Determination of anisotropy and multimorphology in fly ash based geopolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, M. Irfan, E-mail: mirfanwazir@gmail.com; Azizli, Khairun, E-mail: khairun-azizli@petronas.com.my; Sufian, Suriati, E-mail: suriati@petronas.com.my
2015-07-22
In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.
Determination of anisotropy and multimorphology in fly ash based geopolymers
NASA Astrophysics Data System (ADS)
Khan, M. Irfan; Azizli, Khairun; Sufian, Suriati; Man, Zakaria; Siyal, Ahmer Ali; Ullah, Hafeez
2015-07-01
In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.
Desmosomes: A light microscopic and ultrastructural analysis of desmosomes in odontogenic cysts.
Raju, Pratima; Wadhwan, Vijay; Chaudhary, Minal S
2014-01-01
Desmosomes together with adherens junctions represent the major adhesive cell-cell junctions of epithelial cells. Any damage to these junctions leads to loss of structural balance. The present study was designed to analyze the desmosomal junctions in different odontogenic cysts and compare them with their corresponding hematoxylin and eosin (H and E) stained sections. Ten cases each of odontogenic keratocyst (OKC), dentigerous cysts (DCs), radicular cysts (RCs) and normal mucosa were stained with hematoxylin and eosin. Scanning electron microscopy (SEM) analysis of the sections was then carried out of all the sections. The area of interest on H and E stained section was marked and this marking was later superimposed onto the corresponding unstained sections and were subjected to SEM analysis. OKC at ×1000 magnification showed many prominent desmosomes. However, an increase in the intercellular space was also noted. SEM analysis demonstrated similar findings with the presence of many desmosomes, though they were seen to be damaged and fragile. H and E stained DC under oil immersion did not show any prominent desmosomes. SEM analysis of the same confirmed the observation and very minimal number were seen with a very condense arrangement of the epithelial cells. RC at ×1000 magnification revealed plenty of desmosomes, which were again confirmed by SEM. The number and quality of desmosomal junctions in all the cysts has a role in the clinical behavior of the cyst.
Facile Synthesis and Characterization of ZrO₂ Nanoparticles via Modified Co-Precipitation Method.
Ramachandran, M; Subadevi, R; Liu, Wei-Ren; Sivakumar, M
2018-01-01
The crystalline Zirconium oxide (ZrO2) nano particles were synthesized using optimized content of Zirconium nitrate (Zr(NO3)2·3H2O) with varying KOH concentration (0.5, 1 and 1.5 M) by co-precipitation method. The thermal history of the precursor was carefully analyzed through Thermogravimetric (TG/DTA) measurement. The as prepared samples were characterized to ensure structural, functional, morphological, compositional, chemical composition and band gap by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Laser Raman, scanning electron microscopy (SEM), High resolution Transverse Electron Microscopy (HR-TEM), X-ray photo electron spectroscopy (XPS), EDX, Photo luminescence spectroscopy (PL). The monoclinic structure with space group P21/c has been confirmed from XRD (JCPDS 89-9066). The Zr-O stretching vibration and Zr-O2-Zr bending vibrations were confirmed through FTIR analysis. The well dispersed particles with spherical morphology were confirmed through SEM and TEM analysis. The oxidation states of Zr, O and C were confirmed through XPS analysis. The oxygen vacancies and band gap of the particles were investigated through PL analysis.
O'Mahony, Aoife M; Samek, Izabela A; Sattayasamitsathit, Sirilak; Wang, Joseph
2014-08-19
Field-deployable voltammetric screening coupled with complementary laboratory-based analysis to confirm the presence of gunshot residue (GSR) from the hands of a subject who has handled, loaded, or discharged a firearm is described. This protocol implements the orthogonal identification of the presence of GSR utilizing square-wave stripping voltammetry (SWSV) as a rapid screening tool along with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) to confirm the presence of the characteristic morphology and metal composition of GSR particles. This is achieved through the judicious modification of the working electrode of a carbon screen-printed electrode (CSPE) with carbon tape (used in SEM analysis) to fix and retain a sample. A comparison between a subject who has handled and loaded a firearm and a subject who has had no contact with GSR shows the significant variations in voltammetric signals and the presence or absence of GSR-consistent particles and constituent metals. This initial electrochemical screening has no effect on the integrity of the metallic particles, and SEM/EDX analysis conducted prior to and postvoltammetry show no differences in analytical output. The carbon tape is instrumental in retaining the GSR sample after electrochemical analysis, supported by comparison with orthogonal detection at a bare CSPE. This protocol shows great promise as a two-tier detection system for the presence of GSR from the hands of a subject, whereby initial screening can be conducted rapidly onsite by minimally trained operators; confirmation can follow at the same substrate to substantiate the voltammetric results.
The relationship between cost estimates reliability and BIM adoption: SEM analysis
NASA Astrophysics Data System (ADS)
Ismail, N. A. A.; Idris, N. H.; Ramli, H.; Rooshdi, R. R. Raja Muhammad; Sahamir, S. R.
2018-02-01
This paper presents the usage of Structural Equation Modelling (SEM) approach in analysing the effects of Building Information Modelling (BIM) technology adoption in improving the reliability of cost estimates. Based on the questionnaire survey results, SEM analysis using SPSS-AMOS application examined the relationships between BIM-improved information and cost estimates reliability factors, leading to BIM technology adoption. Six hypotheses were established prior to SEM analysis employing two types of SEM models, namely the Confirmatory Factor Analysis (CFA) model and full structural model. The SEM models were then validated through the assessment on their uni-dimensionality, validity, reliability, and fitness index, in line with the hypotheses tested. The final SEM model fit measures are: P-value=0.000, RMSEA=0.079<0.08, GFI=0.824, CFI=0.962>0.90, TLI=0.956>0.90, NFI=0.935>0.90 and ChiSq/df=2.259; indicating that the overall index values achieved the required level of model fitness. The model supports all the hypotheses evaluated, confirming that all relationship exists amongst the constructs are positive and significant. Ultimately, the analysis verified that most of the respondents foresee better understanding of project input information through BIM visualization, its reliable database and coordinated data, in developing more reliable cost estimates. They also perceive to accelerate their cost estimating task through BIM adoption.
Effect of stoichiometry on magnetic and transport properties in polycrystalline Y2Ir2O7
NASA Astrophysics Data System (ADS)
Dwivedi, Vinod Kumar; Mukhopadhyay, Soumik
2018-05-01
In this paper we discuss synthesis of polycrystalline Y2Ir2O7 by solid state reaction route. XRD analysis shows deviation from stoichiometry which is also confirmed by SEM-EDX analysis. SEM analysis indicates average particle size ranging from 100 nm to 800 µm. EDX analysis gives clear evidence for deviation of stoichiometry of the product. Magnetic analysis is indicating effect of stoichiometry and showing ferromagnetic interaction unlike antiferromagnetic feature. Electrical resistivity is showing similar behavior as reported earlier and reveals no effect of different size of grains or grain boundaries from room temperature to 125 K.
Loiola, A R; Andrade, J C R A; Sasaki, J M; da Silva, L R D
2012-02-01
Zeolite 4A (LTA) has been successfully synthesized by a hydrothermal method, where kaolin was used as silica and alumina source. The synthesized zeolite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser granulometry, and FTIR spectroscopy. XRD data from the Rietveld refinement method confirmed only one crystallographic phase. Zeolite A morphology was observed by SEM analysis, and it showed well-defined crystals with slightly different sizes but with the same cubic shape. Particle size distribution of the crystals was confirmed by laser granulometry, whereas FTIR spectroscopy revealed significant structural differences between the starting material and the final zeolite product used as water softener. Copyright © 2010 Elsevier Inc. All rights reserved.
Molecularly imprinted nanopatterns for the recognition of biological warfare agent ricin.
Pradhan, Santwana; Boopathi, M; Kumar, Om; Baghel, Anuradha; Pandey, Pratibha; Mahato, T H; Singh, Beer; Vijayaraghavan, R
2009-11-15
Molecularly imprinted polymer (MIP) for biological warfare agent (BWA) ricin was synthesized using silanes in order to avoid harsh environments during the synthesis of MIP. The synthesized MIP was utilized for the recognition of ricin. The complete removal of ricin from polymer was confirmed by fluorescence spectrometer and SEM-EDAX. SEM and EDAX studies confirmed the attachment of silane polymer on the surface of silica gel matrix. SEM image of Ricin-MIP exhibited nanopatterns and it was found to be entirely different from the SEM image of non-imprinted polymer (NIP). BET surface area analysis revealed more surface area (227 m(2)/g) for Ricin-MIP than that of NIP (143 m(2)/g). In addition, surface area study also showed more pore volume (0.5010 cm(3)/g) for Ricin-MIP than that of NIP (0.2828 cm(3)/g) at 12 nm pore diameter confirming the presence of imprinted sites for ricin as the reported diameter of ricin is 12 nm. The recognition and rebinding ability of the Ricin-MIP was tested in aqueous solution. Ricin-MIP rebound more ricin when compared to the NIP. Chromatogram obtained with Ricin-MIP exhibited two peaks due to imprinting, however, chromatogram of NIP exhibited only one peak for free ricin. SDS-PAGE result confirmed the second peak observed in chromatogram of Ricin-MIP as ricin peak. Ricin-MIP exhibited an imprinting efficiency of 1.76 and it also showed 10% interference from the structurally similar protein abrin.
The molecular identification of Streptococcus equi subsp. equi strains isolated within New Zealand.
Patty, O A; Cursons, R T M
2014-03-01
To identify Streptococcus equi subsp. equi (S. equi) by PCR analysis and obtain isolates by culture, in order to investigate the strains of S. equi infecting horses within New Zealand. A diagnostic PCR, based on the amplification of the seeI gene for S. equi, was used on 168 samples submitted from horses with and without clinical signs of strangles. Samples were also processed and cultured on selective media for the isolation of β-haemolytic colonies. In addition, the hypervariable region of the seM gene of S. equi was amplified and then sequenced for strain typing purposes. Of the 168 samples, 35 tested positive for S. equi using PCR. Thirty-two confirmed samples were from horses with a clinical diagnosis of strangles and three were from horses where clinical information was unavailable. Only 22/35 (63%) confirmed S. equi samples were successfully isolated following culture. Strain typing demonstrated that two novel seM alleles of S. equi were found in New Zealand with SeM-99 strains being restricted to the North Island while SeM-100 strains were found in both North and South Islands. The application of PCR for the laboratory confirmation of strangles allowed for a rapid and sensitive identification of S. equi. Moreover, seM typing revealed that within the samples examined two strains of S. equi co-circulated within the North Island of New Zealand but only one strain in the South Island. PCR reduces the time required to obtain laboratory confirmation of strangles compared with culture methods. It also has greater sensitivity in detecting S. equi infections, which is of particular importance in the detection of carrier animals which normally shed low numbers of bacteria. Additionally, seM molecular typing can differentiate between bacterial strains, assisting in the monitoring of local strains of S. equi subsp. equi causing disease.
Shami, Vanessa M; Mahajan, Anshu; Sundaram, Vinay; Davis, Eric M; Loch, Michelle M; Kahaleh, Michel
2008-11-01
Accurate preoperative staging of pancreatic cancer (Pca) is crucial to direct management. There is a perception that endoscopic ultrasound (EUS) staging should be performed before biliary decompression because of artifact caused by self-expandable metal stents (SEMS). Our aim is to determine whether placement of SEMS affects the staging of Pca. Fifty-five patients (35 men; mean age, 67 years) with newly diagnosed Pca staged in the last 5 years and captured prospectively were divided into 2 groups matched by age, sex, and final staging. The staging accuracy of EUS in patients who had a SEMS (n = 28) was compared with patients without a SEMS (n = 27). The gold standard was surgical pathology, or cytologic confirmation of metastatic disease. Multivariate analysis was effected on age, sex, presence of SEMS, and presence of metastasis to assess prediction of staging inaccuracy. Endoscopic ultrasound correctly staged 14 (52%) of 27 patients in the no-SEMS group and 13 (46%) of 28 in the SEMS group. Logistic regression analysis identified only metastasis as a predictor of inaccuracy in EUS staging. Endoscopic ultrasound staging of Pca does not seem to be affected by the presence of a SEMS. The major reason for misstaging in both groups was failure to detect metastatic disease.
Voth-Gaeddert, Lee E; Stoker, Matthew; Cornell, Devin; Oerther, Daniel B
2018-04-01
Guatemala has the sixth worst stunting rate with 48% of children under five years of age classified as stunted according to World Health Organization standards. This study utilizes two different yet complimentary system-analysis approaches to analyze correlations among environmental and demographic variables, environmental enteric dysfunction (EED), and child height-for-age (stunting metric) in Guatemala. Two descriptive models constructed around applicable environmental and demographic factors on child height-for-age and EED were analyzed using Network Analysis (NA) and Structural Equation Modeling (SEM). Data from two populations of children between the age of three months and five years were used. The first population (n = 2103) was drawn from the Food for Peace Baseline Survey conducted by the US Agency for International Development (USAID) in 2012, and the second population (n = 372) was drawn from an independent survey conducted by the San Vicente Health Center in 2016. The results from the NA of the height-for-age model confirmed pathogen exposure, nutrition, and prenatal health as important, and the results from the NA of the EED model confirmed water source, water treatment, and type of sanitation as important. The results from the SEM of the height-for-age model confirmed a statistically significant correlation among child height-for-age and child-mother interaction (-0.092, p = 0.076) while the SEM of the EED model confirmed the statistically significant correlation among EED and type of water treatment (-0.115, p = 0.013). Our approach supports important efforts to understand the complex set of factors associated with child stunting among communities sharing similarities with San Vicente. Copyright © 2018 Elsevier GmbH. All rights reserved.
De Oliveira Daltoé, M; Lepri, C Penazzo; Wiezel, J Guilherme G; Tornavoi, D Cremonezzi; Agnelli, J A Marcondes; Reis, A Cândido Dos
2013-03-01
Researches that assess the behavior of dental materials are important for scientific and industrial development especially when they are tested under conditions that simulate the oral environment, so this work analyzed the compressive strength and microstructure of three composite resins subjected to accelerated artificial aging (AAA). Three composites resins of 3M (P90, P60 and Z100) were analyzed and were obtained 16 specimens for each type (N.=48). Half of each type were subjected to UV-C system AAA and then were analyzed the surfaces of three aged specimens and three not aged of each type through the scanning electron microscope (SEM). After, eight specimens of each resin, aged and not aged, were subjected to compression test. After statistical analysis of compressive strength values, it was found that there was difference between groups (α <0.05). The resin specimens aged P60 presented lower values of compressive strength statistically significant when compared to the not subject to the AAA. For the other composite resins, there was no difference, regardless of aging, a fact confirmed by SEM. The results showed that the AAA influenced the compressive strength of the resin aged P60; confirmed by surface analysis by SEM, which showed greater structural disarrangement on surface material.
Iwano, Megumi; Che, Fang-Sik; Takayama, Seiji; Fukui, Kiichi; Isogai, Akira
2003-01-01
To elucidate the topological positioning of ribosomal RNA genes (rDNA) and nucleolar structure in three dimensions, we examined the localization of rDNA using in situ hybridization (ISH) analysis by scanning electron microscopy (SEM). The rDNA genes within the three-dimensional architecture of nucleoli were detected on chromatin fibers that connect a thick strand-like structure and a protrusion of rDNA into the inner nuclear hole where the nucleolus is formed. This novel use of ISH together with SEM is useful for the analysis of nucleolar structure in detail. Furthermore, rDNA was detected at the periphery of the fibrillar centers (FCs) of the nucleolus using immuno-gold labeling together with transmission electron microscopy (TEM). In situ hybridization with TEM confirmed that rDNA is naked and thus active in the FCs of nucleoli; ISH with SEM confirmed that rDNA is not covered with ribonucleo proteins at the protruding point and is thus inactive. We also show that the distribution pattern of FCs differs from sample to sample. These results indicate that rDNA is transcribed dynamically in a time- and region-specific manner over the course of the cell cycle.
NASA Astrophysics Data System (ADS)
Sivakumar, S.; Venkatesan, A.; Soundhirarajan, P.; Khatiwada, Chandra Prasad
2015-02-01
In the present study, synthesized pure and Ag (1%, 2%, and 3%) doped Cadmium Oxide (CdO) nanoparticles by chemical precipitation method. Then, the synthesized products were characterized by thermo gravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, Ultra violet-Vis diffused reflectance spectroscopy (UV-Vis-DRS), Scanning electron microscopy (SEM), Energy dispersive X-rays (EDX) spectroscopy, and anti-bacterial activities, respectively. The transition temperatures and phase transitions of Cd(OH)2 to CdO at 400 °C was confirmed by TG-DTA analysis. The XRD patterns show the cubic shape and average particle sizes are 21, 40, 34, and 37 nm, respectively for pure and Ag doped samples. FT-IR study confirmed the presence of CdO and Ag at 677 and 459 cm-1, respectively. UV-Vis-DRS study shows the variation on direct and indirect band gaps. The surface morphologies and elemental analysis have been confirmed from SEM and with EDX. In addition, the synthesized products have been characterized by antibacterial activities against Gram-positive and negative bacteria. Further, the present investigation suggests that CdO nanoparticles have the great potential applications on various industrial and medical fields of research.
Surface analysis characterisation of gum binders used in modern watercolour paints
NASA Astrophysics Data System (ADS)
Sano, Naoko; Cumpson, Peter J.
2016-02-01
Conducting this study has demonstrated that not only SEM-EDX but also XPS can be an efficient tool for characterising watercolour paint surfaces. We find that surface effects are mediated by water. Once the powdered components in the watercolour come into contact with water they dramatically transform their chemical structures at the surface and show the presence of pigment components with a random dispersion within the gum layer. Hence the topmost surface of the paint is confirmed as being composed of the gum binder components. This result is difficult to confirm using just one analytical technique (either XPS or SEM-EDX). In addition, peak fitting of C1s XPS spectra suggests that the gum binder in the commercial watercolour paints is probably gum arabic (by comparison with the reference materials). This identification is not conclusive, but the combination techniques of XPS and SEM shows the surface structure with material distribution of the gum binder and the other ingredients of the watercolour paints. Therefore as a unique technique, XPS combined with SEM-EDX may prove a useful method in the study of surface structure for not only watercolour objects but also other art objects; which may in future help in the conservation for art.
Single step synthesis of nanostructured boron nitride for boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay
2015-05-01
Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).
The Psychometric Properties of the School Engagement Measure in Adolescents in Singapore
ERIC Educational Resources Information Center
Yusof, Noradlin; Ang, Rebecca P.; Oei, Tian Po S.
2017-01-01
This study examined the psychometric properties of the school engagement measure (SEM) in Singapore. The sample consisted of 1,027 students from a multi-ethnic Singapore adolescent community. Exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) confirmed that the two-factor solution, namely, (a) Emotional and (b) Cognitive…
Miniature Variable Pressure Scanning Electron Microscope for In-Situ Imaging and Chemical Analysis
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Jerman, Gregory; Gregory, Don; Sampson, Allen R.
2012-01-01
NASA Marshall Space Flight Center (MSFC) is leading an effort to develop a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for in-situ imaging and chemical analysis of uncoated samples. This instrument development will be geared towards operation on Mars and builds on a previous MSFC design of a mini-SEM for the moon (funded through the NASA Planetary Instrument Definition and Development Program). Because Mars has a dramatically different environment than the moon, modifications to the MSFC lunar mini-SEM are necessary. Mainly, the higher atmospheric pressure calls for the use of an electron gun that can operate at High Vacuum, rather than Ultra-High Vacuum. The presence of a CO2-rich atmosphere also allows for the incorporation of a variable pressure system that enables the in-situ analysis of nonconductive geological specimens. Preliminary testing of Mars meteorites in a commercial Environmental SEM(Tradmark) (FEI) confirms the usefulness of lowcurrent/low-accelerating voltage imaging and highlights the advantages of using the Mars atmosphere for environmental imaging. The unique capabilities of the MVP-SEM make it an ideal tool for pursuing key scientific goals of NASA's Flagship Mission Max-C; to perform in-situ science and collect and cache samples in preparation for sample return from Mars.
Zia, Khalid Mahmood; Anjum, Sohail; Zuber, Mohammad; Mujahid, Muhammad; Jamil, Tahir
2014-05-01
The present research work was performed to synthesize a new series of chitosan based polyurethane elastomers (PUEs) using poly(ɛ-caprolactone) (PCL). The chitosan based PUEs were prepared by step-growth polymerization technique using poly(ɛ-caprolactone) (PCL) and 2,4-toluene diisocyanate (TDI). In the second step the PU prepolymer was extended with different mole ratios of chitosan and 1,4-butane diol (BDO). Molecular engineering was carried out during the synthesis. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed chitosan based PUEs structure. Internal morphology of the prepared PUEs was studied using SEM analysis. The SEM images confirmed the incorporation of chitosan molecules into the PU backbone. Copyright © 2014 Elsevier B.V. All rights reserved.
Single step synthesis of nanostructured boron nitride for boron neutron capture therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com
2015-05-15
Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications asmore » well boron neutron capture therapy (BNCT)« less
NASA Astrophysics Data System (ADS)
Subhapriya, S.; Gomathipriya, P.
2018-06-01
In this study, Titania nanorods were synthesised from aqueous extract of Turbinaria conoides (brown seaweeds) (TiO2NRs-TC) under surfactant free medium. The photocatalytic activity of the synthesised nanorods was tested towards the photocatalytic decolourization using simulated dye wastewater containing Navy Blue HER (NBHER). The synthesised Titania nanorods were characterized by using x-ray diffraction (XRD), UV–visible spectroscopy (UV–vis), Scanning Electron Microscopy (SEM), Energy Dispersive Spectrophotometer (EDS) and Transmission Electron Microscopy (TEM). XRD pattern confirms the anatase phase formation and HR-SEM micrograph shows the presence of rod like structure with the size of about 50 nm. TEM analysis proves the rod like structure with a size of 45–50 nm which was in agreement with the XRD analysis and HR-SEM images. EDS and XDS confirmed the formation of Titania nanoparticles. The formation of TiO2NRs-TC has a beneficial influence on the dye Navy blue HER photodegradation. TiO2-TC nano rods also show superior photocatalytic ability in hydrogen generation (2.1 mmol/h‑1g‑1). The antibacterial activity of the synthesised nanoparticles was examined using disc diffusion method which showed diverse susceptibility of microorganisms to the Titania nanoparticles.
NASA Astrophysics Data System (ADS)
Prasannaraj, Govindaraj; Venkatachalam, Perumal
2017-06-01
This report describes the synthesis of metallic silver nanoparticles (AgNPs) using extracts of four medicinal plants (Aegle marmelos (A. marmelos), Alstonia scholaris (A. scholaris), Andrographis paniculata (A. paniculata) and Centella asiatica (C. asiatica)). The bio-conjugates were characterized by UV-visible spectroscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared spectrometry (FTIR), x-ray diffraction (XRD) and zeta potential. This analysis confirmed that UV-Vis spectral peaks at 375 nm, 380 nm, 420 nm and 380 nm are corresponding to A. marmelos, A. scholaris, A. paniculata and C. asiatica mediated AgNPs, respectively. SEM images revealed that all the obtained four AgNPs are predominantly spherical, fibres and rectangle in shape with an average size of 36-97 nm. SEM-EDS and XRD analysis confirmed the presence of elemental AgNPs in crystalline form for all the four nanoparticle samples. The phytochemicals of various medicinal plant extracts with different functional groups were responsible for reduction of Ag+ to AgNPs, which act as capping and stabilizing agent. Among four types of AgNPs tested for anticancer activity, the Ap mediated AgNPs had shown enhanced activity against HepG2 cells (27.01 µg ml-1) and PC3 cells (32.15 µg ml-1).
Rodríguez, N; Menéndez, N; Tornero, J; Amils, R; de la Fuente, V
2005-03-01
* The analysis of metal distribution in Imperata cylindrica, a perennial grass isolated from the banks of Tinto River (Iberian Pyritic Belt), an extreme acidic environment with high content in metals, has shown a remarkable accumulation of iron. This property has been used to study iron speciation and its distribution among different tissues and structures of the plant. * Mossbauer (MS) and X-ray diffraction (XRD) were used to determine the iron species, scanning electron microscopy (SEM) to locate iron biominerals among plant tissue structures, and energy-dispersive X-ray microanalysis (EDAX), X-ray fluorescence (TXRF) and inductively coupled plasma emission spectroscopy (ICP-MS) to confirm their elemental composition. * The MS spectral analysis indicated that iron accumulated in this plant mainly as jarosite and ferritin. The presence of jarosite was confirmed by XRD and the distribution of both minerals in structures of different tissues was ascertained by SEM-EDAX analysis. * The convergent results obtained by complementary techniques suggest a complex iron management system in I. cylindrica, probably as a consequence of the environmental conditions of its habitat.
NASA Astrophysics Data System (ADS)
Basu, Shibani; Maji, Priyankar; Ganguly, Jhuma
2016-01-01
The present study explores that the aqueous extract of the seeds of Nyctanthes arbor-tristis (aka night jasmine) is very efficient for the synthesis of stable AgNPs from aqueous solution of AgNO3. The extract acts as both reducing (from Ag+ to Ag0) and capping agent in the aqueous phase. The constituents in extract are mainly biomolecules like carbohydrates and phenolic compounds, which are responsible for the preparation of stable AgNPs within 20 min of reaction time at 25 °C using without any severe conditions. The synthesized silver nanoparticles were characterized with UV-Visible spectroscopy, FT-IR, XRD and SEM. UV-Vis spectroscopy analysis showed peak at 420 nm, which corresponds to the surface plasmon resonance of AgNPs. XRD results showed peaks at (111), (200), (220), which confirmed the presence of AgNPs with face-centered cubic structure. The uniform spherical nature of the AgNPs and size (between 50 and 80 nm) were further confirmed by SEM analysis.
NASA Astrophysics Data System (ADS)
Abraham, S. Daniel; David, S. Theodore; Bennie, R. Biju; Joel, C.; Kumar, D. Sanjay
2016-06-01
Bismuth vanadate (BiVO4) nanocrystals have been successfully synthesised using microwave-assisted combustion synthesis (MCS), and characterised using Fourier transform infrared (FT-IR) and Raman spectra, surface area analysis (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy Dispersive X-ray analysis (EDX), diffused reflectance spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. The XRD results confirmed the formation of monoclinic bismuth vanadate. The formations of BiO & VO43-vibrations were ascertained from FT-IR data. The morphology of hallow internal structural micro entities were confirmed by SEM. The optical properties were determined by DRS and PL spectra. Hence, the influence of the preparation methods on the structure, morphology and optical activities of bismuth vanadate was investigated systematically. Photocatalytic degradation (PCD) of Alizarin Red S (ARS), an effective disrupting chemical in aqueous medium was investigated using BiVO4 nanoparticles. The kinetics of PCD was found to follow pseudo first-order.
Wang, Fang; Ouyang, Guang; Zhou, Changsong; Wang, Suiping
2015-01-01
A number of studies have explored the time course of Chinese semantic and syntactic processing. However, whether syntactic processing occurs earlier than semantics during Chinese sentence reading is still under debate. To further explore this issue, an event-related potentials (ERPs) experiment was conducted on 21 native Chinese speakers who read individually-presented Chinese simple sentences (NP1+VP+NP2) word-by-word for comprehension and made semantic plausibility judgments. The transitivity of the verbs was manipulated to form three types of stimuli: congruent sentences (CON), sentences with a semantically violated NP2 following a transitive verb (semantic violation, SEM), and sentences with a semantically violated NP2 following an intransitive verb (combined semantic and syntactic violation, SEM+SYN). The ERPs evoked from the target NP2 were analyzed by using the Residue Iteration Decomposition (RIDE) method to reconstruct the ERP waveform blurred by trial-to-trial variability, as well as by using the conventional ERP method based on stimulus-locked averaging. The conventional ERP analysis showed that, compared with the critical words in CON, those in SEM and SEM+SYN elicited an N400-P600 biphasic pattern. The N400 effects in both violation conditions were of similar size and distribution, but the P600 in SEM+SYN was bigger than that in SEM. Compared with the conventional ERP analysis, RIDE analysis revealed a larger N400 effect and an earlier P600 effect (in the time window of 500-800 ms instead of 570-810ms). Overall, the combination of conventional ERP analysis and the RIDE method for compensating for trial-to-trial variability confirmed the non-significant difference between SEM and SEM+SYN in the earlier N400 time window. Converging with previous findings on other Chinese structures, the current study provides further precise evidence that syntactic processing in Chinese does not occur earlier than semantic processing.
Structural and electrical properties of CZTS thin films by electrodeposition
NASA Astrophysics Data System (ADS)
Rao, M. C.; Basha, Sk. Shahenoor
2018-06-01
CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.
Alginate-hydroxypropylcellulose hydrogel microbeads for alkaline phosphatase encapsulation.
Karewicz, A; Zasada, K; Bielska, D; Douglas, T E L; Jansen, J A; Leeuwenburgh, S C G; Nowakowska, M
2014-01-01
There is a growing interest in using proteins as therapeutics agents. Unfortunately, they suffer from limited stability and bioavailability. We aimed to develop a new delivery system for proteins. ALP, a model protein, was successfully encapsulated in the physically cross-linked sodium alginate/hydroxypropylcellulose (ALG-HPC) hydrogel microparticles. The obtained objects had regular, spherical shape and a diameter of ∼4 µm, as confirmed by optical microscopy and SEM analysis. The properties of the obtained microbeads could be controlled by temperature and additional coating or crosslinking procedures. The slow, sustained release of ALP in its active form with no initial burst effect was observed for chitosan-coated microspheres at pH = 7.4 and 37 °C. Activity of ALP released from ALG/HPC microspheres was confirmed by the occurance of effectively induced mineralization. SEM and AFM images revealed formation of the interpenetrated three-dimensional network of mineral, originating from the microbeads' surfaces. FTIR and XRD analyses confirmed formation of hydroxyapatite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Paviter; Kaur, Manpreet; Singh, Bikramjeet
Boron-carbon core shell structures have been synthesized by solvo-thermal synthesis route. The synthesized material is highly pure. X-ray diffraction analysis confirms the reduction of reactants in to boron and carbon. Scanning Electron Microscopy (SEM) analysis showed that the shell is uniform with average thickness of 340 nm. Photo luminescence studies showed that the material is blue light emitting with CIE color coordinates: x=0.16085, y=0.07554.
Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation.
Goularte, Marcelo Augusto Pinto Cardoso; Barbosa, Gustavo Frainer; da Cruz, Nilson Cristino; Hirakata, Luciana Mayumi
2016-12-01
Search for materials that may either replace titanium dental implants or constitute an alternative as a new dental implant material has been widely studied. As well, the search for optimum biocompatible metal surfaces remains crucial. So, the aim of this work is to develop an oxidized surface layer on tantalum using plasma electrolytic oxidation (PEO) similar to those existing on oral implants been marketed today. Cleaned tantalum samples were divided into group 1 (control) and groups 2, 3, and 4 (treated by PEO for 1, 3, and 5 min, respectively). An electrolytic solution diluted in 1-L deionized water was used for the anodizing process. Then, samples were washed with anhydrous ethyl alcohol and dried in the open air. For complete anodic treatment disposal, the samples were immersed in acetone altogether, taken to the ultrasonic tank for 10 min, washed again in distilled water, and finally air-dried. For the scanning electron microscopy (SEM) analysis, all samples were previously coated with gold; the salt deposition analysis was conducted with an energy-dispersive X-ray spectroscopy (EDS) system integrated with the SEM unit. SEM images confirmed the changes on tantalum strips surface according to different exposure times while EDS analysis confirmed increased salt deposition as exposure time to the anodizing process also increased. PEO was able to produce both surface alteration and salt deposition on tantalum strips similar to those existing on oral implants been marketed today.
Barkun, Alan N; Adam, Viviane; Martel, Myriam; AlNaamani, Khalid; Moses, Peter L
2015-01-01
BACKGROUND/OBJECTIVE: Partially covered self-expandable metal stents (SEMS) and polyethylene stents (PES) are both commonly used in the palliation of malignant biliary obstruction. Although SEMS are significantly more expensive, they are more efficacious than PES. Accordingly, a cost-effectiveness analysis was performed. METHODS: A cost-effectiveness analysis compared the approach of initial placement of PES versus SEMS for the study population. Patients with malignant biliary obstruction underwent an endoscopic retrograde cholangiopancreatography to insert the initial stent. If the insertion failed, a percutaneous transhepatic cholangiogram was performed. If stent occlusion occurred, a PES was inserted at repeat endoscopic retrograde cholangiopancreatography, either in an outpatient setting or after admission to hospital if cholangitis was present. A third-party payer perspective was adopted. Effectiveness was expressed as the likelihood of no occlusion over the one-year adopted time horizon. Probabilities were based on a contemporary randomized clinical trial, and costs were issued from national references. Deterministic and probabilistic sensitivity analyses were performed. RESULTS: A PES-first strategy was both more expensive and less efficacious than an SEMS-first approach. The mean per-patient costs were US$6,701 for initial SEMS and US$20,671 for initial PES, which were associated with effectiveness probabilities of 65.6% and 13.9%, respectively. Sensitivity analyses confirmed the robustness of these results. CONCLUSION: At the time of initial endoscopic drainage for patients with malignant biliary obstruction undergoing palliative stenting, an initial SEMS insertion approach was both more effective and less costly than a PES-first strategy. PMID:26125107
NASA Astrophysics Data System (ADS)
Ajibade, Peter A.; Ejelonu, Benjamin C.
2013-09-01
Zn(II), Cd(II) and Hg(II) dithiocarbamate complexes have been synthesized and characterized by elemental analysis, thermogravimetric analysis, UV-Vis, FTIR, 1H- and 13C NMR spectroscopy. The complexes were thermolysed at 180 °C and used as single molecule precursors for the synthesis of HDA capped ZnS, CdS and HgS nanoparticles and polymethylmethacrylate (PMMA) nanocomposites. The optical and structural properties of the nanoparticles and nanocomposites were studied by UV-Vis, PL, XRD and SEM. The crystallites sizes of the nanoparticles varied between 3.03 and 23.45 nm. SEM and EDX analyses of the nanocomposites confirmed the presence of the nanoparticles in the polymer matrix.
Morphology and chemical composition of dentin in permanent first molars with the diagnose MIH.
Heijs, Suzanne C B; Dietz, Wolfram; Norén, Jörgen G; Blanksma, Nynke G; Jälevik, Birgitta
2007-01-01
The purpose of this investigation was to study the morphology and distribution of some inorganic elements in dentin in first permanent molars from children with Molar-Incisor Hypomineralization (MIH). Sixty four tooth sections from thirty two children were examined in polarized light. Fifteen representative sections were selected for SEM/XRMA analysis; 5 were used for SEM analysis and 10 for XRMA analysis. No morphological changes in the dentin were revealed in polarized light microscopy (PLM). However, in all but two sections interglobular dentin was found. The SEM analyzes confirmed the findings of the PLM with no structural changes to be found in the dentin. The XRMA results showed a difference in the concentration of elements between dentin below normal and dentin below carious or hypomineralized enamel. Elements related to organic matter appeared with higher values in dentin below hypomineralized and carious enamel. The morphological and chemical findings in dentin below hypomineralized enamel imply that the odontoblasts are not affected in cases of MIH, but may be affected by hypocalcemia, reflected by the presence of interglobular dentin.
Nazeer, Muhammad Anwaar; Yilgör, Emel; Yilgör, Iskender
2017-11-01
Preparation and characterization of chitosan/hydroxyapatite (CS/HA) nanocomposites displaying an intercalated structure is reported. Hydroxyapatite was synthesized through sol-gel process. Formic acid was introduced as a new solvent to obtain stable dispersions of nano-sized HA particles in polymer solution. CS/HA dispersions with HA contents of 5, 10 and 20% by weight were prepared. Self-assembling of HA nanoparticles during the drying of the solvent cast films led to the formation of homogeneous CS/HA nanocomposites. Composite films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-rays (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-rays diffraction (XRD) analysis and thermogravimetric analysis (TGA). SEM and AFM confirmed the presence of uniformly distributed HA nanoparticles on the chitosan matrix surface. XRD patterns and cross-sectional SEM images showed the formation of layered nanocomposites. Complete degradation of chitosan matrix in TGA experiments, led to the formation of nanoporous 3D scaffolds containing hydroxyapatite, β-tricalcium phosphate and calcium pyrophosphate. CS/HA composites can be considered as promising materials for bone tissue engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Shuai; Guo, Yuanming; Yan, Zhongyong; Sun, Xiumei; Zhang, Xiaojun
2015-12-01
Reliably detecting nitrofurazone (NFZ) residues in farmed crab and shrimp was previously hindered by lack of appropriately specific analytical methodology. Parent NFZ rapidly breaks down in meat, and the commonly used side-chain metabolite, semicarbazide (SEM), is non-specific as it occurs naturally in crustacean shell often leading to 'false positive' detections in meat. Using 5-nitro-2-furaldehyde (NF) as marker metabolite, following pre-column derivatization with 2,4-dinitrophenylhydrazine (DNPH), ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis in negative electrospray ionization mode enabled confirmation of NFZ residues in deliberately treated whole crab, crab meat and shrimp meat, with a limit of detection (LOD) and limit of quantification (LOQ) below 1 ng g(-1). Meanwhile, the derivatives of DNPH-NF were synthesized for the first time, purified by preparative liquid chromatography and structure characterized with nuclear magnetic resonance spectroscopy ((1)H-NMR). The purity of derivative was checked by ultra-performance liquid chromatography-tunable ultraviolet (UPLC-TUV), and the contents were beyond 99.9%. For comparison purposes, crustacean samples were analysed using both NF and SEM marker metabolites. NFZ treatment was revealed by both NF and SEM marker metabolites, but untreated crab also showed measurable levels of SEM which could potentially be misinterpreted as evidence of illegal NFZ use.
Nakao, Satoshi; Nishio, Takayuki; Kanjo, Yoshinori
2017-10-01
Bench-scale experiments were performed to investigate simultaneous recovery of phosphorus and potassium from synthetic sewage sludge effluent as crystals of magnesium potassium phosphate (MPP or struvite-(K), MgKPO 4 ·6H 2 O). The optimal pH of MPP formation was 11.5. A phosphorus level of at least 3 mM and K:P molar ratio over 3 were necessary to form MPP, which showed higher content rate of phosphorus and potassium in precipitate. MPP crystallization was confirmed by analysing the precipitates using a scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) apparatus and an X-ray Diffractometer (XRD). Inhibition of MPP crystallization by iron and aluminium was confirmed by precipitation experiments and SEM-EDX analysis. Potassium ratio against magnesium in precipitate decreased for iron concentrations greater than over 0.2 mM and aluminium concentrations over 0.05 mM.
Silicone intraocular lens surface calcification in a patient with asteroid hyalosis.
Matsumura, Kazuhiro; Takano, Masahiko; Shimizu, Kimiya; Nemoto, Noriko
2012-07-01
To confirm a substance presence on the posterior intraocular lens (IOL) surface in a patient with asteroid hyalosis. An 80-year-old man had IOLs for approximately 12 years. Opacities and neodymium-doped yttrium aluminum garnet pits were observed on the posterior surface of the right IOL. Asteroid hyalosis and an epiretinal membrane were observed OD. An IOL exchange was performed on 24 March 2008, and the explanted IOL was analyzed using a light microscope and a transmission electron microscope with a scanning electron micrograph and an energy-dispersive X-ray spectrometer for elemental analysis. To confirm asteroid hyalosis, asteroid bodies were examined with the ionic liquid (EtMeIm+ BF4-) method using a field emission scanning electron microscope (FE-SEM) with digital beam control RGB mapping. X-ray spectrometry of the deposits revealed high calcium and phosphorus peaks. Spectrometry revealed that the posterior IOL surface opacity was due to a calcium-phosphorus compound. Examination of the asteroid bodies using FE-SEM with digital beam control RGB mapping confirmed calcium and phosphorus as the main components. Calcium hydrogen phosphate dihydrate deposits were probably responsible for the posterior IOL surface opacity. Furthermore, analysis of the asteroid bodies demonstrated that calcium and phosphorus were its main components.
Modelling and analysis of FMS productivity variables by ISM, SEM and GTMA approach
NASA Astrophysics Data System (ADS)
Jain, Vineet; Raj, Tilak
2014-09-01
Productivity has often been cited as a key factor in a flexible manufacturing system (FMS) performance, and actions to increase it are said to improve profitability and the wage earning capacity of employees. Improving productivity is seen as a key issue for survival and success in the long term of a manufacturing system. The purpose of this paper is to make a model and analysis of the productivity variables of FMS. This study was performed by different approaches viz. interpretive structural modelling (ISM), structural equation modelling (SEM), graph theory and matrix approach (GTMA) and a cross-sectional survey within manufacturing firms in India. ISM has been used to develop a model of productivity variables, and then it has been analyzed. Exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) are powerful statistical techniques. CFA is carried by SEM. EFA is applied to extract the factors in FMS by the statistical package for social sciences (SPSS 20) software and confirming these factors by CFA through analysis of moment structures (AMOS 20) software. The twenty productivity variables are identified through literature and four factors extracted, which involves the productivity of FMS. The four factors are people, quality, machine and flexibility. SEM using AMOS 20 was used to perform the first order four-factor structures. GTMA is a multiple attribute decision making (MADM) methodology used to find intensity/quantification of productivity variables in an organization. The FMS productivity index has purposed to intensify the factors which affect FMS.
Biosynthesis of silver nanoparticles by a Bacillus sp. of marine origin
NASA Astrophysics Data System (ADS)
Janardhanan, A.; Roshmi, T.; Varghese, Rintu T.; Soniya, E. V.; Mathew, Jyothis; Radhakrishnan, E. K.
2013-04-01
This study was aimed to explore the nanoparticle synthesizing properties of a silver resistant Bacillus sp. isolated from a marine water sample. The 16SrDNA sequence analysis of the isolate proved it as a Bacillus strain. Very interestingly, the isolate was found to have the ability to form intracellular silver nanoparticles at room temperature within 24 hours. This was confirmed by the UV-Vis absorption analysis which showed a peak at 430 nm corresponding to the plasmon absorbance of silver nanoparticles. Further characterization of the nanoparticles was carried out by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis. The presence of silver nanoparticles with the size less than 100 nm was confirmed. These particles were found to be extremely stable as confirmed by the TEM analysis after three months of purification. So, the current study is the demonstration of an efficient synthesis of stable silver nanoparticles by a marine Bacillus strain.
Gentilini, Davide; Garagnani, Paolo; Pisoni, Serena; Bacalini, Maria Giulia; Calzari, Luciano; Mari, Daniela; Vitale, Giovanni; Franceschi, Claudio; Di Blasio, Anna Maria
2015-08-01
In this study we applied a new analytical strategy to investigate the relations between stochastic epigenetic mutations (SEMs) and aging. We analysed methylation levels through the Infinium HumanMethylation27 and HumanMethylation450 BeadChips in a population of 178 subjects ranging from 3 to 106 years. For each CpG probe, epimutated subjects were identified as the extreme outliers with methylation level exceeding three times interquartile ranges the first quartile (Q1-(3 x IQR)) or the third quartile (Q3+(3 x IQR)). We demonstrated that the number of SEMs was low in childhood and increased exponentially during aging. Using the HUMARA method, skewing of X chromosome inactivation (XCI) was evaluated in heterozygotes women. Multivariate analysis indicated a significant correlation between log(SEMs) and degree of XCI skewing after adjustment for age (β = 0.41; confidence interval: 0.14, 0.68; p-value = 0.0053). The PATH analysis tested the complete model containing the variables: skewing of XCI, age, log(SEMs) and overall CpG methylation. After adjusting for the number of epimutations we failed to confirm the well reported correlation between skewing of XCI and aging. This evidence might suggest that the known correlation between XCI skewing and aging could not be a direct association but mediated by the number of SEMs.
Ajibade, Peter A; Ejelonu, Benjamin C
2013-09-01
Zn(II), Cd(II) and Hg(II) dithiocarbamate complexes have been synthesized and characterized by elemental analysis, thermogravimetric analysis, UV-Vis, FTIR, (1)H- and (13)C NMR spectroscopy. The complexes were thermolysed at 180 °C and used as single molecule precursors for the synthesis of HDA capped ZnS, CdS and HgS nanoparticles and polymethylmethacrylate (PMMA) nanocomposites. The optical and structural properties of the nanoparticles and nanocomposites were studied by UV-Vis, PL, XRD and SEM. The crystallites sizes of the nanoparticles varied between 3.03 and 23.45 nm. SEM and EDX analyses of the nanocomposites confirmed the presence of the nanoparticles in the polymer matrix. Copyright © 2013 Elsevier B.V. All rights reserved.
Characterisations of collagen-silver-hydroxyapatite nanocomposites
NASA Astrophysics Data System (ADS)
Ciobanu, C. S.; Popa, C. L.; Petre, C. C.; Jiga, G.; Trusca, R.; Predoi, D.
2016-05-01
The XRD analysis were performed to confirm the formation of hydroxyapatite structure in collagen-silver-hydroxyapatite nanocomposites. The molecular interaction in collagen-hydroxyapatite nanocomposites was highlighted by Fourier transform infrared spectroscopy (FTIR) analysis. The SEM showed a nanostructure of collagen-silverhydroxyapatite nanocomposites composed of nano needle-like particles in a veil with collagen texture. The presence of vibrational groups characteristics to the hydroxyapatite structure in collagen-silver-hydroxyapatite (AgHApColl) nanocomposites was investigated by FTIR.
Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.
Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon
2007-11-01
Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating.
Determination of the continuous cooling transformation diagram of a high strength low alloyed steel
NASA Astrophysics Data System (ADS)
Kang, Hun Chul; Park, Bong June; Jang, Ji Hun; Jang, Kwang Soon; Lee, Kyung Jong
2016-11-01
The continuous cooling transformation diagram of a high strength low alloyed steel was determined by a dilatometer and microscopic analysis (OM, SEM) as well as thermodynamic analysis. As expected, Widmanstätten ferrite, bainite and martensite coexisted for most cooling rates, which made it difficult to determine the transformation kinetics of individual phases. However, peaks were clearly observed in the dilatometric {d( {LVDT} )}/{dT} curves. By overlapping the {d( {LVDT} )}/{dT} curves, which were determined using various cooling rates, peaks were separated and the peak rate temperatures, as well as the temperature at the start of transformation (5%) and the end of transformation (95%) of an individual phase, were determined. A SEM analysis was also conducted to identify which phase existed and to quantify the volume fraction of each phase. It was confirmed that the additional {d( {LVDT} )}/{dT} curve analysis described the transformation behavior more precisely than the conventional continuous cooling transformation diagram, as determined by the volume measured from the microstructure analysis.
Synthesis and characterization of nanostructured titanium carbide for fuel cell applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Paviter; Singh, Harwinder; Singh, Bikramjeet
2016-04-13
Titanium carbide (TiC) nanoparticles have been successfully synthesized by carbo-thermic reaction of titanium and acetone at 800 °C. This method is relatively low temperature synthesis route. It can be used for large scale production of TiC. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA) techniques. XRD analysis confirmed the formation of single phase TiC. XRD analysis confirmed that the particles are spherical in shape with an average particle size of 13 nm. DTA analysis shows that the phase is stable upto 900 °C and the material can be used formore » high temperature applications.« less
Henry, Victoria A; Jessop, Julie L P; Peeples, Tonya L
2017-02-01
High quality spectra of Pseudomonas sp. strain ADP in the planktonic and biofilm state were obtained using Raman microspectroscopy. These spectra enabled the identification of key differences between free and biofilm cells in the fingerprint region of Raman spectra in the nucleic acid, carbohydrate, and protein regions. Scanning electron microscopy (SEM) enabled detailed visualization of ADP biofilm with confirmation of associated extracellular matrix structure. Following extraction and Raman analysis of extracellular polymeric substances, Raman spectral differences between free and biofilm cells were largely attributed to the contribution of extracellular matrix components produced in mature biofilms. Raman spectroscopy complemented with SEM proves to be useful in distinguishing physiological properties among cells of the same species. Graphical Abstract Raman spectroscopy complemented with SEM proves to be useful in distinguishing physiological properties among cells of the same species.
A comparative study of heterostructured CuO/CuWO4 nanowires and thin films
NASA Astrophysics Data System (ADS)
Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins
2017-12-01
A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.
Novel perovskite coating of strontium zirconate in Inconel substrate
NASA Astrophysics Data System (ADS)
Venkatesh, G.; Blessto, B.; Rao, C. Santhosh Kumar; Subramanian, R.; Berchmans, L. John
2018-02-01
Thermal Barrier Coatings (TBC) provides a low thermal conductivity barrier to heat transfer from the hot gas in the engine to the surface of the coated alloy component. SrZrO3 powder are prepared by Sol Gel synthesis method. The synthesized powder sample is characterized by X Ray Diffraction Technique (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) and the results are interpreted. The Polycrystalline nature of SrZrO3 is confirmed and lattice spacing are determined in XRD. SEM shows sub-micron sized particles and a fringed pattern is observed in TEM. The IN718 specimen is Wire Cut and Sand Blasted. A SrZrO3 double layer is coated over the Inconel specimen through a Bond Coat made of NiCoCrAlY by Plasma spraying Process and also characterized. SEM analysis of the Coating shows diffusion of Fe, Sr into the substrate.
NASA Astrophysics Data System (ADS)
Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah
2017-11-01
Pure and copper (Cu concentration varying from 2 to 8%) doped hematite (α-Fe2O3) nanocrystals were synthesized through co-precipitation method using simple equipment. X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR), Raman spectroscopy, Differential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA) and Ultraviolet-Visible (UV-Vis) techniques were used to characterize the synthesized samples. XRD measurements confirm that all the prepared nanocrystals consist only in nanocrystalline hematite phase. These results along with TEM and SEM show that the size of the nanoparticles decreases with Cu-doping down to 21 nm. FT-IR confirm the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we synthesized pure and Cu-doped hematite but also to identify their phonon modes. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The UV-Vis absorption measurements confirm that the decrease of particle size is accompanied by a decrease in the band gap value from 2.12 eV for pure α-Fe2O3 down to 1.91 eV for 8% Cu-doped α-Fe2O3. 8% Cu-doped hematite had the smallest size, the best crystallinity and the lowest band gap.
Quantifying grain shape with MorpheoLV: A case study using Holocene glacial marine sediments
NASA Astrophysics Data System (ADS)
Charpentier, Isabelle; Staszyc, Alicia B.; Wellner, Julia S.; Alejandro, Vanessa
2017-06-01
As demonstrated in earlier works, quantitative grain shape analysis has revealed to be a strong proxy for determining sediment transport history and depositional environments. MorpheoLV, devoted to the calculation of roughness coefficients from pictures of unique clastic sediment grains using Fourier analysis, drives computations for a collection of samples of grain images. This process may be applied to sedimentary deposits assuming core/interval/image archives for the storage of samples collected along depth. This study uses a 25.8 m jumbo piston core, NBP1203 JPC36, taken from a 100 m thick sedimentary drift deposit from Perseverance Drift on the northern Antarctic Peninsula continental shelf. Changes in ocean and ice conditions throughout the Holocene recorded in this sedimentary archive can be assessed by studying grain shape, grain texture, and other proxies. Ninety six intervals were sampled and a total of 2319 individual particle images were used. Microtextures of individual grains observed by SEM show a very high abundance of authigenically precipitated silica that obscures the original grain shape. Grain roughness, computed along depth with MorpheoLV, only shows small variation confirming the qualitative observation deduced from the SEM. Despite this, trends can be seen confirming the reliability of MorpheoLV as a tool for quantitative grain shape analysis.
NASA Astrophysics Data System (ADS)
Padmapriya, G.; Manikandan, A.; Krishnasamy, V.; Jaganathan, Saravana Kumar; Antony, S. Arul
2016-09-01
Spinel NixZn1-xFe2O4 (x = 0.0 to 1.0) nanoparticles were successfully synthesized by a simple microwave combustion method (MCM) using metal nitrates as raw materials and glycine as the fuel. The structural, morphological and opto-magnetic properties of the spinel NixZn1-xFe2O4 ferrites were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray (EDX) spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern, UV-Visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). Powder XRD, and EDX analysis was confirmed the formation of pure phase of spinel ferrites. HR-SEM and HR-TEM analysis was confirmed the formation of sphere like-particle morphology of the samples with smaller agglomeration. VSM analysis clearly showed the superparamagnetic and ferromagnetic nature of the samples. The Ms value is 3.851 emu/g for undoped ZnFe2O4 sample and it increased with increase in Ni content. Photo-catalytic degradation (PCD) of methylene blue (MB) dye using the samples were carried out and observed good PCD results.
NASA Astrophysics Data System (ADS)
Pingitore, Valentino; Barberio, Marianna; Oliva, Antonino; Noce, Nicoletta; Gattuso, Caterina; Davoli, Mariano
Diagnostic studies performed on an ancient coin are presented in order to find if the coin is authentic or is a coinage proof. Our investigation includes Scanning Electron Microscopy - Energy Dispersive X-ray (SEM-EDX) and Cathodoluminescence (CL). The coin is a Drachma representing on the obverse the portrait of Poseidon and, on the reverse the figure of Anfitrite riding a seahorse while Eros is shooting an arrow. The coin is well known in the numismatic studies and originals can also be found in Catanzaro, Naples or Milan museums. The EDX analysis, executed on narrow points of the surface, revealed Pb and Cu as main components of the coin on both sides: 51% of Pb and 35% of Cu their weight and surprisingly on both sides traces of gold was found. The maximum dimensions and the percentage in weight of the small revealed gold spots were respectively on the order of 20 μm and 95%. At the same time luminescence emission induced by electron bombardment (CL) on these spots was executed. This analysis confirmed SEM results, though the presence of Au was more evident than in SEM analysis. In fact CL analysis showed a little presence of Au throughout the sample surface.
Human cardiac telocytes: 3D imaging by FIB-SEM tomography
Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M
2014-01-01
Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs’ three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type. PMID:25327290
Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers
NASA Astrophysics Data System (ADS)
Xu, Lu; Hu, Jiangtao; Ma, Hongjuan; Wu, Guozhong
2018-04-01
The surface of Kevlar fibers was successfully modified by electron beam (EB)-induced post-grafting of acrylic acid (AA). The generation of radicals in the fibers was confirmed by electron spin resonance (ESR) measurements, and the concentration of radicals was shown to increase as the absorbed dose increased, but decrease with increasing temperature. The influence of the synthesis conditions on the degree of grafting was also investigated. The surface microstructure and chemical composition of the modified Kevlar fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed that the surface of the grafted fibers was rougher than those of the pristine and irradiated fibers. XPS analysis confirmed an increase in C(O)OH groups on the surface of the Kevlar fibers, suggesting successful grafting of AA. These results indicate that EB-induced post-grafting polymerization is effective for modifying the surface properties of Kevlar fibers.
Electrical and thermal properties of Ca and Ni doped barium ferrite
NASA Astrophysics Data System (ADS)
Agrawal, Shraddha; Parveen, Azra; Azam, Ameer
2018-05-01
Ca and Ni doped M type Barium ferrite of the composition ((Ba0.9Ca0.1) (Fe0.8 Ni0.2)12O19) were prepared by the traditional sol gel auto combustion method using citric acid as a fuel. Microstructural analyses were carried out with the help of XRD and SEM. XRD analysis is the evidence of nanometer regime along with crystalline planes of hexagonal structure. It also confirms the hexagonal structure of barium ferrite even with the doping of Ca and Ni. SEM analysis is the signature of the spherical shape and surface morphology of agglomerated form of nano-powders of doped samples. The thermal properties of samples were carried out with the help of TGA. That shows the variation of weight loss of the prepared sample with the temperature.
Green Synthesis of Silver Nanoparticles Using an Aqueous Extract of Monotheca buxifolia (Flac.) Dcne
NASA Astrophysics Data System (ADS)
Anwar, Natasha; Khan, Abbas; Shah, Mohib; Anwar, Saad
2018-01-01
This study deals with the synthesis and physicochemical investigation of silver nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of silver nitrate with the plant extract, silver nanoparticles were rapidly fabricated. The synthesized particles were characterized by using UV-visible spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AgNPs was confirmed by noting the change in colour through visual observations as well as via UV-Vis spectroscopy. UV-Vis spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 440 nm. FTIR was used to identify the chemical composition of silver nanoparticles and Ag-capped plant extract. The presence of elemental silver was also confirmed through EDX analysis. The SEM analysis of the silver nanoparticles showed that they have a uniform spherical shape with an average size in the range of 40-78 nm. This green system showed better capping and stabilizing agent for the fine particles. Further, in vitro the antioxidant activity of Monotheca buxifolia (Flac.) and Ag-capped with the plant was also evaluated using FeCl3/K3Fe (CN)6 essay.
Crystal growth in zinc borosilicate glasses
NASA Astrophysics Data System (ADS)
Kullberg, Ana T. G.; Lopes, Andreia A. S.; Veiga, João P. B.; Monteiro, Regina C. C.
2017-01-01
Glass samples with a molar composition (64+x)ZnO-(16-x)B2O3-20SiO2, where x=0 or 1, were successfully synthesized using a melt-quenching technique. Based on differential thermal analysis data, the produced glass samples were submitted to controlled heat-treatments at selected temperatures (610, 615 and 620 °C) during various times ranging from 8 to 30 h. The crystallization of willemite (Zn2SiO4) within the glass matrix was confirmed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Under specific heat-treatment conditions, transparent nanocomposite glass-ceramics were obtained, as confirmed by UV-vis spectroscopy. The influence of temperature, holding time and glass composition on crystal growth was investigated. The mean crystallite size was determined by image analysis on SEM micrographs. The results indicated an increase on the crystallite size and density with time and temperature. The change of crystallite size with time for the heat-treatments at 615 and 620 °C depended on the glass composition. Under fixed heat-treatment conditions, the crystallite density was comparatively higher for the glass composition with higher ZnO content.
NASA Astrophysics Data System (ADS)
Pichumani, Sivachidambaram; Srinivasan, Raghuraman; Ramamoorthi, Venkatraman
2018-02-01
Aluminium - silicon carbide (Al - SiC) metal matrix composite is produced with following wt % of SiC reinforcement (4%, 8% & 12%) using stir casting method. Mechanical testing such as micro hardness, tensile testing and bend testing were performed. Characterizations, namely micro structure, X-ray diffraction (XRD) analysis, inductive coupled plasma - optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM) analysis, were carried out on Al - SiC composites. The presence of SiC on Al - SiC composite is confirmed through XRD technique and microstructure. The percentage of SiC was confirmed through ICP-OES technique. Increase in weight percentage of SiC tends to increase micro hardness, ultimate strength & yield strength but it reduces the bend strength and elongation (%) of the material. SEM factrography of tensile tested fractured samples of Al - 8% SiC & Al - 12% SiC showed fine dimples on fractured surface & coarse dimples fractured surface respectively. This showed significant fracture differences between Al - 8% SiC & Al - 12% SiC. From the above experiment, Al - 8% SiC had good micro hardness, ultimate strength & yield strength without significant loss in elongation (%) & bend strength.
NASA Astrophysics Data System (ADS)
Hashim, Mohd.; Raghasudha, M.; Meena, Sher Singh; Shah, Jyoti; Shirsath, Sagar E.; Kumar, Shalendra; Ravinder, D.; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.
2018-03-01
Ce and Dy substituted Cobalt ferrites with the chemical composition CoCexDyxFe2-2xO4 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) were synthesized through the chemical route, citrate-gel auto-combustion method. The structural characterization was carried out with the help of XRD Rieveld analysis, SEM and EDAX analysis. Formation of spinel cubic structure of the ferrites was confirmed by XRD analysis. SEM and EDAX results show that the particles are homogeneous with slight agglomeration without any impurity pickup. The effect of RE ion doping (Ce and Dy) on the dielectric, magnetic and impedance studies was systematically investigated by LCR meter, Vibrating Sample Magnetometer and Impedance analyzer respectively at room temperature in the frequency range of 10 Hz-10 MHz. Various dielectric parameters viz., dielectric constant, dielectric loss and ac conductivity were measured. The dielectric constant of all the ferrite compositions shows normal dielectric dispersion of ferrites with frequency. Impedance analysis confirms that the conduction in present ferrites is majorly due to the grain boundary mechanism. Ferrite sample with x = 0.03 show high dielectric constant, low dielectric loss and hence can be utilized in high frequency electromagnetic devices. Magnetization measurements indicate that with increase in Ce and Dy content in cobalt ferrites, the magnetization values decreased and coercivity has increased.
NASA Astrophysics Data System (ADS)
Zhao, Yuancong; Tu, Qiufen; Wang, Jin; Huang, Qiongjian; Huang, Nan
2010-12-01
Crystalline TiO 2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO 2 films by self-assembling, and the HUPA on TiO 2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO 2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.
Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications
NASA Astrophysics Data System (ADS)
Pauline, S. Anne; Rajendran, N.
2014-01-01
Niobium oxide was synthesized by sol-gel methodology and a crystalline, nanoporous and adherent coating of Nb2O5 was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb2O5 coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb2O5 coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb2O5 coating conferred bioactivity and enhanced corrosion resistance on 316L SS.
A two-step FEM-SEM approach for wave propagation analysis in cable structures
NASA Astrophysics Data System (ADS)
Zhang, Songhan; Shen, Ruili; Wang, Tao; De Roeck, Guido; Lombaert, Geert
2018-02-01
Vibration-based methods are among the most widely studied in structural health monitoring (SHM). It is well known, however, that the low-order modes, characterizing the global dynamic behaviour of structures, are relatively insensitive to local damage. Such local damage may be easier to detect by methods based on wave propagation which involve local high frequency behaviour. The present work considers the numerical analysis of wave propagation in cables. A two-step approach is proposed which allows taking into account the cable sag and the distribution of the axial forces in the wave propagation analysis. In the first step, the static deformation and internal forces are obtained by the finite element method (FEM), taking into account geometric nonlinear effects. In the second step, the results from the static analysis are used to define the initial state of the dynamic analysis which is performed by means of the spectral element method (SEM). The use of the SEM in the second step of the analysis allows for a significant reduction in computational costs as compared to a FE analysis. This methodology is first verified by means of a full FE analysis for a single stretched cable. Next, simulations are made to study the effects of damage in a single stretched cable and a cable-supported truss. The results of the simulations show how damage significantly affects the high frequency response, confirming the potential of wave propagation based methods for SHM.
Naik, Umesh Chandra; Srivastava, Shaili; Thakur, Indu Shekhar
2011-08-01
Electroplating industries are the main sources of heavy metals, chromium, nickel, lead, zinc, cadmium and copper. The highest concentrations of chromium (VI) in the effluent cause a direct hazards to human and animals. Therefore, there is a need of an effective and affordable biotechnological solution for removal of chromium from electroplating effluent. Bacterial strains were isolated from electroplating effluent to find out higher tolerant isolate against chromate. The isolate was identified by 16S rDNA sequence analysis. Absorbed chromium level of bacterium was determined by inductively coupled plasma-atomic emission spectrometer (ICP-AES), atomic absorption spectrophotometer (AAS), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray analysis (EDX). Removal of metals by bacterium from the electroplating effluent eventually led to the detoxification of effluent confirmed by MTT assay. Conformational changes of functional groups of bacterial cell surface were studied through Fourier transform infrared spectroscopy. The chromate tolerant isolate was identified as Bacillus cereus. Bacterium has potency to remove more than 75% of chromium as measured by ICP-AES and AAS. The study indicated the accumulation of chromium (VI) on bacterial cell surface which was confirmed by the SEM-EDX and TEM analysis. The biosorption of metals from the electroplating effluent eventually led to the detoxification of effluent. The increased survivability of Huh7 cells cultured with treated effluent also confirmed the detoxification as examined by MTT assay. Isolated strain B. cereus was able to remove and detoxify chromium (VI). It would be an efficient tool of the biotechnological approach in mitigating the heavy metal pollutants.
Investigation on a Roman copper alloy artefact from Pompeii (Italy).
Baraldi, Pietro; Baraldi, Cecilia; Ferrari, Giorgia; Foca, Giorgia; Marchetti, Andrea; Tassi, Lorenzo
2006-01-01
A selection of samples, obtained from a particular copper-alloy domestic artefact of Roman style from Pompeii, has been analysed by using different techniques (IR, Raman, SEM-EDX, FAAS), in order to investigate the chemical nature and composition of the metals utilised for such manufacturing pieces. The surface analysis of the bright red metallic microfragments conducted by different analytical techniques, emphasises the presence of pure unalloyed copper and confirms the absence of other metallic species on the upper layers. On the contrary, the mapping analysis of the section of the laminar metal of the investigated sample shows a consistent enrichment in tin content. Finally, destructive analysis by FAAS confirms that the artefact looks like a bronze metal alloy, with a medium Sn content of about 6.5%.
MnMoO4 nanolayers : Synthesis characterizations and electrochemical detection of QA
NASA Astrophysics Data System (ADS)
Muthamizh, S.; Kumar, S. Praveen; Munusamy, S.; Narayanan, V.
2018-04-01
MnMoO4 nanolayers were prepared by precipitation method. The MnMoO4 nanolayers were synthesized by using commercially available (CH3COO)2Mn.4H2O and Na2WO4.2H2O. The XRD pattern reveals that the synthesized MnMoO4 has monoclinic structure. In addition, lattice parameter values were also calculated using XRD data. The Raman analysis confirm the presence of Mo-O in MnMoO4 nanolayers. DRS-UV analysis shows that MnMoO4 has a band gap of 2.59 eV. FE-SEM and HR-TEM analysis along with EDAX confirms the material morphology in stacked layers like structure in nano scale. Synthesized nanolayers were utilized for the detection of biomolecule quercetin (QA).
NASA Astrophysics Data System (ADS)
Zhang, Jiping; Hu, Jiwei; Huang, Xianfei; Shen, Wei; Jin, Mei; Fu, Liya; Jin, Xiaofei
2013-09-01
The bioavailability of five divalent cationic heavy metals (Pb, Cd, Cu, Zn and Ni) in 10 superficial sediment samples from Baihua Lake was assessed based on the molar ratio of simultaneously extracted metals (SEMs) to acid volatile sulfide (AVS). Atomic absorption spectrometry (AAS) and X-ray powder diffraction (XRD) were used to determine the heavy metal concentrations and examine the mineralogy of the crystalline phases, respectively. The AVS loadings in sediments from Baihua Lake ranged from 64.30 to 350.08 μmol/g (dry weight). The corresponding SEM levels for the sampling sites varied from 1.770 to 14.660 μmol/g. The molar ratio of SEMs to AVS ranged from 0.014 to 0.084 with a mean value of 0.034. The XRD analysis also confirmed the presence of some metal sulfides in sediments from Baihua Lake. The SEMs/AVS ratios for all sampling sites were significantly lower than 1.0, indicating that AVS in the sediments was sufficient to bind the five heavy metals; thus, these heavy metals are currently not significantly bioavailable to benthic organisms. Comparing the SEMs results to published guideline values for metal toxicity to benthic organisms in sediments, however, suggests that Zn and Ni pose a risk at some sampling locations in Baihua Lake.
Nunez-Iglesias, Juan; Blanch, Adam J; Looker, Oliver; Dixon, Matthew W; Tilley, Leann
2018-01-01
We present Skan (Skeleton analysis), a Python library for the analysis of the skeleton structures of objects. It was inspired by the "analyse skeletons" plugin for the Fiji image analysis software, but its extensive Application Programming Interface (API) allows users to examine and manipulate any intermediate data structures produced during the analysis. Further, its use of common Python data structures such as SciPy sparse matrices and pandas data frames opens the results to analysis within the extensive ecosystem of scientific libraries available in Python. We demonstrate the validity of Skan's measurements by comparing its output to the established Analyze Skeletons Fiji plugin, and, with a new scanning electron microscopy (SEM)-based method, we confirm that the malaria parasite Plasmodium falciparum remodels the host red blood cell cytoskeleton, increasing the average distance between spectrin-actin junctions.
Looker, Oliver; Dixon, Matthew W.; Tilley, Leann
2018-01-01
We present Skan (Skeleton analysis), a Python library for the analysis of the skeleton structures of objects. It was inspired by the “analyse skeletons” plugin for the Fiji image analysis software, but its extensive Application Programming Interface (API) allows users to examine and manipulate any intermediate data structures produced during the analysis. Further, its use of common Python data structures such as SciPy sparse matrices and pandas data frames opens the results to analysis within the extensive ecosystem of scientific libraries available in Python. We demonstrate the validity of Skan’s measurements by comparing its output to the established Analyze Skeletons Fiji plugin, and, with a new scanning electron microscopy (SEM)-based method, we confirm that the malaria parasite Plasmodium falciparum remodels the host red blood cell cytoskeleton, increasing the average distance between spectrin-actin junctions. PMID:29472997
Increased thyrotropin binding in hyperfunctioning thyroid nodules.
Müller-Gärtner, H W; Schneider, C; Bay, V; Tadt, A; Rehpenning, W; de Heer, K; Jessel, M
1987-08-01
The object of this study was to investigate TSH receptors in hyperfunctioning thyroid nodules (HFN). In HFN, obtained from seven patients, 125-I-TSH binding as determined by equilibrium binding analysis on particulate membrane preparations, was found to be significantly increased as compared with normal thyroid tissues (five patients; P less than 0.001). Scatchard analysis of TSH-binding revealed two kinds of binding sites for both normal thyroid tissue and HFN, and displayed significantly increased association constants of high- and low-affinity binding sites in HFN (Ka = 11.75 +/- 6.8 10(9) M-1, P less than 0.001 and Ka = 2.1 +/- 1.0 10(7) M-1, P less than 0.025; x +/- SEM) as compared with normal thyroid tissue (Ka = 0.25 +/- 0.06 10(9) M-1, Ka = 0.14 +/- 0.03 10(7) M-1; x +/- SEM). The capacity of the high-affinity binding sites in HFN was found to be decreased (1.8 +/- 1.1 pmol/mg protein, x +/- SEM) in comparison with normal thyroid tissue (4.26 +/- 1.27 pmol/mg protein; x +/- SEM). TSH-receptor autoradiography applied to cryostatic tissue sections confirmed increased TSH binding of the follicular epithelium in HFN. These data suggest that an increased affinity of TSH-receptor sites in HFN in iodine deficient areas may be an important event in thyroid autonomy.
Human cardiac telocytes: 3D imaging by FIB-SEM tomography.
Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M
2014-11-01
Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs' three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Zaaboub, Noureddine; Helali, Mohamed Amine; Martins, Maria Virgínia Alves; Ennouri, Rym; Béjaoui, Béchir; da Silva, Eduardo Ferreira; El Bour, Monia; Aleya, Lotfi
2016-11-01
Bizerte Lagoon is a southern Mediterranean semi-enclosed lagoon with a maximum depth of 12 m. After assessing sediment quality, the authors report on the physicochemical characteristics of the lagoon's surface sediment using SEM (simultaneously extracted metals) and AVS (acid volatile sulfides) as proxies. Biogeochemical tools are used to investigate the environmental disturbance at the water-sediment interface by means of SEM and AVS to seek conclusions concerning the study area's pollution status. Results confirm accumulation of trace elements in sediment. The use of the SEM-AVS model with organic matter in sediment (ƒOC) confirms possible bioavailability of accumulated trace elements, especially Zn, in the southern part of the lagoon, with organic matter playing an important role in SEM excess correction to affirm a nontoxic total metal sediment state. Individual trace element toxicity is dependent on the bioavailable fraction of SEM Metal on sediment, as is the influence of lagoon inflow from southern water sources on element bioavailability. Appropriate management strategies are highly recommended to mitigate any potential harmful effects on health from this heavy-metal-based pollution.
Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites
NASA Astrophysics Data System (ADS)
Boumedienne, N.; Faska, Y.; Maaroufi, A.; Pinto, G.; Vicente, L.; Benavente, R.
2017-05-01
This paper reports on the elaboration and characterization of epoxy resin filled with metallic particles powder (aluminum, tin and zinc) composites. The scanning electron microscopy (SEM) pictures, density measurements and x-ray diffraction analysis (DRX) showed a homogeneous phase of obtained composites. The differential scanning calorimetry revealed a good adherence at matrix-filler interfaces, confirming the SEM observations. The measured glass transition temperatures depend on composites fillers' nature. Afterwards, the electrical conductivity of composites versus their fillers' contents has been investigated. The obtained results depict a nonlinear behavior, indicating an insulator to conductor phase transition at a conduction threshold; with high contrast of ten decades. Hence, the elaborated materials give a possibility to obtain dielectric or electrically conducting phases, which can to be interesting in the choice of desired applications. Finally, the obtained results have been successfully simulated on the basis of different percolation models approach combined with structural characterization inferences.
NASA Astrophysics Data System (ADS)
Karpuraranjith, M.; Thambidurai, S.
Biotemplate-based zinc oxide nanocomposite was effectively prepared via simple chemical precipitation route. The functional groups of amino (-NH2), hydroxyl (-OH) and O-Zn-O were confirmed and characterized by FTIR spectroscopy. The structural and morphological properties were confirmed by XRD, UV-Vis DRS, HR-SEM and TEM analyses. The elemental composition of carbon, nitrogen, zinc and oxygen was confirmed by energy-dispersive X-ray analysis (EDAX) and Brunauer-Emmett-Teller high surface area of materials was estimated to be 52.49m2/g, respectively. Thermogravimetric analysis (TGA) shows that biotemplate on zinc oxide nanocomposite has higher thermal stability than chitosan matrix. The results demonstrate that biotemplate on zinc oxide matrix causes immobilization effect among the two components. Therefore, chitosan-ZnO nanocomposite has a microcrystalline morphological structure and also good thermal stability, so it can be a promising material for sensors, medical, tissue engineering and wastewater treatment applications.
NASA Astrophysics Data System (ADS)
Behera, S. S.; Jha, S.; Arakha, M.; Panigrahi, T. K.
2012-03-01
TRACT Nanoparticles synthesis by biological methods using various microorganisms, plants, and plant extracts and enzymes have attracted a great attention as these are cost effective, nontoxic, eco-friendly and an alternative to physical and chemical methods. In this research, Silver nanoparticles (Ag-NPs) were synthesized from AgNO3 solution by green synthesis process with the assistance of microbial source only. The detailed characterization of the Ag NPs were carried out using UV-visible spectroscopy, Scanning electron microscopy (SEM), Energy dispersive X-ray Spectroscopy (EDS), Dynamic light scattering (DLS) analysis, and their antimicrobial evaluation was done against Escherichia coli. The UV-visible spectroscopy analysis showed the surface plasmon resonance property of nanoparticles. The DLS analysis showed the particle distribution of synthesized silver nanoparticles in solution, and SEM analysis showed the morphology of nanoparticles. The elemental composition of synthesized sample was confirmed by EDS analysis. Antibacterial assay of synthesized Ag NP was carried out in solid (Nutrient Agar) growth medium against E.coli. The presence of zone of inhibition clearly indicated the antibacterial activity of silver nanoparticles.
Elemental distribution analysis of urinary crystals.
Fazil Marickar, Y M; Lekshmi, P R; Varma, Luxmi; Koshy, Peter
2009-10-01
Various crystals are seen in human urine. Some of them, particularly calcium oxalate dihydrate, are seen normally. Pathological crystals indicate crystal formation initiating urinary stones. Unfortunately, many of the relevant crystals are not recognized in light microscopic analysis of the urinary deposit performed in most of the clinical laboratories. Many crystals are not clearly identifiable under the ordinary light microscopy. The objective of the present study was to perform scanning electron microscopic (SEM) assessment of various urinary deposits and confirm the identity by elemental distribution analysis (EDAX). 50 samples of urinary deposits were collected from urinary stone clinic. Deposits containing significant crystalluria (more than 10 per HPF) were collected under liquid paraffin in special containers and taken up for SEM studies. The deposited crystals were retrieved with appropriate Pasteur pipettes, and placed on micropore filter paper discs. The fluid was absorbed by thicker layers of filter paper underneath and discs were fixed to brass studs. They were then gold sputtered to 100 A and examined under SEM (Jeol JSM 35C microscope). When crystals were seen, their morphology was recorded by taking photographs at different angles. At appropriate magnification, EDAX probe was pointed to the crystals under study and the wave patterns analyzed. Components of the crystals were recognized by utilizing the data. All the samples analyzed contained significant number of crystals. All samples contained more than one type of crystal. The commonest crystals encountered included calcium oxalate monohydrate (whewellite 22%), calcium oxalate dihydrate (weddellite 32%), uric acid (10%), calcium phosphates, namely, apatite (4%), brushite (6%), struvite (6%) and octocalcium phosphate (2%). The morphological appearances of urinary crystals described were correlated with the wavelengths obtained through elemental distribution analysis. Various urinary crystals that are not reported under light microscopy could be recognized by SEM-EDAX combination. EDAX is a significant tool for recognizing unknown crystals not identified by ordinary light microscopy or SEM alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Chetna, E-mail: chetna.chauhan@nirmauni.ac.in; Jotania, Rajshree, E-mail: rbjotania@gmail.com
2016-05-06
The W-type barium hexaferrite was prepared using a simple heat treatment method. The precursor was calcinated at 650°C for 3 hours and then slowly cooled to room temperature in order to obtain barium cobalt hexaferrite powder. The prepared powder was characterised by different experimental techniques like XRD, FTIR and SEM. The X-ray diffractogram of the sample shows W-and M phases. The particle size calculated by Debye Scherrer formula. The FTIR spectra of the sample was taken at room temperature by using KBr pallet method which confirms the formation of hexaferrite phase. The morphological study on the hexaferrite powder was carriedmore » out by SEM analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Bindu; Mulla, Rafiq; Rabinal, M. K., E-mail: mkrabinal@yahoo.com
2015-06-24
Herein, a facile chemical approach has been adopted to prepare silver nanoparticles (AgNPs)- graphene (G) composite to study photothermal effect. Sodium borohydride (SBH), a strong reducing agent has been selected for this work. Effect of SBH concentrations on optical behavior of AgNPs-G composite was also investigated. Resultant materials were characterized by various techniques including X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), optical absorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM micrographs confirm wrapping of AgNPs into graphene whereas XRD analysis reveals their particle size variation between 47 nm to 69 nm. Optical studies throw a light on theirmore » strong absorption behavior towards solar radiation.« less
Structural, morphological and optical studies of F doped SnO2 thin films
NASA Astrophysics Data System (ADS)
Chandel, Tarun; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, Poolla
2018-05-01
Highly conducting and transparent FTO (flourine doped tin Oxide) thin films were grown on the glass substrates using a low cost spray pyrolysis technique. The films were characterized for their structural, morphological and optical studies using XRD, SEM and UV-Vis spectroscopy. XRD studies show that the FTO films crystallize in Tetragonal cassiterite structure. Morphological analysis using SEM show that the films are uniformly covered with spherical grains albeit high in surface roughness. The average optical transmission greater than 80% in the visible region along with the appearance of interference fringes in the transmission curves confirms the high quality of the films. Electrical studies show that the films exhibit sheet resistance below 10 Ω ϒ-1.
Kownacki, Andrzej; Woznicka, Olga; Szarek-Gwiazda, Ewa; Michailova, Paraskeva; Czaplicka, Anna
2017-02-27
In this paper, a study of the morphology of the pupa and male imago of Glyptotendipes (G.) glaucus (Meigen 1818) was carried out, with the aid of a scanning electron microscope (SEM). The SEM provided additional valuable information on the morphology of the species. Adult male head, antenna, wing, leg, abdomen, hypopygium, pupal cephalothorax and abdomen were examined. It is emphasized that SEM was not often used in Chironomidae studies. The present results confirm SEM as a suitable approach in carrying out morphological and taxonomical descriptions of Chironomidae species.
NASA Astrophysics Data System (ADS)
Anwar, Natasha; Khan, Abbas; Shah, Mohib; Azam, Andaleeb; Zaman, Khair; Parven, Zahida
2016-12-01
This study deals with the synthesis and physicochemical investigation of gold nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of tetrachloroauric acid with the plant extract, gold nanoparticles were rapidly fabricated. The synthesized particles were characterized by UV-Vis spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AuNPs was confirmed by noting the change in color through visual observations as well as via UV-Vis spectroscopy. UV‒Vis spectrum of the aqueous medium containing gold nanoparticles showed an absorption peak at around 540 nm. FTIR was used to identify the chemical composition of gold nanoparticles and Au-capped plant extract. The presence of elemental gold was also confirmed through EDX analysis. SEM analysis of the gold nanoparticles showed that they have a uniform spherical shape with an average size in the range of 70-78 nm. This green system showed to be better capping and stabilizing agent for the fine particles. Further, the antioxidant activity of Monotheca buxifolia (Flac.) extract and Au-capped with the plant extract was also evaluated using FeCl3/K3[Fe(CN)]6 in vitro assay.
Fontes, Gizele Cardoso; Calado, Verônica Maria Araújo; Rossi, Alexandre Malta; da Rocha-Leão, Maria Helena Miguez
2013-01-01
The aim of this study was to characterize the penicillin-loaded microbeads composed of alginate and octenyl succinic anhydride (OSA) starch prepared by ionotropic pregelation with calcium chloride and to evaluate their in vitro drug delivery profile. The beads were characterized by size, scanning electron microscopy (SEM), zeta potential, swelling behavior, and degree of erosion. Also, the possible interaction between penicillin and biopolymers was investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The SEM micrograph results indicated a homogeneous drug distribution in the matrix. Also, based on thermal analyses (TGA/DSC), interactions were detected between microbead components. Although FTIR spectra of penicillin-loaded microbeads did not reveal the formation of new chemical entities, they confirmed the chemical drug stability. XRD patterns showed that the incorporated crystalline structure of penicillin did not significantly alter the primarily amorphous polymeric network. In addition, the results confirmed a prolonged penicillin delivery system profile. These results imply that alginate and OSA starch beads can be used as a suitable controlled-release carrier for penicillin. PMID:23862146
Chemical and structural analysis of gallstones from the Indian subcontinent.
Ramana Ramya, J; Thanigai Arul, K; Epple, M; Giebel, U; Guendel-Graber, J; Jayanthi, V; Sharma, M; Rela, M; Narayana Kalkura, S
2017-09-01
Representative gallstones from north and southern parts of India were analyzed by a combination of physicochemical methods: X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), CHNS analysis, thermal analysis and Nuclear Magnetic Resonance (NMR) spectroscopy ( 1 H and 13 C). The stones from north Indian were predominantly consisting of cholesterol monohydrate and anhydrous cholesterol which was confirmed by XRD analysis. FTIR spectroscopy confirmed the presence of cholesterol and calcium bilirubinate in the south Indian gallstones. EDX spectroscopy revealed the presence of carbon, nitrogen, oxygen, calcium, sulfur, sodium and magnesium and chloride in both south Indian and north Indian gallstones. FTIR and NMR spectroscopy confirmed the occurrence of cholesterol in north Indian gallstones. The respective colour of the north Indian and south Indian gallstones was yellowish and black. The morphology of the constituent crystals of the north Indian and south Indian gallstones were platy and globular respectively. The appreciable variation in colour, morphology and composition of south and north Indian gallstones may be due to different food habit and habitat. Copyright © 2017 Elsevier B.V. All rights reserved.
Soderlund, Claes; Linder, Stefan; Bergenzaun, Per E; Grape, Tomas; Hakansson, Hans-Olof; Kilander, Anders; Lindell, Gert; Ljungman, Martin; Ohlin, Bo; Nielsen, Jorgen; Rudberg, Claes; Stotzer, Per-Ove; Svartholm, Erik; Toth, Ervin; Frozanpor, Farshad
2014-11-01
Covered nitinol alloy self-expandable metal stents (SEMSs) have been developed to overcome the shortcomings of steel SEMS in patients with malignant biliary obstruction. In a randomized, multicenter trial, we compared stent patency, patient survival, and adverse events in patients with partly covered stents made from steel or nitinol. A total of 400 patients with unresectable distal malignant biliary obstruction were randomized at endoscopic retrograde cholangiopancreatography (ERCP) to insertion of a steel or nitinol partially covered SEMS, with 200 patients in each group. The primary outcome was confirmed stent failure during 300 days of follow-up. At 300 days, the proportion of patients with patent stents was 77 % in the steel group, compared with 89 % in the nitinol group (P = 0.01). Confirmed stent failure occurred more often in the steel SEMS group compared with the nitinol SEMS group, in 30 versus 14 patients (P = 0.02). Stent migration occurred in 13 patients in the steel group and in 3 patients in the nitinol group (P = 0.01). Median patient survival (secondary outcome) was 137 days and 120 days in the steel SEMS and nitinol SEMS groups, respectively (P = 0.59). The nitinol SEMS showed longer patency time, and the nitinol group had fewer patients with stent failure, compared with the steel SEMS group. We could not detect any differences between the two groups regarding survival time, and regarding adverse event rate.Clinical trial registration : NCT 00980889. © Georg Thieme Verlag KG Stuttgart · New York.
Ultrasound assisted synthesis of iron doped TiO2 catalyst.
Ambati, Rohini; Gogate, Parag R
2018-01-01
The present work deals with synthesis of Fe (III) doped TiO 2 catalyst using the ultrasound assisted approach and conventional sol-gel approach with an objective of establishing the process intensification benefits. Effect of operating parameters such as Fe doping, type of solvent, solvent to precursor ratio and initial temperature has been investigated to get the best catalyst with minimum particle size. Comparison of the catalysts obtained using the conventional and ultrasound assisted approach under the optimized conditions has been performed using the characterization techniques like DLS, XRD, BET, SEM, EDS, TEM, FTIR and UV-Vis band gap analysis. It was established that catalyst synthesized by ultrasound assisted approach under optimized conditions of 0.4mol% doping, irradiation time of 60min, propan-2-ol as the solvent with the solvent to precursor ratio as 10 and initial temperature of 30°C was the best one with minimum particle size as 99nm and surface area as 49.41m 2 /g. SEM analysis, XRD analysis as well as the TEM analysis also confirmed the superiority of the catalyst obtained using ultrasound assisted approach as compared to the conventional approach. EDS analysis also confirmed the presence of 4.05mol% of Fe element in the sample of 0.4mol% iron doped TiO 2 . UV-Vis band gap results showed the reduction in band gap from 3.2eV to 2.9eV. Photocatalytic experiments performed to check the activity also confirmed that ultrasonically synthesized Fe doped TiO 2 catalyst resulted in a higher degradation of Acid Blue 80 as 38% while the conventionally synthesized catalyst resulted in a degradation of 31.1%. Overall, the work has clearly established importance of ultrasound in giving better catalyst characteristics as well as activity for degradation of the Acid Blue 80 dye. Copyright © 2017 Elsevier B.V. All rights reserved.
Structural and dielectric studies of Ce doped BaSnO3 perovskite nanostructures
NASA Astrophysics Data System (ADS)
Angel, S. Lilly; Deepa, K.; Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.
2018-04-01
Undoped and Cerium (Ce) doped BaSnO3(BSO) nanostructures were synthesized by co-precipitation method. The cubic structure and perovskite phase were confirmed by X-ray diffraction (XRD). The crystallite size of BSO is 41nm and when Ce ion concentration is increased, the crystallite sizesdecreased. The nanocube, nanocuboids and nanorods are observed from SEM analysis. The purity of the undoped and doped samples are confirmed by EDS spectrum. For larger defects, wide band gap was obtained from UV-Vis and PL spectrum. The dielectric constants are increased at low frequencies when Ce impurities are introduced in the BSO matrix at Sn site.
Yamashita, Taiji; Miyamoto, Kenji; Yonenobu, Hitoshi
2018-06-20
A new pretreatment method using room-temperature ionic liquid (IL) was proposed for observing wood specimens in scanning electron microscopy (SEM). A variety of concentrations were examined for ethanol solution of the IL, [Emim][MePO3Me], to determine an optimal pretreatment procedure. It was concluded that 10% ethanol solution of the IL was the most adequate to acquire good SEM images. Using the procedure optimized, SEM images were taken for typical anatomical types of modern soft and hardwood species and archeological wood. SEM images taken were sufficiently good in observing wood cells. The pretreatment method was also effective to archeological wood dated ca. 1600 years ago. It was thus concluded that the method developed in this study is more useful than those conventionally used. Additionally, pretreatment at the high temperature was performed to confirm morphological changes in softwood. Deformation of latewood cells (tracheids) was occurred by treating with undiluted IL at the high temperature of 50°C, probably due to higher accessibility of the IL into intercellular space. Nonetheless, it was confirmed that this happens under far more extreme conditions than our proposed method.
Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method.
Prakash Parthiban, S; Elayaraja, K; Girija, E K; Yokogawa, Y; Kesavamoorthy, R; Palanichamy, M; Asokan, K; Narayana Kalkura, S
2009-12-01
Thermally stable hydroxyapatite (HAp) was synthesized by hydrothermal method in the presence of malic acid. X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential thermal analysis (DTA), thermogravimetric analysis (TGA) was done on the synthesized powders. These analyses confirmed the sample to be free from impurities and other phases of calcium phosphates, and were of rhombus morphology along with nanosized particles. IR and Raman analyses indicated the adsorption of malic acid on HAp. Thermal stability of the synthesized HAp was confirmed by DTA and TGA. The synthesized powders were thermally stable upto 1,400 degrees C and showed no phase change. The proposed method might be useful for producing thermally stable HAp which is a necessity for high temperature coating applications.
Studies on the Inhibition of Mild Steel Corrosion by Rauvolfia serpentina in Acid Media
NASA Astrophysics Data System (ADS)
Bothi Raja, P.; Sethuraman, M. G.
2010-07-01
Alkaloid extract of Rauvolfia serpentina was tested as corrosion inhibitor for mild steel in 1 M HCl and H2SO4 using weight loss method at three different temperatures, viz., 303, 313, and 323 K, potentiodynamic polarization, electrochemical impedance spectroscopy and scanning electron microscope (SEM) studies. It is evident from the results of this study that R. serpentina effectively inhibits the corrosion in both the acids through adsorption process following Tempkin adsorption isotherm. The protection efficiency increased with increase in inhibitor concentration and temperature. Free energy of adsorption calculated from the temperature studies also revealed the chemisorption. The mixed mode of action exhibited by the inhibitor was confirmed by the polarization studies while SEM analysis substantiated the formation of protective layer over the mild steel surface.
Khalid, Ikrima; Ahmad, Mahmood; Usman Minhas, Muhammad; Barkat, Kashif
2018-02-01
Mixtures of polymer (chondroitin sulfate) and monomer (AMPS) in the presence of co-monomer (MBA) were employed for the production of hydrogels, with adjustable properties, following free radical copolymerization. The hydrogel's structural properties were assessed by FTIR, DSC, TGA, SEM and XRD which confirmed the development and stability of synthesized structure. The results from FTIR analysis showed that CS react with the AMPS monomer during the polymerization process and confirmed the grafting of AMPS chains onto CS backbone. The surface morphology of CS-co-poly(AMPS) hydrogels, as evident by SEM, corresponds to their improved swelling ability due to high porosity. Thermal analysis showed that crosslinking formed a stable hydrogel network which is thermally more stable than its basic ingredients. The effects of pH revealed an increasing trend in swelling with increasing concentration of either CS or AMPS. In addition, different modalities for drug loading were studied with respect to drug homogeneous distribution; loxoprofen sodium was employed as model drug and was loaded by swelling-diffusion method. In vitro drug release profiles and kinetics were assessed to confirm their reproducibility and reliability. Higuchi model is the best fit model to explain drug release from formed gels indicating diffusion-controlled release. Similarly, Korsmeyer-Peppas model yields remarkably good adjustments where release kinetics involves a combination of diffusion in hydrated matrix and polymer relaxation. Conclusively, CS-co-poly(AMPS) hydrogels could be a potential alternate to conventional dosage forms for controlled delivery of loxoprofen sodium for extended period of time. Copyright © 2017. Published by Elsevier Ltd.
Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.
Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun
2016-02-01
Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.
Enamel alteration following tooth bleaching and remineralization.
Coceska, Emilija; Gjorgievska, Elizabeta; Coleman, Nichola J; Gabric, Dragana; Slipper, Ian J; Stevanovic, Marija; Nicholson, John W
2016-06-01
The purpose of this study was to compare the effects of professional tooth whitening agents containing highly concentrated hydrogen peroxide (with and without laser activation), on the enamel surface; and the potential of four different toothpastes to remineralize any alterations. The study was performed on 50 human molars, divided in two groups: treated with Opalescence(®) Boost and Mirawhite(®) Laser Bleaching. Furthermore, each group was divided into five subgroups, a control one and 4 subgroups remineralized with: Mirasensitive(®) hap+, Mirawhite(®) Gelleѐ, GC Tooth Mousse™ and Mirafluor(®) C. The samples were analysed by SEM/3D-SEM-micrographs, SEM/EDX-qualitative analysis and SEM/EDX-semiquantitative analysis. The microphotographs show that both types of bleaching cause alterations: emphasized perikymata, erosions, loss of interprizmatic substance; the laser treatment is more aggressive and loss of integrity of the enamel is determined by shearing off the enamel rods. In all samples undergoing remineralization deposits were observed, those of toothpastes based on calcium phosphate technologies seem to merge with each other and cover almost the entire surface of the enamel. Loss of integrity and minerals were detected only in the line-scans of the sample remineralized with GC Tooth Mousse™. The semiquantitative EDX analysis of individual elements in the surface layer of the enamel indicates that during tooth-bleaching with HP statistically significant loss of Na and Mg occurs, whereas the bleaching in combination with a laser leads to statistically significant loss of Ca and P. The results undoubtedly confirm that teeth whitening procedures lead to enamel alterations. In this context, it must be noted that laser bleaching is more aggressive for dental substances. However, these changes are reversible and can be repaired by application of remineralization toothpastes. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.
Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S; Maiti, Tapas K; Banerjee, Indranil
2016-01-01
The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Mateo, Carlos, E-mail: cgm@cenim.csic.es
Since the major strengthening mechanisms in nanocrystalline bainitic steels arise from the exceptionally small size of the bainitc ferrite plate, accurate determination of this parameter is fundamental for quantitative relating the microstructure to the mechanical properties. In this work, the thickness of the bainitic ferrite subunits obtained by different bainitic heat treatments was determined in two steels, with carbon contents of 0.3 and 0.7 wt.%, from SEM and TEM micrographs. As these measurements were made on 2D images taken from random sections, the method includes some stereological correction factors to obtain accurate information. Finally, the determined thicknesses of bainitic ferritemore » plates were compared with the crystallite size calculated from the analysis of X-ray diffraction peak broadening. Although in some case the values obtained for crystallite size and plate thickness can be similar, this study confirms that indeed they are two different parameters. - Highlights: •Bainitic microstructure in a nanostructured and sub-micron steel •Bainitic ferrite plate thickness measured by SEM and TEM •Crystallite size determined by X-ray analysis.« less
Clasen, Samuel H; Müller, Carmen M O; Parize, Alexandre L; Pires, Alfredo T N
2018-01-15
Cassava starch was grafted with three different esters by the etherification reaction and its modification was characterized by 1 H NMR, FTIR, DSC, SEM, XDR, contact angle and SLS. The samples grafted with diethyl maleate, dipropyl maleate, and dibutyl maleate showed DS values of 2.3, 1.0 and 2.0, respectively, determined from 1 H NMR analysis and confirmed by FTIR analysis, with the appearance of bands at 1721, 1550 and 1126cm -1 . The FTIR, XRD, SEM and DSC results indicated a change in the intra and intermolecular hydrogen interactions in the grafted starch when compared to native starch. Based on the contact angles, it was observed that the macromolecular starch chain acquired hydrophobic characteristics through the substitution of the hydrogens with di maleate esters. The characteristics acquired by grafted starch allow it to be used for the encapsulation of bioactive molecules for the production of bioactive packages and the production of biodegradable packages. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garfias-Mesias, L.F.; Alodan, M.; James, P.I.
1998-06-01
Scanning electrochemical microscopy (SECM) in ferrocyanide and bromide solutions was used to locate active sites (pitting precursors) on polycrystalline Ti where oxidation of Br{sup {minus}} and Fe(CN){sub 6}{sup 4{minus}} was possible. Analysis of the electrochemically active sites was done by using electron microscopy (SEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), and in situ confocal laser scanning microscopy (CLSM). In most cases, the active sites were found to be associated with particles (inclusions) which contained mainly Al and Si; however, some other areas not associated with particles were also found to be active. Although the size of themore » inclusions was normally smaller than 20 {micro}m, as revealed by SEM and AFM imaging, in some cases larger particles were also found. Pitting corrosion tests in bromide solution at potentials above 1.5 V{sub SCE} followed by EDX analysis inside the pits and in situ CLSM observation, confirmed that most of the localized attack started in the areas where particles had been located.« less
An in vitro model of a system of electrical potential compensation in extracorporeal circulation.
Carletti, Umberto; Cattini, Stefano; Lodi, Renzo; Petralia, Antonio; Rovati, Luigi; Zaffe, Davide
2014-02-01
Extracorporeal circulation (ECC) in patients undergoing cardiac surgery induces systemic immune-inflammatory reaction that results in increased postoperative morbidity. Many factors are responsible for the adverse response after ECC. The present in vitro study aimed to investigate electric charges (ECs) generated during ECC, to set a device compensating the ECs, and checking its effect on red blood cells (RBC). The electrical signals of blood in ECC were collected by a custom developed low-noise electronic circuit, processed by a digital oscilloscope (DSO) and a dynamic signal analyzer (DSA). The compensation of ECs was performed using a compensation device, injecting a nulling charge into the blood circuit. The compensation effect of the ECs on RBCs was evaluated by scanning electron microscope (SEM). The electrical analysis performed using both the DSO and the DSA confirmed the EC formation during ECC. The notable electric signals recorded in standard ECC circuits substantially nulled once the compensation device was used, thus confirming efficient EC compensation. After two hours of ECC, the SEM non-blended test on human RBC samples highlighted morphological changes in acanthocytes of the normal biconcave-shaped RBC. The outcomes confirm the development of parasitic ECs during ECC and that a suppressor system may decrease the potential damage of ECs. Nevertheless, further studies are ongoing in order to investigate the complex mechanisms related to lymphocytes and platelet morphological and physiological chances during triboelectric charges in ECC.
NASA Astrophysics Data System (ADS)
Yahyaei, Behrooz; Manafi, Sahebali; Fahimi, Bijan; Arabzadeh, Sepideh; Pourali, Parastoo
2018-03-01
Fungating wounds usually develop in patients with advanced cancer, which responds poorly to treatments. Such wounds can be treated using suitable dressings. For this purpose, a recent research produced a new type of wound dressing with antibacterial and anticancer properties. The culture supernatant of Fusarium oxysporum was challenged with silver nitrate and heated for 5 min. Production of silver nanoparticles (SNPs) was confirmed using spectrophotometer, transmission electron microscopy (TEM), and X-ray diffraction (XRD) analysis. A solution of 10% (w/w) poly vinyl alcohol (PVA) and different volumes of SNP solutions were provided, where each solution was separately used for electrospinning. The obtained PVA/SNPs film evaluated under morphological characterization using field emission scanning electron microscope (FE-SEM) and its antibacterial and anticancer activities were measured. Results confirmed the presence of SNPs in the reaction mixture with sizes less than 50 nm, spherical and oval in shapes. FE-SEM results confirmed that SNPs were seen inside and entrapped between PVA in the PVA/SNPs membrane, composed of 50% of each material. This film had acceptable antibacterial properties against four different bacterial strains and a good anticancer activity against the human melanoma cell line (COLO 792) in contrast to the control one. A recent research introduced a new and fast biological method for the synthesis of SNPs, having acceptable antibacterial and anticancer activities. Further studies are needed to support the obtained results.
Macro and micro wettability of hydrophobic siloxane films with hierarchical surface roughness
NASA Astrophysics Data System (ADS)
Terpilowski, Konrad; Goncharuk, Olena; Gun’ko, Vladimir M.
2018-07-01
A method has been proposed to control the macro- and micro-wetting properties of hydrophobic surfaces through changes in the roughness due to modifying siloxane films with silica microparticles (MP). An experimental and theoretical analysis of macro- and micro-wettability dependence on the roughness of a film surface was carried out by combination of SEM and XPS methods with evaluation of equilibrium contact angles from Tadmor’s equation. SEM images (environmental mode) allowed characterizing the mosaic hydrophobicity/hydrophilicity of the siloxane film surface. Hydrophobic siloxane films filled with silica MP were synthesized on the plasma activated and non-activated glass substrates by the sol-gel dip-coating method using tetraethylorthosilicate based precursor compositions with subsequent reaction with hexamethyldisilazane. The values of water contact angles higher than 150° indicating a superhydrophobic effect were observed for films with combining nano- and micro-hierarchical roughness. Moreover, considering wettability on the micro scale the hybrid effect was discovered and confirmed by the SEM and XPS studies showing the presence of not only hydrophobic but also hydrophilic surface domains.
NASA Astrophysics Data System (ADS)
Bilal Naim Shaikh, Mohd; Arif, Sajjad; Arif Siddiqui, M.
2018-04-01
This paper reports the fabrication and characterization of aluminium hybrid composites (AMCs) reinforced with commonly available and inexpensive fly ash (FA, 0, 5, 10 and 15 wt.%) particles along silicon carbide (SiC) using powder metallurgy process. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were employed for microstructural characterization and phase identification respectively. Wear behaviour were investigated using pin-on-disc wear tester for the different combinations of wear parameters like load (10, 20 and 30 N), sliding speed (1.5, 2 and 2.5 m s‑1) and sliding distance (300, 600 and 900 m). SEM confirms the uniform distribution of FA and SiC in aluminium matrix. The hardness of Al/SiC/FA is increased by 20%–25% while wear rate decreased by 15%–40%. From wear analysis, sliding distance was the least significant parameter influencing the wear loss followed by applied load and sliding speed. To identify the mechanism of wear, worn out surface were also analysed by SEM.
Phagocytosis of PLGA Microparticles in Rat Peritoneal Exudate Cells: A Time-Dependent Study
NASA Astrophysics Data System (ADS)
Gomes, Anderson De Jesus; Nain Lunardi, Claure; Henrique Caetano, Flávio; Orive Lunardi, Laurelúcia; da Hora Machado, Antonio Eduardo
2006-07-01
With the purpose of enhancing the efficacy of microparticle-encapsulated therapeutic agents, in this study we evaluated the phagocytic ability of rat peritoneal exudate cells and the preferential location of poly(D,L-lactide-co-glycolic acid) (PLGA) microparticles inside these cells. The microparticles used were produced by a solvent evaporation method and were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Size distribution analysis using DLS and SEM showed that the particles were spherical, with diameters falling between 0.5 and 1.5 [mu]m. Results from cell adhesion by SEM assay, indicated that the PLGA microparticles are not toxic to cells and do not cause any distinct damage to them as confirmed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Among the large variety of cell populations found in the peritoneal exudates (neutrophils, eosinophils, monocytes, and macrophages), TEM showed that only the latter phagocytosed PLGA microparticles, in a time-dependent manner. The results obtained indicate that the microparticles studied show merits as possible carriers of drugs for intracellular delivery.
Shintcovsk, Ricardo Lima; Knop, Luegya Amorim Henriques; Gandini, Luiz Gonzaga; Martins, Lidia Parsekian; Pires, Aline Segatto
2015-01-01
This study aims at comparing conventional and nickel-free metal bracket surface characteristics with elemental composition by scanning electron microscopy (SEM), using energy dispersive spectroscopy (EDS). The sample consisted of 40 lower incisor brackets divided into four groups: ABZ = conventional brackets, Kirium Abzil 3M® (n = 10); RL = conventional brackets, Roth Light Morelli® (n = 10); NF = nickel-free brackets, Nickel-Free Morelli® (n = 10); and RM = nickel-free brackets, Roth Max Morelli® (n = 10). Qualitative evaluation of the bracket surface was performed using SEM, whereby surface features were described and compared. The elemental composition was analyzed by EDS. According to surface analysis, groups ABZ and RL showed a homogeneous surface, with better finishing, whereas the surfaces in groups NF and RM were rougher. The chemical components with the highest percentage were Fe, Cr and C. Groups NF and MR showed no nickel in their composition. In conclusion, the bracket surface of the ABZ and RL groups was more homogeneous, with grooves and pores, whereas the surfaces in groups NF and RM showed numerous flaws, cracks, pores and grooves. The chemical composition analysis confirmed that the nickel-free brackets had no Ni in their composition, as confirmed by the manufacturer's specifications, and were therefore safe to use in patients with a medical history of allergy to this metal.
Synthesis and Property of Ag(NP)/catechin/Gelatin Nanofiber
NASA Astrophysics Data System (ADS)
Nasir, Muhamad; Apriani, Dita
2017-12-01
Nanomaterial play important role future industry such as for the medical, food, pharmaceutical and cosmetic industry. Ag (NP) and catechin exhibit antibacterial property. Ag(NP) with diameter around 15 nm was synthesis by microwaved method. We have successfully produce Ag(NP)/catechin/gelatin nanofiber composite by electrospinning process. Ag(NP)/catechin/gelatin nanofiber was synthesized by using gelatin from tuna fish, polyethylene oxide (PEO), acetic acid as solvent and silver nanoparticle(NP)/catechin as bioactive component, respectively. Morphology and structure of bioactive catechin-gelatin nanofiber were characterized by scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR), respectively. SEM analysis showed that morphology of nanofiber composite was smooth and had average diameter 398.97 nm. FTIR analysis results were used to confirm structure of catechin-gelatin nanofiber. It was confirmed by FTIR that specific vibration band peak amide A (N-H) at 3286,209 cm-1, amide B (N-H) 3069,396 cm-1, amide I (C=O) at 1643,813 cm-1, amide II (N-H and CN) at 1538,949 cm-1, amide III (C-N) at 1276,789 cm-1, C-O-C from polyethylene oxide at 1146,418 cm-1, respectively. When examined to S. Aureus bacteria, Ag/catechin/gelatin nanofiber show inhabitation performance around 40.44%. Ag(NP)/catechin/gelatin nanofiber has potential application antibacterial medical application.
Microstructural and optical properties of Mn doped NiO nanostructures synthesized via sol-gel method
NASA Astrophysics Data System (ADS)
Shah, Shamim H.; Khan, Wasi; Naseem, Swaleha; Husain, Shahid; Nadeem, M.
2018-04-01
Undoped and Mn(0, 5%, 10% and 15%) doped NiO nanostructures were synthesized by sol-gel method. Structure, morphology and optical properties were investigated through XRD, FTIR, SEM/EDS and UV-visible absorption spectroscopy techniques. XRD data analysis reveals the single phase nature with cubic crystal symmetry of the samples and the average crystallite size decreases with the doping of Mn ions upto 10%. FTIR spectra further confirmed the purity and composition of the synthesized samples. The non-spherical shape of the nanostructures was observed from SEM micrographs and gain size of the nanostructures reduces with Mn doping in NiO, whereas agglomeration increases in doped sample. Optical band gap was estimated using Tauc'srelation and found to increase on incorporation of Mn upto 10% in host lattice and then decreases for further doping.
Micro structural analysis and magnetic characteristics of rare earth substituted cobalt ferrite
NASA Astrophysics Data System (ADS)
Tapdiya, Swati; Singh, Sarika; Kulshrestha, Shobha; Shrivastava, A. K.
2018-05-01
A series of ultrafine nanoparticles of Gd3+ doped Co-ferrites CoGdxFe2-xO4 (x=0.0, 0.05 and 0.10) were prepared by wet chemical co-precipitation method using nitrates of respective metal ions. Structural and morphology studies were performed using XRD, SEM and EDAX. Indexed XRD patterns confirm the formation of cubic spinel phase. Average crystallite sizes found to be decreases with trivalent rare earth ion substitution. Lattice constant (a) and lattice strain increases with increase in Gd3+ concentration due to large ionic radii (0.94nm) of Gd3+ replacing Fe3+ (0.64nm). SEM images show the spherical morphology and uniform growth of nanoparticles. Magnetic studies show that magnetization (Ms), decreases with increase in Gd3+ concentration from 50.16 emu/gm to 31.26 emu/gm.
Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM
NASA Astrophysics Data System (ADS)
Aoki, Dan; Hanaya, Yuto; Akita, Takuya; Matsushita, Yasuyuki; Yoshida, Masato; Kuroda, Katsushi; Yagami, Sachie; Takama, Ruka; Fukushima, Kazuhiko
2016-08-01
To clarify the role of coniferin in planta, semi-quantitative cellular distribution of coniferin in quick-frozen Ginkgo biloba L. (ginkgo) was visualized by cryo time-of-flight secondary ion mass spectrometry and scanning electron microscopy (cryo-TOF-SIMS/SEM) analysis. The amount and rough distribution of coniferin were confirmed through quantitative chromatography measurement using serial tangential sections of the freeze-fixed ginkgo stem. The lignification stage of the sample was estimated using microscopic observations. Coniferin distribution visualized at the transverse and radial surfaces of freeze-fixed ginkgo stem suggested that coniferin is stored in the vacuoles, and showed good agreement with the assimilation timing of coniferin to lignin in differentiating xylem. Consequently, it is suggested that coniferin is stored in the tracheid cells of differentiating xylem and is a lignin precursor.
NASA Astrophysics Data System (ADS)
Borkar, Rajnikant; Dahake, Rashmi; Rayalu, Sadhana; Bansiwal, Amit
2018-03-01
A biphasic copper oxide thin film of grass-like appendage morphology is synthesized by two-step electro-deposition method and later investigated for photoelectrochemical (PEC) water splitting for hydrogen production. Further, the thin film was characterized by UV-Visible spectroscopy, x-ray diffraction (XRD), Scanning electron microscopy (SEM) and PEC techniques. The XRD analysis confirms formation of biphasic copper oxide phases, and SEM reveals high surface area grass appendage-like morphology. These grass appendage structures exhibit a high cathodic photocurrent of - 1.44 mAcm-2 at an applied bias of - 0.7 (versus Ag/AgCl) resulting in incident to photon current efficiency (IPCE) of ˜ 10% at 400 nm. The improved light harvesting and charge transport properties of grass appendage structured biphasic copper oxides makes it a potential candidate for PEC water splitting for hydrogen production.
Poly (N-ethyl aniline)/Ag Nanocomposite as Humidity Sensor
NASA Astrophysics Data System (ADS)
Pande, Nishigandh S.; Jaspal, Dipika; Ambekar, Jalindar
Poly (N-ethyl aniline)/Ag organic-inorganic composite has been synthesized by a single step in situ chemical oxidative polymerization method. The synthesis of Poly (N-ethyl aniline)/Ag nanocomposite has been confirmed by X-ray diffraction (XRD), Ultraviolet-Vis Spectroscopy (UV-visible), Fourier transform infrared analysis (FTIR) and FE-SEM investigations. XRD spectral study exhibited major diffraction in the range 20-80∘ (2θ) and indicated the semicrystalline nature of poly (N-ethyl aniline)/Ag nanocomposite. Characteristic peaks in UV-visible and FTIR spectra of poly (N-ethyl aniline) switched to higher wave numbers in poly (N-ethyl aniline)/Ag nanocomposite. Peaks at 1789cm-1, 1595cm-1, 667cm-1 and 501cm-1 in FTIR spectrum confirmed the formation of poly (N-ethyl aniline)/Ag nanocomposite. FE-SEM photographs reported agglomerated granular particulate nature of poly (N-ethyl aniline)/Ag nanocomposite. Synthesized poly (N-ethyl aniline)/Ag nanocomposite exhibited a high response to humidity, good reproducibility and stability at room temperature. An appreciable response was shown in the presence of 40% humid atmosphere for up to successive four cycles. Composite sensitivity has been found to increase with the increasing concentration of humidity, at room temperature.
Rortveit, Asbjorn Warvik; Olsen, Svein Ottar
2009-04-01
The purpose of this study is to explore how convenience orientation, perceived product inconvenience and consideration set size are related to attitudes towards fish and fish consumption. The authors present a structural equation model (SEM) based on the integration of two previous studies. The results of a SEM analysis using Lisrel 8.72 on data from a Norwegian consumer survey (n=1630) suggest that convenience orientation and perceived product inconvenience have a negative effect on both consideration set size and consumption frequency. Attitude towards fish has the greatest impact on consumption frequency. The results also indicate that perceived product inconvenience is a key variable since it has a significant impact on attitude, and on consideration set size and consumption frequency. Further, the analyses confirm earlier findings suggesting that the effect of convenience orientation on consumption is partially mediated through perceived product inconvenience. The study also confirms earlier findings suggesting that the consideration set size affects consumption frequency. Practical implications drawn from this research are that the seafood industry would benefit from developing and positioning products that change beliefs about fish as an inconvenient product. Future research for other food categories should be done to enhance the external validity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasankumar, T.; Jose, Sujin P., E-mail: sujamystica@yahoo.com; Ilangovan, R.
Nanostructured Mn/Ni mixed metal oxide was synthesized at ambient temperature by facile microwave irradiation technique. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. X-ray diffraction analysis confirmed the formation of Mn/Ni mixed oxide in rhombohedral phase and the grain size calculated was found to be 87 nm. The irregular spherical morphology of the prepared sample was exhibited by the SEM images. The characteristic peaks of FTIR at about 630 cm{sup −1} and 749 cm{sup −1} were attributed to the Mn-O and Ni-O stretching vibrations respectively. The presence of both Mn and Ni inmore » the prepared sample was validated by the EDS spectra which in turn confirmed the formation of mixed oxide. Cyclic voltammetry and galvanostatic chargedischarge measurements were employed to investigate the electrochemical performance of the mixed oxide. The cyclic voltammetry curves demonstrated good capacitive performance of the sample in the potential window −0.2V to 0.9V. The charge discharge study revealed the suitability of the prepared mixed oxide for the fabrication of supercapacitor electrode.« less
Intraoral Laser Welding (ILW): ultrastructural and mechanical analysis
NASA Astrophysics Data System (ADS)
Fornaini, Carlo; Passaretti, Francesca; Villa, Elena; Nammour, Samir
2010-05-01
Nd:YAG, currently used since 1970 in dental laboratories to weld metals on dental prostheses has some limits such great dimensions, high costs and fixed delivery system. Recently it was proposed the possibility to use the Nd:YAG laser device commonly utilised in dental office, to repair broken fixed, removable and orthodontic prostheses and to weld metals directly into the mouth. The aim of this work is to value, through SEM (Scanning Electron Microscope), EDS (Energy Dispersive X-Ray Spectroscopy) and DMA (Dynamic Mechanical Analysis), quality and mechanical strength of the welding process comparing a device normally used in dental lab and a device normally used in dental office for oral surgery. Sixteen CoCrMo metal plates and twenty steel orthodontic wires were divided in four groups: one was welded without metal apposition by laboratory laser, one was welded with metal apposition by laboratory laser, one was welded without metal apposition by office laser and one was welded with metal apposition by office laser. The welding process was analysed by SEM, EDS and DMA to compare the differences between the different samples. By SEM analysis it was seen that the plates welded by office laser without apposition metal showed a greater number of fissurations compared with the other samples. By EDS analysis it was seen a homogeneous composition of the metals in all the samples. The mechanical tests showed a similar elastic behaviour of the samples, with minimal differences between the two devices. No wire broke even under the maximum strength by the Analyser. This study seems to demonstrate that the welding process by office Nd:YAG laser device and the welding process by laboratory Nd:YAG laser device, analysed by SEM, EDS and DMA, showed minimal and not significant differences even if these data will be confirmed by a greater number of samples.
Singha, Debal Kanti; Mahata, Partha
2017-08-29
Herein, a mixed metal coordination polymer, {(H 2 pip)[Zn 1/3 Fe 2/3 (pydc-2,5) 2 (H 2 O)]·2H 2 O} 1 {where H 2 pip = piperazinediium and pydc-2,5 = pyridine-2,5-dicarboxylate}, was successfully synthesized using a hydrothermal technique. To confirm the structure and phase purity of 1, single crystals of an isomorphous pure Fe compound, {(H 2 pip)[Fe(pydc-2,5) 2 (H 2 O)]·2H 2 O} 1a, were synthesized based on similar synthetic conditions. Single crystal X-ray data of 1a confirmed the one-dimensional anionic metal-organic coordination polymer hydrogen bonded with protonated piprazine (piperazinediium) and lattice water molecules. The phase purity of 1 and 1a were confirmed via powder X-ray diffraction. Compound 1 was systematically characterized using IR, TGA, SEM, and EDX elemental mapping analysis. Compound 1 was used as a single source precursor for the preparation of nano-sized ZnFe 2 O 4 via thermal decomposition. The as-obtained ZnFe 2 O 4 was fully characterized using PXRD, SEM, TEM, and EDX elemental mapping analysis. It was found that ZnFe 2 O 4 was formed in its pure form with particle size in the nano-dimension. The aqueous dispersion of nano-sized ZnFe 2 O 4 exhibits a strong emission at 402 nm upon excitation at 310 nm. This emissive property was employed for luminescence-based detection of nitroaromatic explosives in an aqueous medium through luminescence quenching for the first time. Importantly, selective detections have been observed for phenolic nitroaromatics based on differential luminescence quenching behaviour along with a detection limit of 57 ppb for 2,4,6-trinitrophenol (TNP) in water.
Pendleton, Michael W; Washburn, Dorothy K; Ellis, E Ann; Pendleton, Bonnie B
2014-03-01
The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis.
Pendleton, Michael W.; Washburn, Dorothy K.; Ellis, E. Ann; Pendleton, Bonnie B.
2014-01-01
The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis. PMID:24600333
Clinical and semiquantitative marginal analysis of four tooth-coloured inlay systems at 3 years.
Gladys, S; Van Meerbeek, B; Inokoshi, S; Willems, G; Braem, M; Lambrechts, P; Vanherle, G
1995-12-01
The marginal quality of four tooth-coloured inlay systems was clinically investigated and subjected to computer-aided semiquantitative marginal analysis under scanning electron microscopy (SEM) after 3 years of clinical service. Three of the restoration types were made using the Cerec CAD-CAM apparatus: one was milled from preformed glass ceramic blocks, and the two other inlay types were milled from preformed porcelain blocks. The fourth system was based on an experimental indirect resin composite inlay system. Each inlay type was luted with a different luting resin composite. The clinical evaluation was performed with a mirror and explorer by two clinicians separately, and the marginal analysis was conducted microscopically on replicas (SEM x 200). After 3 years in situ, all the restorations were clinically acceptable. No recurrent caries was observed. Marginal analysis under SEM detected a high percentage of submargination for all four systems, which suggests that their respective resin composite luting agents were all subject to wear. The percentage of marginal fractures on the enamel side as well as on the inlay side did not increase dramatically compared to the 6-month results. The first recall after 6 months of clinical service indicated how tooth-coloured inlays behave at their margins. The 3-year results confirmed the early findings, indicating that wear of resin composite lutes is important and present in all systems. The two ceramic materials showed a similar behaviour at the margins. The resin composite inlay performed better at the inlay site than at the enamel site.
PVP capped CdS nanoparticles for UV-LED applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivaram, H.; Selvakumar, D.; Jayavel, R., E-mail: rjvel@annauniv.edu
Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.
Multiple-Group Analysis Using the sem Package in the R System
ERIC Educational Resources Information Center
Evermann, Joerg
2010-01-01
Multiple-group analysis in covariance-based structural equation modeling (SEM) is an important technique to ensure the invariance of latent construct measurements and the validity of theoretical models across different subpopulations. However, not all SEM software packages provide multiple-group analysis capabilities. The sem package for the R…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmoud, Abdelfattah; Daroukh, Mahmoud Al; Lipinska-Chwalek, Marta
Here, degradation processes of oxygen electrodes in solid oxide electrolysis cells (SOECs) were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Mössbauer spectroscopy. La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x (LSCF) anodes (oxygen electrode) were analyzed after different long-term operations durations of 1774, 6100 and 9000 h. The results were compared with a cell in the initial state. Besides the LSCF anode, the SOECs were composed of a Ce 0.8Gd 0.2O 1.9 barrier layer between the anode and electrolyte, yttria-stabilized zirconia (YSZ) as electrolyte and Ni-YSZ as cathode (hydrogen electrode). Mössbauer spectra of the iron-containingmore » anode were acquired in order to determine the alteration of the iron oxidation state and its local environment during operation. Mössbauer spectroscopy yields indirect information about the degradation mechanism, especially in combination with SEM, TEM, and XRD. XRD and TEM revealed the appearance of Co 3O 4 during the SOEC operation and SEM analyses confirmed the formation of SrZrO 3 at the electrode/electrolyte interface. The spectral analysis confirmed the reduction of iron from Fe(IV) to Fe(III) in LSCF after long-term operation. The fraction of Fe(IV) in the electrode decreased with time and 18, 15, 13 and 11% were obtained for 0, 1774, 6100, and 9000 h of operation, respectively.« less
Mahmoud, Abdelfattah; Daroukh, Mahmoud Al; Lipinska-Chwalek, Marta; ...
2017-10-21
Here, degradation processes of oxygen electrodes in solid oxide electrolysis cells (SOECs) were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Mössbauer spectroscopy. La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x (LSCF) anodes (oxygen electrode) were analyzed after different long-term operations durations of 1774, 6100 and 9000 h. The results were compared with a cell in the initial state. Besides the LSCF anode, the SOECs were composed of a Ce 0.8Gd 0.2O 1.9 barrier layer between the anode and electrolyte, yttria-stabilized zirconia (YSZ) as electrolyte and Ni-YSZ as cathode (hydrogen electrode). Mössbauer spectra of the iron-containingmore » anode were acquired in order to determine the alteration of the iron oxidation state and its local environment during operation. Mössbauer spectroscopy yields indirect information about the degradation mechanism, especially in combination with SEM, TEM, and XRD. XRD and TEM revealed the appearance of Co 3O 4 during the SOEC operation and SEM analyses confirmed the formation of SrZrO 3 at the electrode/electrolyte interface. The spectral analysis confirmed the reduction of iron from Fe(IV) to Fe(III) in LSCF after long-term operation. The fraction of Fe(IV) in the electrode decreased with time and 18, 15, 13 and 11% were obtained for 0, 1774, 6100, and 9000 h of operation, respectively.« less
Physicochemical properties of film-coated melt-extruded pellets.
Young, Chistopher R; Crowley, Michael; Dietzsch, Caroline; McGinity, James W
2007-02-01
The purpose of this study was to investigate the physicochemical properties of poly(ethylene oxide) (PEO) and guaifenesin containing beads prepared by a melt-extrusion process and film-coated with a methacrylic acid copolymer. Solubility parameter calculations, thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), modulated differential scanning calorimetry (MDSC), X-ray powder diffraction (XRPD) and high performance liquid chromatography (HPLC) were used to determine drug/polymer miscibility and/or the thermal processibility of the systems. Powder blends of guaifenesin, PEO and functional excipients were processed using a melt-extrusion and spheronization technique and then film-coated in a fluidized bed apparatus. Solubility parameter calculations were used to predict miscibility between PEO and guaifenesin, and miscibility was confirmed by SEM and observation of a single melting point for extruded drug/polymer blends during MDSC investigations. The drug was stable following melt-extrusion as determined by TGA and HPLC; however, drug release rate from pellets decreased upon storage in sealed HDPE containers with silica desiccants at 40 degrees C/75% RH. The weight loss on drying, porosity and tortuosity determinations were not influenced by storage. Recrystallization of guaifenesin and PEO was confirmed by SEM and XRPD. Additionally, the pellets exhibited a change in adhesion behaviour during dissolution testing. The addition of ethylcellulose to the extruded powder blend decreased and stabilized the drug release rate from the thermally processed pellets. The current study also demonstrated film-coating to be an efficient process for providing melt-extruded beads with pH-dependent drug release properties that were stable upon storage at accelerated conditions.
Combined Raman and SEM study on CaF2 formed on/in enamel by APF treatments.
Tsuda, H; Jongebloed, W L; Stokroos, I; Arends, J
1993-01-01
Raman spectra containing the distinct band at 322 cm-1 due to CaF2 or CaF2-like material formed in/on fluoridated bovine enamel were recorded using a micro-Raman spectrograph. Due to increasing levels of background fluorescence with increasing thickness of enamel, the Raman measurements were carried out on thin regions of wedged enamel sections. The distribution of the CaF2 or CaF2-like material was estimated using a simple model. The results indicate that 1/3 of the total CaF2 was concentrated within the narrow depth < 2 microns with high CaF2 concentrations (> 10 wt%), and that the majority of the CaF2 was distributed over the depths up to 26 microns (1 wt% CaF2). SEM observations on fractured fluoridated enamel confirmed that morphological changes were present in the depth range comparable to that of the high CaF2 concentration region expected from the Raman analysis. In deeper regions where lower concentration (< 10%) but a large amount of CaF2 was still expected, the SEM images failed to distinguish between the normal and fluoridated enamel. After KOH treatment, the Raman spectra did not show evidence of the CaF2 peak and the SEM micrographs also confirmed the removal of globules. The peak position of the Raman band of the CaF2 formed by the fluoridation was identical to that of pure CaF2. However, the linewidth was 23 cm-1 (FWHM) and a factor of 2 broader than that of pure CaF2 (12 cm-1). This implies that the lattice dynamics of the CaF2 formed by fluoridation is different from of pure CaF2, and that the material formed is 'CaF2-like' or 'disordered CaF2'.
Biocompatibility of PCL/PLGA-BCP porous scaffold for bone tissue engineering applications.
Thi Hiep, Nguyen; Chan Khon, Huynh; Dai Hai, Nguyen; Byong-Taek, Lee; Van Toi, Vo; Thanh Hung, Le
2017-06-01
In this study, biomimic porous polycaprolactone/poly (lactide-co-glycolide) loading biphasic tricalcium phosphate (PCL/PLGA-BCP) scaffolds were fabricated successfully by solvent evaporation method. The distribution of biphasic tricalcium phosphate (BCP) in polycaprolactone/poly (lactide-co-glycolide) (PCL/PLGA) scaffold was confirmed by micro-computed tomography (micro-CT) scanning, scanning electron microscope (SEM) observation and Energy-dispersive X-ray Spectroscopy (EDS) analysis. The hydrophilicity of the scaffolds was confirmed by contact angle measurement. In in vitro experiments, proliferation of human bone marrow mesenchymal stem cell (hBMSCs) and its osteoblastic differentiation on scaffold were assessed for 1, 2 and 3 weeks using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, fluorescence observation, hematoxylin & eosin (H&E) staining and real-time polymerase chain reaction (RT-PCR). In in vivo experiments, ossification was observed using micro-CT analysis and histological staining.
NASA Astrophysics Data System (ADS)
Gupta, Vandana; Raina, Bindu; Verma, Seema; Bamzai, K. K.
2018-05-01
Samarium manganite doped with cadmium having general formula Sm1-xCdxMnO3 for x = 0.05, 0.15 were synthesized by solid state reaction technique. These compositions were characterized by various techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and dielectric. XRD analysis confirms the single phase formation with pervoskites structure having orthorhombic phase. Densities were determined and compared with the results obtained by Archimedes principle. The scanning electron micrograph shows that the particle size distribution is almost homogeneous and spherical in shape. FTIR analysis confirms the presence of various atomic bonds within a molecule. A very large value of dielectric constant was observed at low frequencies due to the presence of grains and interfaces. The dielectric constant value decreases with increase in cadmium doping at samarium site.
Growth of L-Valinium Aluminium Chloride single crystal for OLED and super-capacitor applications
NASA Astrophysics Data System (ADS)
Kalaivani, D.; Vijayalakshmi, S.; Theras, J. Elberin Mary; Jayaraman, D.; Joseph, V.
2015-12-01
L-Valinium Aluminium Chloride (LVAC), a novel semi-organic material, was grown using slow evaporation under isothermal condition. The single crystal data reveal that the grown crystal belongs to monoclinic system. The SEM micrographs give clear picture about the surface morphology. Further, they confirm the inclusion of aluminium chloride into atomic sites of L-Valine. The compositional elements present in the crystal were identified through EDAX analysis. The mass spectral analysis was carried out to determine the molecular weight of the grown crystal. The optical transparency of the grown crystal was investigated by UV-vis-NIR spectrum. FTIR spectral study was used to identify the functional groups present in the grown material. The luminescence characteristics of grown material were analysed to confirm the effect of metal ion on the ligand. This property makes the material suitable for OLED application. The supercapacitive performance of the grown crystal was finally studied using cyclic voltammetry.
Ghate, Minakshi; Dahule, H K; Thejo Kalyani, N; Dhoble, S J
2018-03-01
A novel blue luminescent 6-chloro-2-(4-cynophenyl) substituted diphenyl quinoline (Cl-CN DPQ) organic phosphor has been synthesized by the acid-catalyzed Friedlander reaction and then characterized to confirm structural, optical and thermal properties. Structural properties of Cl-CN-DPQ were analyzed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction technique (XRD) and scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) spectroscopy. FTIR spectra confirmed the presence of different functional groups and bond stretching. 1 H-NMR and 13 C-NMR confirmed the formation of an organic Cl-CN-DPQ compound. X-ray diffraction study provided its crystalline nature. The surface morphology of Cl-CN-DPQ was analyzed by SEM, while EDAX spectroscopy revealed the elemental analysis. Differential thermal analysis (TGA/DTA) disclosed its thermal stability up to 250°C. The optical properties of Cl-CN-DPQ were investigated by UV-vis absorption and photoluminescence (PL) measurements. Cl-CN-DPQ exhibits intense blue emission at 434 nm in a solid-state crystalline powder with CIE co-ordinates (0.157, 0.027), when excited at 373 nm. Cl-CN-DPQ shows remarkable Stokes shift in the range 14800-5100 cm -1 , which is the characteristic feature of intense light emission. A narrow full width at half-maximum (FWHM) value of PL spectra in the range 42-48 nm was observed. Oscillator strength, energy band gap, quantum yield, and fluorescence energy yield were also examined using UV-vis absorption and photoluminescence spectra. These results prove its applications towards developing organic luminescence devices and displays, organic phosphor-based solar cells and displays, organic lasers, chemical sensors and many more. Copyright © 2017 John Wiley & Sons, Ltd.
Hejazi, Fatemeh; Mirzadeh, Hamid; Contessi, Nicola; Tanzi, Maria Cristina; Faré, Silvia
2017-05-01
Adequate porosity, appropriate pore size, and 3D-thick shape are crucial parameters in the design of scaffolds, as they should provide the right space for cell adhesion, spreading, migration, and growth. In this work, a novel design for fabricating a 3D nanostructured scaffold by electrospinning was taken into account. Helical spring-shaped collector was purposely designed and used for electrospinning PCL fibers. Improved morphological properties and more uniform diameter distribution of collected nanofibers on the turns of helical spring-shaped collector are confirmed by SEM analysis. SEM images elaboration showed 3D pores with average diameter of 4 and 5.5 micrometer in x-y plane and z-direction, respectively. Prepared 3D scaffold possessed 99.98% porosity which led to the increased water uptake behavior in PBS at 37°C up to 10 days, and higher degradation rate compared to 2D flat structure. Uniaxial compression test on 3D scaffolds revealed an elastic modulus of 7 MPa and a stiffness of 10 2 MPa, together with very low hysteresis area and residual strain. In vitro cytocompatibility test with MG-63 osteoblast-like cells using AlamarBlue ™ colorimetric assay, indicated a continuous increase in cell viability for the 3D structure over the test duration. SEM observation showed enhanced cells spreading and diffusion into the underneath layers for 3D scaffold. Accelerated calcium deposition in 3D substrate was confirmed by EDX analysis. Obtained morphological, physical, and mechanical properties together with in vitro cytocompatibility results, suggest this novel technique as a proper method for the fabrication of 3D nanofibrous scaffolds for the regeneration of critical-size load bearing defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1535-1548, 2017. © 2017 Wiley Periodicals, Inc.
Tripodi, D; Martinelli, D; Pasini, M; Giuca, M R; D'Ercole, S
2016-12-01
Assess prevalence, familial predisposition and susceptibility to caries of Black Stains (BS). Evaluate the microbiological composition of BS, saliva and subgingival plaque. Sixty nine subjects with BS (test group) and 120 subjects without BS (control group) were analysed for oral status. For each BS-patient, a BS-deposit, 1 ml of saliva and subgingival plaque were collected and microbiologically analysed. Five deciduous teeth with BS were observed under SEM. This study showed a BS prevalence similar to that of the Mediterranean area and a familiality. The microbiological origin of BS was confirmed by SEM and culture method and the BS flora differ from that of supragingival plaque. Predominance in BS and saliva of Actinomycetes and the low salivary prevalence of S. mutans and L. acidophilus may be related with low caries incidence in BS patients. The high presence of Actinomyces spp can be a causative factor for BS.
Structure, wettability and thermal degradation of new fluoro-oligomer modified nanoclays.
Valsecchi, R; Viganò, M; Levi, M; Turri, S
2008-04-01
Quaternary ammonium salts based on monofunctionalized Perfluoropolyether (PFPE) oligomers were synthesized and used for the cation exchange process of sodium Montmorillonite nanoclays. The new fluoromodified nanoclays were characterized through X-rays diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), termogravimetric analysis (TGA), differential scanning calorimetry (DSC), electronic microscopy (SEM-EDS), and contact angle measurements (CA). In particular XRD showed rather complex patterns (presence of higher order reflections) which allowed the calculation of basal spacings, regularly increasing with the molecular weight of the fluorinated macrocation. Both IR and SEM confirmed the presence of fluorinated segments at clays interface, while TGA showed a limited thermal stability with an onset of degradation temperature which seems not dependent on the molecular weight of the macrocation. CA measurements showed a peculiar behaviour, with evident dynamic hysteresis phenomena and surface tension components quite different from those of commercially available, organomodified clays.
Structural and magnetic properties of ytterbium substituted spinel ferrites
NASA Astrophysics Data System (ADS)
Alonizan, Norah H.; Qindeel, Rabia
2018-06-01
Chemical co-precipitation route adopted to synthesize the magnetic materials. In the present work, iron is replaced by ytterbium ion in manganese-based spinel ferrites. The yield chemically represented by MnYb x Fe2- x O4 ( x = 0.00, 0.025, 0.05, 0.075, 0.10) and its structural, magnetic and electrical properties were observed. The cubic structure of spinel ferrites was confirmed by X-ray diffraction analysis. Spherically shaped grains were perceived in SEM pictures and size lessened with the growth of ytterbium concentration. SEM profile also shows little irregularity in spherical particles. The substitution of ytterbium (Yb) results in the enhancement of electrical resistivity. The resistivity was reduced with the gradual increase in temperature from 303 to 693 K. The trend of activation energy was found to be similar to that of room temperature resistivity. The coercivity of samples was raised with Yb-ion substitution while saturation magnetization and remanence reduced.
Optimizing Performance Parameters of Chemically-Derived Graphene/p-Si Heterojunction Solar Cell.
Batra, Kamal; Nayak, Sasmita; Behura, Sanjay K; Jani, Omkar
2015-07-01
Chemically-derived graphene have been synthesized by modified Hummers method and reduced using sodium borohydride. To explore the potential for photovoltaic applications, graphene/p-silicon (Si) heterojunction devices were fabricated using a simple and cost effective technique called spin coating. The SEM analysis shows the formation of graphene oxide (GO) flakes which become smooth after reduction. The absence of oxygen containing functional groups, as observed in FT-IR spectra, reveals the reduction of GO, i.e., reduced graphene oxide (rGO). It was further confirmed by Raman analysis, which shows slight reduction in G-band intensity with respect to D-band. Hall effect measurement confirmed n-type nature of rGO. Therefore, an effort has been made to simu- late rGO/p-Si heterojunction device by using the one-dimensional solar cell capacitance software, considering the experimentally derived parameters. The detail analysis of the effects of Si thickness, graphene thickness and temperature on the performance of the device has been presented.
SYNTHESIS AND
NASA Astrophysics Data System (ADS)
Mashiko, W.; Katsumata, T.; Inaguma, Y.
(La,Zn)TiO3 was synthesized by an ion exchange method using ZnCl2 molten salt. By a powder X-ray diffraction, it was confirmed that perovskite structure was retained after ion exchange. The composition of ion exchanged sample was determined to be La0.55(6)Li0.064(4)Zn0.13(1)Ti1.0(1)O2.97 by ICP analysis, and the homogeneous distribution of Zn in this sample was confirmed by the scanning electron microscope (SEM). The bulk and total conductivity of the sample at the room temperature was measured to be 6.9 × 10-7 S·cm-1, 1.7 × 10-7 S·cm-1, respectively. The mobile species was confirmed to be Zn2+ by the electrolysis at 500°C.
Karpuraranjith, M; Thambidurai, S
2017-11-01
A new biopolymer based ZnO-PVP nanocomposite was successfully synthesized by single step in situ precipitation method using chitosan as biosurfactant, zinc chloride as a source material, PVP as stabilizing agent and sodium hydroxide as precipitating agent. The chemical bonding and crystalline behaviors of chitosan, zinc oxide and PVP were confirmed by FT-IR and XRD analysis. The biopolymer connected ZnO particles intercalated PVP matrix was layer and rod like structure appeared in nanometer range confirmed by HR-SEM and TEM analysis. The surface topography image of CS/ZnO-PVP nanocomposite was obtained in the average thickness of 12nm was confirmed by AFM analysis. Thermal stability of cationic biopolymer based ZnO intercalated PVP has higher stability than CS-PVP and chitosan. Consequently, antimicrobial activity of chitosan/ZnO-PVP matrix acts as a better microbial inhibition activity than PVP-ZnO nanocomposite. The obtained above results demonstrate that CS and ZnO intercalated PVP matrix has better reinforced effect than other components. Therefore, Chitosan/ZnO-PVP nanocomposite may be a promising material for the biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Cooked Food Waste-An Efficient and Less Expensive Precursor for the Generation of Activated Carbon.
Krithiga, Thangavelu; Sabina, Xavier Janet; Rajesh, Baskaran; Ilbeygi, Hamid; Shetty, Adka Nityananda; Reddy, Ramanjaneya; Karthikeyan, Jayabalan
2018-06-01
Activated carbon was synthesized from cooked food waste, especially dehydrated rice kernels, by chemical activation method using NaOH and KOH as activating agents. It was then characterized by ultimate and proximate analysis, BET surface analysis, XRD, FTIR, Raman and SEM. The XRD patterns and Raman spectra confirmed the amorphous nature of the prepared activated carbons. Ultimate analysis showed an increase in the carbon content after activation of the raw carbon samples. Upon activation with NaOH and KOH, the surface area of the carbon sample was found to have increased from 0.3424 to 539.78 and 306.83 m2g-1 respectively. The SEM images revealed the formation of heterogeneous pores on the surface of the activated samples. The samples were then tested for their adsorption activity using acetic acid and methylene blue. Based on the regression coefficients, the adsorption kinetics of methylene blue dye were fitted with pseudo-second order model for both samples. Similarly, the Freundlich isotherm was found to be a better fit than Langmuir isotherm for both samples. The activity of thus prepared activated carbons was found to be comparable with the commercial carbon.
Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition.
Hong, Jinkee; Kang, Sang Wook
2011-09-01
We performed a comparative surface analysis of all-carbon nano-objects (multiwall carbon nanotubes (MWNT) or graphene oxide (GO) sheets) based multilayer coatings prepared using three widely used nanofilm fabrication methods: dip-, spin-, and spray-assisted layer-by-layer (LbL) deposition. The resultant films showed a marked difference in their growth mechanisms and surface morphologies. Various carbon decorative coatings were synthesized with different surface roughness values, despite identical preparation conditions. In particular, smooth to highly rough all-carbon surfaces, as determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM), were readily obtained by manipulating the LbL deposition methods. As was confirmed by the AFM and SEM analyses, this finding indicated the fundamental morphological evolution of one-dimensional nano-objects (MWNT) and two-dimensional nano-objects (GO) by control of the surface roughness through the deposition method. Therefore, an analysis of the three LbL-assembly methods presented herein may offer useful information about the industrial use of carbon decorative coatings and provide an insight into ways to control the structures of multilayer coatings by tuning the morphologies of carbon nano-objects.
[Compatibility between high-strength dental ceramic (type A) and vintage AL veneering porcelain].
Cui, Jun; Chao, Yong-lie; Meng, Yu-kun
2006-05-01
To investigate the interface bond strength and compatibility between High-Strength Dental Ceramic (type A) and Vintage AL veneering porcelain. Twenty bar-shape specimens (ten Vintage AL and ten Vitadur alpha) were fabricated, and shear test was conducted to determine the bond strength. A bilayered composite (1 mm core ceramic and 0.8 mm Vintage AL) was prepared and then fractured for scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. Ten all-ceramic anterior crowns were fabricated and the temperatures of thermal shock resistance were tested. The mean values of the bond strength measured were (55.52 +/- 14.64) MPa and (59.37 +/- 13.93) MPa for Vintage AL and Vitadur alpha respectively (P>0.05). SEM showed tight connection between the High-Strength Dental Ceramic (type A) and the veneering porcelain. Element diffusion was also confirmed by energy dispersive spectroscopy (EDS) analysis. The temperature of thermal shock resistance of this system was (179 +/- 15) degrees C. Vintage AL veneering porcelain has good thermal and chemical compatibility with High-Strength Dental Ceramic (type A).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taufeeq, Saba, E-mail: sabataufeeq23@gmail.com; Parveen, Azra; Agrawal, Shraddha
2016-05-23
Nanoparticles (NPs) of Pure BaFe{sub 12}O{sub 19} and Strontium doped Barium Ferrite (Ba{sub 0.9}Sr{sub 0.1}Fe{sub 12}O{sub 19}) have been successfully synthesized by Auto combustion method using citric acid as a chelating agent and calcined at 450°C for 3 hrs and 850°C for 4 hrs. Microstructural studies were carried by XRD and SEM techniques. Structural studies suggest that the crystal system remains hexagonal even with the doping of Strontium. The XRD analysis confirms the formation of the structures in the nanometer regime and the peaks are the evidence of the crystalline phase. The SEM images shows the morphology of surface ofmore » the samples. The thermal property studied by TGA shows the weight loss which is with varying the temperature and weight loss also varies with Sr doping. The TGA analysis exhibits the loss of weight at different temperatures.« less
Sundararajan, M; Kennedy, L John; Vijaya, J Judith
2015-09-01
Pure and cobalt doped zinc ferrites were prepared by microwave combustion method using L-arginine as a fuel. The prepared samples were characterized by various instrumental techniques such as X-ray powder diffractometry, high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis, Fourier transformed infrared (FT-IR) spectroscopy, photoluminescence spectroscopy and UV-Visible diffuse reflectance spectroscopy. Vibrating sample magnetometry at room temperature was recorded to study the magnetic behavior of the samples. X-ray analysis confirmed the formation of zinc ferrites normal spinel-type structure with an average crystallite sizes in the range, 25.69 nm to 35.68 nm. The lattice parameters decreased as cobalt fraction was increased. The HR-SEM images showed nanoparticles are agglomerated. The estimated band gap energy value was found to decrease with an increase in cobalt content (1.87 to 1.62 eV). Broad visible emissions are observed in the photoluminescence spectra. A gradual increase in the coercivity and saturation magnetization (M(s)) were noted at relatively higher cobalt doping fractions.
Microstructures of Pd-containing dispersants for admixed dental amalgams.
Chern Lin, J H; Greener, E H
1991-10-01
Blended Pd-containing dispersants were developed by the utilization of a Ag-Cu eutectic into which Pd was substituted for Ag or Cu in concentrations of up to 20 wt%. Compositions were melted either in argon-filled sealed vycor tubes or in a graphite-linked carbon crucible of an induction furnace with an argon blanket. Ingots of approximately 1.5 cm in diameter were sectioned to 0.2 cm in thickness and polished through standard metallographic polishing procedures. The possible compounds were identified by XRD. The microstructures of the alloys were examined by SEM/EDS. XRD analysis of the alloys revealed the preferential dissolution of Pd in Cu when the Pd concentration was less than or equal to 10 wt%. When the Pd concentration exceeded 20 wt%, Pd was found to be dissolved in both Ag and Pd. No Cu3Pd x-ray diffraction peaks were found for alloys with Pd concentration of up to 20 wt%. SEM/EDS analysis confirmed XRD results; lamellae of Ag and Cu-Pd were found in alloys with Pd concentration less than or equal to 10 wt%.
Chemical route for formation of intermetallic Zn 4Sb 3 phase
NASA Astrophysics Data System (ADS)
Denoix, A.; Solaiappan, A.; Ayral, R. M.; Rouessac, F.; Tedenac, J. C.
2010-05-01
Synthesis of intermetallic zinc antimonide phases via low temperature solution route was investigated. Trial experiments were carried out under inert atmosphere at 70 °C using metallic Zn, SbCl 3 and NaBH 4 as reactants and tetrahydrofuran (THF), dimethylsulfoxide (DMSO) as organic media. Powder X-ray analysis confirmed the nucleation and growth of ZnSb phases in presence of excess Zn. SEM analysis revealed the existence of core-shell structure comprising of Zn core and Sb shell. Such particles get transformed into Zn 4Sb 3 crystalline phases upon thermal treatment at 300 °C/6 h in a silica tube closed under high secondary vacuum.
Synthesis and characterization of Zn-Mg ferrite
NASA Astrophysics Data System (ADS)
Singh, Shailndra; Barbar, S. K.; Ram, Sahi
2018-05-01
The Zn-Mg ferrite sample of general formula Zn0.5Mg0.5Fe2O4 have been prepared by standard solid state reaction technique using high purity oxides. X-ray diffraction analysis shows the formation of a zinc-magnesium ferrite cubic phase at room temperature with space group Fd3m. FTIR spectra show two significant absorption bands first at 665.15 cm-1 corresponding to tetrahedral (A) and second band at 434 cm-1 corresponding to octahedral (B) sites of the spinel. Morphology of the sample determined by the SEM measurement and EDS analysis has confirmed the composition of atoms in the sample.
Fornaini, Carlo; Passaretti, Francesca; Villa, Elena; Rocca, Jean-Paul; Merigo, Elisabetta; Vescovi, Paolo; Meleti, Marco; Manfredi, Maddalena; Nammour, Samir
2011-07-01
The Nd:YAG laser has been used since 1970 in dental laboratories to weld metals on dental prostheses. Recently in several clinical cases, we have suggested that the Nd:YAG laser device commonly utilized in the dental office could be used to repair broken fixed, removable and orthodontic prostheses and to weld metals directly in the mouth. The aim of this work was to evaluate, using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and dynamic mechanical analysis (DMA), the quality of the weld and its mechanical strength, comparing a device normally used in dental laboratory and a device normally used in the dental office for oral surgery, the same as that described for intraoral welding. Metal plates of a Co-Cr-Mo dental alloy and steel orthodontic wires were subjected to four welding procedures: welding without filler metal using the laboratory laser, welding with filler metal using the laboratory laser, welding without filler metal using the office laser, and welding with filler metal using the office laser. The welded materials were then analysed by SEM, EDS and DMA. SEM analysis did not show significant differences between the samples although the plates welded using the office laser without filler metal showed a greater number of fissures than the other samples. EDS microanalysis of the welding zone showed a homogeneous composition of the metals. Mechanical tests showed similar elastic behaviours of the samples, with minimal differences between the samples welded with the two devices. No wire broke even under the maximum force applied by the analyser. This study seems to demonstrate that the welds produced using the office Nd:YAG laser device and the laboratory Nd:YAG laser device, as analysed by SEM, EDS and DMA, showed minimal and nonsignificant differences, although these findings need to be confirmed using a greater number of samples.
Structural, magnetic and dielectric properties of polyaniline/MnCoFe2O4 nanocomposites
NASA Astrophysics Data System (ADS)
Chitra, Palanisamy; Muthusamy, Athianna; Jayaprakash, Rajan
2015-12-01
Ferromagnetic PANI containing MnCoFe2O4 nanocomposites were synthesized by in-situ chemical polymerization of aniline incorporated MnCoFe2O4 nanoparticles (20%, 10% w/w of fine powders) with and without ultrasonic treatment. The MnCoFe2O4 nanoparticles were synthesized by auto combustion method. The PANI/MnCoFe2O4 nanocomposites were characterized with Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The average particle size of the resulting PANI/MnCoFe2O4 nanocomposites was confirmed from the TEM and XRD analysis. The structure and morphology of the composites were confirmed by FT-IR spectroscopy, XRD and SEM. In addition, the electrical and magnetic properties of the nanocomposites were investigated. The PANI/MnCoFe2O4 nanocomposites under applied magnetic field exhibited the hysteresis loops of ferromagnetic nature at room temperature. The variation of Dielectric constant, Dielectric loss, and AC conductivity of PANI/MnCoFe2O4 nanocomposites at room temperature as a function of frequency in the range 50 Hz-5 MHz has been studied. Effect of ultrasonication on the PANI/MnCoFe2O4 nanocomposites was also investigated.
NASA Astrophysics Data System (ADS)
Mylarappa, M.; Venkata Lakshmi, V.; Vishnu Mahesh, K. R.; Nagaswarupa, H. P.; Raghavendra, N.
2016-09-01
This work deliberates a method for manganese (Mn) recovery as manganese oxide obtained by leaching of waste batteries with 3M sulphuric acid. The Experimental test for the recovery of Mn present within the waste dry cell batteries were carried out by a reductive leachant. Elemental composition of leached sample was confirmed by Energy Dispersive X-ray analysis (EDAX), and Surface morphology of the recovered MnO2 was examined by using Scanning Electron microscopy (SEM). Phase composition was confirmed from X-ray Diffractro meter (XRD). The obtained leached solution was treated with 4M NaOH, yielded to Manganese Dioxide with high extraction degree, while it do not touches the Zn content within the solutions. The recovered samples were characterized using XRD, EDAX, SEM and Fourier transform infrared spectrometry (FTIR). The electrochemical properties of the as-recovered sample from leached solution was examined used cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Remarkably, the 80 wt.% MnO2 displays reversibility, diffusion constant, smaller equivalent series resistance and charge transfer resistance in 0.5M NaOH showed superior results as compared to alternative electrolytes. The ideal capacitive behaviour of MnO2 electrode and nano particle was applied to photocatalytic degradation of dyes.
Electronic structure and bonding interactions in Ba1- x Sr x Zr0.1Ti0.9O3 ceramics
NASA Astrophysics Data System (ADS)
Mangaiyarkkarasi, Jegannathan; Sasikumar, Subramanian; Saravanan, Olai Vasu; Saravanan, Ramachandran
2017-06-01
An investigation on the precise electronic structure and bonding interactions has been carried out on Ba1- x Sr x Zr0.1Ti0.9O3 (short for BSZT, x = 0, 0.05, 0.07 and 0.14) ceramic systems prepared via high-temperature solid state reaction technique. The influence of Sr doping on the BSZT structure has been examined by characterizing the prepared samples using PXRD, UV-visible spectrophotometry, SEM and EDS. Powder profile refinement of X-ray data confirms that all the synthesized samples have been crystallized in cubic perovskite structure with single phase. Charge density distribution of the BSZT systems has been completely analyzed by the maximum entropy method (MEM). Co-substitution of Sr at the Ba site and Zr at the Ti site into the BaTiO3 structure presents the ionic nature between Ba and O ions and the covalent nature between Ti and O ions, revealed from MEM calculations. Optical band gap values have been evaluated from UV-visible absorption spectra. Particles with irregular shapes and well defined grain boundaries are clearly visualized from SEM images. The phase purity of the prepared samples is further confirmed by EDS qualitative spectral analysis.
Hair waving natural product: Dillenia indica seed sap.
Saikia, Jyoti Prasad
2013-02-01
Knowing keratin is the main component and mechanical strength of hair a study was performed to evaluate whether Dillenia indica seed sap can affect molecular strength of hair or not. In the present study the human hair collected from barber shop waste were subjected to purified sap for 12 h and then analysed using Fourier transform infrared spectroscopy (FTIR) for documenting evidence for keratin degradation. Further the deterioration was confirmed by thermo gravimetric analysis (TGA) and scanning electron microscopy (SEM). Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brozek, Eric M. ..; Washton, Nancy M.; Mueller, Karl T.
A series of silsesquioxane nanoparticles containing reactive internal organic functionalities throughout the entire particle body have been synthesized using a surfactant-free method with organosilanes as the sole precursors and a base catalyst. The organic functional groups incorporated are vinyl, allyl, mercapto, cyanoethyl, and cyanopropyl groups. The sizes and morphologies of the particles were characterized using SEM and nitrogen adsorption, while the compositions were confirmed using TGA, FT-IR, solid state NMR, and elemental analysis. The accessibility and reactivity of the functional groups inside the particles were demonstrated by performing bromination and reduction reactions in the interior of the particles.
Calibrating the ChemCam LIBS for Carbonate Minerals on Mars
DOE R&D Accomplishments Database
Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.; Barefield, James E.; Lanza, Nina; Newsom, Horton E.
2009-01-01
The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.
Hamada, Tsuyoshi; Nakai, Yousuke; Isayama, Hiroyuki; Togawa, Osamu; Kogure, Hirofumi; Kawakubo, Kazumichi; Tsujino, Takeshi; Sasahira, Naoki; Hirano, Kenji; Yamamoto, Natsuyo; Ito, Yukiko; Sasaki, Takashi; Mizuno, Suguru; Toda, Nobuo; Tada, Minoru; Koike, Kazuhiko
2014-03-01
Self-expandable metallic stent (SEMS) placement is widely carried out for distal malignant biliary obstruction, and survival analysis is used to evaluate the cumulative incidences of SEMS dysfunction (e.g. the Kaplan-Meier [KM] method and the log-rank test). However, these statistical methods might be inappropriate in the presence of 'competing risks' (here, death without SEMS dysfunction), which affects the probability of experiencing the event of interest (SEMS dysfunction); that is, SEMS dysfunction can no longer be observed after death. A competing risk analysis has rarely been done in studies on SEMS. We introduced the concept of a competing risk analysis and illustrated its impact on the evaluation of SEMS outcomes using hypothetical and actual data. Our illustrative study included 476 consecutive patients who underwent SEMS placement for unresectable distal malignant biliary obstruction. A significant difference between cumulative incidences of SEMS dysfunction in male and female patients via theKM method (P = 0.044 by the log-rank test) disappeared after applying a competing risk analysis (P = 0.115 by Gray's test). In contrast, although cumulative incidences of SEMS dysfunction via the KM method were similar with and without chemotherapy (P = 0.647 by the log-rank test), cumulative incidence of SEMS dysfunction in the non-chemotherapy group was shown to be significantly lower (P = 0.031 by Gray's test) in a competing risk analysis. Death as a competing risk event needs to be appropriately considered in estimating a cumulative incidence of SEMS dysfunction, otherwise analytical results may be biased. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.
NASA Astrophysics Data System (ADS)
Lassoued, Abdelmajid; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah
Hematite (α-Fe2O3) nanoparticles were synthesized via a simple chemical precipitation method. The impact of varying the concentration of precursor on the crystalline phase, size and morphology of α-Fe2O3 products was explored. The characteristic of the synthesized hematite nanoparticles were evaluated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR) spectroscopy, Raman spectroscopy, Differential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA), Ultraviolet-Visible (UV-Vis) analysis and Photoluminescence (PL). XRD data revealed a rhombohedral (hexagonal) structure with the space group R-3c in all samples. Uniform spherical like morphology was confirmed by TEM and SEM. The result revealed that the particle sizes were varied between 21 and 82 nm and that the increase in precursor concentration (FeCl3, 6H2O) is accompanied by an increase in the particle size of 21 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.05 M at 82 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.4 M. FT-IR confirms the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we have synthesized pure hematite but also to identify their phonon modes. The thermal behavior of compound was studied by using TGA/DTA results: The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. Besides, the optical investigation revealed that samples have an optical gap of about 2.1 eV and that this value varies as a function of the precursor concentration.
Khan, Younus H; Islam, Atif; Sarwar, Afsheen; Gull, Nafisa; Khan, Shahzad M; Munawar, Muhammad A; Zia, Saba; Sabir, Aneela; Shafiq, Muhammad; Jamil, Tahir
2016-08-01
Graphene oxide (GO) was indigenously synthesized from graphite using standard Hummers method. Chitosan-graphene oxide green composite films were fabricated by mixing aqueous solution of chitosan and GO using dilute acetic acid as a solvent for chitosan. Chitosan of different viscosity and calculated molecular weight was used keeping amount of GO constant in each composite film. The structural properties, thermal stability and mechanical properties of the composite films were investigated using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and tensile test. FTIR studies revealed the successful synthesis of GO from graphite powder and it was confirmed that homogenous blending of chitosan and GO was promising due to oxygenated functional groups on the surface of GO. XRD indicated effective conversion of graphite to GO as its strong peak observed at 11.06° as compared to pristine graphite which appeared at 26°. Moreover, mechanical analysis confirmed the effect of molecular weight on the mechanical properties of chitosan-GO composites showing that higher molecular weight chitosan composite (GOCC-1000) showed best strength (higher than 3GPa) compared to other composite films. Thermal stability of GOCC-1000 was enhanced for which residual content increased up to 56% as compared to the thermal stability of GOCC-200 whose residue was restricted to only 24%. The morphological analysis of the composites sheets by SEM was smooth having dense structure and showed excellent interaction, miscibility, compatibility and dispersion of GO with chitosan. The prepared composite films find their applications as biomaterials in different biomedical fields. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cool, S M; Forwood, M R; Campbell, P; Bennett, M B
2002-02-01
In humans, age estimation from the adult skeleton represents an attempt to determine chronological age based on growth and maturational events. In teeth, such events can be characterized by appositional growth layers in midroot cementum. The purpose of this study was to determine the underlying cause of the layered microstructure of human midroot cementum. Whether cementum growth layers are caused by changes in relative mineralization, collagen packing and/or orientation, or by variations in organic matrix apposition was investigated by subjecting midroot sections of human canine teeth to analysis using polarized light and scanning electron microscopy (SEM). Polarized light was used to examine transverse midroot sections in both mineralized and demineralized states. Mineralized sections were also reexamined following subsequent decollagenization. Polarized light was additionally used in the examination of mineralized sections taken transversely, longitudinally, and obliquely from the same tooth root. From the birefringence patterns it was concluded that collagen orientation does not change with varying section plane. Instead, the mineral phase was most responsible for the birefringence of the cementum. SEM studies suggested that neither collagen packing nor collagen orientation change across the width of the cementum, confirming and validating the results of the polarized light examination. Also, SEM analysis using electron backscatter and the electron probe suggested no changes in the mean atomic number density, calcium, phosphate, and sulfur levels across the width of the cementum. Therefore, we conclude that crystalline orientation and/or size is responsible for the layered appearance of cementum.
Confirmatory analysis of field-presumptive GSR test sample using SEM/EDS
NASA Astrophysics Data System (ADS)
Toal, Sarah J.; Niemeyer, Wayne D.; Conte, Sean; Montgomery, Daniel D.; Erikson, Gregory S.
2014-09-01
RedXDefense has developed an automated red-light/green-light field presumptive lead test using a sampling pad which can be subsequently processed in a Scanning Electron Microscope for GSR confirmation. The XCAT's sampling card is used to acquire a sample from a suspect's hands on the scene and give investigators an immediate presumptive as to the presence of lead possibly from primer residue. Positive results can be obtained after firing as little as one shot. The same sampling card can then be sent to a crime lab and processed on the SEM for GSR following ASTM E-1588-10 Standard Guide for Gunshot Residue Analysis by Scanning Electron Microscopy/Energy Dispersive X-Ray Spectrometry, in the same manner as the existing tape lifts currently used in the field. Detection of GSR-characteristic particles (fused lead, barium, and antimony) as small as 0.8 microns (0.5 micron resolution) has been achieved using a JEOL JSM-6480LV SEM equipped with an Oxford Instruments INCA EDS system with a 50mm2 SDD detector, 350X magnification, in low-vacuum mode and in high vacuum mode after coating with carbon in a sputter coater. GSR particles remain stable on the sampling pad for a minimum of two months after chemical exposure (long term stability tests are in progress). The presumptive result provided by the XCAT yields immediate actionable intelligence to law enforcement to facilitate their investigation, without compromising the confirmatory test necessary to further support the investigation and legal case.
Slow eye movements distribution during nocturnal sleep.
Pizza, Fabio; Fabbri, Margherita; Magosso, Elisa; Ursino, Mauro; Provini, Federica; Ferri, Raffaele; Montagna, Pasquale
2011-08-01
To assess the distribution across nocturnal sleep of slow eye movements (SEMs). We evaluated SEMs distribution in the different sleep stages, and across sleep cycles in nocturnal recordings of 10 healthy women. Sleep was scored according to standard criteria, and the percentage of time occupied by the SEMs was automatically detected. SEMs were differently represented during sleep stages with the following order: wakefulness after sleep onset (WASO): 61%, NREM sleep stage 1: 54%, REM sleep: 43%, NREM sleep stage 2: 21%, NREM sleep stage 3: 7%, and NREM sleep stage 4: 3% (p<0.0001). There was no difference between phasic and tonic REM sleep. SEMs progressively decreased across the NREM sleep cycles (38%, 15%, 13% during NREM sleep stage 2 in the first three sleep cycles, p=0.006), whereas no significant difference was found for REM, NREM sleep stage 1, slow-wave sleep and WASO. Our findings confirm that SEMs are a phenomenon typical of the sleep onset period, but are also found in REM sleep. The nocturnal evolution of SEMs during NREM sleep stage 2 parallels the homeostatic process underlying slow-wave sleep. SEMs are a marker of sleepiness and, potentially, of sleep homeostasis. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Træen, Bente; Hald, Gert Martin; Noor, Syed W.; Iantaffi, Alex; Grey, Jeremy; Rosser, B. R. Simon
2014-01-01
This study tests the following three hypotheses: 1) there is a direct association between consumption of sexually explicit media (SEM) depicting non-condom use and STI-related sexual risk behavior among men who have sex with men (MSM), 2) The association between SEM consumption and STI-related sexual risk behavior is mediated by men’s sexual self-esteem, and 3) the relationship between SEM consumption and sexual risk behavior is mediated by condom use self-efficacy. A cross-sectional, Internet-based survey on exposure to SEM and sexual behavior of 1,391 MSM in the USA was conducted in 2011. The results confirmed hypothesis 1 and 3 while hypothesis 2 was rejected. Accordingly, a significant association between the use of SEM picturing condom use and STI related sexual risk behavior among MSM was found. Likewise, we found that the association between the use of SEM and sexual risk behavior was mediated by condom use self-efficacy in an indirect path. However, SEM did not influence sexual risk behavior via sexual self-esteem. To promote STI prevention, the actors in SEM may be used as role models in managing condom use in sexual contexts. PMID:24904709
NASA Astrophysics Data System (ADS)
Agilandeswari, K.; Ruban Kumar, A.
2014-09-01
In this present work we discussed the synthesis of pure Ca3Co4O9 ceramic powder by a starch assisted sol-gel combustion method. The products were characterized by powder X-ray diffraction (XRD), thermogravimetric and differential thermal analyses (TGA-DTA), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscope (SEM) and UV-visible diffuse reflectance spectroscopy (DRS). X-ray diffraction pattern confirmed the formation of single phase Ca3Co4O9 at a sintering temperature of 1073 K, and it is also confirmed in the thermal analysis. SEM images indicate the presence of diffused microporous sphere like morphology and the grain sizes are in the range of 150-300 nm. Optical properties of Ca3Co4O9 ceramic show a band gap at an energy level of 2.10 eV. A maximum electrical resistivity of 0.002 mΩ cm was exhibited by Ca3Co4O9 that was decreased to 0.0012 mΩ cm, when the temperature increased from 300 K to 473 K. Dielectric studies were conducted at various temperatures from room temperature to 673 K and the results indicate that the space charge polarization contributes to the conduction mechanism. It also shows that the dielectric relaxation with activation energy is 0.96 eV. The magnetic properties as a function of temperature represent the ferri-paramagnetic phase transition at above 50 K. M-H curve shows the hysteresis loop with saturation magnetization (Ms) and confirms the presence of soft magnetic materials.
Synthesis and structural characterization of polyaniline/cobalt chloride composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asha, E-mail: arana5752@gmail.com; Goyal, Sneh Lata; Kishore, Nawal
2016-05-23
Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl{sub 2}.6H{sub 2}O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.
Chhabra, Priyanka; Tyagi, Priyanka; Bhatnagar, Aseem; Mittal, Gaurav; Kumar, Amit
2016-01-01
Objective: To develop a chitosan-based scaffold and carry out a complete comprehensive study encompassing optimization of exact chitosan strength, product characterization, toxicity evaluation, in vitro validation in cell culture experiments, and finally in vivo efficacy in animal excision wound model. Materials and Methods: Developed chitosan scaffolds (CSs) were optimized for tissue engineering and wound healing efficacy by means of microstructure, toxicity, and biocompatibility evaluation. Results: Scanning electron microscope (SEM) studies revealed that porosity of CS decreased with increase in chitosan concentration. Chemical stability and integrity of scaffolds were confirmed by Fourier transform infrared studies. Highest swelling percentage (SP) of 500% was observed in 2%, while lowest (200%) was observed in 1% CS. Reabsorption and noncytotoxic property of optimized scaffold were established by enzymatic degradation and MTT assay. Enzymatic degradation suggested 20–45% of weight loss (WL) within 14 days of incubation. Cytotoxicity analysis showed that scaffolds were noncytotoxic against normal human dermal fibroblast human dermal fibroblast cell lines. Significant cellular adherence over the scaffold surface with normal cellular morphology was confirmed using SEM analysis. In vivo efficacy evaluation was carried out by means of reduction in wound size on Sprague-Dawley rats. Sprague-Dawley rats treated with optimized scaffold showed ~ 100% wound healing in comparison to ~80% healing in betadine-treated animals within 14 days. Histological examination depicted advance re-epithelization with better organization of collagen bundle in wound area treated with 2% CS in comparison to conventional treatment or no treatment. Conclusion: This study, thus, reveals that 2% CSs were found to have a great potential in wound healing. PMID:28216954
NASA Astrophysics Data System (ADS)
Ramesan, M. T.; Jayakrishnan, P.; Manojkumar, T. K.; Mathew, G.
2018-01-01
Blending of poly vinyl alcohol (PVA) and natural biopolymers such as cashew gum (CG) with magnetite (Fe3O4) nanoparticles has been a promising way for preparing bio-degradable polymeric blend nanocomposites. PVA/CG/Fe3O4 blend nanocomposites have been prepared by a simple solution casting technique using water as the green solvent. The characterization of blend nanocomposites has been carried out by using Fourier transform infrared, UV, x-ray diffraction (XRD), high resolution transmission electron microscopy, scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, mechanical properties and electrical conductivity. The interaction between nanoparticles and the blend segments was confirmed from the shift in characteristic absorption peaks of nanocomposites compared to PVA/CG blend. XRD analysis has shown the presence of crystalline peaks of nanoparticles in the blend matrix. The uniform distribution of Fe3O4 nanoparticles in the blend was revealed by TEM and SEM. The strong interaction of nanoparticles with the blend has been confirmed by the increase in glass transition temperature resulting from the reduced flexibility of the blend nanocomposite compared to that of the blend system. An increase in thermal stability and tensile strength and reduction in elongation at break of nanocomposites have been noticed with the increasing loading of nanoparticles. The AC electrical conductivity, dielectric constant and dielectric loss of the nanocomposites have been found to be higher than that of the blend. Generally, it can be stated that the magnetite nanoparticles acts as a potential filler in the PVA/CG blend at 7 wt% loading, giving the best balance of properties.
High resolution SEM characterization of nano-precipitates in ODS steels.
Jóźwik, Iwona; Strojny-Nędza, Agata; Chmielewski, Marcin; Pietrzak, Katarzyna; Kurpaska, Łukasz; Nosewicz, Szymon
2018-05-01
The performance of the present-day scanning electron microscopy (SEM) extends far beyond delivering electronic images of the surface topography. Oxide dispersion strengthened (ODS) steel is on of the most promising materials for the future nuclear fusion reactor because of its good radiation resistance, and higher operation temperature up to 750°C. The microstructure of ODS should not exceed tens of nm, therefore there is a strong need in a fast and reliable technique for their characterization. In this work, the results of low-kV SEM characterization of nanoprecipitates formed in the ODS matrix are presented. Application of highly sensitive photo-diode BSE detector in SEM imaging allowed for the registration of single nm-sized precipitates in the vicinity of the ODS alloys. The composition of the precipitates has been confirmed by TEM-EDS. © 2018 Wiley Periodicals, Inc.
Yaghoubi, Ali; Pourjam, Ebrahim; Álvarez-Ortega, Sergio; Liébanas, Gracia; Atighi, Mohammad Reza; Pedram, Majid
2016-09-01
Discopersicus iranicus n. gen., n. comb., previously described from Iran as a new species under the genus Discotylenchus , is illustrated using light microscope and scanning electron microscope (SEM) observations and further studied using molecular characters. SEM studies revealed the newly proposed genus has oblique amphidial apertures on the lateral sides of the lip region. SEM images are also provided for two species of Discotylenchus , namely D. discretus and D. brevicaudatus , as the first SEM study of the genus . These results confirmed longitudinal amphidial aperture type on lateral sides of the lip region in genus Discotylenchus , as noted by Siddiqi while erecting the genus with D. discretus as the type species . Molecular phylogenetic analyses using partial small subunit (SSU) and large subunit (LSU) rDNA sequences revealed the affinity of the genus Discopersicus n. gen. with members of the subfamily Boleodorinae, as supported by morphological characters (mainly, the oblique amphidial opening).
NASA Astrophysics Data System (ADS)
Suresh, Joghee; Pradheesh, Ganeshan; Alexramani, Vincent; Sundrarajan, Mahalingam; Hong, Sun Ig
2018-03-01
In this work we aim to synthesize biocompatible ZnO nanoparticles from the zinc nitrate via green process using leaf extracts of the Costus pictus D. Don medicinal plant. FTIR studies confirm the presence of biomolecules and metal oxides. X-ray diffraction (XRD) structural analysis reveals the formation of pure hexagonal phase structures of ZnO nanoparticles. The surface morphologies of ZnO nanoparticles observed under a scanning electron microscope (SEM) suggest that most ZnO crystallites are hexagonal. EDX analysis confirms the presence of primarily zinc and oxygen. TEM images show that biosynthesized zinc oxide nanoparticles are hexagonal and spherical. The plausible formation mechanisms of zinc oxide nanoparticles are also predicted. The biosynthesized zinc oxide nanoparticles exhibit strong antimicrobial behavior against bacterial and fungal species when employing the agar diffusion method. Synthesized ZnO nanoparticles exhibit anticancer activity against Daltons lymphoma ascites (DLA) cells as well as antimicrobial activity against some bacterial and fungal strains.
NASA Astrophysics Data System (ADS)
Lee, Moon Joo; Hwang, Jun-Ki; Kim, Ji Hoon; Lim, Hyung-Seok; Sun, Yang-Kook; Suh, Kyung-Do; Lee, Young Moo
2016-02-01
Shape-tunable hydroxyl copolyimide (HPI) nanoparticles are fabricated by a re-precipitation method and are coated onto electrospun HPI membranes, followed by heat treatment to prepare thermally rearranged polybenzoxazole (TR-PBO) composite membranes. The morphology of HPI nanoparticles consisted of sphere and sea-squirt structures, which is controlled by changing the concentration of the stabilizer. The morphological characteristics of TR-PBO nanoparticles convert from HPI nanoparticles by heat treatment and their composite membranes is confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (ATR-IR), thermogravimetric analysis (TGA) analysis, and contact angle measurements. TGA and DSC measurements confirm the excellent thermal stability compared to Celgard, a commercial PP separator for lithium-ion batteries (LIBs). Further, TR-PBO nano-composite membranes used in coin-cell type LIBs as a separator show excellent high power density performance as compared to Celgard. This is due to the fact that sea-squirt structured nanoparticles have better electrochemical properties than sphere structured nanoparticles at high temperature.
Effect of cadmium incorporation on the properties of zinc oxide thin films
NASA Astrophysics Data System (ADS)
Bharath, S. P.; Bangera, Kasturi V.; Shivakumar, G. K.
2018-02-01
Cd x Zn1- x O (0 ≤ x ≤ 0.20) thin films are deposited on soda lime glass substrates using spray pyrolysis technique. To check the thermal stability, Cd x Zn1- x O thin films are subjected to annealing. Both the as-deposited and annealed Cd x Zn1- x O thin films are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive X-ray analysis (EDAX) to check the structural, surface morphological and compositional properties, respectively. XRD analysis reveals that the both as-deposited and annealed Cd x Zn1- x O thin films are (002) oriented with wurtzite structure. SEM studies confirm that as-deposited, as well as annealed Cd x Zn1- x O thin films are free from pinholes and cracks. Compositional analysis shows the deficiency in Cd content after annealing. Optical properties evaluated from UV-Vis spectroscopy shows red shift in the band gap for Cd x Zn1- x O thin films. Electrical property measured using two probe method shows a decrease in the resistance after Cd incorporation. The results indicate that cadmium can be successfully incorporated in zinc oxide thin films to achieve structural changes in the properties of films.
NASA Astrophysics Data System (ADS)
El-Ansary, Afaf; Warsy, Arjumand; Daghestani, Maha; Merghani, Nada M.; Al-Dbass, Abeer; Bukhari, Wadha; Al-Ojayan, Badryah; Ibrahim, Eiman M.; Al-Qahtani, Asma M.; Shafi Bhat, Ramesa
2018-02-01
The current study aims to synthesize silver nanoparticles using Ziziphus spina Christi (ZSC) or (Sidr) aqueous leaf extract collected from Riyadh, Saudi Arabia. The green synthesis of silver nanoparticles using sidr leaves extract was successful. Production of silver nanoparticles was confirmed through UV-vis Spectrophotometer, particles size and zeta potential analysis, Infra-red spectroscopy, Scanning, and Transmission Electron Microscope (SEM and TEM). The UV-visible spectra showed that the absorption peak existed at 400 nm. SEM analysis showed that the synthesized AgNPs were spherical but in slightly aggregated form. TEM demonstrated different size range of 4-33 nm with an average size of 13. The element analysis profile showed silver signal together with oxygen, calcium, and potassium peaks which might be related to the plant structure. Biological effects of the synthesized AgNPs exhibit satisfactory inhibitory effect against ten tested microorganisms. It inhibited the growth of 5 gram-positive and five gram-negative bacteria. Moreover, AgNPs demonstrated a synergistic effect on the neurotoxicity induced in rat pups with orally administered methyl mercury (MeHg). The present study showed that AgNPs prepared from ZSC might be a promising antimicrobial agent for successful treatment of bacterial infection in intensive care units (ICU) especially in case of antibiotic resistance.
Morphology and crystallinity of sisal nanocellulose after sonication
NASA Astrophysics Data System (ADS)
Sosiati, H.; Wijayanti, D. A.; Triyana, K.; Kamiel, B.
2017-09-01
Different preparation methods on the natural fibers resulted in different morphology. However, the relationships between type of natural fibers, preparation methods and the morphology of produced nanocellulose could not be exactly defined. The sisal nanocellulose was presently prepared by alkalization and bleaching followed by sonication to verify changes in the morphology and crystallinity of nanocellulose related to the formation mechanism. The extracted microcellulose was subjected to scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis. The isolated cellulose nanospheres were examined with respect to morphology by SEM and transmission electron microscopy (TEM) and, to crystallinity by electron diffraction analysis. Bleaching after alkalization made the microfibrils clearly separated from each other to the individual fiber whose width of the single fiber was ranging from 6 to 13 µm. The XRD crystallinity index (CI) of microcellulose gradually increased after the chemical treatments; 83.12% for raw sisal fiber, 88.57% for alkali treated fiber and 94.03% for bleached fibers. The ultrasonic agitation after bleaching that was carried out at 750 Watt, 20 kHz and amplitude of 39% for 2 h produces homogeneous cellulose nanospheres less than 50 nm in diameter with relatively low crystallinity. The electron diffraction analysis confirmed that the low crystallinity of produced nnocellulose is related to the effect of chemical treatment done before sonication.
Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi
2017-01-01
The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Role of different chelating agent in synthesis of copper doped tin oxide (Cu-SnO2) nanoparticles
NASA Astrophysics Data System (ADS)
Saravanakumar, B.; Anusiya, A.; Rani, B. Jansi; Ravi, G.; Yuvakkumar, R.
2018-05-01
An attempt was made to synthesis the copper doped tin oxide (Cu-SnO2) nanoparticles by adopting different chelating agents (NaOH, KOH and C2H2O4) by Sol-gel process. The synthesized products were characterized by XRD, Photoluminescence (PL), Infra- Red (FTIR) and SEM analysis. The XRD confirms the formation of Cu-SnO2 shows the maximum peak at 33.8° with lattice plane (101). The PL peak at 361 and 382 nm due to the recombination of electron in conduction band to valence band infers the optical properties. The IR spectra correspond to the peak at 551 and 620 cm-1 attributed to the characteristics peak for Cu-SnO2 nanoparticles. The SEM images for all three Cu-SnO2 nanoparticles formed by three chelating agent (NaOH, KOH and C2H2O4) facilitates the formation mechanism and the chelating agent Oxalic acid results in formation of nano flowers with diverse layers orientated in random direction. Further SEM studies reveal that, the Cu-SnO2 nanoparticles formed by oxalic acid could posses high surface area with large number layered structured enables the better electrochemical properties and its applications.
Dayakar, T; Venkateswara Rao, K; Bikshalu, K; Rajendar, V; Park, Si-Hyun
2017-06-01
A non-enzymatic glucose biosensor was developed by utilizing the zinc oxide nanoparticles (ZnO NPs) synthesized by a novel green method using the leaf extract of Ocimum tenuiflorum. The structural, optical and morphological properties of ZnO NPs characterized by means of X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDAX) spectroscopy, and transmission electron microscopy (TEM). The XRD analysis revealed that the ZnO NPs were crystalline and had a hexagonal wurtzite structure. The crystallite size measured by XRD was the same as that measured using SEM and TEM. The UV-vis absorption spectrum estimates the band gap of ZnO NPs present in the range of 2.82 to 3.45eV. The reduction and formation of ZnO NPs mainly due to the involvement of leaf extract bio-molecular compounds analyzed from the FTIR spectra. The SEM result confirms the morphology of the NPs responsible from the various concentration of leaf extract in the synthesis process. HRTEM analysis depicts the spherical structure of ZnO NPs. The synthesized NPs have the average size ranges from 10 to 20nm. The fabricated GCE/ZnO glucose sensor represents superior electro catalytic activity that has been observed for ZnO NPs with a reproducible sensitivity of 631.30μAmM -1 cm -2 , correlation coefficient of R=0.998, linear dynamic range from 1-8.6mM, low detection limit of 0.043μM (S/N=3) and response time<4s. Copyright © 2017 Elsevier B.V. All rights reserved.
Chieco, C; Rotondi, A; Morrone, L; Rapparini, F; Baraldi, R
2013-02-01
The use of formalin constitutes serious health hazards for laboratory workers. We investigated the suitability and performance of the ethanol-based fixative, FineFIX, as a substitute for formalin for anatomical and cellular structure investigations of leaves by light microscopy and for leaf surface and ultrastructural analysis by scanning electron microscopy (SEM). We compared the anatomical features of leaf materials prepared using conventional formalin fixation with the FineFIX. Leaves were collected from ornamental tree species commonly used in urban areas. FineFIX was also compared with glutaraldehyde fixation and air drying normally used for scanning electron microscopy to develop a new method for evaluating leaf morphology and microstructure in three ornamental tree species. The cytological features of the samples processed for histological analysis were well preserved by both fixatives as demonstrated by the absence of nuclear swelling or shrinkage, cell wall detachment or tissue flaking, and good presentation of cytoplasmic vacuolization. In addition, good preservation of surface details and the absence of shrinkage artefacts confirmed the efficacy of FineFIX fixation for SEM analysis. Cuticular wax was preserved only in air dried samples. Samples treated with chemical substances during the fixation and dehydration phases showed various alterations of the wax structures. In some air dried samples a loss of turgidity of the cells was observed that caused general wrinkling of the epidermal surfaces. Commercial FineFIX is an adequate substitute for formalin in histology and it can be applied successfully also for SEM investigation, while reducing the health risks of glutaraldehyde or other toxic fixatives. To investigate the potential for plants to absorb and capture particulates in air, which requires preservation of the natural morphology of trichomes and epicuticular waxes, a combination of FineFIX fixation and air drying is recommended.
Ahmed, Farooq; Ayoub Arbab, Alvira; Jatoi, Abdul Wahab; Khatri, Muzamil; Memon, Najma; Khatri, Zeeshan; Kim, Ick Soo
2017-05-01
Herein we report a rapid method for deacetylation of cellulose acetate (CA) nanofibers in order to produce cellulose nanofibers using ultrasonic energy. The CA nanofibers were fabricated via electrospinning thereby treated with NaOH and NaOH/EtOH solutions at various pH levels for 30, 60 and 90min assisted by ultrasonic energy. The nanofiber webs were optimized by degree of deacetylation (DD%) and wicking behavior. The resultant nanofibers were further characterized by FTIR, SEM, WAXD, DSC analysis. The DD% and FTIR results confirmed a complete conversion of CA nanofibers to cellulose nanofibers within 1h with substantial increase of wicking height. Nanofibers morphology under SEM showed slightly swelling and no damage of nanofibers observed by use of ultrasonic energy. The results of ultrasonic-assisted deacetylation are comparable with the conventional deacetylation. Our rapid method offers substantially reduced deacetylation time from 30h to just 1h, thanks to the ultrasonic energy. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Kai-Hung; Nguyen, Alexander K; Goering, Peter L; Sumant, Anirudha V; Narayan, Roger J
2018-06-06
Ultrananocrystalline diamond (UNCD) has been demonstrated to have attractive features for biomedical applications and can be combined with nanoporous membranes for applications in drug delivery systems, biosensing, immunoisolation and single molecule analysis. In this study, free-standing nanoporous UNCD membranes with pore sizes of 100 or 400 nm were fabricated by directly depositing ultrathin UNCD films on nanoporous silicon nitride membranes and then etching away silicon nitride using reactive ion etching. Successful deposition of UNCD on the substrate with a novel process was confirmed with Raman spectroscopy, X-ray photoelectron spectroscopy, cross-section scanning electron microscopy (SEM) and transmission electron microscopy. Both sample types exhibited uniform geometry and maintained a clear hexagonal pore arrangement. Cellular attachment of SK-N-SH neuroblastoma endothelial cells was examined using confocal microscopy and SEM. Attachment of SK-N-SH cells onto UNCD membranes on both porous regions and solid surfaces was shown, indicating the potential use of UNCD membranes in biomedical applications such as biosensors and tissue engineering scaffolds.
Qi, Xin; Tester, Richard; Liu, Yu; Mullin, Margaret
2012-01-01
To compare the properties of buccal delivery matrices (wafers) made with dextrin, β-limit dextrin and pre-gelatinised starch. The constituent α-glucans were tested for their mucoadhesive properties in solution plus their content of crystalline material (differential scanning calorimetry, DSC). Wafers were made by lyophilisation of aqueous solutions/dispersions of the α-glucans. Physical properties of the wafers were evaluated using texture analysis, dissolution coupled to photography and scanning electron microscopy (SEM). The results highlighted how the β-limit dextrins chemical and physical properties were ideally suited for the production of buccal delivery wafers. Dissolution testing confirmed the excellent hydration profile of the β-limit dextrin (within wafers) with time. Using SEM it was evident that the homogeneous "bee-hive" like structure of the β-limit dextrin wafers, unlike the other α-glucans, provided a rapidly hydratable strong porous matrix. The β-limit dextrin α-glucan makes a superb (lyophilised) mucoadhesive delivery structure for the delivery of active agents to the buccal mucosa.
Structural characterization of Papilio kotzebuea (Eschscholtz 1821) butterfly wings
NASA Astrophysics Data System (ADS)
Sackey, J.; Nuru, Z. Y.; Berthier, S.; Maaza, M.
2018-05-01
The `plain black' forewings and black with `red spot' hindwings of the Papilio kotzebuea (Eschscholtz, 1821) were characterized by Scanning Electron Microscopy (SEM), Energy-Dispersive x-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), Fourier transform Infrared spectroscopy (FT-IR), UV-Vis spectrophometer and NIRQuest spectrometer. SEM images showed that the two sections of wings have different structures. The black with `red spot' hindwings have `hair-like' structures attached to the ridges and connected to the lamellae. On the contrary, the `plain black' forewings have holes that separate the ridges. AFM analysis unveiled that the `plain black' forewings have higher average surfaces roughness values as compared with the black with `red spot' hindwing. EDS and FT-IR results confirmed the presence of naturally hydrophobic materials on the wings. The `plain black' forewing exhibited strong absorptance (97%) throughout the solar spectrum range, which is attributed to the high melanin concentration as well as to the presence of holes in the scales. Biomimicking this wing could serves as equivalent solar absorber material.
Effect of CTAB concentration on synthesis of nickel doped manganese oxide nanoparticles
NASA Astrophysics Data System (ADS)
Shobana, R.; Saravanakumar, B.; Ravi, G.; Yuvakkumar, R.
2018-05-01
In this work the effect of concentration of cetyltrimethylammonium bromide (CTAB) in the synthesis of Nickel doped Manganese oxide (Ni-MnO2) nanoparticles have been carried out by adopting the sol-gel process. The synthesized products were characterized by XRD, Infra- Red (FTIR) and SEM analysis. The XRD confirms the formation of Ni-MnO2 nanoparticles illustrate peak at 31.4° with lattice plane (-231). The IR spectra correspond to the peak at 592 and 846 cm-1 attributed to the characteristics peak for Ni-MnO2 nanoparticles. The SEM images for all three Ni-MnO2 nanoparticles for different concentration of CTAB allows us to assess the formation route of nano tentacles from 10 mM, 30 mM and 50 mM. The configured nano tentacles of Ni-MnO2 nanoparticles presumably leads to more significantly change its properties, particularly in its electrochemical properties show the ways to be suitable candidates for supercapacitor, battery, photo catalytic and fuel cell applications.
NASA Astrophysics Data System (ADS)
Wulandari, A. P.; Septarini, D.; Zainuddin, A.
2017-05-01
Ramie is a natural fiber that is very potential to be developed in Indonesia. Decorticated-fiber which has been known as china grass produce different structures irregular part but shows a long straight section in the middle. This study aims to determine differences in chemical components, morphology and microstructure of two different parties after biodegumming process. China grass has been processed to remove gum using pectinolytic fungus. The microstructure of the treated was further tested by Fourier Transform InfraRed (FTIR), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM). The FTIR study indicated that during the biodegumming process, chemical bonding of non-cellulose components most removed by the activity of pectinase from the fungus. XRD analysis reflects an increase in the crystallinity of the fiber after biodegumming. Scanning electron microscopy (SEM) was used to confirm a reduction in the size of the fiber after biodegumming either in the irregular and regular part of the fiber after biodegumming.
NASA Technical Reports Server (NTRS)
Walsh, Daniel W.
1990-01-01
Sulfate reducing bacteria and acid producing bacteria/fungi detected in hygiene waters increased the corrosion rate in aluminum alloy. Biologically active media enhanced the formation of pits on metal coupons. Direct observation of gas evolved at the corrosion sample, coupled with scanning electron microscopy (SEM) and energy dispersive x-ray analysis of the corrosion products indicates that the corrosion rate is increased because the presence of bacteria favor the reduction of hydrogen as the cathodic reaction through the reaction of oxygen and water. SEM verifies the presence of microbes in a biofilm on the surface of corroding samples. The bacterial consortia are associated with anodic sites on the metal surface, aggressive pitting occurs adjacent to biofilms. Many pits are associated with triple points and inclusions in the aluminum alloy microstructure. Similar bacterial colonization was found on the stainless steel samples. Fourier transform Infrared Spectroscopy confirmed the presence of carbonyl groups in pitted areas of samples exposed to biologically active waters.
Homogeneity of ball milled ceramic powders: Effect of jar shape and milling conditions.
Broseghini, M; D'Incau, M; Gelisio, L; Pugno, N M; Scardi, P
2017-02-01
This paper contains data and supporting information of and complementary to the research article entitled " Effect of jar shape on high-energy planetary ball milling efficiency: simulations and experiments " (Broseghini et al.,) [1]. Calcium fluoride (CaF 2 ) was ground using two jars of different shape (cylindrical and half-moon) installed on a planetary ball-mill, exploring different operating conditions (jar-to-plate angular velocity ratio and milling time). Scanning Electron Microscopy (SEM) images and X-Ray Powder Diffraction data (XRPD) were collected to assess the effect of milling conditions on the end-product crystallite size. Due to the inhomogeneity of the end product, the Whole Powder Pattern Model (WPPM, (Scardi, 2008) [2]) analysis of XRPD data required the hypothesis of a bimodal distribution of sizes - respectively ground (fine fraction) and less-to-not ground (coarse fraction) - confirmed by SEM images and suggested by the previous literature (Abdellatief et al., 2013) [3,4]. Predominance of fine fraction clearly indicates optimal milling conditions.
NASA Astrophysics Data System (ADS)
Deborah, M.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-03-01
The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (0 0 2) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.
Jayakumar, S; Sudha, P N
2013-03-15
Chitosan/nylon6/polyurethane foam (CS/Ny6/PUF) ternary blend was prepared and chemically cross-linked with glutaraldehyde. Structural, thermal and morphological studies were performed for the prepared ternary blends. Characterizations of the ternary blends were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bonds took place between CS, Ny6 and PUF. TGA and DSC studies reveal that the thermal stability of the blend is enhanced by glutaraldehyde as crosslinking agent. Results of XRD indicated that the relative crystalline of pure CS film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend is rough and heterogeneous, further it confirms the interaction between the functional groups of the blend components. Copyright © 2012 Elsevier B.V. All rights reserved.
Facile growth of barium oxide nanorods: structural and optical properties.
Ahmad, Naushad; Wahab, Rizwan; Alam, Manawwer
2014-07-01
This paper reports a large-scale synthesis of barium oxide nanorods (BaO-NRs) by simple solution method at a very low-temperature of - 60 degrees C. The as-grown BaO-NRs were characterized in terms of their morphological, structural, compositional, optical and thermal properties. The morphological characterizations of as-synthesized nanorods were done by scanning electron microscopy (SEM) which confirmed that the synthesized products are rod shaped and grown in high density. The nanorods exhibits smooth and clean surfaces throughout their lengths. The crystalline property of the material was analyzed with X-ray diffraction pattern (XRD). The compositional and thermal properties of synthesized nanorods were observed via Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis which confirmed that the synthesized nanorods are pure BaO and showed good thermal stability. The nanorods exhibited good optical properties as was confirmed from the room-temperature UV-vis spectroscopy. Finally, a plausible mechanism for the formation of BaO-NRs is also discussed in this paper.
NASA Astrophysics Data System (ADS)
Badrinezhad, Lida; Bilkan, Çigdem; Azizian-Kalandaragh, Yashar; Nematollahzadeh, Ali; Orak, Ikram; Altindal, Şemsettin
2018-01-01
Cross-linked polyvinyl alcohol (PVA) graphene oxide (GO) nanocomposites were prepared by simple solution-mixing route and characterized by Raman, UV-visible and fourier transform infrared (FT-IR) spectroscopy analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The XRD pattern and SEM analysis showed significant changes in the nanocomposite structures, and the FT-IR spectroscopy results confirmed the chemical interaction between the GO filler and the PVA matrix. After these morphological characterizations, PVA-GO-based diodes were fabricated and their electrical properties were characterized using current-voltage (I-V) and impedance-voltage-frequency (Z-V-f) measurements at room temperature. Semilogarithmic I-V characteristics of diode showed a good rectifier behavior. The values of C and G/ω increased with decreasing frequency due to the surface/interface states (Nss) which depend on the relaxation time and the frequency of the signal. The voltage, dependent profiles of Nss and series resistance (Rs) were obtained from the methods of high-low frequency capacitance and Nicollian and Brews, respectively. The obtained values of Nss and Rs were attributed to the use of cross-linked PVA-GO interlayer at the Au/n-Si interface.
NASA Astrophysics Data System (ADS)
Harish, B. M.; Avinash, B. S.; Chaturmukha, V. S.; Jayanna, H. S.; Suresh, S.; Naveen, C. S.; Lamani, Ashok R.
2018-04-01
NPs of Ce1-xCrxO2 (x=0, 0.04, 0.08, 0.12) have been synthesized by solution combustion method using glycine as fuel. The effect of chromium on structural and dc electrical conductivity of cerium oxide nanoparticles were investigated. The obtained powder is characterized by UV-visible spectrometer, X-ray diffractometer (XRD), Scanning electron microscope (SEM) and Energy dispersive X-Ray analysis (EDS). X-ray diffraction analysis carried out on calcined samples reveals that successful incorporation of Cr2+ in CeO2 lattice where as SEM studies confirms the porous morphological structure of the prepared sample. The Keithley source meter is used to measure the dc conductivity of samples in the temperature range from 303K to 623K. The conductivity was found to be increases with increase of temperature as well as the Cr concentration due to semiconducting behavior of material and change in the charge carrier concentration. The activation energy decreases with increasing chromium concentration. The present work deals with the effect of chromium additive on structural and the D.C electrical properties Ce1-xCrxO2 NPs.
Lee, Jisu; Jung, Moon Youn; Park, Hyung Ju
2017-04-01
We reported that quantitative detection of prostatic-specific antigen (PSA), which is the biomarker of prostate cancer, could be carried out by calculating the number density and the area ratio of gold nanoparticle probes on the surface of silicon oxide chips. When chips selectively activated with PSA were immersed in the gold nanoparticles conjugated with prostatic specific antigens-poly clonal antibodies (PSA-pAb), it was possible to observe changes in the number density and the area ratio of gold nanoparticles on the surface of the chips according to the concentration of PSA with scanning electron microscopy (SEM) images. As PSA concentration increased, the number density and the area ratio of gold nanoparticle probes on the surfaces of the chips increased accordingly. Conversely, with lower concentration, the number density and the area ratio of gold nanoparticle probes on the surfaces decreased at a certain ratio. We observed the correlations between PSA concentration and number density, area ratio of gold nanoparticle probes through the analysis of SEM images. In addition, it was confirmed that the sizes of the gold nanoparticles affected the detection limit of the number density and the area ratio of gold nanoparticle probes on the surface.
Optical and magnetic properties of Co-doped CuO flower/plates/particles-like nanostructures.
Basith, N Mohamed; Vijaya, J Judith; Kennedy, L John; Bououdina, M; Hussain, Shamima
2014-03-01
In this study, pure and Co-doped CuO nanostructures (0.5, 1.0, 1.5, and 2.0 at wt% of Co) were synthesized by microwave combustion method. The prepared samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). Powder X-ray diffraction patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure. The surface morphology and elemental analysis of Co-doped CuO nanostructures were studied by using HR-SEM and EDX. Interestingly, the morphology was found to change considerably from nanoflowers to nanoplates then to nanoparticles with the variation of Co concentration. The optical band gap calculated using DRS was found to be 2.1 eV for pure CuO and increases up to 3.4 eV with increasing cobalt content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures were ferromagnetic at room temperature with an optimum value of saturation magnetization at 1.0 wt.% of Co-doped CuO, i.e., 970 micro emu/g.
Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet
2012-01-01
polishing compounds, Leco, St. Joseph, MI). X - ray diffraction and scanning electron microscopy (SEM) The microstructure of the hot-pressed specimens...was examined on uncoated fracture surfaces by SEM with an accelerating voltage of 1 and 3 kV. Phase purity was evaluated from X - ray diffraction data...the micro- structure appeared to be homogenous for the two hot- pressed LLZO specimens included in this study (Fig. 1). X - ray diffraction confirmed that
Muharja, Maktum; Junianti, Fitri; Ranggina, Dian; Nurtono, Tantular; Widjaja, Arief
2018-02-01
The objective of this work is to develop an integrated green process of subcritical water (SCW), enzymatic hydrolysis and fermentation of coconut husk (CCH) to biohydrogen. The maximum sugar yield was obtained at mild severity factor. This was confirmed by the degradation of hemicellulose, cellulose and lignin. The tendency of the changing of sugar yield as a result of increasing severity factor was opposite to the tendency of pH change. It was found that CO 2 gave a different tendency of severity factor compared to N 2 as the pressurizing gas. The result of SEM analysis confirmed the structural changes during SCW pretreatment. This study integrated three steps all of which are green processes which ensured an environmentally friendly process to produce a clean biohydrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.
Verification and extension of the MBL technique for photo resist pattern shape measurement
NASA Astrophysics Data System (ADS)
Isawa, Miki; Tanaka, Maki; Kazumi, Hideyuki; Shishido, Chie; Hamamatsu, Akira; Hasegawa, Norio; De Bisschop, Peter; Laidler, David; Leray, Philippe; Cheng, Shaunee
2011-03-01
In order to achieve pattern shape measurement with CD-SEM, the Model Based Library (MBL) technique is in the process of development. In this study, several libraries which consisted by double trapezoid model placed in optimum layout, were used to measure the various layout patterns. In order to verify the accuracy of the MBL photoresist pattern shape measurement, CDAFM measurements were carried out as a reference metrology. Both results were compared to each other, and we confirmed that there is a linear correlation between them. After that, to expand the application field of the MBL technique, it was applied to end-of-line (EOL) shape measurement to show the capability. Finally, we confirmed the possibility that the MBL could be applied to more local area shape measurement like hot-spot analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, A. Martin; Kumar, R. Thilak, E-mail: manojthilak@yahoo.com
2016-09-15
Highlights: • Monodispersed ethylenediamine (EDA) passivated α-MnO{sub 2} nanorods were fabricated by inexpensive wet chemical method. • FTIR analysis indicated that surface passivation is strongly influenced by the introduction of the organic ligand. • XRD and HR-SEM revealed the structure and morphology of the fabricated α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. • Dielectric studies pointed out that the fabricated α-MnO{sub 2} is semiconducting in nature with resistivity, ρ = 1.46 to 5.76 × 10{sup 3} Ωcm. • The optical energy gap for the fabricated α-MnO{sub 2} nanorods is found to be around 1.37more » eV. - Abstract: In this present work, pure α-MnO{sub 2} nanorods were fabricated by the reduction of 0.2 m/L of KMnO{sub 4} with 0.2 m/L of Na{sub 2}S{sub 2}O{sub 3}·5H{sub 2}O and by passivating with the organic ligand Ethylenediamine (EDA). The structural, functional, morphological and chemical composition of the nanorods were investigated by X-Ray Diffractometer (XRD), Fourier Transform Infrared Spectrometer (FTIR), High Resolution Scanning Electron Microscope (HR-SEM) and Energy Dispersive X-Ray Spectrometry (EDX). The XRD analysis indicated high crystalline nature of the product and FTIR confirmed the contribution of the organic ligand in surface passivation. HR-SEM image revealed the morphology of the α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. EDX confirmed the presence of Mn and O in the material. UV–visible spectrophotometery was used to determine the absorption behavior of the nanorods and an indirect band gap of 1.37 eV was acquired by Taucplot. Dielectric studies were carried out using Broadband Dielectric Spectrometer(BDS) and the resistivity was found to be around the semiconductor range (ρ = 1.46 to 5.76 × 10{sup 3} Ωcm).« less
Mohammad, Faruq; Arfin, Tanvir; Al-Lohedan, Hamad A
2017-02-01
In this, a sol-gel method was applied to prepare ethyl cellulose-magnesium hydrogen phosphate (EC-MgHPO 4 ) composite that can have potential applications in the sensory, pharmaceutical, and biomedical sectors. The formed composite was thoroughly characterized by making use of the instrumental analysis such as UV-Vis, FT-IR, HRTEM, EDAX, SEM and XRD. For the composite, the other parameters determined includes the water uptake, porosity, thickness, bulk and tapped densities, angle of repose, Carr's index and Hausner ratio. From the results, the material found to exhibit good flowing properties with a Carr's index of 11.11%, Hausner ratio of 1.125, and angle of response of 33°. The EDAX spectrum and HRTEM analysis confirmed for the composite formation and the particles size is investigated to be around 52nm. The surface porosity due to the EC matrices was confirmed by the SEM analysis, which further used for the loading of drug, Proguanil. In addition, the material's conductivity was studied by taking uni-univalent electrolyte solution (KCl and NaCl) indicated that the conductivity follows the order of KCl>NaCl, while the activation energy obtained from Arrhenius method resembled that the conductivity is strongly influenced by the electrolyte type used. We found from the analysis that, with a decrease in the size of hydrated radii of ions, the conductivity of EC-MgHPO 4 material also observed to be decreased in the order K + >Na + and the material proved to be mechanically stable and can be operated over a range of pHs, temperatures, and electrolyte solutions. Further, the drug loading and efficiency studies indicated that the material can trap up to 80% of Proguanil (antimalarial drug) applied for its loading. The Proguanil drug release profiles confirmed for the controlled and sustained release from the EC-MgHPO 4 matrix, as the material can release up to 87% of its total loaded drug over a 90min period. Finally, the cell viability and proliferation studies tested against two different cell cultures of BRL-3A rat liver and H9c2 cardiomyoblasts indicated the non-toxic nature and safer applicability of the EC-MgHPO 4 (25-500μg/mL, 24h). Overall, the results of the study confirm for the safer applicability of the composite towards biosensor, drug delivery, scaffolding, and bioanalytical (quality control) applications. Copyright © 2016 Elsevier B.V. All rights reserved.
The hoard of Beçin—non-destructive analysis of the silver coins
NASA Astrophysics Data System (ADS)
Rodrigues, M.; Schreiner, M.; Mäder, M.; Melcher, M.; Guerra, M.; Salomon, J.; Radtke, M.; Alram, M.; Schindel, N.
2010-05-01
We report the results of an analytical investigation on 416 silver-copper coins stemming from the Ottoman Empire (end of 16th and beginning of 17th centuries), using synchrotron micro X-ray fluorescence analysis (SRXRF). In the past, analyses had already been conducted with energy dispersive X-ray fluorescence analysis (EDXRF), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM/EDX) and proton induced X-ray emission spectroscopy (PIXE). With this combination of techniques it was possible to confirm the fineness of the coinage as well as to study the provenance of the alloy used for the coins. For the interpretation of the data statistical analysis (principal component analysis—PCA) has been performed. A definite local assignment was explored and significant clustering was obtained regarding the minor and trace elements composing the coin alloys.
Multi-scale characterization by FIB-SEM/TEM/3DAP.
Ohkubo, T; Sepehri-Amin, H; Sasaki, T T; Hono, K
2014-11-01
In order to improve properties of functional materials, it is important to understand the relation between the structure and the properties since the structure has large effect to the properties. This can be done by using multi-scale microstructure analysis from macro-scale to nano and atomic scale. Scanning electron microscope (SEM) equipped with focused ion beam (FIB), transmission electron microscope (TEM) and 3D atom probe (3DAP) are complementary analysis tools making it possible to know the structure and the chemistry from micron to atomic resolution. SEM gives us overall microstructural and chemical information by various kinds of detectors such as secondary electron, backscattered electron, EDS and EBSD detectors. Also, it is possible to analyze 3D structure and chemistry via FIB serial sectioning. In addition, using TEM we can focus on desired region to get more complementary information from HRTEM/STEM/Lorentz images, SAED/NBD patterns and EDS/EELS to see the detail micro or nano-structure and chemistry. Especially, combination of probe Cs corrector and split EDS detectors with large detector size enable us to analyze the atomic scale elemental distribution. Furthermore, if the specimen has a complicated 3D nanostructure, or we need to analyze light elements such as hydrogen, lithium or boron, 3DAP can be used as the only technique which can visualize and analyze distribution of all constituent atoms of our materials within a few hundreds nm area. Hence, site-specific sample preparation using FIB/SEM is necessary to get desired information from region of interest. Therefore, this complementary analysis combination works very well to understand the detail of materials.In this presentation, we will show the analysis results obtained from some of functional materials by Carl Zeiss CrossBeam 1540EsB FIB/SEM, FEI Tecnai G(2) F30, Titan G2 80-200 TEMs and locally build laser assisted 3DAP. As the one of the example, result of multi-scale characterization for ultra-fine grain Nd-Fe-B permanent magnet will be shown [1]. In order to improve the magnetic properties, especially to increase the coercivity (resistance against magnetization reversal) of the magnet, decreasing the grain size and isolating each grain by non-ferromagnetic grain boundary phase are quite important since the nucleation of magnetic reversal from grain boundary phase can be suppressed and pinning force of magnetic domain wall at the grain boundary phase can be strengthened. Therefore, micro and nano structure and chemistry analysis can shed a light do grain boundary engineering.Figure 1(a,b) shows SEM BSE images of ultrafine grain Nd-Fe-B sintered magnet and the reconstructed 3D tomography of Nd-rich phases obtained by FIB/SEM serial sectioning. This data can provide us information about the distribution of Nd-rich phase and its volume fraction. Moreover, the HRTEM image from the grain boundary phase, the 3DAP maps and the concentration depth profiles are shown in Fig. 1(c,d,e). This magnet shows high coercivity (1517kA/m), and by comparing these results with the microstructures of low coercivity specimen, importance of grain boundary formation was confirmed and it gives us hint to improve the coercivity further. We will show the detail and results from other materials.jmicro;63/suppl_1/i6/DFU046F1F1DFU046F1Fig. 1.(a) SEM BSE images of ultrafine grain Nd-Fe-B sintered magnet. (b) 3D FIB/SEM tomography of Nd-rich phases. (c) HRTEM image from the grain boundary phase. (d) 3DAP maps of Nd, Cu and Al. (e) Concentration depth profiles for Fe, Nd+Pr, B, Co, Cu and Al, determined from the selected box in (d)[1]. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Preparation of high-quality planar FeRh thin films for in situ TEM investigations
NASA Astrophysics Data System (ADS)
Almeida, Trevor P.; McGrouther, Damien; Pivak, Yevheniy; Perez Garza, Hector Hugo; Temple, Rowan; Massey, Jamie; Marrows, Christopher H.; McVitie, Stephen
2017-10-01
The preparation of a planar FeRh thin film using a focused ion beam (FIB) secondary electron microscope (SEM) for the purpose of in situ transmission electron microscopy (TEM) is presented. A custom SEM stub with 45° faces allows for the transfer and milling of the sample on a TEM heating chip, whilst Fresnel imaging within the TEM revealed the presence of the magnetic domain walls, confirming the quality of the FIB-prepared sample.
Gartaganis, Sotirios P; Prahs, Philipp; Lazari, Eftichia D; Gartaganis, Panos S; Helbig, Horst; Koutsoukos, Petros G
2016-08-01
To investigate the nature and characteristic features of deposits causing opacification of intraocular lenses (IOLs) based on the examination of clinical findings using scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX) analysis. Retrospective, observational case series. This is a multicenter study of 6 hydrophilic acrylic IOLs (Lentis LS-502-1; Oculentis GmbH, Berlin, Germany) with a hydrophobic surface that were explanted from 5 patients because of opacification. Three patients had an uncomplicated phacoemulsification. One patient underwent combined phacoemulsification and pars plana vitrectomy for retinal detachment and later silicone oil endotamponade owing to redetachment. The last patient had a pars plana vitrectomy and silicone oil instillation combined with phacoemulsification for tractive retinal detachment and diabetic retinopathy. The explanted lenses were submitted to our laboratory and were examined by SEM and EDX in order to identify the morphologic features and the composition of the deposits. SEM and EDX analyses confirmed the presence of calcific deposits in the interior of the opacified hydrophilic IOLs, with a pattern showing the formation of lumps on the surface. The lumps were due to subsurface formation of calcium phosphate crystalline deposits. The crystallite clusters seemed to diffuse from the IOL interior to the surface. We demonstrated the calcification pattern of the hydrophilic IOL (Lentis LS-502-1) with a hydrophobic surface. Although hydrophilic acrylic lenses have a hydrophobic surface, the development of calcification is a possible threat initiating from the hydrophilic subsurface of the IOLs. Copyright © 2016 Elsevier Inc. All rights reserved.
A comparative study of green composites based on tapioca starch and celluloses
NASA Astrophysics Data System (ADS)
Owi, Wei Tieng; Lin, Ong Hui; Sam, Sung Ting; Mern, Chin Kwok; Villagracia, Al Rey; Santos, Gil Nonato C.; Akil, Hazizan Md
2017-07-01
The objective of this study was to compare the properties of green composites based on tapioca starch (TS) and celluloses isolated from empty fruit bunches (EFB) and commercial celluloses from cotton linter (supplied by Sigma). Empty fruit bunches (EFB) acted as the main source to obtain the cellulose by using a chemical approach whereas the commercial cellulose from Sigma was used as reference. The TS/cellulose composite films were prepared using cellulose in varying proportions as filler into TS matrix by a casting method. The amount of celluloses added into the tapioca starch were 5, 10, 15, 20 and 25 phr (as per dry mass of TS). The celluloses were characterized using Fourier transform infrared (FTTR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). While the green composite films were analyzed in terms of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), SEM and tensile properties. FTTR analysis confirmed the removal of non-cellulosic materials such as hemicelluloses and lignin from raw EFB after the chemical treatment. XRD diffractograms revealed that the crystallinity of celluloses EFB increased from 43.1 % of raw EFB to 52.1 %. SEM images showed the fibrillar structure of cellulose isolated from EFB. The TGA and derivative thermogravimetric (DTG) curves of green composite films showed no significant effect on the thermal stability. Melting temperature of TS/cellulose EFB higher than neat TS while TS/cellulose Sigma lower than neat TS. The green composite films with 15 phr cellulose from EFB filler loading provided the best tensile properties in term of its strength and modulus. However, in term of elongation at break, the percentage elongation decreased with the increased of the amount of filler loading. SEM images of the films demonstrated a good interaction between cellulose filler and TS matrix especially with the addition of 15 phr of cellulose from EFB.
Ernst, Sabrina; Stübinger, Stefan; Schüpbach, Peter; Sidler, Michéle; Klein, Karina; Ferguson, Stephen J; von Rechenberg, Brigitte
2015-08-01
The aim of this study was to compare two different surfaces of one uniform macro-implant design in order to focus exclusively on the osseointegration properties after 2, 4 and 8 weeks and to discuss the animal model chosen. In six mature sheep, n = 36 implants with a highly crystalline and phosphate-enriched anodized titanium oxide surface (TiU) and n = 36 implants with a hydrophilic, sandblasted, large grit and acid-etched surface (SLA) were placed in the pelvic bone. TiU implants were custom-made to match the SLA implant design. The implant stability and bone-to-implant contact (BIC) were assessed by resonance frequency (ISQ), backscatter scanning electron microscopy (B-SEM), light microscopy (LM), micro-CT and intravital fluorochrome staining. Biomechanical removal torque testing was performed. Overall, no statistically significant differences in BIC total (trabecular + cortical) between TiU and SLA were found via LM and B-SEM. BIC values (B-SEM; LM) in both groups revealed a steady rise in trabecular bone attachment to the implant surface after 2, 4 and 8 weeks. In the 2- to 4-week time interval in the TiU group (P = 0.005) as well as in the SLA group (P = 0.01), a statistically significant increase in BIC trabecular could be observed via LM. B-SEM values confirmed the statistically significant increase for TiU (P = 0.001). In both groups, BIC trabecular values after 8 weeks were significantly higher (P ≤ 0.05) than after 2 weeks (B-SEM; LM). Biomechanical data confirmed the histological data. The two surfaces proved comparable osseointegration in this sheep model. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sonomura, Takahiro; Furuta, Takahiro; Nakatani, Ikuko; Yamamoto, Yo; Honma, Satoru; Kaneko, Takeshi
2014-11-01
Ten years have passed since a serial block-face scanning electron microscopy (SBF-SEM) method was developed [1]. In this innovative method, samples were automatically sectioned with an ultramicrotome placed inside a scanning electron microscope column, and the block surfaces were imaged one after another by SEM to capture back-scattered electrons. The contrast-inverted images obtained by the SBF-SEM were very similar to those acquired using conventional TEM. SFB-SEM has made easy to acquire image stacks of the transmission electron microscopy (TEM) in the mesoscale, which is taken with the confocal laser-scanning microcopy(CF-LSM).Furthermore, serial-section SEM has been combined with the focused ion beam (FIB) milling method [2]. FIB-incorporated SEM (FIB-SEM) has enabled the acquisition of three-dimensional images with a higher z-axis resolution com- pared to ultramicrotome-equipped SEM.We tried immunocytochemistry for FIB-SEM and correlated this immunoreactivity with that in CF-LSM. Dendrites of neurons in the rat neostriatum were visualized using a recombinant viral vector. Moreover, the thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2). After detection of the sites of terminals apposed to the dendrites by using CF-LSM, GFP and VGluT2 immunoreactivities were further developed for EM by using immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB) methods, respectively.We showed that conventional immuno-cytochemical staining for TEM was applicable to FIB-SEM. Furthermore, several synaptic contacts, which were thought to exist on the basis of CF-LSM findings, were confirmed with FIB-SEM, revealing the usefulness of the combined method of CF-LSM and FIB-SEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Effect of compatibilizer on impact and morphological analysis of recycled HDPE/PET blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salleh, Mohd Nazry; Ahmad, Sahrim; Ghani, Mohd Hafizuddin Ab
Blends based on recycled high density polyethylene (rHDPE) and recycled polyethylene terephthalate (rPET) were prepared using a corotating twin screw extruder. PET and HDPE are incompatible polymers and their blends showed poor properties. Compatibilization is a step to obtain blends with good mechanical properties and in this work, ethylene glycidyl methacrylate copolymer (E-GMA) was used as a compatibilizing agent. The effect of blends based on rHDPE and rPET with and without a compatibilizer, E-GMA were examined. From the studies clearly showed that the addition of 5% E-GMA increased the impact strength. SEM analysis of rHDPE/rPET blends confirmed the morphological interactionmore » and improved interfacial bonding between two phases.« less
Corrosion Properties of SAC305 Solder in Different Solution of HCl and NaCl
NASA Astrophysics Data System (ADS)
Nurwahida, M. Z.; Mukridz, M. M.; Ahmad, A. M.; Muhammad, F. M. N.
2018-03-01
Potentiodynamic polarization was used to studied the corrosion properties of SAC305 solder in different solution of 1.0 M HCl and 3.5 wt.% NaCl using the same scanning rate of 1.0 mV/s. The polarization curves indicated that corrosion in NaCl was less severe than in HCl solution based on corrosion current and passivation behavior obtained. Morphology and phases obtained after corrosion using SEM and XRD were analyzed. Microstructure analysis shows the present of compact corrosion product with presence of larger flake for polarization in NaCl compared to HCl. Phases present in XRD analysis confirmed the present of SnO and SnO2 corrosion product for sample from both solutions.
NASA Astrophysics Data System (ADS)
Mao, Hanping; Liu, Zhongshou
2018-01-01
In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe3O4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples.
Park, Eun-Young; Kim, Won-Ho
2013-05-01
Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nerucci, F; Fioravanti, A; Cicero, M R; Collodel, G; Marcolongo, R
2000-07-01
Objective This study investigated the in vitro effects of chondroitin sulfate (CS) on human articular chondrocytes cultivated in the presence or in the absence of interleukin-1beta (IL-1beta) during 10 days of culture with and without pressurization cycles. Design The effects of CS (10 and 100 microg/ml) with and without IL-1beta were assessed in the culture medium of cells exposed to pressurization cycles in the form of synusoidal waves (minimum pressure 1 Mpa, maximum pressure 5 Mpa) and a frequency of 0.25 Hz for 3 h by immunoenzymatic method on microplates for the quantitative measurement of human proteoglycans (PG). On the 4th and 10th day of culture the cells were used for morphological analysis by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Results The presence of IL-1beta determines a significant decrease in PG concentration measured in the culture medium. When the cells are cultured in the presence of IL-1beta and CS, a statistically significant restoration of PG levels is observed. Under pressurization conditions, we observed that PG concentration in the medium of cells presents a significant increase at baseline conditions, in the presence of IL-1beta+CS10 and IL-1beta+CS100, but not with IL-1beta alone. The results concerning metabolic evaluation are confirmed by the morphologic findings obtained by TEM and SEM. Conclusions These in vitro studies confirm the protective role of CS, which counteracts the IL-1beta induced effects and they confirm the importance of pressure on chondrocyte metabolism and morphology.
Influence of high-energy milling on structure and microstructure of asbestos-cement materials
NASA Astrophysics Data System (ADS)
Iwaszko, Józef; Zawada, Anna; Lubas, Małgorzata
2018-03-01
Asbestos-Containing Waste (ACW) in the form of a fragment from an asbestos-cement board was subjected to high-energy milling in a planetary mill at a constant rotational speed of 650 rpm and for variable milling times: 1, 2, and 3 h. The initial and the milled materials were subjected to infrared spectroscopic examination to identify the asbestos variety and to evaluate changes in the structure caused by high-energy milling. FT-IR (Fourier Transform Infrared Spectroscopy) examinations followed optical microscopy and SEM (Scanning Electron Microscopy) studies as well as X-ray analysis of the phase composition. It was found that the asbestos fibres present in the asbestos-cement board were respirable fibres with pathogenic properties. Identifying asbestos using the spectroscopic method showed that chrysotile asbestos was present in the as-received ACW while no characteristics of absorption bands from crocidolite or amosite were found. The results of the spectroscopic examinations were confirmed by the X-ray phase analysis. During SEM investigations of the milled ACW, complete loss of the fibrous structure of chrysotile was observed. The FT-IR examinations of the milled material showed that with an increased milling time, the characteristic absorption bands characteristic for chrysotile diminished and already after 2 h of milling their almost complete decay was observed. Thereby, it was confirmed that high-energy milling results in destruction of the crystalline structure of the asbestos phase. The conducted studies have shown that the treatment of asbestos-cement materials using high-energy milling is an effective method for asbestos disposal, capable of competing with other technologies and solutions. Moreover, FT-IR spectroscopy was found to be useful to identify asbestos phases and to assess changes caused by high-energy milling.
Giezen, Hilde; Stevens, Martin; van den Akker-Scheek, Inge; Reininga, Inge H F
2017-01-01
The Copenhagen Hip And Groin Outcome Score (HAGOS) was developed to assess disease-specific consequences in young to middle-aged, physically active hip and/or groin patients. The study aimed to determine validity and reliability of the Dutch version of the HAGOS (HAGOS-NL) for middle-aged patients with hip complaints. To assess validity, 117 participants completed five questionnaires: HAGOS-NL, international Hip Outcome Tool (iHOT-12NL), Hip disability and Osteoarthritis Outcome Score (HOOS), RAND-36 Health Survey and Tegner activity scale. Structural validity was determined by conducting confirmatory factor analysis. Construct validity was analyzed by formulating predefined hypotheses regarding relationships between the HAGOS-NL and subscales of the iHOT-12NL, HOOS, RAND-36 and Tegner activity scale. The HAGOS-NL was filled out again by 67 patients to explore test-retest reliability. Reliability was assessed in terms of Cronbach's alpha, Intraclass Correlation Coefficient (ICC), Standard Error of Measurement (SEM) and Minimal Detectable Change (MDC). The Bland and Altman method was used to explore absolute agreement. Factor analysis confirmed that the HAGOS-NL consists of six subscales. All hypotheses were confirmed, indicating good construct validity. Internal consistency was good, with Cronbach's alpha values ranging from 0.89 to 0.98. Test-retest reliability was considered good, with ICC values of 0.80 and higher. The SEM ranged from 6.6 to 12.3, and MDC at individual level from 18.3 to 34.1 and at group level from 2.3 to 4.4. Bland and Altman analyses showed no bias. The HAGOS-NL is a reliable and valid instrument for measuring pain, physical functioning and quality of life in middle-aged patients with hip complaints.
Structure and magnetic properties of SiO{sub 2}/PCL novel sol–gel organic–inorganic hybrid materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catauro, Michelina, E-mail: michelina.catauro@unina2.it; Bollino, Flavia; Cristina Mozzati, Maria
2013-07-15
Organic–inorganic nanocomposite materials have been synthesized via sol–gel. They consist of an inorganic SiO{sub 2} matrix, in which different percentages of poly(ε-caprolactone) (PCL) have been incorporated. The formation of H-bonds among the carbonyl groups of the polymer chains and Si–OH group of the inorganic matrix has been proved by means of Fourier transform infrared spectroscopy (FT-IR) analysis and has been confirmed by solid-state nuclear magnetic resonance (NMR). X-Ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials. Scanning electron microscope (SEM) micrograph and atomic force microscope (AFM) topography showed their homogeneous morphology and nanostructure nature. Considering the opportunitymore » to synthesize these hybrid materials under microgravity conditions by means of magnetic levitation, superconducting quantum interference device (SQUID) magnetometry has been used to quantify their magnetic susceptibility. This measure has shown that the SiO{sub 2}/PCL hybrid materials are diamagnetic and that their diamagnetic susceptibility is independent of temperature and increases with the PCL amount. - Graphical abstract: Characterization and magnetic properties of SiO{sub 2}/PCL organic–inorganic hybrid materials synthesized via sol–gel. FT-IR, Fourier transform infrared spectroscopy; solid-state NMR: solid-state nuclear magnetic resonance; SQUID: superconducting quantum interference device. - Highlights: • Sol–gel synthesis of SiO{sub 2}/PCL amorphous class I organic–inorganic hybrid materials. • FT-IR and NMR analyses show the hydrogen bonds formation between SiO{sub 2} and PCL. • AFM and SEM analyses confirm that the SiO{sub 2}/PCL are homogenous hybrid materials. • The SQUID measures show that the simples are diamagnetic. • Diamagnetic susceptibility of SiO{sub 2}/PCL materials increases with the PCL amount.« less
Connected component analysis of review-SEM images for sub-10nm node process verification
NASA Astrophysics Data System (ADS)
Halder, Sandip; Leray, Philippe; Sah, Kaushik; Cross, Andrew; Parisi, Paolo
2017-03-01
Analysis of hotspots is becoming more and more critical as we scale from node to node. To define true process windows at sub-14 nm technology nodes, often defect inspections are being included to weed out design weak spots (often referred to as hotspots). Defect inspection sub 28 nm nodes is a two pass process. Defect locations identified by optical inspection tools need to be reviewed by review-SEM's to understand exactly which feature is failing in the region flagged by the optical tool. The images grabbed by the review-SEM tool are used for classification but rarely for quantification. The goal of this paper is to see if the thousands of review-SEM images which are existing can be used for quantification and further analysis. More specifically we address the SEM quantification problem with connected component analysis.
Guiné, R P F; Duarte, J; Ferreira, M; Correia, P; Leal, M; Rumbak, I; Barić, I C; Komes, D; Satalić, Z; Sarić, M M; Tarcea, M; Fazakas, Z; Jovanoska, D; Vanevski, D; Vittadini, E; Pellegrini, N; Szűcs, V; Harangozó, J; El-Kenawy, A; El-Shenawy, O; Yalçın, E; Kösemeci, C; Klava, D; Straumite, E
2016-09-01
Because there is scientific evidence that an appropriate intake of dietary fibre should be part of a healthy diet, given its importance in promoting health, the present study aimed to develop and validate an instrument to evaluate the knowledge of the general population about dietary fibres. The present study was a cross sectional study. The methodological study of psychometric validation was conducted with 6010 participants, residing in 10 countries from three continents. The instrument is a questionnaire of self-response, aimed at collecting information on knowledge about food fibres. Exploratory factor analysis (EFA) was chosen as the analysis of the main components using varimax orthogonal rotation and eigenvalues greater than 1. In confirmatory factor analysis by structural equation modelling (SEM) was considered the covariance matrix and adopted the maximum likelihood estimation algorithm for parameter estimation. Exploratory factor analysis retained two factors. The first was called dietary fibre and promotion of health (DFPH) and included seven questions that explained 33.94% of total variance (α = 0.852). The second was named sources of dietary fibre (SDF) and included four questions that explained 22.46% of total variance (α = 0.786). The model was tested by SEM giving a final solution with four questions in each factor. This model showed a very good fit in practically all the indexes considered, except for the ratio χ(2)/df. The values of average variance extracted (0.458 and 0.483) demonstrate the existence of convergent validity; the results also prove the existence of discriminant validity of the factors (r(2) = 0.028) and finally good internal consistency was confirmed by the values of composite reliability (0.854 and 0.787). This study allowed validating the KADF scale, increasing the degree of confidence in the information obtained through this instrument in this and in future studies. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
In Situ Characterization of Boehmite Particles in Water Using Liquid SEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Juan; Arey, Bruce W.; Yang, Li
In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid. A synthesized AlOOH particle is used as a model in the liquid SEM illustration. Our results demonstrate that particles can be imaged in the SE modemore » with good resolution. The AlOOH EDX spectrum shows significant signal from the Al compared with deionized water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical details in how to conduct liquid SEM imaging and EDX analysis using SALVI and reduce potential pitfalls using this approach for other researchers.« less
Dubin, Sergey; Gilje, Scott; Wang, Kan; Tung, Vincent C.; Cha, Kitty; Hall, Anthony S.; Farrar, Jabari; Varshneya, Rupal; Yang, Yang; Kaner, Richard B.
2014-01-01
Refluxing graphene oxide (GO) in N-methyl-2-pyrrolidinone (NMP) results in deoxygenation and reduction to yield a stable colloidal dispersion. The solvothermal reduction is accompanied by a color change from light brown to black. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images of the product confirm the presence of single sheets of the solvothermally reduced graphene oxide (SRGO). X-ray photoelectron spectroscopy (XPS) of SRGO indicates a significant increase in intensity of the C=C bond character, while the oxygen content decreases markedly after the reduction is complete. X-ray diffraction analysis of SRGO shows a single broad peak at 26.24° 2θ (3.4 Å), confirming the presence of graphitic stacking of reduced sheets. SRGO sheets are redispersible in a variety of organic solvents, which may hold promise as an acceptor material for bulk heterojunction photovoltaic cells, or electromagnetic interference shielding applications. PMID:20586422
Effect of Aspergillus versicolor strain JASS1 on low density polyethylene degradation
NASA Astrophysics Data System (ADS)
Gajendiran, A.; Subramani, S.; Abraham, J.
2017-11-01
Low density polyethylene (LDPE) waste disposal remains one of the major environmental concerns faced by the world today. In past decades, major focus has been given to enhance the biodegradation of LDPE by microbial species. In this present study, Aspergillus versicolor with the ability to degrade LDPE was isolated from municipal landfill area using enrichment technique. Based on 18S rRNA gene sequencing confirmed its identity as Aspergillus versicolor. The biodegradation study was carried out for 90 d in M1 medium. The degradation behaviour of LDPE films by Aspergillus versicolor strain JASS1 were confirmed by weight loss, CO2 evolution, Scanning electron microscopy (SEM) analysis, Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) technique. From current investigation, it can be concluded that our isolated strain JASS1 had the potential to degrade LDPE films and it can be useful in solving the problem caused by polyethylene in the environment.
NASA Technical Reports Server (NTRS)
Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.; Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.;
2014-01-01
Recognition of origin for particles responsible for impact damage on spacecraft such as the Hubble Space Telescope (HST) relies upon postflight analysis of returned materials. A unique opportunity arose in 2009 with collection of the Wide Field and Planetary Camera 2 (WFPC2) from HST by shuttle mission STS-125. A preliminary optical survey confirmed that there were hundreds of impact features on the radiator surface. Following extensive discussion between NASA, ESA, NHM and IBC, a collaborative research program was initiated, employing scanning electron microscopy (SEM) and ion beam analysis (IBA) to determine the nature of the impacting grains. Even though some WFPC2 impact features are large, and easily seen without the use of a microscope, impactor remnants may be hard to find.
Shahi, Amrita; Rai, B N; Singh, R S
2016-09-01
A laboratory-scale biofilter study was performed to treat cumene-inoculated mixed culture of bacterial community and loofa sponge (Luffa cylindrica) as support media for a period of 120 days in five distinct phases. The removal efficiency was obtained in the range of 40-85 % with maximum elimination capacity of 700 g m(-3) h(-1) at the inlet load of 1167 g m(-3) h(-1). The result demonstrated that loofa sponge is good support media for the removal of cumene at higher loading rates. Loofa sponge was characterized via chemical analysis and analytical techniques such as XRD; FTIR; XPS; and CHN, and the result obtained confirms its suitability as biofilter media. The SEM results of loofa with inoculum shows the formation of a biofilm layer on the surface of loofa. The GC-MS analysis of leachate confirms the presence of different organic compounds such as acetaldehyde and 4-hydroxy-2-oxopentanoic acids which are stable metabolites during cumene biodegradation. About 12.69 % of carbon present in inlet cumene was converted to biomass.
Development of Styrene-Grafted Polyurethane by Radiation-Based Techniques
Jeong, Jin-Oh; Park, Jong-Seok; Lim, Youn-Mook
2016-01-01
Polyurethane (PU) is the fifth most common polymer in the general consumer market, following Polypropylene (PP), Polyethylene (PE), Polyvinyl chloride (PVC), and Polystyrene (PS), and the most common polymer for thermosetting resins. In particular, polyurethane has excellent hardness and heat resistance, is a widely used material for electronic products and automotive parts, and can be used to create products of various physical properties, including rigid and flexible foams, films, and fibers. However, the use of polar polymer polyurethane as an impact modifier of non-polar polymers is limited due to poor combustion resistance and impact resistance. In this study, we used gamma irradiation at 25 and 50 kGy to introduce the styrene of hydrophobic monomer on the polyurethane as an impact modifier of the non-polar polymer. To verify grafted styrene, we confirmed the phenyl group of styrene at 690 cm−1 by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) and at 6.4–6.8 ppm by 1H-Nuclear Magnetic Resonance (1H-NMR). Scanning Electron Microscope (SEM), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA) and contact angle analysis were also used to confirm styrene introduction. This study has confirmed the possibility of applying high-functional composite through radiation-based techniques. PMID:28773561
NASA Astrophysics Data System (ADS)
Sarkar, Sonia; Kotteeswaran, Venkatesan
2018-06-01
Plants contain different important phytochemicals that can be used as a potential treatment for various ailments including cancer. The green synthesis of silver nanoparticles from the extract of different plant parts has gained a wide range of engrossment among the researchers due to its unique optical and structural property. The aim of this study is green synthesis of silver nanoparticles from the aqueous leaf extract of pomegranate (Punica granatum) and to investigate its anticancer activity on human cervical cancer cells (HeLa). The synthesis of silver nanoparticle was depicted by the colour change from golden yellowish to dark brownish, UV-visible spectral analysis gave a characteristic surface plasmon absorption peak at . Further morphological characterization was done by Zeta potential where the size analysis was depicted to be 46.1 nm and zeta potential as . Fourier transform infrared spectroscopy (FTIR) inferred 3 intense sharp peaks at , , , confirmed the presence of flavonoids and polyphenols. The scanning electron microscopy (SEM) analysis with energy diffraction spectroscopy (EDS) confirmed the presence of silver nanoparticles with size ranged from to . X-ray diffraction (XRD) confirmed the crystallographic nature of silver. The cell proliferation activity of nanoparticles was tested by 3, ‑4, 5 dimethylthiazol-2,5 diphenyl tetrazolium bromide (MTT) assay where the inhibitory concentration () was found at inhibiting of HeLa cell line. The anticancer activity of nanoparticles was determined by lactate dehydrogenase (LDH) assay where showed of cytotoxicity. Furthermore, the anticancer property of nanoparticles was confirmed by the DNA fragmentation assay.
NASA Astrophysics Data System (ADS)
Kavitha, S.; Dhamodaran, M.; Prasad, Rajendra; Ganesan, M.
2017-04-01
Zinc oxide (ZnO) nanoparticles have been widely employed for various pharmacological applications. Several approaches were tried to synthesize ZnO nanoparticles. In this study, ZnO nanoparticles were biosynthesized using terpenoid (TAP) fractions isolated from Andrographis paniculata leaves. Subsequently, the ZnNO3 (0.1 N) is treated with the isolated TAP fractions to biosynthesize zinc oxide nanoparticles (Zn-TAP NPs). This nanoparticle preparation has been confirmed by the colour change from green to cloudy-white and the peak at 300 nm by UV-Visible spectra. FTIR analysis of Zn-TAP NPs showed the presence of functional group (i.e.) C=O which has further been confirmed by H1-NMR studies. From SEM and XRD analysis, it has been found that the hexagonal nanorod particle is 20.23 nm in size and +17.6 mV of zeta potential. Hence, it can be easily absorbed by negatively charged cellular membrane to contribute for efficient intracellular distribution. Therefore, it is suggested that the synthesised Zn-TAP NPs are more suitable in drug delivery processes.
Nagiah, Naveen; Madhavi, Lakshmi; Anitha, R; Anandan, C; Srinivasan, Natarajan Tirupattur; Sivagnanam, Uma Tirichurapalli
2013-10-01
The morphology of fibers synthesized through electrospinning has been found to mimic extracellular matrix. Coaxially electrospun fibers of gelatin (sheath) coated poly (3-hydroxybutyric acid) (PHB) (core) was developed using 2,2,2 trifluoroethanol(TFE) and 1,1,1,3,3,3 hexafluoro-2-propanol(HFIP) as solvents respectively. The coaxial structure and coating of gelatin with PHB fibers was confirmed through transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Thermal stability of the coaxially electrospun fibers was analyzed using thermogravimetric analysis(TGA), differential scanning calorimetry(DSC) and differential thermogravimetric analysis(DTA). Complete evaporation of solvent and gelatin grafting over PHB fibers was confirmed through attenuated total reflection-Fourier transformed infrared spectroscopy (ATR-FTIR). The coaxially electrospun fibers exhibited competent tensile properties for skin regeneration with high surface area and porosity. In vitro degradation studies proved the stability of fibers and its potential applications in tissue engineering. The fibers supported the growth of human dermal fibroblasts and keratinocytes with normal morphology indicating its potential as a scaffold for skin regeneration. © 2013.
Structural Equation Model Trees
ERIC Educational Resources Information Center
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2013-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
Characterization of polylactic co-glycolic acid nanospheres modified with PVA and DDAB
NASA Astrophysics Data System (ADS)
Mulia, Kamarza; Satyapertiwi, Dwiantari; Devina, Ranee; Krisanti, Elsa
2017-02-01
The common treatment for diabetic retinopathy is corticosteroids intravitreal injection that sometimes lead to complications. Dexamethasone-loaded polylactic co-glycolic acid (PLGA) nanospheres, modified with dioctadecyldimethylammonium bromide (DDAB) as the cationic surfactant, is expected to prolong drug retention time. Zeta potential of the PLGA nanospheres prepared using non-ionic surfactant PVA and DDAB confirmed the cationic surfactant increase the surface charge of the PLGA nanospheres. The optimal formulation based on the particle size and high positive surface charge was the PLGA-DDAB nanospheres. SEM analysis showed spherical morphology of the nanospheres having diameter 626.9 ± 98.01 nm positive zeta potential of +22.5 mV.
NASA Astrophysics Data System (ADS)
Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R.
2017-09-01
Silica functionalized Cu(II) acetylacetonate Schiff base complex via the one pot reaction of silica functionalized 3-aminopropyltriethoxysilane with acetyl acetone and copper acetate has been reported. The synthesized material was well characterized by analytical techniques such as FT-IR, UV-DRS, XRD, SEM-EDX, HR-TEM, EPR, ICP-AES and BET analysis. The characterization results confirmed the grafting of Cu(II) Schiff base complex on the silica surface. The catalytic activity of synthesized silica functionalized Cu(II) acetylacetonate Schiff base complex was evaluated through the oxidative condensation reaction of benzyl alcohol to imine.
NASA Astrophysics Data System (ADS)
Chen, Xi; Cai, Qiang; Sun, Lin-Hao; Zhang, Wei; Jiang, Xing-Yu
2012-09-01
Novel thiol-functionalized mesoporous silica nanorods (MSNRs) were synthesized through a base co-condensation method, in which two organoalkoxysilanes, tetraethoxylsilane (TEOS) and bis[3-(triethoxysilyl)propyl]tetrasulfide (TESPT), were used as silica precursors simultaneously. TESPT was firstly used for both morphology control and inner surface functionalization of mesoporous silica hybrid materials. The microstructures as well as porous character of the MSNRs were characterized by means of SEM, XRD, TEM and N2 sorption measurements. Infrared spectrum analysis and heavy metal ions (Ag+ and Cd2+) adsorption measurements were carried out to confirm the functionalized framework of MSNRs.
Dobrucka, Renata; Długaszewska, Jolanta
2015-06-01
Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV-visble spectroscopy, Fourier transform infrared spectroscopy and total reflection X-ray fluorescence analysis. The morphology of the synthesized silver nanoparticles was verified by SEM-EDS. The obtained silver nanoparticles were used to study their antimicrobial activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasution, Erika L. Y.; Ahab, Atika; Nuryadin, Bebeh W.
2016-02-08
PEGylated gadolinium carbonate ((Gd{sub 2}(CO{sub 3}){sub 3})@PEG) powder was successfully synthesized by a modified solvothermal method. The synthesized products were characterized by means of X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectroscopy (EDS). A systematic change in the chemical surface composition, crystallinity and size properties of the Gd{sub 2}(CO{sub 3}){sub 3}@PEG particles was observed by increasing the reaction time at 5 hours, 7 hours, and 8 hours. The corresponding XRD patterns showed that the Gd{sub 2}(CO{sub 3}){sub 3} particles had hexagonal symmetry (JCPDS No. 37-0559) with a crystallite size of 3.5,more » 2.9, and 4.6 nm. FTIR spectra showed that the Gd{sub 2}(CO{sub 3}){sub 3})@PEG particles were formed with the PEG as carbonyl and hydroxyl group attached to the surface. SEM analysis showed that the Gd{sub 2}(CO{sub 3}){sub 3})@PEG particles had a flake-like morphology of homogeneous sized particles and agglomerates. EDS analysis confirmed the presence of constituent Gd{sub 2}(CO{sub 3}){sub 3} elements.« less
Effect of molarity on sol-gel routed nano TiO2 thin films
NASA Astrophysics Data System (ADS)
Lourduraj, Stephen; Williams, Rayar Victor
The nanostructured titanium dioxide (TiO2) thin films have been prepared for the molar concentrations of titanium tetra isopropoxide (TTIP) 0.05M, 0.1M, 0.15M and 0.2M by sol-gel routed spin coating technique with calcination at 450∘C. The processing parameters such as, pH value (8), catalyst HCl (0.1ml), spin speed (3000rpm) and calcination temperature (450∘C) are optimized. The crystalline nature and surface morphology were analyzed by XRD, SEM and AFM analysis. The XRD results confirm that the films are crystalline with anatase phase, and are nanostructured. The SEM micrographs of the TiO2 film reveal the spherical nature of the particle. AFM analysis establishes that the uniformity of the TiO2 thin film was optimized at 0.2M. The optical measurements show that the transmittance depends on the molarity, and the optical band gap energy of TiO2 films is found to be inversely proportional to molarity. The I-V characteristics exhibit that the molarity strongly influences the electrical conductivity of the film. The results indicate that the significant effect of molarity on structural, optical and electrical properties of the nanostructured TiO2 thin films will be useful to photovoltaic application.
Kim, Jungsoo; Kim, Yang Do; Nam, Dae Geun
2013-05-01
Graphene was coated on low carbon steel (SS400) by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite was made of the graphite by chemical treatment (Chemically Converted Graphene, CCG). CCG is distributed using dispersing agent, and low carbon steel was coated with diffuse graphene solution by electro spray coating method. The structure of the CCG was analyzed using XRD and the coating layer of surface was analyzed using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed in to fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3-5 microm thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the polymer electrolyte membrane fuel cell (PEMFC) stack inside. And interfacial contact resistance (ICR) test was measured to simulate the internal operating conditions of PEMFC stack. As a result of measuring corrosion resistance and contact resistance, it could be confirmed that low carbon steel coated with CCG was revealed to be more effective in terms of its applicability as PEMFC bipolar plate.
Tatsumi, Tomonori; Takenouchi, Takashi
2014-01-01
[Purpose] The purpose of this study was to examine the causal relationships between the psychological acceptance process of athletic injury and athletic-rehabilitation behavior. [Subjects] One hundred forty-four athletes who had injury experiences participated in this study, and 133 (mean age = 20.21 years, SD = 1.07; mean weeks without playing sports = 7.97 weeks, SD = 11.26) of them provided valid questionnaire responses which were subjected to analysis. [Methods] The subjects were asked to answer our originally designed questionnaire, the Psychosocial Recovery Factor Scale (PSRF-S), and two other pre-existing scales, the Athletic Injury Psychological Acceptance Scale and the Athletic-Rehabilitation Dedication Scale. [Results] The results of factor analysis indicate “emotional stability”, “social competence in the team”, “temporal perspective”, and “communication with the teammates” are factors of the PSRF-S. Lastly, the causal model in which psychosocial recovery factors are mediated by psychological acceptance of athletic injury, and influence on rehabilitation behaviors, was examined using structural equation modeling (SEM). The results of SEM indicate that the factors of emotional stability and temporal perspective are mediated by the psychological acceptance of the injury, which positively influences athletic-rehabilitation dedication. [Conclusion] The causal model was confirmed to be valid. PMID:25202190
Maleknia, Laleh; Dilamian, Mandana; Pilehrood, Mohammad Kazemi; Sadeghi-Aliabadi, Hojjat; Hekmati, Amir Houshang
2018-06-01
In this paper, polyurethane (PU), chitosan (Cs)/polyethylene oxide (PEO), and core-shell PU/Cs nanofibers were produced at the optimal processing conditions using electrospinning technique. Several methods including SEM, TEM, FTIR, XRD, DSC, TGA and image analysis were utilized to characterize these nanofibrous structures. SEM images exhibited that the core-shell PU/Cs nanofibers were spun without any structural imperfections at the optimized processing conditions. TEM image confirmed the PU/Cs core-shell nanofibers were formed apparently. It that seems the inclusion of Cs/PEO to the shell, did not induce the significant variations in the crystallinity in the core-shell nanofibers. DSC analysis showed that the inclusion of Cs/PEO led to the glass temperature of the composition increased significantly compared to those of neat PU nanofibers. The thermal degradation of core-shell PU/Cs was similar to PU nanofibers degradation due to the higher PU concentration compared to other components. It was hypothesized that the core-shell PU/Cs nanofibers can be used as a potential platform for the bioactive scaffolds in tissue engineering. Further biological tests should be conducted to evaluate this platform as a three dimensional scaffold with the capabilities of releasing the bioactive molecules in a sustained manner.
Characteristics of uranium biosorption from aqueous solutions on fungus Pleurotus ostreatus.
Zhao, Changsong; Liu, Jun; Tu, Hong; Li, Feize; Li, Xiyang; Yang, Jijun; Liao, Jiali; Yang, Yuanyou; Liu, Ning; Sun, Qun
2016-12-01
Uranium(VI) biosorption from aqueous solutions was investigated in batch studies by using fungus Pleurotus ostreatus biomass. The optimal biosorption conditions were examined by investigating the reaction time, biomass dosage, pH, temperature, and uranium initial concentration. The interaction between fungus biomass and uranium was confirmed using Fourier transformed infrared (FT-IR), scanning electronic microscopy energy dispersive X-ray (SEM-EDX), and X-ray photoelectron spectroscopy (XPS) analysis. Results exhibited that the maximum biosorption capacity of uranium on P. ostreatus was 19.95 ± 1.17 mg/g at pH 4.0. Carboxylic, amine, as well as hydroxyl groups were involved in uranium biosorption according to FT-IR analysis. The pseudo-second-order model properly evaluated the U(VI) biosorption on fungus P. ostreatus biomass. The Langmuir equation provided better fitting in comparison with Freundlich isotherm models. The obtained thermodynamic parameters suggested that biosorption is feasible, endothermic, and spontaneous. SEM-EDX and XPS were additionally conducted to comprehend the biosorption process that could be described as a complex process involving several mechanisms of physical adsorption, chemisorptions, and ion exchange. Results obtained from this work indicated that fungus P. ostreatus biomass can be used as potential biosorbent to eliminate uranium or other radionuclides from aqueous solutions.
Sowndarya, P; Ramkumar, G; Shivakumar, M S
2017-12-01
Mosquitoes are major vectors for the transmission of many diseases like chikungunya, malaria, dengue, zika, etc. worldwide. In the present study, selenium nanoparticles (SeNPs) were synthesized from Clausena dentata and were tested for their larvicidal efficacy against the fourth-instar larvae of Anopheles stephensi, Aedes Aegypti, and Culex quinquefasciatus. The synthesized nanoparticles were characterized using UV-Vis spectroscopy, Fourier Transform Infrared Radiation (FTIR) spectroscopy, EDaX, and SEM. The results recorded from UV-Vis spectroscopy show the peak absorption spectrum at 420 nm. In FTIR, the maximum peak value is 2922.25 cm -1 assigned to N-H group (amide group). In EDaX analysis shows peak around 72.64 which confirm the binding intensity of selenium. In SEM analysis, the synthesized SeNPs sizes were ranging from 46.32 nm to 78.88 nm. The synthesized SeNPs produced high mortality with very low concentration (LC 50 ) were 240.714 mg/L; 104.13 mg/L, and 99.602 mg/L for A. stephensi, A. Aegypti, and C. quinquefasciatus, respectively. These results suggest that the C. dentata leaf extract-mediated biosynthesis of SeNPs has the potential to be used as an ideal ecofriendly approach toward the control of mosquito vectors at early stages.
Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Kozieł, Marcin; Nowakowska, Maria
2015-02-10
Novel bioactive organic-inorganic hybrid materials that can serve as injectable hydrogel systems for bone tissue regeneration were obtained. The silica nanoparticles (SiNP) prepared in situ by the Stöber method were dispersed in collagen, collagen-chitosan or chitosan sols, which were then subsequently crosslinked. Laser scanning confocal microscopy studies, in which fluorescent SiNP were applied, and SEM images indicated that the nanosilica particles were distributed in the whole volume of the hydrogel matrix. In vitro studies on fibroblast cell viability indicated that the hybrid materials are biocompatible. The silica nanoparticles dispersed in the biopolymer matrix had a positive effect on cell viability. Studies on the mineralization process under simulated body fluid (SBF) conditions confirmed the bioactivity of prepared materials. SEM images revealed mineral phase formation in the majority of the hybrid materials developed. EDS analysis indicated that these mineral phases are mainly composed of calcium and phosphorus. The XRD studies confirmed that mineral phases formed during SBF incubation of hybrid materials based on collagen are bone-like apatite minerals. The silica nanoparticles added to the hydrogel at the stage of synthesis induced the occurrence of mineralization. This process occurs not only at the surface of the material but in its entire volume, which is important for the preparation of scaffolds for bone tissue engineering. The ability of these materials to undergo in situ gelation under physiological temperature and their bioactivity as well as biocompatibility make them interesting candidates for bioactive injectable systems.
Sathishkumar, Gnanasekar; Gobinath, Chandrakasan; Karpagam, Karuppiah; Hemamalini, Vedagiri; Premkumar, Kumpati; Sivaramakrishnan, Sivaperumal
2012-06-15
Leaf extract of Morinda citrifolia L. was assessed for the synthesis of silver nanoscale particles under different temperature and reaction time. Synthesized nanoscale (MCAgNPs) particles were confirmed by analysing the excitation of surface plasmon resonance (SPR) using UV-visible spectrophotometer at 420 nm. Further SEM, HRTEM analysis confirmed the range of particle size between 10 and 60 nm and SEAD pattern authorizes the face centered cubic (fcc) crystalline nature of the MCAgNPs. Fourier transform infrared spectrum (FTIR) of synthesized MCAgNPs confirms the presence of high amount of phenolic compounds in the plant extract which may possibly influence the reduction process and stabilization of nanoparticles. Further, inhibitory activity of MCAgNPs and plant extract were tested against human pathogens like Eschericia coli, Pseudomonas aeroginosa, Klebsiella pneumoniae, Enterobacter aerogenes, Bacillus cereus and Enterococci sp. The results indicated that the MCAgNPs showed moderate inhibitory actions against human pathogens than crude plant extract, demonstrating its antimicrobial value against pathogenic diseases. Copyright © 2012 Elsevier B.V. All rights reserved.
Verma, A; Prakash, N T; Toor, A P
2014-08-01
The investigation presents the observations on the use of cement beads for the immobilization of TiO2 for the degradation of herbicide isoproturon. The immobilized system was effective in degrading and mineralizing the herbicide for continuous thirty cycles without losing its durability. Catalyst was characterized by SEM-EDAX for checking the durability of the catalyst. The degradation rate followed first order kinetics as measured by change in absorption intensity in UV range as well as HPLC analysis. Two rounds of TiO2 coating on inert cement beads with average diameter 1.5cm at UV Intensity 25Wm(-2) calcined at 400°C were the optimized conditions for the degradation of herbicide isoproturon. More than 90% TOC and COD reduction along with ammonium ions generation (80%) confirmed the mineralization of isoproturon. Fixed bed baffled reactor studies under solar irradiations using the TiO2 immobilized beads confirmed 85% degradation after 6h. LC-MS studies confirmed the intermediates formation and their subsequent degradation using immobilized system. Copyright © 2014 Elsevier Ltd. All rights reserved.
The capability of lithography simulation based on MVM-SEM® system
NASA Astrophysics Data System (ADS)
Yoshikawa, Shingo; Fujii, Nobuaki; Kanno, Koichi; Imai, Hidemichi; Hayano, Katsuya; Miyashita, Hiroyuki; Shida, Soichi; Murakawa, Tsutomu; Kuribara, Masayuki; Matsumoto, Jun; Nakamura, Takayuki; Matsushita, Shohei; Hara, Daisuke; Pang, Linyong
2015-10-01
The 1Xnm technology node lithography is using SMO-ILT, NTD or more complex pattern. Therefore in mask defect inspection, defect verification becomes more difficult because many nuisance defects are detected in aggressive mask feature. One key Technology of mask manufacture is defect verification to use aerial image simulator or other printability simulation. AIMS™ Technology is excellent correlation for the wafer and standards tool for defect verification however it is difficult for verification over hundred numbers or more. We reported capability of defect verification based on lithography simulation with a SEM system that architecture and software is excellent correlation for simple line and space.[1] In this paper, we use a SEM system for the next generation combined with a lithography simulation tool for SMO-ILT, NTD and other complex pattern lithography. Furthermore we will use three dimension (3D) lithography simulation based on Multi Vision Metrology SEM system. Finally, we will confirm the performance of the 2D and 3D lithography simulation based on SEM system for a photomask verification.
Kawakubo, Kazumichi; Kawakami, Hiroshi; Toyokawa, Yoshihide; Otani, Koichi; Kuwatani, Masaki; Abe, Yoko; Kawahata, Shuhei; Kubo, Kimitoshi; Kubota, Yoshimasa; Sakamoto, Naoya
2015-01-01
Endoscopic double self-expandable metallic stent (SEMS) placement by the partial stent-in-stent (PSIS) method has been reported to be useful for the management of unresectable hilar malignant biliary obstruction. However, it is technically challenging, and the optimal SEMS for the procedure remains unknown. The aim of this study was to identify the risk factors for technical failure of endoscopic double SEMS placement for unresectable malignant hilar biliary obstruction (MHBO). Between December 2009 and May 2013, 50 consecutive patients with MHBO underwent endoscopic double SEMS placement by the PSIS method. We retrospectively evaluated the rate of successful double SEMS placement and identified the risk factors for technical failure. The technical success rate for double SEMS placement was 82.0% (95% confidence interval [CI]: 69.2-90.2). On univariate analysis, the rate of technical failure was high in patients with metastatic disease and unilateral placement. Multivariate analysis revealed that metastatic disease was a significant risk factor for technical failure (odds ratio: 9.63, 95% CI: 1.11-105.5). The subgroup analysis after double guidewire insertion showed that the rate of technical success was higher in the laser-cut type SEMS with a large mesh and thick delivery system than in the braided type SEMS with a small mesh and thick delivery system. Metastatic disease was a significant risk factor for technical failure of double SEMS placement for unresectable MHBO. The laser-cut type SEMS with a large mesh and thin delivery system might be preferable for the PSIS procedure. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Fullerene C60 coated silicon nanowires as anode materials for lithium secondary batteries.
Arie, Arenst Andreas; Lee, Joong Kee
2012-04-01
A Fullerene C60 film was introduced as a coating layer for silicon nanowires (Si NWs) by a plasma assisted thermal evaporation technique. The morphology and structural characteristics of the materials were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). SEM observations showed that the shape of the nanowire structure was maintained after the C60 coating and the XPS analysis confirmed the presence of the carbon coating layer. The electrochemical characteristics of C60 coated Si NWs as anode materials were examined by charge-discharge tests and electrochemical impedance measurements. With the C60 film coating, Si NW electrodes exhibited a higher initial coulombic efficiency of 77% and a higher specific capacity of 2020 mA h g(-1) after the 30th cycle at a current density of 100 microA cm(-2) with cut-off voltage between 0-1.5 V. These improved electrochemical characteristics are attributed to the presence of the C60 coating layer which suppresses side reaction with the electrolyte and maintains the structural integrity of the Si NW electrodes during cycle tests.
Monodisperse ferrous phosphate colloids in an anoxic groundwater plume
Gschwend, Philip M.; Reynolds, Matthew D.
1987-01-01
Groundwater samples collected near a secondary-sewage infiltration site on Cape Cod, Massachusetts were examined for colloidal materials (10–1000 nm). In two wells the water contained a population of monodisperse 100-nm particles, detected using laser-light scattering and autocorrelation data processing. SEM and SEM-EDAX analysis of these colloidal materials collected on ultrafilters confirmed the laser light scattering result and revealed that these microparticles consisyed of primarily iron and phosphorus in a 1.86 Fe to 1.0 P stoichiometric ratio. Chemical analyses of the water samples, together with equilibrium solubility calculations, strongly suggest that the ion-activity product should exceed the solubility product of a 100-nm diameter predominantly vivianite-type (Fe3(PO4)2 · 8H2O) colloidal phase. In light of our results, we conclude that these microparticles were formed by sewage-derived phosphate combining with ferrous iron released from the aquifer solids, and that these colloids may be moving in the groundwater flow. Such a subsurface transport process could have major implications regarding the movement of particle-reactive pollutants traditionally viewed as non-mobile in groundwater.
Growth and characterization of single phase Cu{sub 2}O by thermal oxidation of thin copper films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Sumita; Sarma, J. V. N.; Gangopadhyay, Subhashis, E-mail: subhagan@yahoo.com
2016-04-13
We report a simple and efficient technique to form high quality single phase cuprous oxide films on glass substrate using thermal evaporation of thin copper films followed by controlled thermal oxidation in air ambient. Crystallographic analysis and oxide phase determination, as well as grain size distribution have been studied using X-ray diffraction (XRD) method, while scanning electron microscopy (SEM) has been utilized to investigate the surface morphology of the as grown oxide films. The formation of various copper oxide phases is found to be highly sensitive to the oxidation temperature and a crystalline, single phase cuprous oxide film can bemore » achieved for oxidation temperatures between 250°C to 320°C. Cu{sub 2}O film surface appeared in a faceted morphology in SEM imaging and a direct band gap of about 2.1 eV has been observed in UV-visible spectroscopy. X-ray photoelectron spectroscopy (XPS) confirmed a single oxide phase formation. Finally, a growth mechanism of the oxide film has also been discussed.« less
Using SEM Analysis on Ion-Milled Shale Surface to Determine Shale-Fracturing Fluid Interaction
NASA Astrophysics Data System (ADS)
Lu, J.; Mickler, P. J.; Nicot, J. P.
2014-12-01
It is important to document and assess shale-fluid interaction during hydraulic fracturing (HF) in order to understand its impact on flowback water chemistry and rock property. A series of autoclave experiments were conducted to react shale samples from major oil and gas shales with synthetic HF containing various additives. To better determine mineral dissolution and precipitation at the rock-fluid interface, ion-milling technique was applied to create extremely flat rock surfaces that were examined before and after the autoclave experiments using a scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS) detectors. This method is able to reveal a level of detail not observable on broken surface or mechanically polished surface. It allows direct comparison of the same mineral and organic matter particles before and after the reaction experiments. Minerals undergone dissolution and newly precipitated materials are readily determined by comparing to the exact locations before reaction. The dissolution porosity and the thickness of precipitates can be quantified by tracing and measuring the geometry of the pores and precipitates. Changes in porosity and permeability were confirmed by mercury intrusion capillary tests.
Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.
NASA Astrophysics Data System (ADS)
Du, Liangwei; Xian, Liang; Feng, Jia-Xun
2011-03-01
In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.
Lau, C K; Sim, K S; Tso, C P
2011-01-01
This article focuses on the localization of burn mark in MOSFET and the scanning electron microscope (SEM) inspection on the defect location. When a suspect abnormal topography is shown on the die surface, further methods to pin-point the defect location is necessary. Fault localization analysis becomes important because an abnormal spot on the chip surface may and may not have a defect underneath it. The chip surface topography can change due to the catastrophic damage occurred at layers under the chip surface, but it could also be due to inconsistency during metal deposition in the wafer fabrication process. Two localization techniques, liquid crystal thermography and emission microscopy, were performed to confirm that the abnormal topography spot is the actual defect location. The tiny burn mark was surfaced by performing a surface decoration at the defect location using hot hydrochloric acid. SEM imaging, which has the high magnification and three-dimensional capabilities, was used to capture the images of the burn mark. Copyright © 2011 Wiley Periodicals, Inc.
Preparation and biocompatibility study of in situ forming polymer implants in rat brains.
Nasongkla, Norased; Boongird, Atthaporn; Hongeng, Suradej; Manaspon, Chawan; Larbcharoensub, Noppadol
2012-02-01
We describe the development of polymer implants that were designed to solidify once injected into rat brains. These implants comprised of glycofurol and copolymers of D: ,L: -lactide (LA), ε-caprolactone and poly(ethylene glycol) (PLECs). Scanning electron microscopy (SEM) and gel permeation chromatography (GPC) showed that the extent of implant degradation was increased with LA: content in copolymers. SEM analysis revealed the formation of porosity on implant surface as the degradation proceeds. PLEC with 19.3% mole of LA: was chosen to inject in rat brains at the volume of 10, 25 and 40 μl. Body weights, hematological and histopathological data of rats treated with implants were evaluated on day 3, 6, 14, 30 and 45 after the injection. Polymer solution at the injection volume of 10 μl were tolerated relatively well compared to those of 25 and 40 μl as confirmed by higher body weight and healing action (fibrosis tissue) 30 days after treatment. The results from this study suggest a possible application as drug delivery systems that can bypass the blood brain barrier.
Influence of sodium fluoride on the synthesis of hydroxyapatite by gel method
NASA Astrophysics Data System (ADS)
Kanchana, P.; Sekar, C.
2010-03-01
Hydroxyapatite (HA) is a good candidate for bone substitutes due to its chemical and structural similarity to bone mineral. Hydroxyapatite has been grown by the gel method using sodium fluoride (NaF) as additive. The growth was carried out at room temperature under the physiological pH of 7.4. The addition of NaF has significantly reduced growth rate and the yield was much less when compared to pure system. The samples of pure and fluoride doped HA were sintered at 600, 900 and 1200 °C in ambient atmosphere. Scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FTIR) were adopted to investigate the influence of NaF on the morphology, crystallinity, stability and phase purity of HA. EDAX and FTIR studies confirm that the fluoride is doped into the hydroxyapatite. Powder XRD and TGA results suggested that the incorporation of fluorine into the HA matrix improves the phase formation and crystallinity. SEM studies show that the microstructural morphology of HA changes from the fibers for pure to granular structure for the fluoride doped.
NASA Astrophysics Data System (ADS)
Hossain, Md. Sohrab; Kabir, Humayun; Rahman, M. Mahbubur; Hasan, Kamrul; Bashar, Muhammad Shahriar; Rahman, Mashudur; Gafur, Md. Abdul; Islam, Shariful; Amri, Amun; Jiang, Zhong-Tao; Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z.
2017-01-01
In this article Cd-Zn sulphide thin films deposited onto soda lime glass substrates via chemical bath deposition (CBD) technique were investigated for photovoltaic applications. The synthesized films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet visible (UV-vis) spectroscopic methodologies. A higher degree of crystallinity of the films was attained with the increase of film thicknesses. SEM micrographs exhibited a partial crystalline structure with a particulate appearance surrounded by the amorphous grain boundaries. The optical absorbance and absorption coefficient of the films were also enhanced significantly with the increase in film thicknesses. Optical band-gap analysis indicated a monotonic decrease in direct and indirect band-gaps with the increase of thicknesses of the films. The presence of direct and indirect transitional energies due to the exponential falling edges of the absorption curves may either be due to the lack of long-range order or to the existence of defects in the films. The declination of the optical absorption edges was also confirmed via Urbach energy and steepness parameters studies.
Synthesis and Characterization of Titanium Dioxide Thin Film for Sensor Applications
NASA Astrophysics Data System (ADS)
Latha, H. K. E.; Lalithamba, H. S.
2018-03-01
Titanium oxide (TiO2) nanoparticles (metal oxide semiconductor) are successfully synthesized using hydrothermal method for sensor application. Titanium dioxide and Sodium hydroxide are used as precursors. These reactants are mixed and calcinated at 400 °C to produce TiO2 nanoparticles. The crystalline structure, morphology of synthesized TiO2 nanoparticles are studied using x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis and scanning electron microscopy (SEM). XRD results revealed that the prepared TiO2 sample is highly crystalline, having Anatase crystal structure. FT-IR spectra peak at 475 cm‑1 indicated characteristic absorption bands of TiO2 nanoparticles. The XRD and FTIR result confirmed the formation of high purity of TiO2 nanoparticles. The SEM image shows that TiO2 nanoparticles prepared in this study are spherical in shape. Synthesized TiO2 nanoparticles are deposited on glass substrate at room temperature using E beam evaporation method to determine gauge factor and found to be 4.7. The deposited TiO2 thin films offer tremendous potential in the applications of electronic and magneto–electric devices.
Deborah, M; Jawahar, A; Mathavan, T; Dhas, M Kumara; Benial, A Milton Franklin
2015-03-15
The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.
Microstructural Evolution of Secondary Phases in the Cast Duplex Stainless Steels CD3MN and CD3MWCuN
NASA Astrophysics Data System (ADS)
Kim, Yoon-Jun; Ugurlu, Ozan; Jiang, Chao; Gleeson, Brian; Chumbley, L. Scott
2007-02-01
The isothermal formation behavior of secondary phases in two types of duplex stainless steels (DSS), CD3MN and CD3MWCuN, was characterized. Samples were heat treated from 1 minute to 30 days at temperatures from 700°C to 900°C. Small carbide (M23C6) and nitride (Cr2N) precipitates, together with the intermetallic phases sigma and chi, were observed using scanning electron microscopy (SEM) and confirmed by transmission electron microscopy (TEM) analyses. Based on SEM analysis, time-temperature-transformation (TTT) curves for the sigma and chi phases were determined by measuring their volume fractions from backscattered electron micrographs of heat-treated and quenched sample cross sections. Resulting TTT curves showed that the maximum formation temperature for chi is lower than that for sigma, while the time to reach 1 vol pct formation is much less for sigma than it is for chi. The thermodynamic driving forces associated with the sigma and chi formation were assessed using Thermo-Calc.
NASA Astrophysics Data System (ADS)
Arie, A. A.; Hadisaputra, L.; Susanti, R. F.; Devianto, H.; Halim, M.; Enggar, R.; Lee, J. K.
2017-07-01
Synthesis of nanocarbon on snake fruit-peel’s activated carbon from waste cooking oil palm was conducted by a nebulized spray pyrolysis process (NSP) by varying the processing temperature from 650 to 750 °C. Ferrocene was used as a catalyst with constant concentration of 0.015 g/ml of carbon source. The structure of nanocarbon was studied by using scanning electron microscope (SEM),x-ray diffraction (XRD), surface area analyzer and Raman spectroscopy. SEM results showed that the structures of carbon products was in the the form of carbon nanopsheres (CNS). XRD and Raman analysis confirmed the CNS structure. The carbon producs were then tested as electrode’s materials for lithium ion capacitors (LIC) by cyclic voltammetry (CV) instruments. From the CV results the specific capacitance was estimated as 79.57 F / g at a scan rate of 0.1 mV / s and voltage range from 2.5 - 4 V. This study shows that the nano carbons synthesized from the waste cooking oil can be used as prospective electrode materials for LIC.
In Situ Characterization of Boehmite Particles in Water Using Liquid SEM.
Yao, Juan; Arey, Bruce W; Yang, Li; Zhang, Fei; Komorek, Rachel; Chun, Jaehun; Yu, Xiao-Ying
2017-09-27
In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid and control samples including deionized (DI) water only and an empty channel as well. Synthesized boehmite (AlOOH) particles suspended in liquid are used as a model in the liquid SEM illustration. The results demonstrate that the particles can be imaged in the SE mode with good resolution (i.e., 400 nm). The AlOOH EDX spectrum shows significant signal from the aluminum (Al) when compared with the DI water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical know-how in order to conduct liquid SEM imaging and EDX analysis using SALVI and to reduce potential pitfalls when using this approach.
Haapamäki, C; Seppänen, H; Udd, M; Juuti, A; Halttunen, J; Kiviluoto, T; Sirén, J; Mustonen, H; Kylänpää, L
2015-06-01
The rainage (PBD) prior to pancreaticoduodenectomy (PD) is controversial. If PBD is required, large bore self-expandable metallic stents (SEMS) are thought to maintain better drainage and have fewer postoperative complications than plastic stents. The confirming evidence is scarce. The aim of the study was to compare outcomes of surgery in patients who underwent PBD with SEMS or plastic stents deployed at endoscopic retrograde cholangiopancreatography (ERCP). This is a retrospective study of 366 patients having had PD during 2000-2009. Preceding endoscopic PBD was performed in 191 patients and nine had had percutaneous transhepatic drainage (PTD). At the time of operation, 163 patients had a plastic stent and 28 had SEMS. Due to stent exchanges, 176 plastic stents and 29 SEMS were placed in all. The stent failure rate was 7.4% for plastic stents and 3.4% for SEMS (p = 0.697). A bilirubin level under 50 µmol/L was reached by 80% of the patients with plastic stents and by 61% of the patients with SEMS (p = 0.058). A postoperative infection complication and/or a pancreatic fistula was found in 26% while using plastic stents and in 25% using SEMS (p = 1.000). In unstented patients with biliary obstruction, the bile juice was sterile significantly more often than in endoscopically stented patients (100% vs 1%, p < 0.001). When the stented and unstented patients were compared regarding postoperative infection complications, there was no significant difference between the groups (p = 0.365). Plastic stents did not differ from SEMS regarding the stent failure rate, bilirubin level decrease, amount of bacteria in the bile juice, or postoperative complications when used for PBD. The significantly higher price of SEMS suggests their use in selected cases only. © The Finnish Surgical Society 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baybas, Demet, E-mail: dbaybas@cumhuriyet.edu.tr; Ulusoy, Ulvi, E-mail: ulusoy@cumhuriyet.edu.tr
The composite of synthetically produced hydroxyapatite (HAP) and polyacrylamide was prepared (PAAm-HAP) and characterized by BET, FT-IR, TGA, XRD, SEM and PZC analysis. The adsorptive features of HAP and PAAm-HAP were compared for UO{sub 2}{sup 2+} and Th{sup 4+}. The entrapment of HAP into PAAm-HAP did not change the structure of HAP. Both structures had high affinity to the studied ions. The adsorption capacity of PAAm-HAP was than that of HAP. The adsorption dependence on pH and ionic intensity provided supportive evidences for the effect of complex formation on adsorption process. The adsorption kinetics was well compatible to pseudo secondmore » order model. The values of enthalpy and entropy changes were positive. Th{sup 4+} adsorption from the leachate obtained from a regional fluorite rock confirmed the selectivity of PAAm-HAP for this ion. In consequence, PAAm-HAP should be considered amongst favorite adsorbents for especially deposition of nuclear waste containing U and Th, and radionuclide at secular equilibrium with these elements. - Graphical abstract: SEM images of hydroxyapatite (HAP) and polyacrylamide-hydroxyapatite (PAAm-HAP), and the adsorption isotherms for Uranium and Thorium. Highlights: Black-Right-Pointing-Pointer Composite of PAAm-HAP was synthesized from hydroxyapatite and polyacrylamide. Black-Right-Pointing-Pointer The materials were characterized by BET, FT-IR, XRD, SEM, TGA and PZC analysis. Black-Right-Pointing-Pointer HAP and PAAm-HAP had high sorption capacity and very rapid uptake for UO{sub 2}{sup 2+} and Th{sup 4+}. Black-Right-Pointing-Pointer Super porous PAAm was obtained from PAAm-HAP after its removal of HAP content. Black-Right-Pointing-Pointer The composite is potential for deposition of U, Th and its associate radionuclides.« less
Hajji, Latifa; Boukir, Abdellatif; Assouik, Jamal; Lakhiari, Hamid; Kerbal, Abdelali; Doumenq, Pierre; Mille, Gilbert; De Carvalho, Maria Luisa
2015-02-05
The preservation of manuscripts and archive materials is a serious problem for librarians and restorers. Paper manuscript is subjected to numerous degradation factors affecting their conservation state. This research represents an attempt to evaluate the conservation restoration process applied in Moroccan libraries, especially the alkaline treatment for strengthening weakened paper. In this study, we focused on six samples of degraded and restored paper taken from three different Moroccan manuscripts aged 150, 200 and 800 years. In addition, the Japanese paper used in restoration has been characterized. A modern paper was also analyzed as reference. A three-step analytical methodology based on infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and scanning electron microscopy coupled to energy dispersive spectrometry (SEM-EDS) analysis was developed before and after restoration in order to determine the effect of the consolidation treatment on the paper structure. The results obtained by XRD and ATR-FTIR disclosed the presence of barium sulfate (BaSO4) in all restored paper manuscripts. The presence of calcium carbonate (CaCO3) in all considered samples was confirmed by FTIR spectroscopy. The application of de-acidification treatment causes significant changes connected with the increase of intensity mostly in the region 1426 cm(-1), assigned to the asymmetric and symmetric CO stretching mode of calcite, indicating the effectiveness of de-acidification procedure proved by the rise of the alkaline reserve content allowing the long term preservation of paper. Observations performed by SEM magnify the typical paper morphology and the structure of fibbers, highlighting the effect of the restoration process, manifested by the reduction of impurities. Copyright © 2014 Elsevier B.V. All rights reserved.
Preparation of SS316L MIM feedstock with biopolymer as a binder
NASA Astrophysics Data System (ADS)
Abdullah, A. A.; Norita, H.; Azlina, H. N.; Sulong, A. B.; Mas'ood, N. N.
2018-01-01
This paper focus on feedstock preparation for SS316L metal injection molding (MIM) part. The primary step of feedstock preparation, critical powder loading determined by two method; maximum filled volume calculation model and torque analysis. The critical powder loading determined by calculation was 70 vol% to 77 vol% while for experimental approaches shows the value of 75 vol%. The feedstock was prepared by mixing SS316L powder and polymer binder with ratio 70:30 at 175 °C with speed of 50 rpm. The feedstock was analyzed by thermogravimetric analysis (TGA) and Scanning electron microscope (SEM). The composition for the feedstock after preparation step was confirmed by TGA. It was found that the prepared feedstock component was compatible to each other and composition is maintain along the mixing step.
Mao, Hanping; Liu, Zhongshou
2018-01-15
In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe 3 O 4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N 2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gea, S.; Zulfahmi, Z.; Yunus, D.; Andriayani, A.; Hutapea, Y. A.
2018-03-01
Cellulose nanofibrils were obtained from oil palm empty fruit bunch using steam explosion and hydrolized with 10% solution of HCl. Steam explosion coupled with acid hydrolysis pretreatment on the oil palm empty fruit bunch was very effective in the depolymerization and defibrillation process of the fibre to produce fibers in nanodimension. Structural analysis of steam exploded fibers was determined by Fourier Transform Infrared (FT-IR) spectroscopy. Thermal stability of cellulose measured using image analysis software image J. Characterization of the fibers by TEM and SEM displayed that fiber diameter decreases with mechanical-chemical treatment and final nanofibril size was 20-30 nm. FT-IR and TGA data confirmed the removal of hemicellulose and lignin during the chemical treatment process.
Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent.
Srivastava, Shaili; Thakur, Indu Shekhar
2012-01-01
A bacterium isolated from soil and sediment ofa leather tanning mill's effluent was identified as Serratia sp. by the analysis of 16S rDNA. Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM) were used to assess morphological changes and confirm chromium biosorption in Serratia sp. both in a shake-flask culture containing chromium and in a tannery wastewater. The SEMEDX and the elemental analysis of the chromate-containing samples confirmed the binding of chromium with the bacterial biomass. The TEM exhibited chromium accumulation throughout the bacterial cell, with some granular deposits in the cell periphery and in the cytoplasm. X-ray diffraction analysis (XRD) was used to quantify the chromium and to determine the chemical nature of the metal-microbe interaction. The XRD data showed the crystalline character of the precipitates, which consisted of mainly calcium chromium oxide, chromium fluoride phosphate and related organo-Cr(III) complex crystals. The XRD data also revealed a strong involvement of cellular carboxyl and phosphate groups in chromium binding by the bacterial biomass. The results of the study indicated that a combined mechanism of ion-exchange, complexation, croprecipitation and immobilization was involved in the biosorption of chromium by bacterial cells in contaminated environments.
Using structural equation modeling for network meta-analysis.
Tu, Yu-Kang; Wu, Yun-Chun
2017-07-14
Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison. SEM provides a very flexible framework for univariate and multivariate meta-analysis, and its potential as a powerful tool for advanced meta-analysis is still to be explored.
The pollen complex from postglacial sediments of the Laptev Sea as a bioindicator
NASA Astrophysics Data System (ADS)
Naidina, O. D.
2014-05-01
The first results of comparison of palynological analysis (pollen of terrestrial plants), SEM analysis of pollen morphology, and radiocarbon age dating (AMS14C) of sediments of the eastern shelf of the Laptev Sea show that the diverse taxonomic composition of pollen spectra provides an integrated idea of the vegetation and climate of the region over 11.2 calendar kiloyears. It is found that phases of the tree and shrub vegetation development (maxima of pollen of Betula sect. Nanae and Pinus s/g Haploxylon) correspond to the warm epochs in the Holocene. It is obvious that birch phytocoenoses first settled in the southern tundra subzone with increasing temperature, and then coniferous communities of forest tundra. An occurrence of pollen of shrubby birches (Nanae) suggests compliance of permafrost landscapes with cold climate conditions, i.e., with an annual average temperature of -2°C and amount of precipitation of less than 500 mm. Owing to a progressive increase in summer temperatures, dwarf cedar and pine communities advanced toward the seashore. The SEM analysis results show that a significant proportion of regional coniferous pollen belongs to representatives of Pinus pumila (Pall.) and P. sylvestris L. In addition, the SEM study of the exine of Pinus sylvestris L. and P. pumila (Pall.) Regel pollen grains confirmed polymorphism in coniferous pollen. According to the inverse relationship between climate and vegetation, frequent climate fluctuations that are typical of progressive and differential postglacial transgression were revealed. An increase in arboreal pollen transfer onto the shelf later than 9.1 cal. ka coincides with the time of forest boundary migration to the north due to the warming of the Earth's climate. At that time, the tundra vegetation was replaced by forest-tundra vegetation, the maximum stage of sea transgression began, and there appeared a trend of increasing temperature and moisture.
Electrical transport properties of LiNiV O ceramics
NASA Astrophysics Data System (ADS)
Ram, Moti
2009-08-01
The LiNiV O 4 fine powder has been synthesized by chemical "pyrophoric reaction process". The formation of LiNiV O 4 is confirmed by X-ray diffraction analysis. X-ray analysis shows that the compound has cubic crystal structure with lattice constant ( a=8.2243(2) Å). Microstructure of the sintered pellet is identified by taking the field emission scanning electron microscopy (FE-SEM) pictures, which reveals the grain size as ˜0.2-2 μm. Electrical properties are measured using complex impedance spectroscopy technique. Bulk contribution to electrical response is identified by the analysis of complex plane diagrams. The activation energy calculated from σ vs 10 3/T graph is ˜0.06 eV (25-225 ∘C) and ˜0.55 eV (225-375 ∘C). Complex modulus study shows non-Debye type (polydispersive) conductivity relaxation in the compound.
Optimization of SEM-EDS to determine the C–A–S–H composition in matured cement paste samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossen, J.E., E-mail: john.rossen@alumni.epfl.ch
Microanalysis of characteristic X-rays in the SEM is a powerful method to assess the chemical composition of phases in cement pastes, in particular the calcium silicate hydrate containing aluminium (C–A–S–H). Nevertheless, many variables may influence the results obtained, due mainly to the intimate mixing of C–A–S–H with other hydrate phases and the susceptibility of this phase to damage by the electron beam. In this study the effect of various acquisition parameters was examined, along with methods to determine an “average” C–A–S–H composition. The results acquired in the SEM were compared with the analysis of the same samples in the TEM,more » where phases can be analyzed without intermixing. A simple method was used to obtain compositions from SEM based analysis that are very close to those which can be obtained in the TEM. - Highlights: •The intermixing of phases is the limiting factor in the analysis of C–A–S–H composition by SEM-EDS •Guidelines to limit beam damage and properly analyze C–A–S–H composition by SEM-EDS are given •SEM-EDS and TEM-EDS give similar results when proper data treatment is made.« less
Kulshrestha, Neha; Misra, Abhishek; Hazra, Kiran Shankar; Roy, Soumyendu; Bajpai, Reeti; Mohapatra, Dipti Ranjan; Misra, D S
2011-03-22
We report the healing of electrically broken multiwalled carbon nanotubes (MWNTs) using very low energy electrons (3-10 keV) in scanning electron microscopy (SEM). Current-induced breakdown caused by Joule heating has been achieved by applying suitably high voltages. The broken tubes were examined and exposed to electrons of 3-10 keV in situ in SEM with careful maneuvering of the electron beam at the broken site, which results in the mechanical joining of the tube. Electrical recovery of the same tube has been confirmed by performing the current-voltage measurements after joining. This easy approach is directly applicable for the repairing of carbon nanotubes incorporated in ready devices, such as in on-chip horizontal interconnects or on-tip probing applications, such as in scanning tunneling microscopy.
Nondestructive SEM for surface and subsurface wafer imaging
NASA Technical Reports Server (NTRS)
Propst, Roy H.; Bagnell, C. Robert; Cole, Edward I., Jr.; Davies, Brian G.; Dibianca, Frank A.; Johnson, Darryl G.; Oxford, William V.; Smith, Craig A.
1987-01-01
The scanning electron microscope (SEM) is considered as a tool for both failure analysis as well as device characterization. A survey is made of various operational SEM modes and their applicability to image processing methods on semiconductor devices.
Narayanan, Divya P; Cherikallinmel, Sudha Kochiyil; Sankaran, Sugunan; Narayanan, Binitha N
2018-06-15
A one pot synthesis of carbon dot incorporated porous coconut shell char derived sulphonated catalyst is reported here for the first time and is effectively used in the multicomponent synthesis of amidoalkyl naphthol. Macroporous nature of the char is revealed from scanning electron microscopic (SEM) analysis, whereas the dispersion of carbon dots (CDs) on the porous coconut shell char is confirmed from the high resolution transmission electron microscopic (HRTEM) analysis. Fluorescence emission spectrum further confirmed the presence of CDs in the catalyst. Fourier-transform infrared (FTIR) spectral analysis of the materials indicated that sulphonation occurred both to the CD and to the porous char. X-ray photo electron spectroscopic (XPS) analysis of the most active catalyst confirmed the presence of both sulphonic acid and carboxylic acid groups in the catalyst. The coconut shell char derived materials prepared by varying the amount of H 2 SO 4 are successfully utilized as efficient alternative green catalysts for the multicomponent reaction, where excellent activity in amidoalkyl naphthol synthesis is obtained within short periods under solvent free reaction conditions. A maximum yield of 98% is obtained in the synthesis of N-[Phenyl-(2-hydroxy-naphthalen-1-yl)-methyl]-benzamide, the representative amidoalkyl naphthol, with the best catalyst within 3 min of reaction. The catalyst is highly active for the reactions carried out with varieties of aldehydes and amides with a product yield in the range of 88-98%. The best catalyst system retained more than 90% of its initial activity even upto 6 th repeated run. Copyright © 2018 Elsevier Inc. All rights reserved.
Oral mucosa tissue response to titanium cover screws.
Olmedo, Daniel G; Paparella, María L; Spielberg, Martín; Brandizzi, Daniel; Guglielmotti, María B; Cabrini, Rómulo L
2012-08-01
Titanium is the most widely used metal in dental implantology. The release of particles from metal structures into the biologic milieu may be the result of electrochemical processes (corrosion) and/or mechanical disruption during insertion, abutment connection, or removal of failing implants. The aim of the present study is to evaluate tissue response of human oral mucosa adjacent to titanium cover screws. One hundred fifty-three biopsies of the supra-implant oral mucosa adjacent to the cover screw of submerged dental implants were analyzed. Histologic studies were performed to analyze epithelial and connective tissue as well as the presence of metal particles, which were identified using microchemical analysis. Langerhans cells, macrophages, and T lymphocytes were studied using immunohistochemical techniques. The surface of the cover screws was evaluated by scanning electron microscopy (SEM). Forty-one percent of mucosa biopsies exhibited metal particles in different layers of the section thickness. Particle number and size varied greatly among specimens. Immunohistochemical study confirmed the presence of macrophages and T lymphocytes associated with the metal particles. Microchemical analysis revealed the presence of titanium in the particles. On SEM analysis, the surface of the screws exhibited depressions and irregularities. The biologic effects seen in the mucosa in contact with the cover screws might be associated with the presence of titanium or other elements, such as aluminum or vanadium. The potential long-term biologic effects of particles on soft tissues adjacent to metallic devices should be further investigated because these effects might affect the clinical outcome of the implant.
NASA Astrophysics Data System (ADS)
Hamadanian, M.; Reisi-Vanani, A.; Majedi, A.
2010-01-01
A novel copper and sulfur codoped TiO 2 photocatalyst was synthesized by modified sol-gel method using titanium(IV) isopropoxide, CuCl 2·2H 2O and thiourea as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM-EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. The XRD results showed undoped and Cu,S-codoped TiO 2 nanoparticles only include anatase phase. Effect of calcination temperature showed rutile phase appears in 650 and 700 °C for undoped and 0.1% Cu,S-codoped TiO 2, respectively. The SEM analysis revealed the doping of Cu and S does not leave any change in morphology of the catalyst surface. The increase of copper doping enhanced "red-shift" in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO 2 grains. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalysts with 0.05% Cu,0.05% S and 0.1% Cu,0.05% S were higher than that of other catalysts under ultraviolet (UV) and visible irradiation, respectively. Because of synergetic effect of S and Cu, the Cu,S-codoped TiO 2 catalyst has higher activity than undoped and Cu or S doped TiO 2 catalysts.
Wang, Shengliu; Yue, Kai; Liu, Lianying; Yang, Wantai
2013-01-01
When dispersion polymerization of styrene (St) had run for 3h, after particle rapidly growing stage, 4,4'-dimethacryloyloxybenzophenone (DMABP) cross-linker was added to reaction system and photoreactive, core(PSt)-shell(Poly(St-co-DMABP)) particles with rich benzophenone (BP) groups on surface were prepared. Polymerization of DMABP could occurred mainly on the preformed core of PSt because its diffusion could be impeded by (1) compactness of particles formed at the moment of cross-linker addition (more than 80% of monomer had been consumed, particles were no longer fully swollen by monomer), (2) reduced polarity of continuous phase, and (3) immediate occurrence of cross-linking. Subsequently, photoreactive, cross-linked hollow particles were yielded by removal of uncross-linked core in THF. SEM and TEM observation demonstrated the formation of core-shell structure and improvement of shell thickness when DMABP content increased. UV-vis spectra analysis on polymer dissolved in THF indicated that there is no polymer of DMABP in core. FTIR spectra analysis and XPS measurement further revealed that BP component on particle surface was enriched when amount of DMABP increased. Finally, an anti-fouling polymer (poly (ethylene glycol), PEG) and protein of mouse IgG was immobilized on particle surface under UV irradiation, as confirmed by FTIR spectra analysis, SEM observation and TMB color reaction. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Barbosa, Alynne da Silva; Barbosa, Helene Santos; Souza, Sandra Maria de Oliveira; Dib, Laís Verdan; Uchôa, Claudia Maria Antunes; Bastos, Otilio Machado Pereira; Amendoeira, Maria Regina Reis
2018-06-26
Balantioides coli is a ciliated protozoon that inhabits the intestine of pigs, non-human primates and humans. Light microscopy studies have described over 50 species of the genus Balantioides but their validity is in doubt. Due to the limited information about this genus, this study is aimed to identify morphological characteristics of Balantioides coli isolated using fluorescence microscopy and both scanning (SEM) and transmission electron microscopy (TEM). Trophozoites isolated from the feces of pig and macaque were washed and subjected to centrifugation. These cells were fixed with paraformaldehyde for immunofluorescence. Other aliquots of these trophozoites were fixed with glutaraldehyde, post fixed with osmium tetroxide and processed for SEM and TEM. Immunofluorescence studies revealed microtubules with a longitudinal distribution to the main axis of the parasite and in the constitution of cilia. SEM demonstrated a high concentration of cilia covering the oral apparatus and a poor presence of such structures in cytopyge. TEM revealed in the plasma membrane, several associated structures were observed to delineate the cellular cortex and mucocysts. The cytoskeleton of the oral region was observed in detail and had an organization pattern consisting of microtubules, which formed files and nematodesmal networks. Organelles such as hydrogenosomes like and peroxisomes were observed close to the cortex. Macronuclei were observed, but structures that were consistent with micronuclei were not identified. Ultrastructural morphological analysis of isolates confirms its similarity to Balantioides coli. In this study were identified structures that had not yet been described, such as hydrogenosomes like and cytoskeletal structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Sungchul; Meral, Cagla; Department of Civil Engineering, Middle East Technical University, 06800 Ankara
2014-05-01
The present study focuses on identification and micro-structural characterization of the hydration products formed in high-volume fly ash (HVFA)/portland cement (PC) systems using monochromatic scanning x-ray micro-diffraction (μ-SXRD) and SEM-EDS. Pastes with up to 80% fly ash replacement were studied. Phase maps for HVFA samples using μ-SXRD patterns prove that μ-SXRD is an effective method to identify and visualize the distribution of phases in the matrix. μ-SXRD and SEM-EDS analysis shows that the C-S-H formed in HVFA system containing 50% or more of fly ash has a similar structure as C-S-H(I) with comparatively lower Ca/Si ratio than the one producedmore » in PC system. Moreover, coexistence of C-S-H(I) and strätlingite is observed in the system containing 80% of fly ash, confirming that the amount of alumina and silicate phases provided by the fly ash is a major factor for the formation of C-S-H(I) and strätlingite in HVFA system. - Highlights: • High-volume fly ash (HVFA) paste was studied by scanning x-ray micro-diffraction. • Coexistence of C-S-H(I) and strätlingite in the HVFA system is clearly shown. • The distribution of minor phases in the HVFA system is shown. • Differences between inner and outer products of fly ash are observed by SEM-EDS.« less
Graft union formation in artichoke grafting onto wild and cultivated cardoon: an anatomical study.
Trinchera, Alessandra; Pandozy, Gianmarco; Rinaldi, Simona; Crinò, Paola; Temperini, Olindo; Rea, Elvira
2013-12-15
In order to develop a non-chemical method such as grafting effective against well-known artichoke soil borne diseases, an anatomical study of union formation in artichoke grafted onto selected wild and cultivated cardoon rootstocks, both resistant to Verticillium wilt, was performed. The cardoon accessions Belgio (cultivated cardoon) and Sardo (wild cardoon) were selected as rootstocks for grafting combinations with the artichoke cv. Romolo. Grafting experiments were carried out in the autumn and spring. The anatomical investigation of grafting union formation was conducted by scanning electron microscopy (SEM) on the grafting portions at the 3rd, 6th, 10th, 12th day after grafting. For the autumn experiment only, SEM analysis was also performed at 30 d after grafting. A high affinity between artichoke scion and cardoon rootstocks was observed, with some genotype differences in healing time between the two bionts. SEM images of scion/rootstock longitudinal sections revealed the appearance of many interconnecting structures between the two grafting components just 3d after grafting, followed by a vascular rearrangement and a callus development during graft union formation. De novo formation of many plasmodesmata between scion and rootstock confirmed their high compatibility, particularly in the globe artichoke/wild cardoon combination. Moreover, the duration of the early-stage grafting process could be influenced not only by the scion/rootstock compatibility, but also by the seasonal conditions, being favored by lower temperatures and a reduced light/dark photoperiod. Copyright © 2013 Elsevier GmbH. All rights reserved.
FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.
Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E
2012-01-10
Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.
Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles
Elavazhagan, Tamizhamudu; Arunachalam, Kantha D
2011-01-01
We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878
Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.
Elavazhagan, Tamizhamudu; Arunachalam, Kantha D
2011-01-01
We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.
Cellulose-silica/gold nanomaterials for electronic applications.
Kim, Gwang-Hoon; Ramesh, Sivalingam; Kim, Joo-Hyung; Jung, Dongsoo; Kim, Heung Soo
2014-10-01
Cellulose and one dimensional nano-material composite has been investigated for various industrial applications due to their optical, mechanical and electrical properties. In present investigation, cellulose/silica and silica-gold hybrid biomaterials were prepared by sol-gel covalent cross-linking process. The tetraethoxysiliane (TEOS) and gold precursors and γ-aminopropyltriethoxysilane (γ-APTES) as coupling agent were used for sol-gel cross-linking process. The chemical and morphological properties of cellulose/silica and cellulose/silica-gold nano-materials via covalent cross-linking hybrids were confirmed by FTIR, XRD, SEM, and TEM analysis. In the sol-gel process, the inorganic particles were dispersed in the cellulose host matrix at the nanometer scale, bonding to the cellulose through the covalent bonds.
A Green Protocol for Synthesis of MAl2O4, [M=Cu and Co] Spinels Under Microwave Irradiation Method
NASA Astrophysics Data System (ADS)
Yuvasravana, R.; George, P. P.
Nanosized metal aluminates MAl2O4, [M=Cu and Co] are synthesized from their nitrates solution by using pomegranate peel extract as fuel in microwave combustion. MAl2O4 [M=Cu and Co] nanoparticles are grown in microwave assisted synthesis followed by annealing at 700∘C. The nanoparticles have been characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-VIS spectroscopy and photoluminescence (PL) spectroscopy. The PXRD analysis has confirmed their spinel composition. The green protocol and microwave combustion route for spinel synthesis are rapid, simple, without any hazardous chemicals as reducing or stabilizing agents and economical.
ZnO nanoparticles based fiber optic gas sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narasimman, S.; Sivacoumar, R.; Alex, Z. C.
In this work, ZnO nanoparticles were synthesized by simple aqueous chemical route method. The synthesized ZnO nanoparticles were characterized by X-ray diffraction and scanning electron microscope. The sensitivity of the nanoparticles was studied for different gases like acetone, ammonia and ethanol in terms of variation in spectral light intensity. The XRD and SEM analysis confirms the formation of hexagonal wurtzite structure with the grain size of 11.2 nm. The small cladding region of the optical fiber was replaced with the synthesized nanoparticles. The light spectrum was recorded for different gas concentrations. The synthesized nanoparticles showed high sensitivity towards ammonia in lowmore » ppm level and acetone in high ppm level.« less
Heat resistant alloys as interconnect materials of reduced temperature SOFCs
NASA Astrophysics Data System (ADS)
Jian, Li; Jian, Pu; Guangyuan, Xie; Shunxu, Wang; Jianzhong, Xiao
Heat-resistant alloys, Haynes 230 and SS310, were exposed to air and humidified H 2 at 750 °C for up to 1000 h, respectively, simulating the environments in reduced temperature solid oxide fuel cells (SOFCs). The oxidized samples were characterized by using SEM, EDS and X-ray diffraction to obtain the morphology, thickness, composition and crystal structure of the oxide scales. A mechanism for the formation of metallic Ni-rich nodules on top of the oxide scale in Haynes 230 sample oxidized in humidified H 2 was established. Thermodynamic analysis confirmed that MnCr 2O 4 is the favored spinel phase, together with Cr 2O 3, in the oxide scales.
NASA Astrophysics Data System (ADS)
Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng; Zhao, Junfeng; Zhang, Yao; Sun, Yue; Chen, JianHua; Wang, XuHong
2014-09-01
Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH- in the HAP lattice were gradually substituted with the increase of F- and Cl- content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.
Using multiple group modeling to test moderators in meta-analysis.
Schoemann, Alexander M
2016-12-01
Meta-analysis is a popular and flexible analysis that can be fit in many modeling frameworks. Two methods of fitting meta-analyses that are growing in popularity are structural equation modeling (SEM) and multilevel modeling (MLM). By using SEM or MLM to fit a meta-analysis researchers have access to powerful techniques associated with SEM and MLM. This paper details how to use one such technique, multiple group analysis, to test categorical moderators in meta-analysis. In a multiple group meta-analysis a model is fit to each level of the moderator simultaneously. By constraining parameters across groups any model parameter can be tested for equality. Using multiple groups to test for moderators is especially relevant in random-effects meta-analysis where both the mean and the between studies variance of the effect size may be compared across groups. A simulation study and the analysis of a real data set are used to illustrate multiple group modeling with both SEM and MLM. Issues related to multiple group meta-analysis and future directions for research are discussed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Mehta, Prina; Al-Kinani, Ali A; Arshad, Muhammad Sohail; Chang, Ming-Wei; Alany, Raid G; Ahmad, Zeeshan
2017-10-30
Despite exponential growth in research relating to sustained and controlled ocular drug delivery, anatomical and chemical barriers of the eye still pose formulation challenges. Nanotechnology integration into the pharmaceutical industry has aided efforts in potential ocular drug device development. Here, the integration and in vitro effect of four different permeation enhancers (PEs) on the release of anti-glaucoma drug timolol maleate (TM) from polymeric nanofiber formulations is explored. Electrohydrodynamic (EHD) engineering, more specifically electrospinning, was used to engineer nanofibers (NFs) which coated the exterior of contact lenses. Parameters used for engineering included flow rates ranging from 8 to 15μL/min and a novel EHD deposition system was used; capable of hosting four lenses, masked template and a ground electrode to direct charged atomised structures. SEM analysis of the electrospun structures confirmed the presence of smooth nano-fibers; whilst thermal analysis confirmed the stability of all formulations. In vitro release studies demonstrated a triphasic release; initial burst release with two subsequent sustained release phases with most of the drug being released after 24h (86.7%) Biological evaluation studies confirmed the tolerability of all formulations tested with release kinetics modelling results showing drug release was via quasi-Fickian or Fickian diffusion. There were evident differences (p<0.05) in TM release dependant on permeation enhancer. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors
NASA Astrophysics Data System (ADS)
Ferreira, C. S.; Passos, R. R.; Pocrifka, L. A.
2014-12-01
The present study reports the synthesis and morphological, structural and electrochemical characterization of ternary oxides mixture containing nickel, cobalt and tin. The ternary oxide is synthesized by Pechini method with subsequent deposition onto a titanium substrate in a thin-film form. XRD and EDS analysis confirm the formation of ternary film with amorphous nature. SEM analysis show that cracks on the film favor the gain of the surface area that is an interesting feature for electrochemical capacitors. The ternary film is investigated in KOH electrolyte solution using cyclic voltammetry and charge-discharge study with a specific capacitance of 328 F g-1, and a capacitance retention of 86% over 600 cycles. The values of specific power and specific energy was 345.7 W kg-1 and 18.92 Wh kg-1, respectively.
NASA Astrophysics Data System (ADS)
Sadeghi, Babak; Rostami, Amir; Momeni, S. S.
2015-01-01
In the present work, we describe the synthesis of silver nanoparticles (Ag-NPs) using seed aqueous extract of Pistacia atlantica (PA) and its antibacterial activity. UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infra red spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray energy dispersive spectrophotometer (EDAX) were performed to ascertain the formation of Ag-NPs. It was observed that the growths of Ag-NPs are stopped within 35 min of reaction time. The synthesized Ag-NPs were characterized by a peak at 446 nm in the UV-visible spectrum. XRD confirmed the crystalline nature of the nanoparticles of 27 nm size. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) Bragg's reflections of cubic structure of metallic silver, respectively. The FTIR result clearly showed that the extracts containing OH as a functional group act in capping the nanoparticles synthesis. Antibacterial activities of Ag-NPs were tested against the growth of Gram-positive (S. aureus) using SEM. The inhibition was observed in the Ag-NPs against S. aureus. The results suggest that the synthesized Ag-NPs act as an effective antibacterial agent. It is confirmed that Ag-NPs are capable of rendering high antibacterial efficacy and hence has a great potential in the preparation of used drugs against bacterial diseases. The scanning electron microscopy (SEM), indicated that, the most strains of S. aureus was damaged and extensively disappeared by addition of Ag-NPs. The results confirmed that the (PA) is a very good eco friendly and nontoxic source for the synthesis of Ag-NPs as compared to the conventional chemical/physical methods.
Sadeghi, Babak; Rostami, Amir; Momeni, S S
2015-01-05
In the present work, we describe the synthesis of silver nanoparticles (Ag-NPs) using seed aqueous extract of Pistacia atlantica (PA) and its antibacterial activity. UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infra red spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray energy dispersive spectrophotometer (EDAX) were performed to ascertain the formation of Ag-NPs. It was observed that the growths of Ag-NPs are stopped within 35 min of reaction time. The synthesized Ag-NPs were characterized by a peak at 446 nm in the UV-visible spectrum. XRD confirmed the crystalline nature of the nanoparticles of 27 nm size. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (111), (200), (220) and (311) Bragg's reflections of cubic structure of metallic silver, respectively. The FTIR result clearly showed that the extracts containing OH as a functional group act in capping the nanoparticles synthesis. Antibacterial activities of Ag-NPs were tested against the growth of Gram-positive (S. aureus) using SEM. The inhibition was observed in the Ag-NPs against S. aureus. The results suggest that the synthesized Ag-NPs act as an effective antibacterial agent. It is confirmed that Ag-NPs are capable of rendering high antibacterial efficacy and hence has a great potential in the preparation of used drugs against bacterial diseases. The scanning electron microscopy (SEM), indicated that, the most strains of S. aureus was damaged and extensively disappeared by addition of Ag-NPs. The results confirmed that the (PA) is a very good eco friendly and nontoxic source for the synthesis of Ag-NPs as compared to the conventional chemical/physical methods. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Trejos, Tatiana; Corzo, Ruthmara; Subedi, Kiran; Almirall, José
2014-02-01
Detection and sourcing of counterfeit currency, examination of counterfeit security documents and determination of authenticity of medical records are examples of common forensic document investigations. In these cases, the physical and chemical composition of the ink entries can provide important information for the assessment of the authenticity of the document or for making inferences about common source. Previous results reported by our group have demonstrated that elemental analysis, using either Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) or Laser Ablation Induced Breakdown Spectroscopy (LIBS), provides an effective, practical and robust technique for the discrimination of document substrates and writing inks with minimal damage to the document. In this study, laser-based methods and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) methods were developed, optimized and validated for the forensic analysis of more complex inks such as toners and inkjets, to determine if their elemental composition can differentiate documents printed from different sources and to associate documents that originated from the same printing source. Comparison of the performance of each of these methods is presented, including the analytical figures of merit, discrimination capability and error rates. Different calibration strategies resulting in semi-quantitative and qualitative analysis, comparison methods (match criteria) and data analysis and interpretation tools were also developed. A total of 27 black laser toners originating from different manufacturing sources and/or batches were examined to evaluate the discrimination capability of each method. The results suggest that SEM-EDS offers relatively poor discrimination capability for this set (~ 70.7% discrimination of all the possible comparison pairs or a 29.3% type II error rate). Nonetheless, SEM-EDS can still be used as a complementary method of analysis since it has the advantage of being non-destructive to the sample in addition to providing imaging capabilities to further characterize toner samples by their particle morphology. Laser sampling methods resulted in an improvement of the discrimination between different sources with LIBS producing 89% discrimination and LA-ICP-MS resulting in 100% discrimination. In addition, a set of 21 black inkjet samples was examined by each method. The results show that SEM-EDS is not appropriate for inkjet examinations since their elemental composition is typically below the detection capabilities with only sulfur detected in this set, providing only 47.4% discrimination between possible comparison pairs. Laser sampling methods were shown to provide discrimination greater than 94% for this same inkjet set with false exclusion and false inclusion rates lower than 4.1% and 5.7%, for LA-ICP-MS and LIBS respectively. Overall these results confirmed the utility of the examination of printed documents by laser-based micro-spectrochemical methods. SEM-EDS analysis of toners produced a limited utility for discrimination within sources but was not an effective tool for inkjet ink discrimination. Both LA-ICP-MS and LIBS can be used in forensic laboratories to chemically characterize inks on documents and to complement the information obtained by conventional methods and enhance their evidential value.
Bhat, Sumrita; Tripathi, Anuj; Kumar, Ashok
2011-01-01
The study focuses on the synthesis of a novel polymeric scaffold having good porosity and mechanical characteristics synthesized by using natural polymers and their optimization for application in cartilage tissue engineering. The scaffolds were synthesized via cryogelation technology using an optimized ratio of the polymer solutions (chitosan, agarose and gelatin) and cross-linker followed by the incubation at sub-zero temperature (−12°C). Microstructure examination of the chitosan–agarose–gelatine (CAG) cryogels was done using scanning electron microscopy (SEM) and fluorescent microscopy. Mechanical analysis, such as the unconfined compression test, demonstrated that cryogels with varying chitosan concentrations, i.e. 0.5–1% have a high compression modulus. In addition, fatigue tests revealed that scaffolds are suitable for bioreactor studies where gels are subjected to continuous cyclic strain. In order to confirm the stability, cryogels were subjected to high frequency (5 Hz) with 30 per cent compression of their original length up to 1 × 105 cycles, gels did not show any significant changes in their mass and dimensions during the experiment. These cryogels have exhibited degradation capacity under aseptic conditions. CAG cryogels showed good cell adhesion of primary goat chondrocytes examined by SEM. Cytotoxicity of the material was checked by MTT assay and results confirmed the biocompatibility of the material. In vivo biocompatibility of the scaffolds was checked by the implantation of the scaffolds in laboratory animals. These results suggest the potential of CAG cryogels as a good three-dimensional scaffold for cartilage tissue engineering. PMID:20943683
NASA Astrophysics Data System (ADS)
Pakizeh, Esmaeil; Moradi, Mahmood
2018-03-01
Ferroelectric Pb(ZrTi)O3 (PZT) nanotubes were prepared by sol-gel method and porous anodic alumina (PAA) membrane using spin-coating technique. This method is based on filling-pyrolysis-filling process and the use of one-stage alumina membranes. One of the advantages of this method is its rapidity, which takes only 1 h time before the calcination step. The effect of repeated pores filling was investigated to get the required size of nanotubes. The field emission scanning electron microscope (FE-SEM) images were shown that the PZT nanotubes have inner diameters in the range of 65-90 nm and length of about 50-60 μm. This means that the samples have a significant aspect ratio (700-800). Also the FE-SEM image confirmed that the highly ordered, hexagonally distributed PAA membranes with the pore diameter about 140-150 nm were formed. The X-ray diffraction (XRD) results showed that the PZT nanotubes have a tetragonal structure. The metal oxide bands like ZrO6 and TiO6 of the final PZT nanotubes were detected by Fourier transform infrared (FT-IR) analysis and confirmed the formation of perovskite structure. By using FT-IR spectroscopy and Kramers-Kronig transformation method, the optical constants like real 𝜀1(ω) and imaginary 𝜀2(ω) parts of dielectric function, extinction coefficient k(ω) and refractive index n(ω) were determined. It was shown that the optical constants of PZT nanotubes are different from PZT nanoparticles.
Development of functionalized hydroxyapatite/poly(vinyl alcohol) composites
NASA Astrophysics Data System (ADS)
Stipniece, Liga; Salma-Ancane, Kristine; Rjabovs, Vitalijs; Juhnevica, Inna; Turks, Maris; Narkevica, Inga; Berzina-Cimdina, Liga
2016-06-01
Based on the well-known pharmaceutical excipient potential of poly(vinyl alcohol) (PVA) and clinical success of hydroxyapatite (HAp), the objective of this work was to fabricate functionalized composite microgranules. PVA was modified with succinic anhydride to introduce carboxyl groups (-COOH), respectively, by reaction between the -OH groups of PVA and succinic anhydride, for attachment of drug molecules. For the first time, the functionalized composite microgranules containing HAp/PVA in the ratio of 1:1 were prepared through in situ precipitation of HAp in modified PVA aqueous solutions followed by spray drying of obtained suspensions. The microgranules were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry (DSC). The presence of -COOH groups was verified by FT-IR, and the amount of functional groups added to PVA molecules (averaging 15 mol%) was determined by nuclear magnetic resonance spectroscopy (NMR). DSC results showed that modification with -COOH groups slightly decreased the thermal stability of PVA. FT-IR and XRD analysis confirmed that the resulting composites contain mainly nanocrystalline HAp and PVA. Moreover, the images taken by FE-SEM revealed that the microgranules consisted of nanosized HAp crystallites homogenously embedded in the PVA matrix. DSC measurements indicated that decomposition mechanism of the HAp/PVA differs from that of pure PVA and occurs at lower temperatures. However, the presence of HAp had minor influence on the thermal decomposition of the PVA modified with succinic anhydride. The investigation of composite microgranules confirmed interaction and integration between the HAp and PVA.
Mobin, Mohammad; Rizvi, Marziya
2016-01-20
Natural polymer xanthan gum (XG) was investigated as eco friendly corrosion inhibitor for mild steel in 1M HCl at 30 °C, 40 °C, 50 °C and 60 °C, respectively. The inhibition studies were performed using gravimetric analysis, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), quantum chemical calculations, scanning electron microscopy (SEM), and UV-visible spectrophotometry. XG significantly reduces the corrosion rates of mild steel. The inhibition efficiency (IE) of the XG increased with increase in concentration, but decreased with temperature; the maximum IE of 74.24% was obtained at concentration of 1000 ppm at 30 °C. The inhibiting action of XG is synergistically enhanced on addition of very small amount of surfactants sodium dodecyl sulfate (SDS), cetyl pyridinium chloride (CPC) and Triton X-100 (TX). The effect of SDS is more pronounced than other surfactants. Potentiodynamic polarization studies confirm XG as a mixed type inhibitor. Results of weight loss measurements are in good agreement of the results of electrochemical measurements. The UV-visible spectroscopic results indicate the formation of complex between XG and Fe(2+) ions during corrosion reaction. Mechanism of inhibition was also investigated by calculating the thermodynamic and activation parameters like ΔG(0), Ea, ΔH and ΔS. The adsorption of inhibitor on mild steel surface obeys Langmuir adsorption isotherm. SEM micrographs show a clearly different morphology in presence of XG and XG-surfactant additives and confirmed the existence of an adsorbed protective film on the mild steel surface. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jasinski, J. J.; Fraczek, T.; Kurpaska, L.; Lubas, M.; Sitarz, M.
2018-07-01
The paper presents a structure of a nitrided layer formed with active screen plasma nitriding (ASPN) technique, which is a modification of plasma nitriding. The model investigated material was Fe Armco. The nitriding processes were carried out at 773 K for 6 h and 150 Pa. The main objective of this study was to confirm nitrogen migration effect and its influence on the nitride layer formation in different area of the layer interfaces (ε/ε+γ‧/γ‧). The results of the tests were evaluated using scanning electron microscopy (SEM, SEM/EBSD), transmission electron microscopy - electron energy loss spectroscopy (TEM-EFTEM), secondary ion mass spectroscopy (SIMS) and Wavelength Dispersive X-Ray Spectrometry (WDS). The analysis of the results suggests that the structures of the nitrided layers and nitrides morphology differ for various parameters and are dependent on the surface layer saturation mechanism for each of the temperatures and process parameters. New approaches in diffusion of nitrogen and carbon atoms and optimizing process were also analyzed. Nitrogen and also carbon transport in the sublayer was observed by several effects i.e. uphill diffusion effect which confirmed migration of the atoms in diffusive layer towards top surface (ε/ε+γ‧ interface) and stress change effect in the nitrogen saturation area of the (Fe(C,N)+γ‧) layer. Results showed in the paper might be used both for optimization of ASPN processes, modeling of nitrided layers formation mechanism and for controlling the nitrided layers morphology when nitriding different Fe based materials.
Alshehri, Saad M; Aldalbahi, Ali; Al-Hajji, Abdullah Baker; Chaudhary, Anis Ahmad; Panhuis, Marc In Het; Alhokbany, Norah; Ahamad, Tansir
2016-03-15
Silver nanoparticles (AgNPs) containing hydrogel composite were first synthesized by preparing a new hydrogel from carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and the cross-linker ethylene glycol diglycidyl ether (EGDE), followed by the incorporation of AgNPs by microwave radiation. The resulting neat hydrogels and AgNPs-hydrogel composites were characterized using spectral, thermal, microscopic analysis and X-ray diffraction (XRD) analyses. The SEM and TEM results demonstrated that the synthesized AgNPs were spherical with diameters ranging from 8 to 14nm. In addition, the XRD analysis confirmed the nanocrystalline phase of silver with face-centered cubic (FCC) crystal structure. Energy dispersive spectroscopy (EDS) analysis of the AgNPs confirmed the presence of an elemental silver signal, and no peaks of any other impurities were detected. Additionally, the antibacterial activities of the neat hydrogel and AgNPs-hydrogel composites were measured by Kirby-Bauer method against urinary tract infection (UTI) pathogens. The rheology measurement revealed that the values of storage modulus (G') were higher than that of loss modulus (G″). The AgNPs-hydrogel composites exhibited higher antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus and Proteus mirabilis compared to the corresponding neat hydrogel. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Raj, X. Joseph
2017-07-01
The effect of corrosion protection performance of epoxy coatings containing ZnO nanoparticle on mild steel in 3.5% NaCl solution was analyzed using scanning electrochemical microscopy and electrochemical impedance spectroscopy (EIS). Line profile and topographic image analysis were measured by applying -0.70 and +0.60 V as the tip potential for the cathodic and anodic reactions, respectively. The tip current at -0.70 V for the epoxy-coated sample with ZnO nanoparticles decreased rapidly, which is due to cathodic reduction in dissolved oxygen. The EIS measurements were taken in 3.5% NaCl after wet and dry cyclic corrosion test. The increase in the film resistance ( R f) and charge transfer resistance ( R ct) values was confirmed by the addition of ZnO nanoparticles in the epoxy coating. SEM/EDX analysis showed that complex oxide layer of zinc was enriched in corrosion products at a scratched area of the coated steel after corrosion testing. FIB-TEM analysis confirmed the presence of the nanoscale complex oxide layer of Zn in the rust of the steel that had a beneficial effect on the corrosion resistance of coated steel by forming protective corrosion products in the wet/dry cyclic test.
Gan, Sinyee; Zakaria, Sarani; Chia, Chin Hua; Kaco, Hatika; Padzil, Farah Nadia Mohammad
2014-06-15
Cellulose carbamate (CCs) was produced from kenaf core pulp (KCP) using microwave reactor-assisted method. The effects of urea concentration and reaction time on the formation of nitrogen content in CCs were investigated. The CCs' solubility in LiOH/urea system was determined and its membranes were characterized. As the urea content and reaction time increased, the nitrogen content form in CCs increased which enhanced the CCs' solubility. The formation of CCs was confirmed by Fourier transform infrared spectroscopy (FT-IR) and nitrogen content analysis. The CCs' morphology was examined using Scanning electron microscopy (SEM). The cellulose II and crystallinity index of the membranes were confirmed by X-ray diffraction (XRD). The pore size of the membrane displayed upward trend with respect to the urea content observed under Field emission scanning electron microscope (FESEM). This investigation provides a simple and efficient procedure of CCs determination which is useful in producing environmental friendly regenerated CCs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thombare, Nandkishore; Mishra, Sumit; Siddiqui, M Z; Jha, Usha; Singh, Deodhari; Mahajan, Gopal R
2018-04-01
The novel hydrogels were synthesized by grafting guar gum with acrylic acid and cross-linking with ethylene glycol di methacrylic acid (EGDMA). The synthesis of hydrogel was confirmed by characterization through 13 C NMR, FTIR spectroscopy, SEM micrography, thermo-gravimetric analysis and water absorption studies under different solutions. Synthesized hydrogel (GG-AA-EGDMA) was confirmed to be biodegradable with half-life period of 77 days through soil burial biodegradation studies. The effects of hydrogel treatment on soil were evaluated by studying various physico-chemical properties of soil like bulk density, porosity, water absorption and retention capacity etc. The hydrogel which could absorb up to 800 ml water per gram, after addition to soil, improved its porosity, moisture absorption and retention capacity significantly. Water holding capacity of water increased up to 54% of its original and porosity also increased up to 9% of its original. The synthesized hydrogel revealed tremendous potential as soil conditioning material for agricultural applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
C, Rajkumar; Srivastava, Rajneesh K.
2018-05-01
Zinc oxide (ZnO) nanoparticle has been synthesized by cost effective Co-precipitation method and studied its photo-response activity. The synthesized ZnO nanomaterial was characterized by using various analytical techniques such as x-ray diffraction (XRD), UV–visible spectroscopy, FTIR spectroscopy, photoluminescence (PL) spectroscopy, and Scanning Electron Microscopy (SEM). From the XRD results, it is confirmed that synthesized ZnO nanomaterial possess hexagonal wurtzite phase structure with an average crystallite size of ∼16–17 nm. The UV-Visible absorption spectrum shows that it has blue shift compared to their bulk counterparts. Photoluminescence spectra of ZnO nanoparticles have a strong violet band at 423 nm and three weak bands at 485 nm (blue), 506 nm (green), and 529 nm (green). The presence of hydroxyl group was confirmed by FTIR. The photo-response analysis was studied by the time-dependent rise and decay photocurrent of ZnO nanoparticle was tested in the air as well as vacuum medium.
NASA Astrophysics Data System (ADS)
Rastkerdar, E.; Aghajani, H.; Kianvash, A.; Sorrell, C. C.
2018-04-01
The application of a simple and effective technique, electro spark deposition (ESD), to create aluminum clad steel plate has been studied. AA5183 aluminum rods were used as the rotating electrode for cladding of the AISI 1018 steel. The microstructure of the interfacial zone including the intermetallic compounds (IMC) layer and the clad metal have been investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM and STEM). According to the results sound aluminum clad with thickness up to 25–30 μm can be achieved. Very thin (<4 μm) IMC layer was formed at the Al/Fe interface and the structural (electron diffraction pattern) and chemical analysis (STEM) conducted by TEM confirmed that the layer is constituted of Fe rich phases, both implying a much improved mechanical properties. Investigation of the orientations of phases at the interfacial zone confirmed absence of any preferred orientation.
Investigation of magnetic and structural properties of Ni-Zr co-doped M-type Sr-La hexaferrites
NASA Astrophysics Data System (ADS)
Yang, Yujie; Wang, Fanhou; Shao, Juxiang; Huang, Duohui; Tang, Jin; Rehman, Khalid Mehmood Ur
2018-02-01
In this research, Ni2+ and Zr4+ co-doped Sr-La hexaferrites Sr0.7La0.3Fe12.0-2 x (NiZr) x O19 (0.0 ≤ x ≤ 0.5) were synthesized by the standard ceramic method. The phase identification of the hexaferrites was confirmed by X-ray diffraction analysis. X-ray diffraction analysis showed that all the samples were in single phase M-type hexagonal structure and no impurity phase was observed. Lattice parameters ( c and a) increased with increasing NiZr content ( x) from 0.0 to 0.5. The morphology of the hexaferrites was analyzed by a field emission scanning electron microscopy (FE-SEM). FE-SEM micrographs showed that the grains exhibited hexagonal shape in a plate-like structure with clear grain boundaries. Magnetization properties of the hexaferrites were carried out at room temperature using a physical property measurement system-vibrating sample magnetometer. The values of saturation magnetization ( M s), remanent magnetization ( M r) and coercivity ( H c) were calculated from magnetic hysteresis ( M- H) loops. M s and H c decreased with increasing NiZr content ( x) from 0.0 to 0.5. M r and M r/ M s ratio first increased with increasing NiZr content ( x) from 0.0 to 0.1, and then decreased when NiZr content ( x) ≥ 0.1.
Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil
2016-12-01
Raillietina species are prevalent in domestic chickens ( Gallus gallus domesticus ) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus , and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus , and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand.
Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).
Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K
2009-05-01
Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies.
Modeling motor connectivity using TMS/PET and structural equation modeling
Laird, Angela R.; Robbins, Jacob M.; Li, Karl; Price, Larry R.; Cykowski, Matthew D.; Narayana, Shalini; Laird, Robert W.; Franklin, Crystal; Fox, Peter T.
2010-01-01
Structural equation modeling (SEM) was applied to positron emission tomographic (PET) images acquired during transcranial magnetic stimulation (TMS) of the primary motor cortex (M1hand). TMS was applied across a range of intensities, and responses both at the stimulation site and remotely connected brain regions covaried with stimulus intensity. Regions of interest (ROIs) were identified through an activation likelihood estimation (ALE) meta-analysis of TMS studies. That these ROIs represented the network engaged by motor planning and execution was confirmed by an ALE meta-analysis of finger movement studies. Rather than postulate connections in the form of an a priori model (confirmatory approach), effective connectivity models were developed using a model-generating strategy based on improving tentatively specified models. This strategy exploited the experimentally-imposed causal relations: (1) that response variations were caused by stimulation variations, (2) that stimulation was unidirectionally applied to the M1hand region, and (3) that remote effects must be caused, either directly or indirectly, by the M1hand excitation. The path model thus derived exhibited an exceptional level of goodness (χ2=22.150, df = 38, P = 0.981, TLI=1.0). The regions and connections derived were in good agreement with the known anatomy of the human and primate motor system. The model-generating SEM strategy thus proved highly effective and successfully identified a complex set of causal relationships of motor connectivity. PMID:18387823
Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil
2016-01-01
Raillietina species are prevalent in domestic chickens (Gallus gallus domesticus) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand. PMID:28095663
Slagers, Anton J; Reininga, Inge H F; van den Akker-Scheek, Inge
2017-02-01
The ACL-Return to Sport after Injury scale (ACL-RSI) measures athletes' emotions, confidence in performance, and risk appraisal in relation to return to sport after ACL reconstruction. Aim of this study was to study the validity and reliability of the Dutch version of the ACL-RSI (ACL-RSI (NL)). Total 150 patients, who were 3-16 months postoperative, completed the ACL-RSI(NL) and 5 other questionnaires regarding psychological readiness to return to sports, knee-specific physical functioning, kinesiophobia, and health-specific locus of control. Construct validity of the ACL-RSI(NL) was determined with factor analysis and by exploring 10 hypotheses regarding correlations between ACL-RSI(NL) and the other questionnaires. For test-retest reliability, 107 patients (5-16 months postoperative) completed the ACL-RSI(NL) again 2 weeks after the first administration. Cronbach's alpha, Intraclass Correlation Coefficient (ICC), SEM, and SDC, were calculated. Bland-Altman analysis was conducted to assess bias between test and retest. Nine hypotheses (90%) were confirmed, indicating good construct validity. The ACL-RSI(NL) showed good internal consistency (Cronbach's alpha 0.94) and test-retest reliability (ICC 0.93). SEM was 5.5 and SDC was 15. A significant bias of 3.2 points between test and retest was found. Therefore, the ACL-RSI(NL) can be used to investigate psychological factors relevant to returning to sport after ACL reconstruction.
Surface active gold nanoparticles biosynthesis by new approach for bionanocatalytic activity.
Vasantharaj, S; Sripriya, N; Shanmugavel, M; Manikandan, E; Gnanamani, A; Senthilkumar, P
2018-02-01
In the present day, nanotechnology is one of the most promising leading scientific and potentials areas in modern key technology development toward to the humankind. The synthesis of noble metal nanoparticles (NPs) is an expanding research area due to the possible applications for the development of bio-medical applications. Eco-friendly approach for the biosynthesis of gold nanoparticles (AuNPs) using the aqueous extract from Ruellia tuberosa and Phyllanthus acidus (leaf and twig) for the first time. Surface active AuNPs were characterized by UV-Vis spectroscopy, FTIR (Fourier transform infrared) spectroscopy, DSC (differential scanning colorimetry), DLS (dynamic light scattering) and environmental SEM (scanning electron microscope) analysis at room temperature (RT). Enhanced surface plasmon resonance (SPR) absorbance UV visible optical spectra were detected in the range of 552, 548, 558 and 536 nm. SEM and DLS (transmission mode) analysis confirmed the morphology of the nanoparticles to be spherical with the average size in the range of 88.37, 94.31, 82.23 and 81.36 nm. Further they have enhanced the enzyme activity on α-amylase, cellulase, and xylanase. The results suggest that the phyto-fabricated AuNPs from R. tuberosa and P. acidus is simple, less expensive, eco-friendly, green synthesis and also can be exploited for the potential future industrial and bio-medical applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Particle Morphology Analysis of Biomass Material Based on Improved Image Processing Method
Lu, Zhaolin
2017-01-01
Particle morphology, including size and shape, is an important factor that significantly influences the physical and chemical properties of biomass material. Based on image processing technology, a method was developed to process sample images, measure particle dimensions, and analyse the particle size and shape distributions of knife-milled wheat straw, which had been preclassified into five nominal size groups using mechanical sieving approach. Considering the great variation of particle size from micrometer to millimeter, the powders greater than 250 μm were photographed by a flatbed scanner without zoom function, and the others were photographed using a scanning electron microscopy (SEM) with high-image resolution. Actual imaging tests confirmed the excellent effect of backscattered electron (BSE) imaging mode of SEM. Particle aggregation is an important factor that affects the recognition accuracy of the image processing method. In sample preparation, the singulated arrangement and ultrasonic dispersion methods were used to separate powders into particles that were larger and smaller than the nominal size of 250 μm. In addition, an image segmentation algorithm based on particle geometrical information was proposed to recognise the finer clustered powders. Experimental results demonstrated that the improved image processing method was suitable to analyse the particle size and shape distributions of ground biomass materials and solve the size inconsistencies in sieving analysis. PMID:28298925
2012-01-01
Background CuO-TiO2 nanosheets (NSs), a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR) and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III) ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III) ion. The static adsorption capacity for Fe(III) was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites. PMID:23244218
Synthesis, characterization and photocatalysis enhancement of Eu2O3-ZnO mixed oxide nanoparticles
NASA Astrophysics Data System (ADS)
Mohamed, W. S.; Abu-Dief, Ahmed M.
2018-05-01
Pure ZnO nanoparticles (NPs) and mixed Eu2O3 and ZnO NPs with different Eu2O3 ratios (5%, 10%, and 15%) were synthesized by a precipitation method under optimum conditions. The synthesized samples were characterized by means of X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and UV-vis diffuse reflectance spectroscopy. The as-synthesized ZnO NPs exhibit high phase purity and a highly crystalline wurtzite ZnO structure. The mixed Eu2O3 and ZnO NPs exhibit a Eu2O3 zinc blend phase in addition to the wurtzite phase of pure ZnO, confirming the high purity and good crystallinity of the as-synthesized samples. The high-purity formation of ZnO and Eu2O3 phases was confirmed by FTIR and Raman spectra. Microstructural analysis by SEM and TEM confirmed the sphere-like morphology with different particle sizes (29-40 nm) of the as-synthesized samples. The photocatalytic activities of pure ZnO NPs and mixed Eu2O3 and ZnO NPs for the degradation of methylene blue were evaluated under ultraviolet (UV) irradiation. The results show that Eu2O3 plays an important role in the enhancement of the photocatalytic properties of ZnO NPs. We found that mixed 5% Eu2O3 and ZnO NPs exhibit the highest photocatalytic activity (degradation efficiency of 96.5% after 180 min of UV irradiation) as compared with pure ZnO NPs (degradation efficiency of 80.3% after 180 min of UV irradiation). The increased photocatalytic activity of the optimum mixed Eu2O3 and ZnO NPs is due to the high crystallinity, high surface area with small particle size, and narrow energy gap.
Thampi, VV Anusha; Dhandapani, P; Manivasagam, Geetha; Subramanian, B
2015-01-01
Thin films of titanium carbonitride (TiCN) were fabricated by DC magnetron sputtering on medical grade steel. The biocompatibility of the coating was further enhanced by growing hydroxyapatite crystals over the TiCN-coated substrates using biologically activated ammonia from synthetic urine. The coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM)-energy dispersive spectroscopy, and Raman spectroscopy. The electrochemical behavior of the coatings was determined in simulated body fluid. In addition, hemocompatibility was assessed by monitoring the attachment of platelets on the coating using SEM. The wettability of the coatings was measured in order to correlate with biocompatibility results. Formation of a coating with granular morphology and the preferred orientation was confirmed by SEM and X-ray diffraction results. The hydroxyapatite coating led to a decrease in thrombogenicity, resulting in controlled blood clot formation, hence demonstrating the hemocompatibility of the coating. PMID:26491312
Thampi, V V Anusha; Dhandapani, P; Manivasagam, Geetha; Subramanian, B
2015-01-01
Thin films of titanium carbonitride (TiCN) were fabricated by DC magnetron sputtering on medical grade steel. The biocompatibility of the coating was further enhanced by growing hydroxyapatite crystals over the TiCN-coated substrates using biologically activated ammonia from synthetic urine. The coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM)-energy dispersive spectroscopy, and Raman spectroscopy. The electrochemical behavior of the coatings was determined in simulated body fluid. In addition, hemocompatibility was assessed by monitoring the attachment of platelets on the coating using SEM. The wettability of the coatings was measured in order to correlate with biocompatibility results. Formation of a coating with granular morphology and the preferred orientation was confirmed by SEM and X-ray diffraction results. The hydroxyapatite coating led to a decrease in thrombogenicity, resulting in controlled blood clot formation, hence demonstrating the hemocompatibility of the coating.
Bach, Long Giang; Islam, Md Rafiqul; Vo, Thanh-Sang; Kim, Se-Kwon; Lim, Kwon Taek
2013-03-15
Hydroxyapatite nanocrystals (HAP NCs) were encapsulated by poly(allyl methacrylate) (PolyAMA) employing controlled surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization of allyl methacrylate to afford HAP-PolyAMA nanohybrids. The subsequent thiol-ene coupling of nanohybrids with 2-mercaptosuccinic acid resulted HAP-Poly(AMA-COOH) possessing multicarboxyl group. The formation of the nanohybrids was confirmed by FT-IR and EDS analyses. The TGA and FE-SEM investigation were further suggested the grafting of PolyAMA onto HAP NCs. The utility of the HAP-PolyAMA nanohybrid as drug carrier was also explored. The pendant carboxyl groups on the external layers of nanohybrids were conjugated with anticancer drug cisplatin to afford HAP-Poly(AMA-COOH)/Pt complex. The formation of the complex was confirmed by FT-IR, XPS, and FE-SEM. In vitro evaluation of the synthesized complex as nanomedicine revealed its potential chemotherapeutic efficacy against cancer cell lines. Copyright © 2012 Elsevier Inc. All rights reserved.
Multilayer organic based structures with enhanced hole transport
NASA Astrophysics Data System (ADS)
Mladenova, D.; Sinigersky, V.; Budurova, D.; Dobreva, T.; Karashanova, D.; Dimov, D.; Zhivkov, I.
2010-11-01
Multilayer Organic Based Devices (OBDs) were constructed by subsequent casting of organic films (from polymers, soluble in the same organic solvent). The problem with dissolution of the underlying layer was avoided by using electrophoretic deposition technique. Optimized conditions for electrophoretic deposition (EPD) of thin films with homogeneous and smooth surfaces, as confirmed by SEM, were found. The EPD, carried out at constant current, requires continuous increase of the voltage between the electrodes. In this way the decreased deposition rate caused by the decreased concentration of the material in the suspension and the increased thickness of the film deposited is compensated. The SEM images and the current voltage characteristics recorded, show that the hole transport polyvinylcarbazole (PVK) underlayer survive the treatment with the suspension used for the electrophoretic deposition of the active poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylene vinylene] electroluminescent layer. The PVK hole transport layer increases the device current, as confirmed by the current-voltage measurements. The results obtained demonstrate the possibility of OBDs preparation for electroluminescent and photovoltaic applications.
Gopikrishnan, Ramya; Zhang, Kai; Ravichandran, Prabakaran; Biradar, Santhoshkumar; Ramesh, Vani; Goornavar, Virupaxi; Jeffers, Robert B; Pradhan, Aswini; Hall, Joseph C; Baluchamy, Sudhakar; Ramesh, Govindarajan T
2011-10-01
Here, we have synthesized Zinc Oxide (ZnO) nanorods at room temperature using zinc acetate and hexamethylenetetramine as precursors followed by characterization using X-ray diffraction (XRD), fourier transform infra red spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy. The growth of the synthesized ZnO was found to be very close to its hexagonal nature, which is confirmed by XRD. The nanorods were grown perpendicular to the long-axis and grew along the [001] direction, which is the nature of ZnO growth. The morphology of the synthesized ZnO nanorods was also confirmed by SEM. The size of the nanorod was estimated to be around 20-25 nm in diameter and approximately 50-60 nm in length. Our biocompatibility studies using synthesized ZnO showed no significant dose- or time-dependent increase in the formation of free radicals, accumulation of peroxidative products, antioxidant depletion or loss of cell viability on lung epithelial cells.
Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system
NASA Astrophysics Data System (ADS)
Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.
2018-05-01
Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.
Shahbaz, Hafiz M; Akram, Kashif; Ahn, Jae-Jun; Kwon, Joong-Ho
2013-05-01
Radiation-induced free radicals and luminescence properties were investigated in γ-irradiated (0-3 kGy) pomegranate ( Punica granatum L.) fruits. Photostimulated luminescence (PSL) analysis showed limited applicability, and only 3 kGy-irradiated pomegranates showed positive PSL values (>5000 PCs). Thermoluminescence (TL) glow curve features, such as intensity and the presence of maximum glow peak in radiation-specific temperature range (150-250 °C), provided definite proof of irradiation, and the TL ratios (TL1/TL2) also confirmed the reliability of TL results. Scanning electron microscopy energy dispersive X-ray (SEM-EDX) analysis of the separated minerals showed that feldspar and quartz minerals were responsible for the luminescence properties. Radiation-induced cellulose radicals were detected in the seeds and rinds by ESR analysis. The ESR results were better in freeze-dried samples than in alcohol-extracted ones. A positive correlation was found between the ESR and TL signal intensities and irradiation doses; however, the most promising detection of the irradiation status was possible through TL analysis.
NASA Astrophysics Data System (ADS)
Durairajan, A.; Thangaraju, D.; Moorthy Babu, S.
2013-02-01
Mixed alkali double tungstates K1-xNaxGd(WO4)2 (KNGW) (0 ⩽ x ⩽ 1) were synthesized by solid state reaction using sodium doped monoclinic KGd(WO4)2 (KGW). Synthesized KNGW powders were characterized using powder X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and Raman analysis. DTA analysis confirms that the melting point of the KGW matrix increases from 1063 °C to 1255 °C with increasing sodium content. The Powder XRD analyses reveal that mixed phases were observed up to 40 wt.% of Na in the KGW matrix above that percentage there is domination of scheelite structure in the synthesized powder. Polyhedral type, bi-pyramidal shape and spheroid shape morphology was observed for KGW, NKGW and NGW powders respectively. The Raman analysis was carried out to understand the vibrational characteristic changes with mixing of sodium ions in the KGW matrix.
Fdez-Ortiz de Vallejuelo, Silvia; Gredilla, Ainara; da Boit, Kátia; Teixeira, Elba C; Sampaio, Carlos H; Madariaga, Juan Manuel; Silva, Luis F O
2017-02-01
Soils around coal mining are important reservoir of hazardous elements (HEs), nanominerals, and ultrafine compounds. This research reports and discusses the soil concentrations of HEs (As, Cd, Cr, Cu, Ni, Pb, and Zn) in coal residues of abandoned mines. To assess differences regarding environmental impact and risk assessment between coal abandoned mines from the Santa Catarina state, eighteen coal cleaning rejects with different mineralogical and chemical composition, from eight abandoned mines were collected. Nanominerals and ultra-fine minerals from mining-contaminated areas were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscope (HR-TEM), providing new information on the mineralogy and nano-mineralogy of these coal residues. The total contents of 57 elements (HEs, alkali metals, and rare earth elements) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The calculation of NWACs (Normalized Average Weighted Concentration), together with the chemometric analysis by Principal component analysis (PCA) confirmed the variability of the samples regarding their city and their mine of origin. Moreover, the results confirmed the existence of hotspots in mines near urban areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chithambararaj, Angamuthuraj; Bose, Arumugam Chandra
2011-01-01
Hexagonal molybdenum oxide (h-MoO(3)) was synthesized by a solution based chemical precipitation technique. Analysis by X-ray diffraction (XRD) confirmed that the as-synthesized powder had a metastable hexagonal structure. The characteristic vibrational band of Mo-O was identified from Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images clearly depicted the morphology and size of h-MoO(3.) The morphology study showed that the product comprises one-dimensional (1D) hexagonal rods. From the electron energy loss spectroscopy (EELS) measurement, the elemental composition was investigated and confirmed from the characteristic peaks of molybdenum and oxygen. Thermogravimetric (TG) analysis on metastable MoO(3) revealed that the hexagonal phase was stable up to 430 °C and above this temperature complete transformation into a highly stable orthorhombic phase was achieved. The optical band gap energy was estimated from the Kubelka-Munk (K-M) function and was found to be 2.99 eV. Finally, the ethanol vapor-sensing behavior was investigated and the sensing response was found to vary linearly as a function of ethanol concentration in the parts per million (ppm) range.
Rare earth substitution on structural and optical behaviour of CdSe thin films
NASA Astrophysics Data System (ADS)
Singh, Sarika; Shrivastava, A. K.; Tapdiya, Swati
2018-05-01
A series of Sm2+,Gd2+ doped with Cadmium selenide CdSe (x =0.01) has been prepared by using Chemical bath deposition technique. Structural, Optical and Morphological studies were performed using X-ray diffraction (XRD), UV-Visible spectrometer, Raman Studies and Scanning Electron Microscopy (SEM). XRD patterns confirm the samples with Sm,Gd ions, some diffraction peaks appeared which belongs to the cubic phase structure. The values of lattice parameter (a) decreased and particle size decrease on doping. Morphology of the grown films reveals that surface are homogeneous and uniformly spread on the substrates. The elemental analysis of CdSe doped Sm and Gd (1%) different composition was analyzed by Energy Dispersive X-Rays (EDX). The optical values of some important parameters of the studied films were calculated by UVstudy are determined from transmission spectra at wavelength 200 to 900nm. Optical band gap Eg was calculated by tauc relation. Energy band gap of CdSe doped with Sm and Gd varies at 1.8eV and 1.9eV respectively. Bandgap In Raman analysis, a prominent peak shows that confirmation of nano crystalline phase. And intensity of peaks was decreasing after doping.
Characteristics of different frequency ranges in scanning electron microscope images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.
2015-07-22
We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.
[Revisiting the chemical diversity in prostatic calculi: a SEM and FT-IR investigation].
Dessombz, A; Méria, P; Bazin, D; Foy, E; Rouzière, S; Weil, R; Daudon, M
2011-12-01
Revisiting the chemical diversity of the crystalline phases of prostatic calculi by means of SEM and FT-IR analysis. A set of 32 prostatic calculi has been studied by FT-IR and SEM. FT-IR analysis has determined the chemical composition of each prostatic calculus and the SEM observation has described the morphology of the calculi surfaces and layers. Infrared analysis revealed that 90.7% of the stones were mainly composed of calcium phosphates. However, several mineral phases previously not reported in prostatic calculi were observed, as brushite or octocalcium phosphate pentahydrate. Prostatic calculi exhibited a diversity of crystalline composition and morphology. As previously reported for urinary calculi, relationships between composition and morphology of prostatic stones and étiopathogenic conditions could be of interest in clinical practice. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuvaraj, Subramanian; Layek, Samar; Vidyavathy, S. Manisha
2015-12-15
Highlights: • SmFeO{sub 3} is synthesized by simple combustion method using aspartic acid as the fuel. • The particles are spherical in shape with the size ranges between 150 and 300 nm. • Cole–Cole plot infers the bulk conduction mechanism. • Room temperature VSM analysis reveal the weak ferromagnetic behaviour of SmFeO{sub 3}. • Mössbauer analysis elucidates the +3 oxidation state of Fe atoms. - Abstract: Samarium orthoferrite (SmFeO{sub 3}) is synthesized by a simple combustion method using aspartic acid as fuel. Phase purity and functional groups are analyzed via X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analysis, whichmore » confirms the single phase formation of orthorhombic SmFeO{sub 3}. Approximately spherical particles with size range 150–300 nm is revealed by scanning electron microscope (SEM). The conductivity of the material is identified by the single semicircle obtained in the solid state impedance spectra at elevated temperatures. The calculated electrical conductivity increases with increasing temperature, inferring the semiconducting nature of SmFeO{sub 3}. A magnetic study at room temperature revealed weak ferromagnetic behaviour in SmFeO{sub 3} due to Dzyaloshinsky–Moriya antisymmetric exchange interaction mechanism. Mössbauer analysis confirmed the +3 oxidation state of iron and magnetic ordering of the sample at room temperature.« less
Babu, Punuri Jayasekhar; Doble, Mukesh; Raichur, Ashok M
2018-03-01
The synergistic wound healing and antibacterial activity of silver oxide nanoparticles embedded silk fibroin (Ag 2 O-SF) spuns is reported here. UV-Vis spectro photometric analysis of these spuns showed the surface plasmon resonance (SPR) confirming the formation of the silver oxide nanoparticles (Ag 2 O NPs) on the surface of the silk fibroin (SF). Scanning electron microscope (SEM) and Differential scanning calorimetry (DSC) also confirmed the presence of Ag 2 O NPs on surface of SF. X-ray diffraction (XRD) analysis revealed the crystalline nature of both SF and Ag 2 O-SF. Fourier transform infrared spectroscopy (FT-IR) results showed the different forms of silk (I and II) and their corresponding protein (amide I, II, III) confirmations. Biodegradation study revealed insignificant changes in the morphology of Ag 2 O-SF spuns even after 14 days of immersion in phosphate buffered saline (PBS). Ag 2 O-SF spuns showed excellent antibacterial activity against both pathogen (S. aureus and M. tuberculosis) and non-pathogen (E. coli) bacteria. More importantly, In vitro wound healing (scratch assay) assay revealed fast migration of the T3T fibroblast cells through the scratch area treated with extract of Ag 2 O-SF spuns and the area was completely covered within 24 h. Cytotoxicity assay confirmed the biocompatible nature of the Ag 2 O-SF spuns, thus suggesting an ideal material for wound healing and anti-bacterial applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Multifunctional AgNPs@Wool: colored, UV-protective and antioxidant functional textiles
NASA Astrophysics Data System (ADS)
Shabbir, Mohd; Mohammad, Faqeer
2018-02-01
Nanomaterials have great impact on textile industry for multifunctional and smart clothing as per the need of present, and further, green nanotechnology is the current hotspot of research and industrial developments. Silver nanoparticles (AgNPs) are synthesized (in situ) by using natural compounds of plant extracts (naphthoquinones, phenolics/flavonoids, polyphenols) as reducing or stabilizing agents, and simultaneously deposited on wool fabric for coloration, UV protection and antioxidant properties. UV-visible spectroscopy is used to monitor the route of biosynthesis of nanoparticles and transmission electron microscopy for morphological characteristics of synthesized AgNPs. Spherical and almost oval-shaped AgNPs were synthesized by naphthoquinones, polyphenols and flavonoids, respectively. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction pattern (XRD) and Fourier transform infrared spectroscopy were used for the AgNPs@Wool fabrics characterization. SEM-EDX analysis and XRD patterns confirmed the successful deposition of silver nanoparticles on wool. Coloration characteristics in terms of color strength (K/S) and CIEL*a*b*c*h° values, UV protection abilities in terms of UV transmittance and UV protection factor, and % antioxidant activity of AgNPs@Wool are suggestive of good-to-excellent results.
Ferroelectricity of strained SrTiO3 in lithium tetraborate glass-nanocomposite and glass-ceramic
NASA Astrophysics Data System (ADS)
Abdel-Khalek, E. K.; Mohamed, E. A.; Kashif, I.
2018-02-01
Glass-nanocomposite (GNCs) sample of the composition [90Li2B4O7-10SrTiO3] (mol %) was prepared by conventional melt quenching technique. The glassy phase and the amorphous nature of the GNCs sample were identified by Differential thermal analysis (DTA) and X-ray diffraction (XRD) studies, respectively. DTA of the GNCs exhibits sharp and broad exothermic peaks which represent the crystallization of Li2B4O7 and SrTiO3, respectively. The tetragonal Li2B4O7 and tetragonal SrTiO3 crystalline phases in glass-ceramic (GC) were identified by XRD and scanning electron microscopic (SEM). The strain tetragonal SrTiO3 phase in GNCs and GC has been confirmed by SEM. The values of crystallization activation energies (Ec1 and Ec2) for the first and second exothermic peaks are equal to 174 and 1452 kJ/mol, respectively. The Ti3+ ions in tetragonal distorted octahedral sites in GNCs were identified by optical transmission spectrum. GNCs and GC samples exhibit broad dielectric anomalies at 303 and 319 K because of strained SrTiO3 ferroelectric, respectively.
Development of porous structured polyvinyl alcohol/zeolite/carbon composites as adsorbent
NASA Astrophysics Data System (ADS)
Laksmono, J. A.; Sudibandriyo, M.; Saputra, A. H.; Haryono, A.
2017-05-01
Adsorption is a separation process that has higher energy efficiency than others. Analyzing the nature of the adsorbate and the selection of suitable adsorbent are key success in adsorption. The performance of the adsorbent can be modified either physically or chemically to obtain the efficiency and effectiveness of the adsorption, this can be facilitated by using a composite adsorbent. In this study, we have conducted the preparation process of a polyvinyl alcohol (PVA)/zeolite/carbon composites. The resulting adsorbent composites are dedicated for ethanol - water dehydration proposes. The composites were prepared using cross-linked polymerization method followed by supercritical fluid extraction (SFE) to obtain the porous structured upon drying process. The characterization of the functional groups and morphology were performed by using Fourier Transform Infra-Red (FTIR) and Scanning Electron Microscopy (SEM), respectively. The FTIR analysis showed that composite prepared by SFE method formed hydrogen bonding confirmed by the appearance of peaks at 2950 - 3000 cm-1 compared to composite without SFE method, whereas, the results of SEM study showed the formation of three layered structures. On basis of the obtained results, it can be shown that PVA/zeolite/carbon has high potential to be develop further as an adsorbent composite.
Synthesis and characterization of silver nanoparticle composite with poly(p-Br-phenylsilane).
Kim, Myoung-Hee; Lee, Jun; Mo, Soo-Yong; Woo, Hee-Gweon; Yang, Kap Seung; Kim, Bo-Hye; Lee, Byeong-Gweon; Sohn, Honglae
2012-05-01
The one-pot synthesis and characterization of silver nanoparticle-poly(p-Br-phenylsilane) composites have been carried out. The conversion of silver(+1) salt to stable silver(0) nanoparticles is promoted by poly(p-Br-phenylsilane), Br-PPS possessing both possible reactive Si-H bonds in the polymer backbone and C-Br bonds in the substituents. The composites were characterized using XRD, TEM, FE-SEM, and solid-state UV-vis analytical techniques. TEM and FE-SEM data show the formation of the composites where large number of silver nanoparticles (less than 30 nm of size) are well dispersed throughout the Br-PPS matrix. XRD patterns are consistent with that for fcc-typed silver. The elemental analysis for Br atom and the polymer solubility confirm that the cleavage of C-Br bond and the Si-Br dative bonding were not occurred appreciably at ambient temperature. Nonetheless, TGA data suggest that some sort of cross-linking was occurred at high temperature. The size and processability of such nanoparticles depend on the ratio of metal to Br-PPS. In the absence of Br-PPS, most of the silver particles undergo macroscopic aggregation, which indicates that the polysilane is necessary for stabilizing the silver nanoparticles.
Preparation and Characterization of Nanoparticle β-Cyclodextrin:Geraniol Inclusion Complexes.
Hadian, Zahra; Maleki, Majedeh; Abdi, Khosro; Atyabi, Fatemeh; Mohammadi, Abdoreza; Khaksar, Ramin
2018-01-01
The aim of the present study was to formulate β-cyclodextrin (β-CD) nanoparticles loaded with geraniol (GR) essential oil (EO) with appropriate physicochemical properties. Complexation of GR with β-CD was optimized by evaluation of four formulations, using the co-precipitation method, and the encapsulation efficiency (EE), loading, size, particle size distribution (PDI) and zeta potential were investigated. Further characterization was performed with nuclear magnetic resonance spectroscopy ( 1 H NMR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and infra-red (IR) spectroscopy analysis. Results showed that the physicochemical properties of the nanoparticles were affected by GR content in formulations that yielded nanoscale-size particles ranging from 111 to 258 nm. The highest encapsulation efficiency (79.4 ± 5.4%) was obtained when the molar ratio of EO to β-CD was 0.44: 0.13 with negative zeta potential (-21.1 ± 0.5 mV). The 1 H-NMR spectrum confirmed the formation structure of the EO and β-CD nanoparticle complex. Complexation with geraniol resulted in changes of IR profile, NMR chemical shifts, DSC properties, and SEM of β-cyclodextrin. Inclusion complex of essential oil with β-cyclodextrin was considered as promising bioactive materials for designing functional food.
Preparation and Characterization of Nanoparticle β-Cyclodextrin:Geraniol Inclusion Complexes
Hadian, Zahra; Maleki, Majedeh; Abdi, Khosro; Atyabi, Fatemeh; Mohammadi, Abdoreza; Khaksar, Ramin
2018-01-01
The aim of the present study was to formulate β-cyclodextrin (β-CD) nanoparticles loaded with geraniol (GR) essential oil (EO) with appropriate physicochemical properties. Complexation of GR with β-CD was optimized by evaluation of four formulations, using the co-precipitation method, and the encapsulation efficiency (EE), loading, size, particle size distribution (PDI) and zeta potential were investigated. Further characterization was performed with nuclear magnetic resonance spectroscopy (1H NMR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and infra-red (IR) spectroscopy analysis. Results showed that the physicochemical properties of the nanoparticles were affected by GR content in formulations that yielded nanoscale-size particles ranging from 111 to 258 nm. The highest encapsulation efficiency (79.4 ± 5.4%) was obtained when the molar ratio of EO to β-CD was 0.44: 0.13 with negative zeta potential (-21.1 ± 0.5 mV). The 1H-NMR spectrum confirmed the formation structure of the EO and β-CD nanoparticle complex. Complexation with geraniol resulted in changes of IR profile, NMR chemical shifts, DSC properties, and SEM of β-cyclodextrin. Inclusion complex of essential oil with β-cyclodextrin was considered as promising bioactive materials for designing functional food.
NASA Astrophysics Data System (ADS)
Kumar, K. Deva Arun; Valanarasu, S.; Kathalingam, A.; Ganesh, V.; Shkir, Mohd.; AlFaify, S.
2017-12-01
Aluminum-doped zinc oxide (AZO) thin films were deposited by sol-gel spin coating technique onto the glass substrates using different solvents such as 2-methoxyethanol, methanol, ethanol and isopropanol. Prepared films were characterized by XRD, Raman spectrum, SEM, UV-visible spectrophotometer, photoluminescence (PL) and electrical studies. XRD studies showed that all the prepared films are hexagonal wurtzite structure with polycrystalline nature oriented along (002) direction. SEM images showed uniform particles of size around 60 nm distributed regularly on to the entire glass substrate. EDX analysis confirmed the composition of grown AZO film consisting of Al, Zn and O elements. The prepared films showed highest optical transmittance 94% in the visible range and band gap 3.30 eV. PL spectra for all AZO films showed a strong UV emission peak at 387 nm. The AZO films prepared using isopropanol solvent showed high carrier concentration and low resistivity values as 1.72 × 1020 cm-3 and 2.90 × 10-3 Ω cm, respectively, with high figure of merit ( ϕ) value 8.42 × 10-3 (Ω/sq)-1.
Development of solid dispersion systems of dapivirine to enhance its solubility.
Gorajana, Adinarayana; Ying, Chan Chiew; Shuang, Yeen; Fong, Pooi; Tan, Zhi; Gupta, Jyoti; Talekar, Meghna; Sharma, Manisha; Garg, Sanjay
2013-06-01
Dapivirine, formerly known as TMC 120, is a poorly-water soluble anti-HIV drug, currently being developed as a vaginal microbicide. The clinical use of this drug has been limited due to its poor solubility. The aim of this study was to design solid dispersion systems of Dapivirine to improve its solubility. Solid dispersions were prepared by solvent and fusion methods. Dapivirine release from the solid dispersion system was determined by conducting in-vitro dissolution studies. The physicochemical characteristics of the drug and its formulation were studied using Differential Scanning Calorimetry (DSC), powder X-ray Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). A significant improvement in drug dissolution rate was observed with the solid dispersion systems. XRD, SEM and DSC results indicated the transformation of pure Dapivirine which exists in crystalline form into an amorphous form in selected solid dispersion formulations. FTIR and HPLC analysis confirmed the absence of drug-excipient interactions. Solid dispersion systems can be used to improve the dissolution rate of Dapivirine. This improvement could be attributed to the reduction or absence of drug crystallinity, existence of drug particles in an amorphous form and improved wettability of the drug.
Synthesis and characterization of magnesium aluminate (MgAl2O4) spinel (MAS) thin films
NASA Astrophysics Data System (ADS)
Ahmad, Syed Muhammad; Hussain, Tousif; Ahmad, Riaz; Siddiqui, Jamil; Ali, Dilawar
2018-01-01
In a quest to identify more economic routes for synthesis of magnesium aluminate (MgAl2O4) spinel (MAS) thin films, dense plasma focus device was used with multiple plasma focus shots. Structural, bonding between composite films, surface morphological, compositional and hardness properties of MAS thin films were investigated by using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive x-rays (EDX) analysis and Vickers micro hardness test respectively. In XRD graph, the presence of MgAl2O4 diffraction peaks in crystallographic orientations (222), (400) and (622) pointed out the successful formation of polycrystalline thin films of MgAl2O4 with face centered cubic structure. The FTIR spectrums showed a major common transmittance band at 697.95 cm-1 which belongs to MgAl2O4. SEM micrographs illustrated a mesh type, granular and multi layers microstructures with significant melting effects. EDX spectrum confirmed the existence of magnesium, oxygen and aluminum in MAS films. A common increasing behavior in micro-hardness of composite MgAl2O4 films by increasing number of plasma focus shots was found.
NASA Astrophysics Data System (ADS)
Kerour, A.; Boudjadar, S.; Bourzami, R.; Allouche, B.
2018-07-01
In this work, we have synthesized cuprous oxide (Cu2O) nanoparticles with octahedral and spherical like shapes by an ecofriendly, simple and coast effective method, by using the aqueous extract of Aloe vera and copper sulfate as solvent and precursor respectively. The effect of Aloe vera aqueous extract concentration on the morphological, structural and optical properties of as synthesized nanoparticles was studied by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform (FT-IR) spectroscopy and UV-visible diffuse reflectance. The SEM images showing octahedral and spherical agglomeration of nanoparticles. The cubic structure of Cu2O was confirmed by XRD analysis, the crystallites size depends to the concentration of Aloe vera aqueous extract with an average size ranged between 24 and 61 nm. The FT-IR vibration measurements valid the presence of pure Cu2O in the samples. The UV-visible spectra show that the prepared cuprous oxide (Cu2O) has a gap energy estimated from 2.5 to 2.62 eV. The photocatalytic activities of the as-prepared material were highly improvement by the fast degradation of methylene blue in aqueous solution at room temperature under solar simulator irradiation.
NASA Astrophysics Data System (ADS)
Bürck, Jochen; Aras, Onur; Bertinetti, Luca; Ilhan, Caner A.; Ermeydan, Mahmut A.; Schneider, Reinhard; Ulrich, Anne S.; Kazanci, Murat
2018-01-01
Collagen is a very popular natural biomaterial due to its high biocompatibility and bioactivity. Electrospinning is currently the only technique that allows the fabrication of continuous fibers with diameters down to a few nanometers. In order to regenerate collagen in the forms of nanofibers, it is necessary to dissolve it in suitable solvents. The solvents and electrospinning process cause unfolding of collagen nanofibers. It is proposed that acidic solvents preserve better the natural structure of collagen fibers. In this paper, the structures of collagen nanofibers were examined by using circular dichroism (CD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, differential scanning calorimetry (DSC) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) methods in order to test this hypothesis. The increase in PP-II fraction, representing the triple helix structure in collagen, that was observed in CD analysis of HAc derived collagen nanofibers, for the first time was successfully confirmed and illustrated by using SEM and TEM methods. Furthermore, CD revealed the mostly detrimental effect of stabilization conditions such as heat, vacuum and UV treatment on the secondary structure of the collagen nanofibers.
NASA Astrophysics Data System (ADS)
Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav
2016-04-01
Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.
Effect of Alkaline Peroxides on the Surface of Cobalt Chrome Alloy: An In Vitro Study.
Vasconcelos, Glenda Lara Lopes; Curylofo, Patricia Almeida; Raile, Priscilla Neves; Macedo, Ana Paula; Paranhos, Helena Freitas Oliveira; Pagnano, Valeria Oliveira
2018-03-24
Removable denture hygiene care is very important for the longevity of the rehabilitation treatment; however, it is necessary to analyze the effects that denture cleansers can cause on the surfaces of prostheses. Thus, this study evaluated the effect of alkaline peroxide-effervescent tablets on the surface of cobalt-chromium alloys (Co-Cr) used in removable partial dentures. Circular metallic specimens (12 × 3 mm) were fabricated and were immersed (n = 16) in: control, Polident 3 Minute (P3M), Steradent (S), Efferdent (E), Polident for Partials (PFP), and Corega Tabs (CT). The surface roughness (μm) (n = 10) was measured before and after periods of cleanser immersion corresponding to 0.5, 1, 2, 3, 4, and 5 years. Ion release was analyzed (n = 5) for Co, Cr, and molybdenum (Mo). Scanning electron microscopy (SEM) analysis and an Energy-dispersive X-ray spectroscopy (EDS) were conducted in one specimen. The surface roughness data were statistically analyzed (α = 0.05) with the Kruskal-Wallis test to compare the solutions, and the Friedman test compared the immersion durations. Ion release analysis was performed using 2-way ANOVA and Tukey's test. There was no significant surface roughness difference when comparing the solutions (p > 0.05) and the immersion durations (p = 0.137). Regarding ion release (μg/L), CT, E, and control produced a greater release of Co ions than S (p < 0.05). CT produced a greater release of Cr ions than control, S, and P3M (p < 0.05). Finally, E caused the greatest release of Mo ions (p < 0.05). SEM confirmed that the solutions did not damage the surfaces and EDS confirmed that there were no signs of oxidation. The various solutions tested did not have any deleterious effects on the Co-Cr alloy surface. Steradent, however, presented the smallest ionic release. © 2018 by the American College of Prosthodontists.
Improved conductivity of carbon-nano-fiber (CNF)/polytetrafluoroethylene (PTFE) composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Sarita; Kalra, G. S.; Pushkar, Vinay K.
2016-05-23
A series of CNF/PTFE composite loaded with different weight % of CNFs as 0.01, 0.02, 0.03, 0.05, 1, 2, 3, 4, 5 into PTFE is fabricated. In this work, the 5wt% heat-treated CNFs were used as filler in PTFE. Current-voltage (I-V) study of the samples confirmed the samples as conducting composite. In scanning electron microscope (SEM) study, the conducting CNFs channels were observed from upper surface to inside throughout the polymer matrix. A sintered composite of 5 wt% loading of CNFs showed an improved conductivity and SEM image exhibited a good binding of CNFs into PTFE.
Law, Ryan; Prabhu, Anoop; Fujii-Lau, Larissa; Shannon, Carol; Singh, Siddharth
2018-02-01
Covered self-expandable metal stents (SEMS) are utilized for the management of benign and malignant esophageal conditions; however, covered SEMS are prone to migration. Endoscopic suture fixation may mitigate the migration risk of covered esophageal SEMS. Hence, we conducted a systematic review and meta-analysis to evaluate the effectiveness and safety of endoscopic suture fixation for covered esophageal SEMS. Following PRISMA guidelines, we performed a systematic review from 2011 to 2016 to identify studies (case control/case series) reporting the technical success and migration rate of covered esophageal SEMS following endoscopic suture fixation. We searched multiple electronic databases and conference proceedings. We calculated pooled rates (and 95% confidence intervals [CI]) of technical success and stent migration using a random effects model. We identified 14 studies (212 patients) describing covered esophageal SEMS placement with endoscopic suture fixation. When reported, SEMS indications included leak/fistula (n = 75), stricture (n = 65), perforation (n = 10), and achalasia (n = 4). The pooled technical success rate was 96.7% (95% CI 92.3-98.6), without heterogeneity (I 2 = 0%). We identified 29 SEMS migrations at rate of 15.9% (95% CI 11.4-21.6), without heterogeneity (I 2 = 0%). Publication bias was observed, and using the trim-and-fill method, a more conservative estimate for stent migration was 17.0%. Suture-related adverse events were estimated to occur in 3.7% (95% CI 1.6-8.2) of cases. Endoscopic suture fixation of covered esophageal SEMS appears to reduce stent migration when compared to published rates of non-anchored SEMS. However, SEMS migration still occurs in approximately 1 out of 6 cases despite excellent immediate technical success and low risk of suture-related adverse events.
Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A
2008-12-01
(1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (p<0.0001) and fracture toughness (p<0.0001) were affected by the ceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (p<0.05) but it showed significantly higher fracture toughness (6.0+/-0.2MPam(1/2)) values when compared to the other tested ceramics (p<0.05). The coprecipitation method used to synthesize zirconia powders and the adopted ceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.
Simulation of FIB-SEM images for analysis of porous microstructures.
Prill, Torben; Schladitz, Katja
2013-01-01
Focused ion beam nanotomography-scanning electron microscopy tomography yields high-quality three-dimensional images of materials microstructures at the nanometer scale combining serial sectioning using a focused ion beam with SEM. However, FIB-SEM tomography of highly porous media leads to shine-through artifacts preventing automatic segmentation of the solid component. We simulate the SEM process in order to generate synthetic FIB-SEM image data for developing and validating segmentation methods. Monte-Carlo techniques yield accurate results, but are too slow for the simulation of FIB-SEM tomography requiring hundreds of SEM images for one dataset alone. Nevertheless, a quasi-analytic description of the specimen and various acceleration techniques, including a track compression algorithm and an acceleration for the simulation of secondary electrons, cut down the computing time by orders of magnitude, allowing for the first time to simulate FIB-SEM tomography. © Wiley Periodicals, Inc.
Fialová, Dana; Skoupý, Radim; Drozdová, Eva; Paták, Aleš; Piňos, Jakub; Šín, Lukáš; Beňuš, Radoslav; Klíma, Bohuslav
2017-12-01
The great potential of scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) is in detection of unusual chemical elements included in ancient human dental calculus to verify hypotheses about life and burial habits of historic populations and individuals. Elemental spectra were performed from archeological samples of three chosen individuals from different time periods. The unusual presence of magnesium, aluminum, and silicon in the first sample could confirm the hypothesis of high degree of dental abrasion caused by particles from grinding stones in flour. In the second sample, presence of copper could confirm that bronze jewelery could lie near the buried body. The elemental composition of the third sample with the presence of lead and copper confirms the origin of individual to Napoleonic Wars because the damage to his teeth could be explained by the systematic utilization of the teeth for the opening of paper cartridges (a charge with a dose of gunpowder and a bullet), which were used during the 18th and the 19th century AD. All these results contribute to the reconstruction of life (first and third individual) and burial (second individual) habits of historic populations and individuals.
Recent interest in monitoring and speciation of particulate matter has led to increased application of scanning electron microscopy (SEM) coupled with energy-dispersive x-ray analysis (EDX) to individual particle analysis. SEM/EDX provides information on the size, shape, co...
USDA-ARS?s Scientific Manuscript database
Hydroxyapatite was prepared from catfish bones, called catfish hydroxyapatite (CFHA), by mechanical and chemical treatment methods and was characterized by x-ray diffraction (X-RD) and scanning electron microscope (SEM) techniques to confirm the presence of hydroxyapatite. The ability of CFHA to rem...
A novel magnetite nanoparticle-supported ceria catalyst (Nanocat-Fe-Ce) has been successfully prepared by simple impregnation method and was well characterized by XRD, SIMS, FEG-SEM-EDS, and TEM. The exact nature of Nanocat-Fe-Ce was confirmed by X-ray photoelectron spectroscopy ...
Carbonate and sulfate minerals in the Chassigny meteorite
NASA Technical Reports Server (NTRS)
Wentworth, Susan J.; Gooding, James L.
1991-01-01
SO2 and CO2 from pyrolysis and combustion of bulk Chassigny and infrared traces of sulfate and carbonate minerals have been previously reported. Using scanning electron microscopy (SEM) and energy-dispersive x ray spectrometry (EDS), portions of these samples are searched, and a Ca-sulfate/carbonate association is confirmed.
Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research.
Leser, Vladka; Milani, Marziale; Tatti, Francesco; Tkalec, Ziva Pipan; Strus, Jasna; Drobne, Damjana
2010-10-01
The focused ion beam (FIB) and scanning electron microscope (SEM) are commonly used in material sciences for imaging and analysis of materials. Over the last decade, the combined FIB/SEM system has proven to be also applicable in the life sciences. We have examined the potential of the focused ion beam/scanning electron microscope system for the investigation of biological tissues of the model organism Porcellio scaber (Crustacea: Isopoda). Tissue from digestive glands was prepared as for conventional SEM or as for transmission electron microscopy (TEM). The samples were transferred into FIB/SEM for FIB milling and an imaging operation. FIB-milled regions were secondary electron imaged, back-scattered electron imaged, or energy dispersive X-ray (EDX) analyzed. Our results demonstrated that FIB/SEM enables simultaneous investigation of sample gross morphology, cell surface characteristics, and subsurface structures. The same FIB-exposed regions were analyzed by EDX to provide basic compositional data. When samples were prepared as for TEM, the information obtained with FIB/SEM is comparable, though at limited magnification, to that obtained from TEM. A combination of imaging, micro-manipulation, and compositional analysis appears of particular interest in the investigation of epithelial tissues, which are subjected to various endogenous and exogenous conditions affecting their structure and function. The FIB/SEM is a promising tool for an overall examination of epithelial tissue under normal, stressed, or pathological conditions.
NASA Astrophysics Data System (ADS)
Wasilah, S.; Fahmyddin, T.
2018-03-01
The employment of structural equation modeling (SEM) in research has taken an increasing attention in among researchers in built environment. There is a gap to understand the attributes, application, and importance of this approach in data analysis in built environment study. This paper intends to provide fundamental comprehension of SEM method in data analysis, unveiling attributes, employment and significance and bestow cases to assess associations amongst variables and constructs. The study uses some main literature to grasp the essence of SEM regarding with built environment research. The better acknowledgment of this analytical tool may assist the researcher in the built environment to analyze data under complex research questions and to test multivariate models in a single study.
Rahim, Zubaidah Haji Abdul; Thurairajah, Nalina
2011-04-01
Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined. S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1)); with sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1))]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly. It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm² glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL(-1) corresponded to that of 0.12% chlorhexidine. At 4 mg mL(-1) of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity. The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved.
RAHIM, Zubaidah Haji Abdul; THURAIRAJAH, Nalina
2011-01-01
Introduction Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. Objectives: In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined. Material and Methods S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL-1 and 4 mg mL-1); with sucrose containing the extract (2 mg mL-1 and 4 mg mL-1)]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly. Results It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm2 glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL-1 corresponded to that of 0.12% chlorhexidine. At 4 mg mL-1 of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity. Conclusion The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved. PMID:21552715
Helsper, Johannes P F G; Peters, Ruud J B; van Bemmel, Margaretha E M; Rivera, Zahira E Herrera; Wagner, Stephan; von der Kammer, Frank; Tromp, Peter C; Hofmann, Thilo; Weigel, Stefan
2016-09-01
Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed.
NASA Astrophysics Data System (ADS)
Rausch, Juanita; Grobéty, Bernard; Vonlanthen, Pierre
2015-01-01
The Eifel region in western central Germany is the type locality for maar volcanism, which is classically interpreted to be the result of explosive eruptions due to shallow interaction between magma and external water (i.e. phreatomagmatic eruptions). Sedimentary structures, deposit features and particle morphology found in many maar deposits of the West Eifel Volcanic Field (WEVF), in contrast to deposits in the East Eifel Volcanic Field (EEVF), lack the diagnostic criteria of typical phreatomagmatic deposits. The aim of this study was to determine quantitatively the shape of WEVF and EEVF maar ash particles in order to infer the governing eruption style in Eifel maar volcanoes. The quantitative shape characterization was done by analyzing fractal dimensions of particle contours (125-250 μm sieve fraction) obtained from Scanning electron microscopy (SEM) and SEM micro-computed tomography (SEM micro-CT) images. The fractal analysis (dilation method) and the fractal spectrum technique confirmed that the WEVF and EEVF maar particles have contrasting multifractal shapes. Whereas the low small-scale dimensions of EEVF particles (Eppelsberg Green Unit) coincide with previously published values for phreatomagmatic particles, the WEVF particles (Meerfelder Maar, Pulvermaar and Ulmener Maar) have larger values indicating more complex small-scale features, which are characteristic for magmatic particles. These quantitative results are strengthening the qualitative microscopic observations, that the studied WEVF maar eruptions are rather dominated by magmatic processes. The different eruption styles in the two volcanic fields can be explained by the different geological and hydrological settings found in both regions and the different chemical compositions of the magmas.
Colombo, Marco; Mirando, Maria; Rattalino, Davide; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio
2017-07-01
The aim of the present in vitro study was to evaluate the protective effects of a zinc-hydroxyapatite toothpaste on repairing enamel erosion produced by a soft drink (Coca-Cola) compared to toothpastes with and without fluoride using Scanning Electron Microscopy (SEM). Fifty specimens were assigned to 5 groups of 10 specimens each. (Group 1: no erosive challenge, no toothpaste treatment, group 2: erosive challenge, no toothpaste treatment, 3: erosive challenge, toothpaste without fluoride, group 4: erosive challenge, fluoride toothpaste treatment, group 5: erosive challenge, zinc-hydroxyapatite toothpaste treatment). Repeated erosive challenges were provided by immersing bovine enamel specimens (10 per group) in a soft drink for 2 min (6mL, room temperature) at 0, 8, 24 and 32 h. After each erosive challenge, the toothpastes were applied neat onto the surface of specimens for 3 min without brushing and removed with distilled water. Between treatments the specimens were kept in artificial saliva. The surface of each specimen was imaged by SEM. Statistically significant differences were found between the samples used as control and those immersed in Coca-Cola (group 1 and 2): indeed among all groups the highest grade of damage was found in group 2. Instead the lowest grade was recorded in the samples of group 5 (Zinc hydroxyapatite toothpaste). The results of this study confirmed the potential benefit the Zn-HAP technology could provide in protecting enamel from erosive acid challenges. The treatment of erosively challenged enamel with Zn-Hap toothpaste showed a clear protective effect. Key words: Dental erosion, enamel, SEM, toothpaste.
Development of thermoregulating microcapsules with cyclotriphosphazene as a flame retardant agent
NASA Astrophysics Data System (ADS)
Szczotok, A. M.; Carmona, M.; Serrano, A.; Kjøniksen, A. L.; Rodriguez, J. F.
2017-10-01
Thermoregulating microcapsules containing phase change material (Rubitherm®RT27) was produced by using the suspension-like polymerization technique with styrene (St), divinylbenzene (DVB) and hexa(methacryloylethylenedioxy) cyclotriphosphazene (PNC-HEMA) as co-monomers. The effect of PNC-HEMA for improving the flame retardant properties of the microcapsules were analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). It was found that the thermal energy storage (TES) capacity of the microcapsules increased in the presence of PNC-HEMA. However, the morphology of the microcapsules became irregular when the content of monomer with flame retardant properties was increased. Thermogravimetric analysis performed under atmospheric air confirmed that the PNC-HEMA raised the amount of residue after the burning process, proving the formation of thermally stable char. Thus, these materials could be considered as an important alternative to commonly used microcapsules containing phase change materials (PCMs), where a lower flammability is required for their application.
Ramasamy, Pasiyappazham; Subhapradha, Namasivayam; Thinesh, Thangadurai; Selvin, Joseph; Selvan, Kanagaraj Muthamizh; Shanmugam, Vairamani; Shanmugam, Annaian
2017-06-01
Chitosan was extracted from the pen of squid Doryteuthis singhalensis and characterized using FT-IR, NMR, CHN, SEM and DSC analysis. Purified chitosan was sulfated with chlorosulfonic acid in N,N-dimethylformamide and the added sulfate group was confirmed with FT-IR analysis. The molecular weight and degree of deacetylation (DDA) of chitosan was found 226.6kDa and 83.76% respectively. Chitosan exhibited potent antioxidant activity evidenced by reducing power, chelating ability on ferrous ions and scavenging activity on DPPH, superoxide and hydroxyl radicals. The anticoagulant assay using activated partial thromboplastin time (APTT) and prothrombin time (PT) showed chitosan as a strong anticoagulant. The results of this study showed possibility of using D. singhalensis pen as a non-conventional source of natural antioxidants and anticoagulant which can be incorporated in functional food formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Morsy, Reda; Hosny, Marwa; Reicha, Fikry; Elnimr, Tarek
2017-05-01
This study aims to develop optimal cross-linked electrospun gelatin-glycerol (GEL-GLY) nano-fibrous mats suitable for tissue engineering and wound dressing applications. The optimized procedure involves heating the gelatin and gelatin-glycerol solutions up to 90 °C. The electrospinning process was performed, followed by further cross-linking of electrospun films in a container containing glutaraldehyde (GTA) vapor. The results of X-ray diffraction (XRD), Fourier transformed infrared (FTIR), and Differential thermal analysis (DTA) confirmed that heating gelatin solution up to 90 °C in the presence of glycerol affected the cross-linking efficiency and interactions between GTA molecules and gelatin chains. Scanning Electron Microscope (SEM) analysis showed that GEL-GLY nano-fibrous mats with weight ratios less than or equal (12:3 w/w) exhibited a regular morphology with defect free in addition to increasing the degradation time, cross-linking efficiency, and swelling degree of electrospun gelatin/glycerol.
Effects of Gamma Irradiation on Polyvinylidene Fluoride Thin Films
NASA Astrophysics Data System (ADS)
Madivalappa, Shivaraj; Jali, V. M.
2018-02-01
Polyvinylidene fluoride thin films were synthesized by Sol-Gel method with spin rate of 3000 rpm for 30 sec on ITO glass substrates and were annealed at 170 C. The films were irradiated by Gamma radiation with different doses (10, 30, 40 and 50 kGy). XRD and FTIR spectra have been obtained to identify the presence of α / β phases. Mean crystallite size was calculated by Scherer’s equation. Different vibrational bands were identified and percentage of β phase was determined by FTIR analysis. Optical properties like band gap, refractive index, optical activation energy have been determined. Surface morphology and compositions of pristine and gamma irradiated PVDF thin films were confirmed respectively, by SEM and Energy dispersive X-ray analysis. The comparison of the structural and optical optical properties of pristine PVDF polymer film has been made with those of the Gamma irradiated films.
Studies of fly ash using thermal analysis techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hanxu; Shen, Xiang-Zhong; Sisk, B.
1996-12-31
Improved thermoanalytical methods have been developed that are capable of quantitative identification of various components of fly ash from a laboratory-scale fluidized bed combustion system. The thermogravimetric procedure developed can determine quantities of H{sub 2}O, Ca(OH){sub 2}, CaCO{sub 3}, CaSO{sub 4} and carbonaceous matter in fly ash with accuracy comparable to more time-consuming ASTM methods. This procedure is a modification of the Mikhail-Turcotte methods that can accurately analyze bed ash, with higher accuracy regarding the greater amount of carbonaceous matter in fly ash. In addition, in conjunction with FTIR and SEM/EDS analysis, the reduction mechanism of CaSO{sub 4} as CaSO{submore » 4} + 4H{sub 2} = CaS + 4H{sub 2}O has been confirmed in this study. This mechanism is important in analyzing and evaluating sulfur capture in fluidized-bed combustion systems.« less
Solar Light Responsive Photocatalytic Activity of Reduced Graphene Oxide-Zinc Selenide Nanocomposite
NASA Astrophysics Data System (ADS)
Chakraborty, Koushik; Ibrahim, Sk; Das, Poulomi; Ghosh, Surajit; Pal, Tanusri
2017-10-01
Solution processable reduced graphene oxide-zinc selenide (RGO-ZnSe) nanocomposite has been successfully synthesized by an easy one-pot single-step solvothermal reaction. The RGO-ZnSe composite was characterized structurally and morphologically by the study of XRD analysis, SEM and TEM imaging. Reduction in graphene oxide was confirmed by FTIR spectroscopy analysis. Photocatalytic efficiency of RGO-ZnSe composite was investigated toward the degradation of Rhodamine B under solar light irradiation. Our study indicates that the RGO-ZnSe composite is catalytically more active compared to the controlled-ZnSe under the solar light illumination. Here, RGO plays an important role for photoinduced charge separation and subsequently hinders the electron-hole recombination probability that consequently enhances photocatalytic degradation efficiency. We expect that this type of RGO-based optoelectronics materials opens up a new avenue in the field of photocatalytic degradation of different organic water pollutants.
Surface modification of SS-316L steel using microwave processed Ni/WC based composite clads
NASA Astrophysics Data System (ADS)
Kaushal, Sarbjeet; Singh, Dilkaran; Gupta, Dheeraj; Jain, Vivek; Bhowmick, Hiralal
2018-04-01
In the present investigation, the claddings of Ni/WC based composite powder were developed on SS-316L steel through microwave hybrid heating method. The experimental trials were carried out inside a domestic microwave oven working at 2.45 GHz and 900 W. The so developed composite clads were characterized using XRD, Vicker's microhardness measurement, and SEM/EDS. The presence of different phases like Co3W3C, NiW, FeNi3, NiSi was confirmed by XRD analysis. Microstructural analysis revealed that the clad of approximately 0.6 mm thickness was developed with no interfacial cracks and negligible porosity. The WC particles were uniformly distributed in the form of cellular structure inside Ni matrix. The average Vicker's microhardness value of the clad section was observed as 925±50 HV, which is three times that of the SS-316L substrate.
Arukalam, Innocent O; Oguzie, Emeka E; Li, Ying
2016-12-15
Perfluorodecyltrichlorosilane-based poly(dimethylsiloxane)-ZnO (FDTS-based PDMS-ZnO) nanocomposite coating with anti-corrosion and anti-fouling capabilities has been prepared using a one-step fabrication technique. XPS analysis and contact angle measurements showed the fluorine content to increase, while the hydrophobicity of the coatings decreased with addition of FDTS. XRD analysis revealed existence of ZnO nanoparticles of dimensions ranging from 11.45 to 93.01nm on the surface of coatings, with the mean particle size decreasing with FDTS addition, and was confirmed by SEM and TEM observations. Interestingly, the anti-corrosion performance and mechanical properties of the coatings increased remarkably on addition of FDTS. Indeed, the observed low adhesion strength, surface energies and the outstanding anti-corrosive properties imply that the obtained coating would be useful in anti-fouling applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Study of Ce3+, Dy3+ and Eu3+ activated SrSnO3 for white LEDs
NASA Astrophysics Data System (ADS)
Jain, Neha; Pandey, Deepak Kumar; Singh, Rajan Kumar; Singh, Jai; Singh, R. A.
2018-05-01
Herein, Eu3+- Dy3+-Ce3+ tri-doped SrSnO3 have been prepared by conventional sol-gel method. XRD analysis confirmed its orthorhombic phase with Pnma (62) space group symmetry. The morphology of the sample is flake like which has examined by SEM. SrSnO3 consists of several vibrational modes due to Sn-O bond which was analysed by Fourier transform Infrared (FTIR) spectra. Photoluminescence (PL) emission and excitation spectra have been recorded for optical analysis. It consist characteristic emission peaks of Ce3+, Dy3+ and Eu3. The intensity of 590 nm emission increases with increasing Eu3+ concentration and it is maximum for 3 at% Eu3+ co-doped sample. The CIE chromaticity co-ordinates are found near white region so it would be a promising phosphor for white LEDs.
Antifouling activities of β-cyclodextrin stabilized peg based silver nanocomposites
NASA Astrophysics Data System (ADS)
Punitha, N.; Saravanan, P.; Mohan, R.; Ramesh, P. S.
2017-01-01
Self-polishing polymer composites which release metal biocide in a controlled rate have been widely used in the design of antimicrobial agents and antifouling coatings. The present work focuses on the environmental friendly green synthesis of PEG based SNCs and their application to biocidal activity including marine biofouling. Biocompatible polymer β-CD and adhesive resistance polymer PEG were used to functionalize the SNPs and the as synthesized SNCs exhibit excellent micro fouling activities. The structural and optical properties were confirmed by XRD and UV-visible techniques respectively. The particle surface and cross sectional characteristics were examined by SEM-EDS, HR-TEM, AFM and FTIR. The surface potential was evaluated using ZP analysis and assessment of antibiofouling property was investigated using static immersion method.
NASA Astrophysics Data System (ADS)
Lv, Junwei; Wang, Bin; Ma, Qi; Li, Mengyao; Wang, Wenjing; Lu, Gaotaihang; Li, Hui; Zhao, Chunxia
2018-04-01
Ethyltrichlorosilane used as precursor reacted with glass fiber (GF) surface. Then polysiloxane was functionalized onto GF surface to improve GF’s hydrophobicity and interfacial properties of GF reinforced composites. Fourier transform infrared spectroscopy (FTIR) confirmed the successful grafting of polysiloxane onto GF’s surface. Energy dispersive spectroscopy (EDS) characterized the variation of chemical composition of GF surface. Scanning electron microscopy (SEM) images showed that the polysiloxane was grafted onto GF’s surface uniformly and the surface roughness of GF was enhanced obviously. Static contact angle analysis (SCA) revealed the significant improvement of surface hydrophobicity. Compared with the original GF composites, the interfacial shear strength (IFSS) increased by 36.52%. Meanwhile, we discovered a facile way to accomplish the experiment.
Study on electrochemically deposited Mg metal
NASA Astrophysics Data System (ADS)
Matsui, Masaki
An electrodeposition process of magnesium metal from Grignard reagent based electrolyte was studied by comparing with lithium. The electrodeposition of magnesium was performed at various current densities. The obtained magnesium deposits did not show dendritic morphologies while all the lithium deposits showed dendritic products. Two different crystal growth modes in the electrodeposition process of magnesium metal were confirmed by an observation using scanning electron micro scope (SEM) and a crystallographic analysis using X-ray diffraction (XRD). An electrochemical study of the deposition/dissolution process of the magnesium showed a remarkable dependency of the overpotential of magnesium deposition on the electrolyte concentration compared with lithium. This result suggests that the dependency of the overpotential on the electrolyte concentration prevent the locally concentrated current resulting to form very uniform deposits.
Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite
NASA Astrophysics Data System (ADS)
Palanivelu, R.; Ruban Kumar, A.
2014-06-01
Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes.
NASA Astrophysics Data System (ADS)
Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.
2018-04-01
Core/shell BaSnO3/ZnO (BS-ZO) nanostructures were prepared by oxalate precipitation method and wet-chemical method. BaSnO3 (BSO) cubic perovskite structure and ZnO hexagonal wurtzite structure were confirmed by X-ray diffraction (XRD). The crystallite sizes is 23 nm, 29 nm and 27 nm for BSO, ZnO and BS-ZO, respectively. Chunk-shape and cuboids morphology observed from scanning electron microscopy (SEM) analysis. The magnetic properties were studied by VSM for bare and core-shell nano systems and the room temperature ferromagnetism observed for core-shell nanostructures. The BSO/ZnO shows enhanced coercivity and saturated magnetization as compared with BSO and ZnO nanostructures.
Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups
NASA Astrophysics Data System (ADS)
Zhao, Zhiyuan; Yang, Zhanhong; Hu, Youwang; Li, Jianping; Fan, Xinming
2013-07-01
In this paper, carboxyl and amino groups have been introduced onto the surface of the multi-walled carbon nanotubes (MWCNTs) by the mixed acid treatment and the diazonium reaction, respectively. The presence of multifunctionality groups on the MWCNTs has been characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TGA) analysis, Raman spectra, scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS). The multifunctionalized carbon nanotubes were further utilized to react with acetyl chloride and ethylenediamine (EDA). The formation of the amide bond in the grafting reaction has been confirmed by FT-IR spectroscopy. The result indicates that the further grafting is successful. The multifunctionalized MWCNTs can be a new versatile platform for many interesting applications.
Structural analysis of HyFlex EDM instruments.
Iacono, F; Pirani, C; Generali, L; Bolelli, G; Sassatelli, P; Lusvarghi, L; Gandolfi, M G; Giorgini, L; Prati, C
2017-03-01
To compare the phase transformation behaviour, the microstructure, the nano-hardness and the surface chemistry of electro-discharge machined HyFlex EDM instruments with conventionally manufactured HyFlex CM. New and laboratory used HyFlex EDM were examined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Nano-hardness and modulus of elasticity were also investigated using a maximum load of 20 mN with a minimum of 40 significant indentations for each sample. Raman spectroscopy and field emission-scanning electron microscope (FE-SEM) were used to assess the surface chemistry of HyFlex EDM. HyFlex CM were subjected to the same investigations and used as a comparison. Nano-indentation data were statistically analysed using the Student's t-test. XRD analysis on HyFlex EDM revealed the presence of martensite and rhombohedral R-phase, while a mixture of martensite and austenite structure was identified in HyFlex CM. DSC analysis also disclosed higher austenite finish (Af) temperatures for electro-discharge machining (EDM) instruments. Significant differences in nano-hardness and modulus of elasticity were found between EDM and CM files (P < 0.05). FE-SEM and EDS analyses confirmed that both new EDM and CM files were covered by an oxide layer. Micro-Raman spectroscopy assessed the presence of rutile-TiO 2 . HyFlex EDM revealed peculiar structural properties, such as increased phase transformation temperatures and hardness. Present results corroborated previous findings and shed light on the enhanced mechanical behaviour of these instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan
2014-07-01
The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a “sandwich structure” as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50–55% of ultimate tensile strength). The dynamic modulus (E⁎) was found to stay almost constant at 47 GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.
Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan
2014-07-01
The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a "sandwich structure" as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50-55% of ultimate tensile strength). The dynamic modulus (E(⁎)) was found to stay almost constant at 47GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.
Geochemical characteristics of Au in the water systemfrom abandoned gold mines area
NASA Astrophysics Data System (ADS)
Cho, Kanghee; Kim, Bongju; Kim, Byungjoo; Park, Cheonyoung; Choi, Nagchoul
2013-04-01
The AMD (acid mine drainage) poses a threat not only to the aquatic life in mountain streams and rivers, but can also contaminate groundwater and downstream water bodies. Besides pyrite, sulfides of copper, zinc, cadmium, lead and arsenic in the drainage tunnels and tailings piles also undergo similar geochemical reactions, releasing toxic metals and more H+ into the mine drainage. The fate of gold in the AMD system is reduced and precipitated with iron oxides by oxidation-reduction reaction between ferrous/ferric iron and Au3+/Au0. The objective of this study was to investigate the influence of the transport characteristic on the distance through distribution of heavy metals and gold on the interrelation between acid mine drainage and sediments in the abandoned Gwang-yang gold mine, Korea. We conducted to confirm the chemical (chemical analysis and sequential extraction) and mineralogical property (XRD, SEM-EDS and polarization microscope) from AMD, sediments and tailing samples. The result of chemical analysis showed that Fe contents in the AMD and sediments from the upstream to the downstream ranged of 10.99 to 18.60 mg/L and 478.74 to 542.98 mg/kg, respectively. Also the contents of Au and As in the sediment were respectively ranged from 14.06 to 22.85 g/t and 0.245 to 0.612 mg/kg. In XRD analysis of the sediments, x-ray diffracted d-value belong to quartz, geothite was observed. The results of SEM-EDS analysis revealed that iron hydroxide were observed in the sediment and tailing. The result of sequential extraction for Au from the sediment showed that Au predominated in 26 to 27% of Organic matter fraction(STEP 4), and 24 to 25% of Residual fraction(STEP 5).
NASA Astrophysics Data System (ADS)
Takamasu, Kiyoshi; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami
2018-03-01
LER (Line Edge Roughness) and LWR (Line Width Roughness) of the semiconductor device are an important evaluation scale of the performance of the device. Conventionally, LER and LWR is evaluated from CD-SEM (Critical Dimension Scanning Electron Microscope) images. However, CD-SEM measurement has a problem that high frequency random noise is large, and resolution is not sufficiently high. For random noise of CD-SEM measurement, some techniques are proposed. In these methods, it is necessary to set parameters for model and processing, and it is necessary to verify the correctness of these parameters using reference metrology. We have already proposed a novel reference metrology using FIB (Focused Ion Beam) process and planar-TEM (Transmission Electron Microscope) method. In this study, we applied the proposed method to three new samples such as SAQP (Self-Aligned Quadruple Patterning) FinFET device, EUV (Extreme Ultraviolet Lithography) conventional resist, and EUV new material resist. LWR and PSD (Power Spectral Density) of LWR are calculated from the edge positions on planar-TEM images. We confirmed that LWR and PSD of LWR can be measured with high accuracy and evaluated the difference by the proposed method. Furthermore, from comparisons with PSD of the same sample by CD-SEM, the validity of measurement of PSD and LWR by CD-SEM can be verified.
2014-01-01
Introduction. Self-expandable metal stents (SEMS) are a nonsurgical option for treatment of malignant colorectal obstruction also as a bridge to surgery approach. The new nitinol conformable stent has improved clinical outcomes in these kinds of patients. We report a pilot experience with nitinol conformable SEMS placement as bridge to surgery treatment in patients with colorectal obstruction. Materials and Methods. Between April and August 2012, we collected data on colonic nitinol conformable SEMS placement in a cohort of consecutive symptomatic patients, with malignant colorectal obstruction, who were treated as a bridge to surgery. Technical success, clinical success, and adverse events were recorded. Results. Ten patients (7 male (70%)), with a mean age of 69.2 ± 10.1, were evaluated. The mean length of the stenosis was 3.6 ± 0.6 cm. Five patients (50%) were treated on an emergency basis. The median time from stent placement to surgery was 16 days (interquartile range 7–21). Technical and clinical success was achieved in all patients with a significant early improvement of symptoms. No adverse events due to the SEMS placement were observed. Conclusion. This pilot study confirmed the important role of nitinol conformable SEMS as a bridge to surgery option in the treatment of symptomatic malignant colorectal obstruction. PMID:24526914
Ramana, CV; Becker, U; Shutthanandan, V; Julien, CM
2008-01-01
Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia. The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400°C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant increase in size associated with a decrease in density with further annealing. PMID:18534025
Ramana, C V; Becker, U; Shutthanandan, V; Julien, C M
2008-06-05
Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia.The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA).Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400 degrees C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant increase in size associated with a decrease in density with further annealing.
Zhang, Nianli; Molenda, James A; Mankoci, Steven; Zhou, Xianfeng; Murphy, William L; Sahai, Nita
2013-10-01
The repair and replacement of damaged or diseased human bone tissue requires a stable interface between the orthopedic implant and living tissue. The ideal material should be both osteoconductive (promote bonding to bone) and osteoinductive (induce osteogenic differentiation of cells and generate new bone). Partially resorbable bioceramic materials with both properties are developed by expensive trial-and-error methods. Structure-reactivity relationships for predicting the osteoinductive properties of ceramics would significantly increase the efficiency of developing materials for bone tissue engineering. Here we propose the novel hypothesis that the crystal structure of a bioceramic controls the release rates, subsequent surface modifications due to precipitation of new phases, and thus, the concentrations of soluble factors, and ultimately, the attachment, viability and osteogenic differentiation of human Mesenchymal Stem Cells (hMSCs). To illustrate our hypothesis, we used two CaSiO 3 polymorphs, pseudo-wollastonite (psw, β-CaSiO 3 ) and wollastonite (wol, α-CaSiO 3 ) as scaffolds for hMSC culture. Polymorphs are materials which have identical chemical composition and stoichiometry, but different crystal structures. We combined the results of detailed surface characterizations, including environmental Scanning Electron Microscopy (SEM) back-scattered imaging, and spot-analysis and 2D elemental mapping by SEM-Energy Dispersive X-ray (SEM-EDX), High Resolution Transmission Electron Microscopy (HRTEM) and surface roughness analysis; culture medium solution analyses; and molecular/genetic assays from cell culture. Our results confirmed the hypothesis that the psw polymorph, which has a strained silicate ring structure, is more osteoinductive than the wol polymorph, which has a more stable, open silicate chain structure. The observations could be attributed to easier dissolution (resorption) of psw compared to wol, which resulted in concentration profiles that were more osteoinductive for the former. Thus, we showed that crystal structure is a fundamental parameter to be considered in the intelligent design of pro-osteogenic, partially resorbable bioceramics.
Structural Equation Model Trees
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2015-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789
Characterization of Sweetmeat Waste and Its Suitability for Sorption of As(III) in Aqueous Media.
Islam, Md Mirajul; Adak, Asok; Paul, Prabir K
2017-04-01
Presence of arsenic in effluents from mining, mineral processing, and metal plating industries pose a serious health hazard to human beings. In this research, suitability of cheap sweetmeat waste (SMW), which is sweet industry byproduct, was investigated for the treatment of As(III). The physicochemical properties of the sorbent were characterized. The SEM images revealed highly heterogeneous sorbent surface. XRD analysis showed the presence of different polysaccharides mainly containing hydroxyl functional group. FTIR analysis was also performed to confirm the functional groups present in the sorbent. Batch experiments were conducted for kinetic analysis, effect of initial As(III) concentration, sorbent dose, electrolytes, pH, and temperature in order to understand sorption behavior. Presence of electrolyte, solution pH, and temperature were found to affect the performance of the sorbent. The sorption followed pseudo-second order reaction and Langmuir isotherm model best. The studies revealed SMW to be an efficient media for removal of As(III) from aqueous environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvakumar, D.; Yogamalar, N. R.; Jayavel, R., E-mail: rjvel@annauniv.edu
Synthesis and characterization of talc/ZnO nanocomposites with the assistance of aloe-vera are investigated by structural and morphological studies. The crystal structure and the phase analysis of ZnO and talc are characterized and confirmed by X-ray diffraction (XRD) analysis. The average crystallite size estimation from the Scherrer formula and the particle size analysis clearly predicts that the size of the ZnO declines when aloe-vera is used as a capping molecule in comparison to the commercially available ZnO. The reduced crystallite size of ZnO renders a stable cohesion with the talc composition and the presence of distinct functional group pyridines/ammonia in themore » synthesized nanocomposites enriches the good adhesion between the as-synthesized material and cotton fabric. The adhesion and homogeneous distribution of talc/ZnO nanocomposites on the cotton fabric are inferred from the scanning electron microscopy (SEM) results. The basic studies and characterizations would pave way for futuristic bio-medical application.« less
NASA Astrophysics Data System (ADS)
Selvakumar, D.; Thenammai, A. N.; Yogamalar, N. R.; Hemamalini, R.; Jayavel, R.
2015-06-01
Synthesis and characterization of talc/ZnO nanocomposites with the assistance of aloe-vera are investigated by structural and morphological studies. The crystal structure and the phase analysis of ZnO and talc are characterized and confirmed by X-ray diffraction (XRD) analysis. The average crystallite size estimation from the Scherrer formula and the particle size analysis clearly predicts that the size of the ZnO declines when aloe-vera is used as a capping molecule in comparison to the commercially available ZnO. The reduced crystallite size of ZnO renders a stable cohesion with the talc composition and the presence of distinct functional group pyridines/ammonia in the synthesized nanocomposites enriches the good adhesion between the as-synthesized material and cotton fabric. The adhesion and homogeneous distribution of talc/ZnO nanocomposites on the cotton fabric are inferred from the scanning electron microscopy (SEM) results. The basic studies and characterizations would pave way for futuristic bio-medical application.
Ellis, Richard; Hing, Wayne; Dilley, Andrew; McNair, Peter
2008-08-01
Diagnostic ultrasound provides a technique whereby real-time, in vivo analysis of peripheral nerve movement is possible. This study measured sciatic nerve movement during a "slider" neural mobilisation technique (ankle dorsiflexion/plantar flexion and cervical extension/flexion). Transverse and longitudinal movement was assessed from still ultrasound images and video sequences by using frame-by-frame cross-correlation software. Sciatic nerve movement was recorded in the transverse and longitudinal planes. For transverse movement, at the posterior midthigh (PMT) the mean value of lateral sciatic nerve movement was 3.54 mm (standard error of measurement [SEM] +/- 1.18 mm) compared with anterior-posterior/vertical (AP) movement of 1.61 mm (SEM +/- 0.78 mm). At the popliteal crease (PC) scanning location, lateral movement was 6.62 mm (SEM +/- 1.10 mm) compared with AP movement of 3.26 mm (SEM +/- 0.99 mm). Mean longitudinal sciatic nerve movement at the PMT was 3.47 mm (SEM +/- 0.79 mm; n = 27) compared with the PC of 5.22 mm (SEM +/- 0.05 mm; n = 3). The reliability of ultrasound measurement of transverse sciatic nerve movement was fair to excellent (Intraclass correlation coefficient [ICC] = 0.39-0.76) compared with excellent (ICC = 0.75) for analysis of longitudinal movement. Diagnostic ultrasound presents a reliable, noninvasive, real-time, in vivo method for analysis of sciatic nerve movement.
SEM-based overlay measurement between via patterns and buried M1 patterns using high-voltage SEM
NASA Astrophysics Data System (ADS)
Hasumi, Kazuhisa; Inoue, Osamu; Okagawa, Yutaka; Shao, Chuanyu; Leray, Philippe; Halder, Sandip; Lorusso, Gian; Jehoul, Christiane
2017-03-01
The miniaturization of semiconductors continues, importance of overlay measurement is increasing. We measured overlay with analysis SEM called Miracle Eye which can output ultrahigh acceleration voltage in 1998. Meanwhile, since 2006, we have been working on SEM based overlay measurement and developed overlay measurement function of the same layer using CD-SEM. Then, we evaluated overlay of the same layer pattern after etching. This time, in order to measure overlay after lithography, we evaluated the see-through overlay using high voltage SEM CV5000 released in October 2016. In collaboration between imec and Hitachi High-Technologies, we evaluated repeatability, TIS of SEM-OVL as well as correlation between SEM-OVL and Opt-OVL in the M1@ADI and V0@ADI process. Repeatability and TIS results are reasonable and SEM-OVL has good correlation with Opt-OVL. By overlay measurement using CV 5000, we got the following conclusions. (1)SEM_OVL results of both M1 and V0 at ADI show good correlation to OPT_OVL. (2)High voltage SEM can prove the measurement capability of a small pattern(Less than 1 2um) like device that can be placed in-die area. (3)"In-die SEM based overlay" shows possibility for high order control of scanner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanipandian, Nagarajan; Kannan, Soundarapandian; Ramesh, Ramar
Graphical abstract: The figure is the TEM image of green synthesized silver nanoparticles from Cleistanthus collinus. In this investigation we have used the poisonous plant as a reducing and capping agent. This is a first time data to synthesis the metal nanoparticles using poisonous plant. - Highlights: • A hitherto unreported venomous plant mediated AgNPs synthesis. • The particle size is observed in the range of 20–40 nm. • Surface morphology of the well-dispersed silver nanoparticles is studied using SEM and TEM. • Crystalline nature of AgNPs is confirmed by X-ray diffraction analysis. • Antioxidant activities of green synthesized AgNPsmore » are tested in vitro. - Abstract: We report, here a simple green method for the preparation of silver nanoparticles (AgNPs) using the plant extract of Cleistanthus collinus as potential phyto reducer. The synthesized AgNPs were characterized by UV–vis spectra, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained results confirmed that the AgNPs were crystalline in nature and the morphological studies reveal the spherical shape of AgNPs with size ranging from 20 to 40 nm. The in vitro antioxidant activity of AgNPs showed a significant effect on scavenging of free radicals. The cytotoxicity study exhibited a dose-dependent effect against human lung cancer cells (A549) and normal cells (HBL-100), the inhibitory concentration (IC{sub 50}) were found to be 30 μg/mL and 60 μg/mL respectively. The in vivo histopathology of mouse organs proved that AgNPs does not possess toxic effect and can be extensively applied in biomedical sciences.« less
Application of Chlorophyll as Sensitizer for ZnS Photoanode in a Dye-Sensitized Solar Cell (DSSC)
NASA Astrophysics Data System (ADS)
Panda, B. B.; Mahapatra, P. K.; Ghosh, M. K.
2018-03-01
Zinc sulphide thin films have been synthesized by the electrodeposition method onto stainless steel substrate followed by dipping in acetone solution of chlorophyll in different time intervals to form photosensitised thin films. The photoelectrochemical parameters of the films have been studied using the photoelectrochemical cell having the cell configuration as follows {{photoelectrode/NaOH}}({1{{M}}} ) + {{S}}({1{{M}}} ) + {{N}}{{{a}}_2}{{S}}({1{{M}}} ){{/C}} ({{{graphite}}} ) . The photoelectrochemical characterization of the semiconductor film and dye-sensitised films has been carried out by measuring current-voltage (I-V) in the dark, power output and photoresponse. The study proves that the conductivity of both ZnS film and dye-sensitised ZnS films are n-type. The power output curves illustrate that open circuit voltage (V oc) and short circuit current (I sc) increase from 0.210 V to 0.312 V and from 0.297 mA to 0.533 mA, respectively. The fill factor initially decreases from 0.299 to 0.213 and then increases to 0.297 irregularly whereas efficiency increases from 0.047% to 0.123%. The UV-Vis absorbance spectrum of chlorophyll in acetone shows the presence of chlorophyll. The structural morphology of the ZnS thin films has also been analysed by using x-ray diffraction technique (XRD) and a scanning electron microscope (SEM). The XRD pattern shows the formation of nanocrystalline ZnS thin films of size 65 nm and the SEM images confirm the formation of fibrous film of ZnS. The energy diffraction analysis of x-ray confirms the formation of ZnS thin films.
FAM20A Gene Mutation: Amelogenesis or Ectopic Mineralization?
Lignon, Guilhem; Beres, Fleur; Quentric, Mickael; Rouzière, Stephan; Weil, Raphael; De La Dure-Molla, Muriel; Naveau, Adrien; Kozyraki, Renata; Dessombz, Arnaud; Berdal, Ariane
2017-01-01
Background and objective: FAM20A gene mutations result in enamel renal syndrome (ERS) associated with amelogenesis imperfecta (AI), nephrocalcinosis, gingival fibromatosis, and impaired tooth eruption. FAM20A would control the phosphorylation of enamel peptides and thus enamel mineralization. Here, we characterized the structure and chemical composition of unerupted tooth enamel from ERS patients and healthy subjects. Methods: Tooth sections were analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), and X-Ray Fluorescence (XRF). Results: SEM revealed that prisms were restricted to the inner-most enamel zones. The bulk of the mineralized matter covering the crown was formed by layers with varying electron-densities organized into lamellae and micronodules. Tissue porosity progressively increased at the periphery, ending with loose and unfused nanonodules also observed in the adjoining soft tissues. Thus, the enamel layer covering the dentin in all ERS patients (except a limited layer of enamel at the dentino-enamel junction) displayed an ultrastructural globular pattern similar to one observed in ectopic mineralization of soft tissue, notably in the gingiva of Fam20a knockout mice. XRD analysis confirmed the existence of alterations in crystallinity and composition (vs. sound enamel). XRF identified lower levels of calcium and phosphorus in ERS enamel. Finally, EDS confirmed the reduced amount of calcium in ERS enamel, which appeared similar to dentin. Conclusion: This study suggests that, after an initial normal start to amelogenesis, the bulk of the tissue covering coronal dentin would be formed by different mechanisms based on nano- to micro-nodule aggregation. This evocated ectopic mineralization process is known to intervene in several soft tissues in FAM20A gene mutant.
NASA Astrophysics Data System (ADS)
Mohammed, Gh.; El Sayed, Adel M.; Morsi, W. M.
2018-04-01
In this study, we aimed to control the optical and electrical properties of polyvinyl alcohol (PVA) in order to broaden its industrial and technological applications, which we achieved by blending PVA with polyvinyl pyrrolidone (PVP) and adding sol-gel prepared MgO nanopowder. The blended film and nanocomposite films were prepared using the solution casting technique. X-ray diffraction analyses showed that the crystallite size was ∼18.4 nm for MgO and the highest degree of crystallinity (XC) in the films was about 24.34% at 1.0 wt% MgO. High resolution transmission electron microscopy determined the nanoribbon morphology of MgO. Scanning electron microscopy (SEM) indicated the uniform distribution of the MgO nanoribbons on the surfaces of the PVA/PVP films. SEM and Fourier transform infrared spectroscopy also confirmed the interaction between the blend and MgO fillers. The effects of the additives on the glass transition (Tg) and melting (Tm) temperatures were evaluated by differential thermal analysis and differential scanning calorimetry. The appearance of one melting point confirmed the miscibility of the two polymers. According to ultraviolet-visible-near infrared spectroscopy measurements, the optical properties and optical constants of PVA could be adjusted by the addition of PVP and MgO, where the optical band gap (Eg) determined for PVA increased with the PVP content, whereas it decreased to 4.8 eV as the MgO content increased. The DC conductivity (σdc) of the films increased whereas the activation energy (Ea) decreased after the addition of MgO, possibly because the nanoribbon shape fixed the preferred conducting pathways. In addition, MgO could break the H-bond in sbnd OH groups of the blends to allow the free movement of the molecular chains.
NASA Astrophysics Data System (ADS)
Larramendi, S.; Vaillant Roca, Lidice; Saint-Gregoire, Pierre; Ferraz Dias, Johnny; Behar, Moni
2017-10-01
A ZnO nanorod structure was grown by the hydrothermal method and interpenetrated with CdTe using the isothermal closed space sublimation technique. The obtained structure was studied by using the Rutherford backscattering spectrometry (RBS), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM). The X-ray Diffraction (XRD) technique confirmed the presence of CdTe nanocrystals (NCs) of very small size formed on the surface and in the interspaces between the ZnO nanorods. The RBS observations together with the SEM observations give information on the obtained structure. Finally the photoluminescence studies show a strong energy confinement effect on the grown CdTe NCs.
Talbi, Abdelhamid; Kerchich, Yacine; Kerbachi, Rabah; Boughedaoui, Ménouèr
2018-01-01
Concentrations of particulate matter less than 1 μm, 2.5 μm, 10 μm and their contents of heavy metals were investigated in two different stations, urban and roadside at Algiers (Algeria). Sampling was conducted during two years by a high volume samplers (HVS) equipped with a cascade impactor at four levels stage, for one year sampling. The characterization of the heavy metals associated to the particulate matter (PM) was carried out by X-Ray Fluorescence analysis (XRF). The annual average concentration of PM 1 , PM 2.5 and PM 10 in both stations were 18.24, 32.23 and 60.01 μg m -3 respectively. The PM 1 , PM 2.5 and PM 10 concentrations in roadside varied from 13.46 to 25.59 μg m -3 , 20.82-49.85 μg m -3 and 45.90-77.23 μg m -3 respectively. However in the urban station, the PM 1 , PM 2.5 and PM 10 concentrations varied from 10.45 to 26.24 μg m -3 , 18.53-47.58 μg m -3 and 43.8-91.62 μg m -3 . The heavy metals associated to the PM were confirmed by Scanning Electron Microscopy-Energy Dispersive X-Ray analyses (SEM-EDX). The different spots of PM 2.5 analysis by SEM-EDX shows the presence of nineteen elements with anthropogenic and natural origins, within the heavy metal detected, the lead was found with maximum of 5% (weight percent). In order to determine the source contributions of PM levels at the two sampling sites sampling, principal compound analysis (PCA) was applied to the collected data. Statistical analysis confirmed anthropogenic source with traffic being a significant source and high contribution of natural emissions. At both sites, the PM 2.5 /PM 10 ratio is lower than that usually recorded in developed countries. The study of the back-trajectories of the air masses starting from Sahara shows that desert dust influences the concentration and the composition of the PM measured in Algiers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tunable microwave absorbing nano-material for X-band applications
NASA Astrophysics Data System (ADS)
Sadiq, Imran; Naseem, Shahzad; Ashiq, Muhammad Naeem; Khan, M. A.; Niaz, Shanawer; Rana, M. U.
2016-03-01
The effect of rare earth elements substitution in Sr1.96RE0.04Co2Fe27.80Mn0.2O46 (RE=Ce, Gd, Nd, La and Sm) X-type hexagonal ferrites prepared by using sol gel autocombustion method was studied. The XRD and FTIR analysis show the single phase of the prepared material. The lattice constants a (Å) and c (Å) varies with the additives. The particle size measured by Scherer formula for all the samples varies in the range of 54-100 nm and confirmed by the TEM analysis. The average grain size measured by SEM analysis lies in the range of 0.672-1.01 μm for all the samples. The Gd-substituted ferrite has higher value of coercivity (526.06 G) among all the samples which could be a good material for longitudinal recording media. The results also indicate that the Gd-substituted sample has maximum reflection loss of -25.2 dB at 11.878 GHz, can exhibit the best microwave absorption properties among all the substituted samples. Furthermore, the minimum value of reflection loss shifts towards the lower and higher frequencies with the substitution of rare earth elements which confirms that the microwave absorption properties can be tuned with the substitution of rare earth elements in pure ferrites. The peak value of attenuation constant at higher frequency agrees well the reflection loss data.
Photoresponsive cross-linked polymeric particles for phototriggered burst release.
Wang, Zhen; Yu, Lili; Lv, Cong; Wang, Peng; Chen, Yedong; Tang, Xinjing
2013-01-01
We synthesized a series of cross-linked photoresponsive polymeric particles with photolabile monomers and cross-linkers through miniemulsion polymerization. These particles are quite stable in dark, while light irradiation caused the breakage of particles and the efficient release of encapsulated contents up to 95% based on Nile red fluorescence. Photoswitches of particle systems were confirmed by fluorescence spectroscopy, SEM and colorimetry. Particle uptake and triggered release in RAW264.7 cells were confirmed by fluorescein diacetate loaded particles. © 2013 The Authors. Photochemistry and Photobiology © 2013 The American Society of Photobiology.
Cámara, Beatriz; De los Ríos, Asuncion; Urizal, Marta; de Buergo, Mónica Alvarez; Varas, Maria Jose; Fort, Rafael; Ascaso, Carmen
2011-08-01
This study examines the microbial colonization of three fronts of an abandoned dolostone quarry (Redueña, Madrid, Spain) exposed to atmospheric conditions for different time periods since Roman times to the present. Through scanning electron microscopy in backscattered electron mode (SEM-BSE), endolithic colonization was predominantly detected in the most recently exposed front, while in the longer exposed quarry fronts, epilithic forms of growth were most often observed. These observations were confirmed by denaturing gradient gel electrophoresis (DGGE) analysis. Based on the distribution pattern of microbial colonization in the different quarry fronts, we then established a sequence of colonization events that took place over this long time frame. Bioalteration processes related to this sequential colonization were also identified. Characterizing these sequential processes can be useful for interpreting biodeterioration processes in historic dolostone monuments, especially those affecting constructions in the area of the Redueña stone quarry. In a second experimental stage, different biocide treatments were tested on this quarry rock to find the best way to avoid the microbial colonization effects identified. Through combined SEM-BSE/DGGE analysis, the efficacy of several biocides against the microorganisms inhabiting the dolostones was assessed after 4 and 16 months treatment. In general, all treatments were effective at reducing around 80% of the lichen cover, although effects on endolithic lithobiontic communities were dependent on how well the rock surface had been mechanically cleaned prior to treatment and gradually disappeared over time.
Moiseeva, Natalia S; Kunin, Anatoly A
2018-03-01
Restorative filling materials used for dental caries prevention and treatment consist of various components including monomers or oligomers, which play a significant role in forming the main structure of these materials, as well as in characterising their physical, mechanical and chemical properties. The necessity for the development and improvement of structural characteristics of polymeric dental filling materials intended for caries prevention and their life duration increase served as the initiating factor of our research. According to the research purpose and challenges, we studied the changes in the physical, mechanical and chemical properties of composite filling materials with and without electromagnetic field influence. The investigations in vivo include the study of microstructural features of polymeric filling materials by scanning electron microscopy (SEM) and the investigations in vitro include the study of sealed and extracted human teeth chips by using X-ray spectral analysis. We also evaluated the changes in the strength characteristics of dental filling materials with and without electromagnetic field influence. The analysis of the obtained data indicates the presence of structural changes in polymeric dental filling materials, including the material microstructure condensation confirmed by the SEM results, an increase in the strength and adhesion characteristics and certain regularities of the chemical elemental composition concentration change in the area of hard tooth tissue and dental filling material. These scientific data will provide tooth caries prevention and promote the increase of treatment quality.
NASA Astrophysics Data System (ADS)
Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.
2018-01-01
The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.
NASA Astrophysics Data System (ADS)
De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Concheso, A.; Montes-Morán, Miguel A.
2016-11-01
A new procedure of elimination of Pb2+ from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N2 at -196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb2+ was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb2+ removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO3 on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb2+. Accordingly, retention capacities as high as 63 mg of Pb2+ per gram of adsorbent have been attained.
Chai, Minwei; Shen, Xiaoxue; Li, Ruili; Qiu, Guoyu
2015-08-15
The risks of heavy metal in Futian mangrove forest sediment were assessed using the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) methods. The results indicated that AVS distributions were more variable than the SEM distributions at all 16 sampling sites. The positive correlation between AVS and SEM indicated that their similar formative and existing conditions and that AVS acted as an important carrier for SEM. The major SEM component was Zn (69.7.3-94.2%), whereas the Cd contribution (the most toxic metal present) to SEM was no more than 1%. The possible adverse effects caused by heavy metals at ten sampling sites may be due to higher levels of SEMs, rather than AVSs. The total organic carbon (TOC) was an important metal-binding phase in the sediments. Taking into account the TOC concentration, there were no adverse effects due to heavy metals in any of the Futian mangrove forest sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Standard deviation and standard error of the mean.
Lee, Dong Kyu; In, Junyong; Lee, Sangseok
2015-06-01
In most clinical and experimental studies, the standard deviation (SD) and the estimated standard error of the mean (SEM) are used to present the characteristics of sample data and to explain statistical analysis results. However, some authors occasionally muddle the distinctive usage between the SD and SEM in medical literature. Because the process of calculating the SD and SEM includes different statistical inferences, each of them has its own meaning. SD is the dispersion of data in a normal distribution. In other words, SD indicates how accurately the mean represents sample data. However the meaning of SEM includes statistical inference based on the sampling distribution. SEM is the SD of the theoretical distribution of the sample means (the sampling distribution). While either SD or SEM can be applied to describe data and statistical results, one should be aware of reasonable methods with which to use SD and SEM. We aim to elucidate the distinctions between SD and SEM and to provide proper usage guidelines for both, which summarize data and describe statistical results.
Standard deviation and standard error of the mean
In, Junyong; Lee, Sangseok
2015-01-01
In most clinical and experimental studies, the standard deviation (SD) and the estimated standard error of the mean (SEM) are used to present the characteristics of sample data and to explain statistical analysis results. However, some authors occasionally muddle the distinctive usage between the SD and SEM in medical literature. Because the process of calculating the SD and SEM includes different statistical inferences, each of them has its own meaning. SD is the dispersion of data in a normal distribution. In other words, SD indicates how accurately the mean represents sample data. However the meaning of SEM includes statistical inference based on the sampling distribution. SEM is the SD of the theoretical distribution of the sample means (the sampling distribution). While either SD or SEM can be applied to describe data and statistical results, one should be aware of reasonable methods with which to use SD and SEM. We aim to elucidate the distinctions between SD and SEM and to provide proper usage guidelines for both, which summarize data and describe statistical results. PMID:26045923
Hein, L R O; Campos, K A; Caltabiano, P C R O; Kostov, K G
2013-01-01
The methodology for fracture analysis of polymeric composites with scanning electron microscopes (SEM) is still under discussion. Many authors prefer to use sputter coating with a conductive material instead of applying low-voltage (LV) or variable-pressure (VP) methods, which preserves the original surfaces. The present work examines the effects of sputter coating with 25 nm of gold on the topography of carbon-epoxy composites fracture surfaces, using an atomic force microscope. Also, the influence of SEM imaging parameters on fractal measurements is evaluated for the VP-SEM and LV-SEM methods. It was observed that topographic measurements were not significantly affected by the gold coating at tested scale. Moreover, changes on SEM setup leads to nonlinear outcome on texture parameters, such as fractal dimension and entropy values. For VP-SEM or LV-SEM, fractal dimension and entropy values did not present any evident relation with image quality parameters, but the resolution must be optimized with imaging setup, accompanied by charge neutralization. © Wiley Periodicals, Inc.
Kage, S; Kudo, K; Kaizoji, A; Ryumoto, J; Ikeda, H; Ikeda, N
2001-07-01
We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method.
The development of comparative bias index
NASA Astrophysics Data System (ADS)
Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin
2017-08-01
Structural Equation Modeling (SEM) is a second generation statistical analysis techniques developed for analyzing the inter-relationships among multiple variables in a model simultaneously. There are two most common used methods in SEM namely Covariance-Based Structural Equation Modeling (CB-SEM) and Partial Least Square Path Modeling (PLS-PM). There have been continuous debates among researchers in the use of PLS-PM over CB-SEM. While there is few studies were conducted to test the performance of CB-SEM and PLS-PM bias in estimating simulation data. This study intends to patch this problem by a) developing the Comparative Bias Index and b) testing the performance of CB-SEM and PLS-PM using developed index. Based on balanced experimental design, two multivariate normal simulation data with of distinct specifications of size 50, 100, 200 and 500 are generated and analyzed using CB-SEM and PLS-PM.
NASA Astrophysics Data System (ADS)
Undre, Pallavi G.; Birajdar, Shankar D.; Kathare, R. V.; Jadhav, K. M.
2018-05-01
In this work pure and Ni-doped ZnO nanoparticles have been prepared by sol-gel method. Influence of nickel doping on structural, morphological and magnetic properties of prepared nanoparticles was investigated by X-ray diffraction technique (XRD), Scanning electron microscopy (SEM) and Pulse field magnetic hysteresis loop. X-ray diffraction pattern shows the formation of a single phase with hexagonal wurtzite structure of both pure and Ni-doped ZnO nanoparticles. The lattice parameters `an' and `c' of Ni-doped ZnO is slightly less than that of pure ZnO nanoparticles. The crystalline size of prepared nanoparticles is found to be in 29 and 31 nm range. SEM technique used to examine the surface morphology of samples, SEM image confirms the nanocrystalline nature of present samples. From the pulse field hysteresis loop technique pure and Ni-doped ZnO nanoparticles show diamagnetic and ferromagnetic behavior at room temperature respectively.
Respiratory assessment of refractory ceramic fibers in a heating technician population.
Lucas, David; Clamagirand, Vincent; Capellmann, Pascale; Hervé, Agnès; Mauguen, Gilles; Le Mer, Yannik; Jegaden, Dominique
2018-04-01
Refractory ceramic fibers (RCF) have been extensively used for insulation in condensing boilers. The aim of this study was to evaluate the respiratory exposure to these fibers among maintenance heating technicians. We first created a working group (Carsat Brittany and Finistère Occupational Health Services) and carried out a sampling strategy. Atmospheric measurements were done during work tasks, and filters were analyzed by phase contrast microscopy (PCM) and scanning electron microscopy (SEM) in French approved laboratories. Four companies were included for a total of 15 days of work. During those 15 workdays, 12 SEM and 21 PCM samples were taken and analyzed. The phase contrast microscopy and SEM average results were 0.04 and 0.004 fibers/cm 3 , respectively. In conclusion, the study confirms heating technician RCF respiratory exposure during maintenance work for both condensation gas boilers and atmospheric boilers. Collective and individual prevention measures should be implemented along with appropriate medical follow-up.
Improvement in the Characterization of the 2099 Al-Li Alloy by FE-SEM
NASA Astrophysics Data System (ADS)
Brodusch, Nicolas; Trudeau, Michel L.; Michaud, Pierre; Brochu, Mathieu; Rodrigue, Lisa; Boselli, Julien; Gauvin, Raynald
This paper describes how state-of-the-art Field-Emission Scanning Electron Microscopy (FE-SEM) can contribute to the characterization of the 2099 aluminum-lithium alloy, and metallic alloys in general. Investigations were carried out on bulk and thinned samples. BSE imaging at 3kV and STEM imaging at 30kV along with highly efficient microanalysis permitted to correlate experimental and expected structures. Although our results confirm previous studies, this work points out possible substitutions of Mg and Zn with Li, Al and Cu in the T1 precipitates. Zinc and magnesium are also present in "rice grain" shaped precipitates at the grain boundaries. The versatility of the FE-SEM is highlighted in that it can provide information at the macro and micro scales with relevant details. Its ability to probe the distribution of precipitates from nano-to micro-sizes throughout the matrix makes Field-Emission Scanning Electron Microscopy a suitable technique for the characterization of metallic alloys.
NASA Astrophysics Data System (ADS)
Sathiskumar, Swamiappan; Vanaraj, Sekar; Sabarinathan, Devaraj; Preethi, Kathirvel
2018-02-01
Materials based on hydroxyapatite (HAp) Synthesized from bio-wastes have been regarded as useful, novel, eco-friendly medical applications that are targeted primarily for their antibacterial nature. In the present study, HAp was Synthesized from the fish scales of Labeo rohita using alkaline heat treatment and subsequently mixed with 1, 2 and 3 wt% of zinc (Zn) at 800 °C using calcination method to yield Zn-HAp composites. A detailed characterization of the generated composites was analysed by XRD, FT-IR, SEM, EDX and DLS methods. Further, antibacterial and biofilm inhibitory activity of the generated composites was determined using strains of Staphylococcus aureus and Escherichia coli. The confirmation of the presence of zinc, confirmed by EDAX spectra, XRD, FT-IR, SEM and DLS observations, established that HAp and Zn-HAp composites were without impurities, irregular in shape and were 848 nm sized particles. Although 1-3 wt% Zn-HAp composites showed antibacterial activity, the 3 wt% Zn-HAp composite was found suitable to kill the surrounding bacterial growth and showed potent inhibitory activity against biofilm formation.
Phytoremediation of arsenic by Trapa natans in a hydroponic system.
Baruah, Sangita; Borgohain, Jayasree; Sarma, K P
2014-05-01
Phytoremediation of arsenic (As) by water chestnut (Trapa natans) in a hydroponic system was studied. Plants were grown at two concentrations of arsenic, 1.28 mg/L and 10.80 mg/L, in a single metal solution. Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) confirmed highest arsenic concentration in the roots, followed by shoots and leaves. SEM-EDX also confirmed internalization of arsenic in T. natans and the damage caused due to arsenic exposure. Fourier Transform Infra Red Spectroscopy (FT-IRS) indicated that the binding characteristics of the arsenic ions involved the hydroxyl, amide, amino, and thiol groups in the biomass. Chlorophyll concentration decreased with increasing metal concentration and duration of exposure, but proline content increases with increasing concentration in the plant. Morphological changes were studied on the 3rd, 5th and 7th day. Unhealthy growth and chlorosis were found to be related with arsenic toxicity. From the above studies it is clear that T. natans can be used successfully for the removal of arsenic ions by a phytoremediation process.
Shanthi, S I; Poovaragan, S; Arularasu, M V; Nithya, S; Sundaram, R; Magdalane, C Maria; Kaviyarasu, K; Maaza, M
2018-08-01
Nanoparticles of Li, Mg and Sr doped and undoped zinc oxide was prepared by simple precipitation method. The structural, optical, and magnetic properties of the samples were investigated by the Powder X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Ultra-violet Visible spectroscopy (UV-vis) spectra, Photoluminescence (PL) and Vibrational Sample Magnetometer (VSM). The Powder X-ray diffraction data confirm the formation of hexagonal wurtzite structure of all doped and undoped ZnO. The SEM photograph reveals that the pores availability and particles size in the range of 10 nm-50 nm. FTIR and UV-Visible spectra results confirm the incorporation of the dopant into the ZnO lattice nanostructure. The UV-Visible spectra indicate that the shift of blue region (lower wavelength) due to bandgap widening. Photoluminescence intensity varies with doping due to the increase of oxygen vacancies in prepared ZnO. The pure ZnO exist paramagnetic while doped (Li, Mg and Sr) ZnO exist ferromagnetic property. The photocatalytic activity of the prepared sample also carried out in detail.
Chakraborty, Rajib; Sengupta, Srijan; Saha, Partha; Das, Karabi; Das, Siddhartha
2016-12-01
The orthopaedic implants for human body are generally made of different biomaterials like stainless steels or Ti based alloys. However, it has been found that from surface properties point of view, none of these materials is attractive for fast tissue or cell growth on the surface of implant. This is one of the most important criteria to assure quick bonding between implant and body tissues vis-à-vis minimum recovery time for the patient. Keeping in view of the above facts, this work involves the pulsed electro-deposition coating of biocompatible hydroxyapatite and its group compounds from a diluted bath of calcium and phosphate salt at various current densities over the biomaterial sheet of SS316. SEM study confirms different morphologies of the coatings at different current densities. Characterization techniques like X-ray diffraction, SEM with EDX and FTIR have been used to confirm the phase and percentage quantity of hydroxyapatite compound in the depositions. This coating can serve as a medium for faster tissue growth over the metallic implants. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanel, S. R.; Clement, T. P.; Barnett, M. O.
Synthetic nano-scale hydroxyapatite (NHA) was prepared and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods. The XRD data confirmed that the crystalline structure and chemical composition of NHA correspond to Ca 5 OH(PO 4 ) 3 . The SEM data confirmed the size of NHA to be less than 50 nm. A two-dimensional physical model packed with saturated porous media was used to study the transport characteristics of NHA under constant flow conditions. The data show that the transport patterns of NHA were almost identical to tracer transport patterns. This result indicates that the NHA material can movemore » with water like a tracer, and its movement was neither retarded nor influenced by any physicochemical interactions and/or density effects. We have also tested the reactivity of NHA with 1 mg/L hexavalent uranium (U(VI)) and found that complete removal of U(VI) is possible using 0.5 g/L NHA at pH 5 to 6. Our results demonstrate that NHA has the potential to be injected as a dilute slurry for in situ treatment of U(VI)-contaminated groundwater systems.« less
Sim, H H; Kim, Y J; Choi, H J
2012-12-01
Black inorganic pigment modified with poly(styrene-co-acrylonitrile) was fabricated via dispersion polymerization, and then the synthesized hybrid nanoparticles were examined by SEM to confirm their morphology, while their density and size were studied using a gas pycnometer and electrophoretic light scattering apparatus, respectively. We also confirmed their chemical structure and coated state via FT-IR and TGA. Electrophoretic characteristics including the zeta potential were examined via an electrophoretic light scattering apparatus, while the movement of particles was directly observed by an optical microscopy under an electric field applied. The hybrid nanoparticles were confirmed to possess an electrophoretic property as a potential candidate for the microcapsule-type electrophoretic display.
SEM Imaging and Chemical Analysis of Aerosol Particles from Surface and Hi-altitudes in New Jersey.
NASA Astrophysics Data System (ADS)
Bandamede, M.; Boaggio, K.; Bancroft, L.; Hurler, K.; Magee, N. B.
2016-12-01
We report on Scanning Electron Microscopy analysis of aerosol particle morphology and chemistry. The work includes the first comparative SEM analysis of aerosol particles captured by balloon at high altitude. The particles were acquired in an urban/suburban environment in central New-Jersey. Particles were sampled from near the surface using ambient air filtration and at high-altitudes using a novel balloon-borne instrument (ICE-Ball, see abstract by K. Boaggio). Particle images and 3D geometry are acquired by a Hitachi SU-5000 SEM, with resolution to approximately 3 nm. Elemental analysis on particles is provided by Energy Dispersive X-Ray Spectroscopy (EDS, EDAX, Inc.). Uncoated imaging is conducted in low vacuum within the variable-pressure SEM, which provides improved detection and analysis of light-element compositions including Carbon. Preliminary results suggest that some similar particle types and chemical species are sampled at both surface and high-altitude. However, as expected, particle morphologies, concentrations, chemistry, and apparent origin vary significantly at different altitudes and under different atmospheric flow regimes. Improved characterization of high-altitude aerosol particles, and differences from surface particulate composition, may advance inputs for atmospheric cloud and radiation models.
Environmental scanning electron microscope imaging examples related to particle analysis.
Wight, S A; Zeissler, C J
1993-08-01
This work provides examples of some of the imaging capabilities of environmental scanning electron microscopy applied to easily charged samples relevant to particle analysis. Environmental SEM (also referred to as high pressure or low vacuum SEM) can address uncoated samples that are known to be difficult to image. Most of these specimens are difficult to image by conventional SEM even when coated with a conductive layer. Another area where environmental SEM is particularly applicable is for specimens not compatible with high vacuum, such as volatile specimens. Samples from which images were obtained that otherwise may not have been possible by conventional methods included fly ash particles on an oiled plastic membrane impactor substrate, a one micrometer diameter fiber mounted on the end of a wire, uranium oxide particles embedded in oil-bearing cellulose nitrate, teflon and polycarbonate filter materials with collected air particulate matter, polystyrene latex spheres on cellulosic filter paper, polystyrene latex spheres "loosely" sitting on a glass slide, and subsurface tracks in an etched nuclear track-etch detector. Surface charging problems experienced in high vacuum SEMs are virtually eliminated in the low vacuum SEM, extending imaging capabilities to samples previously difficult to use or incompatible with conventional methods.
Park, Young Il
2016-01-01
BACKGROUND/OBJECTIVES This research analyzes the effects of the food choices of industrial workers according to their sugar intake pattern on their job satisfaction through the construction of a model on the relationship between sugar intake pattern and job satisfaction. SUBJECTS/METHODS Surveys were collected from May to July 2015. A statistical analysis of the 775 surveys from Kyungsangnam-do was conducted using SPSS13.0 for Windows and SEM was performed using the AMOS 5.0 statistics package. RESULTS The reliability of the data was confirmed by an exploratory factor analysis through a Cronbach's alpha coefficient, and the measurement model was proven to be appropriate by a confirmatory factor analysis in conjunction with AMOS. The results of factor analysis on food choice, sugar intake pattern and job satisfaction were categorized into five categories. The reliability of these findings was supported by a Cronbach's alpha coefficient of 0.6 and higher for all factors except confection (0.516) and dairy products (0.570). The multicollinearity results did not indicate a problem between the variables since the highest correlation coefficient was 0.494 (P < 0.01). In an attempt to study the sugar intake pattern in accordance with the food choices and job satisfaction of industrial workers, a structural equation model was constructed and analyzed. CONCLUSIONS All tests confirmed that the model satisfied the recommended levels for the goodness of fit index, and thus, the overall research model was proven to be appropriate. PMID:27478555
Improved microstructure of cement-based composites through the addition of rock wool particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Wei-Ting; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan; Cheng, An, E-mail: ancheng@niu.edu.tw
2013-10-15
Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reducedmore » chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.« less
The Combined Detection of Morphological and Molecular Biomarkers: Implications for Astrobiology
NASA Technical Reports Server (NTRS)
Toporski, J.; Steele, A.; Westall, F.; McKay, D. S.
2001-01-01
Experience gathered by previous researchers during their hunt for evidence of early Earth life has shown the complexity in interpreting observations of possible microfossils and to establish the evidence to be positive. Similarly, the stillsimmering controversy on the nature of the nano-structures in Martian meteorite ALH84001 described by McKay et al. (1996) emphasizes the difficulties of conclusively identifying those structures as (a) fossilized bacterial cells and (b) establish their indigeneity. A better understanding of biological signatures in rocks is needed in order to identify traces of microbial life, which include morphological, mineralogical and chemical traces. It is thus considered crucial to tackle the problems emerging in the search for evidence of early life on Earth and in exopaleontological research with a multidisciplinary approach. With this is mind we applied surface sensitive Time of Flight-Secondary Ion Mass Spectroscopy (ToF-SIMS) to a previously described 25 m.y. old fossil bacterial biofilm. This technique allows in situ analysis with high mass resolution as well as molecular imaging of micron sized structures. As no extraction or derivatisation of the sample is required for ToF-SIMS analysis, electron microscopical investigation of the same samples subsequent to analysis is possible, thus allowing the combination of molecular and morphological biomarkers. The analysed fossil bacterial biofilms were associated with macrofossils from volcanoclastic lacustrine sediments from the Upper Oligocene Enspel formation (Germany). Preliminary scanning electron microscopy (SEM) studies have shown that a fossil structure interpreted as a coprolite purely consisted of fossilized bacterial biofilm. For ToF-SIMS investigation small particles were taken from the fossil biofilm and mounted onto Au-coated In-foil and analysed in a Phi Evans T-2000 TRIFT system. The ToF-SIMS analysed samples were Au/Pd-sputter coated and imaged using a Philips XL40 Field Emission Gun SEM (FEG-SEM). ToF-SIMS analysis of the organic rich fossil biofilm (TOC 29%) in the 0-100 Dalton (Da) range showed significant amounts of inorganic species, confirming the results obtained previously by EDX analysis, clearly showing the bacterial fossils to be mineralised. ToF-SIMS furthermore revealed the presence of a variety of low- and high-mass organic molecules and fragments thereof. These include peaks indicative of alkenes and alkanes, aromatic organic species and the polycyclic aromatic hydrocarbon naphthalene. More tentatively, peaks indicative of alkyl pyrroles and pyridyl-CH2 were identified. Other peaks of interest include peaks indicative of C(n)H(2n)O2 and C(n)H(2n-2)O2, which according to their general formula would suggest the presence of both saturated and unsaturated fatty acids although further in situ derivatisation experiments and GC-MS (Gas Chromatography MS) need to be applied to verify this beyond doubt. Furthermore, peaks at m/z 370, 384, 398, 412, 426, 440, 454 and 468 were identified, which indicate the potential presence of bacterial hopanes, a class of biomarkers indicative of bacteria. The main diagnostic peak for this group of chemicals is the fragment at m/z 191.18. Our studies conducted on purified hopane standards have shown that in the high-mass resolution mode differentiation of this diagnostic hopane peak and polyethylene at m/z 191.05 is possible. However, the spectra discussed here were collected in the lower resolution mapping mode, therefore this differentiation was not possible. The centroids of the possible hopane peaks obtained on the fossil biofilms are well within the range associated with bacterial hopanes. There is a strong possibility therefore that hopanoids may be associated with the fossil bacterial cells. Due to the non-destructive nature of ToF-SIMS, analysed samples can be studied using SEM, thus allowing the combination of morphological and molecular biomarkers. Subsequent SEM analysis of the ToF-SIMS analysed samples confirmed that the analysed material purely consists of fossil bacterial cells. This is thus the first successful effort to demonstrate the combination of spectral and morphological biomarkers. The advantages of highly sensitive non-destructive in situ analysis techniques for biomarker detection are invaluable, particularly with respect to envisaged Mars sample return missions, as it may allow us to identify remains and traces of former microbial life in both ancient terrestrial and extraterrestrial materials. This technique may prove particularly useful in the quest for extraterrestrial life with respect to precious extraterrestrial materials, as minute quantities are sufficient to conduct analysis.
Automated SEM and TEM sample preparation applied to copper/low k materials
NASA Astrophysics Data System (ADS)
Reyes, R.; Shaapur, F.; Griffiths, D.; Diebold, A. C.; Foran, B.; Raz, E.
2001-01-01
We describe the use of automated microcleaving for preparation of both SEM and TEM samples as done by SELA's new MC500 and TEMstation tools. The MC500 is an automated microcleaving tool that is capable of producing cleaves with 0.25 μm accuracy resulting in SEM-ready samples. The TEMstation is capable of taking a sample output from the MC500 (or from SELA's earlier MC200 tool) and producing a FIB ready slice of 25±5 μm, mounted on a TEM-washer and ready for FIB thinning to electron transparency for TEM analysis. The materials selected for the tool set evaluation mainly included the Cu/TaN/HOSP low-k system. The paper is divided into three sections, experimental approach, SEM preparation and analysis of HOSP low-k, and TEM preparation and analysis of Cu/TaN/HOSP low-k samples. For the samples discussed, data is presented to show the quality of preparation provided by these new automated tools.
Ahmed, Abul-Fotouh; Alshahrani, Saad; Morgan, Anthony; Gabr, Ahmed H; Abdel-Razik, Mohamed; Daoud, Abdallah
2017-12-01
To evaluate the frequency of sex-enhancing medications (S-EM) use and to investigate the demographics and sexual characteristics of the S-EM users amongst a Saudi Arabian male population. A cross-sectional sample of 1176 Saudi Arabian men was recruited using a web-based survey between 1 January and 1 April 2015. The survey included multiple open and closed questions to assess the frequency of S-EM use; and demographics, clinical, and sexual characteristics of S-EM users, as well as their perceptions of S-EM. Amongst the participants, 1008 were sexually active and included in the data analysis. Of the sexually active participants, 402 (39.9%) reported S-EM use in the form of herbal or phosphodiesterase type 5 inhibitors at some time in their lives. Comparing S-EM users with S-EM non-users, the S-EM users had a number of demographic and sexual characteristics including: higher education level, higher income, smoking, more than one sexual partner, longer sexual activity duration, higher frequency of sexual intercourse, and lower sexual satisfaction level. Most of the S-EM users (82.1%) bought S-EM without a medical prescription and 62.5% had used them recreationally. In all, 52% of respondents used S-EM to treat ED and 69% of those who used it recreationally reported enhancement of erection with S-EM usage. Demographic and sexual characteristics of S-EM users and the attitude of the users towards the S-EM were identified amongst a Saudi Arabian male population.
Correlative SEM SERS for quantitative analysis of dimer nanoparticles.
Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C
2016-11-14
A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.
Adsorption of Cd2+ ions on plant mediated SnO2 nanoparticles
NASA Astrophysics Data System (ADS)
Haq, Sirajul; Rehman, Wajid; Waseem, Muhammad; Shahid, Muhammad; Mahfooz-ur-Rehman; Hussain Shah, Khizar; Nawaz, Mohsan
2016-10-01
Plant mediated SnO2 nanoparticles were synthesized by using SnCl4.5H2O as a precursor material. The nanoparticles were then characterized for BET surface area measurements, energy dispersive x-rays (EDX), scanning electron microscopy (SEM), UV-vis diffuse reflectance (DRS) spectra and x-rays diffraction (XRD) analysis. The successful synthesis of SnO2 nanoparticles was confirmed by EDX analysis. The particle sizes were in the range 19-27 nm whereas the crystallite size computed from XRD measurement was found to be 19.9 nm. Batch adsorption technique was employed for the removal of Cd2+ ions from aqueous solution. The sorption studies of Cd2+ ions were performed at pHs 4 and 6. The equilibrium concentration of Cd2+ ions was determined by atomic absorption spectrometer (flame mode). The uptake of Cd2+ ions was affected by initial concentration, pH and temperature of the electrolytic solution. It was observed that the adsorption of Cd2+ ions enhanced with increase in the initial concentration of Cd2+ ions whereas a decrease in the percent adsorption was detected. From the thermodynamic parameters, the adsorption process was found spontaneous and endothermic in nature. The n values confirmed 2:1 exchange mechanism between surface protons and Cd2+ ions.
Vinodhini, P Angelin; K, Sangeetha; Thandapani, Gomathi; P N, Sudha; Jayachandran, Venkatesan; Sukumaran, Anil
2017-11-01
In the present work, a series of novel nanochitosan/cellulose acetate/polyethylene glycol (NCS/CA/PEG) blend flat sheet membranes were fabricated in different ratios (1:1:1, 1:1:2, 2:1:1, 2:1:2, 1:2:1, 2:2:1) in a polar solvent of N,N'-dimethylformamide (DMF) using the most popular phase inversion method. Nanochitosan was prepared by the ionotropic gelation method and its average particle size has been analyzed using Dynamic Light Scattering (DLS) method. The effect of blending of the three polymers was investigated using FTIR and XRD studies. FTIR results confirmed the formation of well-blended membranes and the XRD analysis revealed enhanced amorphous nature of the membrane ratio 2:1:2. DSC study was conducted to find out the thermal behavior of the blend membranes and the results clearly indicated good thermal stability and single glass transition temperature (T g ) of all the prepared membranes. Asymmetric nature and rough surface morphology was confirmed using SEM analysis. From the results it was evident that the blending of the polymers with higher concentration of nanochitosan can alter the nature of the resulting membranes to a greater extent and thus amorphous membranes were obtained with good miscibility and compatibility. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sasikumar, Ragu; Chen, Tse-Wei; Chen, Shen-Ming; Rwei, Syang-Peng; Ramaraj, Sayee Kannan
2018-05-01
Tin(IV) oxide nanoparticles (SnO2 NPs) doped on the surface of graphene oxide (GO) sheets for application in Dye-Sensitized Solar Cells (DSSCs). The effective incorporation of SnO2 on the surface of GO sheets were confirmed by powder X-ray diffraction (PXRD), Fourier transform infra-red spectroscopy (FT-IR), thermogravimetric analysis (TGA), electrochemical impedance spectroscopy (EIS), and Raman spectroscopy. The morphology of the GO/SnO2 hybrid nanocomposite was confirmed by field emission scanning electron microscopy (FE-SEM) analysis. This current study involvement with the effect of different photo-anodes such as GO, SnO2, and GO/SnO2 hybrid nanocomposite on the power conversion efficiency (PCE) of the triiodide electrolyte based DSSCs. Remarkably, GO/SnO2 hybrid nanocomposite based photo-anode for DSSC observed PCE of 8.3% and it is about 12% higher than that of un-doped TiO2 photo-anode. The equivalent short-circuit photocurrent density (Jsc) of 16.67 mA cm-2, open circuit voltage (Voc) of 0.77 V, and fill factor (FF) of 0.65 respectively. The achieved results propose that the hybrid nanocomposite is an appropriate photo-anodic material for DSSCs applications.
Guan, Jibin; Han, Jihong; Zhang, Dong; Chu, Chunxia; Liu, Hongzhuo; Sun, Jin; He, Zhonggui; Zhang, Tianhong
2014-04-01
The aim of this study was to design a silica-supported solid dispersion of a water-insoluble drug, glyburide, to increase its dissolution rate and oral absorption using supercritical fluid (SCF) technology. DSC and PXRD results indicated that the encapsulated drug in the optimal solid dispersion was in an amorphous state and the product was stable for 6 months. Glyburide was adsorbed onto the porous silica, as confirmed by the SEM images and BET analysis. Furthermore, FT-IR spectroscopy confirmed that there was no change in the chemical structure of glyburide after the application of SCF. The glyburide silica-based dispersion could also be compressed into tablet form. In vitro drug release analysis of the silica solid dispersion tablets demonstrated faster release of glyburide compared with the commercial micronized tablet. In an in vivo test, the AUC of the tablets composed of the new glyburide silica-based solid dispersion was 2.01 times greater than that of the commercial micronized glyburide tablets. In conclusion, SCF technology presents a promising approach to prepare silica-based solid dispersions of hydrophobic drugs because of its ability to increase their release and oral bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.
Fabrication of Progesterone-Loaded Nanofibers for the Drug Delivery Applications in Bovine
NASA Astrophysics Data System (ADS)
Karuppannan, Chitra; Sivaraj, Mehnath; Kumar, J. Ganesh; Seerangan, Rangasamy; Balasubramanian, S.; Gopal, Dhinakar Raj
2017-02-01
Progesterone is a potent drug for synchronization of the estrus and ovulation cycles in bovine. At present, the estrus cycle of bovine is controlled by the insertion of progesterone-embedded silicone bands. The disadvantage of nondegradable polymer inserts is to require for disposal of these bands after their use. The study currently focuses on preparation of biodegradable progesterone-incorporated nanofiber for estrus synchronization. Three different concentrations (1.2, 1.9, and 2.5 g) of progesterone-impregnated nanofibers were fabricated using electrospinning. The spun membrane were characterized by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy. Uniform surface morphology, narrow size distribution, and interaction between progesterone and zein were confirmed by SEM. FTIR spectroscopy indicated miscibility and interaction between zein and progesterone. X-ray analysis indicated that the size of zein crystallites increased with progesterone content in nanofibers. Significant differences in thermal behavior of progesterone-impregnated nanofiber were observed by DSC. Cell viability studies of progesterone-loaded nanofiber were examined using MTT assay. In vitro release experiment is to identify the suitable progesterone concentration for estrus synchronization. This study confirms that progesterone-impregnated nanofibers are an ideal vehicle for progesterone delivery for estrus synchronization of bovines.
Sierpe, R; Noyong, Michael; Simon, Ulrich; Aguayo, D; Huerta, J; Kogan, Marcelo J; Yutronic, N
2017-12-01
As a novel strategy to overcome some of the therapeutic disadvantages of 6-thioguanine (TG) and 6-mercaptopurine (MP), we propose the inclusion of these drugs in βcyclodextrin (βCD) to form the complexes βCD-TG and βCD-MP, followed by subsequent interaction with gold nanoparticles (AuNPs), generating the ternary systems: βCD-TG-AuNPs and βCD-MP-AuNPs. This modification increased their solubility and improved their stability, betting by a site-specific transport due to their nanometric dimensions, among other advantages. The formation of the complexes was confirmed using powder X-ray diffraction, thermogravimetric analysis and one and two-dimensional NMR. A theoretical study using DFT and molecular modelling was conducted to obtain the more stable tautomeric species of TG and MP in solution and confirm the proposed inclusion geometries. The deposition of AuNPs onto βCD-TG and βCD-MP via sputtering was confirmed by UV-vis spectroscopy. Subsequently, the ternary systems were characterized by TEM, FE-SEM and EDX to directly observe the deposited AuNPs and evaluate their sizes, size dispersion, and composition. Finally, the in vitro permeability of the ternary systems was studied using parallel artificial membrane permeability assay (PAMPA). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mehmood, Faisal; Iqbal, Javed; Gul, Asma; Ahmed, Waqqar; Ismail, M.
2017-04-01
Simple chemical co-precipitation method has been employed to synthesize two dimensional copper (Cu) doped tungsten oxide (WO3) nanoplates. A numbers of characterization techniques have been used to investigate their structural, optical and biocompatible anti cancer properties. The XRD results have confirmed the monoclinic crystal structure of WO3 nanoplates, and also successful doping of Cu ions into the WO3 crystal lattice. The presence of functional groups and chemical bonding have been verified through FTIR and Raman spectroscopy. The SEM images demonstrate that both undoped and Cu doped WO3 samples have squares plate like morphology. The EDX spectra confirm the presence of Cu, W and O ions. Diffuse reflectance spectroscopy (DRS) analysis has revealed a substantial red-shift in the absorption edge and a decrease in the band gap energy of nanoplates with Cu doping. Photoluminescence spectroscopy has been used to study the presence of defects like oxygen vacancies. Furthermore, the differential cytotoxic properties of Cu doped WO3 samples have been evaluated against human breast (MCF-7) and liver (Hep-2) cancer cells with ectocervical epithelial (HECE) healthy cells. The present findings confirm that the Cu doped WO3 nanoplates can be used as an efficient biocompatible anti cancer agent.
Abdel Rehim, Mona H; El-Samahy, Magda A; Badawy, Abdelrahman A; Mohram, Maysa E
2016-09-05
Photocatalytic paper sheets were prepared by addition of different ratios of TiO2/Sodium alginate (TSA) nanocomposite. The modified paper sheets were characterized by XRD, TGA. Their morphology was studied by scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Photocatalytic activity of modified paper has been studied by analysis of chemical oxygen demand (COD) of waste-water. The results confirmed the mineralization of the waste-water and enhanced removal of chemical oxygen demand (COD) by increasing the amount of photocatalyst in the paper. Moreover, the results also confirmed that presence of sodium alginate as biopolymer increased adhesion of nanoparticles to paper fibers and reduced the harmful effect of the photocatalyst on them. The paper sheets containing 7% as well as 15% TSA showed high photocatalytic activity and anti-bacterial effect against Salmonella typhimurium higher than standard antibiotic beside other microorganisms such as Candida albicans. The maximum antimicrobial effect was found in case of specimen loaded with 15% TSA. Moreover, it was found that by adding 20% TSA to the paper matrix, the properties of the paper composite collapse. The obtained results confirm the possible utilization of the modified paper in both hygienic and food packaging applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structural equation modeling for observational studies
Grace, J.B.
2008-01-01
Structural equation modeling (SEM) represents a framework for developing and evaluating complex hypotheses about systems. This method of data analysis differs from conventional univariate and multivariate approaches familiar to most biologists in several ways. First, SEMs are multiequational and capable of representing a wide array of complex hypotheses about how system components interrelate. Second, models are typically developed based on theoretical knowledge and designed to represent competing hypotheses about the processes responsible for data structure. Third, SEM is conceptually based on the analysis of covariance relations. Most commonly, solutions are obtained using maximum-likelihood solution procedures, although a variety of solution procedures are used, including Bayesian estimation. Numerous extensions give SEM a very high degree of flexibility in dealing with nonnormal data, categorical responses, latent variables, hierarchical structure, multigroup comparisons, nonlinearities, and other complicating factors. Structural equation modeling allows researchers to address a variety of questions about systems, such as how different processes work in concert, how the influences of perturbations cascade through systems, and about the relative importance of different influences. I present 2 example applications of SEM, one involving interactions among lynx (Lynx pardinus), mongooses (Herpestes ichneumon), and rabbits (Oryctolagus cuniculus), and the second involving anuran species richness. Many wildlife ecologists may find SEM useful for understanding how populations function within their environments. Along with the capability of the methodology comes a need for care in the proper application of SEM.
NASA Astrophysics Data System (ADS)
De Velasco-Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.; Vázquez, Norma Aurea-Rangel; Pérez-Cruz, Ma. Ana
2018-03-01
In the present work the possible surface modification of natural zeolite using cold oxygen plasma was studied. The sample with and without treatment was characterized using nitrogen adsorption isotherms at -196 °C, FT-IR spectroscopy, SEM/EDX analysis and X-Ray Diffraction. Additionally, the two samples were used for the removal of lead and acid, basic, reactive and food dyes in batch systems. The natural zeolite was found to be a mesoporous material with a low specific surface area (23 m2/g). X-ray patterns confirmed that clinoptilolite was the main crystal structure present in the natural zeolite. The molecular properties of dyes and the zeolitic structure were studied using molecular simulation, with the purpose to understand the adsorption mechanism. The results pointed out that only the roughness of the clinoptilolite was affected by the plasma treatment, whereas the specific surface area, chemical functionality and crystal structure remained constant. Finally, adsorption results confirmed that the plasma treatment had no significant effects on the dyes and lead retention capacities of the natural zeolite.
NASA Astrophysics Data System (ADS)
Ganeshraja, Ayyakannu Sundaram; Clara, Antoni Samy; Rajkumar, Kanniah; Wang, Yanjie; Wang, Yu; Wang, Junhu; Anbalagan, Krishnamoorthy
2015-10-01
The present article is focused on recent developments toward the preparation of room temperature ferromagnetic nanocomposites using better photocatalytic performance. These nanocomposites were successfully prepared by a simple hydrothermal method and their molecular formulas were confirmed as Ti0.90Sn0.10O2 (S1), 0.2CuO-Ti0.73Sn0.06Cu0.21O2-δ (S2), and Ti0.82Sn0.09Fe0.09O2-δ (S3). The ICP, XRD, DRS, FTIR, Raman, XAFS, XPS, EPR, SEM-EDX, HRSEM, HRTEM, photoluminescence and vibrating sample magnetometric measurements were employed to characterize the phase structures, morphologies, optical and magnetic properties of the photocatalysts. The local structures of Sn4+ and Fe3+ were confirmed by 119Sn and 57Fe Mössbauer analysis. The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in water under visible light irradiation. Among the samples, tin doped TiO2 (S1) showed the best photocatalytic performance and stability.
Rajakumar, Govindasamy; Gomathi, Thandapani; Thiruvengadam, Muthu; Devi Rajeswari, V; Kalpana, V N; Chung, Ill-Min
2017-02-01
The aim of this study is to develop an easy and eco-friendly method for the synthesis of Ag-NPs using extracts from the medicinal plant, Millettia pinnata flower extract and investigate the effects of Ag-NPs on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), antibacterial and cytotoxicity activity. UV-Vis peak at 438 nm confirmed the Ag-NPs absorbance. The SEM analysis results confirmed the presence of spherical shaped Ag-NPs by a huge disparity in the particle size distribution with an average size of 49 ± 0.9 nm. TEM images revealed the formation of Ag-NPs with spherical shape and sizes in the range between 16 and 38 nm. The Ag-NPs showed an excellent inhibitory efficacy against AChE and BChE. The highest antibacterial activity was found against Escherichia coli (20.25 ± 0.91 mm). These nanoparticles showed the cytotoxic effects against brine shrimp (artemia saliana) nauplii with a LD 50 value of 33.92. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bordes, Arnaud; Eom, KwangSup; Fuller, Thomas F.
2014-07-01
When fluoroethylene carbonate (FEC) is added to the ethylene carbonate (EC)-diethyl carbonate (DEC) electrolyte, the capacity and cyclability of full-cells employing Si-graphene anode and lithium nickel cobalt aluminum oxide cathode (NCA) cathode are improved due to formation of a thin (30-50 nm) SEI layer with low ionic resistance (∼2 ohm cm2) on the surface of Si-graphene anode. These properties are confirmed with electrochemical impedance spectroscopy and a cross-sectional image analysis using Focused Ion Beam (FIB)-SEM. Approximately 5 wt.% FEC in EC:DEC (1:1 wt.%) shows the highest capacity and most stability. This high capacity and low capacity fade is attributed to a more stable SEI layer containing less CH2OCO2Li, Li2CO3 and LiF compounds, which consume cyclable Li. Additionally, a greater amount of polycarbonate (PC), which is known to form a more robust passivation layer, thus reducing further reduction of electrolyte, is confirmed with X-ray photoelectron spectroscopy (XPS).
Synthesis and characterization of chitosan/curcumin blends based polyurethanes.
Zia, Fatima; Zia, Khalid Mahmood; Zuber, Mohammad; Rehman, Saima; Tabasum, Shazia; Sultana, Salma
2016-11-01
In this work, new hexamethylene diisocyanate (HMDI) and hyroxylterminated polybutadiene (HTPB) based polyurethanes (PUs) were prepared following step growth polymerization by the introduction of varying mole ratio of chitosan (CH) and curcumin (CUR). Structural study of blends through infrared spectroscopy confirmed the incorporation of CH and CUR into the backbone of the PU. The scanning electron microscopic (SEM) study confirmed the well dispersion of incorporated chitosan/curcumin and homogeneity of surface of synthesized samples. Thermogravimetric analysis (TGA) of PU blends indicated a better thermal stability with 0.25M:0.75M of chitosan to curcumin. Mechanical properties such as modulus and tensile strength of PU blends were found to be better with higher contents of chitosan and curcumin. The same extender composition (1mol BDO, 075mol chitosan and 0.25mol curcumin) based PU showed higher substantial of antimicrobial activity as compared to the all other PUs. On the whole, this work is actually a step towards the generation of novel biocompatible materials preferably useful for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Synthesis, structural, dielectric and magnetic properties of CuFe2O4/MnO2 nanocomposites
NASA Astrophysics Data System (ADS)
Ali, Kashif; Bahadur, Ali; Jabbar, Abdul; Iqbal, Shahid; Ahmad, Ijaz; Bashir, Muhammad Imran
2017-07-01
Novel nanocomposite of (1-x)CuFe2O4/xMnO2 [x=10% to 50 wt%] has been synthesized by two step wet chemical route without impurity. The x-ray diffraction analysis shows the formation of both phases with crystallite size 40-100 nm which is consist ant with estimated size of SEM.The FTIR spectra confirms the characteristics vibration of ferrites atoms at tetrahedral and octahedral sites along with Mn-O vibration mode, which also confirms the coexistence of both phases. The dielectric properties studied by LCR meter in frequency range of 1 K Hz to 2 MHz.The dielectric constant and tangent loss shows same dispersion of ferrites while a.c. conductivity decreases with increase in MnO2 contents. The real and imaginary part of impedance also calculated which shows decreasing trend at higher frequency. The magnetic characterization performed by vibrating sample magnetometer (VSM) at room temperature, which shows normal ferromagnetic behavior of ferrites but saturation magnetization and coercivity decreases with incorporation of MnO2 contents.
Three dimensional profile measurement using multi-channel detector MVM-SEM
NASA Astrophysics Data System (ADS)
Yoshikawa, Makoto; Harada, Sumito; Ito, Keisuke; Murakawa, Tsutomu; Shida, Soichi; Matsumoto, Jun; Nakamura, Takayuki
2014-07-01
In next generation lithography (NGL) for the 1x nm node and beyond, the three dimensional (3D) shape measurements such as side wall angle (SWA) and height of feature on photomask become more critical for the process control. Until today, AFM (Atomic Force Microscope), X-SEM (cross-section Scanning Electron Microscope) and TEM (Transmission Electron Microscope) tools are normally used for 3D measurements, however, these techniques require time-consuming preparation and observation. And both X-SEM and TEM are destructive measurement techniques. This paper presents a technology for quick and non-destructive 3D shape analysis using multi-channel detector MVM-SEM (Multi Vision Metrology SEM), and also reports its accuracy and precision.
Pinteala, Tudor; Chiriac, Anca Eduard; Rosca, Irina; Larese Filon, Francesca; Pinteala, Mariana; Chiriac, Anca; Podoleanu, Cristian; Stolnicu, Simona; Coros, Marius Florin; Coroaba, Adina
2017-01-01
Background Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques have been used in various fields of medical research, including different pathologies of the nails; however, no studies have focused on obtaining high-resolution microscopic images and elemental analysis of disorders caused by synthetic nails and acrylic adhesives. Methods Damaged/injured fingernails caused by the use of acrylate glue and synthetic nails were investigated using SEM and EDX methods. Results SEM and EDX proved that synthetic nails, acrylic glue, and nails damaged by contact with acrylate glue have a different morphology and different composition compared to healthy human nails. Conclusions SEM and EDX analysis can give useful information about the aspects of topography (surface sample), morphology (shape and size), hardness or reflectivity, and the elemental composition of nails. PMID:28232921
NASA Astrophysics Data System (ADS)
Murali, M.; Mahendra, C.; Nagabhushan; Rajashekar, N.; Sudarshana, M. S.; Raveesha, K. A.; Amruthesh, K. N.
2017-05-01
Zinc oxide nanoparticles (ZnO-NPs) were synthesized for the first time from any of the species of Ceropegia. Presently, ZnO-NPs were synthesized from the leaf extract of Ceropegia candelabrum with zinc nitrate using a simple hydrothermal process. The synthesized ZnO-NPs showed an absorption peak at 320 nm which is one of the characteristic features of ZnO-NPs. The FT-IR characterization revealed a spectrum band at 551.93 cm- 1 corresponding to the functional group metal oxide. SEM images showed agglomeration of nanoparticles with a hexagonal shape. XRD results are in corroboration with SEM images as the synthesized particles were of hexagonal wurtzite shape and the size of the particles was in the range of 12-35 nm calculated using Scherrer's formula. The elemental analysis using EDS confirmed high zinc content of 70.48% stating that the process of biosynthesis of nanoparticles was carried out in accordance. The biosynthesized ZnO-NPs offered significant antibacterial potential against S. aureus, B. subtilis, E. coli and S. typhi. The antioxidant results revealed significant (p ≤ 0.05) RSA from 0% to 55.43% (IC50 = 95.09 μg mL- 1). The results affirm that biosynthesized ZnO-NPs can be used as an alternative to present-day chemical compounds.
NASA Astrophysics Data System (ADS)
Li, Xiangyu; Ye, Yuwei; Liu, Tong; Zheng, Wenru; Yang, Feng; Zhao, Haichao; Wang, Liping
2017-12-01
Novel quaternary ammonium cation containing tetraaniline (QATA) was successfully synthesized by condensation of amine-capped tetraaniline with 6-bromohexanoic acid, followed by quaternarization with triethylamine. The corrosion inhibition performance of QATA with their adsorption mechanisms for Q235 steel was studied in 1 M HCl solution by a series of methods such as weight loss measurements, potentiodynamic polarization, electrochemical impedance spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The inhibition efficiency (IE%) increased with increasing concentrations of QATA, reaching a value up to 97.47% at a concentration of 150 mg l-1. Potentiodynamic polarization curves showed that the QATA affected both cathodic and anodic protection and was a mixed type inhibitor in 1 M HCl corrosive medium. Adsorption isotherm studies confirmed that the absorption of QATA on the Q235 steel surface in 1 M HCl solution obeyed Langmuir adsorption isotherm, and the adsorption process of corrosion inhibition on Q235 steel surface involved both the physical and chemical adsorption. The EDS analysis determined the adsorption of QATA molecules on the steel surface, the surface morphologies before and after immersion in 1 M HCl medium were also investigated by SEM and AFM.
NASA Astrophysics Data System (ADS)
Zhang, Yuanyuan; Zhang, Yizhen; Liu, Yuan; Wang, Xinling; Yang, Bin
2016-09-01
Properties of carbon fiber (CF) reinforced composites depend largely on the interfacial bonding strength between fiber and the matrix. In the present work, CF was grafted by 4,4‧-diphenylmethane diisocyanate (MDI) molecules after electrochemical oxidation treatment. The existence of functional groups introduced to the fiber surface and the changes of surface roughness were confirmed by FTIR, AFM, XPS, SEM and Raman spectroscopy. To evaluate the possible applications of this surface modification of carbon fiber, we examined the mechanical properties as well as the friction and wear performance of pristine CF and MDI-CF reinforced thermoplastic polyurethane (TPU) composites with 5-30 wt.% fiber contents, and found that the mechanical properties of TPU composites were all significantly improved. It is remarkable that when fiber content was 30 wt.%, the tensile strength of TPU/MDI-CF was increased by 99.3%, which was greater than TPU/CF (53.2%), and the friction loss of TPU/MDI-CF was decreased by 49.09%. The results of DMA and SEM analysis indicated the positive effects of MDI modification on the interfacial bonding between fibers and matrix. We believed that this simple and effective method could be used to the development of surface modified carbon fiber for high-performance TPU.
Nano characterization of gunshot residues from Brazilian ammunition.
Melo, Lis G A; Martiny, Andrea; Pinto, André L
2014-07-01
Gunshot residues (GSR) from a total of nine different caliber ammunitions produced in Brazil were analyzed and characterized by transmission (TEM) and scanning electron microscopy (SEM). GSR particles are composed of spherical particles of several micrometers of diameter containing distinct amounts of lead, barium and antimony, along with other organic and inorganic elements arising from the primer, gunpowder, the gun and the bullet itself. This study was carried out to obtain additional information on the properties of GSR nanoparticles originated from different types of regular ammunition produced in Brazil by CBC. Besides the SEM, we have used a TEM, exploring its high magnification capability and ability to explore internal structure and chemical composition of submicron particles. We observed that CBC ammunition generated smaller particles than usually reported for other ammunitions and that the three component particles are not a majority. TEM analysis revealed that GSR are partially composed of sub-micron particles as well. The electron diffraction pattern from these particles confirmed them to be mainly composed of lead oxides crystalline nanoparticles that may be agglomerated into larger particles. Energy dispersive X-ray spectroscopy revealed that most of them were composed of two elements, especially PbSb. Ba was not a common element found in the nanoparticles. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajendran, V.; Deepa, B.
2018-03-01
Tungsten oxide and different concentration of silver (Ag)-doped tungsten oxide nano material were synthesized by co-precipitation technique. The functional vibrations, structure, and morphology of as-prepared nano material were studied by Fourier transmission infrared spectroscopy, X-ray diffraction, scanning electron microscopy (SEM) and High-resolution transmission electron microscopy (HR-TEM) techniques. The SEM and HR-TEM analysis revealed the formation of nano-plate/nano rods with an average diameter of 40-80 nm diameter and 1-1.5 mm length. Fluorescence (PL) and UV-visible absorption techniques have been used to study the optical properties of the prepared nanoparticles. The observed red shift in the visible absorption spectra confirmed the promoted electron-phonon interaction in WO3 and Ag: WO3 nanoparticles compared to bulk structures. The photoluminescence of nanocrystalline Ag2+ doped WO3 exhibited a strong violet-blue, blue-green emission. Concentration dependence of the emission intensity of Ag2+ in WO3 was studied, and the significant concentration was found to be 0.5% of Ag: WO3. The effluent dye degradation executed for the 0.5% of Ag: WO3 sample under the visible light which reveals the highest degradation efficiency in appropriate time.
Schaefer, Cecília Ogliari; Cheriaf, Malik; Rocha, Janaíde Cavalcante
2017-08-17
An experimental study was conducted to investigate the potential use of phosphogypsum (PG) to produce self-leveling underlayments. The study was designed in two stages. Initially a phosphoanhydrite (PA) was produced by heating phosphogypsum at temperatures of 350 °C, 450 °C, 550 °C, and 650 °C. Two periods of heating were applied (2 and 4 h). The formation of anhydrite was determined by thermogravimetric analysis (DTA-TG) and confirmed by X-ray diffraction (XRD). The results show that anhydrite II was obtained at temperatures above 450 °C, and at higher calcination temperatures the PA solubility was lower. In the second stage of this research, the PA was used in self-leveling underlayments as the main binder in the ternary system comprised of calcium sulfate, calcium aluminate cement, and Portland cement. Self-leveling mortar screeds produced using PA (550 °C/4 h) and PA (650 °C/4 h) showed the best performance in terms of mechanical strength and no degradation was observed after immersion and immersion-drying tests. The formation of ettringite, identified by scanning electron microscopy (SEM), may have contributed to these results. Morphological changes were studied using the scanning electron microscopy (SEM) technique.
Schaefer, Cecília Ogliari; Cheriaf, Malik
2017-01-01
An experimental study was conducted to investigate the potential use of phosphogypsum (PG) to produce self-leveling underlayments. The study was designed in two stages. Initially a phosphoanhydrite (PA) was produced by heating phosphogypsum at temperatures of 350 °C, 450 °C, 550 °C, and 650 °C. Two periods of heating were applied (2 and 4 h). The formation of anhydrite was determined by thermogravimetric analysis (DTA-TG) and confirmed by X-ray diffraction (XRD). The results show that anhydrite II was obtained at temperatures above 450 °C, and at higher calcination temperatures the PA solubility was lower. In the second stage of this research, the PA was used in self-leveling underlayments as the main binder in the ternary system comprised of calcium sulfate, calcium aluminate cement, and Portland cement. Self-leveling mortar screeds produced using PA (550 °C/4 h) and PA (650 °C/4 h) showed the best performance in terms of mechanical strength and no degradation was observed after immersion and immersion-drying tests. The formation of ettringite, identified by scanning electron microscopy (SEM), may have contributed to these results. Morphological changes were studied using the scanning electron microscopy (SEM) technique. PMID:28817091
Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng
2015-07-01
An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay. Copyright © 2015. Published by Elsevier B.V.
Functional and Selective Bacterial Interfaces Using Cross-Scaffold Gold Binding Peptides
NASA Astrophysics Data System (ADS)
Adams, Bryn L.; Hurley, Margaret M.; Jahnke, Justin P.; Stratis-Cullum, Dimitra N.
2015-11-01
We investigated the functional and selective activity of three phage-derived gold-binding peptides on the Escherichia coli ( E. coli) bacterial cell surface display scaffold (eCPX) for the first time. Gold-binding peptides, p3-Au12 (LKAHLPPSRLPS), p8#9 (VSGSSPDS), and Midas-2 (TGTSVLIATPYV), were compared side-by-side through experiment and simulation. All exhibited strong binding to an evaporated gold film, with approximately a 4-log difference in binding between each peptide and the control sample. The increased affinity for gold was also confirmed by direct visualization of samples using Scanning Electron Microscopy (SEM). Peptide dynamics in solution were performed to analyze innate structure, and all three were found to have a high degree of flexibility. Preferential binding to gold over silicon for all three peptides was demonstrated, with up to four orders of magnitude selectivity exhibited by p3-Au12. The selectivity was also clearly evident through SEM analysis of the boundary between the gold film and silicon substrate. Functional activity of bound E. coli cells was further demonstrated by stimulating filamentation and all three peptides were characterized as prolific relative to control samples. This work shows great promise towards functional and active bacterial-hybrid gold surfaces and the potential to enable the next generation living material interfaces.
High pressure infiltration sintering behavior of WC-Co alloys
NASA Astrophysics Data System (ADS)
Fan, Xiaoqin; He, Duanwei; Wang, Pei; Li, Dong; Liu, Yinjuan; Ma, Dejiang; Du, Yanchun; Gao, Shangpan; Kou, Zili
2016-10-01
In this paper, two average tungsten carbide particle sizes of 2, 0.5 μm are placed respectively, in contact with a WC-16Co substrate, pressed at the pressure of 4.5-5.5 GPa, and heated to temperatures ranging from 1350°C to 1500°C in a large-volume cubic press. During the process Co was forced out of the WC-16Co substrate into the compressed powder. The resulting infiltrated samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), Vickers hardness and cutting performance tests. The results of XRD confirmed that the sintered bulks have WC and Co phases. The scanning electron microscopy (SEM) analysis reveals that the WC grains in well-sintered alloys are round in shape and cobalt with lower content is uniformly dispersed in the WC grain boundaries. The sintered sub-micron WC-Co alloy with a cobalt content of 3.8 wt% exhibits a prominent combination of high hardness value of 23.1 GPa and a large fracture toughness value of 8.6 MPa m½. The high-speed cutting tests indicating its cutting performance is significantly superior to the commercial YG6X (WC-6 wt%Co with WC grain size of 0.5 μm).
Ge, Shengju; Li, Man; Ji, Na; Liu, Jing; Mul, Hongyan; Xiong, Liu; Sun, Qingjie
2018-01-10
Gelatin hydrogels exhibit excellent biocompatibility, nonimmunogenicity, and biodegradability, but they have limited applications in the food and medical industries because of their poor mechanical properties. Herein, we first developed an in situ self-assembly process for the preparation of gelatin-short linear glucan (SLG) nanocomposite hydrogels with enhanced mechanical strength. The microstructure, dynamic viscoelasticity, compression behavior, and thermal characteristics of the gelatin-SLG nanocomposite hydrogels were determined using scanning electron microscopy (SEM), dynamic rheological experiments, compression tests, and texture profile analysis tests. The SEM images revealed that nanoparticles were formed by the in situ self-assembly of SLG in the gelatin matrix and that the size of these nanoparticles ranged between 200 and 600 nm. The pores of the nanocomposite hydrogels were smaller than those of the pure gelatin hydrogels. Transmission electron microscopy images and X-ray diffraction further confirmed the presence of SLG nanoparticles with spherical shapes and B-type structures. Compared with pure gelatin hydrogels, the nanocomposite hydrogels exhibited improved mechanical behavior. Notably, the hardness and maximum values of the compressive stress of gelatin-SLG nanocomposites containing 5% SLG increased by about 2-fold and 3-fold, respectively, compared to the corresponding values of pure gelatin hydrogels.
Kök, Gökhan; Ay, Kadir; Ay, Emriye; Doğan, Fatih; Kaya, Ismet
2014-01-30
A glycopolymer, poly(3-O-methacroyl-5,6-O-isopropylidene-1,2-O-(S)-trichloroethylidene-α-d-galactofuranose) (PMIPTEG) was synthesized from the sugar-carrying methacrylate monomer, 3-O-methacroyl-5,6-O-isopropylidene-1,2-O-(S)-trichloroethylidene-α-d-galactofuranose (MIPTEG) via conventional free radical polymerization with AIBN in 1,4-dioxane. The structures of glycomonomer and their polymers were confirmed by UV-vis, FT-IR, (1)H NMR, (13)C NMR, GPC, TG/DTG-DTA, DSC, and SEM techniques. SEM images showed that PMIPTEG had a straight-chain length structure. On the other hand, the thermal decomposition kinetics of polymer were investigated by means of thermogravimetric analysis in dynamic nitrogen atmosphere at different heating rates. The apparent activation energies for thermal decomposition of the PMIPTEG were calculated using the Kissinger, Kim-Park, Tang, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Friedman methods and were found to be 100.15, 104.40, 102.0, 102.2, 103.2 and 99.6 kJ/mol, respectively. The most likely process mechanism related to the thermal decomposition stage of PMIPTEG was determined to be a Dn deceleration type in terms of master plots results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Electronic structure and chemical bonding in La1-x Sr x MnO3 perovskite ceramics
NASA Astrophysics Data System (ADS)
Thenmozhi, N.; Sasikumar, S.; Sonai, S.; Saravanan, R.
2017-04-01
This study reports on the synthesis of La1-x Sr x MnO3 (x = 0.3, 0.4 and 0.5) manganites by high temperature solid state reaction method using lanthanum oxide, strontium carbonate and manganese oxide as starting materials. The synthesized samples were characterized by XRD, UV-vis, SEM/EDS and VSM. Structural characterization shows that all the prepared samples have the perovskite rhombohedral structure. Influence of Sr doping on electron density distributions in the lattice structure of LaMnO3 were analyzed through maximum entropy method (MEM). Cell parameters are found to be decreasing with the addition of Sr content. The qualitative and quantitative analysis by MEM reveals that, incorporation of Sr into LaMnO3 lattice enhances the ionic nature between La and O ions and decreases the covalent nature between Mn and O ions. Optical band gap values are determined from the UV-visible absorption spectra. Particles with polygonal form are observed from the SEM micrographs. The elemental compositions of the synthesized samples are confirmed by EDS. The magnetic properties studied from the M-H plot taken at room temperature indicated that, the prepared samples are exhibited ferromagnetic behavior.
Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst
2017-09-01
The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on bovine enamel. The presented novel technique of tooth coating with a dental glass-ceramic using a CO 2 -laser holds a great potential as a possible method to protect susceptible teeth against caries and erosion. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Mahboudi, Hossein; Kazemi, Bahram; Soleimani, Masoud; Hanaee-Ahvaz, Hana; Ghanbarian, Hossein; Bandehpour, Mojgan; Enderami, Seyed Ehsan; Kehtari, Mousa; Barati, Ghasem
2018-02-15
Mesenchymal stem cells (MSC) from bone marrow hold great potential as a cell source for cartilage repair. The objective of our study was differentiation of MSC toward chondrocyte by using Nanofiber-based polyethersulfone (PES) scaffold and also enhanced chondrogenic differentiation of BMSC in vitro. MSCs were harvested from bone marrow of human and PES scaffold was fabricated via Electrospinning. The isolated cells were cultured on the PES scaffold and scaffold free method. After 21days, Real-time PCR was performed to evaluate the cartilage-specific genes in the mRNA levels. Also, in order to confirm our results, we have done immunocytochemistry and SEM imaging. Flowcytometry confirmed the nature of the isolated adherent cells. Immunocytochemistry and SEM imaging confirmed the differentiation of MSC toward chondrocyte. Also, real time PCR showed a significant increased gene expression of collagen type II and aggrecan on the PES scaffold method when compared to the mRNA levels measured in scaffold free method. Down regulation of Collagen type I was observed in PES scaffold compared to scaffold free at day 21. Also, both methods showed a similar pattern of expression of SOX9. Our results showed that PES scaffold maintains BMSC proliferation and differentiation, and can significantly enhance chondrogenic differentiation of BMSC. PES scaffold seeded BMSC showed the highest capacity for differentiation into chondrocyte-like cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline
2017-12-01
Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.
Abumandour, Mohamed M A
2018-06-01
The focus of the present study is to provide a full morphological description of the oropharyngeal cavity of the house sparrow. The head of six birds was prepared for gross examination and by stereo and electron microscopy. The bifid lingual apex has multiple long, rostrally directed needle-like processes. The lateral border of the apex carries rostromedially directed needle-like processes. The dorsal lingual surface of the apex and body carries numerous caudomedially directed filiform papillae and many orifices of lingual salivary glands. The lingual body is divided into two parts: rostral and caudal. The caudal part is divided into two laterally elevated regions by a median groove, while the rostral part is bounded laterally by a rostrodorsally directed papillary row, which on SEM is formed from two rows. On SEM, the lingual root has many orifices of posterior salivary glands. The pharyngeal papillary row is located at the caudal border of the laryngeal mound, but this single papillary row is formed from two rows at SEM magnification. The laryngeal cleft continues caudally as a laryngeal fissure bounded by two longitudinal rows of caudally directed papillae; at high SEM magnification, this fissure is divided into two halves by a median ridge which carries caudally directed papillae on its posterior part. The choanal cleft proceeds rostrally by the median tubercle. There are a small number of orifices of palatine salivary glands. The morphological characters of the oropharyngeal cavity of the sparrow confirm its adaptation to surrounding environmental conditions and available food particles.
Guehrs, Erik; Schneider, Michael; Günther, Christian M; Hessing, Piet; Heitz, Karen; Wittke, Doreen; López-Serrano Oliver, Ana; Jakubowski, Norbert; Plendl, Johanna; Eisebitt, Stefan; Haase, Andrea
2017-03-21
Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. We quantified cellular uptake of 75 nm diameter citrate stabilized silver NPs (Ag 75 Cit) into an individual human macrophage derived from monocytic THP-1 cells using a FIB/SEM slice and view approach. Cells were treated with 10 μg/ml for 24 h. We investigated a single cell and found in total 3138 ± 722 silver NPs inside this cell. Most of the silver NPs were located in large agglomerates, only a few were found in clusters of fewer than five NPs. Furthermore, we cross-checked our results by using inductively coupled plasma mass spectrometry and could confirm the FIB/SEM results. Our approach based on FIB/SEM slice and view is currently the only one that allows the quantification of the absolute dose of silver NPs in individual cells and at the same time to assess their intracellular distribution at high resolution. We therefore propose to use FIB/SEM slice and view to systematically analyse the cellular uptake of various NPs as a function of size, concentration and incubation time.
Ohno, Shotaro; Takahashi, Kana; Inoue, Aimi; Takada, Koki; Ishihara, Yoshiaki; Tanigawa, Masaru; Hirao, Kazuki
2017-12-01
This study aims to examine the smallest detectable change (SDC) and test-retest reliability of the Center for Epidemiologic Studies Depression Scale (CES-D), General Self-Efficacy Scale (GSES), and 12-item General Health Questionnaire (GHQ-12). We tested 154 young adults at baseline and 2 weeks later. We calculated the intra-class correlation coefficients (ICCs) for test-retest reliability with a two-way random effects model for agreement. We then calculated the standard error of measurement (SEM) for agreement using the ICC formula. The SEM for agreement was used to calculate SDC values at the individual level (SDC ind ) and group level (SDC group ). The study participants included 137 young adults. The ICCs for all self-reported outcome measurement scales exceeded 0.70. The SEM of CES-D was 3.64, leading to an SDC ind of 10.10 points and SDC group of 0.86 points. The SEM of GSES was 1.56, leading to an SDC ind of 4.33 points and SDC group of 0.37 points. The SEM of GHQ-12 with bimodal scoring was 1.47, leading to an SDC ind of 4.06 points and SDC group of 0.35 points. The SEM of GHQ-12 with Likert scoring was 2.44, leading to an SDC ind of 6.76 points and SDC group of 0.58 points. To confirm that the change was not a result of measurement error, a score of self-reported outcome measurement scales would need to change by an amount greater than these SDC values. This has important implications for clinicians and epidemiologists when assessing outcomes. © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bekar, Kursat B; Miller, Thomas Martin; Patton, Bruce W
The characteristic X-rays produced by the interactions of the electron beam with the sample in a scanning electron microscope (SEM) are usually captured with a variable-energy detector, a process termed energy dispersive spectrometry (EDS). The purpose of this work is to exploit inverse simulations of SEM-EDS spectra to enable rapid determination of sample properties, particularly elemental composition. This is accomplished using penORNL, a modified version of PENELOPE, and a modified version of the traditional Levenberg Marquardt nonlinear optimization algorithm, which together is referred to as MOZAIK-SEM. The overall conclusion of this work is that MOZAIK-SEM is a promising method formore » performing inverse analysis of X-ray spectra generated within a SEM. As this methodology exists now, MOZAIK-SEM has been shown to calculate the elemental composition of an unknown sample within a few percent of the actual composition.« less
Sivaraj, Rajeshwari; Rahman, Pattanathu K S M; Rajiv, P; Narendhran, S; Venckatesh, R
2014-08-14
Copper oxide nanoparticles were synthesized by biological method using aqueous extract of Acalypha indica leaf and characterized by UV-visible spectroscopy, XRD, FT-IR, SEM TEM and EDX analysis. The synthesised particles were highly stable, spherical and particle size was in the range of 26-30 nm. The antimicrobial activity of A.indica mediated copper oxide nanoparticles was tested against selected pathogens. Copper oxide nanoparticles showed efficient antibacterial and antifungal effect against Escherichia coli, Pseudomonas fluorescens and Candida albicans. The cytotoxicity activity of A.indica mediated copper nanoparticles was evaluated by MTT assay against MCF-7 breast cancer cell lines and confirmed that copper oxide nanoparticles have cytotoxicity activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Magnesium Electrorefining in Non-Aqueous Electrolyte at Room Temperature
NASA Astrophysics Data System (ADS)
Kwon, Kyungjung; Park, Jesik; Kusumah, Priyandi; Dilasari, Bonita; Kim, Hansu; Lee, Churl Kyoung
Magnesium, of which application is often limited by its poor corrosion resistance, is more vulnerable to corrosion with existence of metal impurities such as Fe. Therefore, for the refining and recycling of magnesium, high temperature electrolysis using molten salts has been frequently adopted. In this report, the purification of magnesium scrap by electrolysis at room temperature is investigated with non-aqueous electrolytes. An aprotic solvent of tetrahydrofuran (THF) was used as a solvent of the electrolyte. Magnesium scrap was used as anode materials and ethyl magnesium bromide (EtMgBr) was dissolved in THF for magnesium source. The purified magnesium can be uniformly electrodeposited on copper electrode under potentiostatic conditions. The deposits were confirmed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis.
Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite.
Palanivelu, R; Ruban Kumar, A
2014-06-05
Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes. Copyright © 2014 Elsevier B.V. All rights reserved.
Moriano León, Juan Antonio; Topa Cantisano, Gabriela; Lévy Mangin, Jean-Pierre
2009-11-01
This study follows the social identity model of leadership proposed by van Knippenberg and Hogg (2003), in order to examine empirically the mediator effect of leadership prototypicality between social identity, extra effort, and perceived effectiveness of group members. The sample consisted of 109 participants who worked in 22 different work-teams of non-profit organizations (NPO) from Nicaragua and El Salvador. The data analysis was performed through structural equation modeling (SEM). The results show that NPO membership is related to a high level of social identity. In addition, the results confirmed that leadership prototypicality has a significant and positive mediator effect in the relationship between the group identification and the group members' extra effort and the perceived effectiveness of leadership.
Structural, optical and magnetic behaviour of nanocrystalline Volborthite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arvind, Hemant K., E-mail: hemantarvind@gmail.com; Kumar, Sudhish, E-mail: skmlsu@gmail.com; Kalal, Sangeeta
2016-05-06
Nanocrystalline sample of Volborthite (Copper Pyrovanadate: Cu{sub 3}V{sub 2} (OH){sub 2}O{sub 7}.2H{sub 2}O) has been synthesized using wet chemical route and characterized by XRD, SEM, FTIR, UV-Vis-NIR spectroscopic and magnetization measurements. Room temperature X-ray diffraction analysis confirms the single phase monoclinic structure and nanocrystalline nature of Volborthite. The UV-Visible optical absorption spectrum displays two broad absorption peaks in the range of 200-350 nm and 400-1000 nm. The direct band gap is found to be E{sub g}= ∼2.74 eV. Bulk Volborthite was reported to be a natural frustrated antiferromagnet, however our nanocrystalline Volborthite display week ferromagnetic hysteresis loop with very small coercivity andmore » retentivity at room temperature.« less
NASA Astrophysics Data System (ADS)
Ramakrishna, A.; Murali, N.; Margarette, S. J.; Samatha, K.; Veeraiah, V.
2018-02-01
Mixed ferrites of the form Co0.5M0.1Cu0.4Fe2O4 (M = Ni, Zn and Mg) have been synthesized using the sol-gel auto combustion technique. Structural analyses are carried out using powder X-ray diffraction to idntify pure ferrite phases. SEM analysis revealed clear crystal morphology with relatively uniform grain sizes with polygonal structures. The FT-IR studies also confirm the bond formation and cation vibrations at low (365-392 cm-1) and high (579-587 cm-1) bands that correspond to the tetrahedral and octahedral sites, respectively. The magnetic properties studied through vibrating sample magnetometer showed that the Ni substituted sample has more magnetic character by exhibiting the highest saturation magnetization.
Giblin-Davis, R M; Williams, D S; Wergin, W P; Dickson, D W; Hewlett, T E; Bekal, S; Becker, J O
2001-12-01
Pasteuria sp., strain S-1, is a gram-positive, obligate endoparasitic bacterium that uses the phytoparasitic sting nematode, Belonolaimus longicaudatus, as its host in Florida. The host attachment of S-1 appears to be specific to the genus Belonolaimus with development occurring only in juveniles and adults of B. longicaudatus. This bacterium is characterized from other described species of Pasteuria using ultrastructure of the mature endospore. Penetration, development, and sporogenesis were elucidated with TEM, LTSEM, and SEM and are similar to other nematode-specific Pasteuria. Recent analysis of 16S rDNA sequence homology confirms its congeneric ranking with other Pasteuria species and strains from nematodes and cladocerans, and corroborates ultrastructural, morphological, morphometric, and host-range evidence suggesting separate species status.
Optical, mechanical and structural properties of PMMA/SiO2 nanocomposite thin films
NASA Astrophysics Data System (ADS)
Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.
2018-01-01
We have fabricated PMMA/SiO2 nanocomposite flexible thin films of 60 μm thicknesses by using solution casting method in the presence of transverse electric field. In this paper, we have investigated the effect of SiO2 nanoparticle (NP) loading on optical and mechanical properties of the composite thin film. The SEM images show that nanocomposite thin films have a smoother and uniform morphology. The transmittance peak near 1103 cm-1 in FT-IR spectrum confirms the presence of SiO2 NPs in the composite thin film. It is observed that optical bandgap decreases with an increase in the SiO2 NP concentration. Dynamic mechanical analysis shows that presence of SiO2 NP enhances the mechanical strength of the composite thin film.
Dealing with Multiple Solutions in Structural Vector Autoregressive Models.
Beltz, Adriene M; Molenaar, Peter C M
2016-01-01
Structural vector autoregressive models (VARs) hold great potential for psychological science, particularly for time series data analysis. They capture the magnitude, direction of influence, and temporal (lagged and contemporaneous) nature of relations among variables. Unified structural equation modeling (uSEM) is an optimal structural VAR instantiation, according to large-scale simulation studies, and it is implemented within an SEM framework. However, little is known about the uniqueness of uSEM results. Thus, the goal of this study was to investigate whether multiple solutions result from uSEM analysis and, if so, to demonstrate ways to select an optimal solution. This was accomplished with two simulated data sets, an empirical data set concerning children's dyadic play, and modifications to the group iterative multiple model estimation (GIMME) program, which implements uSEMs with group- and individual-level relations in a data-driven manner. Results revealed multiple solutions when there were large contemporaneous relations among variables. Results also verified several ways to select the correct solution when the complete solution set was generated, such as the use of cross-validation, maximum standardized residuals, and information criteria. This work has immediate and direct implications for the analysis of time series data and for the inferences drawn from those data concerning human behavior.
Kuwajima, Masaaki; Mendenhall, John M.; Lindsey, Laurence F.; Harris, Kristen M.
2013-01-01
Transmission-mode scanning electron microscopy (tSEM) on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm2 (65.54 µm per side) at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM) system, which were only 66.59 µm2 (8.160 µm per side) at the same pixel size. The tSEM produced outstanding images and had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant nonlinear distortions within a central field of ∼100 µm2 and produced near-perfect image registration across serial sections using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from RECONSTRUCT™ or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section (∼45 nm). Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to other biological systems. PMID:23555711
NASA Astrophysics Data System (ADS)
Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo
2017-08-01
The present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5 μm. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295 m-1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process.
Colombo, Marco; Mirando, Maria; Rattalino, Davide; Beltrami, Riccardo; Chiesa, Marco
2017-01-01
Background The aim of the present in vitro study was to evaluate the protective effects of a zinc-hydroxyapatite toothpaste on repairing enamel erosion produced by a soft drink (Coca-Cola) compared to toothpastes with and without fluoride using Scanning Electron Microscopy (SEM). Material and Methods Fifty specimens were assigned to 5 groups of 10 specimens each. (Group 1: no erosive challenge, no toothpaste treatment, group 2: erosive challenge, no toothpaste treatment, 3: erosive challenge, toothpaste without fluoride, group 4: erosive challenge, fluoride toothpaste treatment, group 5: erosive challenge, zinc-hydroxyapatite toothpaste treatment). Repeated erosive challenges were provided by immersing bovine enamel specimens (10 per group) in a soft drink for 2 min (6mL, room temperature) at 0, 8, 24 and 32 h. After each erosive challenge, the toothpastes were applied neat onto the surface of specimens for 3 min without brushing and removed with distilled water. Between treatments the specimens were kept in artificial saliva. The surface of each specimen was imaged by SEM. Results Statistically significant differences were found between the samples used as control and those immersed in Coca-Cola (group 1 and 2): indeed among all groups the highest grade of damage was found in group 2. Instead the lowest grade was recorded in the samples of group 5 (Zinc hydroxyapatite toothpaste). Conclusions The results of this study confirmed the potential benefit the Zn-HAP technology could provide in protecting enamel from erosive acid challenges. The treatment of erosively challenged enamel with Zn-Hap toothpaste showed a clear protective effect. Key words:Dental erosion, enamel, SEM, toothpaste. PMID:28828151
Diblíková, P; Veselý, M; Sysel, P; Čapek, P
2018-03-01
Properties of a composite material made of a continuous matrix and particles often depend on microscopic details, such as contacts between particles. Focusing on processing raw focused-ion beam scanning electron microscope (FIB-SEM) tomography data, we reconstructed three mixed-matrix membrane samples made of 6FDA-ODA polyimide and silicalite-1 particles. In the first step of image processing, backscattered electron (BSE) and secondary electron (SE) signals were mixed in a ratio that was expected to obtain a segmented 3D image with a realistic volume fraction of silicalite-1. Second, after spatial alignment of the stacked FIB-SEM data, the 3D image was smoothed using adaptive median and anisotropic nonlinear diffusion filters. Third, the image was segmented using the power watershed method coupled with a seeding algorithm based on geodesic reconstruction from the markers. If the resulting volume fraction did not match the target value quantified by chemical analysis of the sample, the BSE and SE signals were mixed in another ratio and the procedure was repeated until the target volume fraction was achieved. Otherwise, the segmented 3D image (replica) was accepted and its microstructure was thoroughly characterized with special attention paid to connectivity of the silicalite phase. In terms of the phase connectivity, Monte Carlo simulations based on the pure-phase permeability values enabled us to calculate the effective permeability tensor, the main diagonal elements of which were compared with the experimental permeability. In line with the hypothesis proposed in our recent paper (Čapek, P. et al. (2014) Comput. Mater. Sci. 89, 142-156), the results confirmed that the existence of particle clusters was a key microstructural feature determining effective permeability. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr
Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R.
2015-01-01
In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation. PMID:26539431
14 Years longitudinal evaluation of clinical information systems acceptance: The HEGP case.
Hadji, Brahim; Martin, Guillaume; Dupuis, Isabelle; Campoy, Eric; Degoulet, Patrice
2016-02-01
Meaningful use and end-user satisfaction are two major components of the success of a clinical information system (CIS). The purpose of this study was to longitudinally measure and analyze the CIS use and satisfaction determinants in a multi-professional group at the Georges Pompidou university hospital (HEGP) in Paris. From the different evaluation surveys performed at HEGP, three periods were considered corresponding to 4, 8 and over 10 years after the first CIS deployment in 2000, respectively. Six acceptance dimensions were considered: CIS quality (CISQ), facilitating conditions (FC), perceived usefulness (PU), confirmation of expectations (CE), use, and global satisfaction (GS). Relationships between these constructs were tested through multiple regressions analysis and structural equation modeling (SEM). Responses were obtained from 298, 332, and 448 users for the three periods considered. CIS acceptance dimensions progressively and significantly increased over time. Significant differences between professions were observed with an initial low PU among medical staff. In the early deployment phase, GS appeared to be determined by CIS use, CISQ and PU (R(2)=.53 in SEM). In the very late post-adoption phase, GS was strongly determined by CISQ, CE, and PU (R(2)=.86 in SEM) and was no longer associated with CIS use. Acceptance models should be adapted to the phase of deployment of a CIS and integrate end-users' individual characteristics. Progressive reduction over time of the positive relationships between CIS use and satisfaction could possibly be considered as a maturity indicator of CIS deployment. These observations validate the introduction in post-adoption models of a continuance intention dimension. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Assessing the utility of FIB-SEM images for shale digital rock physics
NASA Astrophysics Data System (ADS)
Kelly, Shaina; El-Sobky, Hesham; Torres-Verdín, Carlos; Balhoff, Matthew T.
2016-09-01
Shales and other unconventional or low permeability (tight) reservoirs house vast quantities of hydrocarbons, often demonstrate considerable water uptake, and are potential repositories for fluid sequestration. The pore-scale topology and fluid transport mechanisms within these nanoporous sedimentary rocks remain to be fully understood. Image-informed pore-scale models are useful tools for studying porous media: a debated question in shale pore-scale petrophysics is whether there is a representative elementary volume (REV) for shale models? Furthermore, if an REV exists, how does it differ among petrophysical properties? We obtain three dimensional (3D) models of the topology of microscale shale volumes from image analysis of focused ion beam-scanning electron microscope (FIB-SEM) image stacks and investigate the utility of these models as a potential REV for shale. The scope of data used in this work includes multiple local groups of neighboring FIB-SEM images of different microscale sizes, corresponding core-scale (milli- and centimeters) laboratory data, and, for comparison, series of two-dimensional (2D) cross sections from broad ion beam SEM images (BIB-SEM), which capture a larger microscale field of view than the FIB-SEM images; this array of data is larger than the majority of investigations with FIB-SEM-derived microscale models of shale. Properties such as porosity, organic matter content, and pore connectivity are extracted from each model. Assessments of permeability with single phase, pressure-driven flow simulations are performed in the connected pore space of the models using the lattice-Boltzmann method. Calculated petrophysical properties are compared to those of neighboring FIB-SEM images and to core-scale measurements of the sample associated with the FIB-SEM sites. Results indicate that FIB-SEM images below ∼5000 μm3 volume (the largest volume analyzed) are not a suitable REV for shale permeability and pore-scale networks; i.e. field of view is compromised at the expense of detailed, but often unconnected, nanopore morphology. Further, we find that it is necessary to acquire several local FIB-SEM or BIB-SEM images and correlate their extracted geometric properties to improve the likelihood of achieving representative values of porosity and organic matter volume. Our work indicates that FIB-SEM images of microscale volumes of shale are a qualitative tool for petrophysical and transport analysis. Finally, we offer alternatives for quantitative pore-scale assessments of shale.
Tarka, Piotr
2018-01-01
This paper is a tribute to researchers who have significantly contributed to improving and advancing structural equation modeling (SEM). It is, therefore, a brief overview of SEM and presents its beginnings, historical development, its usefulness in the social sciences and the statistical and philosophical (theoretical) controversies which have often appeared in the literature pertaining to SEM. Having described the essence of SEM in the context of causal analysis, the author discusses the years of the development of structural modeling as the consequence of many researchers' systematically growing needs (in particular in the social sciences) who strove to effectively understand the structure and interactions of latent phenomena. The early beginnings of SEM models were related to the work of Spearman and Wright, and to that of other prominent researchers who contributed to SEM development. The importance and predominance of theoretical assumptions over technical issues for the successful construction of SEM models are also described. Then, controversies regarding the use of SEM in the social sciences are presented. Finally, the opportunities and threats of this type of analytical strategy as well as selected areas of SEM applications in the social sciences are discussed.
Bassi, Daniela; Cappa, Fabrizio; Cocconcelli, Pier Sandro
2009-06-01
Clostridium tyrobutyricum is an anaerobic bacterium responsible for late blowing defects during cheese ripening and it is of scientific interest for biological hydrogen production. A scanning electron microscopy (SEM) coating technique and X-ray microanalysis were developed to analyze the architecture and chemical composition of spores upon germination in response to environmental changes. In addition, we investigated the effects of different compounds on this process. Agents and environmental conditions inducing germination were characterized monitoring changes in optical density (OD). Among all tested conditions, the greatest drop in OD(625) (57.4%) was obtained when spores were incubated in l-alanine/l-lactate buffer, pH 4.6. In addition, a carbon-coating SEM technique and X-ray microanalysis were used to observe the architecture of spores and to examine calcium dipicolinate release. Conditions inducing C. tyrobutyricum spore germination were identified and SEM X-ray microanalysis clearly distinguished germinating from dormant spores. We confirmed that calcium dipicolinate release is one of the first events occurring. These microscopy methods could be considered sensitive tools for evaluating morphological and chemical changes in spores of C. tyrobutyricum during the initial phase of germination. Information gathered from this work may provide new data for further research on germination.
Chadda, Harshita; Naveen, Sangeetha Vasudevaraj; Mohan, Saktiswaren; Satapathy, Bhabani K; Ray, Alok R; Kamarul, Tunku
2016-07-01
Although the physical and mechanical properties of hydroxyapatite-filled dental restorative composite resins have been examined, the biocompatibility of these materials has not been studied in detail. The purpose of this in vitro study was to analyze the toxicity of acrylate-based restorative composite resins filled with hydroxyapatite and a silica/hydroxyapatite combination. Five different restorative materials based on bisphenol A-glycidyl methacrylate (bis-GMA) and tri-ethylene glycol dimethacrylate (TEGDMA) were developed: unfilled (H0), hydroxyapatite-filled (H30, H50), and silica/hydroxyapatite-filled (SH30, SH50) composite resins. These were tested for in vitro cytotoxicity by using human bone marrow mesenchymal stromal cells. Surface morphology, elemental composition, and functional groups were determined by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), and Fourier-transformed infrared spectroscopy (FTIR). The spectra normalization, baseline corrections, and peak integration were carried out by OPUS v4.0 software. Both in vitro cytotoxicity results and SEM analysis indicated that the composite resins developed were nontoxic and supported cell adherence. Elemental analysis with EDX revealed the presence of carbon, oxygen, calcium, silicon, and gold, while the presence of methacrylate, hydroxyl, and methylene functional groups was confirmed through FTIR analysis. The characterization and compatibility studies showed that these hydroxyapatite-filled and silica/hydroxyapatite-filled bis-GMA/TEGDMA-based restorative composite resins are nontoxic to human bone marrow mesenchymal stromal cells and show a favorable biologic response, making them potential biomaterials. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Ammar, Salah; Gadri, Abdellatif
2018-07-01
In this work the iron oxide (α-Fe2O3) nanoparticles are synthesized using two different methods: precipitation and hydrothermal. Size, structural, optical and magnetic properties were determined and compared using X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR), Raman spectroscopy, Differential Thermal Analysis (DTA), Thermogravimetric Analysis (TGA), Ultraviolet-Visible (UV-Vis) analysis, Superconducting QUantum Interference Device (SQUID) magnetometer and Photoluminescence (PL). XRD data further revealed a rhombohedral (hexagonal) structure with the space group (R-3c) and showed an average size of 21 nm for hydrothermal samples and 33 nm for precipitation samples which concorded with TEM and SEM images. FT-IR confirms the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we have synthesized pure α-Fe2O3 but also to identify their phonon modes. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The decrease in the particle size of hematite of 33 nm for precipitation samples to 21 nm for hydrothermal samples is responsible for increasing the optical band gap of 1.94-2.10 eV where, the relation between them is inverse relationship. The products exhibited the attractive magnetic properties with good saturation magnetization, which were examined by a SQUID magnetometer. Photoluminescence measurements showed a strong emission band at 450 nm. Pure hematite prepared by hydrothermal method has smallest size, best crystallinity, highest band gap and best value of saturation magnetization compared to the hematite elaborated by the precipitation method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagpure, I. M., E-mail: indrajitnagpure@gmail.com; Painuly, Deepshikha; Rabanal, Maria Eugenia
The various composition of ZnAlQ{sub 5} such as Zn{sub 1.5}A{sub 10.5}Q{sub 5}, Zn{sub 1}Al{sub 1}Q{sub 5}, Zn{sub 0.5}Al{sub 1.5}Q{sub 5} organic phosphors were prepared via simple cost effective co-precipitation method. The FTIR, SEM, photoluminescence analysis of the prepared phosphors were reported. ZnQ{sub 2} and AlQ{sub 3} were also prepared by similar method and their properties were compared with different composition of ZnAlQ{sub 5}. The structural elucidation in the form of stretching frequencies of chemical bonds of the prepared phosphor was carried out using Fourier Transform Infrared Spectroscopy (FTIR). The stretching frequency analysis confirms the formation of prepared phosphor materials. Themore » SEM analysis shows the surface morphological behavior of prepared phosphor materials. Greenish photoluminescence were observed at 505 to 510 nm for the different composition of ZnAlQ{sub 5},in which Zn{sub 1.5}Al{sub 0.5}Q{sub 5} shows maximum luminescence intensity at 505 nm. PL emission of ZnQ{sub 2} was observed at 515 nm, while for AlQ{sub 3} at 520 nm. The blue shift of 10 nm was observed in Zn{sub 1.5}A{sub 10.5}Q{sub 5} due to modification of energy level due to presence of Zn{sup 2+} and Al{sup 3+}. The enhancement in PL intensity was observed in Zn{sub 1.5}A{sub 10.5}Q{sub 5} compared to the other composition due to transfer of energy between Zn{sup 2+} and quinolate complex. Optical properties of the prepared materials were evaluated for possible applications in organic light emitting devices (OLED).« less
Rege, Aarti; Heu, Rod; Stranick, Michael; Sullivan, Richard J
2014-01-01
To investigate the possible mode of action of a dentifrice containing 8% arginine and calcium carbonate (Pro-Argin Technology), and sodium monofluorophosphate in delivering the benefits of preventing acid erosion and rehardening acid-softened enamel. The surfaces of acid-softened bovine enamel specimens were evaluated after application of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate in vitro. Scanning Electron Microscopy (SEM), Electronic Spectrometry for Chemical Analysis (ESCA), and Secondary Ion Mass Spectrometry (SIMS) were used to characterize the enamel surfaces. Exposure of pristine enamel surfaces to citric acid resulted in clear roughening of the surface. Multiple applications of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate to the surface of the enamel resulted in the disappearance of the microscopic voids observed by SEM as a function of treatment applications. The ESCA analysis demonstrated that both the nitrogen and carbonate levels increased as the number of treatments increased, which provides evidence that arginine and calcium carbonate were bound to the surface. Observance of arginine's signature mass fragmentation pattern by SIMS analysis confirmed the identity of arginine on the enamel surface. A series of in vitro experiments has demonstrated a possible mode of action by which a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate delivers the benefits of preventing acid erosion and rehardening acid-softened enamel. The combination of arginine and calcium carbonate adheres to the enamel surface and helps to fill the microscopic gaps created by acid, which in turn helps repair the enamel and provides a protective coating against future acid attacks.
NASA Astrophysics Data System (ADS)
Nagpure, I. M.; Painuly, Deepshikha; Rabanal, Maria Eugenia
2016-05-01
The various composition of ZnAlQ5 such as Zn1.5A10.5Q5, Zn1Al1Q5, Zn0.5Al1.5Q5 organic phosphors were prepared via simple cost effective co-precipitation method. The FTIR, SEM, photoluminescence analysis of the prepared phosphors were reported. ZnQ2 and AlQ3 were also prepared by similar method and their properties were compared with different composition of ZnAlQ5. The structural elucidation in the form of stretching frequencies of chemical bonds of the prepared phosphor was carried out using Fourier Transform Infrared Spectroscopy (FTIR). The stretching frequency analysis confirms the formation of prepared phosphor materials. The SEM analysis shows the surface morphological behavior of prepared phosphor materials. Greenish photoluminescence were observed at 505 to 510 nm for the different composition of ZnAlQ5,in which Zn1.5Al0.5Q5 shows maximum luminescence intensity at 505 nm. PL emission of ZnQ2 was observed at 515 nm, while for AlQ3 at 520 nm. The blue shift of 10 nm was observed in Zn1.5A10.5Q5 due to modification of energy level due to presence of Zn2+ and Al3+. The enhancement in PL intensity was observed in Zn1.5A10.5Q5 compared to the other composition due to transfer of energy between Zn2+ and quinolate complex. Optical properties of the prepared materials were evaluated for possible applications in organic light emitting devices (OLED).
Thermochemical properties of nanometer CL-20 and PETN fabricated using a mechanical milling method
NASA Astrophysics Data System (ADS)
Song, Xiaolan; Wang, Yi; An, Chongwei
2018-06-01
2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and pentaerythritol tetranitrate (PETN), with mean sizes of 73.8 nm and 267.7 nm, respectively, were fabricated on a high-energy ball-mill. Scanning electron microscope (SEM) analysis was used to image the micron-scale morphology of nano-explosives, and the particle size distribution was calculated using the statistics of individual particle sizes obtained from the SEM images. Analyses, such as X-ray diffractometer (XRD), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS), were also used to confirm whether the crystal phase, molecular structure, and surface elements changed after a long-term milling process. The results were as expected. Thermal analysis was performed at different heating rates. Parameters, such as the activation energy (ES), activation enthalpy (ΔH≠), activation free energy (ΔG≠), activation entropy (ΔS≠), and critical temperature of thermal explosion (Tb), were calculated to determine the decomposition courses of the explosives. Moreover, the thermal decomposition mechanisms of nano CL-20 and nano PETN were investigated using thermal-infrared spectrometry online (DSC-IR) analysis, by which their gas products were also detected. The results indicated that nano CL-20 decomposed to CO2 and N2O and that nano PETN decayed to NO2, which implied a remarkable difference between the decomposition mechanisms of the two explosives. In addition, the mechanical sensitivities of CL-20 and PETN were tested, and the results revealed that nano-explosives were more insensitive than raw ones, and the possible mechanism for this was discussed. Thermal sensitivity was also investigated with a 5 s bursting point test, from which the 5 s bursting point (T5s) and the activation of the deflagration were obtained.
Riaz, Hafiza Rida; Hashmi, Syed Salman; Khan, Tariq; Hano, Christophe; Giglioli-Guivarc'h, Nathalie; Abbasi, Bilal Haider
2018-05-18
Melatonin as plant growth regulator induces differential effects on metabolites that are responsible for reduction, capping and stabilization of zinc oxide nanoparticles. Phytochemical analysis of callus cultures was performed and results were compared with callus cultures supplemented with other plant growth regulators (α-napthalene acetic acid, 2,4-dichlorophenoxy acetic acid and thidiazuron). Highest total phenolic and flavonoid content [42.23 mg of gallic acid equivalent (GAE) g -1 DW and 36.4 mg of (quercetin equivalent) g -1 DW, respectively] were recorded at melatonin (1.0 µM) + NAA (13.5 µM). ZnONPs were synthesized from NAA (13.5 µM) and melatonin (1.0 µM) + NAA (13.5 µM)-induced calli extracts separately and characterized via X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR analysis confirmed the presence of phenolics and flavonoids that were mainly found responsible for reduction and capping of ZnONPs. SEM analysis showed triangular shaped ZnONPs synthesized from melatonin + NAA callus extract and these NPs were more dispersed as compared to the spherical-agglomerates of ZnONPs synthesized from NAA-mediated callus extract. Melatonin + NAA callus extract-mediated ZnONPs (having smaller size) were more potent against multiple drug resistant bacterial strains, e.g. Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa by producing zone of inhibitions 17 ± 0.76 mm,10 ± 0.57 mm and 13 ± 0.54 mm, respectively.
Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms.
Bersan, Salete M F; Galvão, Livia C C; Goes, Vivian F F; Sartoratto, Adilson; Figueira, Glyn M; Rehder, Vera L G; Alencar, Severino M; Duarte, Renata M T; Rosalen, Pedro L; Duarte, Marta C T
2014-11-18
Essential oils (EO) obtained from twenty medicinal and aromatic plants were evaluated for their antimicrobial activity against the oral pathogens Candida albicans, Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus sanguis and Streptococcus mitis. The antimicrobial activity of the EO was evaluates by microdilution method determining Minimal Inhibitory Concentration. Chemical analysis of the oils compounds was performed by Gas chromatography-mass spectrometry (CG-MS). The most active EO were also investigated as to their actions on the biolfilm formation. The most of the essential oils (EO) presented moderate to strong antimicrobial activity against the oral pathogens (MIC--Minimal Inhibitory Concentrations values between 0.007 and 1.00 mg/mL). The essential oil from Coriandrum sativum inhibited all oral species with MIC values from 0.007 to 0.250 mg/mL, and MBC/MFC (Minimal Bactericidal/Fungicidal Concentrations) from 0.015 to 0.500 mg/mL. On the other hand the essential oil of C. articulatus inhibited 63.96% of S. sanguis biofilm formation. Through Scanning Eletronic Microscopy (SEM) images no changes were observed in cell morphology, despite a decrease in biofilm formation and changes on biofilm structure. Chemical analysis by Gas Chromatography-Mass Spectrometry (GC-MS) of the C. sativum essential oil revealed major compounds derivatives from alcohols and aldehydes, while Cyperus articulatus and Aloysia gratissima (EOs) presented mono and sesquiterpenes. In conclusion, the crude oil from C. articulatus exhibited the best results of antimicrobial activity e ability to control biofilm formation. The chemical analysis showed the presence of terpenes and monoterpenes such as a-pinene, a-bulnesene and copaene. The reduction of biofilms formation was confirmed from SEM images. The results of this research shows a great potential from the plants studied as new antimicrobial sources.
Investigation of nurses' intention to leave: a study of a sample of UK nurses.
Robson, Andrew; Robson, Fiona
2016-01-01
The purpose of this paper is to provide an evaluation of the key antecedents of leave intention demonstrated by nurses employed in UK National Health Service (NHS). Survey assessment of a sample of 433 nurses employed within the NHS was undertaken, potential relationships relating to both affective commitment and leave intention and work-place experiences assessed through leader-member exchange (LMX) and perceived organisational support (POS) have been evaluated quantitatively, using confirmatory factor analysis (CFA) and structural equations modelling (SEM). The study indicates that both LMX and POS act as direct antecedents to nurses' leave intention. Additionally, both LMX and POS in combination, significantly effect employees' affective commitment, the latter further impacting on employee leave intention. This would suggest that both LMX and POS have a significant role to play in employee leave intention that is partially mediated by affective commitment, further analysis confirming this to be the case. Research limitations/implications - The sample of nurses is large in absolute terms, permitting the CFA/SEM analysis undertaken, although the data represented only two NHS trusts, hence generalisation across the NHS should be done so cautiously. Various other drivers of leave intention, personal and organisational, have not been assessed here. The implications of these results are that to safeguard nurse retention, appropriate line manager engagement is crucial, but this requires organisational support that is recognised by the employees, especially to enhance their levels of affective commitment. This is given by providing NHS-based assessment of the role of both POS and LMX in the realisation of both affective commitment and desire to remain with their current organisations amongst members of the UK nursing profession.
Hald, Gert Martin; Smolenski, Derek; Simon Rosser, B. R.
2012-01-01
Introduction Researchers have proposed that consumption of Sexually Explicit Media (SEM) may not only adversely influence sexual attitudes and behaviors of Men Who Have Sex with Men (MSM) but (also) play a positive role in the development and sexual education of MSM, be a major source of sexual information for MSM, and provide validation, understanding, and confirmation of MSM’s sexual orientation. However, such claims are in urgent need of empirical validation as is the development of psychometrically sound and easily implemented instruments able to reliably assist such validations. Aim To investigate how MSM who consume SEM self-perceive the impact of SEM on their STI-related sexual risk behaviors (i.e. anal intercourse), sexual knowledge, enjoyment of sex, interest in sex, attitudes toward sex, and understanding of their sexual orientation. Further, to provide a thorough psychometric validation of a reduced and reworked version of the Pornography Consumption Effect Scale. Main Outcomes Measures A revised version of the Pornography Consumption Effect Scale (PCES) by Hald and Malamuth (2008). Results This study found that 97% of MSM reported positive effects of SEM consumption on their sexual knowledge, enjoyment of and interest in sex, attitudes toward sex, and understanding of their sexual orientation. Only 3 % reported any negative effects of their SEM consumption. SEM consumption was found to significantly increase consumers’ interest in having protected anal intercourse while not significantly influencing their interests in having unprotected anal intercourse. The revised version of the PCES showed excellent psychometric performance. Conclusion The study found that MSM generally report positive effects of their consumption of sexually explicit materials in areas related to their sexual knowledge, attitudes, behaviors, and orientation. This finding could have important implications for the sexual health and well-being of MSM by suggesting that SEM-based education and intervention might hold considerable overall health potential for MSM. PMID:23110358
SEM, optical, and Moessbauer studies of submicrometer chromite in Allende
NASA Technical Reports Server (NTRS)
Housley, R. M.
1982-01-01
New scanning electron and optical microscope results are presented showing that sub-micrometer chromite is abundant along healed cracks and grain boundaries in Allende chondrule olivine. Some wider healed cracks also contain pentlandite and euhedral Ni3Fe grains. Also reported are Moessbauer measurements on Allende HF-HCl residues confirming a high Fe(+++)/Fe(++) ratio.
EPA Region 2 SEMS_CERCLIS Sites All [R2] and SEMS_CERCLIS Sites NPL [R2] GIS Layers
The Region 2 SEMS_CERCLIS Sites All [R2] GIS layer contains unique Superfund Enterprise Management System (SEMS) site records. These records have the following NPL_STATUS designations: CURRENTLY ON FINAL NPL, DELETED FROM FINAL NPL, NOT ON NPL, PROPOSED FOR NPL, REMOVED FROM PROPOSED NPL, and SITE IS PART OF NPL SITE. The Region 2 SEMS_CERCLIS NPL Sites [R2] GIS layer only has SEMS records with the following NPL_STATUS designations: 'CURRENTLY ON FINAL NPL', 'DELETED FROM FINAL NPL', 'PROPOSED FOR NPL'.The Superfund Enterprise Management System (SEMS) is EPA's official record for tracking hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of the Superfund Program across the nation. This includes sites that are on the National Priorities List (NPL) or are being considered for the NPL. SEMS represents a joint development and ongoing collaboration between Superfund's Remedial, Removal, Federal Facilities, Enforcement, and Emergency Response programs. It provides its wide audience base with a means of ongoing analysis of Superfund Program activities and informational needs at the site, regional management, and national management levels. The customers of SEMS or SEMS data are five EPA Headquarters offices and regional staff, citizens, the regulated community, other Federal agencies, States, Tribes, local agencies, and industry. SEMS stakeholders are States, Congress, other Federal agencies, industry groups, and cit
Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system
NASA Astrophysics Data System (ADS)
Hussain, T.; R., Ahmad; Khalid, N.; A. Umar, Z.; Hussnain, A.
2013-05-01
A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The XRD pattern confirms the growth of polycrystalline TiN thin film. The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride, silicon nitride, and a phase of silicon oxy-nitride. The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).
NASA Astrophysics Data System (ADS)
Gao, Min; Lu, Liqian; Wang, Xiaoyue; Lin, Houke; Zhou, Qingsong
2017-11-01
For sustain the release rate and prolong half-life of breviscapine in vivo, the breviscapine-loaded halloysite nanotubes complex was prepared. The breviscapine was encapsulated into halloysite nanotubes (HNTs) using a vacuum process. The complex were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), transmission electron microscope (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy(FT-IR). The formation of breviscapine-loaded HNTs complex was proved by the test results of SEM, DSC, TEM and IR analysise. The results confirmed that breviscapine was successfully loaded in the halloysite nanotubes. Additionally, the in vitro drug release of breviscapine from breviscapine-loaded HNTs complex was investigated, the result indicated this complex has apparent sustained-release effect.
Iantaffi, Alex; Wilkerson, J Michael; Grey, Jeremy A; Rosser, B R Simon
2015-01-01
Sexually explicit media (SEM) have been used in HIV-prevention advertisements to engage men who have sex with men (MSM) and to communicate content. These advertisements exist within larger discourses, including a dominant heteronormative culture and a growing homonormative culture. Cognizant of these hegemonic cultures, this analysis examined the acceptable level of sexual explicitness in prevention advertisements. Seventy-nine MSM participated in 13 online focus groups, which were part of a larger study of SEM. Three macro themes-audience, location, and community representation-emerged from the analysis, as did the influence of homonormativity on the acceptability of SEM in HIV-prevention messages.
Automated SEM-EDS GSR Analysis for Turkish Ammunitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cakir, Ismail; Uner, H. Bulent
2007-04-23
In this work, Automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectrometry (SEM-EDS) was used to characterize 7.65 and 9mm cartridges Turkish ammunition. All samples were analyzed in a SEM Jeol JSM-5600LV equipped BSE detector and a Link ISIS 300 (EDS). A working distance of 20mm, an accelerating voltage of 20 keV and gunshot residue software was used in all analysis. Automated search resulted in a high number of particles analyzed containing gunshot residues (GSR) unique elements (PbBaSb). The obtained data about the definition of characteristic GSR particles was concordant with other studies on this topic.
Iantaffi, Alex; Wilkerson, J. Michael; Grey, Jeremy A.; Rosser, B. R. Simon
2014-01-01
Sexually explicit media (SEM) have been used in HIV-prevention advertisements to engage men who have sex with men (MSM), and to communicate content. These advertisements exist within larger discourses, including a dominant heternormative culture, and a growing homonormative culture. Cognizant of these hegemonic cultures, this analysis examined the acceptable level of sexual explicitness in prevention advertisements. 79 MSM participated in 13 online focus groups, which were part of a larger study of SEM. Three macro-themes—audience, location and community representation—emerged from the analysis, as did the influence of homonormativity on the acceptability of SEM in HIV-prevention messages. PMID:26075485
SEM-EDX analysis of an unknown "known" white powder found in a shipping container from Peru
NASA Astrophysics Data System (ADS)
Albright, Douglas C.
2009-05-01
In 2008, an unknown white powder was discovered spilled inside of a shipping container of whole kernel corn during an inspection by federal inspectors in the port of Baltimore, Maryland. The container was detained and quarantined while a sample of the powder was collected and sent to a federal laboratory where it was screened using chromatography for the presence of specific poisons and pesticides with negative results. Samples of the corn kernels and the white powder were forwarded to the Food and Drug Administration, Forensic Chemistry Center for further analysis. Stereoscopic Light Microscopy (SLM), Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDX), and Polarized Light Microscopy/Infrared Spectroscopy (PLM-IR) were used in the analysis of the kernels and the unknown powder. Based on the unique particle analysis by SLM and SEM as well as the detection of the presence of aluminum and phosphorous by EDX, the unknown was determined to be consistent with reacted aluminum phosphide (AlP). While commonly known in the agricultural industry, aluminum phosphide is relatively unknown in the forensic community. A history of the use and acute toxicity of this compound along with some very unique SEM/EDX analysis characteristics of aluminum phosphide will be discussed.
A versatile atomic force microscope integrated with a scanning electron microscope.
Kreith, J; Strunz, T; Fantner, E J; Fantner, G E; Cordill, M J
2017-05-01
A versatile atomic force microscope (AFM), which can be installed in a scanning electron microscope (SEM), is introduced. The flexible design of the instrument enables correlated analysis for different experimental configurations, such as AFM imaging directly after nanoindentation in vacuum. In order to demonstrate the capabilities of the specially designed AFM installed inside a SEM, slip steps emanating around nanoindents in single crystalline brass were examined. This example showcases how the combination of AFM and SEM imaging can be utilized for quantitative dislocation analysis through the measurement of the slip step heights without the hindrance of oxide formation. Finally, an in situ nanoindentation technique is introduced, illustrating the use of AFM imaging during indentation experiments to examine plastic deformation occurring under the indenter tip. The mechanical indentation data are correlated to the SEM and AFM images to estimate the number of dislocations emitted to the surface.
Gärtner, Fania R; de Miranda, Esteriek; Rijnders, Marlies E; Freeman, Liv M; Middeldorp, Johanna M; Bloemenkamp, Kitty W M; Stiggelbout, Anne M; van den Akker-van Marle, M Elske
2015-10-01
To validate the Labor and Delivery Index (LADY-X), a new delivery-specific utility measure. In a test-retest design, women were surveyed online, 6 to 8 weeks postpartum and again 1 to 2 weeks later. For reliability testing, we assessed the standard error of measurement (S.E.M.) and the intraclass correlation coefficient (ICC). For construct validity, we tested hypotheses on the association with comparison instruments (Mackey Childbirth Satisfaction Rating Scale and Wijma Delivery Experience Questionnaire), both on domain and total score levels. We assessed known-group differences using eight obstetrical indicators: method and place of birth, induction, transfer, control over pain medication, complications concerning mother and child, and experienced control. The questionnaire was completed by 308 women, 257 (83%) completed the retest. The distribution of LADY-X scores was skewed. The reliability was good, as the ICC exceeded 0.80 and the S.E.M. was 0.76. Requirements for good construct validity were fulfilled: all hypotheses for convergent and divergent validity were confirmed, and six of eight hypotheses for known-group differences were confirmed as all differences were statistically significant (P-values: <0.001-0.023), but for two tests, difference scores did not exceed the S.E.M. The LADY-X demonstrates good reliability and construct validity. Despite its skewed distribution, the LADY-X can discriminate between groups. With the preference weights available, the LADY-X might fulfill the need for a utility measure for cost-effectiveness studies for perinatal care interventions. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansari, Mohd Zubair, E-mail: mhd.zubair1@gmail.com; Khare, Neeraj
Single phase Cu{sub 2}ZnSnS{sub 4} (CZTS) nanoparticles have been synthesized by the microwave-assisted solution method in a one step process. Structural, morphological and optical characterizations of the CZTS nanoparticles have been carried out. X-ray diffraction confirms the single phase formation of CZTS nanoparticles with kesterite structure. SEM confirms the homogenous distribution of CZTS nanoparticles flower like assemblies. High resolution TEM image confirms the good crystallinity of the CZTS nanoparticles with the average grain size ~20 nm. The CZTS nanoparticles have strong optical absorption in the visible region with direct band gap as ~1.6 eV which is optimal for photovoltaic application.
[Pleural mesothelioma in a school teacher: asbestos exposure due to DAS paste].
Barbieri, Pietro Gino; Somigliana, Anna; Girelli, Roberto; Lombardi, Sandra; Sarnico, Michela; Silvestri, Stefano
2016-03-24
Malignant mesothelioma cases among primary school teachers are usually linked with asbestos exposure due to the mineral contained in the building structure. Among the approximately 12,000 cases of mesothelioma described in the fourth report of the National Mesothelioma Register, 11 cases of primary school teachers are reported, in spite of the fact that the "catalogue of asbestos use" does not describe circumstances of asbestos exposure other than or different to that due to asbestos contained in the buildings. Four cases in the Brescia Provincial Mesothelioma Register are identified as teachers, without this circumstance of exposure. To characterize the asbestos concentration and fibre type retained in the lungs of a teacher reported as a new mesothelioma case and preliminarily classified as of unknown asbestos exposure. The mesothelioma case presented here was diagnosed at age 78 and malignant mesothelioma was confirmed at autopsy; the patient was interviewed directly for occupational history. Samples of lung parenchyma from necropsies were collected, stored and analyzed by scanning electron microscope (SEM) and samples of DAS paste were analyzed by SEM to detect asbestos fibre content. It was possible to confirm past exposure to DAS paste in forming and finishing dry items and toys during school recreational activity almost every day from the mid-60s to about the mid-70s. Subsequent SEM analysis showed: i) chrysotile fibres were found in an old and unused pack of DAS paste; ii) a lung burden of 1,400 asbestos bodies, 310.000 total asbestos fibres (33% chrysotile, 67% amphibole) and 210.000 talc fibre per gr/dry lung tissue was detected from necropsies performed on the subject. These results seem to be in agreement with an occupational exposure to asbestos due to past use of DAS paste. After the investigation, this case was reclassified from "unknowun" to " sure" occupational asbestos exposure. The occupational origin of the tumour was recognized by the Italian Workers' Compensation Authority (INAIL). This case suggests i) the need to carry out any possible detailed studies of the circumstances and exposure sources whenever any mesothelioma case is classified as "asbestos exposure unknown", according to the guidelines of the National Mesothelioma Register, ii) handling of DAS paste can be considered as sure asbestos exposure and iii) it should be borne in mind that mesothelioma cases can occur even after cumulative low, occupational exposure, even only to chrysotile.
Software analysis in the semantic web
NASA Astrophysics Data System (ADS)
Taylor, Joshua; Hall, Robert T.
2013-05-01
Many approaches in software analysis, particularly dynamic malware analyis, benefit greatly from the use of linked data and other Semantic Web technology. In this paper, we describe AIS, Inc.'s Semantic Extractor (SemEx) component from the Malware Analysis and Attribution through Genetic Information (MAAGI) effort, funded under DARPA's Cyber Genome program. The SemEx generates OWL-based semantic models of high and low level behaviors in malware samples from system call traces generated by AIS's introspective hypervisor, IntroVirtTM. Within MAAGI, these semantic models were used by modules that cluster malware samples by functionality, and construct "genealogical" malware lineages. Herein, we describe the design, implementation, and use of the SemEx, as well as the C2DB, an OWL ontology used for representing software behavior and cyber-environments.
Endoscopic removal of malfunctioning biliary self-expandable metallic stents.
Familiari, Pietro; Bulajic, Milutin; Mutignani, Massimiliano; Lee, Linda S; Spera, Gianluca; Spada, Cristiano; Tringali, Andrea; Costamagna, Guido
2005-12-01
Endoscopic removal of malfunctioning self-expandable metallic biliary stents (SEMS) is difficult and not well described. The aim of this study is to review the indications, the techniques, and the results of SEMS removal in a cohort of patients with malfunctioning stents. All patients who underwent an attempt at endoscopic removal of biliary SEMS over a 5-year period were retrospectively identified. The main indications for SEMS removal were the following: distal migration of the stent or impaction to the duodenum, impaction into the bile-duct wall, tissue ingrowth, and inappropriate length of the stent causing occlusion of intrahepatic ducts. SEMS were removed by using foreign-body forceps or polypectomy snares. Endoscopic removal of 39 SEMS (13 uncovered and 26 covered) was attempted in 29 patients (17 men; mean age, 66 years). SEMS extraction was attempted after a mean of 7.5 months (8.75 months standard deviation) post-SEMS insertion. Removal was successful in 20 patients (68.9%) and in 29 SEMS (74.3%). Covered SEMS were effectively removed more frequently than uncovered ones: 24 of 26 (92.3%) and 5 of 13 (38.4%), respectively (p < 0.05). No major complications were recorded. Multivariate analysis showed that the time interval between insertion and removal, SEMS length, stent-mesh design (zigzag vs. interlaced), and indication for removal were not predictive of success at stent removal. Endoscopic removal of biliary SEMS is feasible and safe in more than 70% of cases. Because only 38% of uncovered SEMS were removable, the presence of a stent covering is the only factor predictive of successful stent extraction. The presence of diffuse and severe ingrowth was the main feature limiting SEMS removal.
Catalyst free growth of CNTs by CVD on nanoscale rough surfaces of silicon substrates
NASA Astrophysics Data System (ADS)
Damodar, D.; Sahoo, R. K.; Jacob, C.
2013-06-01
Catalyst free growth of carbon nanotubes (CNT) has been achieved using atmospheric pressure chemical vapor deposition (APCVD) on surface modified Si(111) substrates. The effect of the substrate surface has been observed by partially etching with KOH (potassium hydroxide) solution which is an anisotropic etchant. Scanning electron microscopy (SEM) confirmed the formation of CNTs over most of the area of the substrate where substrates were anisotropically etched. Transmission electron microscopy (TEM) was used to observe the internal structure of the CNTs. Raman spectroscopy further confirmed the formation of the carbon nanostructures and also their graphitic crystallinity.
Albertini, Beatrice; Cavallari, Cristina; Passerini, Nadia; Voinovich, Dario; González-Rodríguez, Marisa L; Magarotto, Lorenzo; Rodriguez, Lorenzo
2004-02-01
The aim of this study was to prepare and to investigate acetaminophen taste-masked granules obtained in a high-shear mixer using three different wet granulation methods (method A: water granulation, method B: granulation with a polyvinylpyrrolidone (PVP) binding solution and method C: steam granulation). The studied formulation was: acetaminophen 15%, alpha-lactose monohydrate 30%, cornstarch 45%, polyvinylpyrrolidone K30 5% and orange flavour 5% (w/w). In vitro dissolution studies, performed at pH 6.8, showed that steam granules enabled the lower dissolution rate in comparison to the water and binding solution granules; these results were then confirmed by their lower surface reactivity (D(R)) during the dissolution process. Moreover, the results of the gustatory sensation test performed by six volunteers confirmed the taste-masking effects of the granules, especially steam granules (P<0.001). Morphological, fractal and porosity analysis were then performed to explain the dissolution profiles and the results of the gustatory sensation test. Scanning electron microscopy (SEM) analysis revealed the smoother and the more regular surface of steam granules with respect to the samples obtained using methods A and B; these results were also confirmed by their lower fractal dimension (D(s)) and porosity values. Finally, differential scanning calorimetry (DSC) results showed a shift of the melting point of the drug, which was due to the simple mixing of the components and not to the granulation processes. In conclusion, the steam granulation technique resulted a suitable method to comply the purpose of this work, without modifying the availability of the drug.
Swamy, Mallappa Kumara; Akhtar, Mohd Sayeed; Mohanty, Sudipta Kumar; Sinniah, Uma Rani
2015-12-05
Plant mediated synthesis of nanoparticles has been considered as green route and a reliable technique for the synthesis of nanoparticles due to its eco-friendly approach. In this study, we report a simple and eco-friendly approach for the synthesis of silver nanoparticles (AgNPs) using methanolic Momordica cymbalaria fruit extract as reducing agent. The fruit extract of M. cymbalaria exposed to AgNO3 solution showed the change in color from green to light yellow at room temperature within 1h of incubation confirms the synthesis of AgNPs. UV-vis spectra analysis revealed that the synthesized AgNPs had a sharp surface plasmon resonance at around 450 nm, while, the X-ray Diffraction (XRD) patterns confirmed distinctive peaks indices to the crystalline planes of the face centered cubic silver. The Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) analysis results confirmed the presence of spherical shaped AgNPs by a huge disparity in the particle size distribution with an average size of 15.5 nm. The synthesized AgNPs showed strong antibacterial activity against all the tested multidrug resistant human pathogenic bacterial strains and also exhibited highest free radical scavenging activity (74.2%) compared to fruit extract (60.4%). Moreover, both fruit extract and the synthesized AgNPs showed the cytotoxicity towards Rat L6 skeletal muscle cell line at different concentrations, but the highest inhibition percentage was recorded for AgNPs at concentration of 100 μg/ml. Copyright © 2015. Published by Elsevier B.V.
Hearns, Nigel G R; Laflèche, Denis N; Sandercock, Mark L
2015-05-01
Preparation of a ytterbium-tagged gunshot residue (GSR) reference standard for scanning electron microscopy and energy dispersive X-ray spectroscopic (SEM-EDS) microanalysis is reported. Two different chemical markers, ytterbium and neodymium, were evaluated by spiking the primers of 38 Special ammunition cartridges (no propellant, no projectile) and discharging them onto 12.7 mm diameter aluminum SEM pin stubs. Following SEM-EDS microanalysis, the majority of tri-component particles containing lead, barium, and antimony (PbBaSb) were successfully tagged with the chemical marker. Results demonstrate a primer spiked with 0.75% weight percent of ytterbium nitrate affords PbBaSb particles characteristic of GSR with a ytterbium inclusion efficiency of between 77% and 100%. Reproducibility of the method was verified, and durability of the ytterbium-tagged tri-component particles under repeated SEM-EDS analysis was also tested. The ytterbium-tagged PbBaSb particles impart synthetic traceability to a GSR reference standard and are suitable for analysis alongside case work samples, as a positive control for quality assurance purposes. © 2015 American Academy of Forensic Sciences.
Rodrigues-Pinto, E; Pereira, P; Coelho, R; Andrade, P; Ribeiro, A; Lopes, S; Moutinho-Ribeiro, P; Macedo, G
2017-02-01
Self-expanding metal stents (SEMS) are the treatment of choice for advanced esophageal cancers. Literature is scarce on risk factors predictors for adverse events after SEMS placement. Assess risk factors for adverse events after SEMS placement in advanced esophageal cancer and evaluate survival after SEMS placement. Cross-sectional study of patients with advanced esophageal cancer referred for SEMS placement, during a period of 3 years. Ninety-seven patients with advanced esophageal cancer placed SEMS. Adverse events were more common when tumors were located at the level of the distal esophagus/cardia (47% vs 23%, P = 0.011, OR 3.1), with statistical significance being kept in the multivariate analysis (OR 3.1, P = 0.018). Time until adverse events was lower in the tumors located at the level of the distal esophagus/cardia (P = 0.036). Survival was higher in patients who placed SEMS with curative intent (327 days [126-528] vs. 119 days [91-147], P = 0.002) and in patients submitted subsequently to surgery compared with those who did just chemo/radiotherapy or who did not do further treatment (563 days [378-748] vs. 154 days [133-175] vs. 46 days [20-72], P < 0.001). Subsequent treatment kept statistical significance in the multivariate analysis (HR 3.4, P < 0.001). SEMS allow palliation of dysphagia in advanced esophageal cancer and are associated with an increased out-of-hospital survival, as long as there are conditions for further treatments. Tumors located at the level of the distal esophagus/cardia are associated with a greater number of adverse events, which also occur earlier. © 2016 International Society for Diseases of the Esophagus.
Multi-Response Optimization of Resin Finishing by Using a Taguchi-Based Grey Relational Analysis
Shafiq, Faizan; Sarwar, Zahid; Jilani, Muhammad Munib; Cai, Yingjie
2018-01-01
In this study, the influence and optimization of the factors of a non-formaldehyde resin finishing process on cotton fabric using a Taguchi-based grey relational analysis were experimentally investigated. An L27 orthogonal array was selected for five parameters and three levels by applying Taguchi’s design of experiments. The Taguchi technique was coupled with a grey relational analysis to obtain a grey relational grade for evaluating multiple responses, i.e., crease recovery angle (CRA), tearing strength (TE), and whiteness index (WI). The optimum parameters (values) for resin finishing were the resin concentration (80 g·L−1), the polyethylene softener (40 g·L−1), the catalyst (25 g·L−1), the curing temperature (140 °C), and the curing time (2 min). The goodness-of-fit of the data was validated by an analysis of variance (ANOVA). The optimized sample was characterized by Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscope (SEM) to better understand the structural details of the resin finishing process. The results showed an improved thermal stability and confirmed the presence of well deposited of resin on the optimized fabric surface. PMID:29543724
NASA Astrophysics Data System (ADS)
Choudhary, Pankaj; Varshney, Dinesh
2018-05-01
Co2+ doped Mg-Zn spinel chromite compositions Mg0.5Zn0.5-xCoxCr2O4 (0.0 ≤ x ≤ 0.5) have been synthesized by the high-temperature solid state method. Synchrotron and X-ray diffraction (XRD) studies show single-phase crystalline nature. The structural analysis is validated by Rietveld refinement confirms the cubic structure with space group Fd3m. Crystallite size is estimated from Synchrotron XRD which was found to be 30-34 nm. Energy dispersive analysis confirms stoichiometric Mg0.5Zn0.5-xCoxCr2O4 composition. Average crystallite size distribution is estimated from imaging software (Image - J) of SEM is in the range of 100-250 nm. Raman spectroscopy reveals four active phonon modes, and a pronounced red shift is due to enhanced Co2+ concentration. Increased Co2+ concentration in Mg-Zn chromites shows a prominent narrowing of band gap from 3.46 to 2.97 eV. The dielectric response is attributed to the interfacial polarization, and the electrical modulus study supports non-Debye type of dielectric relaxation. Ohmic junctions (minimum potential drop) at electrode interface are active at lower levels of doping (x < 0.2) give rise to a low-frequency semicircle as evidenced from the complex impedance analysis. The low dielectric loss and high ac conductivity of Co2+ doped Mg-Zn spinel chromites are suitable for power transformer applications at high frequencies.
Experimental validation of prototype high voltage bushing
NASA Astrophysics Data System (ADS)
Shah, Sejal; Tyagi, H.; Sharma, D.; Parmar, D.; M. N., Vishnudev; Joshi, K.; Patel, K.; Yadav, A.; Patel, R.; Bandyopadhyay, M.; Rotti, C.; Chakraborty, A.
2017-08-01
Prototype High voltage bushing (PHVB) is a scaled down configuration of DNB High Voltage Bushing (HVB) of ITER. It is designed for operation at 50 kV DC to ensure operational performance and thereby confirming the design configuration of DNB HVB. Two concentric insulators viz. Ceramic and Fiber reinforced polymer (FRP) rings are used as double layered vacuum boundary for 50 kV isolation between grounded and high voltage flanges. Stress shields are designed for smooth electric field distribution. During ceramic to Kovar brazing, spilling cannot be controlled which may lead to high localized electrostatic stress. To understand spilling phenomenon and precise stress calculation, quantitative analysis was performed using Scanning Electron Microscopy (SEM) of brazed sample and similar configuration modeled while performing the Finite Element (FE) analysis. FE analysis of PHVB is performed to find out electrical stresses on different areas of PHVB and are maintained similar to DNB HV Bushing. With this configuration, the experiment is performed considering ITER like vacuum and electrical parameters. Initial HV test is performed by temporary vacuum sealing arrangements using gaskets/O-rings at both ends in order to achieve desired vacuum and keep the system maintainable. During validation test, 50 kV voltage withstand is performed for one hour. Voltage withstand test for 60 kV DC (20% higher rated voltage) have also been performed without any breakdown. Successful operation of PHVB confirms the design of DNB HV Bushing. In this paper, configuration of PHVB with experimental validation data is presented.
Meshram, J V; Koli, V B; Phadatare, M R; Pawar, S H
2017-04-01
Initially micro-organisms get exposed to the surfaces, this demands development of anti-microbial surfaces to inhibit their proliferation. Therefore, herein, we attempt screen printing technique for development of PVA-GE/ZnO nanocomposite (PG/ZnO) films. The synthesis of PG/ZnO nanocomposite includes two steps as: (i) Coating of Zinc Oxide nanoparticles (ZnO NPs) by poly ethylene glycol in order to be compatible with organic counterparts. (ii) Deposition of coated nanoparticles on the PG film surface. The results suggest the enhancement in anti-microbial activity of PG/ZnO nanocomposite over pure ZnO NPs against both Gram positive Bacillus subtilis and Gram negative Escherichia coli from zone of inhibition. The uniformity in deposition is further confirmed by scanning electron microscopy (SEM) images. The phase identification of ZnO NPs and formation of PG/ZnO nanocomposite has been confirmed by X-ray diffraction (XRD) analysis and UV-vis spectroscopy (UV-vis). The Attenuated total reflection Spectroscopy (ATR) analysis indicates the ester bond between PVA and gelatin molecules. The thermal stability of nanocomposite is studied by thermogravimetric analysis (TGA) revealing increase in crystallinity due to ZnO NPs which could be utilized to inhibit the growth of micro-organisms. The tensile strength is found to be higher and percent elongation is double of PG/ZnO nanocomposite than PG composite film. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Fatra, F.; Ivanto, G.; Dera, N. S.; Muryanto, S.; Bayuseno, A. P.
2017-05-01
The barite (BaSO4) scale is a mineral deposit that can be precipitated during the process of drilling oil and gas in the offshore. Deposite scale in pipes can cause a narrowing of the diameter of pipes, and can reduce water flowing in the pipe. The aim of this study is to investigation the effect of the tartaric acid additive and Ba2+ concentration on the growth o the scale formation of barite in the laminar flow of the piping system. Solution forming barite crystal was prepared by mixing equimolar solutions of barium chloride (BaCl2) and sodium sulfate (Na2SO4) with concentration variations of Ba2+ of 3000, 3500, 4000, 4500, and 5000 ppm. The flow rate of solution is 40 ml/min at temperature of 50 °C. Various concentrations of tartaric acid (C4H6O6) of 0 ppm, 5 ppm and 10 ppm were added to the solutions. The formation of barite from the solution was observed by ion conductivity measurement. The obtained barite crystals before and after adding tartaric acid were dried and characterized by using SEM/EDX for morphology and elemental analysis, and XRD for phase identification. The SEM results show that the morphology of the crystals are star-like particles, while XRD analysis confirmed that the barite crystals were produced during the experiments are high purity. Moreover, the tartaric acid can inhibit the crystal growth of barite.
NASA Astrophysics Data System (ADS)
Yadav, Raghvendra Singh; Kuřitka, Ivo; Vilcakova, Jarmila; Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Tkacz, Jakub; Enev, Vojtěch; Hajdúchová, Miroslava
2017-08-01
In this study, NiFe2O4 nanoparticles were synthesized using a honey-mediated sol-gel combustion method. The synthesized nanoparticles and samples annealed at 800 °C and 1100 °C were characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM). XRD and Raman spectroscopy confirmed the formation of a cubic spinel ferrite structure. FE-SEM demonstrated the octahedral morphology of the NiFe2O4 spinel ferrite nanoparticles with sizes ranging from 10 to 70 nm. Quantitative analysis based on XPS suggested a mixed spinel structure comprising NiFe2O4 nanoparticles. XPS analysis determined occupation formulae of (Ni0.212+ Fe0.443+)[Ni0.792+ Fe1.563+]O4 and (Ni0.232+ Fe0.503+)[Ni0.772+ Fe1.503+]O4, for the as-prepared NiFe2O4 nanoparticles and those annealed at 1100 °C, respectively. Magnetic measurements showed that the saturation magnetization increased with the crystallite size from 32.3 emu/g (20 nm) to 49.9 emu/g (163 nm), whereas the coercivity decreased with the crystallite size from 162 Oe (20 nm) to 47 Oe (163 nm). Furthermore, the dielectric constant, dielectric loss tangent, and AC conductivity of the NiFe2O4 nanoparticles were dependent on the frequency (1-107 Hz) and grain size. The influence of the grain size was also observed by modulus spectroscopy based on the Cole-Cole plot.