean square error of 36 μatm. Removing any of the satellite parameters degraded this reconstructed CO2 flux, so we chose to supply any missing data using statistical imputation. The pCO2 maps produced using this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data, and we expect to be able to produce even more accurate reconstructions in coming years, given the predicted acquisition of new data.
Compass: a hybrid method for clinical and biobank data mining.
Krysiak-Baltyn, K; Nordahl Petersen, T; Audouze, K; Jørgensen, Niels; Angquist, L; Brunak, S
2014-02-01
We describe a new method for identification of confident associations within large clinical data sets. The method is a hybrid of two existing methods; Self-Organizing Maps and Association Mining. We utilize Self-Organizing Maps as the initial step to reduce the search space, and then apply Association Mining in order to find association rules. We demonstrate that this procedure has a number of advantages compared to traditional Association Mining; it allows for handling numerical variables without a priori binning and is able to generate variable groups which act as "hotspots" for statistically significant associations. We showcase the method on infertility-related data from Danish military conscripts. The clinical data we analyzed contained both categorical type questionnaire data and continuous variables generated from biological measurements, including missing values. From this data set, we successfully generated a number of interesting association rules, which relate an observation with a specific consequence and the p-value for that finding. Additionally, we demonstrate that the method can be used on non-clinical data containing chemical-disease associations in order to find associations between different phenotypes, such as prostate cancer and breast cancer. Copyright © 2013 Elsevier Inc. All rights reserved.
Unsupervised learning on scientific ocean drilling datasets from the South China Sea
NASA Astrophysics Data System (ADS)
Tse, Kevin C.; Chiu, Hon-Chim; Tsang, Man-Yin; Li, Yiliang; Lam, Edmund Y.
2018-06-01
Unsupervised learning methods were applied to explore data patterns in multivariate geophysical datasets collected from ocean floor sediment core samples coming from scientific ocean drilling in the South China Sea. Compared to studies on similar datasets, but using supervised learning methods which are designed to make predictions based on sample training data, unsupervised learning methods require no a priori information and focus only on the input data. In this study, popular unsupervised learning methods including K-means, self-organizing maps, hierarchical clustering and random forest were coupled with different distance metrics to form exploratory data clusters. The resulting data clusters were externally validated with lithologic units and geologic time scales assigned to the datasets by conventional methods. Compact and connected data clusters displayed varying degrees of correspondence with existing classification by lithologic units and geologic time scales. K-means and self-organizing maps were observed to perform better with lithologic units while random forest corresponded best with geologic time scales. This study sets a pioneering example of how unsupervised machine learning methods can be used as an automatic processing tool for the increasingly high volume of scientific ocean drilling data.
Seasonal precipitation forecasting for the Melbourne region using a Self-Organizing Maps approach
NASA Astrophysics Data System (ADS)
Pidoto, Ross; Wallner, Markus; Haberlandt, Uwe
2017-04-01
The Melbourne region experiences highly variable inter-annual rainfall. For close to a decade during the 2000s, below average rainfall seriously affected the environment, water supplies and agriculture. A seasonal rainfall forecasting model for the Melbourne region based on the novel approach of a Self-Organizing Map has been developed and tested for its prediction performance. Predictor variables at varying lead times were first assessed for inclusion within the model by calculating their importance via Random Forests. Predictor variables tested include the climate indices SOI, DMI and N3.4, in addition to gridded global sea surface temperature data. Five forecasting models were developed: an annual model and four seasonal models, each individually optimized for performance through Pearson's correlation r and the Nash-Sutcliffe Efficiency. The annual model showed a prediction performance of r = 0.54 and NSE = 0.14. The best seasonal model was for spring, with r = 0.61 and NSE = 0.31. Autumn was the worst performing seasonal model. The sea surface temperature data contributed fewer predictor variables compared to climate indices. Most predictor variables were supplied at a minimum lead, however some predictors were found at lead times of up to a year.
Frisch-Daiello, Jessica L; Williams, Mary R; Waddell, Erin E; Sigman, Michael E
2014-03-01
The unsupervised artificial neural networks method of self-organizing feature maps (SOFMs) is applied to spectral data of ignitable liquids to visualize the grouping of similar ignitable liquids with respect to their American Society for Testing and Materials (ASTM) class designations and to determine the ions associated with each group. The spectral data consists of extracted ion spectra (EIS), defined as the time-averaged mass spectrum across the chromatographic profile for select ions, where the selected ions are a subset of ions from Table 2 of the ASTM standard E1618-11. Utilization of the EIS allows for inter-laboratory comparisons without the concern of retention time shifts. The trained SOFM demonstrates clustering of the ignitable liquid samples according to designated ASTM classes. The EIS of select samples designated as miscellaneous or oxygenated as well as ignitable liquid residues from fire debris samples are projected onto the SOFM. The results indicate the similarities and differences between the variables of the newly projected data compared to those of the data used to train the SOFM. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Cooperation-Controlled Learning for Explicit Class Structure in Self-Organizing Maps
Kamimura, Ryotaro
2014-01-01
We attempt to demonstrate the effectiveness of multiple points of view toward neural networks. By restricting ourselves to two points of view of a neuron, we propose a new type of information-theoretic method called “cooperation-controlled learning.” In this method, individual and collective neurons are distinguished from one another, and we suppose that the characteristics of individual and collective neurons are different. To implement individual and collective neurons, we prepare two networks, namely, cooperative and uncooperative networks. The roles of these networks and the roles of individual and collective neurons are controlled by the cooperation parameter. As the parameter is increased, the role of cooperative networks becomes more important in learning, and the characteristics of collective neurons become more dominant. On the other hand, when the parameter is small, individual neurons play a more important role. We applied the method to the automobile and housing data from the machine learning database and examined whether explicit class boundaries could be obtained. Experimental results showed that cooperation-controlled learning, in particular taking into account information on input units, could be used to produce clearer class structure than conventional self-organizing maps. PMID:25309950
A neural-network-based approach to the double traveling salesman problem.
Plebe, Alessio; Anile, Angelo Marcello
2002-02-01
The double traveling salesman problem is a variation of the basic traveling salesman problem where targets can be reached by two salespersons operating in parallel. The real problem addressed by this work concerns the optimization of the harvest sequence for the two independent arms of a fruit-harvesting robot. This application poses further constraints, like a collision-avoidance function. The proposed solution is based on a self-organizing map structure, initialized with as many artificial neurons as the number of targets to be reached. One of the key components of the process is the combination of competitive relaxation with a mechanism for deleting and creating artificial neurons. Moreover, in the competitive relaxation process, information about the trajectory connecting the neurons is combined with the distance of neurons from the target. This strategy prevents tangles in the trajectory and collisions between the two tours. Results of tests indicate that the proposed approach is efficient and reliable for harvest sequence planning. Moreover, the enhancements added to the pure self-organizing map concept are of wider importance, as proved by a traveling salesman problem version of the program, simplified from the double version for comparison.
Self-localization of wireless sensor networks using self-organizing maps
NASA Astrophysics Data System (ADS)
Ertin, Emre; Priddy, Kevin L.
2005-03-01
Recently there has been a renewed interest in the notion of deploying large numbers of networked sensors for applications ranging from environmental monitoring to surveillance. In a typical scenario a number of sensors are distributed in a region of interest. Each sensor is equipped with sensing, processing and communication capabilities. The information gathered from the sensors can be used to detect, track and classify objects of interest. For a number of locations the sensors location is crucial in interpreting the data collected from those sensors. Scalability requirements dictate sensor nodes that are inexpensive devices without a dedicated localization hardware such as GPS. Therefore the network has to rely on information collected within the network to self-localize. In the literature a number of algorithms has been proposed for network localization which uses measurements informative of range, angle, proximity between nodes. Recent work by Patwari and Hero relies on sensor data without explicit range estimates. The assumption is that the correlation structure in the data is a monotone function of the intersensor distances. In this paper we propose a new method based on unsupervised learning techniques to extract location information from the sensor data itself. We consider a grid consisting of virtual nodes and try to fit grid in the actual sensor network data using the method of self organizing maps. Then known sensor network geometry can be used to rotate and scale the grid to a global coordinate system. Finally, we illustrate how the virtual nodes location information can be used to track a target.
NASA Astrophysics Data System (ADS)
Chu, J.; Ha, K.; Hameed, S. N.
2011-12-01
We advance the hypothesis that regional characteristics of the East Asian Summer Monsoon (EASM) result from the presence of non-linear coupled features that modulate the seasonal circulation and rainfall at the intraseasonal timescale. To examine this hypothesis, we undertake the analysis of daily EASM variability using a non-linear multivariate data classifying algorithm known as Self Organizing Maps (SOM). SOM is used to locate archetypal circulation states present in a circulation state vector composed of important indices representing subtropical high pressure regions, the lower and upper level wind vectors and vertical and horizontal shear. These so-called nodes on the SOM identify prominent modes of temporal variations across the region Based on an analysis of the various SOM nodes, we identify 4 major intraseasonal phases of the EASM that are located at the far corners of the SOM. The first node describes a circulation state corresponding to weak tropical and subtropical pressure systems, weakened monsoonal winds, and cyclonic upper level vorticity. This mode that is related with large rainfall anomalies in South East China and Southern Japan occurs a few weeks prior to the onset of Changma rains in Korea. Based on its various characteristics, we identify it is as the Meiyu-Baiu phase. At the diagonally opposite corner from the node representing the Meiyu-Baiu phase, the circulation vector is its mirror image. Copious rains occur over Korea during this phase, which we term the post-Changma phase. The third node selected for this analysis represents the Changma-proper over Korea and occurs with a distinct circulation state corresponding to strengthened subtropical high, monsoonal winds and anticyclonic upper level vorticity to the southeast of Korea. The fourth node is diagonally opposite to this one and features a mirror image of the circulation vector. As Korea experiences a dry-spell associated with this SOM node, we refer to it as the dry-spell phase. We further demonstrate that a strong modulation of the Changma and dry-spell phases on the interannual timescales occurs during El Nino and La Nina years. Our results imply that the key to the predictability of the EASM on interannual timescales may lie with the analysis and exploitation of its non-linear characteristics.
Seafloor 2030 - Building a Global Ocean Map through International Collaboration
NASA Astrophysics Data System (ADS)
Ferrini, V. L.; Wigley, R. A.; Falconer, R. K. H.; Jakobsson, M.; Allen, G.; Mayer, L. A.; Schmitt, T.; Rovere, M.; Weatherall, P.; Marks, K. M.
2016-12-01
With more than 85% of the ocean floor unmapped, a huge proportion of our planet remains unexplored. Creating a comprehensive map of seafloor bathymetry remains a true global challenge that can only be accomplished through collaboration and partnership between governments, industry, academia, research organizations and non-government organizations. The objective of Seafloor 2030 is to comprehensively map the global ocean floor to resolutions that enable exploration and improved understanding of ocean processes, while informing maritime policy and supporting the management of natural marine resources for a sustainable Blue Economy. Seafloor 2030 is the outcome of the Forum for Future of Ocean Floor Mapping held in Monaco in June 2016, which was held under the auspices of GEBCO and the Nippon Foundation of Japan. GEBCO is the only international organization mandated to map the global ocean floor and is guided by the International Hydrographic Organization (IHO) and the Intergovernmental Oceanographic Commission of UNESCO. The task of completely mapping the ocean floor will require new global coordination to ensure that both existing data are identified and that new mapping efforts are coordinated to help efficiently "map the gaps." Fundamental to achieving Seafloor 2030 will be greater access to data, tools and technology, particularly for developing and coastal nations. This includes bathymetric post-processing and analysis software, database technology, computing infrastructure and gridding techniques as well as the latest developments in seafloor mapping methods and emerging crowd-sourced bathymetry initiatives. The key to achieving this global bathymetric map is capacity building and education - including greater coordination between scientific research and industry and the effective engagement of international organizations such as the United Nations.
Self-Organized Dynamic Flocking Behavior from a Simple Deterministic Map
NASA Astrophysics Data System (ADS)
Krueger, Wesley
2007-10-01
Coherent motion exhibiting large-scale order, such as flocking, swarming, and schooling behavior in animals, can arise from simple rules applied to an initial random array of self-driven particles. We present a completely deterministic dynamic map that exhibits emergent, collective, complex motion for a group of particles. Each individual particle is driven with a constant speed in two dimensions adopting the average direction of a fixed set of non-spatially related partners. In addition, the particle changes direction by π as it reaches a circular boundary. The dynamical patterns arising from these rules range from simple circular-type convective motion to highly sophisticated, complex, collective behavior which can be easily interpreted as flocking, schooling, or swarming depending on the chosen parameters. We present the results as a series of short movies and we also explore possible order parameters and correlation functions capable of quantifying the resulting coherence.
NASA Astrophysics Data System (ADS)
Pasterski, M. J.; Barry, G. E.; Hanley, L.; Kenig, F. P. H.
2017-12-01
One of the major challenges within the field of organic geochemistry is to determine whether an observed biomarker signature is indigenous (emplaced during sedimentation), non-indigenous (emplaced after sedimentation) or contaminant (incorporated during sampling, storage or analysis). The challenge of determining the mode of emplacement of an observed biomarker signature is accentuated in analyses of Precambrian samples, and may be an issue upon Mars sample return. Current geochemical techniques (e.g. gas chromatography-mass spectrometry, GC-MS, GC×GC-MS) can determine the composition and structure of the organic constituents of a sample. However, the preparatory steps necessary prior to GC-MS analysis (sample crushing, solvent extraction) make it impossible to determine the precise spatial distribution of organic molecules within rocks and sediments. Here, we will present data from the first set of micron (2-5 μm width × 8 μm depth) resolution MS-images of organic compounds in geologic material. Fs-LDPI-MS was utilized to create MS-images of organic compounds in four samples: (1) an Antarctic igneous dike used as a sample blank; (2) a 93 million year-old (Ma) burrowed carbonate collected near Pueblo, CO; (3) a 164 Ma organic rich mudstone collected in central England; and (4) a 2680 Ma metasediment collected in Timmins, ON, Canada. Prior to this study, all samples had been analyzed via GC-MS to determine the bulk hydrocarbon composition. For this study, thick sections (70-100 μm thick) were prepared in-house using custom-designed clean preparation techniques. Petrographic maps of the thick sections were created to highlight geologic features such as burrows (sample 2), particulate organic matter (sample 3) and hydrothermal veins (sample 4). Fs-LDPI-MS analysis was performed on the mapped thick sections. MS-images of targeted organic compounds were created, and the MS-images were overlain with the petrographic maps to determine the spatial distribution of the organic compounds relative to host rock features. We were able to use the spatial distribution of the targeted organic compounds to unambiguously characterize them as either indigenous, non-indigenous or contaminants. This technique is applicable to the analysis of both Precambrian samples and extraterrestrial material.
Seismic facies analysis based on self-organizing map and empirical mode decomposition
NASA Astrophysics Data System (ADS)
Du, Hao-kun; Cao, Jun-xing; Xue, Ya-juan; Wang, Xing-jian
2015-01-01
Seismic facies analysis plays an important role in seismic interpretation and reservoir model building by offering an effective way to identify the changes in geofacies inter wells. The selections of input seismic attributes and their time window have an obvious effect on the validity of classification and require iterative experimentation and prior knowledge. In general, it is sensitive to noise when waveform serves as the input data to cluster analysis, especially with a narrow window. To conquer this limitation, the Empirical Mode Decomposition (EMD) method is introduced into waveform classification based on SOM. We first de-noise the seismic data using EMD and then cluster the data using 1D grid SOM. The main advantages of this method are resolution enhancement and noise reduction. 3D seismic data from the western Sichuan basin, China, are collected for validation. The application results show that seismic facies analysis can be improved and better help the interpretation. The powerful tolerance for noise makes the proposed method to be a better seismic facies analysis tool than classical 1D grid SOM method, especially for waveform cluster with a narrow window.
A Cognitive Map of Human Performance Technology: A Study of Domain Expertise.
ERIC Educational Resources Information Center
Villachica, Steven W.; Lohr, Linda L.; Summers, Laura; Lowell, Nate; Roberts, Stephanie; Javeri, Manisha; Hunt, Erin; Mahoney, Chris; Conn, Cyndie
Most representations of academic disciplines have been created when experts depict or report what they know; however, there are potential problems that can arise when practitioners rely on expert self-report. One way to avoid potential problems associated with expert self-report is to employ cognitive task analysis methods. The Pathfinder Scaling…
Ikeda, Shun; Abe, Takashi; Nakamura, Yukiko; Kibinge, Nelson; Hirai Morita, Aki; Nakatani, Atsushi; Ono, Naoaki; Ikemura, Toshimichi; Nakamura, Kensuke; Altaf-Ul-Amin, Md; Kanaya, Shigehiko
2013-05-01
Biology is increasingly becoming a data-intensive science with the recent progress of the omics fields, e.g. genomics, transcriptomics, proteomics and metabolomics. The species-metabolite relationship database, KNApSAcK Core, has been widely utilized and cited in metabolomics research, and chronological analysis of that research work has helped to reveal recent trends in metabolomics research. To meet the needs of these trends, the KNApSAcK database has been extended by incorporating a secondary metabolic pathway database called Motorcycle DB. We examined the enzyme sequence diversity related to secondary metabolism by means of batch-learning self-organizing maps (BL-SOMs). Initially, we constructed a map by using a big data matrix consisting of the frequencies of all possible dipeptides in the protein sequence segments of plants and bacteria. The enzyme sequence diversity of the secondary metabolic pathways was examined by identifying clusters of segments associated with certain enzyme groups in the resulting map. The extent of diversity of 15 secondary metabolic enzyme groups is discussed. Data-intensive approaches such as BL-SOM applied to big data matrices are needed for systematizing protein sequences. Handling big data has become an inevitable part of biology.
NASA Astrophysics Data System (ADS)
Glass, John O.; Reddick, Wilburn E.; Reeves, Cara; Pui, Ching-Hon
2004-05-01
Reliably quantifying therapy-induced leukoencephalopathy in children treated for cancer is a challenging task due to its varying MR properties and similarity to normal tissues and imaging artifacts. T1, T2, PD, and FLAIR images were analyzed for a subset of 15 children from an institutional protocol for the treatment of acute lymphoblastic leukemia. Three different analysis techniques were compared to examine improvements in the segmentation accuracy of leukoencephalopathy versus manual tracings by two expert observers. The first technique utilized no apriori information and a white matter mask based on the segmentation of the first serial examination of each patient. MR images were then segmented with a Kohonen Self-Organizing Map. The other two techniques combine apriori maps from the ICBM atlas spatially normalized to each patient and resliced using SPM99 software. The apriori maps were included as input and a gradient magnitude threshold calculated on the FLAIR images was also utilized. The second technique used a 2-dimensional threshold, while the third algorithm utilized a 3-dimensional threshold. Kappa values were compared for the three techniques to each observer, and improvements were seen with each addition to the original algorithm (Observer 1: 0.651, 0.653, 0.744; Observer 2: 0.603, 0.615, 0.699).
NASA Astrophysics Data System (ADS)
Reddick, Wilburn E.; Glass, John O.; Pui, Ching-Hon
2003-05-01
Reliably detecting subtle therapy-induced leukoencephalopathy in children treated for cancer is a challenging task due to its nearly identical MR properties and location with unmyelinated white matter. T1, T2, PD, and FLAIR images were collected for 44 children aged 1.7-18.7 (median 5.9) years near the start of therapy for ALL. The ICBM atlas and corresponding apriori maps were spatially normalized to each patient and resliced using SPM99 software. A combined imaging set consisting of MR images and WM, GM and CSF apriori maps were then analyzed with a Kohonen Self-Organizing Map. Vectors from hyperintense regions were compared to normal appearing genu vectors from the same patient. Analysis of the distributions of the differences, calculated on T2 and FLAIR images, revealed two distinct groups. The first large group, assumed normal unmyelinated white matter, consisted of 37 patients with changes in FLAIR ranging from 80 to 147 (mean 117-/+17) and T2 ranging from 92 to 217 (mean 144-/+28). The second group, assumed leukoencephalopathy, consisted of seven patients with changes in FLAIR ranging from 154 to 196 (mean 171-/+19) and T2 ranging from 190 to 287 (mean 216-/+33). A threshold was established for both FLAIR (change > 150) and T2 (change > 180).
Self-organized neural maps of human protein sequences.
Ferrán, E. A.; Pflugfelder, B.; Ferrara, P.
1994-01-01
We have recently described a method based on artificial neural networks to cluster protein sequences into families. The network was trained with Kohonen's unsupervised learning algorithm using, as inputs, the matrix patterns derived from the dipeptide composition of the proteins. We present here a large-scale application of that method to classify the 1,758 human protein sequences stored in the SwissProt database (release 19.0), whose lengths are greater than 50 amino acids. In the final 2-dimensional topologically ordered map of 15 x 15 neurons, proteins belonging to known families were associated with the same neuron or with neighboring ones. Also, as an attempt to reduce the time-consuming learning procedure, we compared 2 learning protocols: one of 500 epochs (100 SUN CPU-hours [CPU-h]), and another one of 30 epochs (6.7 CPU-h). A further reduction of learning-computing time, by a factor of about 3.3, with similar protein clustering results, was achieved using a matrix of 11 x 11 components to represent the sequences. Although network training is time consuming, the classification of a new protein in the final ordered map is very fast (14.6 CPU-seconds). We also show a comparison between the artificial neural network approach and conventional methods of biosequence analysis. PMID:8019421
ERIC Educational Resources Information Center
Marchand, C.; d'Ivernois, J. F.; Assal, J. P.; Slama, G.; Hivon, R.
2002-01-01
Assesses whether concept maps used with diabetic patients could describe their cognitive structure, before and after having followed an educational program. Involves 10 diabetic patients and shows that concept maps can be a suitable technique to explore the type and organization of the patients' prior knowledge and to visualize what they have…
Neural network-based multiple robot simultaneous localization and mapping.
Saeedi, Sajad; Paull, Liam; Trentini, Michael; Li, Howard
2011-12-01
In this paper, a decentralized platform for simultaneous localization and mapping (SLAM) with multiple robots is developed. Each robot performs single robot view-based SLAM using an extended Kalman filter to fuse data from two encoders and a laser ranger. To extend this approach to multiple robot SLAM, a novel occupancy grid map fusion algorithm is proposed. Map fusion is achieved through a multistep process that includes image preprocessing, map learning (clustering) using neural networks, relative orientation extraction using norm histogram cross correlation and a Radon transform, relative translation extraction using matching norm vectors, and then verification of the results. The proposed map learning method is a process based on the self-organizing map. In the learning phase, the obstacles of the map are learned by clustering the occupied cells of the map into clusters. The learning is an unsupervised process which can be done on the fly without any need to have output training patterns. The clusters represent the spatial form of the map and make further analyses of the map easier and faster. Also, clusters can be interpreted as features extracted from the occupancy grid map so the map fusion problem becomes a task of matching features. Results of the experiments from tests performed on a real environment with multiple robots prove the effectiveness of the proposed solution.
Modularity and the spread of perturbations in complex dynamical systems
NASA Astrophysics Data System (ADS)
Kolchinsky, Artemy; Gates, Alexander J.; Rocha, Luis M.
2015-12-01
We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.
Modularity and the spread of perturbations in complex dynamical systems.
Kolchinsky, Artemy; Gates, Alexander J; Rocha, Luis M
2015-12-01
We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.
Positioning Genomics in Biology Education: Content Mapping of Undergraduate Biology Textbooks†
Wernick, Naomi L. B.; Ndung’u, Eric; Haughton, Dominique; Ledley, Fred D.
2014-01-01
Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science. PMID:25574293
Heterogeneous delays making parents synchronized: A coupled maps on Cayley tree model
NASA Astrophysics Data System (ADS)
Singh, Aradhana; Jalan, Sarika
2014-06-01
We study the phase synchronized clusters in the diffusively coupled maps on the Cayley tree networks for heterogeneous delay values. Cayley tree networks comprise of two parts: the inner nodes and the boundary nodes. We find that heterogeneous delays lead to various cluster states, such as; (a) cluster state consisting of inner nodes and boundary nodes, and (b) cluster state consisting of only boundary nodes. The former state may comprise of nodes from all the generations forming self-organized cluster or nodes from few generations yielding driven clusters depending upon on the parity of heterogeneous delay values. Furthermore, heterogeneity in delays leads to the lag synchronization between the siblings lying on the boundary by destroying the exact synchronization among them. The time lag being equal to the difference in the delay values. The Lyapunov function analysis sheds light on the destruction of the exact synchrony among the last generation nodes. To the end we discuss the relevance of our results with respect to their applications in the family business as well as in understanding the occurrence of genetic diseases.
Positioning genomics in biology education: content mapping of undergraduate biology textbooks.
Wernick, Naomi L B; Ndung'u, Eric; Haughton, Dominique; Ledley, Fred D
2014-12-01
Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science.
NASA Astrophysics Data System (ADS)
Farrand, W. H.
2017-12-01
An investigation has begun into effects on water quality in waters coming from a pair of mines, and their surrounding drainage basins, in western India. The study areas are the Ambaji and Zawar mines in the Indian states of, respectively, Gujurat and Rajasthan. The Ambaji mine is situated in Precambrian-aged metasediments and metavolcanics of the Delhi Supergroup. Sulfide mineralization at Ambaji is hosted by hydrothermally altered felsic metavolcanics rocks with ferric oxide and oxyhydroxide as well as copper carbonate surface indicator minerals. The Zawar zinc mine is part of the Precambrian Aravalli Supergroup and lies amidst surface exposures of dolomites and quartzites. Hyperspectral visible through short-wave infrared (VSWIR) data from the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) was collected in February 2016 over these sites as part of a joint campaign between NASA and the Indian Space Research Organization (ISRO). The AVIRIS-NG data is being used to detect, map, and characterize surface mineralogy in the area. Data discovery is being carried out using a self-organizing map (SOM) methodology with mineral endmembers being mapped initially with a support vector machine (SVM) classifier and a planned more comprehensive mapping using the USGS Material Identification and Characterization Algorithm (MICA). Results of the mineral mapping will be field checked and rock, soil, and water samples will be collected and examined for heavy and trace metal contamination. Past studies have shown changes in the shape of the 2.2 mm Al-OH vibrational overtone feature as well as in blue-red spectral ratios that were directly correlated with the concentration of heavy and trace metals that had been adsorbed into the structure of the affected minerals. Early analysis of the Zawar area scenes indicates the presence of Al-OH clay minerals which might have been affected by the adsorption of trace metals. Scenes from the Ambaji area have more extensive surface exposures of carbonate minerals. Future work will focus more closely on detailed spectral feature mapping of absorption features that have been affected by heavy and trace metal adsorption.
Scotti, Marcus T; Emerenciano, Vicente; Ferreira, Marcelo J P; Scotti, Luciana; Stefani, Ricardo; da Silva, Marcelo S; Mendonça Junior, Francisco Jaime B
2012-04-20
The Asteraceae, one of the largest families among angiosperms, is chemically characterised by the production of sesquiterpene lactones (SLs). A total of 1,111 SLs, which were extracted from 658 species, 161 genera, 63 subtribes and 15 tribes of Asteraceae, were represented and registered in two dimensions in the SISTEMATX, an in-house software system, and were associated with their botanical sources. The respective 11 block of descriptors: Constitutional, Functional groups, BCUT, Atom-centred, 2D autocorrelations, Topological, Geometrical, RDF, 3D-MoRSE, GETAWAY and WHIM were used as input data to separate the botanical occurrences through self-organising maps. Maps that were generated with each descriptor divided the Asteraceae tribes, with total index values between 66.7% and 83.6%. The analysis of the results shows evident similarities among the Heliantheae, Helenieae and Eupatorieae tribes as well as between the Anthemideae and Inuleae tribes. Those observations are in agreement with systematic classifications that were proposed by Bremer, which use mainly morphological and molecular data, therefore chemical markers partially corroborate with these classifications. The results demonstrate that the atom-centred and RDF descriptors can be used as a tool for taxonomic classification in low hierarchical levels, such as tribes. Descriptors obtained through fragments or by the two-dimensional representation of the SL structures were sufficient to obtain significant results, and better results were not achieved by using descriptors derived from three-dimensional representations of SLs. Such models based on physico-chemical properties can project new design SLs, similar structures from literature or even unreported structures in two-dimensional chemical space. Therefore, the generated SOMs can predict the most probable tribe where a biologically active molecule can be found according Bremer classification.
Atmospheric Convective Organization: Self-Organized Criticality or Homeostasis?
NASA Astrophysics Data System (ADS)
Yano, Jun-Ichi
2015-04-01
Atmospheric convection has a tendency organized on a hierarchy of scales ranging from the mesoscale to the planetary scales, with the latter especially manifested by the Madden-Julian oscillation. The present talk examines two major possible mechanisms of self-organization identified in wider literature from a phenomenological thermodynamic point of view by analysing a planetary-scale cloud-resolving model simulation. The first mechanism is self-organized criticality. A saturation tendency of precipitation rate with the increasing column-integrated water, reminiscence of critical phenomena, indicates self-organized criticality. The second is a self-regulation mechanism that is known as homeostasis in biology. A thermodynamic argument suggests that such self-regulation maintains the column-integrated water below a threshold by increasing the precipitation rate. Previous analyses of both observational data as well as cloud-resolving model (CRM) experiments give mixed results. A satellite data analysis suggests self-organized criticality. Some observational data as well as CRM experiments support homeostasis. Other analyses point to a combination of these two interpretations. In this study, a CRM experiment over a planetary-scale domain with a constant sea-surface temperature is analyzed. This analysis shows that the relation between the column-integrated total water and precipitation suggests self-organized criticality, whereas the one between the column-integrated water vapor and precipitation suggests homeostasis. The concurrent presence of these two mechanisms are further elaborated by detailed statistical and budget analyses. These statistics are scale invariant, reflecting a spatial scaling of precipitation processes. These self-organization mechanisms are most likely be best theoretically understood by the energy cycle of the convective systems consisting of the kinetic energy and the cloud-work function. The author has already investigated the behavior of this cycle system under a zero-dimensional configuration. Preliminary simulations of this cycle system over a two-dimensional domain will be presented.
NASA Astrophysics Data System (ADS)
Nakaoka, S.; Telszewski, M.; Nojiri, Y.; Yasunaka, S.; Miyazaki, C.; Mukai, H.; Usui, N.
2013-03-01
This study produced maps of the partial pressure of oceanic carbon dioxide (pCO2sea) in the North Pacific on a 0.25° latitude × 0.25° longitude grid from 2002 to 2008. The pCO2sea values were estimated by using a self-organizing map neural network technique to explain the non-linear relationships between observed pCO2sea data and four oceanic parameters: sea surface temperature (SST), mixed layer depth, chlorophyll a concentration, and sea surface salinity (SSS). The observed pCO2sea data was obtained from an extensive dataset generated by the volunteer observation ship program operated by the National Institute for Environmental Studies. The reconstructed pCO2sea values agreed rather well with the pCO2sea measurements, the root mean square error being 17.6 μatm. The pCO2sea estimates were improved by including SSS as one of the training parameters and by taking into account secular increases of pCO2sea that have tracked increases in atmospheric CO2. Estimated pCO2sea values accurately reproduced pCO2sea data at several stations in the North Pacific. The distributions of pCO2sea revealed by seven-year averaged monthly pCO2sea maps were similar to Lamont-Doherty Earth Observatory pCO2sea climatology and more precisely reflected oceanic conditions. The distributions of pCO2sea anomalies over the North Pacific during the winter clearly showed regional contrasts between El Niño and La Niña years related to changes of SST and vertical mixing.
Kupas, Katrin; Ultsch, Alfred; Klebe, Gerhard
2008-05-15
A new method to discover similar substructures in protein binding pockets, independently of sequence and folding patterns or secondary structure elements, is introduced. The solvent-accessible surface of a binding pocket, automatically detected as a depression on the protein surface, is divided into a set of surface patches. Each surface patch is characterized by its shape as well as by its physicochemical characteristics. Wavelets defined on surfaces are used for the description of the shape, as they have the great advantage of allowing a comparison at different resolutions. The number of coefficients to describe the wavelets can be chosen with respect to the size of the considered data set. The physicochemical characteristics of the patches are described by the assignment of the exposed amino acid residues to one or more of five different properties determinant for molecular recognition. A self-organizing neural network is used to project the high-dimensional feature vectors onto a two-dimensional layer of neurons, called a map. To find similarities between the binding pockets, in both geometrical and physicochemical features, a clustering of the projected feature vector is performed using an automatic distance- and density-based clustering algorithm. The method was validated with a small training data set of 109 binding cavities originating from a set of enzymes covering 12 different EC numbers. A second test data set of 1378 binding cavities, extracted from enzymes of 13 different EC numbers, was then used to prove the discriminating power of the algorithm and to demonstrate its applicability to large scale analyses. In all cases, members of the data set with the same EC number were placed into coherent regions on the map, with small distances between them. Different EC numbers are separated by large distances between the feature vectors. A third data set comprising three subfamilies of endopeptidases is used to demonstrate the ability of the algorithm to detect similar substructures between functionally related active sites. The algorithm can also be used to predict the function of novel proteins not considered in training data set. 2007 Wiley-Liss, Inc.
New Approaches to Tsunami Hazard Mitigation Demonstrated in Oregon
NASA Astrophysics Data System (ADS)
Priest, G. R.; Rizzo, A.; Madin, I.; Lyles Smith, R.; Stimely, L.
2012-12-01
Oregon Department of Geology and Mineral Industries and Oregon Emergency Management collaborated over the last four years to increase tsunami preparedness for residents and visitors to the Oregon coast. Utilizing support from the National Tsunami Hazards Mitigation Program (NTHMP), new approaches to outreach and tsunami hazard assessment were developed and then applied. Hazard assessment was approached by first doing two pilot studies aimed at calibrating theoretical models to direct observations of tsunami inundation gleaned from the historical and prehistoric (paleoseismic/paleotsunami) data. The results of these studies were then submitted to peer-reviewed journals and translated into 1:10,000-12,000-scale inundation maps. The inundation maps utilize a powerful new tsunami model, SELFE, developed by Joseph Zhang at the Oregon Health & Science University. SELFE uses unstructured computational grids and parallel processing technique to achieve fast accurate simulation of tsunami interactions with fine-scale coastal morphology. The inundation maps were simplified into tsunami evacuation zones accessed as map brochures and an interactive mapping portal at http://www.oregongeology.org/tsuclearinghouse/. Unique in the world are new evacuation maps that show separate evacuation zones for distant versus locally generated tsunamis. The brochure maps explain that evacuation time is four hours or more for distant tsunamis but 15-20 minutes for local tsunamis that are invariably accompanied by strong ground shaking. Since distant tsunamis occur much more frequently than local tsunamis, the two-zone maps avoid needless over evacuation (and expense) caused by one-zone maps. Inundation mapping for the entire Oregon coast will be complete by ~2014. Educational outreach was accomplished first by doing a pilot study to measure effectiveness of various approaches using before and after polling and then applying the most effective methods. In descending order, the most effective methods were: (1) door-to-door (person-to-person) education, (2) evacuation drills, (3) outreach to K-12 schools, (4) media events, and (5) workshops targeted to key audiences (lodging facilities, teachers, and local officials). Community organizers were hired to apply these five methods to clusters of small communities, measuring performance by before and after polling. Organizers were encouraged to approach the top priority, person-to-person education, by developing Community Emergency Response Teams (CERT) or CERT-like organizations in each community, thereby leaving behind a functioning volunteer-based group that will continue the outreach program and build long term resiliency. One of the most effective person-to-person educational tools was the Map Your Neighborhood program that brings people together so they can sketch the basic layout of their neighborhoods to depict key earthquake and tsunami hazards and mitigation solutions. The various person-to-person volunteer efforts and supporting outreach activities are knitting communities together and creating a permanent culture of tsunami and earthquake preparedness. All major Oregon coastal population centers will have been covered by this intensive outreach program by ~2014.
Peters, K.E.; Bird, K.J.; Keller, M.A.; Lillis, P.G.; Magoon, L.B.
2003-01-01
Four source rock units on the North Slope were identified, characterized, and mapped to better understand the origin of petroleum in the area: Hue-gamma ray zone (Hue-GRZ), pebble shale unit, Kingak Shale, and Shublik Formation. Rock-Eval pyrolysis, total organic carbon analysis, and well logs were used to map the present-day thickness, organic quantity (TOC), quality (hydrogen index, HI), and thermal maturity (Tmax) of each unit. To map these units, we screened all available geochemical data for wells in the study area and assumed that the top and bottom of the oil window occur at Tmax of ~440° and 470°C, respectively. Based on several assumptions related to carbon mass balance and regional distributions of TOC, the present-day source rock quantity and quality maps were used to determine the extent of fractional conversion of the kerogen to petroleum and to map the original organic richness prior to thermal maturation.
Hopp, Lydia; Lembcke, Kathrin; Binder, Hans; Wirth, Henry
2013-01-01
We present an analytic framework based on Self-Organizing Map (SOM) machine learning to study large scale patient data sets. The potency of the approach is demonstrated in a case study using gene expression data of more than 200 mature aggressive B-cell lymphoma patients. The method portrays each sample with individual resolution, characterizes the subtypes, disentangles the expression patterns into distinct modules, extracts their functional context using enrichment techniques and enables investigation of the similarity relations between the samples. The method also allows to detect and to correct outliers caused by contaminations. Based on our analysis, we propose a refined classification of B-cell Lymphoma into four molecular subtypes which are characterized by differential functional and clinical characteristics. PMID:24833231
Paulsen, Bruna S.; Rehen, Stevens K.
2011-01-01
The mechanisms underlying pluripotency and differentiation in embryonic and reprogrammed stem cells are unclear. In this work, we characterized the pluripotent state towards neural differentiated state through analysis of trace elements distribution using the Synchrotron Radiation X-ray Fluorescence Spectroscopy. Naive and neural-stimulated embryoid bodies (EB) derived from embryonic and induced pluripotent stem (ES and iPS) cells were irradiated with a spatial resolution of 20 µm to make elemental maps and qualitative chemical analyses. Results show that these embryo-like aggregates exhibit self-organization at the atomic level. Metallic elements content rises and consistent elemental polarization pattern of P and S in both mouse and human pluripotent stem cells were observed, indicating that neural differentiation and elemental polarization are strongly correlated. PMID:22195032
Rath, Frank
2008-01-01
This article examines the concepts of quality management (QM) and quality assurance (QA), as well as the current state of QM and QA practices in radiotherapy. A systematic approach incorporating a series of industrial engineering-based tools is proposed, which can be applied in health care organizations proactively to improve process outcomes, reduce risk and/or improve patient safety, improve through-put, and reduce cost. This tool set includes process mapping and process flowcharting, failure modes and effects analysis (FMEA), value stream mapping, and fault tree analysis (FTA). Many health care organizations do not have experience in applying these tools and therefore do not understand how and when to use them. As a result there are many misconceptions about how to use these tools, and they are often incorrectly applied. This article describes these industrial engineering-based tools and also how to use them, when they should be used (and not used), and the intended purposes for their use. In addition the strengths and weaknesses of each of these tools are described, and examples are given to demonstrate the application of these tools in health care settings.
NASA Astrophysics Data System (ADS)
Kato, N.
2017-12-01
Numerical simulations of earthquake cycles are conducted to investigate the origin of complexity of earthquake recurrence. There are two main causes of the complexity. One is self-organized stress heterogeneity due to dynamical effect. The other is the effect of interaction between some fault patches. In the model, friction on the fault is assumed to obey a rate- and state-dependent friction law. Circular patches of velocity-weakening frictional property are assumed on the fault. On the remaining areas of the fault, velocity-strengthening friction is assumed. We consider three models: Single patch model, two-patch model, and three-patch model. In the first model, the dynamical effect is mainly examined. The latter two models take into consideration the effect of interaction as well as the dynamical effect. Complex multiperiodic or aperiodic sequences of slip events occur when slip behavior changes from the seismic to aseismic, and when the degree of interaction between seismic patches is intermediate. The former is observed in all the models, and the latter is observed in the two-patch model and the three-patch model. Evolution of spatial distribution of shear stress on the fault suggests that aperiodicity at the transition from seismic to aseismic slip is caused by self-organized stress heterogeneity. The iteration maps of recurrence intervals of slip events in aperiodic sequences are examined, and they are approximately expressed by simple curves for aperiodicity at the transition from seismic to aseismic slip. In contrast, the iteration maps for aperiodic sequences caused by interaction between seismic patches are scattered and they are not expressed by simple curves. This result suggests that complex sequences caused by different mechanisms may be distinguished.
Interconnected growing self-organizing maps for auditory and semantic acquisition modeling
Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J.
2014-01-01
Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic–semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory–semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model. PMID:24688478
A Tangible Approach to Concept Mapping
NASA Astrophysics Data System (ADS)
Tanenbaum, Karen; Antle, Alissa N.
2009-05-01
The Tangible Concept Mapping project investigates using a tangible user interface to engage learners in concept map creation. This paper describes a prototype implementation of the system, presents some preliminary analysis of its ease of use and effectiveness, and discusses how elements of tangible interaction support concept mapping by helping users organize and structure their knowledge about a domain. The role of physical engagement and embodiment in supporting the mental activity of creating the concept map is explored as one of the benefits of a tangible approach to learning.
NASA Astrophysics Data System (ADS)
Bauer, K.; Muñoz, G.; Moeck, I.
2012-12-01
The combined interpretation of different models as derived from seismic tomography and magnetotelluric (MT) inversion represents a more efficient approach to determine the lithology of the subsurface compared with the separate treatment of each discipline. Such models can be developed independently or by application of joint inversion strategies. After the step of model generation using different geophysical methodologies, a joint interpretation work flow includes the following steps: (1) adjustment of a joint earth model based on the adapted, identical model geometry for the different methods, (2) classification of the model components (e.g. model blocks described by a set of geophysical parameters), and (3) re-mapping of the classified rock types to visualise their distribution within the earth model, and petrophysical characterization and interpretation. One possible approach for the classification of multi-parameter models is based on statistical pattern recognition, where different models are combined and translated into probability density functions. Classes of rock types are identified in these methods as isolated clusters with high probability density function values. Such techniques are well-established for the analysis of two-parameter models. Alternatively we apply self-organizing map (SOM) techniques, which have no limitations in the number of parameters to be analysed in the joint interpretation. Our SOM work flow includes (1) generation of a joint earth model described by so-called data vectors, (2) unsupervised learning or training, (3) analysis of the feature map by adopting image processing techniques, and (4) application of the knowledge to derive a lithological model which is based on the different geophysical parameters. We show the usage of the SOM work flow for a synthetic and a real data case study. Both tests rely on three geophysical properties: P velocity and vertical velocity gradient from seismic tomography, and electrical resistivity from MT inversion. The synthetic data are used as a benchmark test to demonstrate the performance of the SOM method. The real data were collected along a 40 km profile across parts of the NE German basin. The lithostratigraphic model from the joint SOM interpretation consists of eight litho-types and covers Cenozoic, Mesozoic and Paleozoic sediments down to 5 km depth. There is a remarkable agreement between the SOM based model and regional marker horizons interpolated from surrounding 2D industrial seismic data. The most interesting results include (1) distinct properties of the Jurassic (low P velocity gradients, low resistivities) interpreted as the signature of shaly clastics, and (2) a pattern within the Upper Permian Zechstein with decreased resistivities and increased P velocities within the salt depressions on the one hand, and increased resistivities and decreased P velocities in the salt pillows on the other hand. In our interpretation this pattern is related with flow of less dense salt matrix components into the pillows and remaining brittle evaporites within the depressions.
Taniguchi, Daisuke; Ishihara, Shuji; Oonuki, Takehiko; Honda-Kitahara, Mai; Kaneko, Kunihiko; Sawai, Satoshi
2013-01-01
In both randomly moving Dictyostelium and mammalian cells, phosphatidylinositol (3,4,5)-trisphosphate and F-actin are known to propagate as waves at the membrane and act to push out the protruding edge. To date, however, the relationship between the wave geometry and the patterns of amoeboid shape change remains elusive. Here, by using phase map analysis, we show that morphology dynamics of randomly moving Dictyostelium discoideum cells can be characterized by the number, topology, and position of spatial phase singularities, i.e., points that represent organizing centers of rotating waves. A single isolated singularity near the cellular edge induced a rotational protrusion, whereas a pair of singularities supported a symmetric extension. These singularities appeared by strong phase resetting due to de novo nucleation at the back of preexisting waves. Analysis of a theoretical model indicated excitability of the system that is governed by positive feedback from phosphatidylinositol (3,4,5)-trisphosphate to PI3-kinase activation, and we showed experimentally that this requires F-actin. Furthermore, by incorporating membrane deformation into the model, we demonstrated that geometries of competing waves explain most of the observed semiperiodic changes in amoeboid morphology. PMID:23479620
NASA Astrophysics Data System (ADS)
García, T.; Velo, A.; Fernandez-Bastero, S.; Gago-Duport, L.; Santos, A.; Alejo, I.; Vilas, F.
2005-02-01
This paper examines the linkages between the space-distribution of grain sizes and the relative percentage of the amount of mineral species that result from the mixing process of siliciclastic and carbonate sediments at the Ria de Vigo (NW of Spain). The space-distribution of minerals was initially determined, starting from a detailed mineralogical study based on XRD-Rietveld analysis of the superficial sediments. Correlations between the maps obtained for grain sizes, average fractions of either siliciclastic or carbonates, as well as for individual-minerals, were further stabilised. From this analysis, spatially organized patterns were found between carbonates and several minerals involved in the siliciclastic fraction. In particular, a coupled behaviour is observed between plagioclases and carbonates, in terms of their relative percentage amounts and the grain size distribution. In order to explain these results a conceptual model is proposed, based on the interplay between chemical processes at the seawater-sediment interface and hydrodynamical factors. This model suggests the existence of chemical control mechanisms that, by selective processes of dissolution-crystallization, constrain the mixed environment's long-term evolution, inducing the formation of self-organized sedimentary patterns.
Cartographic Modeling: Computer-assisted Analysis of Spatially Defined Neighborhoods
NASA Technical Reports Server (NTRS)
Berry, J. K.; Tomlin, C. D.
1982-01-01
Cartographic models addressing a wide variety of applications are composed of fundamental map processing operations. These primitive operations are neither data base nor application-specific. By organizing the set of operations into a mathematical-like structure, the basis for a generalized cartographic modeling framework can be developed. Among the major classes of primitive operations are those associated with reclassifying map categories, overlaying maps, determining distance and connectivity, and characterizing cartographic neighborhoods. The conceptual framework of cartographic modeling is established and techniques for characterizing neighborhoods are used as a means of demonstrating some of the more sophisticated procedures of computer-assisted map analysis. A cartographic model for assessing effective roundwood supply is briefly described as an example of a computer analysis. Most of the techniques described have been implemented as part of the map analysis package developed at the Yale School of Forestry and Environmental Studies.
Artificial Intelligence in Sports Biomechanics: New Dawn or False Hope?
Bartlett, Roger
2006-01-01
This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements (‘techniques’) and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key Points Expert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis. Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear. Other AI applications, including Evolutionary Computation, have received little attention. PMID:24357939
Artificial intelligence in sports biomechanics: new dawn or false hope?
Bartlett, Roger
2006-12-15
This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques') and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key PointsExpert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis.Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear.Other AI applications, including Evolutionary Computation, have received little attention.
Adaptation of video game UVW mapping to 3D visualization of gene expression patterns
NASA Astrophysics Data System (ADS)
Vize, Peter D.; Gerth, Victor E.
2007-01-01
Analysis of gene expression patterns within an organism plays a critical role in associating genes with biological processes in both health and disease. During embryonic development the analysis and comparison of different gene expression patterns allows biologists to identify candidate genes that may regulate the formation of normal tissues and organs and to search for genes associated with congenital diseases. No two individual embryos, or organs, are exactly the same shape or size so comparing spatial gene expression in one embryo to that in another is difficult. We will present our efforts in comparing gene expression data collected using both volumetric and projection approaches. Volumetric data is highly accurate but difficult to process and compare. Projection methods use UV mapping to align texture maps to standardized spatial frameworks. This approach is less accurate but is very rapid and requires very little processing. We have built a database of over 180 3D models depicting gene expression patterns mapped onto the surface of spline based embryo models. Gene expression data in different models can easily be compared to determine common regions of activity. Visualization software, both Java and OpenGL optimized for viewing 3D gene expression data will also be demonstrated.
Application of Generative Topographic Mapping to Gear Failures Monitoring
NASA Astrophysics Data System (ADS)
Liao, Guanglan; Li, Weihua; Shi, Tielin; Rao, Raj B. K. N.
2002-07-01
The Generative Topographic Mapping (GTM) model is introduced as a probabilistic re-formation of the self-organizing map and has already been used in a variety of applications. This paper presents a study of the GTM in industrial gear failures monitoring. Vibration signals are analyzed using the GTM model, and the results show that gear feature data sets can be projected into a two-dimensional space and clustered in different areas according to their conditions, which can classify and identify clearly a gear work condition with cracked or broken tooth compared with the normal condition. With the trace of the image points in the two-dimensional space, the variation of gear work conditions can be observed visually, therefore, the occurrence and varying trend of gear failures can be monitored in time.
The Use of Concept Maps in Creating a Short Video with Students
ERIC Educational Resources Information Center
Gocsál, Ákos; Tóth, Renáta
2016-01-01
This paper presents the results of an experimental project in which media students created a short video. The students in groups of 4 or 5 used concept maps for collected their ideas about organizing the project. The analysis of the concept maps revealed that two groups were product-oriented, one group was workflow-oriented, and two groups used…
Interactive Medical Volume Visualization for Surgical Operations
2001-10-25
the preprocessing and processing stages, related medical brain tissues, which are skull, white matter, gray matter and pathology ( tumor ), are segmented ...from 12 or 16 bit data depths. NMR segmentation plays an important role in our work, because, classifying brain tissues from NMR slices requires an...performing segmentation of brain structures. Our segmentation process uses Self Organizing Feature Maps (SOFM) [12]. In SOM, on the contrary to Feedback
The Self-Organized Archive: SPASE, PDS and Archive Cooperatives
NASA Astrophysics Data System (ADS)
King, T. A.; Hughes, J. S.; Roberts, D. A.; Walker, R. J.; Joy, S. P.
2005-05-01
Information systems with high quality metadata enable uses and services which often go beyond the original purpose. There are two types of metadata: annotations which are items that comment on or describe the content of a resource and identification attributes which describe the external properties of the resource itself. For example, annotations may indicate which columns are present in a table of data, whereas an identification attribute would indicate source of the table, such as the observatory, instrument, organization, and data type. When the identification attributes are collected and used as the basis of a search engine, a user can constrain on an attribute, the archive can then self-organize around the constraint, presenting the user with a particular view of the archive. In an archive cooperative where each participating data system or archive may have its own metadata standards, providing a multi-system search engine requires that individual archive metadata be mapped to a broad based standard. To explore how cooperative archives can form a larger self-organized archive we will show how the Space Physics Archive Search and Extract (SPASE) data model will allow different systems to create a cooperative and will use Planetary Data System (PDS) plus existing space physics activities as a demonstration.
Self-Mapping in Treating Suicide Ideation: A Case Study
ERIC Educational Resources Information Center
Robertson, Lloyd Hawkeye
2011-01-01
This case study traces the development and use of a self-mapping exercise in the treatment of a youth who had been at risk for re-attempting suicide. A life skills exercise was modified to identify units of culture called "memes" from which a map of the youth's self was prepared. A successful treatment plan followed the mapping exercise. The…
The Influence Function of Principal Component Analysis by Self-Organizing Rule.
Higuchi; Eguchi
1998-07-28
This article is concerned with a neural network approach to principal component analysis (PCA). An algorithm for PCA by the self-organizing rule has been proposed and its robustness observed through the simulation study by Xu and Yuille (1995). In this article, the robustness of the algorithm against outliers is investigated by using the theory of influence function. The influence function of the principal component vector is given in an explicit form. Through this expression, the method is shown to be robust against any directions orthogonal to the principal component vector. In addition, a statistic generated by the self-organizing rule is proposed to assess the influence of data in PCA.
Mapping Self-Guided Learners' Searches for Video Tutorials on YouTube
ERIC Educational Resources Information Center
Garrett, Nathan
2016-01-01
While YouTube has a wealth of educational videos, how self-guided learners use these resources has not been fully described. An analysis of search engine queries for help with the use of Microsoft Excel shows that few users search for specific features or functions but instead use very general terms. Because the same videos are returned in…
NASA Astrophysics Data System (ADS)
Steiner, G.; Sablinskas, V.; Savchuk, O.; Bariseviciute, R.; Jähne, E.; Adler, H. J.; Salzer, R.
2003-12-01
Self assembly layers were studied by a polarization modulation FT-spectroscopy mapping technique. The optical lay out is based on polarization modulation FT infrared reflection absorption spectroscopy (PM-FT-IRRAS). Here we report for the first time on a PM-FT-IRRAS mapping instrument. Octadecanephosphonic acid adsorbed on a patterned aluminum/gold surface was investigated. The nature of chemical bonding at particular surface areas was evaluated by principal component analysis. The most prominent features of the PM-FT-IRRA spectra are the P-O and PO stretching vibrations. It is shown that octadecanephosphonic acid is adsorbed both on Al 2O 3 and on Au. Moreover, PM-FT-IRRAS maps reveal areas of non-equivalent structural features. Lateral dimensions of these areas are in the micrometer range. Such non-equivalencies may control the inhibition potential of SAMs on ignoble metals, hence become crucial to the quality of products as biosensors or microelectronic components.
Self-organization at the frictional interface for green tribology.
Nosonovsky, Michael
2010-10-28
Despite the fact that self-organization during friction has received relatively little attention from tribologists so far, it has the potential for the creation of self-healing and self-lubricating materials, which are important for green or environment-friendly tribology. The principles of the thermodynamics of irreversible processes and of the nonlinear theory of dynamical systems are used to investigate the formation of spatial and temporal structures during friction. The transition to the self-organized state with low friction and wear occurs through destabilization of steady-state (stationary) sliding. The criterion for destabilization is formulated and several examples are discussed: the formation of a protective film, microtopography evolution and slip waves. The pattern formation may involve self-organized criticality and reaction-diffusion systems. A special self-healing mechanism may be embedded into the material by coupling the corresponding required forces. The analysis provides the structure-property relationship, which can be applied for the design optimization of composite self-lubricating and self-healing materials for various ecologically friendly applications and green tribology.
Sakakibara, Brodie M.; Lear, Scott A.; Barr, Susan I.; Benavente, Oscar; Goldsmith, Charlie H.; Silverberg, Noah D.; Yao, Jennifer; Eng, Janice J.
2018-01-01
Objective To describe the systematic development of the Stroke Coach, a theory- and evidence-based intervention to improve control of lifestyle behaviour risk factors in stroke patients. Design Intervention development. Setting Community. Participants Individuals who have had a stroke. Intervention We used Intervention Mapping to guide the development of the Stroke Coach. Intervention Mapping is a systematic process used for intervention development and comprised of steps that progress from the integration of theory and evidence to the organization of realistic strategies to facilitate the development of a practical intervention supported by empirical evidence. Social Cognitive Theory was the underlying premise for behaviour change, while Control Theory methods were directed towards sustaining the changes to ensure long-term health benefits. Practical evidence-based strategies were linked to behavioural determinants to improve stroke risk factor control. Main outcome measures Not applicable. Results The Stroke Coach is a patient-centred, community-based, telehealth intervention to promote healthy lifestyles after stroke. Over six months, participants receive seven 30 to 60 minute telephone sessions with a lifestyle coach who provides education, facilitates motivation for lifestyle modification, and empowers participants to self-management their stroke risk factors. Participants also receive a self-management manual and a self-monitoring kit. Conclusion Through the use of Intervention Mapping we developed a theoretically sound and evidence-grounded intervention to improve risk factor control in stroke patients. If empirical evaluation of the Stroke Coach produces positive results, the next step will be to develop an implementation intervention to ensure successful uptake and delivery of the program in community and outpatient settings. PMID:28219685
Lu, Yang; Li, Zheng; Arthur, David
2014-08-01
To provide insight into the characteristics of chronic disease self-management by mapping publication status and exploring hotspots. Chronic disease is becoming a major public health issue worldwide, highlighting the importance of self-management in this area. Despite the volume and variety of publications, little is known about how 'chronic disease self-management' has developed, since the first publication 40 years ago. Such is the number of publications in the area, that there is a need for a systematic bibliographic examination to enable clinicians and researchers to navigate this literature. A bibliometric analysis of publications was used. Publication status was achieved using BICOMB software, whereas hotspots were identified with Ucinet software. A search of PubMed was conducted for papers published between 1971-2012. By 2011, the number of publications reached 696, a fourfold increase from the previous 10 years, of which 75% came from the USA and UK. There were 1284 journals, which published chronic disease self-management research, involving various disciplines. The research hotspots highlighted various self-management strategies for the following: diabetes; cardiac vascular and pulmonary chronic disease; pain relief for neoplasms; and obesity. Psychological adjustment was a permeating theme in self-management processes as was using internet-based interventions. Self-management in chronic disease publication has been most evident in developed countries. The bibliographic mapping and identification of publication hotspots provides scholars and practitioners with key target journals, as well as a rigorous overview of the field for use in further research, evidence-based practice and health policy development. © 2014 John Wiley & Sons Ltd.
Liston, Adrian; Hardy, Kristine; Pittelkow, Yvonne; Wilson, Susan R; Makaroff, Lydia E; Fahrer, Aude M; Goodnow, Christopher C
2007-01-01
T cells in the thymus undergo opposing positive and negative selection processes so that the only T cells entering circulation are those bearing a T cell receptor (TCR) with a low affinity for self. The mechanism differentiating negative from positive selection is poorly understood, despite the fact that inherited defects in negative selection underlie organ-specific autoimmune disease in AIRE-deficient people and the non-obese diabetic (NOD) mouse strain Here we use homogeneous populations of T cells undergoing either positive or negative selection in vivo together with genome-wide transcription profiling on microarrays to identify the gene expression differences underlying negative selection to an Aire-dependent organ-specific antigen, including the upregulation of a genomic cluster in the cytogenetic band 2F. Analysis of defective negative selection in the autoimmune-prone NOD strain demonstrates a global impairment in the induction of the negative selection response gene set, but little difference in positive selection response genes. Combining expression differences with genetic linkage data, we identify differentially expressed candidate genes, including Bim, Bnip3, Smox, Pdrg1, Id1, Pdcd1, Ly6c, Pdia3, Trim30 and Trim12. The data provide a molecular map of the negative selection response in vivo and, by analysis of deviations from this pathway in the autoimmune susceptible NOD strain, suggest that susceptibility arises from small expression differences in genes acting at multiple points in the pathway between the TCR and cell death.
Liston, Adrian; Hardy, Kristine; Pittelkow, Yvonne; Wilson, Susan R; Makaroff, Lydia E; Fahrer, Aude M; Goodnow, Christopher C
2007-01-01
Background T cells in the thymus undergo opposing positive and negative selection processes so that the only T cells entering circulation are those bearing a T cell receptor (TCR) with a low affinity for self. The mechanism differentiating negative from positive selection is poorly understood, despite the fact that inherited defects in negative selection underlie organ-specific autoimmune disease in AIRE-deficient people and the non-obese diabetic (NOD) mouse strain Results Here we use homogeneous populations of T cells undergoing either positive or negative selection in vivo together with genome-wide transcription profiling on microarrays to identify the gene expression differences underlying negative selection to an Aire-dependent organ-specific antigen, including the upregulation of a genomic cluster in the cytogenetic band 2F. Analysis of defective negative selection in the autoimmune-prone NOD strain demonstrates a global impairment in the induction of the negative selection response gene set, but little difference in positive selection response genes. Combining expression differences with genetic linkage data, we identify differentially expressed candidate genes, including Bim, Bnip3, Smox, Pdrg1, Id1, Pdcd1, Ly6c, Pdia3, Trim30 and Trim12. Conclusion The data provide a molecular map of the negative selection response in vivo and, by analysis of deviations from this pathway in the autoimmune susceptible NOD strain, suggest that susceptibility arises from small expression differences in genes acting at multiple points in the pathway between the TCR and cell death. PMID:17239257
Contractive type non-self mappings on metric spaces of hyperbolic type
NASA Astrophysics Data System (ADS)
Ciric, Ljubomir B.
2006-05-01
Let (X,d) be a metric space of hyperbolic type and K a nonempty closed subset of X. In this paper we study a class of mappings from K into X (not necessarily self-mappings on K), which are defined by the contractive condition (2.1) below, and a class of pairs of mappings from K into X which satisfy the condition (2.28) below. We present fixed point and common fixed point theorems which are generalizations of the corresponding fixed point theorems of Ciric [L.B. Ciric, Quasi-contraction non-self mappings on Banach spaces, Bull. Acad. Serbe Sci. Arts 23 (1998) 25-31; L.B. Ciric, J.S. Ume, M.S. Khan, H.K.T. Pathak, On some non-self mappings, Math. Nachr. 251 (2003) 28-33], Rhoades [B.E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japon. 23 (1978) 457-459] and many other authors. Some examples are presented to show that our results are genuine generalizations of known results from this area.
Can power-law scaling and neuronal avalanches arise from stochastic dynamics?
Touboul, Jonathan; Destexhe, Alain
2010-02-11
The presence of self-organized criticality in biology is often evidenced by a power-law scaling of event size distributions, which can be measured by linear regression on logarithmic axes. We show here that such a procedure does not necessarily mean that the system exhibits self-organized criticality. We first provide an analysis of multisite local field potential (LFP) recordings of brain activity and show that event size distributions defined as negative LFP peaks can be close to power-law distributions. However, this result is not robust to change in detection threshold, or when tested using more rigorous statistical analyses such as the Kolmogorov-Smirnov test. Similar power-law scaling is observed for surrogate signals, suggesting that power-law scaling may be a generic property of thresholded stochastic processes. We next investigate this problem analytically, and show that, indeed, stochastic processes can produce spurious power-law scaling without the presence of underlying self-organized criticality. However, this power-law is only apparent in logarithmic representations, and does not survive more rigorous analysis such as the Kolmogorov-Smirnov test. The same analysis was also performed on an artificial network known to display self-organized criticality. In this case, both the graphical representations and the rigorous statistical analysis reveal with no ambiguity that the avalanche size is distributed as a power-law. We conclude that logarithmic representations can lead to spurious power-law scaling induced by the stochastic nature of the phenomenon. This apparent power-law scaling does not constitute a proof of self-organized criticality, which should be demonstrated by more stringent statistical tests.
Fan, Mingyi; Hu, Jiwei; Cao, Rensheng; Ruan, Wenqian; Wei, Xionghui
2018-06-01
Water pollution occurs mainly due to inorganic and organic pollutants, such as nutrients, heavy metals and persistent organic pollutants. For the modeling and optimization of pollutants removal, artificial intelligence (AI) has been used as a major tool in the experimental design that can generate the optimal operational variables, since AI has recently gained a tremendous advance. The present review describes the fundamentals, advantages and limitations of AI tools. Artificial neural networks (ANNs) are the AI tools frequently adopted to predict the pollutants removal processes because of their capabilities of self-learning and self-adapting, while genetic algorithm (GA) and particle swarm optimization (PSO) are also useful AI methodologies in efficient search for the global optima. This article summarizes the modeling and optimization of pollutants removal processes in water treatment by using multilayer perception, fuzzy neural, radial basis function and self-organizing map networks. Furthermore, the results conclude that the hybrid models of ANNs with GA and PSO can be successfully applied in water treatment with satisfactory accuracies. Finally, the limitations of current AI tools and their new developments are also highlighted for prospective applications in the environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.
The neural network classification of false killer whale (Pseudorca crassidens) vocalizations.
Murray, S O; Mercado, E; Roitblat, H L
1998-12-01
This study reports the use of unsupervised, self-organizing neural network to categorize the repertoire of false killer whale vocalizations. Self-organizing networks are capable of detecting patterns in their input and partitioning those patterns into categories without requiring that the number or types of categories be predefined. The inputs for the neural networks were two-dimensional characterization of false killer whale vocalization, where each vocalization was characterized by a sequence of short-time measurements of duty cycle and peak frequency. The first neural network used competitive learning, where units in a competitive layer distributed themselves to recognize frequently presented input vectors. This network resulted in classes representing typical patterns in the vocalizations. The second network was a Kohonen feature map which organized the outputs topologically, providing a graphical organization of pattern relationships. The networks performed well as measured by (1) the average correlation between the input vectors and the weight vectors for each category, and (2) the ability of the networks to classify novel vocalizations. The techniques used in this study could easily be applied to other species and facilitate the development of objective, comprehensive repertoire models.
Yan, Caixia; Liu, Huihui; Sheng, Yanru; Huang, Xian; Nie, Minghua; Huang, Qi; Baalousha, Mohammed
2018-10-01
Characterization of natural colloids is the key to understand pollutant fate and transport in the environment. The present study investigates the relationship between size and fluorescence properties of colloidal organic matter (COM) from five tributaries of Poyang Lake. Colloids were size-fractionated using cross-flow ultrafiltration and their fluorescence properties were measured by three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM). Parallel factor analysis (PARAFAC) and/or Self-organizing map (SOM) were applied to assess fluorescence properties as proxy indicators for the different size of colloids. PARAFAC analysis identified four fluorescence components including three humic-like components (C1-C3) and a protein-like component (C4). These four fluorescence components, and in particular the protein-like component, are primarily present in <1 kDa phase. For the colloidal fractions (1-10 kDa, 10-100 kDa, and 100 kDa-0.7 μm), the majority of fluorophores are associated with the smallest size fraction. SOM analysis demonstrated that relatively high fluorescence intensity and aromaticity occur primarily in <1 kDa phase, followed by 1-10 kDa colloids. Coupling PARAFAC and SOM facilitate the visualization and interpretation of the relationship between colloidal size and fluorescence properties with fewer input variables, shorter running time, higher reliability, and nondestructive results. Fluorescence indices analysis reveals that the smallest colloidal fraction (1-10 kDa) was dominated by higher humified and less autochthonous COM. Copyright © 2018 Elsevier B.V. All rights reserved.
Kadiri, Hind; Kostcheev, Serguei; Turover, Daniel; Salas-Montiel, Rafael; Nomenyo, Komla; Gokarna, Anisha; Lerondel, Gilles
2014-01-01
Our aim was to elaborate a novel method for fully controllable large-scale nanopatterning. We investigated the influence of the surface topology, i.e., a pre-pattern of hydrogen silsesquioxane (HSQ) posts, on the self-organization of polystyrene beads (PS) dispersed over a large surface. Depending on the post size and spacing, long-range ordering of self-organized polystyrene beads is observed wherein guide posts were used leading to single crystal structure. Topology assisted self-organization has proved to be one of the solutions to obtain large-scale ordering. Besides post size and spacing, the colloidal concentration and the nature of solvent were found to have a significant effect on the self-organization of the PS beads. Scanning electron microscope and associated Fourier transform analysis were used to characterize the morphology of the ordered surfaces. Finally, the production of silicon molds is demonstrated by using the beads as a template for dry etching.
Organic Molecules in Meteorites
NASA Astrophysics Data System (ADS)
Martins, Zita
2015-08-01
Carbonaceous meteorites are primitive samples from the asteroid belt, containing 3-5wt% organic carbon. The exogenous delivery of organic matter by carbonaceous meteorites may have contributed to the organic inventory of the early Earth. The majority (>70%) of the meteoritic organic material consist of insoluble organic matter (IOM) [1]. The remaining meteoritic organic material (<30%) consists of a rich organic inventory of soluble organic compounds, including key compounds important in terrestrial biochemistry [2-4]. Different carbonaceous meteorites contain soluble organic molecules with different abundances and distributions, which may reflect the extension of aqueous alteration or thermal metamorphism on the meteorite parent bodies. Extensive aqueous alteration on the meteorite parent body may result on 1) the decomposition of α-amino acids [5, 6]; 2) synthesis of β- and γ-amino acids [2, 6-9]; 3) higher relative abundances of alkylated polycyclic aromatic hydrocarbons (PAHs) [6, 10]; and 4) higher L-enantiomer excess (Lee) value of isovaline [6, 11, 12].The soluble organic content of carbonaceous meteorites may also have a contribution from Fischer-Tropsch/Haber-Bosch type gas-grain reactions after the meteorite parent body cooled to lower temperatures [13, 14].The analysis of the abundances and distribution of the organic molecules present in meteorites helps to determine the physical and chemical conditions of the early solar system, and the prebiotic organic compounds available on the early Earth.[1] Cody and Alexander (2005) GCA 69, 1085. [2] Cronin and Chang (1993) in: The Chemistry of Life’s Origin. pp. 209-258. [3] Martins and Sephton (2009) in: Amino acids, peptides and proteins in organic chemistry. pp. 1-42. [4] Martins (2011) Elements 7, 35. [5] Botta et al. (2007) MAPS 42, 81. [6] Martins et al. (2015) MAPS, in press. [7] Cooper and Cronin (1995) GCA 59, 1003. [8] Glavin et al. (2006) MAPS. 41, 889. [9] Glavin et al. (2011) MAPS 45, 1948. [10] Elsila et al. (2005) GCA 5, 1349. [11] Glavin and Dworkin (2009) PNAS 106, 5487. [12] Pizzarello et al. (2003) GCA 67, 1589. [13] Chan et al. (2012) MAPS. 47, 1502. [14] Burton et al. (2011) MAPS 46, 1703.
Perspective: Organizational professionalism: relevant competencies and behaviors.
Egener, Barry; McDonald, Walter; Rosof, Bernard; Gullen, David
2012-05-01
The professionalism behaviors of physicians have been extensively discussed and defined; however, the professionalism behaviors of health care organizations have not been systemically categorized or described. Defining organizational professionalism is important because the behaviors of a health care organization may substantially impact the behaviors of physicians and others within the organization as well as other institutions and the larger community. In this article, the authors discuss the following competencies of organizational professionalism, derived from ethical values: service, respect, fairness, integrity, accountability, mindfulness, and self-motivation. How nonprofit health care organizations can translate these competencies into behaviors is described. For example, incorporating metrics of population health into assessments of corporate success may increase collaboration among regional health care organizations while also benefiting the community. The unique responsibilities of leadership to model these competencies, promote them in the community, and develop relevant organizational strategies are clarified. These obligations elevate the importance of the executive leadership's capacity for self-reflection and the governing boards' responsibility for mapping operational activities to organizational mission. Lastly, the authors consider how medical organizations are currently addressing professionalism challenges. In an environment made turbulent by regulatory change and financial constraints, achieving proficiency in professionalism competencies can assist nonprofit health care organizations to promote population health and the well-being of their workforces.
Real-time detection of transients in OGLE-IV with application of machine learning
NASA Astrophysics Data System (ADS)
Klencki, Jakub; Wyrzykowski, Łukasz
2016-06-01
The current bottleneck of transient detection in most surveys is the problem of rejecting numerous artifacts from detected candidates. We present a triple-stage hierarchical machine learning system for automated artifact filtering in difference imaging, based on self-organizing maps. The classifier, when tested on the OGLE-IV Transient Detection System, accepts 97% of real transients while removing up to 97.5% of artifacts.
Use of machine learning methods to classify Universities based on the income structure
NASA Astrophysics Data System (ADS)
Terlyga, Alexandra; Balk, Igor
2017-10-01
In this paper we discuss use of machine learning methods such as self organizing maps, k-means and Ward’s clustering to perform classification of universities based on their income. This classification will allow us to quantitate classification of universities as teaching, research, entrepreneur, etc. which is important tool for government, corporations and general public alike in setting expectation and selecting universities to achieve different goals.
Zhu, Daqi; Huang, Huan; Yang, S X
2013-04-01
For a 3-D underwater workspace with a variable ocean current, an integrated multiple autonomous underwater vehicle (AUV) dynamic task assignment and path planning algorithm is proposed by combing the improved self-organizing map (SOM) neural network and a novel velocity synthesis approach. The goal is to control a team of AUVs to reach all appointed target locations for only one time on the premise of workload balance and energy sufficiency while guaranteeing the least total and individual consumption in the presence of the variable ocean current. First, the SOM neuron network is developed to assign a team of AUVs to achieve multiple target locations in 3-D ocean environment. The working process involves special definition of the initial neural weights of the SOM network, the rule to select the winner, the computation of the neighborhood function, and the method to update weights. Then, the velocity synthesis approach is applied to plan the shortest path for each AUV to visit the corresponding target in a dynamic environment subject to the ocean current being variable and targets being movable. Lastly, to demonstrate the effectiveness of the proposed approach, simulation results are given in this paper.
Using self-organizing maps to identify potential halo white dwarfs.
García-Berro, Enrique; Torres, Santiago; Isern, Jordi
2003-01-01
We present the results of an unsupervised classification of the disk and halo white dwarf populations in the solar neighborhood. The classification is done by merging the results of detailed Monte Carlo (MC) simulations, which reproduce very well the characteristics of the white dwarf populations in the solar neighborhood, with a catalogue of real stars. The resulting composite catalogue is analyzed using a competitive learning algorithm. In particular we have used the so-called self-organized map. The MC simulated stars are used as tracers and help in identifying the resulting clusters. The results of such an strategy turn out to be quite satisfactory, suggesting that this approach can provide an useful framework for analyzing large databases of white dwarfs with well determined kinematical, spatial and photometric properties once they become available in the next decade. Moreover, the results are of astrophysical interest as well, since a straightforward interpretation of several recent astronomical observations, like the detected microlensing events in the direction of the Magellanic Clouds, the possible detection of high proper motion white dwarfs in the Hubble Deep Field and the discovery of high velocity white dwarfs in the solar neighborhood, suggests that a fraction of the baryonic dark matter component of our galaxy could be in the form of old and dim halo white dwarfs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Wen-li; Wang, Hong-rui; Wang, Cheng
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters have occurred almost annually in the urban area of Beijing, the capital of China. Based on a self-organizing map (SOM) artificial neural network (ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product (GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANN is suitable for automatically and quantitatively assessing risks associated withmore » waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors, producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. As a result, the points that were assigned risk grades of IV or V were located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng.« less
Lai, Wen-li; Wang, Hong-rui; Wang, Cheng; ...
2017-05-05
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters have occurred almost annually in the urban area of Beijing, the capital of China. Based on a self-organizing map (SOM) artificial neural network (ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product (GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANN is suitable for automatically and quantitatively assessing risks associated withmore » waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors, producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. As a result, the points that were assigned risk grades of IV or V were located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng.« less
An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective.
Faigl, Jan
2016-01-01
In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to "see" the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning.
An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective
Faigl, Jan
2016-01-01
In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to “see” the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning. PMID:27340395
An efficient self-organizing map designed by genetic algorithms for the traveling salesman problem.
Jin, Hui-Dong; Leung, Kwong-Sak; Wong, Man-Leung; Xu, Z B
2003-01-01
As a typical combinatorial optimization problem, the traveling salesman problem (TSP) has attracted extensive research interest. In this paper, we develop a self-organizing map (SOM) with a novel learning rule. It is called the integrated SOM (ISOM) since its learning rule integrates the three learning mechanisms in the SOM literature. Within a single learning step, the excited neuron is first dragged toward the input city, then pushed to the convex hull of the TSP, and finally drawn toward the middle point of its two neighboring neurons. A genetic algorithm is successfully specified to determine the elaborate coordination among the three learning mechanisms as well as the suitable parameter setting. The evolved ISOM (eISOM) is examined on three sets of TSP to demonstrate its power and efficiency. The computation complexity of the eISOM is quadratic, which is comparable to other SOM-like neural networks. Moreover, the eISOM can generate more accurate solutions than several typical approaches for TSP including the SOM developed by Budinich, the expanding SOM, the convex elastic net, and the FLEXMAP algorithm. Though its solution accuracy is not yet comparable to some sophisticated heuristics, the eISOM is one of the most accurate neural networks for the TSP.
Transient Modulations of Neural Responses to Heartbeats Covary with Bodily Self-Consciousness.
Park, Hyeong-Dong; Bernasconi, Fosco; Bello-Ruiz, Javier; Pfeiffer, Christian; Salomon, Roy; Blanke, Olaf
2016-08-10
Recent research has investigated self-consciousness associated with the multisensory processing of bodily signals (e.g., somatosensory, visual, vestibular signals), a notion referred to as bodily self-consciousness, and these studies have shown that the manipulation of bodily inputs induces changes in bodily self-consciousness such as self-identification. Another line of research has highlighted the importance of signals from the inside of the body (e.g., visceral signals) and proposed that neural representations of internal bodily signals underlie self-consciousness, which to date has been based on philosophical inquiry, clinical case studies, and behavioral studies. Here, we investigated the relationship of bodily self-consciousness with the neural processing of internal bodily signals. By combining electrical neuroimaging, analysis of peripheral physiological signals, and virtual reality technology in humans, we show that transient modulations of neural responses to heartbeats in the posterior cingulate cortex covary with changes in bodily self-consciousness induced by the full-body illusion. Additional analyses excluded that measured basic cardiorespiratory parameters or interoceptive sensitivity traits could account for this finding. These neurophysiological data link experimentally the cortical mapping of the internal body to self-consciousness. What are the brain mechanisms of self-consciousness? Prominent views propose that the neural processing associated with signals from the internal organs (such as the heart and the lung) plays a critical role in self-consciousness. Although this hypothesis dates back to influential views in philosophy and psychology (e.g., William James), definitive experimental evidence supporting this idea is lacking despite its recent impact in neuroscience. In the present study, we show that posterior cingulate activities responding to heartbeat signals covary with changes in participants' conscious self-identification with a body that were manipulated experimentally using virtual reality technology. Our finding provides important neural evidence about the long-standing proposal that self-consciousness is linked to the cortical processing of internal bodily signals. Copyright © 2016 the authors 0270-6474/16/368453-08$15.00/0.
Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map
An, Yan; Zou, Zhihong; Li, Ranran
2016-01-01
In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009–2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data. PMID:26761018
Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map.
An, Yan; Zou, Zhihong; Li, Ranran
2016-01-08
In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009-2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data.
Wains: a pattern-seeking artificial life species.
de Buitléir, Amy; Russell, Michael; Daly, Mark
2012-01-01
We describe the initial phase of a research project to develop an artificial life framework designed to extract knowledge from large data sets with minimal preparation or ramp-up time. In this phase, we evolved an artificial life population with a new brain architecture. The agents have sufficient intelligence to discover patterns in data and to make survival decisions based on those patterns. The species uses diploid reproduction, Hebbian learning, and Kohonen self-organizing maps, in combination with novel techniques such as using pattern-rich data as the environment and framing the data analysis as a survival problem for artificial life. The first generation of agents mastered the pattern discovery task well enough to thrive. Evolution further adapted the agents to their environment by making them a little more pessimistic, and also by making their brains more efficient.
Wang, Binwu; Li, Hong; Sun, Danfeng
2014-01-01
The regional management of trace elements in soils requires understanding the interaction between the natural system and human socio-economic activities. In this study, a social-ecological patterns of heavy metals (SEPHM) approach was proposed to identify the heavy metal concentration patterns and processes in different ecoregions of Beijing (China) based on a self-organizing map (SOM). Potential ecological risk index (RI) values of Cr, Ni, Zn, Hg, Cu, As, Cd and Pb were calculated for 1,018 surface soil samples. These data were averaged in accordance with 253 communities and/or towns, and compared with demographic, agriculture structure, geomorphology, climate, land use/cover, and soil-forming parent material to discover the SEPHM. Multivariate statistical techniques were further applied to interpret the control factors of each SEPHM. SOM application clustered the 253 towns into nine groups on the map size of 12 × 7 plane (quantization error 1.809; topographic error, 0.0079). The distribution characteristics and Spearman rank correlation coefficients of RIs were strongly associated with the population density, vegetation index, industrial and mining land percent and road density. The RIs were relatively high in which towns in a highly urbanized area with large human population density exist, while low RIs occurred in mountainous and high vegetation cover areas. The resulting dataset identifies the SEPHM of Beijing and links the apparent results of RIs to driving factors, thus serving as an excellent data source to inform policy makers for legislative and land management actions. PMID:24690947
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Li, Deng; Lu, Xiaoming; Cheng, Xinyi; Wang, Liwei
2014-10-01
Continuous crystal-based positron emission tomography (PET) detectors could be an ideal alternative for current high-resolution pixelated PET detectors if the issues of high performance γ interaction position estimation and its real-time implementation are solved. Unfortunately, existing position estimators are not very feasible for implementation on field-programmable gate array (FPGA). In this paper, we propose a new self-organizing map neural network-based nearest neighbor (SOM-NN) positioning scheme aiming not only at providing high performance, but also at being realistic for FPGA implementation. Benefitting from the SOM feature mapping mechanism, the large set of input reference events at each calibration position is approximated by a small set of prototypes, and the computation of the nearest neighbor searching for unknown events is largely reduced. Using our experimental data, the scheme was evaluated, optimized and compared with the smoothed k-NN method. The spatial resolutions of full-width-at-half-maximum (FWHM) of both methods averaged over the center axis of the detector were obtained as 1.87 ±0.17 mm and 1.92 ±0.09 mm, respectively. The test results show that the SOM-NN scheme has an equivalent positioning performance with the smoothed k-NN method, but the amount of computation is only about one-tenth of the smoothed k-NN method. In addition, the algorithm structure of the SOM-NN scheme is more feasible for implementation on FPGA. It has the potential to realize real-time position estimation on an FPGA with a high-event processing throughput.
Adaptive filtering with the self-organizing map: a performance comparison.
Barreto, Guilherme A; Souza, Luís Gustavo M
2006-01-01
In this paper we provide an in-depth evaluation of the SOM as a feasible tool for nonlinear adaptive filtering. A comprehensive survey of existing SOM-based and related architectures for learning input-output mappings is carried out and the application of these architectures to nonlinear adaptive filtering is formulated. Then, we introduce two simple procedures for building RBF-based nonlinear filters using the Vector-Quantized Temporal Associative Memory (VQTAM), a recently proposed method for learning dynamical input-output mappings using the SOM. The aforementioned SOM-based adaptive filters are compared with standard FIR/LMS and FIR/LMS-Newton linear transversal filters, as well as with powerful MLP-based filters in nonlinear channel equalization and inverse modeling tasks. The obtained results in both tasks indicate that SOM-based filters can consistently outperform powerful MLP-based ones.
Gene Expression Dynamics Inspector (GEDI): for integrative analysis of expression profiles
NASA Technical Reports Server (NTRS)
Eichler, Gabriel S.; Huang, Sui; Ingber, Donald E.
2003-01-01
Genome-wide expression profiles contain global patterns that evade visual detection in current gene clustering analysis. Here, a Gene Expression Dynamics Inspector (GEDI) is described that uses self-organizing maps to translate high-dimensional expression profiles of time courses or sample classes into animated, coherent and robust mosaics images. GEDI facilitates identification of interesting patterns of molecular activity simultaneously across gene, time and sample space without prior assumption of any structure in the data, and then permits the user to retrieve genes of interest. Important changes in genome-wide activities may be quickly identified based on 'Gestalt' recognition and hence, GEDI may be especially useful for non-specialist end users, such as physicians. AVAILABILITY: GEDI v1.0 is written in Matlab, and binary Matlab.dll files which require Matlab to run can be downloaded for free by academic institutions at http://www.chip.org/ge/gedihome.html Supplementary information: http://www.chip.org/ge/gedihome.html.
Assessment of WRF Simulated Precipitation by Meteorological Regimes
NASA Astrophysics Data System (ADS)
Hagenhoff, Brooke Anne
This study evaluated warm-season precipitation events in a multi-year (2007-2014) database of Weather Research and Forecasting (WRF) simulations over the Northern Plains and Southern Great Plains. These WRF simulations were run daily in support of the National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) by the National Severe Storms Laboratory (NSSL) for operational forecasts. Evaluating model skill by synoptic pattern allows for an understanding of how model performance varies with particular atmospheric states and will aid forecasters with pattern recognition. To conduct this analysis, a competitive neural network known as the Self-Organizing Map (SOM) was used. SOMs allow the user to represent atmospheric patterns in an array of nodes that represent a continuum of synoptic categorizations. North American Regional Reanalysis (NARR) data during the warm season (April-September) was used to perform the synoptic typing over the study domains. Simulated precipitation was evaluated against observations provided by the National Centers for Environmental Prediction (NCEP) Stage IV precipitation analysis.
SA-SOM algorithm for detecting communities in complex networks
NASA Astrophysics Data System (ADS)
Chen, Luogeng; Wang, Yanran; Huang, Xiaoming; Hu, Mengyu; Hu, Fang
2017-10-01
Currently, community detection is a hot topic. This paper, based on the self-organizing map (SOM) algorithm, introduced the idea of self-adaptation (SA) that the number of communities can be identified automatically, a novel algorithm SA-SOM of detecting communities in complex networks is proposed. Several representative real-world networks and a set of computer-generated networks by LFR-benchmark are utilized to verify the accuracy and the efficiency of this algorithm. The experimental findings demonstrate that this algorithm can identify the communities automatically, accurately and efficiently. Furthermore, this algorithm can also acquire higher values of modularity, NMI and density than the SOM algorithm does.
THE ROLE OF SELF-INJURY IN THE ORGANIZATION OF BEHAVIOUR
Sandman, Curt A.; Kemp, Aaron S.; Mabini, Christopher; Pincus, David; Magnusson, Magnus
2012-01-01
Background Self-injuring acts are among the most dramatic behaviours exhibited by human beings. There is no known single cause and there is no universally agreed upon treatment. Sophisticated sequential and temporal analysis of behaviour has provided alternative descriptions of self-injury that provide new insights into its initiation and maintenance. Method Forty hours of observations for each of 32 participants were collected in a contiguous two-week period. Twenty categories of behavioural and environmental events were recorded electronically that captured the precise time each observation occurred. Temporal behavioural/environmental patterns associated with self-injurious events were revealed with a method (t-patterns; THEME) for detecting non-linear, real-time patterns. Results Results indicated that acts of self-injury contributed both to more patterns and to more complex patterns. Moreover, self-injury left its imprint on the organization of behaviour even when counts of self-injury were expelled from the continuous record. Conclusions Behaviour of participants was organized in a more diverse array of patterns with SIB was present. Self-injuring acts may function as singular points, increasing coherence within self-organizing patterns of behaviour. PMID:22452417
2015-12-31
biological composites. This includes the chemical mapping of the radular teeth of Cryptochiton stelleri (chiton), the crush resistant exoskeleton ...mapping of the radular teeth of Cryptochiton stelleri (chiton), the crush resistant exoskeleton from Phloeodes diabolicus (the Iron Clad beetle), and the... exoskeleton from Phloeodes diabolicus (the Iron Clad beetle), and the hard and impact resistant dactyl club from the stomatopod Odontodactylus scyllarus
Flood inundation mapping in the Logone floodplain from multi temporal Landsat ETM+ imagery
NASA Astrophysics Data System (ADS)
Jung, H.; Alsdorf, D. E.; Moritz, M.; Lee, H.; Vassolo, S.
2011-12-01
Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to ~5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.
Flood Inundation Mapping in the Logone Floodplain from Multi Temporal Landsat ETM+Imagery
NASA Technical Reports Server (NTRS)
Jung, Hahn Chul; Alsdorf, Douglas E.; Moritz, Mark; Lee, Hyongki; Vassolo, Sara
2011-01-01
Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to approximately 5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.
Relation between the Hurst Exponent and the Efficiency of Self-organization of a Deformable System
NASA Astrophysics Data System (ADS)
Alfyorova, E. A.; Lychagin, D. V.
2018-04-01
We have established the degree of self-organization of a system under plastic deformation at different scale levels. Using fractal analysis, we have determined the Hurst exponent and correlation lengths in the region of formation of a corrugated (wrinkled) structure in [111] nickel single crystals under compression. This has made it possible to single out two (micro-and meso-) levels of self-organization in the deformable system. A qualitative relation between the values of the Hurst exponent and the stages of the stress-strain curve has been established.
Molecular Imaging of Kerogen and Minerals in Shale Rocks across Micro- and Nano- Scales
NASA Astrophysics Data System (ADS)
Hao, Z.; Bechtel, H.; Sannibale, F.; Kneafsey, T. J.; Gilbert, B.; Nico, P. S.
2016-12-01
Fourier transform infrared (FTIR) spectroscopy is a reliable and non-destructive quantitative method to evaluate mineralogy and kerogen content / maturity of shale rocks, although it is traditionally difficult to assess the organic and mineralogical heterogeneity at micrometer and nanometer scales due to the diffraction limit of the infrared light. However, it is truly at these scales that the kerogen and mineral content and their formation in share rocks determines the quality of shale gas reserve, the gas flow mechanisms and the gas production. Therefore, it's necessary to develop new approaches which can image across both micro- and nano- scales. In this presentation, we will describe two new molecular imaging approaches to obtain kerogen and mineral information in shale rocks at the unprecedented high spatial resolution, and a cross-scale quantitative multivariate analysis method to provide rapid geochemical characterization of large size samples. The two imaging approaches are enhanced at nearfield respectively by a Ge-hemisphere (GE) and by a metallic scanning probe (SINS). The GE method is a modified microscopic attenuated total reflectance (ATR) method which rapidly captures a chemical image of the shale rock surface at 1 to 5 micrometer resolution with a large field of view of 600 X 600 micrometer, while the SINS probes the surface at 20 nm resolution which provides a chemically "deconvoluted" map at the nano-pore level. The detailed geochemical distribution at nanoscale is then used to build a machine learning model to generate self-calibrated chemical distribution map at micrometer scale with the input of the GE images. A number of geochemical contents across these two important scales are observed and analyzed, including the minerals (oxides, carbonates, sulphides), the organics (carbohydrates, aromatics), and the absorbed gases. These approaches are self-calibrated, optics friendly and non-destructive, so they hold the potential to monitor shale gas flow at real time inside the micro- or nano- pore network, which is of great interest for optimizing the shale gas extraction.
Kriegel, Fabian L; Köhler, Ralf; Bayat-Sarmadi, Jannike; Bayerl, Simon; Hauser, Anja E; Niesner, Raluca; Luch, Andreas; Cseresnyes, Zoltan
2018-03-01
Cells in their natural environment often exhibit complex kinetic behavior and radical adjustments of their shapes. This enables them to accommodate to short- and long-term changes in their surroundings under physiological and pathological conditions. Intravital multi-photon microscopy is a powerful tool to record this complex behavior. Traditionally, cell behavior is characterized by tracking the cells' movements, which yields numerous parameters describing the spatiotemporal characteristics of cells. Cells can be classified according to their tracking behavior using all or a subset of these kinetic parameters. This categorization can be supported by the a priori knowledge of experts. While such an approach provides an excellent starting point for analyzing complex intravital imaging data, faster methods are required for automated and unbiased characterization. In addition to their kinetic behavior, the 3D shape of these cells also provide essential clues about the cells' status and functionality. New approaches that include the study of cell shapes as well may also allow the discovery of correlations amongst the track- and shape-describing parameters. In the current study, we examine the applicability of a set of Fourier components produced by Discrete Fourier Transform (DFT) as a tool for more efficient and less biased classification of complex cell shapes. By carrying out a number of 3D-to-2D projections of surface-rendered cells, the applied method reduces the more complex 3D shape characterization to a series of 2D DFTs. The resulting shape factors are used to train a Self-Organizing Map (SOM), which provides an unbiased estimate for the best clustering of the data, thereby characterizing groups of cells according to their shape. We propose and demonstrate that such shape characterization is a powerful addition to, or a replacement for kinetic analysis. This would make it especially useful in situations where live kinetic imaging is less practical or not possible at all. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Hillslope chemical weathering across Paraná, Brazil: a data mining-GIS hybrid approach
Iwashita, Fabio; Friedel, Michael J.; Filho, Carlos Roberto de Souza; Fraser, Stephen J.
2011-01-01
Self-organizing map (SOM) and geographic information system (GIS) models were used to investigate the nonlinear relationships associated with geochemical weathering processes at local (~100 km2) and regional (~50,000 km2) scales. The data set consisted of 1) 22 B-horizon soil variables: P, C, pH, Al, total acidity, Ca, Mg, K, total cation exchange capacity, sum of exchangeable bases, base saturation, Cu, Zn, Fe, B, S, Mn, gammaspectrometry (total count, potassium, thorium, and uranium) and magnetic susceptibility measures; and 2) six topographic variables: elevation, slope, aspect, hydrological accumulated flux, horizontal curvature and vertical curvature. It is characterized at 304 locations from a quasi-regular grid spaced about 24 km across the state of Paraná. This data base was split into two subsets: one for analysis and modeling (274 samples) and the other for validation (30 samples) purposes. The self-organizing map and clustering methods were used to identify and classify the relations among solid-phase chemical element concentrations and GIS derived topographic models. The correlation between elevation and k-means clusters related the relative position inside hydrologic macro basins, which was interpreted as an expression of the weathering process reaching a steady-state condition at the regional scale. Locally, the chemical element concentrations were related to the vertical curvature representing concave–convex hillslope features, where concave hillslopes with convergent flux tends to be a reducing environment and convex hillslopes with divergent flux, oxidizing environments. Stochastic cross validation demonstrated that the SOM produced unbiased classifications and quantified the relative amount of uncertainty in predictions. This work strengthens the hypothesis that, at B-horizon steady-state conditions, the terrain morphometry were linked with the soil geochemical weathering in a two-way dependent process: the topographic relief was a factor on environmental geochemistry while chemical weathering was for terrain feature delineation.
NASA Astrophysics Data System (ADS)
Ohba, Masamichi; Nohara, Daisuke; Kadokura, Shinji
2016-04-01
Severe storms or other extreme weather events can interrupt the spin of wind turbines in large scale that cause unexpected "wind ramp events". In this study, we present an application of self-organizing maps (SOMs) for climatological attribution of the wind ramp events and their probabilistic prediction. The SOM is an automatic data-mining clustering technique, which allows us to summarize a high-dimensional data space in terms of a set of reference vectors. The SOM is applied to analyze and connect the relationship between atmospheric patterns over Japan and wind power generation. SOM is employed on sea level pressure derived from the JRA55 reanalysis over the target area (Tohoku region in Japan), whereby a two-dimensional lattice of weather patterns (WPs) classified during the 1977-2013 period is obtained. To compare with the atmospheric data, the long-term wind power generation is reconstructed by using a high-resolution surface observation network AMeDAS (Automated Meteorological Data Acquisition System) in Japan. Our analysis extracts seven typical WPs, which are linked to frequent occurrences of wind ramp events. Probabilistic forecasts to wind power generation and ramps are conducted by using the obtained SOM. The probability are derived from the multiple SOM lattices based on the matching of output from TIGGE multi-model global forecast to the WPs on the lattices. Since this method effectively takes care of the empirical uncertainties from the historical data, wind power generation and ramp is probabilistically forecasted from the forecasts of global models. The predictability skill of the forecasts for the wind power generation and ramp events show the relatively good skill score under the downscaling technique. It is expected that the results of this study provides better guidance to the user community and contribute to future development of system operation model for the transmission grid operator.
NASA Astrophysics Data System (ADS)
KIM, M.; Kim, J.; Baek, J.; Kim, C.; Shin, H.
2013-12-01
It has being happened as flush flood or red/green tide in various natural phenomena due to climate change and indiscreet development of river or land. Especially, water being very important to man should be protected and managed from water quality pollution, and in water resources management, real-time watershed monitoring system is being operated with the purpose of keeping watch and managing on rivers. It is especially important to monitor and forecast water quality in watershed. A study area selected Nak_K as one site among TMDL unit watershed in Nakdong River. This study is to develop a water quality forecasting model connected with making full use of observed data of 8 day interval from Nakdong River Environment Research Center. When forecasting models for each of the BOD, DO, COD, and chlorophyll-a are established considering correlation of various water quality factors, it is needed to select water quality factors showing highly considerable correlation with each water quality factor which is BOD, DO, COD, and chlorophyll-a. For analyzing the correlation of the factors (reservoir discharge, precipitation, air temperature, DO, BOD, COD, Tw, TN, TP, chlorophyll-a), in this study, self-organizing map was used and cross correlation analysis method was also used for comparing results drawn. Based on the results, each forecasting model for BOD, DO, COD, and chlorophyll-a was developed during the short period as 8, 16, 24, 32 days at 8 day interval. The each forecasting model is based on neural network with back propagation algorithm. That is, the study is connected with self-organizing map for analyzing correlation among various factors and neural network model for forecasting of water quality. It is considerably effective to manage the water quality in plenty of rivers, then, it specially is possible to monitor a variety of accidents in water quality. It will work well to protect water quality and to prevent destruction of the environment becoming more and more serious before occurring.
Hillslope chemical weathering across Paraná, Brazil: A data mining-GIS hybrid approach
NASA Astrophysics Data System (ADS)
Iwashita, Fabio; Friedel, Michael J.; Filho, Carlos Roberto de Souza; Fraser, Stephen J.
2011-09-01
Self-organizing map (SOM) and geographic information system (GIS) models were used to investigate the nonlinear relationships associated with geochemical weathering processes at local (~100 km 2) and regional (~50,000 km 2) scales. The data set consisted of 1) 22 B-horizon soil variables: P, C, pH, Al, total acidity, Ca, Mg, K, total cation exchange capacity, sum of exchangeable bases, base saturation, Cu, Zn, Fe, B, S, Mn, gammaspectrometry (total count, potassium, thorium, and uranium) and magnetic susceptibility measures; and 2) six topographic variables: elevation, slope, aspect, hydrological accumulated flux, horizontal curvature and vertical curvature. It is characterized at 304 locations from a quasi-regular grid spaced about 24 km across the state of Paraná. This data base was split into two subsets: one for analysis and modeling (274 samples) and the other for validation (30 samples) purposes. The self-organizing map and clustering methods were used to identify and classify the relations among solid-phase chemical element concentrations and GIS derived topographic models. The correlation between elevation and k-means clusters related the relative position inside hydrologic macro basins, which was interpreted as an expression of the weathering process reaching a steady-state condition at the regional scale. Locally, the chemical element concentrations were related to the vertical curvature representing concave-convex hillslope features, where concave hillslopes with convergent flux tends to be a reducing environment and convex hillslopes with divergent flux, oxidizing environments. Stochastic cross validation demonstrated that the SOM produced unbiased classifications and quantified the relative amount of uncertainty in predictions. This work strengthens the hypothesis that, at B-horizon steady-state conditions, the terrain morphometry were linked with the soil geochemical weathering in a two-way dependent process: the topographic relief was a factor on environmental geochemistry while chemical weathering was for terrain feature delineation.
Llerena, Katiah; Park, Stephanie G; McCarthy, Julie M; Couture, Shannon M; Bennett, Melanie E; Blanchard, Jack J
2013-07-01
The Clinical Assessment Interview for Negative Symptoms (CAINS) is an empirically developed interview measure of negative symptoms. Building on prior work, this study examined the reliability and validity of a self-report measure based on the CAINS-the Motivation and Pleasure Scale-Self-Report (MAP-SR)-that assesses the motivation and pleasure domain of negative symptoms. Thirty-seven participants with schizophrenia or schizoaffective disorder completed the 18-item MAP-SR, the CAINS, and other measures of functional outcome. Item analyses revealed three items that performed poorly. The revised 15-item MAP-SR demonstrated good internal consistency and convergent validity with the clinician-rated Motivation and Pleasure scale of the CAINS, as well as good discriminant validity, with little association with psychotic symptoms or depression/anxiety. MAP-SR scores were related to social anhedonia, social closeness, and clinician-rated social functioning. The MAP-SR is a promising self-report measure of severity of negative symptoms. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kagawa, Ayako; Le Sourd, Guillaume
2018-05-01
United Nations Secretariat activities, mapping began in 1946, and by 1951, the need for maps increased and an office with a team of cartographers was established. Since then, with the development of technologies including internet, remote sensing, unmanned aerial systems, relationship database management and information systems, geospatial information provides an ever-increasing variation of support to the work of the Organization for planning of operations, decision-making and monitoring of crises. However, the need for maps has remained intact. This presentation aims to highlight some of the cartographic representation styles over the decades by reviewing the evolution of selected maps by the office, and noting the changing cognitive and semiotic aspects of cartographic and geographic visualization required by the United Nations. Through presentation and analysis of these maps, the changing dynamics of the Organization in information management can be reflected, with a reminder of the continuing and expanding deconstructionist role of a cartographer, now geospatial information management experts.
Self-organization of helium precipitates into elongated channels within metal nanolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Di; Li, Nan; Yuryev, Dina
Material degradation due to precipitation of implanted helium (He) is a key concern in nuclear energy. Decades of research have mapped out the fate of He precipitates in metals, from nucleation and growth of equiaxed bubbles and voids to formation and bursting of surface blisters. By contrast, we show that He precipitates confined within nanoscale metal layers depart from their classical growth trajectories: They self-organize into elongated channels. These channels form via templated nucleation of He precipitates along layer surfaces followed by their growth and spontaneous coalescence into stable precipitate lines. The total line length and connectivity increases with themore » amount of implanted He, indicating that these channels ultimately interconnect into percolating “vascular” networks. In conclusion, vascularized metal composites promise a transformative solution to He-induced damage by enabling in operando outgassing of He and other impurities while maintaining material integrity.« less
Self-organization of helium precipitates into elongated channels within metal nanolayers
Chen, Di; Li, Nan; Yuryev, Dina; ...
2017-11-10
Material degradation due to precipitation of implanted helium (He) is a key concern in nuclear energy. Decades of research have mapped out the fate of He precipitates in metals, from nucleation and growth of equiaxed bubbles and voids to formation and bursting of surface blisters. By contrast, we show that He precipitates confined within nanoscale metal layers depart from their classical growth trajectories: They self-organize into elongated channels. These channels form via templated nucleation of He precipitates along layer surfaces followed by their growth and spontaneous coalescence into stable precipitate lines. The total line length and connectivity increases with themore » amount of implanted He, indicating that these channels ultimately interconnect into percolating “vascular” networks. In conclusion, vascularized metal composites promise a transformative solution to He-induced damage by enabling in operando outgassing of He and other impurities while maintaining material integrity.« less
Self-organization of helium precipitates into elongated channels within metal nanolayers
Chen, Di; Li, Nan; Yuryev, Dina; Baldwin, J. Kevin; Wang, Yongqiang; Demkowicz, Michael J.
2017-01-01
Material degradation due to precipitation of implanted helium (He) is a key concern in nuclear energy. Decades of research have mapped out the fate of He precipitates in metals, from nucleation and growth of equiaxed bubbles and voids to formation and bursting of surface blisters. By contrast, we show that He precipitates confined within nanoscale metal layers depart from their classical growth trajectories: They self-organize into elongated channels. These channels form via templated nucleation of He precipitates along layer surfaces followed by their growth and spontaneous coalescence into stable precipitate lines. The total line length and connectivity increases with the amount of implanted He, indicating that these channels ultimately interconnect into percolating “vascular” networks. Vascularized metal composites promise a transformative solution to He-induced damage by enabling in operando outgassing of He and other impurities while maintaining material integrity. PMID:29152573
NASA Astrophysics Data System (ADS)
Lin, Bin; An, Jubai; Brown, Carl E.; Chen, Weiwei
2003-05-01
In this paper an artificial neural network (ANN) approach, which is based on flexible nonlinear models for a very broad class of transfer functions, is applied for multi-spectral data analysis and modeling of airborne laser fluorosensor in order to differentiate between classes of oil on water surface. We use three types of algorithm: Perceptron Network, Back-Propagation (B-P) Network and Self-Organizing feature Maps (SOM) Network. Using the data in form of 64-channel spectra as inputs, the ANN presents the analysis and estimation results of the oil type on the basis of the type of background materials as outputs. The ANN is trained and tested using sample data set to the network. The results of the above 3 types of network are compared in this paper. It is proved that the training has developed a network that not only fits the training data, but also fits real-world data that the network will process operationally. The ANN model would play a significant role in the ocean oil-spill identification in the future.
Sakakibara, Brodie M; Lear, Scott A; Barr, Susan I; Benavente, Oscar; Goldsmith, Charlie H; Silverberg, Noah D; Yao, Jennifer; Eng, Janice J
2017-06-01
To describe the systematic development of the Stroke Coach, a theory- and evidence-based intervention to improve control of lifestyle behavior risk factors in patients with stroke. Intervention development. Community. Individuals who have had a stroke. We used intervention mapping to guide the development of the Stroke Coach. Intervention mapping is a systematic process used for intervention development and composed of steps that progress from the integration of theory and evidence to the organization of realistic strategies to facilitate the development of a practical intervention supported by empirical evidence. Social cognitive theory was the underlying premise for behavior change, whereas control theory methods were directed toward sustaining the changes to ensure long-term health benefits. Practical evidence-based strategies were linked to behavioral determinants to improve stroke risk factor control. Not applicable. The Stroke Coach is a patient-centered, community-based, telehealth intervention to promote healthy lifestyles after stroke. Over 6 months, participants receive seven 30- to 60-minute telephone sessions with a lifestyle coach who provides education, facilitates motivation for lifestyle modification, and empowers participants to self-management their stroke risk factors. Participants also receive a self-management manual and a self-monitoring kit. Through the use of intervention mapping, we developed a theoretically sound and evidence-grounded intervention to improve risk factor control in patients with stroke. If empirical evaluation of the Stroke Coach produces positive results, the next step will be to develop an implementation intervention to ensure successful uptake and delivery of the program in community and outpatient settings. Copyright © 2017 American Congress of Rehabilitation Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Cabell, R.; Delle Monache, L.; Alessandrini, S.; Rodriguez, L.
2015-12-01
Climate-based studies require large amounts of data in order to produce accurate and reliable results. Many of these studies have used 30-plus year data sets in order to produce stable and high-quality results, and as a result, many such data sets are available, generally in the form of global reanalyses. While the analysis of these data lead to high-fidelity results, its processing can be very computationally expensive. This computational burden prevents the utilization of these data sets for certain applications, e.g., when rapid response is needed in crisis management and disaster planning scenarios resulting from release of toxic material in the atmosphere. We have developed a methodology to reduce large climate datasets to more manageable sizes while retaining statistically similar results when used to produce ensembles of possible outcomes. We do this by employing a Self-Organizing Map (SOM) algorithm to analyze general patterns of meteorological fields over a regional domain of interest to produce a small set of "typical days" with which to generate the model ensemble. The SOM algorithm takes as input a set of vectors and generates a 2D map of representative vectors deemed most similar to the input set and to each other. Input predictors are selected that are correlated with the model output, which in our case is an Atmospheric Transport and Dispersion (T&D) model that is highly dependent on surface winds and boundary layer depth. To choose a subset of "typical days," each input day is assigned to its closest SOM map node vector and then ranked by distance. Each node vector is treated as a distribution and days are sampled from them by percentile. Using a 30-node SOM, with sampling every 20th percentile, we have been able to reduce 30 years of the Climate Forecast System Reanalysis (CFSR) data for the month of October to 150 "typical days." To estimate the skill of this approach, the "Measure of Effectiveness" (MOE) metric is used to compare area and overlap of statistical exceedance between the reduced data set and the full 30-year CFSR dataset. Using the MOE, we find that our SOM-derived climate subset produces statistics that fall within 85-90% overlap with the full set while using only 15% of the total data length, and consequently, 15% of the computational time required to run the T&D model for the full period.
Role Allocation and Team Structure in Command and Control Teams
2014-06-01
organizational psychology and management sciences literature show concepts such as empowered self-management and self-regulating work teams (see Cooney, 2004...tankers (FT), search units (S) and rescue units (R). Each unit is represented on the map by a numbered icon. Each type of unit is colour -coded and...Understanding team adaptation: A conceptual analysis and model. Journal of Applied Psychology , 91, 1189-1207. Cannon-Bowers, J. A., Tannenbaum
An artificial intelligence approach fit for tRNA gene studies in the era of big sequence data.
Iwasaki, Yuki; Abe, Takashi; Wada, Kennosuke; Wada, Yoshiko; Ikemura, Toshimichi
2017-09-12
Unsupervised data mining capable of extracting a wide range of knowledge from big data without prior knowledge or particular models is a timely application in the era of big sequence data accumulation in genome research. By handling oligonucleotide compositions as high-dimensional data, we have previously modified the conventional self-organizing map (SOM) for genome informatics and established BLSOM, which can analyze more than ten million sequences simultaneously. Here, we develop BLSOM specialized for tRNA genes (tDNAs) that can cluster (self-organize) more than one million microbial tDNAs according to their cognate amino acid solely depending on tetra- and pentanucleotide compositions. This unsupervised clustering can reveal combinatorial oligonucleotide motifs that are responsible for the amino acid-dependent clustering, as well as other functionally and structurally important consensus motifs, which have been evolutionarily conserved. BLSOM is also useful for identifying tDNAs as phylogenetic markers for special phylotypes. When we constructed BLSOM with 'species-unknown' tDNAs from metagenomic sequences plus 'species-known' microbial tDNAs, a large portion of metagenomic tDNAs self-organized with species-known tDNAs, yielding information on microbial communities in environmental samples. BLSOM can also enhance accuracy in the tDNA database obtained from big sequence data. This unsupervised data mining should become important for studying numerous functionally unclear RNAs obtained from a wide range of organisms.
Ortega, Ryan A; Brame, Cynthia J
2015-01-01
Concept mapping was developed as a method of displaying and organizing hierarchical knowledge structures. Using the new, multidimensional presentation software Prezi, we have developed a new teaching technique designed to engage higher-level skills in the cognitive domain. This tool, synthesis mapping, is a natural evolution of concept mapping, which utilizes embedding to layer information within concepts. Prezi's zooming user interface lets the author of the presentation use both depth as well as distance to show connections between data, ideas, and concepts. Students in the class Biology of Cancer created synthesis maps to illustrate their knowledge of tumorigenesis. Students used multiple organizational schemes to build their maps. We present an analysis of student work, placing special emphasis on organization within student maps and how the organization of knowledge structures in student maps can reveal strengths and weaknesses in student understanding or instruction. We also provide a discussion of best practices for instructors who would like to implement synthesis mapping in their classrooms. © 2015 R. A. Ortega and C. J. Brame et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
A tutorial in displaying mass spectrometry-based proteomic data using heat maps.
Key, Melissa
2012-01-01
Data visualization plays a critical role in interpreting experimental results of proteomic experiments. Heat maps are particularly useful for this task, as they allow us to find quantitative patterns across proteins and biological samples simultaneously. The quality of a heat map can be vastly improved by understanding the options available to display and organize the data in the heat map. This tutorial illustrates how to optimize heat maps for proteomics data by incorporating known characteristics of the data into the image. First, the concepts used to guide the creating of heat maps are demonstrated. Then, these concepts are applied to two types of analysis: visualizing spectral features across biological samples, and presenting the results of tests of statistical significance. For all examples we provide details of computer code in the open-source statistical programming language R, which can be used for biologists and clinicians with little statistical background. Heat maps are a useful tool for presenting quantitative proteomic data organized in a matrix format. Understanding and optimizing the parameters used to create the heat map can vastly improve both the appearance and the interoperation of heat map data.
Carrieri, Arthur H; Copper, Jack; Owens, David J; Roese, Erik S; Bottiger, Jerold R; Everly, Robert D; Hung, Kevin C
2010-01-20
An active spectrophotopolarimeter sensor and support system were developed for a military/civilian defense feasibility study concerning the identification and standoff detection of biological aerosols. Plumes of warfare agent surrogates gamma-irradiated Bacillus subtilis and chicken egg white albumen (analytes), Arizona road dust (terrestrial interferent), water mist (atmospheric interferent), and talcum powders (experiment controls) were dispersed inside windowless chambers and interrogated by multiple CO(2) laser beams spanning 9.1-12.0 microm wavelengths (lambda). Molecular vibration and vibration-rotation activities by the subject analyte are fundamentally strong within this "fingerprint" middle infrared spectral region. Distinct polarization-modulations of incident irradiance and backscatter radiance of tuned beams generate the Mueller matrix (M) of subject aerosol. Strings of all 15 normalized elements {M(ij)(lambda)/M(11)(lambda)}, which completely describe physical and geometric attributes of the aerosol particles, are input fields for training hybrid Kohonen self-organizing map feed-forward artificial neural networks (ANNs). The properly trained and validated ANN model performs pattern recognition and type-classification tasks via internal mappings. A typical ANN that mathematically clusters analyte, interferent, and control aerosols with nil overlap of species is illustrated, including sensitivity analysis of performance.
Cross-entropy embedding of high-dimensional data using the neural gas model.
Estévez, Pablo A; Figueroa, Cristián J; Saito, Kazumi
2005-01-01
A cross-entropy approach to mapping high-dimensional data into a low-dimensional space embedding is presented. The method allows to project simultaneously the input data and the codebook vectors, obtained with the Neural Gas (NG) quantizer algorithm, into a low-dimensional output space. The aim of this approach is to preserve the relationship defined by the NG neighborhood function for each pair of input and codebook vectors. A cost function based on the cross-entropy between input and output probabilities is minimized by using a Newton-Raphson method. The new approach is compared with Sammon's non-linear mapping (NLM) and the hierarchical approach of combining a vector quantizer such as the self-organizing feature map (SOM) or NG with the NLM recall algorithm. In comparison with these techniques, our method delivers a clear visualization of both data points and codebooks, and it achieves a better mapping quality in terms of the topology preservation measure q(m).
Kacen, Lea; Bakshy, Iris
2005-09-01
In this study, the authors examine a discourse between members of a cancer patients' self-help organization (CP-SHO) and oncological social workers (OSWs) on support groups for cancer patients. Eight OSWs and 8 CP-SHO volunteers served as the key research population. Using the interpretive-narrative approach to research, the authors apply a variety of data collection methods and a combination of data analysis methods: narrative analysis and discourse analysis. The findings point to the simultaneous existence of two institutional narratives for each organization, one internal and the other external. Discourse between the organizations takes place mainly at the external institutional narrative level, with each body maintaining the mistaken impression that the other's perception of reality is similar to its own (false consensus). In the meantime, the internal narratives that attest to the latent meaning of the discourse govern the interaction and prevent effective dialogue between the respective organizations.
NASA Technical Reports Server (NTRS)
Lin, Paul P.; Jules, Kenol
2002-01-01
An intelligent system for monitoring the microgravity environment quality on-board the International Space Station is presented. The monitoring system uses a new approach combining Kohonen's self-organizing feature map, learning vector quantization, and back propagation neural network to recognize and classify the known and unknown patterns. Finally, fuzzy logic is used to assess the level of confidence associated with each vibrating source activation detected by the system.
Lunar and Planetary Science XXXVI, Part 3
NASA Technical Reports Server (NTRS)
2005-01-01
Topics discussed include: Characterization of Non-Organized Soils at Gusev Crater with the Spirit Rover Data; Searching for Life with Rovers: Exploration Methods & Science Results from the 2004 Field Campaign of the "Life in the Atacama" Project and Applications to Future Mars Missions; Analysis of the Lunar Surface with Global Mineral and Mg-Number Maps ALH77005: The Magmatic History from Rehomogenized Melt Inclusions; New 70-cm Radar Mapping of the Moon; Cryptomare Deposits Revealed by 70-cm Radar; Construction of a PZT Sensor Network for Low and Hypervelocity Impact Detection; Palmer Quest: A Feasible Nuclear Fission "Vision Mission" to the Mars Polar Caps; Physical Properties of Volcanic Deposits on Venus from Radar Polarimetry; Science Alert Demonstration with a Rover Traverse Science Data Analysis System; Earth and Mars, Similar Features and Parallel Lives? Didactic Activities; Expected Constraints on Rhea s Interior from Cassini; Microbially Induced Precipitates: Examples from CO3, Si-, Mn- and Fe-rich Deposits; Li, B - Behavior in Lunar Basalts During Shock and Thermal Metamorphism: Implications for H2O in Martian Magmas; Evaluation of CO Self-Shielding as a Possible Mechanism for Anomalous Oxygen Isotopic Composition of Early Solar System Materials; Effect of Ground Ice on Apparent Thermal Inertia on Mars; Utah Marbles and Mars Blueberries: Comparative Terrestrial Analogs for Hematite Concretions on Mars; Newly Discovered Meteor Crater Metallic Impact Spherules: Report and Implications; and Evidence of Very Young Glacial Processes in Central Candor Chasma, Mars.
Energy Spectral Behaviors of Communication Networks of Open-Source Communities
Yang, Jianmei; Yang, Huijie; Liao, Hao; Wang, Jiangtao; Zeng, Jinqun
2015-01-01
Large-scale online collaborative production activities in open-source communities must be accompanied by large-scale communication activities. Nowadays, the production activities of open-source communities, especially their communication activities, have been more and more concerned. Take CodePlex C # community for example, this paper constructs the complex network models of 12 periods of communication structures of the community based on real data; then discusses the basic concepts of quantum mapping of complex networks, and points out that the purpose of the mapping is to study the structures of complex networks according to the idea of quantum mechanism in studying the structures of large molecules; finally, according to this idea, analyzes and compares the fractal features of the spectra in different quantum mappings of the networks, and concludes that there are multiple self-similarity and criticality in the communication structures of the community. In addition, this paper discusses the insights and application conditions of different quantum mappings in revealing the characteristics of the structures. The proposed quantum mapping method can also be applied to the structural studies of other large-scale organizations. PMID:26047331
Body Mapping as a Youth Sexual Health Intervention and Data Collection Tool.
Lys, Candice; Gesink, Dionne; Strike, Carol; Larkin, June
2018-06-01
In this article, we describe and evaluate body mapping as (a) an arts-based activity within Fostering Open eXpression Among Youth (FOXY), an educational intervention targeting Northwest Territories (NWT) youth, and (b) a research data collection tool. Data included individual interviews with 41 female participants (aged 13-17 years) who attended FOXY body mapping workshops in six communities in 2013, field notes taken by the researcher during the workshops and interviews, and written reflections from seven FOXY facilitators on the body mapping process (from 2013 to 2016). Thematic analysis explored the utility of body mapping using a developmental evaluation methodology. The results show body mapping is an intervention tool that supports and encourages participant self-reflection, introspection, personal connectedness, and processing difficult emotions. Body mapping is also a data collection catalyst that enables trust and youth voice in research, reduces verbal communication barriers, and facilitates the collection of rich data regarding personal experiences.