Non-platinum metal-organic framework based electro-catalyst for promoting oxygen reduction reaction
NASA Astrophysics Data System (ADS)
Das, Dipanwita; Raut, Vrushali; Kireeti, Kota V. M. K.; Jha, Neetu
2018-04-01
We developed two non-precious Metal Organic Framework (MOF) based electrocatalysts, MOF-5 and MOF-i using solvothermal and refluxing methods. The MOFs prepared has been characterized by powder X-ray diffractometer (XRD), Fourier Transform Infra-Red Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) for structural and morphological insights. SEM images reveal cubic shape for solvothermally synthesized MOF-5, whereas refluxing method leads to platelet morphology of MOF-i. The synthesized MOFs has been investigated for Oxygen Reduction Reaction (ORR) studies using Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV), with MOF modified Glassy Carbon (GC) as working electrode. The electrochemical data suggests higher activity of MOF-5 towards ORR compared to MOF-i.
Electrochemical synthesis of poly(pyrrole-co-o-anisidine)/chitosan composite films
NASA Astrophysics Data System (ADS)
Yalçınkaya, Süleyman; Çakmak, Didem
2017-05-01
In this study, poly(pyrrole-co-o-anisidine)/chitosan composite films were electrochemically synthesized in various monomers feed ratio (pyrrole: o-anisidine; 9:1, 7:3, 1:1, 3:7 and 1:9) of pyrrole and o-anisidine on the platinum electrode. Electrochemical synthesis of the composite films was carried out via cyclic voltammetry technique. They were characterized by FT-IR, cyclic voltammetry, SEM micrographs, digital images, TGA and DSC techniques. The SEM results indicated that the particle size of the composite decreased with increasing o-anisidine ratio and the films became more likely to be smooth morphology. The TGA results proved that the film of the composite with 1:1 ratio showed highest final degradation temperature and lowest weight loss (83%) compared to copolymer and 9:1 1:9 composite films. The 1:1 composite film had higher thermal stability than copolymer and the other composite films (9:1 1:9). Meanwhile, electrochemical studies exhibited that the 1/9 composite film had good electrochemical stability as well.
Knirsch, Marcos Camargo; Dell'Anno, Filippo; Salerno, Marco; Larosa, Claudio; Polakiewicz, Bronislaw; Eggenhöffner, Roberto; Converti, Attilio
2017-03-01
Polyhemoglobin produced from pure bovine hemoglobin by reaction with PEG bis(N-succynimidil succinate) as a cross-linking agent was encapsulated in gelatin and dehydrated by freeze-drying. Free carboxyhemoglobin and polyhemoglobin microcapsules were characterized by UV-Vis spectroscopy in the absorption range 450-650 nm and cyclic voltammetry in the voltage range from -0.8 to 0.6 mV to evaluate the ability to break the bond with carbon monoxide and to study the carrier's affinity for oxygen, respectively. SEM used to observe the shape of cross-linked gelatin-polyhemoglobin microparticles showed a regular distribution of globular shapes, with mean size of ~750 nm, which was ascribed to gelatin. Atomic absorption spectroscopy was also performed to detect iron presence in microparticles. Cyclic voltammetry using an Ag-AgCl electrode highlighted characteristic peaks at around -0.6 mV that were attributed to reversible oxygen bonding with iron in oxy-polyhemoglobin structure. These results suggest this technique as a powerful, direct and alternative method to evaluate the extent of hemoglobin oxygenation.
Yang, Guangming; Li, Ling; Jiang, Jinhe; Yang, Yunhui
2012-08-01
Gold nanotube arrays of rough and porous wall has been synthesized by direct electrodeposition with cyclic voltammetry utilizing anodic aluminum oxide template (AAO) and polycarbonate membrane (PC) during short time (only 3 min and 2 min, respectively). The mechanism of the direct electrodeposition of gold nanotube arrays by cyclic voltammetry (CV) has been discussed. The morphological characterizations of the gold nanotube arrays have been investigated by scanning electron microscopy (SEM). A simultaneous determination of ascorbic acid (AA) and uric acid (UA) by differential pulse voltammetry (DPV) was constructed by attaching gold nanotube arrays (using AAO) onto the surface of a glassy carbon electrode (GCE). The electrochemical behavior of AA and UA at this modified electrode has been studied by CV and differential pulse voltammetry (DPV). The sensor offers an excellent response for AA and UA and the linear response range for AA and UA were 1.02×10(-7)-5.23×10(-4) mol L(-1) and 1.43×10(-7)-4.64×10(-4) mol L(-1), the detection limits were 1.12×10(-8) mol L(-1) and 2.24×10(-8) mol L(-1), respectively. This sensor shows good regeneration, stability and selectivity and has been used for the determination of AA and UA in real human urine and serum samples with satisfied results. Copyright © 2012 Elsevier B.V. All rights reserved.
Fabre, Bruno; Pujari, Sidharam P; Scheres, Luc; Zuilhof, Han
2014-06-24
The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated alkenyl monolayer covalently bound to n-type H-terminated Si surfaces to give Fc patterns of different sizes (5 × 5, 10 × 10, and 20 × 20 μm(2)), followed by backfilling with n-butylamine. These Fc-micropatterned surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The charge-transfer process between the Fc-micropatterned and underlying Si interface was subsequently studied by cyclic voltammetry and capacitance. By electrochemical studies, it is evident that the smallest electroactive ferrocenyl patterns (i.e., 5 × 5 μm(2) squares) show ideal surface electrochemistry, which is characterized by narrow, perfectly symmetric, and intense cyclic voltammetry and capacitance peaks. In this respect, strategies are briefly discussed to further improve the development of photoswitchable charge storage microcells using the produced redox-active monolayers.
Demirezen, Nihat; Tarınç, Derya; Polat, Duygu; Ceşme, Mustafa; Gölcü, Ayşegül; Tümer, Mehmet
2012-08-01
Complexes of trimethoprim (TMP), with Cu(II), Zn(II), Pt(II), Ru(III) and Fe(III) have been synthesized. Then, these complexes have been characterized by spectroscopic techniques involving UV-vis, IR, mass and (1)H NMR. CHN elemental analysis, electrochemical and thermal behavior of complexes have also been investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV spectroscopy and cyclic voltammetry. UV studies of the interaction of the complexes with DNA have shown that these compounds can bind to CT DNA. The binding constants of the complexes with CT DNA have also been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that the complexes can bind to CT DNA by both the intercalative and the electrostatic binding mode. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and four Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with the reference drug TMP. Almost all types of complexes show excellent activity against all type of bacteria and fungi. The morphology of the CT DNA, TMP, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with CT DNA has been studied by means of differential pulse voltammetry (DPV) at CT DNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.
Heydari, Hamid; Gholivand, Mohammad B; Abdolmaleki, Abbas
2016-09-01
In this study, Copper (Cu) nanostructures (CuNS) were electrochemically deposited on a film of multiwall carbon nanotubes (MWCNTs) modified pencil graphite electrode (MWCNTs/PGE) by cyclic voltammetry method to fabricate a CuNS-MWCNTs composite sensor (CuNS-MWCNT/PGE) for hydrazine detection. Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) were used for the characterization of CuNS on the MWCNTs matrix. The composite of CuNS-MWCNTs was characterized with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The preliminary studies showed that the proposed sensor have a synergistic electrocatalytic activity for the oxidation of hydrazine in phosphate buffer. The catalytic currents of square wave voltammetry had a linear correlation with the hydrazine concentration in the range of 0.1 to 800μM with a low detection limit of 70nM. Moreover, the amperometric oxidation current exhibited a linear correlation with hydrazine concentration in the concentration range of 50-800μM with the detection limit of 4.3μM. The proposed electrode was used for the determination of hydrazine in real samples and the results were promising. Empirical results also indicated that the sensor had good reproducibility, long-term stability, and the response of the sensor to hydrazine was free from interferences. Moreover, the proposed sensor benefits from simple preparation, low cost, outstanding sensitivity, selectivity, and reproducibility for hydrazine determination. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasankumar, T.; Jose, Sujin P., E-mail: sujamystica@yahoo.com; Ilangovan, R.
Nanostructured Mn/Ni mixed metal oxide was synthesized at ambient temperature by facile microwave irradiation technique. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. X-ray diffraction analysis confirmed the formation of Mn/Ni mixed oxide in rhombohedral phase and the grain size calculated was found to be 87 nm. The irregular spherical morphology of the prepared sample was exhibited by the SEM images. The characteristic peaks of FTIR at about 630 cm{sup −1} and 749 cm{sup −1} were attributed to the Mn-O and Ni-O stretching vibrations respectively. The presence of both Mn and Ni inmore » the prepared sample was validated by the EDS spectra which in turn confirmed the formation of mixed oxide. Cyclic voltammetry and galvanostatic chargedischarge measurements were employed to investigate the electrochemical performance of the mixed oxide. The cyclic voltammetry curves demonstrated good capacitive performance of the sample in the potential window −0.2V to 0.9V. The charge discharge study revealed the suitability of the prepared mixed oxide for the fabrication of supercapacitor electrode.« less
Electrochemical performance of PVA stabilized nickel ferrite nanoparticles via microwave route
NASA Astrophysics Data System (ADS)
William, J. Johnson; Babu, I. Manohara; Muralidharan, G.
2017-05-01
Nanosized nickel ferrite nanoparticles were effectively synthesized through microwave route.PVA is used as a stabilizer. The cubic inverse spinel crystal structure was identified from the X-ray diffraction pattern. FTIR spectrum identified the octahedral site vibrations of the Ni2+ ions and tetrahedral sites vibrations of Fe3+ ions, which additionally confirms the existence of nickel ferrite nanoparticles. Nano-granular morphology was observed from scanning electron microscope. The tuning of morphology was clearly seen in SEM images. Electrochemical performance of nickel ferrite nanoparticles was studied using cyclic voltammetry and chronopotentiometry. Highest specific capacitance of 459 F g-1 was achieved through cyclic voltammetry at 2 mV s-1 for NF10. Also, non-linearity was observed in chronopotentiometry which confirms the pseudocapacitance nature of nickel ferrite nanoparticles. The estimated specific capacitance was 341 F g-1 at 2.5 A g-1.
Ndiaye, Amadou L.; Delile, Sébastien; Brunet, Jérôme; Varenne, Christelle; Pauly, Alain
2016-01-01
Here, we report on the use of electrochemical methods for the detection of volatiles fatty acids (VFAs), namely acetic acid. We used tetra-tert-butyl phthalocyanine (PcH2-tBu) as the sensing material and investigated its electroanalytical properties by means of cyclic voltammetry (CV) and square wave voltammetry (SWV). To realize the electrochemical sensing system, the PcH2-tBu has been dropcast-deposited on carbon (C) orgold (Au)screen-printed electrodes (SPEs) and characterized by cyclic voltammetry and scanning electron microscopy (SEM). The SEM analysis reveals that the PcH2-tBu forms mainly aggregates on the SPEs. The modified electrodes are used for the detection of acetic acid and present a linear current increase when the acetic acid concentration increases. The Cmodified electrode presents a limit of detection (LOD) of 25.77 mM in the range of 100 mM–400 mM, while the Aumodified electrode presents an LOD averaging 40.89 mM in the range of 50 mM–300 mM. When the experiment is realized in a buffered condition, theCmodified electrode presents a lower LOD, which averagesthe 7.76 mM. A pronounced signal decay attributed to an electrode alteration is observed in the case of the gold electrode. This electrode alteration severely affects the coating stability. This alteration is less perceptible in the case of the carbon electrode. PMID:27598214
Kumar, Jitendra; D'Souza, S F
2011-07-15
Whole cells of recombinant Escherichia coli were immobilized on the screen printed carbon electrode (SPCE) using glutaraldehyde. Recombinant E. coli was having high periplasmic expression of organophosphorus hydrolase enzyme, which hydrolyzes the methyl parathion into two products, p-nitrophenol and dimethyl thiophosphoric acid. Cells immobilized SPCE was studied under SEM. Cells immobilized SPCE was associated with cyclic voltammetry and cyclic voltammograms were recorded before and after hydrolysis of methyl parathion. Detection was calibrated based on the relationship between the changes in the current observed at +0.1 V potential, because of redox behavior of the hydrolyzed product p-nitrophenol. As concentration of methyl parathion was increased the oxidation current also increased. Only 20 μl volume of the sample was required for analysis. Detection range of biosensor was calibrated between 2 and 80 μM of methyl parathion from the linear range of calibration plot. A single immobilized SPCE was reused for 32 reactions with retention of 80% of its initial enzyme activity. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Stewart, Greg; Kuntzleman, Thomas S.; Amend, John R.; Collins, Michael J.
2009-01-01
Cyclic voltammetry is an important component of the undergraduate chemical curriculum. Unfortunately, undergraduate students rarely have the opportunity to conduct experiments in cyclic voltammetry owing to the high cost of potentiostats, which are required to control these experiments. By using MicroLab data acquisition interfaces in conjunction…
Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Naderi, Hamid Reza; Pourmohamadian, Vafa; Ahmadi, Farhad; Ganjali, Mohammad Reza; Ehrlich, Hermann
2018-07-01
Sonochemically prepared nanoparticles of terbium tungstate (TWNPs) were evaluated through scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, and the optimal products were further characterized in terms of their electrochemical properties using conventional and continuous cyclic voltammetry (CV, and CCV), galvanostatic charge/discharge technique, and electrochemical impedance spectroscopy (EIS). The CV studies indicated the TWNPs to have specific capacitance (SC) values of 336 and 205 F g -1 at 1 and 200 mV s -1 , and galvanostatic charge-discharge tests revealed the SC of the TWNP-based electrodes to be 300 F g -1 at 1 Ag -1 . Also continuous cyclic voltammetry evaluations proved the sample as having a capacitance retention value of 95.3% after applying 4000 potential cycles. In the light of the results TWNPs were concluded as favorable electrode materials for use in hybrid vehicle systems. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Liping; Wang, Ying; Wang, Xianyou; Li, Na; An, Hongfang; Chen, Huajie; Guo, Jia
Calcium carbide (CaC 2)-derived carbon (CCDC)/polyaniline (PANI) composite materials are prepared by in situ chemical oxidation polymerization of an aniline solution containing well-dispersed CCDC. The structure and morphology of CCDC/PANI composite are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and N 2 sorption isotherms. It has been found that PANI was uniformly deposited on the surface and the inner pores of CCDC. The supercapacitive behaviors of the CCDC/PANI composite materials are investigated with cyclic voltammetry (CV), galvanostatic charge/discharge and cycle life measurements. The results show that the CCDC/PANI composite electrodes have higher specific capacitances than the as grown CCDC electrodes and higher stability than the conducting polymers. The capacitance of CCDC/PANI composite electrode is as high as 713.4 F g -1 measured by cyclic voltammetry at 1 mV s -1. Besides, the capacitance retention of coin supercapacitor remained 80.1% after 1000 cycles.
NASA Astrophysics Data System (ADS)
Shabani Shayeh, J.; Ehsani, A.; Ganjali, M. R.; Norouzi, P.; Jaleh, B.
2015-10-01
Polyaniline/reduced graphene oxide/Au nano particles (PANI/rGO/AuNPs) as a hybrid supercapacitor were deposited on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) method as ternary composites and their electrochemical performance was evaluated in acidic medium. Scanning electron micrographs clearly revealed the formation of nanocomposites on the surface of the working electrode. Scanning electron micrographs (SEM) clearly revealed the formation of nanocomposites on the surface of working electrode. Different electrochemical methods including galvanostatic charge-discharge (CD) experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out in order to investigate the applicability of the system as a supercapacitor. Based on the cyclic voltammogram results obtained, PANI/rGO/AuNPs gave higher specific capacitance, power and energy values than PANI at a current density of 1 mA cm-2. Specific capacitance (SC) of PANI and PANI/rGO/AuNPs electrodes calculated using CV method are 190 and 303 F g-1, respectively. The present study introduces new nanocomposite materials for electrochemical redox capacitors with advantages including long life cycle and stability due to synergistic effects of each component.
A Practical Beginner's Guide to Cyclic Voltammetry
ERIC Educational Resources Information Center
Elgrishi, Noémie; Rountree, Kelley J.; McCarthy, Brian D.; Rountree, Eric S.; Eisenhart, Thomas T.; Dempsey, Jillian L.
2018-01-01
Despite the growing popularity of cyclic voltammetry, many students do not receive formalized training in this technique as part of their coursework. Confronted with self-instruction, students can be left wondering where to start. Here, a short introduction to cyclic voltammetry is provided to help the reader with data acquisition and…
Sol gel method for synthesis of semiconducting ferrite and the study of FTIR, DTA, SEM and CV
NASA Astrophysics Data System (ADS)
Alva, Sagir; Hua, Tang Ing; Kalmar Nizar, Umar; Wahyudi, Haris; Sundari, Rita
2018-03-01
In this study, a sol gel method using citric acid as anionic surfactant is used for synthesis of magnesium ferrite. Calcinations of magnesium ferrite at temperature (300°C, 600°C and 800°C) have been conducted after sol gel process. Characterization study of the prepared magnesium ferrite related to calcinations using Fourier transform infrared spectrometry (FTIR), Differential thermogravic analysis (DTA), and Scanning electron microscope (SEM) has been discussed. The study of Cyclic voltammetry (CV) of the prepared magnesium ferrite has been examined to assay the semiconducting behavior of magnesium ferrite in relation to its electrochemical behavior.
Motoc, Sorina; Remes, Adriana; Pop, Aniela; Manea, Florica; Schoonman, Joop
2013-04-01
This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-walled carbon nanotubes-epoxy (AgZMWCNT) composites electrodes. The composite electrodes were obtained using two-roll mill procedure. SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix. AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area. The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry and chronoamperometry. The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs. Ag/AgCl, and IBP concentration was determined comparatively by differential-pulsed voltammetry, under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode. AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.
Investigation on VOX/CNTS Nanocomposites Act as Electrode of Supercapacitors
NASA Astrophysics Data System (ADS)
Zhu, Quanyao; Li, Zhaolong; Zhang, Xiaoyan; Huang, Shengnan; Yu, Yue; Chen, Wen; Zakharova, Galina S.
2013-07-01
The VOx/CNTs nanocomposites were synthesized by the hydrothermal method. The structure and morphologies of the nanocomposites were characteristic by XRD, SEM and TEM. The electrochemical properties of the nanocomposites were explored by cyclic voltammetry, constant current charge/discharge testing and electrochemical impedance spectroscopy in 1M KNO3 aqueous solution. The results showed that the nanocomposites perform characteristics of electrical both double-layer capacitance and pseudocapacitance. The specific capacitances were 136.5F/g, when the current density was 0.15A/g.
Characterization of graphene oxide produced by Hummers method and its supercapacitor applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akgül, Ö., E-mail: omeraakgul@gmail.com; Tanrıverdi, A., E-mail: aa.kudret@hotmail.com; Alver, Ü., E-mail: ualver@ktu.edu.tr
2016-03-25
In this study, Graphene Oxide (GO) is produced using Hummers method. The produced GO were investigated by x-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), UV-Vis spectrum, Raman spectroscopy and scanning electron microscopy (SEM). GO films on Ni foam were prepared by doctor-blading technique. The electrochemical performances of the as-synthesized GO electrode was evaluated using cyclic voltammetry (CV) in 6 M KOH aqueous solution. Capacitances of GO electrode was measured as 0.76 F/g.
NASA Astrophysics Data System (ADS)
Malek Hosseini, S. M. B.; Baizaee, S. M.; Naderi, Hamid Reza; Dare Kordi, Ali
2018-01-01
Excimer laser was used for reduction and exfoliation of graphite oxide (GO) at room temperature under air ambient. The prepared excimer laser reduced graphite oxide (XLRGO) is characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), nitrogen adsorption/desorption (BET method), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and UV-vis absorption techniques for surface, structural functional groups and band gap analysis. Electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS) and continues cyclic voltammetry (CCV) in 0.5 M Na2SO4 as electrolyte. Electrochemical investigations revealed that XLRGO electrode has enhanced supercapacitive performance including specific capacitance of 299 F/g at a scan rate of 2 mV/s. Furthermore, CCV measurement showed that XLRGO electrode kept 97.8% of its initial capacitance/capacity after 4000 cycles. The obtained results from electrochemical investigations confirm that the reduction of GO by using an excimer laser produces high-quality graphene for supercapacitor applications without the need for additional operations.
Reche, Irene; Gallardo, Iluminada; Guirado, Gonzalo
2015-01-28
A report is presented on the use of cyclic voltammetry using silver as a working electrode. The combined electrocatalytic properties of silver and ionic liquids allow cyclic voltammetry to be turned into an ideal tool for the rapid and accurate access to diffusion coefficient values and solubility values of carbon dioxide in ionic liquids under standard conditions.
Cyclic performance tests of Sn/MWCNT composite lithium ion battery anodes at different temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tocoglu, U., E-mail: utocoglu@sakarya.edu.tr; Cevher, O.; Akbulut, H.
In this study tin-multi walled carbon nanotube (Sn-MWCNT) lithium ion battery anodes were produced and their electrochemical galvanostatic charge/discharge tests were conducted at various (25 °C, 35 °C, 50 °C) temperatures to determine the cyclic behaviors of anode at different temperatures. Anodes were produced via vacuum filtration and DC magnetron sputtering technique. Tin was sputtered onto buckypapers to form composite structure of anodes. SEM analysis was conducted to determine morphology of buckypapers and Sn-MWCNT composite anodes. Structural and phase analyses were conducted via X-ray diffraction and Raman Spectroscopy technique. CR2016 coin cells were assembled for electrochemical tests. Cyclic voltammetry testmore » were carried out to determine the reversibility of reactions between anodes and reference electrode between 0.01-2.0 V potential window. Galvanostatic charge/discharge tests were performed to determine cycle performance of anodes at different temperatures.« less
Multiple Strategy Bio-Detection Sensor Platforms Made From Carbon and Polymer Materials
2006-01-31
strands for detection purposes using the cyclic voltammetry (impedance) method. 6. Design of an actual set (Au patttern) to best detect the DNA binding. 7...chronoamperometry and cyclic voltammetry are used for electropolymerization. When chronoamperometry is used, the applied potential was kept at 0.8V, and the...others remained constant. When cyclic voltammetry is used, the scan rate is kept at 1OOmV/s with a scan range from -0.4V tol.OV. The thickness or the
NASA Astrophysics Data System (ADS)
Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee
2017-09-01
The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.
Cyclic Voltammetry Experiment.
ERIC Educational Resources Information Center
Van Benschoten, James J.; And Others
1983-01-01
Describes a three-part experiment designed to introduce cyclic voltammetry to graduate/undergraduate students. Part 1 demonstrates formal reduction potential, redox electron transfer, diffusion coefficient, and electrochemical reversibility. Part 2 investigates electrochemical behavior of acetaminophen. Part 3 examines such experimental variables…
Tan, Yih Horng; Davis, Jason A.; Fujikawa, Kohki; Ganesh, N. Vijaya; Demchenko, Alexei V.
2012-01-01
Nitrogen adsorption/desorption isotherms are used to investigate the Brunauer, Emmett, and Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size distribution of physically modified, thermally annealed, and octadecanethiol functionalized np-Au monoliths. We present the full adsorption-desorption isotherms for N2 gas on np-Au, and observe type IV isotherms and type H1 hysteresis loops. The evolution of the np-Au under various thermal annealing treatments was examined using scanning electron microscopy (SEM). The images of both the exterior and interior of the thermally annealed np-Au show that the porosity of all free standing np-Au structures decreases as the heat treatment temperature increases. The modification of the np-Au surface with a self-assembled monolayer (SAM) of C18-SH (coverage of 2.94 × 1014 molecules cm−2 based from the decomposition of the C18-SH using thermogravimetric analysis (TGA)), was found to reduce the strength of the interaction of nitrogen gas with the np-Au surface, as reflected by a decrease in the ‘C’ parameter of the BET equation. From cyclic voltammetry studies, we found that the surface area of the np-Au monoliths annealed at elevated temperatures followed the same trend with annealing temperature as found in the BET surface area study and SEM morphology characterization. The study highlights the ability to control free-standing nanoporous gold monoliths with high surface area, and well-defined, tunable pore morphology. PMID:22822294
Mann, Megan A; Helfrick, John C; Bottomley, Lawrence A
2014-08-19
Theory for cyclic square wave voltammetry of quasireversible electron transfer reactions is presented and experimentally verified. The impact of empirical parameters on the shape of the current-voltage curve is examined. From the trends, diagnostic criteria enabling the use of this waveform as a tool for mechanistic analysis of electrode reaction processes are presented. These criteria were experimentally confirmed using Eu(3+)/Eu(2+), a well-established quasireversible analyte. Using cyclic square wave voltammetry, both the electron transfer coefficient and rate were calculated for this analyte and found to be in excellent agreement with literature. When properly applied, these criteria will enable nonexperts in voltammetry to assign the electrode reaction mechanism and accurately measure electrode reaction kinetics.
The corrosion resistance of Wiron(®)88 in the presence of S. mutans and S. sobrinus bacteria.
Proença, L; Barroso, H; Figueiredo, N; Lino, A R; Capelo, S; Fonseca, I T E
2015-01-01
The corrosion resistance of Wiron(®)88, a Ni-Cr-Mo alloy, was evaluated in liquid growth media in the absence and presence of the Streptococcus sobrinus and Streptococcus mutans strains. Open circuit potential measurements, cyclic voltammetry, linear sweep voltammetry, as well as electronic microscopy coupled to electron diffraction spectroscopy (SEM/EDS), were the main techniques used in this study. It was concluded that the presence of S. sobrinus and S. mutans have only a slight effect on the corrosion resistance of the Wiron(®)88 alloy, with the S. mutans being slightly more aggressive. For both strains the corrosion resistance R p is of the same order (kΩ cm(2)). After 24 h immersion the S. sobrinus lead to and R p of 11.02, while the S. mutans lead to of 5.59 kΩ cm(2). SEM/EDS studies on the Wiron(®)88 samples, with 24 days of immersion, at 37 °C, have confirmed bio-corrosion of the alloy occurring through the dissolution of Ni as Ni(2+) and formation of chromium and molybdenum oxides. The bacterial adhesion to the surface is not uniform.
NASA Astrophysics Data System (ADS)
Maiyalagan, T.; Scott, Keith
Carbon nanofibers (CNF) supported Pd-Ni nanoparticles have been prepared by chemical reduction with NaBH 4 as a reducing agent. The Pd-Ni/CNF catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical voltammetry analysis. TEM showed that the Pd-Ni particles were quite uniformly distributed on the surface of the carbon nanofiber with an average particle size of 4.0 nm. The electro-catalytic activity of the Pd-Ni/CNF for oxidation of ethanol was examined by cyclic voltammetry (CV). The onset potential was 200 mV lower and the peak current density four times higher for ethanol oxidation for Pd-Ni/CNF compared to that for Pd/C. The effect of an increase in temperature from 20 to 60 °C had a great effect on increasing the ethanol oxidation activity.
mga genosensor for early detection of human rheumatic heart disease.
Singh, Swati; Kaushal, Ankur; Khare, Shashi; Kumar, Ashok
2014-05-01
The 5' amino-labeled DNA probe complementary to mga gene of Streptococcus pyogenes was immobilized on carboxylated multiwall carbon nanotubes electrode and hybridized with 0.1-100 ng/6 μl single-stranded genomic DNA (ssG-DNA) of S. pyogenes from throat swab of suspected rheumatic heart disease (RHD) patients. Electrochemical response was measured by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance (EI). The sensitivity of the sensor was 106.03 (μA/cm(2))/ng and limit of detection (LOD) was found 0.014 ng/6 μl with regression coefficient (R(2)) of 0.921 using DPV. The genosensor was characterized by FTIR and SEM, and electrode was found stable for 6 months on storage at 4 °C with 5-6 % loss in initial DPV current. mga genosensor is the first report on RHD sensor which can save life of several suspected patients by early diagnosis in 30 min.
A Cyclic Voltammetry Experiment for the Instrumental Analysis Laboratory.
ERIC Educational Resources Information Center
Baldwin, Richard P.; And Others
1984-01-01
Background information and procedures are provided for experiments that illustrate the nature of cyclic voltammetry and its application in the characterization of organic electrode processes. The experiments also demonstrate the concepts of electrochemical reversibility and diffusion-controlled mass transfer. (JN)
ERIC Educational Resources Information Center
Evans, Dennis H.; And Others
1983-01-01
Cyclic voltammetry is a simple experiment that has become popular in chemical research because it can provide useful information about redox reactions in a form which is easily obtained and interpreted. Discusses principles of the method and illustrates its use in the study of four electrode reactions. (Author/JN)
Preparation of boron doped diamond modified by iridium for electroreduction of carbon dioxide (CO2)
NASA Astrophysics Data System (ADS)
Ichzan, A. M.; Gunlazuardi, J.; Ivandini, T. A.
2017-04-01
Electroreduction of carbon dioxide (CO2) at iridium oxide-modified boron-doped diamond (IrOx-BDD) electrodes in aqueous electrolytes was studied by voltammetric method. The aim of this study was to find out the catalytic effect of IrOx to produce fine chemicals contained of two or more carbon atoms (for example acetic acid) in high percentage. Characterization using FE-SEM and XPS indicated that IrO2 can be deposited at BDD electrode, whereas characterization using cyclic voltammetry indicated that the electrode was applicable to be used as working electrode for CO2 electroreduction.
Two-dimensional nickel hydroxide nanosheets as high performance pseudo-capacitor electrodes
NASA Astrophysics Data System (ADS)
Bhat, Karthik S.; Nagaraja, H. S.
2018-04-01
Electrochemical supercapacitor is a vital technology for the progress of consistent energy harvesting devices. Herein, we report the fabrication of supercapacitor electrodes based on nickel hydroxide nanosheets synthesized via one-pot hydrothermal method. Structure and shape of synthesized materials were analyzed with XRD and SEM measurements. Pseudo-capacitive performances of the fabricated electrodes were evaluated through cyclic voltammetry and galvanostatic charge-discharge measurements with three-electrode configurations. Results indicated the specific capacitance of l80 F g-1 at 5 mV s-1 scan rate and complimented with capacitance retention of 76% for l500 cycles.
Accomplishment of highly porous-lithium lanthanum titanate through microwave treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakshmi, D.; Nalini, B., E-mail: jyothsnalalin99@gmail.com; Abhilash, K. P.
Perovskite structured (ABO{sub 3}) lithium lanthanum titanate (LLTO) is a successful electrolyte reported by several scientists in the recent past. It is believed that intercalation and de-intercalation of Li ions inside solid electrolyte can be improved by increasing the porosity of the material. Hence in this research work, an attempt is made to increase the porosity of the LLTO electrolyte by rapid-microwave synthesis route. The microwave prepared LLTO is compared with the sol-gel synthesized LLTO. The prepared samples are analyzed with XRD, SEM, PL and cyclic Voltammetry studies. Morphological analysis proves that microwave synthesized LLTO contains much pores compared tomore » the Sol-gel LLTO. A remarkable difference in its electrochemical property is also demonstrated and analysed with cyclic voltammetric studies and the results are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samin, Adib; Lahti, Erik; Zhang, Jinsuo, E-mail: zhang.3558@osu.edu
Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extendedmore » to cases that are more general and may be useful for benchmarking purposes.« less
Synthesis of nanocrystalline α-Fe2O3 by using thermal oxidation of Fe Films
NASA Astrophysics Data System (ADS)
Fortas, G.; Saidoun, I.; Abboud, H.; Gabouze, N.; Haine, N.; Manseri, A.; Zergoug, M.; Menari, H.; Sam, S.; Cheraga, H.; Bozetine, I.
2018-03-01
α-Fe2O3 hematite films were prepared by thermal oxidation from Fe films electroplated on silicon. Electrodeposition of Fe thin films was carried out from a sulfate bath containing an ammonium chloride complexing agent. The electrochemical study was performed by cyclic voltammetry. The SEM analysis of the films obtained at a -1.3 V constant polarization shows dendritic grains in the form of islet. The DRX spectra exhibit characteristic iron peaks according to the face centered cubic (Fcc) structure. These samples were annealed. At a temperature of 650 ° C, a single iron oxide phase was well formed, with the hematite structure. The SEM photos show a well-assembled columnar structure with formation of nanowires at the surface of the deposit. The absorbance spectra reveal an absorption features in the ultraviolet range
Shayeh, Javad Shabani; Sadeghinia, Mohammad; Siadat, Seyed Omid Ranaei; Ehsani, Ali; Rezaei, Mehran; Omidi, Meisam
2017-06-15
In this work, supercapacitive performance of polypyrrole copper chromate nano particles (Ppy/CuCr 2 O 4 NPs) was studied. CuCr 2 O 4 NPs with the average size of 20nm were synthesized simply by hydrothermal method and the composite electrodes were then electropolymerized on the surface of glassy carbon electrode. Common surface analysis techniques such as scanning electron microscopy (SEM), transmission electron microscopy(TEM) and Fourier transform infrared (FTIR) were used to study the morphology and structure of the composite. Furthermore, for electrochemical evaluation of composite electrodes, techniques including cyclic voltammetry (CV), galvanostatic charge discharge (CD) and impedance spectroscopy (EIS) were used. Using cyclic voltammetry, the specific capacitance values of Ppy and Ppy/CuCr 2 O 4 NPs were calculated to be 109 and 508 F g -1 , respectively. Results show that using CuCr 2 O 4 NPs in the structure of polymeric films led to increased specific capacitance of composite electrodes more than four times that of poly pyrrole. Increasing the conductivity and stability of composite electrodes through continuous cycles are the other advantages of using CuCr 2 O 4 NPs as active materials in a polymeric structure. Copyright © 2017 Elsevier Inc. All rights reserved.
Cyclic Voltammetry Simulations with DigiSim Software: An Upper-Level Undergraduate Experiment
ERIC Educational Resources Information Center
Messersmith, Stephania J.
2014-01-01
An upper-division undergraduate chemistry experiment is described which utilizes DigiSim software to simulate cyclic voltammetry (CV). Four mechanisms were studied: a reversible electron transfer with no subsequent or proceeding chemical reactions, a reversible electron transfer followed by a reversible chemical reaction, a reversible chemical…
Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach
NASA Astrophysics Data System (ADS)
Huang, Huajie; Wang, Xin
2011-08-01
Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material.Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material. Electronic supplementary information (ESI) available: Fig. S1, AFM image (5 μm × 5 μm) of graphene nanoplate-MnO2 composite obtained at 3 h; Fig. S2, nitrogen adsorption/desorption isotherm of graphene nanoplate-MnO2 composite obtained at 3 h. See DOI: 10.1039/c1nr10229j
In situ SEM Study of Lithium Intercalation in individual V 2O 5 Nanowires
Strelcov, Evgheni; Cothren, Joshua E.; Leonard, Donovan N.; ...
2015-01-08
Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. In this paper, we report on in situ SEM study of lithiation in a V 2O 5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation,more » formation of solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. Lastly, the SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strelcov, Evgheni; Cothren, Joshua E.; Leonard, Donovan N.
Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. In this paper, we report on in situ SEM study of lithiation in a V 2O 5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation,more » formation of solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. Lastly, the SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.« less
Cyclic Square Wave Voltammetry of Surface-Confined Quasireversible Electron Transfer Reactions.
Mann, Megan A; Bottomley, Lawrence A
2015-09-01
The theory for cyclic square wave voltammetry of surface-confined quasireversible electrode reactions is presented and experimentally verified. Theoretical voltammograms were calculated following systematic variation of empirical parameters to assess their impact on the shape of the voltammogram. From the trends obtained, diagnostic criteria for this mechanism were deduced. These criteria were experimentally confirmed using two well-established surface-confined analytes. When properly applied, these criteria will enable non-experts in voltammetry to assign the electrode reaction mechanism and accurately measure electrode reaction kinetics.
Park, Duck-Gun; Song, Hoon; Kishore, M B; Vértesy, G; Lee, Duk-Hyun
2013-11-01
In this study, a magnetic sensor utilizing Planar Hall Resistance (PHR) and cyclic Voltammetry (CV) for detecting the radiation effect was fabricated. Specifically, we applied in parallel a PHR sensor and CV device to monitor the irradiation effect on DNA and protein respectively. Through parallel measurements, we demonstrated that the PHR sensor and CV are sensitive enough to measure irradiation effect. The PHR voltage decreased by magnetic nanobead labeled DNA was slightly recovered after gamma ray irradiation. The behavior of cdk inhibitor protein p21 having a sandwich structure of Au/protein G/Ab/Ag/Ab was checked by monitoring the cyclic Voltammetry signal in analyzing the gamma ray irradiation effect.
NASA Astrophysics Data System (ADS)
Li, Xiang; Zheng, Feng; Gan, Weiping; Luo, Xun
2016-01-01
RuO2/activated carbon (AC) composite electrode was prepared by a modified colloidal procedure and a thermal decomposition method. The precursor for RuO2/AC was coated on tantalum sheet and annealed at 150°C to 190°C for 3 h to develop thin-film electrode. The microstructure and morphology of the RuO2/AC film were characterized by thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The TGA results showed the maximum loss of RuO2/AC composite film at 410°C, with residual RuO2 of 23.17 wt.%. The amorphous phase structure of the composite was verified by XRD analysis. SEM analysis revealed that fine RuO2 particles were dispersed in an activated carbon matrix after annealing. The electrochemical properties of RuO2/AC electrode were examined by cycling voltammetry, galvanostatic charge-discharge, and cyclic behavior measurements. The specific capacitance of RuO2/AC electrode reached 245 F g-1. The cyclic behavior of RuO2/AC electrode was stable. Optimal annealing was achieved at 170°C for 3 h.
Smith, Amanda R; Garris, Paul A; Casto, Joseph M
2015-01-01
Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of dopamine in the starling and rat striatum. Fast-scan cyclic voltammetry thus has the potential to be an invaluable tool for investigating the neural underpinnings of behavior in birds. Copyright © 2015 Elsevier B.V. All rights reserved.
Smith, Amanda R.; Garris, Paul A.; Casto, Joseph M.
2015-01-01
Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of dopamine in the starling and rat striatum. Fast-scan cyclic voltammetry thus has the potential to be an invaluable tool for investigating the neural underpinnings of behavior in birds. PMID:25900708
Hasanzadeh, Mohammad; Mokhtari, Fozieh; Shadjou, Nasrin; Eftekhari, Aziz; Mokhtarzadeh, Ahad; Jouyban-Gharamaleki, Vahid; Mahboob, Soltanali
2017-06-01
This study reports on the electropolymerization of a low toxic and biocompatible polymer with entitle poly arginine-graphene quantum dots (PARG-GQDs) as a novel strategy for surface modification of glassy carbon (GC) surface and preparation a new interface for biomedical application. The fabrication of PARG-GQDs on GCE was performed using Layer-by-layer regime. Scanning electron microscopy (SEM) was confirmed dispersion of GQDs on the surface of PARG which lead to increase of surface coverage of PARG. The redox behavior of prepared sensor was then characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CHA), square wave voltammetry (SWV), linear sweep voltammetry (LSV). The electroactivity of PARG-GQDs coating towards detection and determination of malondialdehyde (MDA) as one of the most common biomarkers of oxidative stress, was then studied. Then, application of prepared sensor for the detection of MDA in exhaled breath condensate (EBC) is described. Electrochemical based sensor shows the lower limit of quantification (LLOQ) were 0.329nanomolar. This work is the first report on the integration of GQDs to poly amino acids. Further development can lead to monitoring of MDA or other exhaled breath biomarkers by GQDs functionalized poly amino acids in EBC using electrochemical methods. Copyright © 2017. Published by Elsevier B.V.
Evaluation of homogeneous electrocatalysts by cyclic voltammetry.
Rountree, Eric S; McCarthy, Brian D; Eisenhart, Thomas T; Dempsey, Jillian L
2014-10-06
The pursuit of solar fuels has motivated extensive research on molecular electrocatalysts capable of evolving hydrogen from protic solutions, reducing CO2, and oxidizing water. Determining accurate figures of merit for these catalysts requires the careful and appropriate application of electroanalytical techniques. This Viewpoint first briefly presents the fundamentals of cyclic voltammetry and highlights practical experimental considerations before focusing on the application of cyclic voltammetry for the characterization of electrocatalysts. Key metrics for comparing catalysts, including the overpotential (η), potential for catalysis (E(cat)), observed rate constant (k(obs)), and potential-dependent turnover frequency, are discussed. The cyclic voltammetric responses for a general electrocatalytic one-electron reduction of a substrate are presented along with methods to extract figures of merit from these data. The extension of this analysis to more complex electrocatalytic schemes, such as those responsible for H2 evolution and CO2 reduction, is then discussed.
Lv, Pengfei; Feng, Quan; Wang, Qingqing; Li, Guohui; Li, Dawei; Wei, Qufu
2016-01-01
Novel nanocomposites comprised of bacterial cellulose (BC) with carboxylic multi-walled carbon nanotubes (c-MWCNTs) incorporated into the BC matrix were prepared through a simple method of biosynthesis. The biocathode and bioanode for the enzyme biological fuel cell (EBFC) were prepared using BC/c-MWCNTs composite injected by laccase (Lac) and glucose oxidase (GOD) with the aid of glutaraldehyde (GA) crosslinking. Biosynthesis of BC/c-MWCNTs composite was characterized by digital photos, scanning electron microscope (SEM), and Fourier Transform Infrared (FTIR). The experimental results indicated the successful incorporation of c-MWCNTs into the BC. The electrochemical and biofuel performance were evaluated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The power density and current density of EBFCs were recorded at 32.98 µW/cm3 and 0.29 mA/cm3, respectively. Additionally, the EBFCs also showed acceptable stability. Preliminary tests on double cells indicated that renewable BC have great potential in the application field of EBFCs. PMID:28773310
Zhang, Xin; Wei, Youli; Ding, Yaping
2014-07-04
A glassy carbon electrode modified with poly(alizarin red)/electrodeposited graphene (PAR/EGR) composite film was prepared and applied to detect ciprofloxacin (CPFX) in the presence of ascorbic, uric acid and dopamine. The morphology and interface property of PAR/EGR films were examined by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrocatalytic oxidation of CPFX on AR/EGR was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The linearity ranged from 4 × 10(-8) to 1.2 × 10(-4) M with a detection limit (S/N=3) of 0.01 μM. The modified electrode could be applied to the individual determination of CPFX as well as the simultaneous determination of CPFX, ascorbic acid, uric acid and dopamine. This method proved to be a simple, selective and rapid way to determine CPFX in pharmaceutical preparation and biological media. Copyright © 2014. Published by Elsevier B.V.
Polyaniline/carbon nanotubes platform for sexually transmitted disease detection.
Singh, Renu; Dhand, Chetna; Sumana, Gajjala; Verma, Rachna; Sood, Seema; Gupta, Rajinder Kumar; Malhotra, Bansi Dhar
2010-01-01
Polyaniline/carbon nanotubes composite (PANI-CNT) electrochemically deposited onto indium-tin-oxide (ITO) coated glass plate has been utilized for Neisseria gonorrhoeae detection by immobilizing 5'-amino-labeled Neisseria gonorrhoeae probe (aDNA) using glutaraldehyde as a cross-linker. PANI-CNT/ITO and aDNA-Glu-PANI-CNT/ITO electrodes have been characterized using scanning electron microscopy (SEM), Fourier Transform Infrared (FT-IR) spectroscopy, cyclic voltammetry (CV), and differential pulse voltammetry (DPV). This bioelectrode can be used to detect N. gonorrhoeae using methylene blue (MB) as redox indicator with response time of 60 s and stability of about 75 days when stored under refrigerated conditions. DPV studies reveal that this bioelectrode can detect complementary DNA concentration from 1 x 10(-6) M to 1 x 10(-17) M with detection limit of 1.2 x 10(-17) M. Further, this bioelectrode (aDNA-Glu-PANI-CNT/ITO) exhibits specificity toward N. gonorrhoeae species and shows negative response with non-Neisseria gonorrhoeae Neisseria species (NgNS) and other gram negative bacteria (GNB).
Electrodeposited nanostructured MnO{sub 2} for non-enzymatic hydrogen peroxide sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, B., E-mail: barnamala.saha@gmail.com; Jana, S. K.; Banerjee, S.
2015-06-24
Electrodeposited MnO{sub 2} nanostructure was synthesized on indium tin oxide coated glass electrode by cyclic voltammetry. The as obtained samples were subsequently characterized by atomic force microscopy and their electro-catalytic response towards hydrogen peroxide in alkaline medium of 0.1M NaOH was studied using cyclic voltammetry and amperometry.
Exfoliated, Nitrogen-Doped Graphene Nanosheet Cathode for Lithium-Oxygen Batteries
2014-06-01
scanning electron microscopy; oxygen reduction reaction; cyclic voltammetry ; lithium-oxygen battery. Introduction The continuous...77 K (Micromeritics ASAP 2020). The porosity of cathode material was characterized by a gas pycnometer (Micromeritis, Accu Pyc II 1340). Cyclic ... voltammetry (CV) and galvanostatic charge-discharge measurements of the specimens were conducted using a computer controlled VersaSTAT 4 (Princeton
Ni-CeO2 spherical nanostructures for magnetic and electrochemical supercapacitor applications.
Murugan, Ramachandran; Ravi, Ganesan; Vijayaprasath, Gandhi; Rajendran, Somasundharam; Thaiyan, Mahalingam; Nallappan, Maheswari; Gopalan, Muralidharan; Hayakawa, Yasuhiro
2017-02-08
The synthesis of nanoparticles has great control over the structural and functional characteristics of materials. In this study, CeO 2 and Ni-CeO 2 spherical nanoparticles were prepared using a microwave-assisted method. The prepared nanoparticles were characterized via thermogravimetry, X-ray diffraction (XRD), Raman, FTIR, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM) and cyclic voltammetry (CV). The pure CeO 2 sample exhibited a flake-like morphology, whereas Ni-doped CeO 2 showed spherical morphology with uniform shapes. Spherical morphologies for the Ni-doped samples were further confirmed via TEM micrographs. Thermogravimetric analyses revealed that decomposition varies with Ni-doping in CeO 2 . XRD revealed that the peak shifts towards lower angles for the Ni-doped samples. Furthermore, a diamagnetic to ferromagnetic transition was observed in Ni-doped CeO 2 . The ferromagnetic property was attributed to the introduction of oxygen vacancies in the CeO 2 lattice upon doping with Ni, which were confirmed by Raman and XPS. The pseudo-capacitive properties of pure and Ni-doped CeO 2 samples were evaluated via cyclic voltammetry and galvanostatic charge-discharge studies, wherein 1 M KOH was used as the electrolyte. The specific capacitances were 235, 351, 382, 577 and 417 F g -1 corresponding to the pure 1%, 3%, 5% and 7% of Ni doped samples at the current density of 2 A g -1 , respectively. The 5% Ni-doped sample showed an excellent cyclic stability and maintained 94% of its maximum specific capacitance after 1000 cycles.
High performance supercapacitor using porous carbon nanomaterial from corn cob
NASA Astrophysics Data System (ADS)
Sharma, Nallin; Mishra, Neeraj; Sharon, Madhuri; Sharon, Maheshwar
2013-06-01
Carbon synthesized from corn-cob has been used as an electrode in Electrochemical Double Layer Capacitor (EDLC). Dried Corn Cobs, soaked in 1N KOH, 1N HCl or 5% ZnCl2 at 10 0°C for 24 hr, were pyrolyzed in presence of Ar using Co as catalyst at 700-900 °C having dwell time of 60-180 min. The morphology of thus obtained carbon was studied under SEM that showed it to be porous carbon. All the carbon samples synthesized using different parameters were used as electrode for EDLC. Cyclic Voltammetry was used to measure the capacitance. Carbon synthesized from corn cobs pre-treated with 5% ZnCl2 using Co as catalyst pyrolyzed at 700°C for a dwell time of 120 min gave higher Specific capacitance of 270 F/g at scan rate of 5 mV/s. Moreover, this carbon, as observed under SEM, exhibited larger pore size.
NASA Astrophysics Data System (ADS)
Chen, Yong; Zhao, Hui; Han, Bing
2014-12-01
In this paper, we have developed a simple, facile, and efficient approach to synthesize polyaniline fibers (PANI fibers) from aniline in the presence of (NH4)2S2O8 with sodium dodecyl benzene sulfonate (SDBS) and L-camphorsulfonic acid (L-CSA) as double templates. The chemical constituents of the composites are characterized by Fourier transformation infrared spectroscopy (FTIR). The results demonstrate that the PANI fibers were synthesized successfully. The morphology of the composites was characterized by scanning electron microscopy (SEM). The SEM and UV-Vis images show an interesting growth and doping process. Moreover, cyclic voltammetry (CV) was used to characterize the electrochemical properties of PANI microfibers. They also give a pair of redox peaks and have better operation stability, which indicates that the composites show distinct electrochemical performance. So the PANI microfibers would have potential applications in the fields of analytical chemistry, bioanalysis, etc.
Preparation and Characterization of Silanes Films to Protect Electrogalvanized Steel
NASA Astrophysics Data System (ADS)
Seré, Pablo R.; Egli, Walter; Di Sarli, Alejandro R.; Deyá, Cecilia
2018-03-01
Silanes are an interesting alternative to chromate-based surface treatments for temporary protection of electrogalvanized steel. In this work, the protective behavior of 3-mercaptopropyltrimethoxysilane (MTMO), 3-aminopropyltriethoxysilane (AMEO), or 3-glycidoxypropyltrimethoxysilane (GLYMO) films applied on electrogalvanized automotive quality steel sheets has been studied. The silane coating morphology, composition, and porosity were characterized by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), x-ray fluorescence, immersion in copper sulfate, and cyclic voltammetry. The corrosion protection was evaluated by polarization curves, electrochemical noise measurements, electrochemical impedance spectrometry, and accelerated humidity chamber tests. The results showed that the silanes protect temporarily electrogalvanized steel from corrosion. MTMO forms a relatively thick and cracked film. AMEO and GLYMO films were so thin that they could not be observed by SEM but silicon was detected by EDS. MTMO provided good temporary protection, being an alternative to replace Cr(VI) as protector of electrogalvanized steel.
NASA Astrophysics Data System (ADS)
Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong
2015-03-01
Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).
Fabrication of Porous Carbon-based Nanostructure for Energy Storage and Transfer Applications
2014-06-09
in the voltage range of 3.0 to 0.005 V (versus Li/Li+). Cyclic voltammetry (CV) was performed on a computer controlled MacPile II unit (Biological...performed at current density of 37mAg–1, voltage: 3.0-0.005V vs. Li/Li+. Cyclic voltammetry was performed at a scan rate of 58 µs/V. Red plots...pseudocapacitve storage behaviour of the electrode.19 The Li storage mechanism of both electrodes can also be studied carefully by slow scanning cyclic
Helfrick, John C; Mann, Megan A; Bottomley, Lawrence A
2016-08-18
Theory for cyclic square wave voltammetry of electrode reactions with chemical reactions preceding the electron transfer is presented. Theoretical voltammograms were calculated following systematic variation of empirical parameters to assess their impact on the shape of the voltammogram. From the trends obtained, diagnostic criteria for this mechanism were deduced. When properly applied, these criteria will enable non-experts in voltammetry to assign the electrode reaction mechanism and accurately measure reaction kinetics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pulse Voltammetry in Single Cells Using Platinum Microelectrodes
1991-11-22
E. and the range for Ed in multiple pulse voltammetry can be chosen from examination of voltammograms obtained by cyclic voltammetry or lin-ir sweep ... voltametry [3,13]. As pointed out by Sinru et al. [14) the potential and time of each pulse has a direct effect on the nature of the voltammetry
The redox status of experimental hemorrhagic shock as measured by cyclic voltammetry.
Mittal, Anubhav; Göke, Friederike; Flint, Richard; Loveday, Benjamin P T; Thompson, Nichola; Delahunt, Brett; Kilmartin, Paul A; Cooper, Garth J S; MacDonald, Julia; Hickey, Anthony; Windsor, John A; Phillips, Anthony R J
2010-05-01
Hemorrhagic shock (HS) leads to reactive oxygen species production. However, clinicians do not have access to bedside measurements of the redox status during HS. Cyclic voltammetry (CyV) is a simple electrochemical method of measuring redox status. The aims of this study were to 1) report the first application of cyclic voltammetry to measure the acute changes in serum redox status after HS, 2) to contrast it with another severe systemic disease with a different redox pathology (acute pancreatitis [AP]), and 3) to describe the response of CyV over time in a resolving model of AP. In the acute study, 24 male Wistar rats were randomized into three groups: groups 1 (control), 2 (AP), and 3 (HS). In the time-course study, 28 rats were randomized to a sham-control as well as 6 and 24 h post-AP cohorts, respectively.Cyclic voltammetry was performed using a three-electrode system. In the acute study, the first and second voltammetric peaks increased significantly in HS. In contrast, within the AP group, only the first voltammetric peak showed a significant increase. The first voltammetric peak correlated with plasma protein carbonyls (PCs) and with thiobarbituric acid-reactive substances, whereas the second voltammetric peak correlated positively with plasma protein carbonyls. In the second study, the first voltammetric peak correlated with physiological improvements. Here, we showed that serum CyV could respond to the serum redox change in HS and AP. Cyclic voltammetry warrants evaluation as a potential real-time beside measure of a patient's redox status during shock.
Wester, Niklas; Sainio, Sami; Palomäki, Tommi; ...
2017-03-16
Here, we present for the first time tetrahedral amorphous carbon (ta-C)—a partially reduced graphene oxide (PRGO) hybrid electrode nanomaterial platform for electrochemical sensing of dopamine (DA). Graphene oxide was synthesized with the modified Hummer’s method. Before modification of ta-C by drop casting, partial reduction of the GO was carried out to improve electrochemical properties and adhesion to the ta-C thin film. A facile nitric acid treatment that slightly reoxidized the surface and modified the surface chemistry was subsequently performed to further improve the electrochemical properties of the electrodes. The largest relative increase was seen in carboxyl groups. The HNO 3more » treatment increased the sensitivity toward DA and AA and resulted in a cathodic shift in the oxidation of AA. The fabricated hybrid electrodes were characterized with scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and electrochemical impedance spectroscopy (EIS). Moreover, compared to the plain ta-C electrode the hybrid electrode was shown to exhibit superior sensitivity and selectivity toward DA in the presence of ascorbic acid (AA), enabling simultaneous sensing of AA and DA close to the physiological concentrations by cyclic voltammetry (CV) and by differential pulse voltammetry (DPV). Two linear ranges of 0–1 μM and 1–100 μM and a detection limit (S/N = 3.3) of 2.6 nM for DA were determined by means of cyclic voltammetry. Thus, the current work provides a fully CMOS-compatible carbon based hybrid nanomaterial that shows potential for in vivo measurements of DA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wester, Niklas; Sainio, Sami; Palomäki, Tommi
Here, we present for the first time tetrahedral amorphous carbon (ta-C)—a partially reduced graphene oxide (PRGO) hybrid electrode nanomaterial platform for electrochemical sensing of dopamine (DA). Graphene oxide was synthesized with the modified Hummer’s method. Before modification of ta-C by drop casting, partial reduction of the GO was carried out to improve electrochemical properties and adhesion to the ta-C thin film. A facile nitric acid treatment that slightly reoxidized the surface and modified the surface chemistry was subsequently performed to further improve the electrochemical properties of the electrodes. The largest relative increase was seen in carboxyl groups. The HNO 3more » treatment increased the sensitivity toward DA and AA and resulted in a cathodic shift in the oxidation of AA. The fabricated hybrid electrodes were characterized with scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and electrochemical impedance spectroscopy (EIS). Moreover, compared to the plain ta-C electrode the hybrid electrode was shown to exhibit superior sensitivity and selectivity toward DA in the presence of ascorbic acid (AA), enabling simultaneous sensing of AA and DA close to the physiological concentrations by cyclic voltammetry (CV) and by differential pulse voltammetry (DPV). Two linear ranges of 0–1 μM and 1–100 μM and a detection limit (S/N = 3.3) of 2.6 nM for DA were determined by means of cyclic voltammetry. Thus, the current work provides a fully CMOS-compatible carbon based hybrid nanomaterial that shows potential for in vivo measurements of DA.« less
ERIC Educational Resources Information Center
Brown, Jay H.
2015-01-01
Cyclic voltammetry (CV) is a popular technique for the study of electrochemical mechanisms because the method can provide useful information on the redox couple. The technique involves the application of a potential ramp on an unstirred solution while the current is monitored, and then the ramp is reversed for a return sweep. CV is sometimes…
Kim, Y S; Balland, V; Limoges, B; Costentin, C
2017-07-21
Cyclic voltammetry is a particularly useful tool for characterizing charge accumulation in conductive materials. A simple model is presented to evaluate proton transport effects on charge storage in conductive materials associated with a redox process coupled with proton insertion in the bulk material from an aqueous buffered solution, a situation frequently encountered in metal oxide materials. The interplay between proton transport inside and outside the materials is described using a formulation of the problem through introduction of dimensionless variables that allows defining the minimum number of parameters governing the cyclic voltammetry response with consideration of a simple description of the system geometry. This approach is illustrated by analysis of proton insertion in a mesoporous TiO 2 film.
NASA Astrophysics Data System (ADS)
Naderi, Hamid Reza; Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Ganjali, Mohammad Reza
2017-11-01
A composite of cobalt tungstate nanoparticles coated on nitrogen-doped reduced graphene oxide (CoWO4/NRGO) was prepared through an in situ sonochemical approach. The composite was next evaluated as an electrode material for use supercapacitors electrodes. The characterization of the various CoWO4/NRGO nanocomposite samples was carried out through field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Brunauer-Emmett-Teller (BET) method and Raman spectroscopy. Complementary studies were also performed through cyclic voltammetry (CV), galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS), and continues cyclic voltammetry (CCV). The electrochemical evaluations were carried out in a 2 M H2SO4 solution as the electrolyte. The electrochemical evaluations on the nano-composite samples indicated that CoWO4/NRGO-based electrodes reveal enhanced supercapacitive characteristics (i.e. a high specific capacitance (SC) of 597 F g-1 at a scan rate of 5 mV s-1, an energy density (ED) value of 67.9 W h kg-1, and high rate capability). CCV studies indicated that CoWO4/NRGO-based electrodes keep 97.1% of their original capacitance after 4000 cycles. The results led to the conclusion that CoWO4/NRGO effectively merge the merits of CoWO4 and CoWO4/RGO in one new nanocomposite material.
NASA Astrophysics Data System (ADS)
Le Barny, Pierre; Servet, Bernard; Campidelli, Stéphane; Bondavalli, Paolo; Galindo, Christophe
2013-09-01
The use of carbon-based materials in electrochemical double-layer supercapacitors (EDLC) is currently being the focus of much research. Even though activated carbon (AC) is the state of the art electrode material, AC suffers from some drawbacks including its limited electrical conductivity, the need for a binder to ensure the expected electrode cohesion and its limited accessibility of its pores to solvated ions of the electrolyte. Owing to their unique physical properties, carbon nanotubes (CNTs) or graphene could overcome these drawbacks. It has been demonstrated that high specific capacitance could be obtained when the carbon accessible surface area of the electrode was finely tailored by using graphene combined with other carbonaceous nanoparticles such as CNTs12.In this work, to further increase the specific capacitance of the electrode, we have covalently grafted onto the surface of single-walled carbon nanotubes (SWCNTs), exfoliated graphite or graphene oxide (GO), anthraquinone (AQ) derivatives which are electrochemically active materials. The modified SWCNTs and graphene-like materials have been characterized by Raman spectroscopy, X-ray photoemission and cyclic voltammetry . Then suspensions based on mixtures of modified SWCNTs and modified graphene-like materials have been prepared and transformed into electrodes either by spray coating or by filtration. These electrodes have been characterized by SEM and by cyclic voltammetry in 0.1M H2S04 electrolyte.
How many molecules are required to measure a cyclic voltammogram?
NASA Astrophysics Data System (ADS)
Cutress, Ian J.; Compton, Richard G.
2011-05-01
The stochastic limit at which fully-reversible cyclic voltammetry can accurately be measured is investigated. Specifically, Monte Carlo GPU simulation is used to study low concentration cyclic voltammetry at a microdisk electrode over a range of scan rates and concentrations, and the results compared to the statistical limit as predicted by finite difference simulation based on Fick's Laws of Diffusion. Both Butler-Volmer and Marcus-Hush electrode kinetics are considered, simulated via random-walk methods, and shown to give identical results in the fast kinetic limit.
The Influence of Acidity on Microbial Fuel Cells Containing Shewanella Oneidensis (PREPRINT)
2008-09-01
d a fi b i s a h t s p t o m d C H p F 8 ig. 4. Cyclic voltammetry of filter sterilized media after 4 days of growth of S. neidensis MR-1 or S...of autologous mediators in the rowthmedium changeswith pH.We analyzed filter sterilized cul- ure supernatants by cyclic voltammetry (Fig. 4), and HPLC...Marsili et al., 2008). Cyclic voltammetrywas used to detect redox-active compounds n growthmedia supernatants fromMR-1 andDSP10 cultures. Fig. 4 hows
NASA Astrophysics Data System (ADS)
Cheng, Qian; Tang, Jie; Zhang, Han; Qin, Lu-Chang
2014-11-01
We describe preparation and characterization of nanostructured electrodes using Co(OH)2 nano-flakes and carbon fiber cloth for supercapacitors. Nanostructured Co(OH)2 flakes are produced by electrodeposition and they are coated onto the electro-etched carbon fiber cloth. A highest specific capacitance of 3404.8 F g-1 and an area-normalized specific capacitance of 3.3 F cm-2 have been obtained from such electrodes. Morphology and structure of the nanostructured electrodes have been characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical properties have been studied by cyclic voltammetry (CV), constant-current charge and discharge, electrochemical impedance spectroscopy (EIS), and long-time cycling.
Ward, Kristopher R; Lawrence, Nathan S; Hartshorne, R Seth; Compton, Richard G
2012-05-28
The cyclic voltammetry at electrodes composed of multiple electroactive materials, where zones of one highly active material are distributed over a substrate of a second, less active material, is investigated by simulation. The two materials are assumed to differ in terms of their electrochemical rate constants towards any given redox couple. For a one-electron oxidation or reduction, the effect on voltammetry of the size and relative surface coverages of the zones as well as the rate constant of the slower zone are considered for systems where it is much slower than the rate constant of the faster zones. The occurrence of split peak cyclic voltammetry where two peaks are observed in the forward sweep, is studied in terms of the diffusional effects present in the system. A number of surface geometries are compared: specifically the more active zones are modelled as long, thin bands, as steps in the surface, as discs, and as rings (similar to a partially blocked electrode). Similar voltammetry for the band, step and ring models is seen but the disc geometry shows significant differences. Finally, the simulation technique is applied to the modelling of highly-ordered pyrolytic graphite (HOPG) surface and experimental conditions under which it may be possible to observe split peak voltammetry are predicted.
Almoigli, Mohammed; Meriey, Al Yahya; Alharbi, Khalid N.
2018-01-01
The three-dimensional (3D) composite electrodes were prepared by depositing different amounts of acid-functionalized single-walled carbon nanotubes (a-SWCNTs) on porous reticulated vitreous carbon (RVC) through the electrochemical deposition method. The SWCNT was functionalized by the reflux method in nitric acid and was proven by Raman and visible spectra. The optimum time for sonication to disperse the functionalized SWCNT (a-SWCNT) in dimethyl formamide (DMF) well was determined by UV spectra. The average pore size of RVC electrodes was calculated from scanning electron microscopy (SEM) images. Moreover, the surface morphology of composite electrodes was also examined by SEM study. All 3D electrodes were evaluated for their electrochemical properties by cyclic voltammetry. The result showed that the value of specific capacitance of the electrode increases with the increase in the amount of a-SWCNT in geometric volume. However, the value of specific capacitance per gram decreases with the increase in scan rate as well as the amount of a-SWCNT. The stability of the electrodes was also tested. This revealed that all the electrodes were stable; however, lower a-SWCNT-loaded electrodes had excellent cyclic stability. These results suggest that the a-SWCNT-coated RVC electrodes have promise as an effective technology for desalination. PMID:29301258
Aldalbahi, Ali; Rahaman, Mostafizur; Almoigli, Mohammed; Meriey, Al Yahya; Alharbi, Khalid N
2018-01-01
The three-dimensional (3D) composite electrodes were prepared by depositing different amounts of acid-functionalized single-walled carbon nanotubes (a-SWCNTs) on porous reticulated vitreous carbon (RVC) through the electrochemical deposition method. The SWCNT was functionalized by the reflux method in nitric acid and was proven by Raman and visible spectra. The optimum time for sonication to disperse the functionalized SWCNT (a-SWCNT) in dimethyl formamide (DMF) well was determined by UV spectra. The average pore size of RVC electrodes was calculated from scanning electron microscopy (SEM) images. Moreover, the surface morphology of composite electrodes was also examined by SEM study. All 3D electrodes were evaluated for their electrochemical properties by cyclic voltammetry. The result showed that the value of specific capacitance of the electrode increases with the increase in the amount of a-SWCNT in geometric volume. However, the value of specific capacitance per gram decreases with the increase in scan rate as well as the amount of a-SWCNT. The stability of the electrodes was also tested. This revealed that all the electrodes were stable; however, lower a-SWCNT-loaded electrodes had excellent cyclic stability. These results suggest that the a-SWCNT-coated RVC electrodes have promise as an effective technology for desalination.
Development of a cyclic voltammetry method for the detection of Clostridium novyi in black disease.
Liu, L L; Jiang, D N; Xiang, G M; Liu, C; Yu, J C; Pu, X Y
2014-03-17
Black disease is an acute disease of sheep and cattle. The pathogen is the obligate anaerobe, Clostridium novyi. Due to difficulties of anaerobic culturing in the country or disaster sites, a simple, rapid, and sensitive method is required. In this study, an electrochemical method, the cyclic voltammetry method, basing on loop-mediated isothermal amplification (LAMP), electrochemical ion bonding (positive dye, methylene blue), was introduced. DNA extracted from C. novyi specimens was amplified through the LAMP reaction. Then the products combined were with methylene blue, which lead to a reduction in the oxidation peak current (ipA) and the reduction peak current (ipC) of the cyclic voltammetry. The changes of ipA/ipC were real-time measured by special designed electrode, so the DNA was quantitatively detected. The results displayed that this electrochemical detection of C. novyi could be completed in 1-2 h with the lowest bacterial concentration of 10(2) colony forming units/mL, and high accuracy (96.5%), sensitivity (96%), and specificity (97%) compared to polymerase chain reation. The cyclic voltammetry method was a simple and fast method, with high sensitivity and high specificity, and has great potential to be a usable molecular tool for fast diagnosis of Black disease.
Cyclic voltammetric study of Co-Ni-Fe alloys electrodeposition in sulfate medium
NASA Astrophysics Data System (ADS)
Hanafi, I.; Daud, A. R.; Radiman, S.
2013-11-01
Electrochemical technique has been used to study the electrodeposition of cobalt, nickel, iron and Co-Ni-Fe alloy on indium tin oxide (ITO) coated glass substrate. To obtain the nucleation mechanism, cyclic voltammetry is used to characterize the Co-Ni-Fe system. The scanning rate effect on the deposition process was investigated. Deposition of single metal occurs at potential values more positive than that estimated stability potential. Based on the cyclic voltammetry results, the electrodeposition of cobalt, nickel, iron and Co-Ni-Fe alloy clearly show that the process of diffusion occurs is controlled by the typical nucleation mechanism.
NASA Astrophysics Data System (ADS)
Chen, Ling; Song, Zhaoxia; Liu, Guichang; Qiu, Jieshan; Yu, Chang; Qin, Jiwei; Ma, Lin; Tian, Fengqin; Liu, Wei
2013-02-01
Polyaniline-MnO2 nanowire (PANI-MNW) composites were prepared by in situ chemical oxidative polymerization of aniline monomer in a suspension of MnO2 nanowires. The structure and morphology of the PANI-MNW composites were characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their electrochemical properties were investigated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1 mol/L KOH electrolyte. The PANI-MNW composites show significantly better specific capacity and redox performance in comparison to the untreated MnO2 nanowires. The enhanced properties can be mainly attributed to the composite structure wherein high porosity is created between MnO2 nanowires and PANI during the process of fabricating the PANI-MNW nanocomposites. A specific capacitance as high as 256 F/g is obtained at a current density of 1 A/g for PANI-MNW-5, and the composite also shows a good cyclic performance and coulomb efficiency.
Electrochemical behaviors of wax-coated Li powder/Li 4Ti 5O 12 cells
NASA Astrophysics Data System (ADS)
Park, Han Eol; Seong, Il Won; Yoon, Woo Young
The wax-coated Li powder specimen was effectively synthesized using the drop emulsion technique (DET). The wax layer on the powder was verified by SEM, Focused Ion Beam (FIB), EDX and XPS. The porosity of a sintered wax-coated Li electrode was measured by linear sweep voltammetry (LSV) and compared with that of a bare, i.e., un-coated Li electrode. The electrochemical behavior of the wax-coated Li powder anode cell was examined by the impedance analysis and cyclic testing methods. The cyclic behavior of the wax-coated Li powder anode with the Li 4Ti 5O 12 (LTO) cathode cell was examined at a constant current density of 0.35 mA cm -2 with the cut-off voltages of 1.2-2.0 V at 25 °C. Over 90% of the initial capacity of the cell remained even after the 300th cycle. The wax-coated Li powder was confirmed to be a stable anode material.
Effect of different nickel precursors on capacitive behavior of electrodeposited NiO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kore, R. M.; Ghadge, T. S.; Ambare, R. C.
2016-04-13
In the present study, the effect of nickel precursors containing different anions like nitrate, chloride and sulphate on the morphology and pseudocapacitance behavior of NiO is investigated. The NiO samples were prepared by using a potentiondynamic electrodeposition technique in the three electrode cell. Cyclic voltammetry technique was exploited for potentiodynamic deposition of the films. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The XRD reveals the cubic crystal structure for all samples. The SEM micrograph shows nanoflakelike, up grown nanoflakes and honeycomb like nanostructured morphologies for nitrate, chloride and sulphate precursors respectively. The capacitivemore » behavior of these samples was recorded using cyclic voltammetry (CV), charge-discharge and electrochemical impedance spectroscopy (EIS) in 1 M KOH electrolyte. The specific capacitance values of NiO samples obtained using CV for nitrate, chloride and sulphate precursors were 136, 214 and 893 Fg{sup −1} respectively, at the scan rate of 5 mVs{sup −1}. The charge discharge study shows high specific energy for the sample obtained from sulphate (23.98 Whkg{sup −1}) as compared to chloride (9.67 Whkg{sup −1}) and nitrate (4.9 Whkg{sup −1}), whereas samples of cholride (13.9 kWkg{sup −1} and nitrate (10.5 kWkg{sup −1}) shows comparatively more specific power than samples obtained from sulphate (7.6 kWkg{sup −1}). The equivalent series resistance of NiO samples observed from EIS study are 1.34, 1.29 and 1.27 Ω respectively for nitrate, chloride and sulphate precursors. These results emphasizes that the samples obtained from sulphate precursors provides very low impedance through honeycomb like nanostructured morphology which supports good capacitive behavior of NiO.« less
Inamdar, Shaukatali N; Ingole, Pravin P; Haram, Santosh K
2008-12-01
Band structure parameters such as the conduction band edge, the valence band edge and the quasi-particle gap of diffusing CdSe quantum dots (Q-dots) of various sizes were determined using cyclic voltammetry. These parameters are strongly dependent on the size of the Q-dots. The results obtained from voltammetric measurements are compared to spectroscopic and theoretical data. The fit obtained to the reported calculations based on the semi-empirical pseudopotential method (SEPM)-especially in the strong size-confinement region, is the best reported so far, according to our knowledge. For the smallest CdSe Q-dots, the difference between the quasi-particle gap and the optical band gap gives the electron-hole Coulombic interaction energy (J(e1,h1)). Interband states seen in the photoluminescence spectra were verified with cyclic voltammetry measurements.
Eksin, Ece; Zor, Erhan; Erdem, Arzum; Bingol, Haluk
2017-06-15
Recently, the low-cost effective biosensing systems based on advanced nanomaterials have received a key attention for development of novel assays for rapid and sequence-specific nucleic acid detection. The electrochemical biosensor based on reduced graphene oxide (rGO) modified disposable pencil graphite electrodes (PGEs) were developed herein for electrochemical monitoring of DNA, and also for monitoring of biointeraction occurred between anticancer drug, Daunorubicin (DNR), and DNA. First, rGO was synthesized chemically and characterized by using UV-Vis, TGA, FT-IR, Raman Spectroscopy and SEM techniques. Then, the quantity of rGO assembling onto the surface of PGE by passive adsorption was optimized. The electrochemical behavior of rGO-PGEs was examined by cyclic voltammetry (CV). rGO-PGEs were then utilized for electrochemical monitoring of surface-confined interaction between DNR and DNA using differential pulse voltammetry (DPV) technique. Additionally, voltammetric results were complemented with electrochemical impedance spectroscopy (EIS) technique. Electrochemical monitoring of DNR and DNA was resulted with satisfying detection limits 0.55µM and 2.71µg/mL, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Jiang, Lin; Ding, Yaping; Jiang, Feng; Li, Li; Mo, Fan
2014-06-23
A nitrogen-doped graphene/carbon nanotubes (NGR-NCNTs) nanocomposite was employed into the study of the electrochemical sensor via electrodeposition for the first time. The morphology and structure of NGR-NCNTs nanocomposite were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Meanwhile, the electrochemical performance of the glassy carbon electrode (GCE) modified with electrodeposited NGR-NCNTs (ENGR-NCNTs/GCE) towards caffeine (CAF) and vanillin (VAN) determination was demonstrated by cyclic voltammetry (CV) and square wave voltammetry (SWV). Under optimal condition, ENGR-NCNTs/GCE exhibited a wide linearity of 0.06-50 μM for CAF and 0.01-10 μM for VAN with detection limits of 0.02 μM and 3.3×10(-3) μM, respectively. Furthermore, the application of the proposed sensor in food products was proven to be practical and reliable. The desirable results show that the ENGR-NCNTs nanocomposite has promising potential in electrocatalytic biosensor application. Copyright © 2014 Elsevier B.V. All rights reserved.
Kong, Fen-Ying; Xu, Mao-Tian; Xu, Jing-Juan; Chen, Hong-Yuan
2011-10-15
In this paper, gold nanoparticle-thionine-reduced graphene oxide (GNP-THi-GR) nanocomposites were prepared to design a label-free immunosensor for the sensitive detection of carcinoembryonic antigen (CEA). The nanocomposites with good biocompatibility, excellent redox electrochemical activity and large surface area were coated onto the glassy carbon electrode (GCE) surface and then CEA antibody (anti-CEA) was immobilized on the electrode to construct the immunosensor. The morphologies and electrochemistry of the formed nanocomposites were investigated by using scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) spectrometry, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). CV and differential pulse voltammetry (DPV) studies demonstrated that the formation of antibody-antigen complexes decreased the peak current of THi in the GNP-THi-GR nanocomposites. The decreased currents were proportional to the CEA concentration in the range of 10-500 pg/mL with a detection limit of 4 pg/mL. The proposed method was simple, fast and inexpensive for the determination of CEA at very low levels. Copyright © 2011 Elsevier B.V. All rights reserved.
Das, Maumita; Dhand, Chetna; Sumana, Gajjala; Srivastava, A K; Nagarajan, R; Nain, Lata; Iwamoto, M; Manaka, Takaaki; Malhotra, B D
2011-03-14
The present work describes electrophoretic fabrication of nanostructured chitosan-zirconium-oxide composite (CHIT-NanoZrO(2)) film (180 nm) onto indium-tin-oxide (ITO)-coated glass plate. This nanobiocomposite film has been explored as immobilization platform for probe DNA specific to M. Tuberculosis as model biomolecule to investigate its sensing characteristics. It is revealed that pH-responsive behavior of CHIT and its cationic skeleton is responsible for the movement of CHIT-NanoZrO(2) colloids toward cathode during electrophoretic deposition. The FT-IR, SEM, TEM, and EDX techniques have been employed for the structural, morphological, and composition analysis of the fabricated electrodes. The morphological studies clearly reveal uniform inter-linking and dispersion of hexagonal nanograins of ZrO(2) (30-50 nm) into the chitosan matrix, resulting in homogeneous nanobiocomposite formation. Electrochemical response measurements of DNA/CHIT-NanoZrO(2)/ITO bioelectrode, carried out using cyclic voltammetry and differential pulse voltammetry, reveal that this bioelectrode can specifically detect complementary target DNA up to 0.00078 μM with sensitivity of 6.38 × 10(-6) AμM(-1).
Pan, Hong-zhi; Yu, Hong-wei; Wang, Na; Zhang, Ze; Wan, Guang-cai; Liu, Hao; Guan, Xue; Chang, Dong
2015-11-20
We describe the fabrication of a sensitive electrochemical DNA biosensor for determination of Klebsiella pneumoniae carbapenemase (KPC). The highly sensitive and selective electrochemical biosensor for DNA detection was constructed based on a glassy carbon electrode (GCE) modified with gold nanoparticles (Au-NPs) and graphene (Gr). Then Au-NPs/Gr/GCE was characterized by scanning electro microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization detection was measured by diffierential pulse voltammetry (DPV) using methylene blue (MB) as the hybridization indicator. The dynamic range of detection of the sensor for the target DNA sequences was from 1 × 10(-12) to 1 × 10(-7)mol/L, with a detection limit of 2 × 10(-13)mol/L. The DNA biosensor had excellent specificity for distinguishing complementary DNA sequence in the presence of non-complementary and mismatched DNA sequence. The results demonstrated that the Au-NPs/Gr nanocomposite was a promising substrate for the development of high-performance electrocatalysts for determination of KPC. Copyright © 2015 Elsevier B.V. All rights reserved.
Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell
Dong, Feng; Zhang, Peng; Li, Kexun; Liu, Xianhua; Zhang, Pingping
2016-01-01
In this work, Cu2O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode. PMID:28335366
Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell.
Dong, Feng; Zhang, Peng; Li, Kexun; Liu, Xianhua; Zhang, Pingping
2016-12-09
In this work, Cu₂O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.
NASA Astrophysics Data System (ADS)
Shi, Yuting; Wang, Jin; Li, Shumin; Yan, Bo; Xu, Hui; Zhang, Ke; Du, Yukou
2017-07-01
In this work, a sensitive and novel method for determining uric acid (UA) has been developed, in which the glassy carbon electrode (GCE) was modified with electrodeposition Au nanoparticles and used to monitor the concentration of UA with the assistant of visible light illumination. The morphology of the Au nanoparticles deposited on GCE surface were characterized by scanning electron microscope (SEM) and the nanoparticles were found to be well-dispersed spheres with the average diameter approaching 26.1 nm. A series of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements have revealed that the introduction of visible light can greatly enhance both the strength and stability of response current due to the surface plasmon resonance (SPR). Specifically, the DPV showed a linear relationship between peak current and UA concentration in the range of 2.8 to 57.5 μM with the equation of I pa (μA) = 0.0121 c UA (μM) + 0.3122 ( R 2 = 0.9987). Herein, the visible light illuminated Au/GCE possesses a potential to be a sensitive electrochemical sensor in the future.
Mittal, Susheel K; Rana, Sonia; Kaur, Navneet; Banks, Craig E
2018-05-23
Herein, a potent electrochemical ionophore (SMS-2) based on a Schiff base has been used for the modification of a screen-printed electrode (SPE). The modified disposable electrode can selectively detect ferric ions in an aqueous medium. Redox behavior of the proposed strip was characterized using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Incorporation of the ligand in the ink of the SPE enhanced the analytical performance of the electrode, and its surface modification was confirmed by SEM and EDX analysis. Shifting/quenching of the cathodic peak potential of the ionophore after binding with Fe(iii) ions was used to detect and measure the ferric ion concentration. This sensor can identify Fe(iii) in the detection range from 0.625 μM to 7.5 μM. The modified SPE can selectively detect ferric ions in the presence of many other interfering ions and has been successfully used to determine the Fe(iii) content in blood serum samples. The metal-ionophore complex structure was optimized using DFT calculations to study the energetics of the metal-ionophore interactions.
Hydrothermal synthesis of flower-like MoS2 nanospheres for electrochemical supercapacitors.
Zhou, Xiaoping; Xu, Bin; Lin, Zhengfeng; Shu, Dong; Ma, Lin
2014-09-01
Flower-like MoS2 nanospheres were synthesized by a hydrothermal route. The structure and surface morphology of the as-prepared MoS2 was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The supercapacitive behavior of MoS2 in 1 M KCl electrolyte was studied by means of cyclic voltammetry (CV), constant current charge-discharge cycling (CD) and electrochemical impedance spectroscopy (EIS). The XRD results indicate that the as-prepared MoS2 has good crystallinity. SEM images show that the MoS2 nanospheres have uniform sizes with mean diameter about 300 nm. Many nanosheets growing on the surface make the MoS2 nanospheres to be a flower-like structure. The specific capacitance of MoS2 is 122 F x g(-1) at 1 A x g(-1) or 114 F x g(-1) at 2 mv s(-1). All the experimental results indicate that MoS2 is a promising electrode material for electrochemical supercapacitors.
Hydrothermal synthesis of β-Ni(OH)2 and its supercapacitor properties
NASA Astrophysics Data System (ADS)
Waghmare, Suraj S.; Patil, Prashant B.; Baruva, Shiva K.; Rajput, Madhuri S.; Deokate, Ramesh J.; Mujawar, Sarfraj H.
2018-04-01
In present manuscript, we synthesized the Nickel hydroxide as an electrode material or supercapacitor application, using hydrothermal method with nickel nitrate as nickel source and hexamethylenetetramine as a directing agent. The reaction was carried out at 160°C temperature for 18 hrs. The structural, morphological and electrochemical characterizations were studied by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Cyclic Voltammetry (CV) and Galvanostatic Charge Discharge (GCD) respectively. Phase purity and crystalline nature of as prepared nickel hydroxide β-Ni(OH)2 was reveled from X-ray study. Using Debye Scherer's formula crystallite size of ˜15 nm was estimated for Nickel hydroxide. SEM reveals β-platelets like morphology of Ni(OH)2 average of platelets length of the order of 1 µm. Electrochemical studies (CV and GCD) were carried out in 2M KOH electrolyte solution. The maximum capacitance of 225 Fg-1 was observed for scan rate 5 mV within the potential window of 0.1 to 0.4 V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Shaista; Sharif, Rehana; Ghani, Sheeba
This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance R{sub ct}(2.50 Ω cm{sup 2}) for I{sub 3}{sup −}/I{sup −} redox solution. Themore » four probe studies showed the large electrical conductivity (226S cm{sup −1}) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm{sup −2}) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.« less
Removal of urea from dilute streams using RVC/nano-NiO x -modified electrode.
Tammam, Reham H; Touny, Ahmed H; Saleh, Mahmoud M
2018-05-08
Reticulated vitreous carbon (RVC), a high surface area electrode (40 cm 2 /cm 3 ), has been modified with nickel oxide nanoparticles (nano-NiO x ) and used for electrochemical oxidation of urea from alkaline solution. For the cyclic voltammetry measurements, the used dimensions are 0.8 cm × 0.8 cm × 0.3 cm. The purpose was to offer high specific surface area using a porous open network structure to accelerate the electrochemical conversion. NiO x nanoparticles have been synthesized via an electrochemical route at some experimental conditions. The morphological, structural, and electrochemical properties of the RVC/nano-NiO x are characterized by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), cyclic voltammetry (CV), and potentiostatic measurements. The fabricated electrode, RVC/nano-NiO x , demonstrates high electrocatalytic activity towards urea oxidation in an alkaline electrolyte. The onset potential of the RVC/nano-NiO x compared to that of the planar GC/NiO x is shifted to more negative value with higher specific activity. The different loadings of the NiO x have a substantial influence on the conversion of urea which has been evaluated from concentration-time curves. The urea concentration decreases with time to a limit dependent on the loading extent. Maximum conversion is obtained at 0.86 mg of NiO x per cm 3 of the RVC matrix.
Hairy carbon electrodes studied by cyclic voltammetry and battery discharge testing
NASA Technical Reports Server (NTRS)
Chung, Deborah D. L.; Shui, Xiaoping; Frysz, Christine A.
1993-01-01
Hairy carbon is a new material developed by growing submicron carbon filaments on conventional carbon substrates. Typical substrate materials include carbon black, graphite powder, carbon fibers, and glassy carbon. A catalyst is used to initiate hair growth with carbonaceous gases serving as the carbon source. To study the electrochemical behavior of hairy carbons, cyclic voltammetry (CV) and discharge testing were conducted. In both cases, hairy carbon results surpassed those of the substrate material alone.
A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times.
Ramsson, Eric S
2016-01-01
Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that utilizes the oxidation and/or reduction of an analyte of interest to infer rapid changes in concentrations. In order to calibrate the resulting oxidative or reductive current, known concentrations of an analyte must be introduced under controlled settings. Here, I describe a simple and cost-effective method, using a Petri dish and pipettes, for the calibration of carbon fiber microelectrodes (CFMs) using FSCV.
Sarkar, Tanmay; Kumar, Parveen; Bharadwaj, Mridula Dixit; Waghmare, Umesh
2016-04-14
A double layer δ-NH4V4O10, due to its high energy storage capacity and excellent rate capability, is a very promising cathode material for Li-ion and Na-ion batteries for large-scale renewable energy storage in transportation and smart grids. While it possesses better stability, and higher ionic and electronic conductivity than the most widely explored V2O5, the mechanisms of its cyclability are yet to be understood. Here, we present a theoretical cyclic voltammetry as a tool based on first-principles calculations, and uncover structural transformations that occur during Li(+)/Na(+) insertion (x) into (Lix/Nax)NH4V4O10. Structural distortions associated with single-phase and multi-phase structural changes during the insertion of Li(+)/Na(+), identified through the analysis of voltage profile and theoretical cyclic voltammetry are in agreement with the reported experimental electrochemical measurements on δ-NH4V4O10. We obtain an insight into its electronic structure with a lower band gap that is responsible for the high rate capability of (Lix/Nax) δ-NH4V4O10. The scheme of theoretical cyclic voltammetry presented here will be useful for addressing issues of cyclability and energy rate in other electrode materials.
Catalytic mechanism in cyclic voltammetry at disc electrodes: an analytical solution.
Molina, Angela; González, Joaquín; Laborda, Eduardo; Wang, Yijun; Compton, Richard G
2011-08-28
The theory of cyclic voltammetry at disc electrodes and microelectrodes is developed for a system where the electroactive reactant is regenerated in solution using a catalyst. This catalytic process is of wide importance, not least in chemical sensing, and it can be characterized by the resulting peak current which is always larger than that of a simple electrochemical reaction; in contrast the reverse peak is always relatively diminished in size. From the theoretical point of view, the problem involves a complex physical situation with two-dimensional mass transport and non-uniform surface gradients. Because of this complexity, hitherto the treatment of this problem has been tackled mainly by means of numerical methods and so no analytical expression was available for the transient response of the catalytic mechanism in cyclic voltammetry when disc electrodes, the most popular practical geometry, are used. In this work, this gap is filled by presenting an analytical solution for the application of any sequence of potential pulses and, in particular, for cyclic voltammetry. The induction principle is applied to demonstrate mathematically that the superposition principle applies whatever the geometry of the electrode, which enabled us to obtain an analytical equation valid whatever the electrode size and the kinetics of the catalytic reaction. The theoretical results obtained are applied to the experimental study of the electrocatalytic Fenton reaction, determining the rate constant of the reduction of hydrogen peroxide by iron(II).
NASA Astrophysics Data System (ADS)
Mohanapriya, S.; Renuka devi, R.; Raj, V.
2018-02-01
Mesoporous Nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physico-chemical properties of mesoporous nickel is systematically characterized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of mesoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to mesoporous nickel electrode towards methanol oxidation stems from unique mesoporous morphology. This mesoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.
Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach.
Huang, Huajie; Wang, Xin
2011-08-01
Graphene nanoplate-MnO(2) composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO(2) nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material. This journal is © The Royal Society of Chemistry 2011
Electrocatalytic reduction of carbon dioxide on electrodeposited tin-based surfaces
NASA Astrophysics Data System (ADS)
Alba, Bianca Christina S.; Camayang, John Carl A.; Mopon, Marlon L.; del Rosario, Julie Anne D.
2017-08-01
The electrocatalytic reduction of carbon dioxide to small organic molecular compounds provides a means of generating alternative fuel source while suppressing climate change. Suitable catalysts, however, are necessary to optimize its reaction kinetics towards more valuable products. Consequently, in this study, electrodeposited Sn electrodes have been developed as catalysts for CO2 electroreduction. Deposition potential was varied to produce different Sn catalysts. SEM showed varying morphologies and increasing amount as the applied potential becomes more negative. Cyclic voltammetry and chronoamperometry showed that the activity and stability of the catalysts towards CO2 reduction depend on the morphology and presence of tin oxides. These results provide a better understanding on the performance of electrodeposited Sn-based surfaces as catalysts for CO2 reduction.
Electrochemical Study of Cobalt in Urea and Choline Chloride
NASA Astrophysics Data System (ADS)
Li, Min; Shi, Zhongning; Wang, Zhaowen; Reddy, Ramana G.
The nucleation mechanism of Co(II) in urea-choline chloride-CoCl2 melt at 373 K was studied using chronoamperometry. Chronoamperometry experiments confirm that the electrodeposition of cobalt on tungsten electrode is governed by three-dimensional (3D) progressive nucleation and diffusion-controlled growth mechanisms. The average diffusion coefficient of Co(II) in the melt at 373 K is 1.1 × 10-6 cm2 s-1, which is in good agreement with the estimated value obtained from cyclic voltammetry data. Characterization of the Co electrodeposit using scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) techniques indicate that the electrodeposit obtained at -0.75 V and 373 K contain dense and compact surface formed from pure cobalt metal.
Electrodeposition of CuZn Alloys from the Non-Cyanide Alkaline Baths
NASA Astrophysics Data System (ADS)
Li, Minggang; Wei, Guoying; Hu, Shuangshuang; Xu, Shuhan; Yang, Yejiong; Miao, Qinfang
2015-10-01
Effect of copper sulfate on CuZn alloys electroplating from non-cyanide baths are investigated by different electrochemical methods. Cyclic voltammetry and current transient measurements are used to characterize the CuZn alloys electroplating system in order to analyze the nucleation and growth mechanism. The reduction of Cu and CuZn alloy on sheet iron substrates shows an instantaneous nucleation process. However, the reduction of Zn on sheet iron substrates shows a progressive nucleation process. The structure and surface morphology of CuZn alloys are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The morphology of CuZn alloys obtained with 50 g L-1 copper sulfate presents a smooth and compact deposit and the size of crystal particle is uniform.
NASA Astrophysics Data System (ADS)
Zheng, Huajun; Tang, Fengqiu; Lim, Melvin; Mukherji, Aniruddh; Yan, Xiaoxia; Wang, Lianzhou; (Max) Lu, Gao Qing
Multilayered films of cobalt oxyhydroxide nanowires (CoOOHNW) and exfoliated manganese oxide nanosheet (MONS) are fabricated by potentiostatic deposition and electrostatic self-assembly on indium-tin oxide coated glass substrates. The morphology and chemical composition of these films are characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS) and the potential application as electrochemical supercapacitors are investigated using cyclic voltammetry and charge-discharge measurements. These ITO/CoOOHNW/MONS multilayered film electrodes exhibit excellent electrochemical capacitance properties, including high specific capacitance (507 F g -1) and long cycling durability (less 2% capacity loss after 5000 charge/discharge cycles). These characteristics indicate that these newly developed films may find important application for electrochemical capacitors.
Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium
NASA Astrophysics Data System (ADS)
Abdel Rahim, M. A.; Abdel Hameed, R. M.; Khalil, M. W.
The use of Ni as a catalyst for the electro-oxidation of methanol in alkaline medium was studied by cyclic voltammetry. It was found that only Ni dispersed on graphite shows a catalytic activity towards methanol oxidation but massive Ni does not. Ni was dispersed on graphite by the electro-deposition from acidic NiSO 4 solution using potentiostatic and galvanostatic techniques. The catalytic activity of the C/Ni electrodes towards methanol oxidation was found to vary with the amount of electro-deposited Ni. The dependence of the oxidation current on methanol concentration and scan rate was discussed. It was concluded from the electro-chemical measurements and SEM analysis that methanol oxidation starts as Ni-oxide is formed on the electrode surface.
NASA Astrophysics Data System (ADS)
Luo, Jujie; Yang, Xing; Wang, Shumin; Bi, Yuhong; Nautiyal, Amit; Zhang, Xinyu
The metal organic framework (MOF) [Ni3(HCOO)6] was synthesized via the simple and fast microwave method, and the effect of irradiation power on crystallinity of synthesized Ni-based MOF was studied. The samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The synthesized Ni-based MOF was electrochemically characterized by using galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques. The synthesized MOF showed the highest specific capacitance of 1196.2F/g at 1A/g with excellent cyclability (86.04% capacitance retention after 2,000 cycles), thereby demonstrating its potential application in supercapacitors.
Electrochromic NiO thin films prepared by spin coating
NASA Astrophysics Data System (ADS)
Özütok, F.; Demiri, S.; Özbek, E.
2017-02-01
Recently, smart windows are very important because they are often being used in smart buildings and car glasses (windows). At this point, producing effective electrochromic materials is so necessary. In this study, we produced NiO thin films by using spin coating technique on In-doped SnO2 (ITO) substrate. Nickel proportions of these nickel oxide (NiO) films are 3, 5 and 7 %. Nickel acetate tetrahydrate is the initial solution and solvents are ethylene gl ycol and n-hexzane. Structural properties and surface images are investigated by using x-ray diffactometer (XRD) and scanning electron microscope (SEM) device, respectively. In addition, electrochemical behavior is investigated by cyclic voltammetry. A correlation between surface morphology and electrochromic performance was observed as well.
Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad
2017-05-01
Sensing and determination of d-alanine is studied by using an enzymatic biosensor which was constructed on the basis of d-amino acid oxidase (DAAO) immobilization by sol-gel film onto glassy carbon electrode surface modified with nanocomposite of gold nanofilm (Au-NF) and multiwalled carbon nanotubes (MWCNTs). The Au-NF/MWCNT nanocomposite was prepared by applying the potentiostatic technique for electrodeposition of Au-NF on the MWCNT immobilized on glassy carbon electrode surface. The modified electrode is investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), linear sweep voltammetry (LSV) and cyclic voltammetry(CV) techniques. The linear sweep voltammetry was used for determination of d-alanine and the results showed an excellent linear relationship between biosensor response and d-alanine concentration ranging from 0.25μM to 4.5μM with correction coefficient of 0.999 (n=20). Detection limit for the fabricated sensor was calculated about 20nM (for S/N=3) and sensitivity was about 56.1μAμM -1 cm -2 . The developed biosensor exhibited rapid and accurate response to d-alanine, a good stability (4 weeks) and an average recovery of 98.9% in human serum samples. Copyright © 2017 Elsevier Inc. All rights reserved.
Synthesis of Nano-Ilmenite (FeTiO3) doped TiO2/Ti Electrode for Photoelectrocatalytic System
NASA Astrophysics Data System (ADS)
Hikmawati; Watoni, A. H.; Wibowo, D.; Maulidiyah; Nurdin, M.
2017-11-01
Ilmenite (FeTiO3) doped on Ti and TiO2/Ti electrodes were successfully prepared by using the sol-gel method. The structure, morphology, and optical properties of FeTiO3 are characterized by XRD, UV-Vis DRS, and SEM. The FeTiO3 and TiO2 greatly affect the photoelectrocatalysis performance characterized by Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV). The characterization result shows a band gap of FeTiO3 is 2.94 eV. XRD data showed that FeTiO3 formed at 2θ were 35.1° (110), 49.9° (024), and 61.2° (214). The morphology of FeTiO3/Ti and FeTiO3.TiO2/Ti using SEM shows that the formation of FeTiO3 thin layer signifies the Liquid Phase Deposition method effectively in the coating process. Photoelectrochemical (PEC) test showed that FeTiO3.TiO2/Ti electrode was highly oxidation responsive under visible light compared to the FeTiO3/Ti electrodes i.e. 7.87×10-4 A and 9.87×10-5 A. Degradation test of FeTiO3/Ti and FeTiO3.TiO2/Ti electrodes on titan yellow showed that the percentages of degradation with photoelectrocatalysis at 0.5 mg/L were 41% and 43%, respectively.
Zhou, Lin; Glennon, Jeremy D; Luong, John H T; Reen, F Jerry; O'Gara, Fergal; McSweeney, Christina; McGlacken, Gerard P
2011-10-07
2-Heptyl-3-hydroxy-4-quinolone, known as the Pseudomonas Quinolone Signal, is a key regulator of bacterial cooperative behaviour known as quorum sensing. A simple electrochemical strategy was employed for its sensitive detection using a bare boron-doped diamond electrode by cyclic voltammetry and amperometry. PQS (and potentially other quinolones) was then detected in cultures of P. aeruginosa pqsL(-) mutant strains. This journal is © The Royal Society of Chemistry 2011
NASA Astrophysics Data System (ADS)
Takmakov, Pavel; McKinney, Collin J.; Carelli, Regina M.; Wightman, R. Mark
2011-07-01
Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals.
Takmakov, Pavel; McKinney, Collin J.; Carelli, Regina M.; Wightman, R. Mark
2011-01-01
Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals. PMID:21806203
Schneider, Marion; Türke, Alexander; Fischer, Wolf-Joachim; Kilmartin, Paul A
2014-09-15
During winemaking sulphur dioxide is added to prevent undesirable reactions. However, concerns over the harmful effects of sulphites have led to legal limits being placed upon such additives. There is thus a need for simple and selective determinations of sulphur dioxide in wine, especially during winemaking. The simultaneous detection of polyphenols and sulphur dioxide, using cyclic voltammetry at inert electrodes is challenging due to close oxidation potentials. In the present study, inkjet printed electrodes were developed with a suitable voltammetric signal on which the polyphenol oxidation is suppressed and the oxidation peak height for sulphur dioxide corresponds linearly to the concentration. Different types of working electrodes were printed. Electrodes consisting of gold nanoparticles mixed with silver showed the highest sensitivity towards sulphur dioxide. Low cost production of the sensor elements and ultra fast determination of sulphur dioxide by cyclic voltammetry makes this technique very promising for the wine industry. Copyright © 2014 Elsevier Ltd. All rights reserved.
2011-01-01
Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook’s distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards. PMID:21966586
Keithley, Richard B; Wightman, R Mark
2011-06-07
Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.
Rozoy, Elodie; Simard, Stephan; Liu, Yazheng; Kitts, David; Lessard, Jean; Bazinet, Laurent
2012-06-01
A cyclic voltammetry study of 1mM l-5-methyltetrahydrofolate (l-5-MTHF) was performed in pH 5.5 Britton-Robinson buffer at room temperature to study the stability of l-5-MTHF alone and in combination with ascorbic acid (AA). The degradation of l-5-MTHF and AA over a period of 12h both followed first order reaction kinetics. Using this technique, oxidation peaks of l-5-MTHF were identified at +0.17 and +1.18V, and another oxidation peak appeared after 4h under air at +0.89V. Cyclic voltammetry and HPLC quantification enable us to confirm that l-5-MTHF can be highly preserved by the addition of an equimolar concentration of AA. This treatment was equivalent to a purge of nitrogen used to remove oxygen and thus minimise oxidation of l-5-MTHF when present in aqueous solutions. HPLC confirmed the fact that a full regeneration of oxidised l-5-MTHF occurred with the addition of sodium ascorbate, thus denoting that the redox character of l-5-MTHF can be controlled by the presence of reducing agents. Cyclic voltammetry proved to be a sensitive and accurate method for characterising l-5-MTHF oxidation and potential preservation with ascorbic acid. To our knowledge, this is the first study that has demonstrated the number of oxidation sites on l-5-MTHF. Copyright © 2011 Elsevier Ltd. All rights reserved.
Electrochemical responses on self-assembled monolayer (SAM)-coated polycrystalline gold electrodes were investigated using cyclic voltammetry and square wave voltammetry with a three electrode system. Experimental results show potential in the application of pyrene-imprinted SAM...
NASA Astrophysics Data System (ADS)
Jeyalakshmi, K.; Muralidharan, G.
2014-03-01
Vanadium pentoxide thin films have been prepared by sol-gel spin coating method. The eight-layered films coated on fluorine-doped tin oxide substrate and glass substrate were subjected to different durations of annealing under a constant annealing temperature of 300 °C from 30 to 120 min. The X-ray diffraction spectrum reveals crystallinity along (2 0 0) direction. The SEM images of these films show the variation in the surface morphology with increase in annealing duration. The supercapacitor behaviour has been studied using cyclic voltammetry technique and electrochemical impedance spectroscopy. The film annealed for 60 min exhibits a maximum specific capacitance of 346 F/g at a scan rate of 5 mV/s with a charge transfer resistance of 172 Ω.
Corrosion resistance evaluation of Pd-free Ag-Au-Pt-Cu dental alloys.
Fujita, Takeshi; Shiraishi, Takanobu; Takuma, Yasuko; Hisatsune, Kunihiro
2011-01-01
The corrosion resistance of nine experimental Pd-free Ag-Au-Pt-Cu dental alloys in a 0.9% NaCl solution was investigated using cyclic voltammetry (CV), optical microscopy, and scanning electron microscopy (SEM). CV measurements revealed that the breakdown potential (E(bd)) and zero current potential (E(zc)) increased with increasing Au/(Au+Ag) atomic ratio. Thus, the Au/(Au+Ag) atomic ratio, but not the Cu content, influenced the corrosion resistance of Ag-Au-Pt-Cu alloys. After the forward scan of CV, both optical and scanning electron microscope images showed that in all the experimental alloys, the matrix phase was corroded but not the second phase. From corrosion resistance viewpoint, the Ag-Au-Pt-Cu alloys seemed to be suitable for clinical application.
Platinum-gold nanoclusters as catalyst for direct methanol fuel cells.
Giorgi, L; Giorgi, R; Gagliardi, S; Serra, E; Alvisi, M; Signore, M A; Piscopiello, E
2011-10-01
Nanosized platinum-gold alloys clusters have been deposited on gas diffusion electrode by sputter deposition. The deposits were characterized by FE-SEM, TEM and XPS in order to verify the formation of alloy nanoparticles and to study the influence of deposition technique on the nanomorphology. The deposition by sputtering process allowed a uniform distribution of metal particles on porous surface of carbon supports. Typical island growth mode was observed with the formation of a dispersed metal nanoclusters (mean size about 5 nm). Cyclic voltammetry was used to determine the electrochemical active surface and the electrocatalytic performance of the PtAu electrocatalysts for methanol oxidation reaction. The data were re-calculated in the form of mass specific activity (MSA). The sputter-catalyzed electrodes showed higher performance and stability compared to commercial catalysts.
Lignin-based Biochar/graphene Oxide Composites as Supercapacitor Electrode Materials
NASA Astrophysics Data System (ADS)
Cai, Z.; Jiang, C.; Xiao, X. F.; Zhang, Y. S.; Liang, L.
2018-05-01
The lignin-based biochar/graphene composites were effectively obtained via an easy and rapid co-precipitation method. The chemical structure, microstructure, electrochemical properties of lignin/graphene oxide composites before and after carbonization were investigated by Fourier transformation infrared spectrum (FTIR), Scanning electron microscope (SEM), x-ray diffraction (XRD) and cyclic voltammetry (CV). FTIR results confirmed that the oxygen-containing groups of lignin, GO and their composites were partly removed after 800 °C carbonization and GO had a positive impact on the formation of graphitic structure for lignin. XRD results showed that lignin could completely block the restacking of GO sheets. The electrochemical test presented that lignin/graphene oxide composites exhibited a typical CV curve and the specific capacitance reached ∼103F/g at a scan rate of 20mv/s.
Chemically deposited nano grain composed MoS(2) thin films for supercapacitor application.
Pujari, R B; Lokhande, A C; Shelke, A R; Kim, J H; Lokhande, C D
2017-06-15
Low temperature soft chemical synthesis approach is employed towards MoS 2 thin film preparation on cost effective stainless steel substrate. 3-D semispherical nano-grain composed surface texture of MoS 2 film is observed through FE-SEM technique. Electrochemical supercapacitor performance of MoS 2 film is tested from cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) techniques in 1M aqueous Na 2 SO 4 electrolyte. Specific capacitance (C s ) of 180Fg -1 with CV cycling stability of 82% for 1000 cycles is achieved. Equivalent series resistance (R s ) of 1.78Ωcm -2 observed through Nyquist plot shows usefulness of MoS 2 thin film for charge conduction in supercapacitor application. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Tadavi, Samina K.; Yadav, Abhijit A.; Bendre, Ratnamala S.
2018-01-01
A novel schiff base H2L derived from simple condensation of 2-hydroxy-6-isopropyl-3-methyl benzaldehyde and 1,2-diaminopropane in 2:1 M ratio and its [MnL], [CoL] and [NiL]2 complexes have been prepared and characterized by spectroscopic technique, elemental analysis, SEM-EDX analysis, and cyclic voltammetry. Additionally, single crystal X-ray diffraction technique has been applied to the schiff base ligand H2L and its nickel complex. The structure of nickel complex exhibited dimeric form with formula [NiL]2 with distorted square planar geometry around each nickel center. Furthermore, all the synthesized compounds were screened for their antimicrobial and antioxidant and DNA cleavage activities.
Ag-doped CdO nanocatalysts: Preparation, characterization and catechol oxidase activity
NASA Astrophysics Data System (ADS)
El-Kemary, Maged; El-Mehasseb, Ibrahim; El-Shamy, Hany
2018-06-01
Silver doped cadmium oxide (Ag/CdO) nanoparticles with an average size of 41 nm have been successfully synthesized via thermal decomposition and liquid impregnation technique. The structural characterization has been performed by using several spectroscopic techniques, e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM) and fourier-transform infrared (FT-IR). The catechol oxidase has been studied by UV-visible absorption spectroscopy and fourier-transform infrared as well as the mechanism has been assured by cyclic voltammetry and fluorescence spectroscopy. The results indicate that the oxidation does not occur in the presence of unsupported cadmium oxide particles by silver and in the same time, the catechol oxidase activity of silver doped CdO nanoparticles were improved by about three orders of magnitude than silver ions.
Manganese oxide arrays on carbon fiber paper and its application for PEMFC
NASA Astrophysics Data System (ADS)
Lu, Lu; Zhao, Yu; Deng, Han; Xu, Bing
2018-02-01
C-MnO2 was synthesized by direct hydrothermal decomposition of KMnO4. The structure and morphology of C-MnO2 was characterized by XRD and SEM, electrochemical performances were investigated by cyclic voltammetry. The effects of hydrothermal temperatures, and time were systemat ically investigated. The XRD pattern can be identified as a α-types space group, and it matches well with Bragg reflection of the standard α-MnO2, suggesting that a targeted α-MnO2 has been successfully synthesized. The results show that pure phase MnO2 nanorods can be obtained in 160 °C. C-MnO2 composites show a larger current response and C-MnO2 composite material has improved the efficiency of the large current charge and discharge.
NASA Astrophysics Data System (ADS)
Liang, Pan; Du, Lu; Wang, Xia; Liu, Zhi-Hong
2014-11-01
A novel flower-like nickel borate of Ni3B2O6 nanostructure was prepared through a hydrothermal treatment and sequential thermal decomposition of precursor without employing any template or surfactant. All the samples were characterized by XRD, IR, XPS, TG-DTA, nitrogen adsorption, SEM and TEM. The flower-like Ni3B2O6 nanostructure was self-assembled by nanosheets with the thickness of about 40 nm. The electrochemical properties in lithium-ion battery of flower-like Ni3B2O6 nanostructure were studied by the cyclic voltammetry, galvanostatic cycling test, and electrochemical impedance spectroscopy, which showed it had a high initial discharge capacity and a good reversibility.
Protective Behavior of Poly(m-aminophenol) and Polypyrrole Coatings on Mild Steel
NASA Astrophysics Data System (ADS)
Yahaya, Sabrina M.; Harun, M. K.; Rosmamuhamadani, R.; Bonnia, N. N.; Ratim, S.
2018-01-01
Electrodeposition of polypyrrole (PPy) and poly (m-aminophenol) (PMAP) films on mild steel (MS) substrate was achieved in 0.3M oxalic acid solution and 0.3M NaOH, water:ethanol (70:30) solvent respectively using cyclic voltammetry technique. The morphology of the films constructed was determined by scanning electron microscope (SEM) while energy dispersive X-Ray analyzer (EDX) was used to establish the presence of organic PMAP and PPy film coating and its compositions. The corrosion performance of MS coated with both polymer films were investigated after 0.5 hours immersed in 0.5M NaCl aqueous solution by using polarization curves. It was found that PPy coating provides anodic protection while PMAP coating provides cathodic protection towards corrosion protection of mild steel substrate.
A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samin, Adib J.
In this study, a one-dimensional stochastic model based on the random walk approach is used to simulate cyclic voltammetry. The model takes into account mass transport, kinetics of the redox reactions, adsorption effects and changes in the morphology of the electrode. The model is shown to display the expected behavior. Furthermore, the model shows consistent qualitative agreement with a finite difference solution. This approach allows for an understanding of phenomena on a microscopic level and may be useful for analyzing qualitative features observed in experimentally recorded signals.
1987-09-25
rate constants, k2r using cyclic voltametry . The res tss are expressed in terms of systematic deviations oP sapparent measured" rate constants, k~b(app...concentration was taken to be lum unless otherwise noted. The voltammetric sweep rate was set at 20 V sŕ unless specified otherwise. The general procedure...peaks for the negative- and positive-going potential sweeps have opposite signs, the measured cathodic-anodic peak separation, AEp, will clearly be
Pumera, Martin; Smíd, Bretislav
2007-10-01
Double wall carbon nanotubes are noncovalently functionalized with redox protein and such assembly is used for construction of electrochemical binder-less glucose biosensor. Redox protein glucose oxidase performs as biorecognition element and double wall carbon nanotubes act both as immobilization platform for redox enzyme and as signal transducer. The double carbon nanotubes are characterized by cyclic voltammetry and specific surface area measurements; the redox protein noncovalently functionalized double wall carbon nanotubes are characterized in detail by X-ray photoelectron spectroscopy, cyclic voltammetry, amperometry, and transmission electron microscopy.
A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects
NASA Astrophysics Data System (ADS)
Samin, Adib J.
2016-05-01
In this study, a one-dimensional stochastic model based on the random walk approach is used to simulate cyclic voltammetry. The model takes into account mass transport, kinetics of the redox reactions, adsorption effects and changes in the morphology of the electrode. The model is shown to display the expected behavior. Furthermore, the model shows consistent qualitative agreement with a finite difference solution. This approach allows for an understanding of phenomena on a microscopic level and may be useful for analyzing qualitative features observed in experimentally recorded signals.
An Introduced Hybrid Graphene/Polyaniline Composites for Improvement of Supercapacitor
NASA Astrophysics Data System (ADS)
Tayel, Mazhar B.; Soliman, Moataz M.; Ebrahim, Shaker; Harb, Mohamed E.
2016-01-01
Supercapacitors represent an attractive alternative for portable electronics and automotive applications due to their high capacitance, specific power and extended life. In fact, the growing demand of portable systems and hybrid electric vehicles, memory protection in complementary metal-oxide-semiconductor (CMOS), logic circuit, videocassette recorders (VCRs), compact disc (CD) players, personal computers (PCs), uninterruptible power supply (UPS) in security alarm systems, remote sensing, smoke detectors, etc. require high power in short-term pulses. Therefore, in the last 20 years, supercapacitors have been required for the development of large and small devices driven by electrical power. In this paper, graphene oxide (GO) was synthesized by improved Hummers method. Two polyaniline (PANI)/graphene oxide nanocomposites electrode materials were prepared from aniline, GO and ammoniumpersulfate (APS) by in situ chemical polymerization with the mass ratios (mGO:mAniline) 10:90 and 30: 70 in ice bath. The crystal structure and the surface topography of all materials were characterized by means of x-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), Raman spectroscopy and scanning electron microscopy (SEM). The electrochemical properties of the composites were evaluated by cyclic voltammetry (CV), charge-discharge measurements and electrical impedance spectroscopy (EIS), respectively. The results show that the composites have similar and enhanced cyclic voltammetry performance compared with pure PANI based electrode material. The graphene/PANI composite synthesized with the mass ratio (mANI:mGO) 90:10 possessed good capacitive behavior with a specific capacitance as high as 1509.35 F/g at scan rate of 1 mV/s in scanning potential window from -0.8 V to 0.8 V.
Reutilization of the expired tetracycline for lithium ion battery anode.
Hou, Hongying; Dai, Zhipeng; Liu, Xianxi; Yao, Yuan; Liao, Qishu; Yu, Chengyi; Li, Dongdong
2018-07-15
Waste antibiotics into the natural environment are the large challenges to the environmental protection and the human health, and the unreasonable disposal of the expired antibiotics is a major pollution source. Herein, to achieve the innocent treatment and the resource recovery, the expired tetracycline was tried to be reutilized as the electrode active material in lithium ion battery (LIB) for the first time. The micro-structure and element component of the expired tetracycline were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the corresponding electrochemical performances were also investigated by galvanostatic charge/discharge and cyclic voltammetry (CV). To be satisfactory, the expired-tetracycline-based electrode delivered the initial specific discharge capacity of 371.6mAh/g and the reversible specific capacity of 304.1mAh/g after 200cycles. The decent results will not only offer an effective strategy to recycle the expired tetracycline, but also shed a new light on the cyclic economy and the sustainable development. Copyright © 2018 Elsevier B.V. All rights reserved.
Electrochemical behavior of lead alloys in sulfuric and phosphoric acid solutions
NASA Astrophysics Data System (ADS)
Paleska, I.; Pruszkowska-Drachal, R.; Kotowski, J.; Dziudzi, A.; Milewski, J. D.; Kopczyk, M.; Czerwiński, A.
The electrochemical behavior of lead, lead-antimony, and lead-calcium-aluminium-tin alloys has been studied in solutions containing various concentrations of sulfuric and phosphoric acids. The dependence of these electrode processes on some experimental conditions (mainly sweep rate and potential range) has been studied. The measurements were performed using a cyclic voltammetry technique. The study and the analysis of the morphology of alloys have been performed using a scanning electron microscope (SEM). Cyclic voltammograms of the lead-antimony alloy electrodes, similarly to pure lead electrode, also show the "anodic excursion" peak under some experimental conditions. Well defined current waves, corresponding to the oxidation and reduction processes of Sb, are observed, if the alloy surface is freshly abraded. The oxidation of antimony starts at potentials at which the formation of PbO takes place. The peak current of Sb oxidation reaction decreases during successive cycles, suggesting that Sb dissolves from the alloy surface during the first CV sweeps. Another explanation for this effect might be the formation of a PbSO 4 selective membrane.
NASA Astrophysics Data System (ADS)
Henstridge, Martin C.; Wang, Yijun; Limon-Petersen, Juan G.; Laborda, Eduardo; Compton, Richard G.
2011-11-01
We present a comparative experimental evaluation of the Butler-Volmer and Marcus-Hush models using cyclic voltammetry at a microelectrode. Numerical simulations are used to fit experimental voltammetry of the one electron reductions of europium (III) and 2-methyl-2-nitropropane, in water and acetonitrile, respectively, at a mercury microhemisphere electrode. For Eu (III) very accurate fits to experiment were obtained over a wide range of scan rates using Butler-Volmer kinetics, whereas the Marcus-Hush model was less accurate. The reduction of 2-methyl-2-nitropropane was well simulated by both models, however Marcus-Hush required a reorganisation energy lower than expected.
Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles
NASA Astrophysics Data System (ADS)
Kanchana, P.; Sekar, C.
2015-02-01
We report the synthesis of hydroxyapatite (HA) nanoparticles (NPs) by a simple microwave irradiation method and its application as sensing element for the precise determination of folic acid (FA) by electrochemical method. The structure and composition of the HA NPs characterized using XRD, FTIR, Raman and XPS. SEM and EDX studies confirmed the formation of elongated spherical shaped HA NPs with an average particle size of about 34 nm. The HA NPs thin film on glassy carbon electrode (GCE) were deposited by drop casting method. Electrocatalytic behavior of FA in the physiological pH 7.0 was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. The fabricated HA/GCE exhibited a linear calibration plot over a wide FA concentration ranging from 1.0 × 10-7 to 3.5 × 10-4 M with the detection limit of 75 nM. In addition, the HA NPs modified GCE showed good selectivity toward the determination of FA even in the presence of a 100-fold excess of ascorbic acid (AA) and 1000-fold excess of other common interferents. The fabricated biosensor exhibits good sensitivity and stability, and was successfully applied for the determination of FA in pharmaceutical samples.
Sex determination based on amelogenin DNA by modified electrode with gold nanoparticle.
Mazloum-Ardakani, Mohammad; Rajabzadeh, Nooshin; Benvidi, Ali; Heidari, Mohammad Mehdi
2013-12-15
We have developed a simple and renewable electrochemical biosensor based on carbon paste electrode (CPE) for the detection of DNA synthesis and hybridization. CPE was modified with gold nanoparticles (AuNPs), which are helpful for immobilization of thiolated bioreceptors. AuNPs were characterized by scanning electron microscopy (SEM). Self-assembled monolayers (SAMs) of thiolated single-stranded DNA (SH-ssDNA) of the amelogenin gene was formed on CPE. The immobilization of the probe and its hybridization with the target DNA was optimized using different experimental conditions. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical response of ssDNA hybridization and DNA synthesis was measured using differential pulse voltammetry (DPV) with methylene blue (MB) as an electroactive indicator. The new biosensor can distinguish between complementary and non-complementary strands of amelogenin ssDNA. Genomic DNA was extracted from blood and was detected based on changes in the MB reduction signal. These results demonstrated that the new biosensor could be used for sex determination. The proposed biosensor in this study could be used for detection and discrimination of polymerase chain reaction (PCR) products of amelogenin DNA. Copyright © 2013 Elsevier Inc. All rights reserved.
Zad, Zeinab Rezayati; Davarani, Saied Saeed Hosseiny; Taheri, Ali Reza; Bide, Yasamin
2016-12-15
In this paper, AuNPs@Polyethyleneimine-derived carbon hollow spheres were synthesized by a versatile and facile method in three steps and successfully developed and validated as Amitriptyline sensor using cyclic voltammetry (CV), chronoamperometry (CA) and differential pulse voltammetry (DPV) methods. The characterization of the electrode surface has been carried out by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), x-ray photo-electron spectrum (XPS), electrochemical impedance spectroscopy (EIS) and chronocoulometry (CC). The obtained negatively charged modified electrode was highly selective to Amitriptyline and it was shown a wide linear range from 0.1 to 700μmolL(-1), with a lower detection limit of 0.034μmolL(-1) (n=5, S/N=3), revealing the high-sensitivity properties. The modified electrode is used to achieve the real-time quantitative detection of AMT for biological applications, and satisfactory results are obtained. Due to the advantages of the sensor, its selectivity, sensitivity and stability, it will have a bright future in the field of medical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Hu, Yu-fang; Zhang, Zhao-hui; Zhang, Hua-bin; Luo, Li-juan; Yao, Shou-zhuo
2011-04-15
A sensitive and selective electrochemical sensor based on a polyaniline modified carbon electrode for the determination of L-phenylalanine has been proposed by utilizing β-cyclodextrin (β-CD) incorporated multi-walled carbon nanotube (MWNT) and imprinted sol-gel film. The electrochemical behavior of the sensor towards L-phenylalanine was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometric i-t curve. The surface morphologies of layer-by-layer assembly electrodes were displayed by scanning electron microscope (SEM). The response mechanism of the imprinted sensor for L-phenylalanine was based on the inclusion interaction of β-CD and molecular recognition capacity of the imprinted film for L-phenylalanine. A linear calibration plot was obtained covering the concentration range from 5.0 × 10(-7) to 1.0 × 10(-4) mol L(-1) with a detection limit of 1.0 × 10(-9) mol L(-1). With excellent sensitivity, selectivity, stability, reproducibility and recovery, the electrochemical imprinted sensor was used to detect L-phenylalanine in blood plasma samples successfully. Copyright © 2011 Elsevier B.V. All rights reserved.
Singh, Swati; Kaushal, Ankur; Khare, Shashi; Kumar, Pradeep; Kumar, Ashok
2014-07-21
The first gold-mercaptopropionic acid-polyethylenimine composite based electrochemical DNA biosensor was fabricated for the early detection of Streptococcus pyogenes infection in humans causing rheumatic heart disease (heart valve damage). No biosensor is available for the detection of rheumatic heart disease (RHD). Therefore, the mga gene based sensor was developed by the covalent immobilization of a 5'-carboxyl modified single stranded DNA probe onto the gold composite electrode. The immobilized probe was hybridized with the genomic DNA (G-DNA) of S. pyogenes from throat swabs and the electrochemical response was measured by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance (EI). Covalent immobilization of the probe onto the gold composite and its hybridization with G-DNA was characterized by FTIR and SEM. The sensitivity of the sensor was 110.25 μA cm(-2) ng(-1) with DPV and the lower limit of detection was 10 pg per 6 μL. The sensor was validated with patient throat swab samples and results were compared with available methods. The sensor is highly specific to S. pyogenes and can prevent damage to heart valves by the early detection of the infection in only 30 min.
Palakollu, Venkata Narayana; Thapliyal, Neeta; Chiwunze, Tirivashe E; Karpoormath, Rajshekhar; Karunanidhi, Sivanandhan; Cherukupalli, Srinivasulu
2017-08-01
A facile preparation strategy based on electrochemical technique for the fabrication of glycine (Poly-Gly) and electrochemically reduced graphene oxide (ERGO) composite modified electrode was developed. The morphology of the developed composite (ERGO/Poly-Gly) was investigated using field emission scanning electron microscope (FE-SEM). The composite modified glassy carbon electrode (GCE) was characterized using fourier transform-infrared (FT-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical characterization results revealed that ERGO/Poly-Gly modified GCE has excellent electrocatalytic activity. Further, it was employed for sensing of l-dopa in pH5.5. Differential pulse voltammetry (DPV) was used for the quantification of l-dopa as well as for the simultaneous resolution of l-dopa and uric acid (UA). The LOD (S/N=3) was found to be 0.15μM at the proposed composite modified electrode. Determination of l-dopa could also be achieved in the presence of potentially interfering substances. The sensor showed high sensitivity and selectivity with appreciable reliability and precision. The proposed sensor was also successfully applied for real sample analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Koch, Jason A; Baur, Melinda B; Woodall, Erica L; Baur, John E
2012-11-06
Fast-scan cyclic voltammetry (FSCV) is combined with alternating current scanning electrochemical microscopy (AC-SECM) for simultaneous measurements of impedance and faradaic current. Scan rates of 10-1000 V s(-1) were used for voltammetry, while a high-frequency (100 kHz), low-amplitude (10 mV rms) sine wave was added to the voltammetric waveform for the ac measurement. Both a lock-in amplifier and an analog circuit were used to measure the amplitude of the resultant ac signal. The effect of the added sine wave on the voltammetry at a carbon fiber electrode was investigated and found to have negligible effect. The combined FSCV and ac measurements were used to provide simultaneous chemical and topographical information about a substrate using a single carbon fiber probe. The technique is demonstrated in living cell culture, where cellular respiration and topography were simultaneously imaged without the addition of a redox mediator. This approach promises to be useful for the topographical and multidimensional chemical imaging of substrates.
NASA Astrophysics Data System (ADS)
Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar
2015-10-01
Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures.
Gupta, Ram K; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar
2015-10-20
Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures.
Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar
2015-01-01
Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures. PMID:26482921
NASA Astrophysics Data System (ADS)
Arie, A. A.; Hadisaputra, L.; Susanti, R. F.; Devianto, H.; Halim, M.; Enggar, R.; Lee, J. K.
2017-07-01
Synthesis of nanocarbon on snake fruit-peel’s activated carbon from waste cooking oil palm was conducted by a nebulized spray pyrolysis process (NSP) by varying the processing temperature from 650 to 750 °C. Ferrocene was used as a catalyst with constant concentration of 0.015 g/ml of carbon source. The structure of nanocarbon was studied by using scanning electron microscope (SEM),x-ray diffraction (XRD), surface area analyzer and Raman spectroscopy. SEM results showed that the structures of carbon products was in the the form of carbon nanopsheres (CNS). XRD and Raman analysis confirmed the CNS structure. The carbon producs were then tested as electrode’s materials for lithium ion capacitors (LIC) by cyclic voltammetry (CV) instruments. From the CV results the specific capacitance was estimated as 79.57 F / g at a scan rate of 0.1 mV / s and voltage range from 2.5 - 4 V. This study shows that the nano carbons synthesized from the waste cooking oil can be used as prospective electrode materials for LIC.
Rusi; Majid, S R
2016-01-01
Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg-1 with energy and power densities of 1322 Wh kg-1 and 110.5 kW kg-1, respectively, at a current density of 20 Ag-1 in a mixed KOH/K3Fe(CN)6 electrolyte.
Electrochemical and spectroscopic studies of the interaction of proflavine with DNA.
Aslanoglu, Mehmet
2006-03-01
The interaction of proflavine with herring sperm DNA has been investigated by cyclic voltammetry and UV-Vis spectroscopy as well as viscosity measurements. Shifts in the peak potentials in cyclic voltammetry, spectral changes in UV absorption titration, an increase in viscosity of DNA and the results of the effect of ionic strength on the binding constant strongly support the intercalation of proflavine into the DNA double helix. The binding constant for the interaction between proflavine and DNA was K = 2.32 (+/- 0.41) x 10(4) M(-1) and the binding site size was 2.07 (+/- 0.1) base pairs, estimated in voltammetric measurements. The value of the binding site size was determined to be closer to that expected for a planar intercalating agent. The standard Gibbs free-energy change is ca. -24.90 kJ/mol at 25 degrees C, indicating the spontaneity of the binding interaction. The binding constant determined by UV absorption measurements was K = 2.20 (+/- 0.48) x 10(4) M(-1), which is very close to the value determined by cyclic voltammetry assuming that the binding equilibrium is static.
Nishida, Shinsuke; Fukui, Kozo; Morita, Yasushi
2014-02-01
The stable tetrathiafulvalene (TTF)-linked 6-oxophenalenoxyl neutral radical exhibits a spin-center transfer with a continuous color change in solution caused by an intramolecular electron transfer, which is dependent on solvent and temperature. Cyclic voltammetry measurements showed that addition of 2,2,2-trifluoroethanol (TFE) to a benzonitrile solution of the neutral radical induces a redox potential shift that is favorable for the spin-center transfer. Temperature-dependent cyclic voltammetry of the neutral radical using a novel low-temperature electrochemical cell demonstrated that the redox potentials change with decreasing temperature in a 199:1 CH2Cl2/TFE mixed solvent. Furthermore, theoretical calculation revealed that the energy levels of the frontier molecular orbitals involved in the spin-center transfer are lowered by the hydrogen-bonding interaction of TFE with the neutral radical. These results indicate that the hydrogen-bonding effect is a key factor for the occurrence of the spin-center transfer of TTF-linked 6-oxophenalenoxyl. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rusi; Majid, S. R.
2016-01-01
Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg−1 with energy and power densities of 1322 Wh kg−1 and 110.5 kW kg−1, respectively, at a current density of 20 Ag−1 in a mixed KOH/K3Fe(CN)6 electrolyte. PMID:27182595
Development and Use of an Open-Source, User-Friendly Package to Simulate Voltammetry Experiments
ERIC Educational Resources Information Center
Wang, Shuo; Wang, Jing; Gao, Yanjing
2017-01-01
An open-source electrochemistry simulation package has been developed that simulates the electrode processes of four reaction mechanisms and two typical electroanalysis techniques: cyclic voltammetry and chronoamperometry. Unlike other open-source simulation software, this package balances the features with ease of learning and implementation and…
Abdel-Hamid, Refat; Newair, Emad F.
2015-01-01
A polypyrrole-multiwalled carbon nanotubes modified glassy carbon electrode-based sensor was devised for determination of ferulic acid (FA). The fabricated sensor was prepared electrochemically using cyclic voltammetry (CV) and characterized using CV and scanning electron microscope (SEM). The electrode shows an excellent electrochemical catalytic activity towards FA oxidation. Under optimal conditions, the anodic peak current correlates linearly to the FA concentration throughout the range of 3.32 × 10−6 to 2.59 × 10−5 M with a detection limit of 1.17 × 10−6 M (S/N = 3). The prepared sensor is highly selective towards ferulic acid without the interference of ascorbic acid. The sensor applicability was tested for total content determination of FA in a commercial popcorn sample and showed a robust functionality. PMID:28347090
A combined electrocoagulation-sorption process applied to mixed industrial wastewater.
Linares-Hernández, Ivonne; Barrera-Díaz, Carlos; Roa-Morales, Gabriela; Bilyeu, Bryan; Ureña-Núñez, Fernando
2007-06-01
The removal of organic pollutants from a highly complex industrial wastewater by a aluminium electrocoagulation process coupled with biosorption was evaluated. Under optimal conditions of pH 8 and 45.45 Am(-2) current density, the electrochemical method yields a very effective reduction of all organic pollutants, this reduction was enhanced when the biosorption treatment was applied as a polishing step. Treatment reduced chemical oxygen demand (COD) by 84%, biochemical oxygen demand (BOD(5)) by 78%, color by 97%, turbidity by 98% and fecal coliforms by 99%. The chemical species formed in aqueous solution were determined. The initial and final pollutant levels in the wastewater were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and elemental composition of the biosorbent was characterized with scanning electron microscopy (SEM) and energy dispersion spectra (EDS).
Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors
NASA Astrophysics Data System (ADS)
Ferreira, C. S.; Passos, R. R.; Pocrifka, L. A.
2014-12-01
The present study reports the synthesis and morphological, structural and electrochemical characterization of ternary oxides mixture containing nickel, cobalt and tin. The ternary oxide is synthesized by Pechini method with subsequent deposition onto a titanium substrate in a thin-film form. XRD and EDS analysis confirm the formation of ternary film with amorphous nature. SEM analysis show that cracks on the film favor the gain of the surface area that is an interesting feature for electrochemical capacitors. The ternary film is investigated in KOH electrolyte solution using cyclic voltammetry and charge-discharge study with a specific capacitance of 328 F g-1, and a capacitance retention of 86% over 600 cycles. The values of specific power and specific energy was 345.7 W kg-1 and 18.92 Wh kg-1, respectively.
NASA Astrophysics Data System (ADS)
Fekry, A. M.; Azab, S. M.; Shehata, M.; Ameer, M. A.
A promising electrochemical sensor for the determination of nicotine (NIC) was developed by electrodeposition of Ce-Nanoparticles on a carbon paste electrode (CPE). The interaction of nicotine was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Scanning electron microscope (SEM) and Energy Dispersive X-Ray Analysis (EDX) techniques, in both aqueous and micellar media. The NIC Measurements were carried out in Britton-Robinson (B-R) buffer solution of pH range (2.0-8.0) containing (1.0 mM) sodium dodecylsulfate (SDS). The linear response range of the sensor was between 8 × 10-6 and 10-4 M with a detection limit of 9.43 × 10-8 M. Satisfactory results were achieved for the detection of NIC in real samples as urine and different brands of commercial cigarettes.
Simple and fast method for fabrication of endoscopic implantable sensor arrays.
Tahirbegi, I Bogachan; Alvira, Margarita; Mir, Mònica; Samitier, Josep
2014-06-26
Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope.
Microwave-assisted synthesis of Pt/CNT nanocomposite electrocatalysts for PEM fuel cells.
Zhang, Weimin; Chen, Jun; Swiegers, Gerhard F; Ma, Zi-Feng; Wallace, Gordon G
2010-02-01
Microwave-assisted heating of functionalized, single-wall carbon nanotubes (FCNTs) in ethylene glycol solution containing H(2)PtCl(6), led to the reductive deposition of Pt nanoparticles (2.5-4 nm) over the FCNTs, yielding an active catalyst for proton-exchange membrane fuel cells (PEMFCs). In single-cell testing, the Pt/FCNT composites displayed a catalytic performance that was superior to Pt nanoparticles supported by raw (unfunctionalized) CNTs (RCNTs) or by carbon black (C), prepared under identical conditions. The supporting single-wall carbon nanotubes (SWNTs), functionalized with carboxyl groups, were studied by thermogravimetric analysis (TGA), cyclic voltammetry (CV), and Raman spectroscopy. The loading level, morphology, and crystallinity of the Pt/SWNT catalysts were determined using TGA, SEM, and XRD. The electrochemically active catalytic surface area of the Pt/FCNT catalysts was 72.9 m(2)/g-Pt.
Ferrocene-functionalized graphene electrode for biosensing applications.
Rabti, Amal; Mayorga-Martinez, Carmen C; Baptista-Pires, Luis; Raouafi, Noureddine; Merkoçi, Arben
2016-07-05
A novel ferrocene-functionalized reduced graphene oxide (rGO)-based electrode is proposed. It was fabricated by the drop casting of ferrocene-functionalized graphene onto polyester substrate as the working electrode integrated within screen-printed reference and counter electrodes. The ferrocene-functionalized rGO has been fully characterized using FTIR, XPS, contact angle measurements, SEM and TEM microscopy, and cyclic voltammetry. The XPS and EDX analysis showed the presence of Fe element related to the introduced ferrocene groups, which is confirmed by a clear CV signal at ca. 0.25 V vs. Ag/AgCl (0.1 KCl). Mediated redox catalysis of H2O2 and bio-functionalization with glucose oxidase for glucose detection were achieved by the bioelectrode providing a proof for potential biosensing applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Electroreduction of CO{sub 2} using copper-deposited on boron-doped diamond (BDD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panglipur, Hanum Sekar; Ivandini, Tribidasari A., E-mail: ivandini.tri@sci.ui.ac.id; Einaga, Yasuaki
Electroreduction of CO{sub 2} was studied at copper-modified boron-doped diamond (Cu-BDD) electrodes as the working electrode. The Cu-BDD electrodes were prepared by electrochemical reduction with various concentrations of CuSO{sub 4} solutions. FE-SEM was utilized to characterize the electrodes. At Cu-BDD electrodes, a reduction peak at around -1.2 V (vs Ag/AgCl) attributtable to CO{sub 2} reductions could be observed by cyclic voltammetry technique of CO{sub 2} bubbled in water containing 0.1M NaCl. Accordingly, electroreduction of CO{sub 2} was conducted at -1.2 V (vs Ag/AgCl) using amperometry technique. The chemical products of the electroreduction analyzed by using HPLC showed the formation of formaldehyde, formicmore » acid, and acetic acid at Cu-BDD electrodes.« less
Formation of hybrid nanocomposites polymethylolacrylamide/silver
NASA Astrophysics Data System (ADS)
Kolzunova, L. G.; Shchitovskaya, E. V.; Rodzik, I. G.
2018-05-01
In this study, polymethylolacrylamide/silver composites have been formed by incorporating silver nanoparticles into the pre-electrosynthesized polymer film. The composites were formed in a two-step process involving the sorption of silver nitrate by a polymer matrix followed by chemical reduction of Ag-ions. The presence of crystalline silver phase in the polymer was confirmed by X-ray phase analysis (XRD), plasmon resonance and scanning electron microscopy (SEM). The small-angle X-ray scattering (SAXS) method has obtained the distribution functions of silver particles over radii. It is established that the content of silver in composites without chitosan is 10-15 times higher than with its additive. The dependences of cyclic voltammetry in pure phosphate buffer (pH 6.86) and in the presence of hydrogen peroxide were obtained. It has been shown that polymer/silver composites exhibit selectivity to hydrogen peroxide.
Oxidation management of white wines using cyclic voltammetry and multivariate process monitoring.
Martins, Rui C; Oliveira, Raquel; Bento, Fatima; Geraldo, Dulce; Lopes, Vitor V; Guedes de Pinho, Paula; Oliveira, Carla M; Silva Ferreira, Antonio C
2008-12-24
The development of a fingerprinting strategy capable to evaluate the "oxidation status" of white wines based on cyclic voltammetry is proposed here. It is known that the levels of specific antioxidants and redox mechanisms may be evaluated by cyclic voltammetry. This electrochemical technique was applied on two sets of samples. One group was composed of normal aged white wines and a second group obtained from a white wine forced aging protocol with different oxygen, SO(2), pH, and temperature regimens. A study of antioxidant additions, namely ascorbic acid, was also made in order to establish a statistical link between voltammogram fingerprints and chemical antioxidant substances. It was observed that the oxidation curve presented typical features, which enables sample discrimination according to age, oxygen consumption, and antioxidant additions. In fact, it was possible to place the results into four significant orthogonal directions, compressing 99.8% of nonrandom features. Attempts were made to make voltammogram fingerprinting a tool for monitoring oxidation management. For this purpose, a supervised multivariate control chart was developed using a control sample as reference. When white wines are plotted onto the chart, it is possible to monitor the oxidation status and to diagnose the effects of oxygen regimes and antioxidant activity. Finally, quantification of substances implicated in the oxidation process as reagents (antioxidants) and products (off-flavors) was tried using a supervised algorithmic the partial least square regression analysis. Good correlations (r > 0.93) were observed for ascorbic acid, Folin-Ciocalteu index, total SO(2), methional, and phenylacetaldehyde. These results show that cyclic voltammetry fingerprinting can be used to monitor and diagnose the effects of wine oxidation.
The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...
Ammar, Hafedh Belhadj; Brahim, Mabrouk Ben; Abdelhédi, Ridha; Samet, Youssef
2016-02-01
The performance of boron-doped diamond (BDD) electrode for the detection of metronidazole (MTZ) as the most important drug of the group of 5-nitroimidazole was proven using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. A comparison study between BDD, glassy carbon and silver electrodes on the electrochemical response was carried out. The process is pH-dependent. In neutral and alkaline media, one irreversible reduction peak related to the hydroxylamine derivative formation was registered, involving a total of four electrons. In acidic medium, a prepeak appears probably related to the adsorption affinity of hydroxylamine at the electrode surface. The BDD electrode showed higher sensitivity and reproducibility analytical response, compared with the other electrodes. The higher reduction peak current was registered at pH11. Under optimal conditions, a linear analytical curve was obtained for the MTZ concentration in the range of 0.2-4.2μmolL(-1), with a detection limit of 0.065μmolL(-1). Copyright © 2015 Elsevier B.V. All rights reserved.
Rebelo, M J; Rego, R; Ferreira, M; Oliveira, M C
2013-11-01
A comparative study of the antioxidant capacity and polyphenols content of Douro wines by chemical (ABTS and Folin-Ciocalteau) and electrochemical methods (cyclic voltammetry and differential pulse voltammetry) was performed. A non-linear correlation between cyclic voltammetric results and ABTS or Folin-Ciocalteau data was obtained if all types of wines (white, muscatel, ruby, tawny and red wines) are grouped together in the same correlation plot. In contrast, a very good linear correlation was observed between the electrochemical antioxidant capacity determined by differential pulse voltammetry and the radical scavenging activity of ABTS. It was also found that the antioxidant capacity of wines evaluated by the electrochemical methods (expressed as gallic acid equivalents) depend on background electrolyte of the gallic acid standards, type of electrochemical signal (current or charge) and electrochemical technique. Copyright © 2013 Elsevier Ltd. All rights reserved.
He, Yadong; Huang, Jingsong; Sumpter, Bobby G; Kornyshev, Alexei A; Qiao, Rui
2015-01-02
Understanding the dynamic charge storage in nanoporous electrodes with room-temperature ionic liquid electrolytes is essential for optimizing them to achieve supercapacitors with high energy and power densities. Herein, we report coarse-grained molecular dynamics simulations of the cyclic voltammetry of supercapacitors featuring subnanometer pores and model ionic liquids. We show that the cyclic charging and discharging of nanopores are governed by the interplay between the external field-driven ion transport and the sloshing dynamics of ions inside of the pore. The ion occupancy along the pore length depends strongly on the scan rate and varies cyclically during charging/discharging. Unlike that at equilibrium conditions or low scan rates, charge storage at high scan rates is dominated by counterions while the contribution by co-ions is marginal or negative. These observations help explain the perm-selective charge storage observed experimentally. We clarify the mechanisms underlying these dynamic phenomena and quantify their effects on the efficiency of the dynamic charge storage in nanopores.
Araghi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammdpoor-Baltork, Iraj
2012-03-14
In the present work, the preparation of a new organic-inorganic hybrid material in which tetrakis(p-aminophenylporphyrin) is covalently linked to a Lindqvist structure of polyoxometalate, is reported. This new porphyrin-polyoxometalate hybrid material was characterized by (1)H NMR, FT-IR and UV-Vis spectroscopic methods and cyclic voltammetry. These spectro- and electrochemical studies provided spectral data of the synthesis of this compound. Cyclic voltammetry showed the influence of the porphyrin on the redox process of the polyoxometalate. The catalytic activity of this hybrid material was investigated in the alkene epoxidation with NaIO(4).
Sampling phasic dopamine signaling with fast-scan cyclic voltammetry in awake behaving rats
Fortin, SM; Cone, JJ; Ng-Evans, S; McCutcheon, JE; Roitman, MF
2015-01-01
Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique which permits the in vivo measurement of extracellular fluctuations in multiple chemical species. The technique is frequently utilized to sample sub-second (phasic) concentration changes of the neurotransmitter dopamine in awake and behaving rats. Phasic dopamine signaling is implicated in reinforcement, goal-directed behavior, and locomotion and FSCV has been used to investigate how rapid changes in striatal dopamine concentration contribute to these and other behaviors. This unit describes the instrumentation and construction, implantation, and use of necessary components required to sample and analyze dopamine concentration changes in awake rats with FSCV. PMID:25559005
NASA Astrophysics Data System (ADS)
Rohmawati, L.; Setyarsih, W.; Nurjannah, T.
2018-03-01
Sweep rate of the process voltammetry cyclic characterization is very influential towards the electrode capacitance value, especially on activated carbon electrodes/PVDF. A simple method of this research by use a mixing for electrode activated carbon/10 wt. % PVDF and the separator is made of a polymer electrolyte (PVA/H3PO4) by a sol gel method. The prototype supercapacitor is made in the form of a sandwich with a separator placed between two electrodes. Electrodes and separators are arranged in layers at a pressure of 1500 psi, then heated at 50°C for 10 minutes. Next done cyclic voltammetry in a potential range of -1 V to 1 V with a sweep rate of 5 mV/s, 10 mV/s, 20 mV/s, 25 mV/s and 50 mV/s. This results of curves voltammogram is reversible, the most wide curve on the sweep rate of 5 mV/s and most narrow curve on a sweep rate of 50 mV/s. Supercapacitor capacitance values obtained by 86 F/g, 43 F/g, 21 F/g, 16 F/g, and 8 F/g.
Singh, Archana; Chowdhury, Debarati Roy; Paul, Amit
2014-11-21
A novel, easy, quick, and inexpensive integrated electrochemical methodology composed of cyclic voltammetry and amperometry has been developed for the determination of the kinetic stability of higher oxidation states for inorganic complexes. In this study, ferrocene and its derivatives have been used as model systems and the corresponding ferrocenium cations were generated in situ during the electrochemical experiments to determine their kinetic stabilities. The study found that the ferrocenium cations decompose following the first-order kinetics at 27 ± 3 °C in the presence of ambient oxygen and water. The half-lives of the ferrocenium, carboxylate ferrocenium, and decamethyl ferrocenium cations were found to be 1.27 × 10(3), 1.52 × 10(3), and ≫11.0 × 10(3) s, respectively, in acetonitrile solvent having a 0.5 M tetrabutylammonium hexafluorophosphate electrolyte. These results are in agreement with the previous reports, i.e. the ferrocenium cation is unstable whereas the decamethyl ferrocenium cation has superior stability. The new methodology has been established by performing various experiments using different concentrations of ferrocene, variable scan rates in cyclic voltammetry, different time periods for amperometry, and in situ spectroelectrochemical experiments.
Effect of lithium and sodium salt on the performance of Nb2O5/rGO nanocomposite based supercapacitor
NASA Astrophysics Data System (ADS)
Ahmed, Sultan; Rafat, M.
2018-03-01
The present work reports the synthesis of Nb2O5/rGO composite using hydrothermal method and thermal annealing process. The prepared composite was found to have suitable characteristics necessary to be used as electrode material in supercapacitors. These characteristics were ascertained employing the techniques of scanning electron microscopy (SEM), x-ray diffraction (XRD), Raman spectroscopy and N2 adsorption-desorption isotherm. Further, the electrochemical performance of the prepared composite was compared in two different organic electrolytes, of lithium and sodium salt using the techniques of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge-discharge measurements. The organic electrolyte solutions were prepared by dispersing 1 M LiClO4/NaClO4 in a mixture of ethylene carbonate/propylene carbonate (1:1 by volume). The observed results indicate that the composite of Nb2O5/rGO offers higher value of specific capacitance in sodium salt electrolyte and higher cyclic stability in lithium salt electrolyte. This is probably due to ion properties of electrolyte. Specific capacitance is observed according to efficient ion/charge diffusion/exchange and relaxation time (Li+ < Na+), while the cyclic stability is observed according to cation size (Na+ > Li+). Thus, the present study reveals the significant effect of electrolyte ions on electrochemical performance of Nb2O5/rGO composite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyt, N.; Pereira, C.; Willit, J.
2016-07-29
The purpose of the ANL MPACT Voltammetry project is to evaluate the suitability of previously developed cyclic voltammetry techniques to provide electroanalytical measurements of actinide concentrations in realistic used fuel processing scenarios. The molten salts in these scenarios are very challenging as they include high concentrations of multiple electrochemically active species, thereby creating a variety of complications. Some of the problems that arise therein include issues related to uncompensated resistance, cylindrical diffusion, and alloying of the electrodeposited metals. Improvements to the existing voltammetry technique to account for these issues have been implemented, resulting in good measurements of actinide concentrations acrossmore » a wide range of adverse conditions.« less
Özel, Rıfat Emrah; Wallace, Kenneth N.; Andreescu, Silvana
2011-01-01
We report the development of a chitosan modified carbon fiber microelectrode for in vivo detection of serotonin. We find that chitosan has the ability to reject physiological levels of ascorbic acid interferences and facilitate selective and sensitive detection of in vivo levels of serotonin, a common catecholamine neurotransmitter. Presence of chitosan on the microelectrode surface was investigated using scanning electron microscopy (SEM) and cyclic voltammetry (CV). The electrode was characterized using differential pulse voltammetry (DPV). A detection limit of 1.6 nM serotonin with a sensitivity of 5.12 nA/µM, a linear range from 2 to 100 nM and a reproducibility of 6.5 % for n=6 electrodes were obtained. Chitosan modified microelectrodes selectively measure serotonin in presence of physiological levels of ascorbic acid. In vivo measurements were performed to measure concentration of serotonin in the live embryonic zebrafish intestine. The sensor quantifies in vivo intestinal levels of serotonin while successfully rejecting ascorbic acid interferences. We demonstrate that chitosan can be used as an effective coating to reject ascorbic acid interferences at carbon fiber microelectrodes, as an alternative to Nafion, and that chitosan modified microelectrodes are reliable tools for in vivo monitoring of changes in neurotransmitter levels. PMID:21601035
Xu, Guangyuan; Jarjes, Zahraa A; Desprez, Valentin; Kilmartin, Paul A; Travas-Sejdic, Jadranka
2018-06-01
The fabrication of a novel, and highly selective electrochemical sensor based on a poly(3,4-ethylenedioxythiophene) (PEDOT) modified laser scribed graphene (LSG), and detection of dopamine (DA) in the presence of ascorbic acid (AA) and uric acid (UA) is described. LSG electrodes were produced with a 3-dimensional macro-porous network and large electrochemically-active surface area via direct laser writing on polyimide sheets. PEDOT was electrodeposited on the LSG electrode, and the physical properties of the obtained films were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray diffraction microanalysis (EDAX). The modified electrodes were applied for the determination of DA in the presence of AA and UA using cyclic voltammetry (CV), and differential pulse voltammetry (DPV) techniques. The linear range for dopamine detection was found to be 1-150 µM with a sensitivity of 0.220 ± 0.011 µA μM -1 and a detection limit of 0.33 µM; superior values to those obtained without PEDOT. For the first time, PEDOT-modified LSG have been fabricated and assessed for high-performance dopamine sensing using cost-effective, disposable electrodes, with potential for development in further sensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles.
Kanchana, P; Sekar, C
2015-02-25
We report the synthesis of hydroxyapatite (HA) nanoparticles (NPs) by a simple microwave irradiation method and its application as sensing element for the precise determination of folic acid (FA) by electrochemical method. The structure and composition of the HA NPs characterized using XRD, FTIR, Raman and XPS. SEM and EDX studies confirmed the formation of elongated spherical shaped HA NPs with an average particle size of about 34 nm. The HA NPs thin film on glassy carbon electrode (GCE) were deposited by drop casting method. Electrocatalytic behavior of FA in the physiological pH 7.0 was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. The fabricated HA/GCE exhibited a linear calibration plot over a wide FA concentration ranging from 1.0×10(-7) to 3.5×10(-4) M with the detection limit of 75 nM. In addition, the HA NPs modified GCE showed good selectivity toward the determination of FA even in the presence of a 100-fold excess of ascorbic acid (AA) and 1000-fold excess of other common interferents. The fabricated biosensor exhibits good sensitivity and stability, and was successfully applied for the determination of FA in pharmaceutical samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Shehata, M; Azab, S M; Fekry, A M; Ameer, M A
2016-05-15
A newly competitive electrochemical sensor for nicotine (NIC) detection was successfully achieved. Nano-TiO2 with a carbon paste electrode (CPE) were used for the sensor construction, where Nano-TiO2 was considered as one of the richest and highly variable class of materials. The sensor showed electrocatalytic activity in both aqueous and micellar media toward the oxidation of NIC at Britton-Robinson (B-R) buffer solution (4×10(-2)M) of pH range (2.0-8.0) containing (1.0mM) sodium dodecylsulfate (SDS) using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscope (SEM) and Energy Dispersive X-Ray Analysis (EDX) techniques were also used. The linear range of detection for NIC using the new Nano-TiO2 Modified Carbon Paste sensor (NTMCP) was detected using diffrential pulse voltammetry (DPV) technique and it was found between 2×10(-6)M and 5.4×10(-4)M with a detection limit of 1.34×10(-8)M. The obtained results clarified the simplicity, high sensitivity and selectivity of the new NTMCPE for nicotine determination in real cigarettes and urine samples. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xin; Ye, Ke; Gao, Yinyi; Zhang, Hongyu; Cheng, Kui; Xiao, Xue; Wang, Guiling; Cao, Dianxue
2016-01-01
Nanoporous palladium supported on the carbon coated titanium carbide (C@TiC) nanowire arrays (Pd NP/C@TiC) are successfully prepared by a facile chemical vapor deposition of three-dimensional (3D) C@TiC substrate, followed by electrochemical codeposition of Pd-Ni and removal of Ni via dealloying. The structure and morphology of the obtained Pd NP/C@TiC electrodes are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) are used to examine the catalytic performances of the electrodes for H2O2 electroreduction in H2SO4 solution. The Pd NP/C@TiC electrode exhibits a largely effective specific surface area owing to its open nanoporous structure allowing the full utilization of Pd surface active sites. At the potential of 0.2 V in 2.0 mol L-1 H2O2 and 2 mol L-1 H2SO4 solutions, the reduction current density reaches 3.47 A mg-1, which is significantly higher than the catalytic activity of H2O2 electroreduction achieved previously with precious metals as catalysts.
NASA Astrophysics Data System (ADS)
Subramania, A.; Kalyana Sundaram, N. T.; Sukumar, N.
A micro-porous polymer electrolyte based on PVA was obtained from PVA-PVC based polymer blend film by a novel preferential polymer dissolution technique. The ionic conductivity of micro-porous polymer electrolyte increases with increase in the removal of PVC content. Finally, the effect of variation of lithium salt concentration is studied for micro-porous polymer electrolyte of high ionic conductivity composition. The ionic conductivity of the micro-porous polymer electrolyte is measured in the temperature range of 301-351 K. It is observed that a 2 M LiClO 4 solution of micro-porous polymer electrolyte has high ionic conductivity of 1.5055 × 10 -3 S cm -1 at ambient temperature. Complexation and surface morphology of the micro-porous polymer electrolytes are studied by X-ray diffraction and SEM analysis. TG/DTA analysis informs that the micro-porous polymer electrolyte is thermally stable upto 277.9 °C. Chronoamperommetry and linear sweep voltammetry studies were made to find out lithium transference number and stability of micro-porous polymer electrolyte membrane, respectively. Cyclic voltammetry study was performed for carbon/micro-porous polymer electrolyte/LiMn 2O 4 cell to reveal the compatibility and electrochemical stability between electrode materials.
Shahrokhian, Saeed; Rastgar, Shokoufeh
2012-06-07
Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.
Zhang, Q B; Yang, C; Hua, Y X; Li, Y; Dong, P
2015-02-14
Nanostructured lanthanum was electrochemically prepared on a platinum (Pt) substrate in the room temperature ionic liquid 1-butyl-3-methylimidazolium dicyanamide (BMI-DCA) containing anhydrous LaCl3 at 333 K. The electrochemical reduction behavior of La(iii) was investigated using cyclic voltammetry and chronoamperometry techniques. Cyclic voltammogram revealed that the reduction of La(iii) in BMI-DCA involved an irreversible process controlled by diffusion. Chronoamperometric transient analysis confirmed the diffusion controlled electrodeposition process with the diffusion coefficient of La(iii) species in the range of 10(-10) cm(2) s(-1). The strong complexing capability of DCA(-) anions facilitated the displacement of chloride ligands and induced the solubility of LaCl3. The subsequent coordination of La(iii) and DCA(-) anions forming [La(DCA)4](-) complex anions was monitored by designing amperometric titration experiments. Potentiostatically deposited La-deposits with different nanostructures were characterized by SEM, XRD and XPS analyses. The electrodeposition potential was found to play an important role in controlling the nucleation and growth kinetics of the nanocrystal during the electrodeposition process. Depending on the deposition potential, metallic lanthanum with either nanoparticles or nanoporous structures was obtained.
Nickel/silicon core/shell nanosheet arrays as electrode materials for lithium ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, X.H., E-mail: drhuangxh@hotmail.com; Zhang, P.; Wu, J.B.
Highlights: • Ni nanosheet arrays is the core and Si layer is the shell. • Ni nanosheet arrays act as a three-dimensional current collector to support Si. • Ni nanosheet arrays can improve the conductivity and stability of the electrode. • Ni/Si nanosheet arrays exhibit excellent cyclic and rate performance. - Abstract: Ni/Si core/shell nanosheet arrays are proposed to enhance the electrochemical lithium-storage properties of silicon. The arrays are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The arrays are micro-sized in height, which are constructed by interconnected Ni nanosheet as themore » core and Si coating layer as the shell. The electrochemical properties as anode materials of lithium ion batteries are investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The arrays can achieve high reversible capacity, good cycle stability and high rate capability. It is believed that the enhanced electrochemical performance is attributed to the electrode structure, because the interconnected Ni nanosheet can act as a three-dimensional current collector, and it has the ability of improving the electrode conductivity, enlarging the electrochemical reaction interface, and suppressing the electrode pulverization.« less
NASA Astrophysics Data System (ADS)
Wang, Yang; Roller, Justin; Maric, Radenka
2018-02-01
Nanostructured electrodes have significant potential for enhancing the kinetics of lithium storage in secondary batteries. A simple and economical manufacturing approach of these electrodes is crucial to the development and application of the next generation lithium ion (Li-ion) batteries. In this study, nanostructured α-Fe2O3 electrode is fabricated by a novel one-step flame combustion synthesis method, namely Reactive Spray Deposition Technology (RSDT). This process possesses the merits of simplicity and low cost. The structure and morphology of the electrode are investigated with X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical performance of the nanostructured α-Fe2O3 electrodes as the anodes for Li-ion batteries is evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy in coin-type half-cells. The as-prepared electrodes demonstrate superior cyclic performance at high current rate, which delivers a high reversible capacity of 1239.2 mAh g-1 at 1 C after 500 cycles. In addition, a discharge capacity of 513.3 mAh g-1 can be achieved at 10 C.
Cyclic Voltammetry of Polysulfide (Thiokol) Prepolymers and Related Compounds
1983-12-01
low scan rates suqges t that A and B are unstable and undergo chesical reactions on the cyclic voltametry time scale. A more detailed examination is...A Utah Electronics model 0152 potentiostat was used 2 together with a model 0151 sweep generator. The voltamgnaor were recorded on a Rikadenki model
Electro-catalytic degradation of sulfisoxazole by using graphene anode.
Wang, Yanyan; Liu, Shuan; Li, Ruiping; Huang, Yingping; Chen, Chuncheng
2016-05-01
Graphite and graphene electrodes were prepared by using pure graphite as precursor. The electrode materials were characterized by a scanning electron microscope (SEM), X-ray diffraction (XRD) and cyclic voltammetry (CV) measurements. The electro-catalytic activity for degradation of sulfisoxazole (SIZ) was investigated by using prepared graphene or graphite anode. The results showed that the degradation of SIZ was much more rapid on the graphene than that on the graphite electrode. Moreover, the graphene electrode exhibited good stability and recyclability. The analysis on the intermediate products and the measurement of active species during the SIZ degradation demonstrated that indirect oxidation is the dominant mechanism, involving the electro-catalytic generation of OH and O2(-) as the main active oxygen species. This study implies that graphene is a promising potential electrode material for long-term application to electro-catalytic degradation of organic pollutants. Copyright © 2015. Published by Elsevier B.V.
Sivasakthi, P; Ramesh Bapu, G N K; Chandrasekaran, Maruthai
2016-01-01
Nickel and nickel-ITO nanocomposite on mild steel substrate were prepared by pulse electrodeposition method from nickel sulphamate electrolyte and were examined as electrocatalysts for non-enzymatic glucose sensing. The surface morphology, chemical composition, preferred orientation and oxidation states of the nickel metal ion in the deposits were characterized by SEM, EDAX, XRD and XPS. Electrochemical sensing of glucose was studied by cyclic voltammetry and amperometry. The modified Ni-ITO nanocomposite electrode showed higher electrocatalytic activity for the oxidation of glucose in alkaline medium and exhibited a linear range from 0.02 to 3.00 mM with a limit of detection 3.74 μM at a signal-to-noise ratio of 3. The higher selectivity, longer stability and better reproducibility of this electrode compared to nickel in the sensing of glucose are pointers for exploitation in practical clinical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Cano, Rodríguez Claudia Teodora; Amaya-Chávez, Araceli; Roa-Morales, Gabriela; Barrera-Díaz, Carlos Eduardo; Ureña-Núñez, Fernando
2010-01-01
The elimination of organic contaminants in highly complex wastewater was tested using a combination of the techniques: electrocoagulation with aluminum electrodes and phytoremediation with Myriophyllum aquaticum. Under optimal operating conditions at a pH of 8 and a current density of 45.45 A m(-2), the electrochemical method produces partial elimination of contaminants, which was improved using phytoremediation as a polishing technique. The combined treatment reduced chemical oxygen demand (COD) by 91%, color by 97% and turbidity by 98%. Initial and final values of contaminants in wastewaters were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and the elemental composition of the biomass were characterized with using scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The presence of Al in the roots of plants in the system indicates that the aluminum present in the test solution could be absorbed.
Facile synthesis of polyaniline/TiO2/graphene oxide composite for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Su, Haifang; Wang, Teng; Zhang, Shengyi; Song, Jiming; Mao, Changjie; Niu, Helin; Jin, Baokang; Wu, Jieying; Tian, Yupeng
2012-06-01
The polyaniline/TiO2/graphene oxide (PANI/TiO2/GO) composite, as a novel supercapacitor material, is synthesized by in situ hydrolyzation of tetrabutyl titanate and polymerization of aniline monomer in the presence of graphene oxide. The morphology, composition and structure of the composites as-obtained are characterized by SEM, TEM, XRD and TGA. The electrochemical property and impedance of the composites are studied by cyclic voltammetry and Nyquist plot, respectively. The results show that the introduction of the GO and TiO2 enhanced the electrode conductivity and stability, and then improved the supercapacitive behavior of PANI/TiO2/GO composite. Significantly, the electrochemical measurement results show that the PANI/TiO2/GO composite has a high specific capacitance (1020 F g-1 at 2 mV s-1, 430 F g-1 at 1 A g-1) and long cycle life (over 1000 times).
NASA Astrophysics Data System (ADS)
Wan, Houzhao; Ji, Xiao; Jiang, Jianjun; Yu, Jingwen; Miao, Ling; Zhang, Li; Bie, Shaowei; Chen, Haichao; Ruan, Yunjun
2013-12-01
Cobalt sulfide nanotubes are synthesized by hydrothermal method. The precursor is characterized by XRD, FTIR and SEM. We study the influence of temperature on the evolution of this special coarse shape nanostructure and analyze relationship between the sizes of cobalt sulfide nanotubes and the capacitive properties of active materials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to study the effects of microstructure and morphology of the samples on their capacitance and conductivity. The specific capacitance of cobalt sulfide nanotubes (obtained in 80 °C) electrode exhibits a capacitance of 285 F g-1 at the current density of 0.5 A g-1 as well as rather good cycling stability. Moreover, during the cycling process, the coulombic efficiency remains 99%. The as-prepared cobalt sulfide nanotubes electrode exhibits excellent electrochemical performance as electrode materials for supercapacitors.
Supercapacitors from Activated Carbon Derived from Granatum.
Wang, Qiannan; Yang, Lin; Wang, Zhao; Chen, Kexun; Zhang, Lipeng
2015-12-01
Granatum carbon (GC) as electrode materials for supercapacitors is prepared via the chemical activation with different activating agent such as ZnC2 and KOH with an intention to improve the surface area and their electrochemical performance. The structure and electrochemical properties of GC materials are characterized with N2 adsorption/desorption measurements, scanning electron microscope (SEM), cyclic voltammetry (CV), galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy (EIS). The obtained results show that the specific surface area of the granatum-based activated carbons increased obviously from 573 m2 x g(-1) to 1341 m2 x g(-1) by ZnC2 activation and to 930 m2 x g(-1) by KOH treatment. Furthermore, GCZ also delivers specific capacitance of 195.1 Fx g(-1) at the current density of 0.1 A x g(-1) in 30 wt.% KOH aqueous electrolyte and low capacitance loss of 28.5% when the current density increased by 10 times.
NASA Astrophysics Data System (ADS)
Facchetti, Antonio; Yoon, Myung-Han; Katz, Howard E.; Marks, Tobin J.
2003-11-01
Recent progress in the field of organic electronics is due to a fruitful combination of both innovative molecular design and promising low-cost material/device assembly. Targeting the first strategy, we present here the general synthesis of fluoroarene-containing thiophene-based semiconductors and the study of their properties with respect to the corresponding fluorine-free hole-transporting analogues. The new compounds have been characterized by elemental analysis, mass spectrometry, and 1H- and 19F NMR. The dramatic influence of fluorine substitution and molecular architecture has been investigated by solution/film optical absorption, fluorescence emission, and cyclic voltammetry. Single crystal data for all of the oligomers have been obtained and will be presented. Film microstructure and morphology of this new class of materials have been studied by XRD and SEM. Particular emphasis will be posed on the solution-processable oligomers and polymers.
Electrochemical capacitor materials based on carbon and luminophors doped with lanthanide ions
NASA Astrophysics Data System (ADS)
Kubasiewicz, Konrad; Slesinski, Adam; Gastol, Dominika; Lis, Stefan; Frackowiak, Elzbieta
2017-10-01
The described research is focused on the hybrid, bi-functional composite materials dedicated to the electrochemical capacitor electrodes. The novel material exhibits both luminescent and capacitive properties. The fabrication process of semi-products and the final composite is described. The structure and homogeneity of luminophors are confirmed with the XRD analysis. The morphology of materials is also determined by TEM and SEM images. The detailed spectroscopic characterization includes excitation and emission spectra, luminescence decay curves, emission lifetimes, CIE chromaticity indexes. The electrochemical studies of composite electrodes carried out by cyclic voltammetry and impedance spectroscopy exhibit good charge propagation. For the first time, inorganic luminophors containing doped LaF3 and GdVO4 have been successfully used for electrochemical capacitor. It is the primary stage to design a new generation of light emitting capacitors utilizing more stable inorganic luminophors than organic-based ones.
NASA Astrophysics Data System (ADS)
Saraswathy, Ramanathan
2017-12-01
Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electrocycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.
Polydopamine and MnO2 core-shell composites for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Hou, Ding; Tao, Haisheng; Zhu, Xuezhen; Li, Maoguo
2017-10-01
Polydopamine and MnO2 core-shell composites (PDA@MnO2) for high-performance supercapacitors had been successfully synthesized by a facile and fast method. The morphology, crystalline phase and chemical composition of PDA@MnO2 composites are characterized using SEM, TEM, XRD, EDS and XPS. The performance of PDA@MnO2 composites are further investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte. The PDA@MnO2 core-shell nanostructure composites exhibit a high capacitance of 193 F g-1 at the current density of 1A g-1 and retained over 81.2% of its initial capacitance after 2500 cycles of charge-discharge at 2 A g-1. The results manifest that the PDA@MnO2 composites can be potentially applied in supercapacitors.
Weng, Xuexiang; Cao, Qingxue; Liang, Lixin; Chen, Jianrong; You, Chunping; Ruan, Yongmin; Lin, Hongjun; Wu, Lanju
2013-12-15
Multilayer films containing graphene (Gr) and chitosan (CS) were prepared on glassy carbon electrodes with layer-by-layer (LBL) assembly technique. After being characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM), the electrochemical sensor based on the resulted films was developed to simultaneously determine dopamine (DA) and uric acid (UA). The LBL assembled electrode showed excellent electrocatalytic activity towards the oxidation of DA and UA. In addition, the self-assembly electrode possessed an excellent sensing performance for detection of DA and UA with a linear range from 0.1 μM to 140 µM and from 1.0 µM to 125 µM with the detection limit as low as 0.05 µM and 0.1 µM based on S/N=3, respectively. © 2013 Elsevier B.V. All rights reserved.
Tremella-like graphene-Au composites used for amperometric determination of dopamine.
Li, Cong; Zhao, Jingyu; Yan, Xiaoyi; Gu, Yue; Liu, Weilu; Tang, Liu; Zheng, Bo; Li, Yaru; Chen, Ruixue; Zhang, Zhiquan
2015-03-21
Electrochemical detection of dopamine (DA) plays an important role in medical diagnosis. In this paper, tremella-like graphene-Au (t-GN-Au) composites were synthesized by a one-step hydrothermal method for selective detection of DA. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy were used to characterize as-prepared t-GN-Au composites. The t-GN-Au composites were directly used for the determination of DA via cyclic voltammetry (CV) and the chronoamperometry (CA) technique. CA measurement gave a wide linear range from 0.8 to 2000 μM, and the detection limit of 57 nM (S/N = 3) for DA. The mechanism and the heterogeneous electron transfer kinetics of the DA oxidation were discussed in the light of rotating disk electrode (RDE) experiments. Moreover, the modified electrode was applied to the determination of DA in human urine and serum samples.
Development and surface characterization of a glucose biosensor based on a nanocolumnar ZnO film
NASA Astrophysics Data System (ADS)
Rodrigues, A.; Castegnaro, M. V.; Arguello, J.; Alves, M. C. M.; Morais, J.
2017-04-01
Highly oriented nanostructured ZnO films were grown on the surface of stainless steel plates (ZnO/SS) by chemical bath deposition (CBD). The films consisted of vertically aligned ZnO nanocolumns, ∼1 μm long and ∼80 nm wide, as observed by SEM (scanning electron microscopy) and FIB (focused ion beam). XRD (X-ray diffraction) confirmed the c-axis preferred orientation of the ZnO columns, which were functionalized with the glucose oxidase (GOx) enzyme into a biosensor of glucose. The electrochemical response studied by CV (cyclic voltammetry) proved that the biosensor was capable of detecting glucose from 1.5 up to 16 mM concentration range. XPS (X-ray photoelectron spectroscopy) analysis, excited with synchrotron radiation, probed the atom specific chemical environment at the electrode's surface and shed some light on the nature of the ZnO-GOx interaction.
Sabury, Sina; Kazemi, Sayed Habib; Sharif, Farhad
2015-04-01
In the present work we report a facile method for fabrication of glucose oxidase immobilized on the partially reduced graphene-gold nanocomposite (PRGO-AuNPs/GOx) as a novel biosensor for determination of glucose concentration. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the morphology of PRGO and PRGO-AuNPs. Also, fast Fourier transformation infrared spectroscopy (FTIR) and UV-Vis spectroscopy were used to confirm formation of graphene and graphene-gold composite. Then, the electrochemical behavior of PRGO-AuNPs/GOx modified electrode was studied by cyclic voltammetry (CV). Our electrochemical studies, especially chronoamperometry (CA), showed that the PRGO-AuNPs/GOx modified electrode has excellent electrocatalytic activity towards the glucose. The limit of detection and sensitivity towards glucose were estimated as 0.06μM and 15.04mAmM(-1), respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tu, Xiaofeng; Zhou, Yingke; Song, Yijie
2017-04-01
The three-dimensional porous LiFePO4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.
Improved Electrochromic Characteristics of a Honeycomb-Structured Film Composed of NiO.
Yang, Hyeeun; Lee, Yulhee; Kim, Dong In; Seo, Hyeon Jin; Yu, Jung-Hoon; Nam, Sang-Hun; Boo, Jin-Hyo
2018-09-01
Color changes controlled by electronic energies have been studied for many years in order to fabricate energy-efficient smart windows. Reduction and oxidization of nickel oxide under the appropriate voltage can change the color of a window. For a superior nickel oxide (NiO) electrochromic device (ECD), it is important to control the chemical and physical characteristics of the surface. In this study, we applied polystyrene bead templates to nickel oxide films to fabricate a honeycomb-structured electrochromic (EC) layer. We synthesized uniform polystyrene beads using the chemical wet method and placed them on substrates to create honeycomb-structured NiO films. Then, the EC characteristics of the nickel oxide films with a honeycomb structure were evaluated with UV-Visible and cyclic voltammetry. FE-SEM and AFM were used to measure the morphologies of the nanostructures and the efficiencies of the redox reactions related to the specific surface area.
Zhao, Haidong; Liu, Rui; Guo, Yong; Yang, Shengchun
2015-12-14
In the current research, the PtxAgy (x/y = 86/14, 79/21, 52/48, 21/79, 11/89) nanoparticles (NPs) are synthesized in the KNO3-LiNO3 molten salts without using any organic surfactant or solvent. The SEM results suggest that when the content of Ag is higher than 48%, the wormlike PtxAgy nanotubes (NTs) can be synthesized. The diameter of the PtxAgyNTs shows a slow decrease with the increase of Ag content. The TEM and HRTEM results indicate that the growth of hollow PtxAgy NTs undergoes an oriented attachment process and a Kirkendall effect approach. The results of cyclic voltammetry (CV) measurement indicate that the Pt52Ag48 catalyst presents a remarkable enhancement for methanol electrooxidation, while the Pt86Ag14 catalyst prefers electrochemically oxidizing formic acid compared with that of the commercially available Pt black.
High rate performance supercapacitor based on Nb2O5 nanoparticles
NASA Astrophysics Data System (ADS)
Ahmed, Sultan; Ahmed, Ahsan; Rafat, M.
2018-05-01
In the present communication, we report the successful preparation of Nb2O5 nanoparticles from precursor NbCl5 using hydrothermal method, followed by thermal annealing. The surface morphology of the as-prepared material was studied using scanning electron microscopy (SEM) while crystal structure and vibrational response was characterized using X-ray diffraction (XRD) and Raman spectroscopy. The observed results indicate the successful synthesis of Nb2O5 nanoparticles. The electrochemical properties of the material was investigated in two-electrode assembly in 1 M LiClO4 solution using the techniques of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Both EIS and CV studies show high rate performance of the assembled supercapacitor cells. Fabricated cell offers low response time (˜17.1 ms), and the shape of CV pattern remains almost rectangular, even for high scan rates (˜20 V s-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Weiying; Du, Dan; Gunaratne, Don
Phosphomolybdate functionalized graphene nanocomposite (PMo 12-GS) has been successfully formed on a glassy carbon electrode (GCE) for the detection of ascorbic acid (AA). The obtained PMo 12-GS modified GCE, was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy and compared with GCE, GS modified GCE, and PMo 12 modified GCE. It shows an increased current and a decrease in over-potential of ~210 mV. The amperometric signals are linearly proportional to the AA concentration in a wide concentration range from 1×10 -6 M to 8×10 -3 M, with a detection limit ofmore » 0.5×10 -6 M. Finally, the PMo 12-GS modified electrode was employed for the determination of the AA level in vitamin C tablets, with recoveries between 96.3 and 100.8 %.« less
Effect of Ultrasonic on Copper Electroplating from the Non-Cyanide Alkaline Baths
NASA Astrophysics Data System (ADS)
Li, Minggang; Hu, Shuangshuang; Yang, Yejiong; Xu, Shuhan; Zhao, Xixi; Wei, Guoying
2014-06-01
Effects of the different ultrasonic powers on copper electrodeposition from non-cyanide alkaline baths by using pyrophosphate as complexing agent were investigated by different electrochemical methods. Cyclic voltammetry and current transient measurements were used to characterize the nucleation and growth mechanism. It is very obvious that the reduction potential moves to more positive one as the ultrasonic power increases. The quartz crystal microbalance (QCM) and chronoamperometric method were used to study the relationship between the mass change and the deposition time. It was found that the current efficiency of electrolyte under 0, 60, 80 and 100 W is 91.95%, 92.14%, 89.25% and 96.11%, respectively measured by QCM measurements. The surface morphology of the electrodeposited Cu films is analyzed by scanning electron microscopy (SEM). The morphology of copper films electrodeposited under the power of 60 W and 80 W presents a compact surface and the grains are fine and uniform.
Biopolymer stabilized water dispersible polyaniline for supercapacitor electrodes
NASA Astrophysics Data System (ADS)
Anbalagan, Amarnath Chellachamy; Sawant, Shilpa Nandkishor
2018-04-01
Polyaniline colloidal nanoparticles (PANI CNs) were synthesized, employing biopolymer pectin (Pec) as a stabilizer along with hydrochloric acid dopant and ammonium persulfate oxidant. Chemical nature and electronic structure was studied by FT-IR and UV-visible spectroscopy respectively. FE-SEM revealed spindle like morphology of PANI CNs and displayed the nearly discrete particles without aggregation, showing stabilizing capacity of the Pec. Cyclic voltammetry and galvanostatic charge-discharge measurements demonstrated the electroactivity and supercapacitive property of the PANI CNs in 1 M HCl. The specific capacitance of PANI CNs in 1 M HCl at 1.5 A/g was found to be 197 F/g, where 70% of specific capacitance was retained even after 1000 cycles. These findings establish the feasibility of using the PANI CNs as a potential material for energy storage in aqueous acidic medium. Furthermore, this colloidal dispersion can find potential application in electrodes of flexible supercapacitor device and printable electronics.
Simple and Fast Method for Fabrication of Endoscopic Implantable Sensor Arrays
Tahirbegi, I. Bogachan; Alvira, Margarita; Mir, Mònica; Samitier, Josep
2014-01-01
Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope. PMID:24971473
Growth of L-Valinium Aluminium Chloride single crystal for OLED and super-capacitor applications
NASA Astrophysics Data System (ADS)
Kalaivani, D.; Vijayalakshmi, S.; Theras, J. Elberin Mary; Jayaraman, D.; Joseph, V.
2015-12-01
L-Valinium Aluminium Chloride (LVAC), a novel semi-organic material, was grown using slow evaporation under isothermal condition. The single crystal data reveal that the grown crystal belongs to monoclinic system. The SEM micrographs give clear picture about the surface morphology. Further, they confirm the inclusion of aluminium chloride into atomic sites of L-Valine. The compositional elements present in the crystal were identified through EDAX analysis. The mass spectral analysis was carried out to determine the molecular weight of the grown crystal. The optical transparency of the grown crystal was investigated by UV-vis-NIR spectrum. FTIR spectral study was used to identify the functional groups present in the grown material. The luminescence characteristics of grown material were analysed to confirm the effect of metal ion on the ligand. This property makes the material suitable for OLED application. The supercapacitive performance of the grown crystal was finally studied using cyclic voltammetry.
Biosensing applications of titanium dioxide coated graphene modified disposable electrodes.
Kuralay, Filiz; Tunç, Selma; Bozduman, Ferhat; Oksuz, Lutfi; Oksuz, Aysegul Uygun
2016-11-01
In the present work, preparation of titanium dioxide coated graphene (TiO2/graphene) and the use of this nanocomposite modified electrode for electrochemical biosensing applications were detailed. The nanocomposite was prepared with radio frequency (rf) rotating plasma method which serves homogeneous distribution of TiO2 onto graphene. TiO2/graphene was characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Then, this nanocomposite was dissolved in phosphate buffer solution (pH 7.4) and modified onto disposable pencil graphite electrode (PGE) by dip coating for the investigation of the biosensing properties of the prepared electrode. TiO2/graphene modified PGE was characterized with SEM, EDS and cyclic voltammetry (CV). The sensor properties of the obtained surface were examined for DNA and DNA-drug interaction. The detection limit was calculated as 1.25mgL(-1) (n=3) for double-stranded DNA (dsDNA). RSD% was calculated as 2.4% for three successive determinations at 5mgL(-1) dsDNA concentration. Enhanced results were obtained compared to the ones obtained with graphene and unmodified (bare) electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.
Kannan, Ayyadurai; Sevvel, Ranganathan
2017-09-01
This paper demonstrates the fabrication of novel gold nanoparticles incorporated poly (4-amino-6-hydroxy-2-mercaptopyrimidine) (Nano-Au/Poly-AHMP) film modified glassy carbon electrode and it is employed for highly sensitive detection of l-cysteine (CYS). The modified electrode was characterized by scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). SEM images of modified electrode revealed the homogeneous distribution of gold nanoparticles on poly (4-amino-6-hydroxy-2-mercaptopyrimidine) thin film modified glassy carbon electrode. The modified electrode was successfully utilized for highly selective and sensitive determination of l-cysteine at physiological pH7.0. The present electrochemical sensor successfully resolved the voltammetric signals of ascorbic acid (AA) and l-cysteine with peak separation of 0.510V. To the best of our knowledge, this is the first report of larger peak separation between AA and CYS. Wide linear concentration ranges (2μM-500μM), low detection limit (0.020μM), an excellent reproducibility and stability are achieved for cysteine sensing with this Nano-Au/Poly-AHMP/GCE. Copyright © 2017 Elsevier B.V. All rights reserved.
Phosphomolybdic acid immobilized on graphite as an environmental photoelectrocatalyst.
Aber, Soheil; Yaghoubi, Zeynab; Zarei, Mahmoud
2016-10-01
A new phosphomolybdic acid (PMA)/Graphite surface was prepared based on electrostatic interactions between phosphomolybdic acid and graphite surface. The PMA/Graphite was characterized by cyclic voltammetry (CV) analysis and scanning electron microscope (SEM). SEM images showed that the phosphomolybdic acid particles were well stabilized on the graphite surface and they were evidenced the size of particles (approximately 10 nm). The CV results not only showed that the modified surface has good electrochemical activity toward the removal of the dyestuff, but also exhibits long term stability. The PMA/Graphite was used as a photoanode for decolorization of Reactive Yellow 39 by photoelectrocatalytic system under UV irradiation. The effects of parameters such as the amount of phosphomolybdic acid used in preparation of PMA/Graphite surface, applied potential on anode electrode and solution pH were studied by response surface methodology. The optimum conditions were obtained as follows: dye solution pH 3, 1.5 g of immobilized PMA on graphite surface and applied potential on anode electrode 1 V. Under optimum conditions after 90 min of reaction time, the decolorization efficiency was 95%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mathault, Jessy; Zamprogno, Pauline; Greener, Jesse; Miled, Amine
2015-08-01
This paper presents a new microfluidic platform that can simultaneously measure and locally modulate neurotransmitter concentration in a neuron network. This work focuses on the development of a first prototype including a potentiostat and electrode functionalization to detect several neurotransmitter's simultaneously. We tested dopamine as proof of concept to validate functionality. The system is based on 320 bidirectional electrode array for dielectrophoretic manipulation and cyclic voltammetry. Each electrode is connected to a mechanical multiplexer in order to reduce noise interference and fully isolate the electrode. The multiplexing rate is 476 kHz and each electrode can drive a signal with an amplitude of 60 V pp for dielectrophoretic manipulation.
Electrochemical Deposition of Si-Ca/P on Nanotube Formed Beta Ti Alloy by Cyclic Voltammetry Method.
Jeong, Yong-Hoon; Choe, Han-Cheol
2015-08-01
The purpose of this study was to investigate electrochemical deposition of Si-Ca/P on nanotube formed Ti-35Nb-10Zr alloy by cyclic voltammetry method. Electrochemical deposition of Si substituted Ca/P was performed by pulsing the applied potential on nanotube formed surface. The surface characteristics were observed by field-emission scanning electron microscopy, X-ray diffractometer, and potentiodynamic polarization test. The phase structure and surface morphologies of Si-Ca/P deposition were affected by deposition cycles. From the anodic polarization test, nanotube formed surface at 20 V showed the high corrosion resistance with lower value of Icorr, I300, and Ipass.
Bertoluzzi, Luca; Badia-Bou, Laura; Fabregat-Santiago, Francisco; Gimenez, Sixto; Bisquert, Juan
2013-04-18
A simple model is proposed that allows interpretation of the cyclic voltammetry diagrams obtained experimentally for photoactive semiconductors with surface states or catalysts used for fuel production from sunlight. When the system is limited by charge transfer from the traps/catalyst layer and by detrapping, it is shown that only one capacitive peak is observable and is not recoverable in the return voltage scan. If the system is limited only by charge transfer and not by detrapping, two symmetric capacitive peaks can be observed in the cathodic and anodic directions. The model appears as a useful tool for the swift analysis of the electronic processes that limit fuel production.
Sampling phasic dopamine signaling with fast-scan cyclic voltammetry in awake, behaving rats.
Fortin, S M; Cone, J J; Ng-Evans, S; McCutcheon, J E; Roitman, M F
2015-01-05
Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the in vivo measurement of extracellular fluctuations in multiple chemical species. The technique is frequently utilized to sample sub-second (phasic) concentration changes of the neurotransmitter dopamine in awake and behaving rats. Phasic dopamine signaling is implicated in reinforcement, goal-directed behavior, and locomotion, and FSCV has been used to investigate how rapid changes in striatal dopamine concentration contribute to these and other behaviors. This unit describes the instrumentation and construction, implantation, and use of components required to sample and analyze dopamine concentration changes in awake rats with FSCV. Copyright © 2015 John Wiley & Sons, Inc.
Electrochemical investigation of [Co4(μ3-O)4(μ-OAc)4(py)4] and peroxides by cyclic voltammetry.
Clatworthy, Edwin B; Li, Xiaobo; Masters, Anthony F; Maschmeyer, Thomas
2016-12-13
Two oxidative redox processes of the neutral cobalt(iii) cubane, [Co 4 (μ 3 -O) 4 (μ-OAc) 4 (py) 4 ], were investigated by cyclic voltammetry at a glassy carbon electrode in acetonitrile. In addition to the first quasi-reversible one-electron oxidation at E 1/2 = 0.283 V vs. Fc 0/+ , a second quasi-reversible one-electron oxidation was observed at E 1/2 = 1.44 V vs. Fc 0/+ . Oxidation at this potential does not facilitate water oxidation. In the presence of tert-butylhydroperoxide the peak current of this second oxidation increases, suggesting oxidation of the peroxide by the doubly oxidised cubane.
NASA Astrophysics Data System (ADS)
Aladag Tanik, Nilay; Demirkan, Elif; Aykut, Yakup
2018-07-01
This study investigated the electrochemical detection of specific nucleic acid hybridization sequences using a nanofiber-coated pencil graphite biosensor. The biosensor was developed to detect Val66Met single point mutations in the brain-derived neurotrophic factor gene, which is frequently observed in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and bipolar disorder. The oxidation signal of the most electroactive and stable DNA base, i.e., guanine, was used at approximately +1.0 V. Pencil graphite electrode (PGE) surfaces were coated with polyacrylonitrile nanofibers by electrospinning. Cyclic voltammetry was applied to the nanofiber-coated PGE to pretreat its surfaces. The application of cyclic voltammetry to the nanofiber-coated PGE surfaces before attaching the probe yielded a four fold increase in the oxidation signal for guanine compared with that using the untreated and uncoated PGE surface. The signal reductions were 70% for hybridization, 10% for non-complementary binding, and 14% for a single mismatch compared with the probe. The differences in full match, non-complementary, and mismatch binding indicated that the biosensor selectively detected the target, and that it was possible to determine hybridization in about 65 min. The detection limit was 0.19 μg/ml at a target concentration of 10 ppm.
Flexible software platform for fast-scan cyclic voltammetry data acquisition and analysis.
Bucher, Elizabeth S; Brooks, Kenneth; Verber, Matthew D; Keithley, Richard B; Owesson-White, Catarina; Carroll, Susan; Takmakov, Pavel; McKinney, Collin J; Wightman, R Mark
2013-11-05
Over the last several decades, fast-scan cyclic voltammetry (FSCV) has proved to be a valuable analytical tool for the real-time measurement of neurotransmitter dynamics in vitro and in vivo. Indeed, FSCV has found application in a wide variety of disciplines including electrochemistry, neurobiology, and behavioral psychology. The maturation of FSCV as an in vivo technique led users to pose increasingly complex questions that require a more sophisticated experimental design. To accommodate recent and future advances in FSCV application, our lab has developed High Definition Cyclic Voltammetry (HDCV). HDCV is an electrochemical software suite that includes data acquisition and analysis programs. The data collection program delivers greater experimental flexibility and better user feedback through live displays. It supports experiments involving multiple electrodes with customized waveforms. It is compatible with transistor-transistor logic-based systems that are used for monitoring animal behavior, and it enables simultaneous recording of electrochemical and electrophysiological data. HDCV analysis streamlines data processing with superior filtering options, seamlessly manages behavioral events, and integrates chemometric processing. Furthermore, analysis is capable of handling single files collected over extended periods of time, allowing the user to consider biological events on both subsecond and multiminute time scales. Here we describe and demonstrate the utility of HDCV for in vivo experiments.
Shnitko, Tatiana A; Mace, Kyla D; Sullivan, Kaitlin M; Martin, W Kyle; Andersen, Elizabeth H; Williams Avram, Sarah K; Johns, Josephine M; Robinson, Donita L
2017-12-01
Maternal behavior (MB) is a complex response to infant cues, orchestrated by postpartum neurophysiology. Although mesolimbic dopamine contributes toward MB, little is known about real-time dopamine fluctuations during the postpartum period. Thus, we used fast-scan cyclic voltammetry to measure individual dopamine transients in the nucleus accumbens of early postpartum rats and compared them with dopamine transients in virgins and in postpartum females exposed to cocaine during pregnancy, which is known to disrupt MB. We hypothesized that dopamine transients are normally enhanced postpartum and support MB. In anesthetized rats, electrically evoked dopamine release was larger and clearance was faster in postpartum females than in virgins and gestational cocaine exposure blocked the change in clearance. In awake rats, control mothers showed more dopamine transients than cocaine-exposed mothers during MB. Salient pup-produced stimuli may contribute toward differences in maternal phasic dopamine by evoking dopamine transients; supporting the feasibility of this hypothesis, urine composition (glucose, ketones, and leukocytes) differed between unexposed and cocaine-exposed infants. These data, resulting from the novel application of fast-scan cyclic voltammetry to models of MB, support the hypothesis that phasic dopamine signaling is enhanced postpartum. Future studies with additional controls can delineate which aspects of gestational cocaine reduce dopamine clearance and transient frequency.
The synthesis of Fe3O4/MWCNT nanocomposites from local iron sands for electrochemical sensors
NASA Astrophysics Data System (ADS)
Rahmawati, Retno; Taufiq, Ahmad; Sunaryono, Yuliarto, Brian; Suyatman, Nugraha, Noviandri, Indra; Setyorini, Dian Ayu; Kurniadi, Deddy
2018-05-01
The aim of this research is producing the electrochemical sensor, especially for working electrodes based on the nanocomposites of multi-walled carbon nanotube (MWCNT) and magnetite (Fe3O4) nanoparticles from iron sands. The sonochemical method by ultrasonic horn was successfully used for the synthesis of the nanocomposites. The characterizations of the sample were conducted via X-Ray Diffractometer (XRD), Fourier Transform Infra-Red (FTIR) Spectrometer, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Brunauer-Emmett-Teller (BET) method for surface area, Vibrating Sample Magnetometer (VSM) and Cyclic Voltammetry (CV). The analysis of X-Ray Diffraction (XRD) pattern showed two phases of crystalline, namely MWCNT and Fe3O4, peak of MWCNT comes from (002) plan while peaks of Fe3O4 come from (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), and (4 4 0) plans. From XRD data, MWCNT has a hexagonal structure and Fe3O4 has inverse spinel cubic structure, respectively. The FTIR spectra revealed that the functionalization process of MWCNT successfully generated carboxyl and carbonyl groups to bind Fe3O4 on MWCNT surfaces. Moreover, the functional groups of Fe-O bonding that showed the existence of Fe3O4 in the nanocomposites were also detected in those spectra. Meanwhile, the SEM and TEM images showed that the nanoparticles of Fe3O4 attached on the MWCNT surface and formed agglomeration between particles due to magnetic forces. Through Brunauer-Emmett-Teller (BET) method, it is identified that the nanocomposite has a large surface area 318 m2/g that makes this material very suitable for electrochemical sensor applications. Moreover, the characterization of magnetic properties via Vibrating Sample Magnetometer (VSM) showed that the nanocomposites have superparamagnetic behavior at room temperature and the presence of the MWCNT reduced the magnetic properties of Fe3O4. Lastly, the electrochemical characterization with Cyclic Voltammetry (CV) proved that Fe3O4/MWCNT nanocomposites with iron sands as the starting materials have high sensitivity and serve as excellent electron transfer materials. Based on the results of the research, the Fe3O4/MWCNT nanocomposites from iron sands are much recommended for electrochemical sensor.
Hawaii Energy and Environmental Technologies (HEET) Initiative
2010-08-01
segmented cell system for investigation of PEMFC performance distribution using both cyclic voltammetry (CV) and linear sweep voltammetry (LSV). In...mitigation strategies. Under prior work it was shown that SO2 contamination in the cathode of a PEMFC resulted in a two-stage degradation of cell...emission rate in a PEMFC is an important parameter for monitoring the Nafion degradation. Generally, the Nafion electrolyte degradation is
2013-01-01
Fast scan cyclic voltammetry in brain slices (slice voltammetry) has been used over the last several decades to increase substantially our understanding of the complex local regulation of dopamine release and uptake in the striatum. This technique is routinely used for the study of changes that occur in the dopamine system associated with various disease states and pharmacological treatments, and to study mechanisms of local circuitry regulation of dopamine terminal function. In the context of this Review, we compare the relative advantages of voltammetry using striatal slice preparations versus in vivo preparations, and highlight recent advances in our understanding of dopamine release and uptake in the striatum specifically from studies that use slice voltammetry in drug-naïve animals and animals with a history of psychostimulant self-administration. PMID:23581570
Voltammetry as a Tool for Characterization of CdTe Quantum Dots
Sobrova, Pavlina; Ryvolova, Marketa; Hubalek, Jaromir; Adam, Vojtech; Kizek, Rene
2013-01-01
Electrochemical detection of quantum dots (QDs) has already been used in numerous applications. However, QDs have not been well characterized using voltammetry, with respect to their characterization and quantification. Therefore, the main aim was to characterize CdTe QDs using cyclic and differential pulse voltammetry. The obtained peaks were identified and the detection limit (3 S/N) was estimated down to 100 fg/mL. Based on the convincing results, a new method for how to study stability and quantify the dots was suggested. Thus, the approach was further utilized for the testing of QDs stability. PMID:23807507
Ouyang, Wenjun; Subotnik, Joseph E
2017-05-07
Using the Anderson-Holstein model, we investigate charge transfer dynamics between a molecule and a metal surface for two extreme cases. (i) With a large barrier, we show that the dynamics follow a single exponential decay as expected; (ii) without any barrier, we show that the dynamics are more complicated. On the one hand, if the metal-molecule coupling is small, single exponential dynamics persist. On the other hand, when the coupling between the metal and the molecule is large, the dynamics follow a biexponential decay. We analyze the dynamics using the Smoluchowski equation, develop a simple model, and explore the consequences of biexponential dynamics for a hypothetical cyclic voltammetry experiment.
Evaluation studies on carbon supported catalysts for oxygen reduction in alkaline medium
NASA Technical Reports Server (NTRS)
Srinivasan, Vakula S.; Singer, Joseph
1986-01-01
This paper describes tests designed to predict the performance of fuel cell electrodes, as applied to an alkaline oxygen-fuel cell having specially fabricated porous-carbon electrodes with various amounts of dispersed platinum or gold as active catalysts. The tests are based on information obtained from the techniques of cyclic voltammetry and polarization. The parameters obtained from cyclic voltammetry were of limited use in predicting fuel cell performance of the cathode. On the other hand, half-cell polarization measurements offered close simulation of the oxygen electrode, although a predictor of the electrode life is still lacking. The very low polarization of the Au-10 percent Pt catalytic electrode suggests that single-phase catalysts should be considered.
1982-05-01
and mercury drop hang time all produced changes in cyclic differential capacity curves and -..-- DD 0A" 1473 EDITION OF 1 NOV 6S IS OBSOLETE S/N 0102...scan rate, and mercury drop hang time all produced changes in cyclic differential capacity curves and cyclic staircase voltammograms which were unique...Faradaic measurements with staircase voltammetry have been enumerated elewhere (24, 25). -4- EXPERIMENTAL Experimental Design The seven variables which
A Study on the Copper Effect on gold leaching in copper-ethanediamine-thiosulphate solutions
NASA Astrophysics Data System (ADS)
Liu, Qiong; Xiang, Pengzhi; Huang, Yao
2018-01-01
A simple, fast and sensitive square-wave voltammetry (SWV), cyclic voltammetry(CV) and tafel method for the determination of various factors of gold in thiosulphate solution in this paper. We present our study on the effect of copper(II) on the leaching of gold in thiosulphate solutions. The current study aims to establish the interaction of copper in the leaching process by electrochemical method.
Remes, Adriana; Pop, Aniela; Manea, Florica; Baciu, Anamaria; Picken, Stephen J.; Schoonman, Joop
2012-01-01
The aim of this study was the preparation, characterization, and application of a multi-wall carbon nanotubes-epoxy composite electrode (MWCNT-EP) with 25%, wt. MWCNTs loading for the voltammetric/amperometric determination of pentachlorophenol (PCP) in aqueous solutions. The structural and morphological aspects of the MWCNT-EP composite electrode were examined by scanning electron microscopy. The electrical properties were characterized by direct-current conductivity measurements in relation with the percolation threshold. The electrochemical behavior of PCP at the MWCNT-EP composite electrode was investigated using cyclic voltammetry in 0.1 M Na2SO4 supporting electrolyte in order to establish the parameters for amperometric/voltammetric determination of PCP. The linear dependence of current vs. PCP concentrations was reached in a wide concentration range from 0.2 to 12 μM PCP using cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry, chronoamperometry, and multiple-pulsed amperometry techniques. The best electroanalytical performances of this composite electrode were achieved using a pre-concentration/square-wave voltammetric technique and also multiple-pulsed amperometry techniques envisaging the practical applications. The ease of preparation, high sensitivity, and stability of this composite electrode should open novel avenues and applications for fabricating robust sensors for detection of many important species. PMID:22969335
Electrochemical mechanism of tin membrane electrodeposition under ultrasonic waves.
Nan, Tianxiang; Yang, Jianguang; Chen, Bing
2018-04-01
Tin was electrodeposited from chloride solutions using a membrane cell under ultrasonic waves. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHR), and chronopotentiometry were applied to investigate the electrochemical mechanism of tin electrodeposition under ultrasonic field. Chronoamperometry curves showed that the initial process of tin electrodeposition followed the diffusion controlled three-dimensional nucleation and grain growth mechanism. The analysis of the cyclic voltammetry and linear sweep voltammetry diagrams showed that the application of ultrasound can change the tin membrane electro-deposition reaction from diffusion to electrochemical control, and the optimum parameters for tin electrodeposition were H + concentration 3.5 mol·L -1 , temperature 35 °C and ultrasonic power 100 W. The coupling ultrasonic field played a role in refining the grain in this process. The growth of tin crystals showed no orientation preferential, and the tin deposition showed a tendency to form a regular network structure after ultrasonic coupling. While in the absence of ultrasonic coupling, the growth of tin crystals has a high preferential orientation, and the tin deposition showed a tendency to form tin whiskers. Ultrasonic coupling was more favorable for obtaining a more compact and smoother cathode tin layer. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, In Gyeom; Nah, In Wook; Oh, In-Hwan; Park, Sehkyu
2017-10-01
Three-dimensional (3D) crumpled reduced graphene oxide supported Pt-Ir alloys that served as bifunctional oxygen catalysts for use in untized regenerative fuel cells were synthesized by a facile spray pyrolysis method. Pt-Ir catalysts supported on rGO (Pt-Ir/rGOs) were physically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) to observe change in composition by heat treatment, alloying, and morphological transition of the catalysts. Their catalytic activities and stabilities for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) conditions were electrochemically investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), potential cycling and hold tests on the rotating disk electrode (RDE). Pt-Ir/rGO with no post heat-treatment (Pt-Ir/rGO_NP) showed a lower activity for ORR and OER although metal nanoparticles decorated on the support are relatively small. However, Pt-Ir/rGO showed remarkably enhanced activity following heat treatment, depending on temperature. Pt-Ir/rGO heat-treated at 600 °C after spray pyrolysis (Pt-Ir/rGO_P600) exhibited a higher activity and stability than a commercially available Pt/C catalyst kept under the ORR condition, and it also revealed a comparable OER activity and durability versus the commercial unsupported Ir catalyst.
Sun, Xiulan; Zhang, Lijuan; Zhang, Hongxia; Qian, He; Zhang, Yinzhi; Tang, Lili; Li, Zaijun
2014-05-21
In this work, a novel electrochemical sensor for 3-chloro-1,2-propandiol (3-MCPD) detection based on a gold nanoparticle-modified glassy carbon electrode (AuNP/GCE) coated with a molecular imprinted polymer (MIP) film was constructed. p-Aminothiophenol (p-ATP) and 3-MCPD were self-assembled on a AuNP/GCE surface, and then a MIP film was formed by electropolymerization. The 3-MCPD template combined with p-ATP during self-assembly and electropolymerization, and the cavities matching 3-MCPD remained after the removal of the template. The MIP sensor was characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and scanning electron microscopy (SEM). Many factors that affected the performance of the MIP membrane were discussed and optimized. Under optimal conditions, the DPV current was linear with the log of the 3-MCPD concentration in the range from 1.0 × 10(-17) to 1.0 × 10(-13) mol L(-1) (R(2) = 0.9939), and the detection limit was 3.8 × 10(-18) mol L(-1) (S/N = 3). The average recovery rate of 3-MCPD from spiked soy sauce samples ranged from 95.0% to 106.4% (RSD < 3.49%). Practically, the sensor showed high sensitivity, good selectivity, excellent reproducibility, and stability during the quantitative determination of 3-MCPD.
Wang, Zonghua; Xia, Jianfei; Song, Daimin; Zhang, Feifei; Yang, Min; Gui, Rijun; Xia, Lin; Bi, Sai; Xia, Yanzhi
2016-03-15
A versatile label-free quadruple signal amplification biosensing platform for p53 gene (target DNA) detection was proposed. The chitosan-graphene (CS-GR) modified electrode with excellent electron transfer ability could provide a large specific surface for high levels of AuNPs-DNA attachment. The large amount of AuNPs could immobilize more capture probes and enhance the electrochemical signal with the excellent electrocatalytic activity. Furthermore, with the assist of N.BstNB I (the nicking endonuclease), target DNA could be reused and more G-quadruplex-hemin DNAzyme could be formed, allowing significant signal amplification in the presence of H2O2. Such strategy can enhance the oxidation-reduction reaction of adsorbed methylene blue (MB) and efficiently improve the sensitivity of the proposed biosensor. The morphologies of materials and the stepwise biosensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV). Differential pulse voltammetry (DPV) signals of MB provided quantitative measures of the concentrations of target DNA, with a linear calibration range of 1.0 × 10(-15)-1.0 × 10(-9)M and a detection limit of 3.0 × 10(-16)M. Moreover, the resulting biosensor also exhibited good specificity, acceptable reproducibility and stability, indicating that the present strategy was promising for broad potential application in clinic assay. Copyright © 2015 Elsevier B.V. All rights reserved.
Sharma, Anshul; Kaushal, Ankur; Kulshrestha, Saurabh
2017-07-01
Accurate and on time diagnosis of plant viruses is an essential prerequisite for efficient control in field conditions. A number of diagnostic methods have been reported with the required level of sensitivity. Here, we propose a label free immunosensor for efficient and sensitive detection of capsicum chlorosis virus (CaCV) in bell pepper. Antigen was immobilized over the surface of gold nanoparticle/multi-walled carbon nanotube (Nano-Au/C-MWCNT) screen printed electrodes using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) cross linking chemistry followed by interaction with groundnut bud necrosis virus (GBNV)/CaCV specific polyclonal antibody. The electrochemical response was measured by cyclic voltammetry (CV), differential pulse voltammetry (DPV) using the redox indicator. Electrode surface characterization was done by performing scanning electron microscopy (SEM). Electrochemical studies showed positive results at different antigenic dilutions ranging from 10 -2 - 8x10 -5 . The sensitivity of the immunosensor developed has been compared with direct antigen coated enzyme-linked immunosorbent assay (DAC-ELISA) and the results showed that the immunosensor developed was 800-1000 times more sensitive, when compared to DAC-ELISA for CaCV detection. The immunosensor we have developed is economical and sensitive and could be used for immediate determination of the presence of virus in extracts from bell pepper leaves.
NASA Astrophysics Data System (ADS)
Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu
2014-04-01
Mesoporous nickel cobaltite (NiCo2O4) nanoparticles have been synthesized via a facile hydrothermal strategy with the assistance of sodium dodecyl sulfate (SDS) soft template (ST). Their physicochemical properties have been characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. Their electrocatalytic performances have been examined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit a typical nanoscale crystalline hexagonal morphology with specific surface area (SSA) and mesopore volume of 88.63 m2 g-1 and 0.298 cm3 g-1. Impressively, the SDS-assisted NiCo2O4 electrode shows a catalytic current density of 125 mA cm-2 and 72% retention for consecutive 1000 s at 0.6 V in 1 M KOH and 0.5 M CH3OH electrolytes towards methanol (CH3OH) electrooxidation, which is better than the one without SDS assistance. The pronounced electrocatalytic activity is largely ascribed to their higher surface intensities of Co and Ni species and superior mesoporous nanostructures, which provide the richer electroactive sites and faster electrochemical kinetics, leading to the enhanced electrocatalytic activity.
Study of quinones reactions with wine nucleophiles by cyclic voltammetry.
Oliveira, Carla M; Barros, António S; Ferreira, António C S; Silva, Artur M S
2016-11-15
Quinones are electrophilic species which can react with various nucleophiles, like wine antioxidants, such as sulfur dioxide or ascorbic acid, thiols, amino acids, and numerous polyphenols. These reactions are very important in wine aging because they mediate oxygen reactions during both production and bottle aging phases. In this work, the major challenge was to determine the interaction between ortho-quinones and wine nucleophiles (amino acids, thiols, and the antioxidants SO2 and ascorbic acid), by cyclic voltammetry. Wine-model solutions with gallic acid, caffeic acid, or (+)-catechin and nucleophilic compounds were used. To understand the effect of nucleophilic addition in wine, a white wine with the same added nucleophiles was also analysed. Cyclic voltammograms were taken with glassy carbon electrode or screen-printed carbon electrodes, respectively, for wine-model and white wines solutions, in the absence and in the presence of nucleophiles. A nucleophilic order profile related to the cathodic current intensity decrease was observed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Shaoxiong; Zhang, Xin; Shi, Xuezhao; Wei, Jinping; Lu, Daban; Zhang, Yuzhen; Kou, Huanhuan; Wang, Chunming
2011-04-01
In this paper the fabrication and characterization of IV-VI semiconductor Pb1-xSnxSe (x = 0.2) thin films on gold substrate by electrochemical atomic layer deposition (EC-ALD) method at room temperature are reported. Cyclic voltammetry (CV) is used to determine approximate deposition potentials for each element. The amperometric I-t technique is used to fabricate the semiconductor alloy. The elements are deposited in the following sequence: (Se/Pb/Se/Pb/Se/Pb/Se/Pb/Se/Sn …), each period is formed using four ALD cycles of PbSe followed by one cycle of SnSe. Then the deposition manner above is cyclic repeated till a satisfactory film with expected thickness of Pb1-xSnxSe is obtained. The morphology of the deposit is observed by field emission scanning electron microscopy (FE-SEM). X-ray diffraction (XRD) pattern is used to study its crystalline structure; X-ray photoelectron spectroscopy (XPS) of the deposit indicates an approximate ratio 1.0:0.8:0.2 of Se, Pb and Sn, as the expected stoichiometry for the deposit. Open-circuit potential (OCP) studies indicate a good p-type property, and the good optical activity makes it suitable for fabricating a photoelectric switch.
NASA Astrophysics Data System (ADS)
Ahmadi, F.; Alizadeh, A. A.; Shahabadi, N.; Rahimi-Nasrabadi, M.
2011-09-01
In this work a complex of Al 3+ with curcumin ([Al(curcumin) (EtOH) 2](NO 3) 2) was synthesized and characterized by UV-vis, FT-IR, elemental analysis and spectrophotometric titration techniques. The mole ratio plot revealed a 1:1 complex between Al 3+ and curcumin in solution. For binding studies of this complex to calf thymus-DNA various methods such as: UV-vis, fluorescence, circular dichroism (CD), FT-IR spectroscopy and cyclic voltammetry were used. The intrinsic binding constant of ACC with DNA at 25 °C was calculated by UV-vis and cyclic voltammetry as 2.1 × 10 4 and 2.6 × 10 4, respectively. The thermodynamic studies showed that the reaction is enthalpy and entropy favored. The CD results showed that only the Δ-ACC interacts with DNA and the Δ-ACC form has not any tendency to interact with DNA, also the pure curcumin has not any stereoselective interaction with CT-DNA. Fluorimetric studies showed that fluorescence enhancement was initiated by a static process in the ground state. The cyclic voltammetry showed that ACC interact with DNA with a binding site size of 2. From the FT-IR we concluded that the Δ-ACC interacts with DNA via partial electrostatic and minor groove binding. In comparison with previous works it was concluded that curcumin significantly reduced the affinity of Al 3+ to the DNA.
NASA Astrophysics Data System (ADS)
Dhifaoui, Selma; Mchiri, Chadlia; Quatremare, Pierre; Marvaud, Valérie; Bujacz, Anna; Nasri, Habib
2018-02-01
In this study, the preparation of a new iron(III) hexacoordinated metalloporphyrin namely the bis(4-ethylaniline){meso-tetra(para-chlorophenyl)porphyrinato}iron(III) triflate hemi-4-ethylaniline monohydrate with the formula [FeIII(TClPP)(PhEtNH2)2]SO3CF3•1/2PhEtNH2•H2O (I) was reported. This is the first example of an iron(III) metalloporphyrin bis(primary amine) with an aryl group adjacent to the amino group. This species was characterized by elemental, spectroscopic analysis including UV-visible and IR data, cyclic voltammetry, SQUID measurements and X-ray molecular structure. The mean equatorial distance between the iron(III) and the nitrogens of the porphyrin is appropriate for a low-spin (S = 1/2) iron(III) porphyrin complex. The magnetic data confirm the low-spin state of our ferric derivative while the cyclic voltammetry indicates a shift of the half potential E1/2[Fe(III)/Fe(II)] of complex (I) toward more negative value. In the crystal of (I), the [FeIII(TClPP)(PhEtNH2)2]+ ions, the triflate counterions and the water molecules are involved in a number of O__H⋯O, N__H⋯O, C-H⋯O and C__H⋯π intermolecular interactions forming a three-dimension network.
Exhaustive thin-layer cyclic voltammetry for absolute multianalyte halide detection.
Cuartero, Maria; Crespo, Gastón A; Ghahraman Afshar, Majid; Bakker, Eric
2014-11-18
Water analysis is one of the greatest challenges in the field of environmental analysis. In particular, seawater analysis is often difficult because a large amount of NaCl may mask the determination of other ions, i.e., nutrients, halides, and carbonate species. We demonstrate here the use of thin-layer samples controlled by cyclic voltammetry to analyze water samples for chloride, bromide, and iodide. The fabrication of a microfluidic electrochemical cell based on a Ag/AgX wire (working electrode) inserted into a tubular Nafion membrane is described, which confines the sample solution layer to less than 15 μm. By increasing the applied potential, halide ions present in the thin-layer sample (X(-)) are electrodeposited on the working electrode as AgX, while their respective counterions are transported across the perm-selective membrane to an outer solution. Thin-layer cyclic voltammetry allows us to obtain separated peaks in mixed samples of these three halides, finding a linear relationship between the halide concentration and the corresponding peak area from about 10(-5) to 0.1 M for bromide and iodide and from 10(-4) to 0.6 M for chloride. This technique was successfully applied for the halide analysis in tap, mineral, and river water as well as seawater. The proposed methodology is absolute and potentially calibration-free, as evidenced by an observed 2.5% RSD cell to cell reproducibility and independence from the operating temperature.
Improvement of amperometric transducer selectivity using nanosized phenylenediamine films
NASA Astrophysics Data System (ADS)
Soldatkina, O. V.; Kucherenko, I. S.; Pyeshkova, V. M.; Alekseev, S. A.; Soldatkin, O. O.; Dzyadevych, S. V.
2017-11-01
In this work, we studied the conditions of deposition of a semipermeable polyphenylenediamine (PPD)-based membrane on amperometric disk platinum electrodes. Restricting an access of interfering substances to the electrode surface, the membrane prevents their impact on the sensor operation. Two methods of membrane deposition by electropolymerization were compared—at varying potential (cyclic voltammetry) and at constant potential. The cyclic voltammetry was shown to be easier in performing and providing better properties of the membrane. The dependence of PPD membrane effectiveness on the number of cyclic voltammograms and phenylenediamine concentration was analyzed. It was shown that the impact of interfering substances (ascorbic acid, dopamine, cysteine, uric acid) on sensor operation could be completely avoided using three cyclic voltammograms in 30 mM phenylenediamine. On the other hand, when working with diluted samples, i.e., at lower concentrations of electroactive substances, it is reasonable to decrease the phenylenediamine concentration to 5 mM, which would result in a higher sensitivity of transducers to hydrogen peroxide due to a thinner PPD layer. The PPD membrane was tested during continuous operation and at 8-day storage and turned out to be efficient in sensor and biosensors.
Rodeberg, Nathan T; Sandberg, Stefan G; Johnson, Justin A; Phillips, Paul E M; Wightman, R Mark
2017-02-15
Fast-scan cyclic voltammetry (FSCV) has been used for over 20 years to study rapid neurotransmission in awake and behaving animals. These experiments were first carried out with carbon-fiber microelectrodes (CFMs) encased in borosilicate glass, which can be inserted into the brain through micromanipulators and guide cannulas. More recently, chronically implantable CFMs constructed with small diameter fused-silica have been introduced. These electrodes can be affixed in the brain with minimal tissue response, which permits longitudinal measurements of neurotransmission in single recording locations during behavior. Both electrode designs have been used to make novel discoveries in the fields of neurobiology, behavioral neuroscience, and psychopharmacology. The purpose of this Review is to address important considerations for the use of FSCV to study neurotransmitters in awake and behaving animals, with a focus on measurements of striatal dopamine. Common issues concerning experimental design, data collection, and calibration are addressed. When necessary, differences between the two methodologies (acute vs chronic recordings) are discussed. The topics raised in this Review are particularly important as the field moves beyond dopamine toward new neurochemicals and brain regions.
NASA Astrophysics Data System (ADS)
Hosseini, Sayed Reza; Ghasemi, Shahram; Kamali-Rousta, Mina
2017-03-01
In present work, polyvinyl alcohol/copper acetate-nickel acetate composite nanofibers (PVA/Cu(OAc)2-Ni(OAc)2 NFs) with various weight percentages of Cu(OAc)2:Ni(OAc)2 such as 25:75, 50:50 and 75:25 are fabricated by electrospinning method. After this, the CuO/NiO composite NFs are produced after thermal treatment. A calcination temperature at about 600 °C is determined by thermal gravimetric analysis. Field-emission scanning electron microscopy (FE-SEM) for morphology characterization indicates that large quantities of the prepared PVA/Cu(OAc)2-Ni(OAc)2 composite fibers have smooth and bead-free surfaces. Fourier transform infrared spectroscopy, FE-SEM and energy dispersive X-ray spectroscopy are used to characterize the CuO/NiO composites. According to FE-SEM results, with increasing of Cu(OAc)2 content in polymeric solution, the fibers don't remain as continuous structures after calcination and accumulate in the form of nanoparticles. Also, a carbon paste electrode (CPE) bulky modified with CuO/NiO composites is used for investigation of the electro-catalytic oxidation of hydrazine hydrate in NaOH solution. The catalytic activities of the synthesized catalysts are studied through cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The obtained results demonstrate that the most appropriate proportion of Cu(OAc)2:Ni(OAc)2 in electrospinning solution to enhance the electro-catalytic ability is 25:75.
Araghi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammdpoor-Baltork, Iraj
2012-10-14
New hybrid complexes based on covalent interaction between 5,10,15,20-tetrakis(4-aminophenyl)porphyrinatozinc(II) and 5,10,15,20-tetrakis(4-aminophenyl)porphyrinatotin(IV) chloride, and a Lindqvist-type polyoxometalate, Mo(6)O(19)(2-), were prepared. These new porphyrin-polyoxometalate hybrid materials were characterized by (1)H NMR, FT IR and UV-Vis spectroscopic methods and cyclic voltammetry. These spectro- and electrochemical studies provided several spectral data for synthesis of these compounds. Cyclic voltammetry showed the influence of the polyoxometalate on the redox process of the porphyrin ring. The catalytic activity of tin(IV)porphyrin-hexamolybdate hybrid material was investigated in the acetylation of alcohols and phenols with acetic anhydride. The reusability of this catalyst was also investigated.
Electrooxidation of morin hydrate at a Pt electrode studied by cyclic voltammetry.
Masek, Anna; Chrzescijanska, Ewa; Zaborski, Marian
2014-04-01
The process and the kinetics of the electrochemical oxidation of morin in an anhydrous electrolyte have been investigated using cyclic and differential pulse voltammetry. The oxidation mechanism proceeds in sequential steps related to the hydroxyl groups in the three aromatic rings. The oxidation of the 2',4'dihydroxy moiety at the B ring of morin occurs first, at very low positive potentials, and is a one-electron, one-proton irreversible reaction. The rate constant, electron transfer coefficient and diffusion coefficients involved in the electrochemical oxidation of morin were determined. The influence of the deprotonation of the ring B hydroxyl moiety is related to the electron/proton donating capacity of morin and to its radical scavenging antioxidant activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Electrochemical sensing of ammonium ion at the water/1,6-dichlorohexane interface.
Ribeiro, José A; Silva, F; Pereira, Carlos M
2012-01-15
In this work, ion transfer and facilitated ion transfer of ammonium ion by a lipophilic cyclodextrin is investigated at the water/1,6-dichlorohexane micro-interface, using electrochemical approaches (cyclic voltammetry, differential pulse voltammetry and square wave voltammetry). The association constant has been obtained for the complex between ammonium ion and the cyclodextrin. Experimental conditions for the analytical determination of ammonium ion were established and a detection limit of 0.12 μM was obtained. The amperometric sensor gave a current response proportional to the ammonium ion concentration in the range from 4.2 to 66 μM. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mylarappa, M.; Venkata Lakshmi, V.; Vishnu Mahesh, K. R.; Nagaswarupa, H. P.; Raghavendra, N.
2016-09-01
This work deliberates a method for manganese (Mn) recovery as manganese oxide obtained by leaching of waste batteries with 3M sulphuric acid. The Experimental test for the recovery of Mn present within the waste dry cell batteries were carried out by a reductive leachant. Elemental composition of leached sample was confirmed by Energy Dispersive X-ray analysis (EDAX), and Surface morphology of the recovered MnO2 was examined by using Scanning Electron microscopy (SEM). Phase composition was confirmed from X-ray Diffractro meter (XRD). The obtained leached solution was treated with 4M NaOH, yielded to Manganese Dioxide with high extraction degree, while it do not touches the Zn content within the solutions. The recovered samples were characterized using XRD, EDAX, SEM and Fourier transform infrared spectrometry (FTIR). The electrochemical properties of the as-recovered sample from leached solution was examined used cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Remarkably, the 80 wt.% MnO2 displays reversibility, diffusion constant, smaller equivalent series resistance and charge transfer resistance in 0.5M NaOH showed superior results as compared to alternative electrolytes. The ideal capacitive behaviour of MnO2 electrode and nano particle was applied to photocatalytic degradation of dyes.
Guerreiro, Gabriela V; Zaitouna, Anita J; Lai, Rebecca Y
2014-01-31
Here we report the characterization of an electrochemical mercury (Hg(2+)) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a "signal-off" sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a "signal-off" or "signal-on" sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed "signal-on" behavior at low frequencies and "signal-off" behavior at high frequencies. In DPV, the sensor showed "signal-off" behavior at short pulse widths and "signal-on" behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10nM, with a linear dynamic range between 10nM and 500nM. In addition, the sensor responded to Hg(2+) rather rapidly; majority of the signal change occurred in <20min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg(2+), which has not been previously reported. More importantly, the observed "switching" behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors. Copyright © 2013 Elsevier B.V. All rights reserved.
Synthesis and Electrochemistry of Cyclopentadienylcarbonyliron Tetramer: An Advanced Experiment.
ERIC Educational Resources Information Center
White, A. J.; Cunningham, Alice J.
1980-01-01
Describes an advanced level experiment in which a transition metal cluster compound, cyclopentadienylcarbonyliron tetramer, is synthesized and characterized spectroscopically. Its redox properties are then explored through cyclic voltammetry. (CS)
NASA Astrophysics Data System (ADS)
Boyadjiev, Stefan I.; Santos, Gustavo dos Lopes; Szżcs, Júlia; Szilágyi, Imre M.
2016-03-01
In this study, monoclinic WO3 nanoparticles were obtained by thermal decomposition of (NH4)xWO3 in air at 600 °C. On them by atomic layer deposition (ALD) TiO2 films were deposited, and thus core/shell WO3/TiO2 nanocomposites were prepared. We prepared composites of WO3 nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO3 and core/shell WO3/TiO2 nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO3 thin films, and the coloring and bleaching states were studied.
Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip.
Tehrani, Farshad; Reiner, Lisa; Bavarian, Behzad
2015-01-01
A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3 ± 56 μA/mM.cm2), excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen), good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM). The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry.
Fabrication of biomolecules self-assembled on Au nanodot array for bioelectronic device.
Lee, Taek; Kumar, Ajay Yagati; Yoo, Si-Youl; Jung, Mi; Min, Junhong; Choi, Jeong-Woo
2013-09-01
In the present study, an nano-platform composed of Au nanodot arrays on which biomolecules could be self-assembled was developed and investigated for a stable bioelectronic device platform. Au nanodot pattern was fabricated using a nanoporous alumina template. Two different biomolecules, a cytochrome c and a single strand DNA (ssDNA), were immobilized on the Au nanodot arrays. Cytochorme c and single stranded DNA could be immobilized on the Au nanodot using the chemical linker 11-MUA and thiol-modification by covalent bonding, respectively. The atomic structure of the fabricated nano-platform device was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrical conductivity of biomolecules immobilized on the Au nanodot arrays was confirmed by scanning tunneling spectroscopy (STS). To investigate the activity of biomolecule-immobilized Au-nano dot array, the cyclic voltammetry was carried out. This proposed nano-platform device, which is composed of biomolecules, can be used for the construction of a novel bioelectronic device.
NASA Astrophysics Data System (ADS)
Park, Eun Jin; Lee, Jun-Yong; Hyup Kim, Jun; Kug Kim, Sun; Lee, Cheol Jin; Min, Nam Ki
2010-08-01
An electrochemical DNA sensor for Legionella pneumophila detection was constructed using O2 plasma functionalized multi-walled carbon nanotube (MWCNT) film as a working electrode (WE). The cyclic voltammetry (CV) results revealed that the electrocatalytic activity of plasma functionalized MWCNT (pf-MWCNT) significantly changed depending on O2 plasma treatment time due to some oxygen containing functional groups on the pf-MWCNT surface. Scanning electron microscope (SEM) images and X-ray photoelectron spectroscopy (XPS) spectra were also presented the changes of their surface morphologies and oxygen composition before and after plasma treatment. From a comparison study, it was found that the pf-MWCNT WEs had higher electrocatalytic activity and more capability of probe DNA immobilization: therefore, electrochemical signal changes by probe DNA immobilization and hybridization on pf-MWCNT WEs were larger than on Au WEs. The pf-MWCNT based DNA sensor was able to detect a concentration range of 10 pM-100 nM of target DNA to detect L. pneumophila.
NASA Astrophysics Data System (ADS)
He, Junnan; Shang, Hongzhou; Zhang, Xing; Sun, Xiaoran
2018-01-01
A novel nickel ion imprinted polymers (IIPs) based on multi-walled carbon nanotubes (MWCNTs) were synthesized inverse emulsion system, using chitosan(CS) and acrylic acid as the functional monomers, Ni (II) as the template, and N' N-methylene bis-acrylamide as the cross-linker. The chemical structure and morphological feature of the IIPs were characterized by scanning electron microscopy (SEM), Thermogravimetry (TG), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FTIR). The studies indicated that the gel layer was well grafted on the surface of MWCNTs. Studies on the adsorption ability of the IIPs, by atomic absorption spectrophotometry, demonstrated that IIPs possessed excellent adsorption and selective ability towards Ni (II), fitting to pseudo second-order kinetic isotherms and with a maximum capacity of 19.86 mg/g, and selectivity factor of 13.09 and 4.42. The electrochemical performance of ion imprinting carbon paste electrode (CPE/IIPs) was characterized by Cyclic voltammetry (CV). Studies have shown that CPE/IIPs showed excellent electrochemical performance.
NASA Astrophysics Data System (ADS)
Tasviri, Mahboubeh; Rafiee-Pour, Hossain-Ali; Ghourchian, Hedayatollah; Gholami, Mohammad Reza
2011-12-01
The synthesis of amine functionalized TiO2-coated multiwalled carbon nanotubes (NH2-TiO2-CNTs) using sol-gel method was investigated. The synthesized nanocomposite was characterized with XRD, FTIR spectroscopy, BET test and SEM imaging. The results demonstrated a unique nanostructure with no destruction of the CNTs' shape. In addition, the presence of amine groups on the composite surface was confirmed by FTIR. This nanocomposite was used for one-step immobilization of glucose oxidase (GOx) to sense glucose. The result of cyclic voltammetry showed a pair of well-defined and quasi-reversible peaks for direct electron transfer of GOx in the absence of glucose. Also, the result of electrochemical impedance spectroscopy indicated that GOx was successfully immobilized on the surface of NH2-TiO2-CNTs. Furthermore, good amperometric response showed that immobilized GOx on the NH2-TiO2-CNTs exhibits exceptional bioelectrocatalytic activity toward glucose oxidation.
Electrochemical and physical properties of electroplated CuO thin films.
Dhanasekaran, V; Mahalingam, T
2013-01-01
Cupric oxide thin films have been prepared on ITO glass substrates from an aqueous electrolytic bath containing CuSO4 and tartaric acid. Growth mechanism has been analyzed using cyclic voltammetry. The role of pH on the structural, morphological, compositional, electrical and optical properties of CuO films is investigated. The structural studies revealed that the deposited films are polycrystalline in nature with a cubic structure. The preferential orientation of CuO thin films is found to be along (111) plane. X-ray line profile analysis has been carried out to determine the microstructural parameters of CuO thin films. The pyramid shaped grains are observed from SEM and AFM images. The optical band gap energy and electrical activation energy is found to be 1.45 and 0.37 eV, respectively. Also, the optical constants of CuO thin films such as refractive index (n), complex dielectric constant (epsilon) extinction coefficient (k) and optical conductivity (sigma) are evaluated.
Non-activated high surface area expanded graphite oxide for supercapacitors
NASA Astrophysics Data System (ADS)
Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G. E.; Boukos, N.; Giannouri, M.; Lei, C.; Lekakou, C.; Trapalis, C.
2015-12-01
Microwave irradiation of graphite oxide constitutes a facile route toward production of reduced graphene oxide, since during this treatment both exfoliation and reduction of graphite oxide occurs. In this work, the effect of pristine graphite (type, size of flakes), pretreatment and oxidation cycles on the finally produced expanded material was examined. All the types of graphite that were tested afforded materials with high BET surface areas ranging from 940 m2/g to 2490 m2/g, without intervening an activation stage at elevated temperature. SEM and TEM images displayed exfoliated structures, where the flakes were significantly detached and curved. The quality of the reduced graphene oxide sheets was evidenced both by X-ray photoelectron spectroscopy and Raman spectroscopy. The electrode material capacitance was determined via electrochemical impedance spectroscopy and cyclic voltammetry. The materials with PEDOT binder had better performance (∼97 F/g) at low operation rates while those with PVDF binder performed better (∼20 F/g) at higher rates, opening up perspectives for their application in supercapacitors.
Hydrothermal Synthesis and Electrochemical Properties of Spherical α-MnO2 for Supercapacitors.
Chen, Ya; Qin, Wenqing; Fan, Ruijuan; Wang, Jiawei; Chen, Baizhen
2015-12-01
In the present work, spherical α-MnO2 with a high specific capacitance was synthesized by a two-step hydrothermal route. MnCO3 precursors were first prepared by a common hydrothermal method, and then converted to α-MnO2 via a hydrothermal reaction between the precursors and KMnO4 solutions. The effects of hydrothermal temperature on the morphology, crystal structure and specific area of the MnO2 were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET measurements. The electrochemical capacitive properties of the manganese dioxides with different morphologies and structures were evaluated by cyclic voltammetry and galvonostatic charge-discharge tests. The results showed that the temperature in the second hydrothermal step had prominent impact on the capacitive properties of a-MnO2. The MnO2 synthesized at 150 *C exhibited a highest specific capacitance of 328.4 Fx g(-1) at a charge-discharge current density of 100 mA x g(-1).
Highly branched RuO2 Nanorods on Electrospun TiO2 Nanofibers toward Electrochemical Catalysts
NASA Astrophysics Data System (ADS)
Cho, Yukyung; Kim, Su-Jin; Lee, Nam-Suk; Kim, Myung Hwa; Lee, Youngmi
2014-03-01
We report a facile growth route to synthesize hierarchically grown single crystalline metallic RuO2 nanorods on electrospun TiO2 nanofibers via a combination of a simple vapour phase transport process with an electrospinning process. This synthetic strategy could be very useful to design a variety of highly branched network architectures of the functional hetero-nanostructures for electrochemical applications. Particularly, Ruthenium oxide (RuO2) 1-dimensional nanostructures can be used as the effective catalysts or electrochemical electrode materials. Thus, we first synthesize TiO2 nanofibers from mixture of titanium isopropoxide precursor and polymer and then ruthenium hydroxide precursor on TiO2 nanofibers are transformed into RuO2 nanorods by thermal treatment at 250oC in air. The crystalline structures of products are confirmed using scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) spectrum, Raman spectroscopy, and high resolution electron microscopy (HRTEM). The fundamental electrochemical performances are examined using cyclic voltammetry (CV).
Lin, X.; Kavian, R.; Lu, Y.; Hu, Q.; Shao-Horn, Y.
2015-01-01
Rechargeable batteries such as Li ion/Li metal batteries are widely used in the electronics market but the chemical instability of the electrolyte limits their use in more demanding environmental conditions such as in automotive, oil exploration, or mining applications. In this study, a series of alkyl phosphonium ionic liquid electrolyte are described with high thermal stability and solubility for LiTFSI. A lithium metal battery (LMB) containing a tailored phosphonium ionic liquid/LiTFSI electrolyte operates at 100 °C with good specific capacities and cycling stability. Substantial capacity is maintained during 70 cycles or 30 days. Instant on-off battery operation is realized via the significant temperature dependence of the electrolyte material, demonstrating the robustness and potential for use at high temperature. PMID:28757963
Electrocatalytic oxidation of cellulose at a gold electrode.
Sugano, Yasuhito; Latonen, Rose-Marie; Akieh-Pirkanniemi, Marceline; Bobacka, Johan; Ivaska, Ari
2014-08-01
The electrochemical properties of cellulose dissolved in NaOH solution at a Au surface were investigated by cyclic voltammetry, FTIR spectroscopy, the electrochemical quartz crystal microbalance technique, and electrochemical impedance spectroscopy. The reaction products were characterized by SEM, TEM, and FTIR and NMR spectroscopy. The results imply that cellulose is irreversibly oxidized. Adsorption and desorption of hydroxide ions at the Au surface during potential cycling have an important catalytic role in the reaction (e.g., approach of cellulose to the electrode surface, electron transfer, adsorption/desorption of the reaction species at the electrode surface). Moreover, two types of cellulose derivatives were obtained as products. One is a water-soluble cellulose derivative in which some hydroxyl groups are oxidized to carboxylic groups. The other derivative is a water-insoluble hybrid material composed of cellulose and Au nanoparticles (≈4 nm). Furthermore, a reaction scheme of the electrocatalytic oxidation of cellulose at a gold electrode in a basic medium is proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qiu, Lei; Shao, Ziqiang; Xiang, Pan; Wang, Daxiong; Zhou, Zhenwen; Wang, Feijun; Wang, Wenjun; Wang, Jianquan
2014-09-22
Novel cellulose derivative CMC-Li was synthesized by cotton as raw material. The mechanism of the CMC-Li modified electrode materials by electrospinning was reported. CMC-Li/lithium iron phosphate (LiFePO4, LFP) composite fiber coated with LFP and CMC-Li nanofibers was successfully obtained by electrospinning. Then, CMC-Li/LFP nano-composite fiber was carbonized under nitrogen at a high temperature formed CNF/LFP/Li (CLL) composite nanofibers as cathode material. It can increase the contents of Li+, and improving the diffusion efficiency and specific capacity. The battery with CLL as cathode material retained close to 100% of initial reversible capacity after 200 cycles at 168 mAh g(-1), which was nearly the theoretical specific capacity of LFP. The cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscope (SEM) were characterizing material performance. The batteries have good electrochemical property, outstanding pollution-free, excellent stability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip
Tehrani, Farshad; Reiner, Lisa; Bavarian, Behzad
2015-01-01
A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3±56 μA/mM.cm2), excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen), good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM). The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry. PMID:26678700
Embedded Carbide-derived Carbon (CDC) particles in polypyrrole (PPy) for linear actuator
NASA Astrophysics Data System (ADS)
Zondaka, Zane; Valner, Robert; Aabloo, Alvo; Tamm, Tarmo; Kiefer, Rudolf
2016-04-01
Conducting polymer linear actuators, for example sodium dodecylbenzenesulfonate (NaDBS) doped polypyrrole (PPy/DBS), have shown moderate strain and stress. The goal of this work was to increase the obtainable strain and stress by adding additional active material to PPy/DBS. In recent year's carbide-derived carbon (CDC)-based materials have been applied in actuators; however, the obtained displacement and actuation speed has been low comparing to conducting polymer based actuators. In the present work, a CDC-PPy hybrid was synthesized electrochemically and polyoxometalate (POM) - phosphotungstic acid - was used to attach charge to CDC particles. The CDC-POM served in the presence of NaDBS as an additional electrolyte. Cyclic voltammetry and chronopotentiometric electrochemomechanical deformation (ECMD) measurements were performed in Lithium bis(trifluoromethanesulfonyl)- imide (LiTFSI) aqueous electrolyte. The ECMD measurements revealed that the hybrid CDC-PPy material exhibited higher force and strain in comparison to PPy/DBS films. The new material was investigated by scanning electron microscopy (SEM) to evaluate CDC particle embedding in the polymer network.
Robotin, B; Ispas, A; Coman, V; Bund, A; Ilea, P
2013-11-01
This study focuses on the electrodeposition of Ni and Ni-Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni(2+)/Fe(2+) ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits' thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni-Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni-Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni-Fe, the obtained data points are best fitted to an instantaneous nucleation model. Copyright © 2013 Elsevier Ltd. All rights reserved.
Park, Geon Woo; Jeon, Sang Kwon; Yang, Jin Yong; Choi, Sung Dae; Kim, Geon Joong
2016-05-01
RGO/Resol carbon composites were prepared from a mixture of reduced GO and a low-molecular-weight phenolic resin (Resol) solution. The effects of the calcination temperature, amount of Resol added and KOH treatment on the electrochemical performance of the RGO/Resol composites were investigated. The physical and electrochemical properties of the composite materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET) surface areas measurements, and cyclic voltammetry (CV). The relationships between their physical properties and their electrochemical performance were examined for use as super-capacitors (SCs). The RGO/Resol composite calcined at 400 degrees C after the KOH loading showed dramatically improved electrochemical properties, showing a high BET surface and capacitance of 2190 m2/g and 220 F/g, respectively. The RGO/Resol composites calcined after the KOH treatment showed much better capacitor performance than those treated only thermally at the same temperature without KOH impregnation. The fabrication of high surface electrodes was essential for improving the SCs properties.
Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.
Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R
2015-10-14
Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries.
NASA Astrophysics Data System (ADS)
Lestariningsih, T.; Sabrina, Q.; Wigayati, E. M.
2018-03-01
Characterization of the composite membrane of LiBOB electrolyte polymers made from poly (vinylidene fluoride co-hexafluororopylene) (PVdF-HFP) as the polymer, LiBOB or LiB(C2O4)2 as electrolyte salt and titanium dioxide (TiO2) as ceramic filler of three different concentrations have been done. Sample of membrane was prepared using solution casting technique. Microstructural study by SEM shows non-uniform distribution of pore over the surface of the sample. X-ray structural analysis, impedance spectroscopy, and cyclic voltammetry (CV) studies were carried out. Membrane composite polymer of LiBOB electrolyte without additional ceramic filler with composition of 70% polymer, 30% LiBOB, and 0% TiO2 has the greatest conductivity for forming amorphous phase and is compatible with material membrane composite. Meanwhile, sample with 70% polymer composition, 28% LiBOB and 2% TiO2 shows oxidation reaction at the most perfect discharge despite very slow current speed.
NASA Astrophysics Data System (ADS)
Iqbal, Azhar; Iqbal, Yousaf; Khan, Abdul Majeed; Ahmed, Safeer
2017-12-01
We report the synthesis of electrochemically active LiMn2O4 nanoparticles at varied temperature and pH values by sol-gel method using urea as a chelating and combusting agent. The effect of pH and annealing temperature on the structure, morphology and electrochemical performance was evaluated. The results obtained by XRD, SEM, TEM, and FTIR show that LiMn2O4 has uniform porous morphology and highly crystalline particles that can be obtained at pH 7.0 and 8.0 and at a relatively lower temperature of 600°C. Cyclic voltammetry measurements showed reversible redox reactions with fast kinetics corresponding to Li ions intercalation/deintercalation at 600°C at neutral pH 7.0. Charge/discharge studies carried out at a current rate of 40 mA g-1 reveal that LiMn2O4 synthesized at 600°C and pH 7.0 has the best structural stability and excellent cycling performance.
Mazzotta, E; Picca, R A; Malitesta, C; Piletsky, S A; Piletska, E V
2008-02-28
A voltammetric sensor for (-)-ephedrine has been prepared by a novel approach based on immobilisation of an imprinted polymer for ephedrine (MIPE) in an electrosynthesised polypyrrole (PPY) film. Composite films were grown potentiostatically at 1.0 V vs. Pt (QRE) on a glassy carbon electrode using an unconventional "upside-down" (UD) geometry for the three-electrode cell. As a consequence, a high MIP loading was obtained, as revealed by SEM. The sensor response was evaluated, after overoxidation of PPY matrix, by cyclic voltammetry after pre-concentration in a buffered solution of analyte in 0.5-3 mM concentration range. An ephedrine peak at approximately 0.9 V increasing with concentration and saturating at high concentrations was evident. PPY-modified electrode showed a response, which was distinctly lower than the MIP response for the same concentration of the template. The effect of potential interferences including compounds usually found in human fluids (ascorbic acid, uric acid, urea, glucose, sorbitol, glycine, dopamine) was examined.
Feng, Lili; Xuan, Zhewen; Zhao, Hongbo; Bai, Yang; Guo, Junming; Su, Chang-Wei; Chen, Xiaokai
2014-01-01
Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance.
A Facile One-Pot Synthesis of Au/Cu2O Nanocomposites for Nonenzymatic Detection of Hydrogen Peroxide
NASA Astrophysics Data System (ADS)
Chen, Ting; Tian, Liangliang; Chen, Yuan; Liu, Bitao; Zhang, Jin
2015-06-01
Au/Cu2O nanocomposites were successfully synthesized by a facile one-pot redox reaction without additional reducing agent under room temperature. The morphologies and structures of the as-prepared products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The electrocatalytic performance of Au/Cu2O nanocomposites towards hydrogen peroxide was evaluated by cyclic voltammetry (CV) and chronoamperometry (CA). The prepared Au/Cu2O nanocomposite electrode showed a wide linear range from 25 to 11.2 mM ( R = 0.9989) with a low detection limit of 1.05 μM ( S/ N = 3) and high sensitivity of 292.89 mA mM-1 cm-2. The enhanced performance for H2O2 detection can be attributed to the introduction of Au and the synergistic effect between Au and Cu2O. It is demonstrated that the Au/Cu2O nanocomposites material could be a promising candidate for H2O2 detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Daiwon; Zhu, Chengzhou; Fu, Shaofang
2016-09-15
The electrochemically controlled ion-exchange properties of multi-wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion-exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion-exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structuremore » of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X-ray photoelectron spectroscopy (XPS).« less
NASA Astrophysics Data System (ADS)
Sen Gupta, S.; Datta, J.
An understanding of the kinetics and mechanism of the electrochemical oxidation of ethanol is of considerable interest for the optimization of the direct ethanol fuel cell. In this paper, the electro-oxidation of ethanol in sodium hydroxide solution has been studied over 70:30 CuNi alloy supported binary platinum electrocatalysts. These comprised mixed deposits of Pt with Ru or Mo. The electrodepositions were carried out under galvanostatic condition from a dilute suspension of polytetrafluoroethylene (PTFE) containing the respective metal salts. Characterization of the catalyst layers by scanning electron microscope (SEM)-energy dispersive X-ray (EDX) indicated that this preparation technique yields well-dispersed catalyst particles on the CuNi alloy substrate. Cyclic voltammetry, polarization study and electrochemical impedance spectroscopy were used to investigate the kinetics and mechanism of ethanol electro-oxidation over a range of NaOH and ethanol concentrations. The relevant parameters such as Tafel slope, charge transfer resistance and the reaction orders in respect of OH - ions and ethanol were determined.
NASA Astrophysics Data System (ADS)
Noerochim, Lukman; Ginanjar, Edith Setia; Susanti, Diah; Prihandoko, Bambang
2018-04-01
Lithium vanadium oxide (LiV3O8) has been successfully synthesized by hydrothermal method followed by calcination via the reaction of Lithium hydroxide (LiOH) and ammonium metavanade (NH4VO3). The precursors were heated at hydrothermal at 200 °C and then calcined at different calcination temperature in 400, 450, and 500 °C. The characterization by X-ray diffraction (XRD) and scanning electron microscope (SEM) is indicated that LiV3O8 micro-rod have been obtained by this method. The cyclic voltammetry (CV) result showed that redox reaction occur in potential range between 2.42 - 3.57 V for the reduction reaction and oxidation reaction in potential range between 2.01 V-3.69 V. The highest result was obtained for sample 450 °C with specific discharge capacity of 138 mA/g. The result showed that LiV3O8 has a promising candidate as a cathode material for lithium ion batteries.
Electrodeposition of Ni-Mo alloy coatings for water splitting reaction
NASA Astrophysics Data System (ADS)
Shetty, Akshatha R.; Hegde, Ampar Chitharanjan
2018-04-01
The present study reports the development of Ni-Mo alloy coatings for water splitting applications, using a citrate bath the inducing effect of Mo (reluctant metal) on electrodeposition, its relationship with their electrocatalytic efficiency were studied. The alkaline water splitting efficiency of Ni-Mo alloy coatings, for both hydrogen evolution reaction (HER) and oxygen evolution reaction were tested using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Moreover, the practical utility of these electrode materials were evaluated by measuring the amount of H2 and O2 gas evolved. The variation in electrocatalytic activity with composition, structure, and morphology of the coatings were examined using XRD, SEM, and EDS analyses. The experimental results showed that Ni-Mo alloy coating is the best electrode material for alkaline HER and OER reactions, at lower and higher deposition current densities (c. d.'s) respectively. This behavior is attributed by decreased Mo and increased Ni content of the alloy coating and the number of electroactive centers.
NASA Astrophysics Data System (ADS)
Wang, Kuaibing; Lv, Bo; Wu, Hua; Luo, Xuefei; Xu, Jiangyan; Geng, Zhirong
2016-12-01
Hollow CuO/Co3O4 hybrids, which inherited from its coordination polymer precursor consisting of sheets layer and nanoparticles layer composites, were synthesized and characterized by SEM, EDX, XRD and XPS. To assess its electrochemical capacitive performances, cyclic voltammetry, galvanostatic charging-discharging measurements and A.C. impedance tests were performed successively. The CuO/Co3O4 hybrids had higher capacitance and lower charge transfer resistance than bare Co3O4 nanostructures, revealing that it provided a protection layer and produced a synergistic effect due to the existence of CuO layer. The distinct synergistic effect could be further confirmed by endurance cycling tests. The capacitance of the CuO/Co3O4 hybrids was 111% retained after 500 cycles at a charging rate of 1.0 A g-1 and remained an intense growth trend after 2000 cycles at scan rate of 200 mV s-1.
Differential thermal voltammetry for tracking of degradation in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Wu, Billy; Yufit, Vladimir; Merla, Yu; Martinez-Botas, Ricardo F.; Brandon, Nigel P.; Offer, Gregory J.
2015-01-01
Monitoring of lithium-ion batteries is of critical importance in electric vehicle applications in order to manage the operational condition of the cells. Measurements on a vehicle often involve current, voltage and temperature which enable in-situ diagnostic techniques. This paper presents a novel diagnostic technique, termed differential thermal voltammetry, which is capable of monitoring the state of the battery using voltage and temperature measurements in galvanostatic operating modes. This tracks battery degradation through phase transitions, and the resulting entropic heat, occurring in the electrodes. Experiments to monitor battery degradation using the new technique are compared with a pseudo-2D cell model. Results show that the differential thermal voltammetry technique provides information comparable to that of slow rate cyclic voltammetry at shorter timescale and with load conditions easier to replicate in a vehicle.
An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode
ERIC Educational Resources Information Center
DeAngelis, Thomas P.; Heineman, William R.
1976-01-01
Describes a unified experiment in which an optically transparent thin layer electrode is used to illustrate the techniques of thin layer electrochemistry, cyclic voltammetry, controlled potential coulometry, and spectroelectrochemistry. (MLH)
Determination of glucose in human urine by cyclic voltammetry method using gold electrode
NASA Astrophysics Data System (ADS)
Riyanto; Supwatul Hakim, Muh.
2018-01-01
This study has been the determination of glucose in human urine by cyclic voltammetry method using gold electrode. The gold electrode was prepared using gold wire with purity 99.99%, size 1.0 mm by length and wide respectively, connected with silver wire using silver conductive paint. The effect of electrolyte, pH and glucose concentration has been determined to produce the optimum method. The research showed the KNO3 is a good electrolyte for determination of glucose in human urine using gold electrode. The effect of glucose concentration have the coefficient correlation is R2 = 0.994. The results of the recovery using addition method showed at range95-105%. As a conclusion isa gold electrode is a good electrode for electrochemical sensors to the determination of glucose in human urine.
NASA Astrophysics Data System (ADS)
Kurbah, Sunshine D.; Kumar, A.; Syiemlieh, I.; Dey, A. K.; Lal, R. A.
2018-02-01
Heterobimetallic complexes of the composition [CuNi(bpy)2 (μ-OAc) (μ-OH) (μ-OH2)](BF4)2 (1) and [CuNi(bz)3 (bpy)2]ClO4 (2) were synthesized in moderate yield through solid state reaction and have been characterized by elemental analyses, molar conductance, mass spectra, magnetic moment, EPR, UV-Vis, IR spectroscopies and cyclic voltammetry. The ground state in complex (1) is doublet while that in complex (2), the ground state is a mixture of doublet and quartet, respectively. The structure of the complexes has been established by X-ray crystallography. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry.
Electrochemical hydrogenation of thiophene on SPE electrodes
NASA Astrophysics Data System (ADS)
Huang, Haiyan; Yuan, Penghui; Yu, Ying; Chung, Keng H.
2017-01-01
Electrochemical reduction desulfurization is a promising technology for petroleum refining which is environmental friendly, low cost and able to achieve a high degree of automation. Electrochemical hydrogenation of thiophene was performed in a three-electrode system which SPE electrode was the working electrode. The electrochemical desulfurization was studied by cyclic voltammetry and bulk electrolysis with coulometry (BEC) techniques. The results of cyclic voltammetry showed that the electrochemical hydrogenation reduction reaction occurred at -0.4V. The BEC results showed that the currents generated from thiophene hydrogenation reactions increased with temperature. According to Arrhenius equation, activation energy of thiophene electrolysis was calculated and lower activation energy value indicated it was diffusion controlled reaction. From the products of electrolytic reactions, the mechanisms of electrochemical hydrogenation of thiophene were proposed, consisting of two pathways: openingring followed by hydrogenation, and hydrogenation followed by ring opening.
NASA Astrophysics Data System (ADS)
Song, Huanqiao; Qiu, Xinping; Guo, Daojun; Li, Fushen
TiO 2 nanotubes (TNTs) with different structural water were obtained by heat treatment under different temperatures. The role of the structural water in TNTs co-catalyzing ethanol oxidation with Pt/C catalyst was studied systematically. Electrochemical studies using cyclic voltammetry and CO stripping voltammetry indicated that more structural water in TNTs was favorable for improving the tolerance of Pt/C to poisoning species; while chronoamperometry curves and repeated cyclic voltammograms showed that slightly less structural water in TNTs actually led to higher catalytic activity and better stability of Pt/C catalysts for ethanol oxidation. This strange result has been analyzed and was ascribed to the appropriate balance of bi-functional mechanism and ethanol transfer in the catalyst layer with less structural water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Rui-Tao, E-mail: Ruitao.Wen@angstrom.uu.se; Granqvist, Claes G.; Niklasson, Gunnar A.
2014-10-20
Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li{sup +} ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO{sub 4} in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 10{sup 4} cycles when the applied voltage was limited to 4.1 V vs Li/Li{sup +}. Our results allow lifetime assessments for one of themore » essential components in an electrochromic device such as a “smart window” for energy-efficient buildings.« less
Ascorbic Acid Determination in Commercial Fruit Juice Samples by Cyclic Voltammetry
Pisoschi, Aurelia Magdalena; Danet, Andrei Florin; Kalinowski, Slawomir
2008-01-01
A method was developed for assessing ascorbic acid concentration in commercial fruit juice by cyclic voltammetry. The anodic oxidation peak for ascorbic acid occurs at about 490 mV on a Pt disc working electrode (versus SCE). The influence of the potential sweep speed on the peak height was studied. The obtained calibration graph shows a linear dependence between peak height and ascorbic acid concentration in the domain (0.1–10 mmol·L−1). The equation of the calibration graph was y = 6.391x + 0.1903 (where y represents the value of intensity measured for the anodic peak height, expressed as μA and x the analyte concentration, as mmol·L−1, r2 = 0.9995, r.s.d. = 1.14%, n = 10, Cascorbic acid = 2 mmol·L−1). The developed method was applied to ascorbic acid assessment in fruit juice. The ascorbic acid content determined ranged from 0.83 to 1.67 mmol·L−1 for orange juice, from 0.58 to 1.93 mmol·L−1 for lemon juice, and from 0.46 to 1.84 mmol·L−1 for grapefruit juice. Different ascorbic acid concentrations (from standard solutions) were added to the analysed samples, the degree of recovery being comprised between 94.35% and 104%. Ascorbic acid determination results obtained by cyclic voltammetry were compared with those obtained by the volumetric method with dichlorophenol indophenol. The results obtained by the two methods were in good agreement. PMID:19343183
Karthikeyan, G; Sahoo, S; Nayak, G C; Das, C K
2012-03-01
Polyaniline doped by Zn2+ ions was synthesized as nanocomposites with multiwalled carbon nanotubes (MWCNT) by in-situ oxidative polymerization and investigated as electrode material for supercapacitors. The uniform coating of polyaniline on MWCNT was characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). The effect of Zn2+ ions on nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The electrochemical performances were investigated by cyclic voltammetry (CV), constant current charging/discharging cyclic test (CC) and electrochemical impedance spectroscopy (EIS) using a three-electrode system. The doped polyaniline composites show higher specific capacitance and better cyclic stability.
Yilmaz, B.; Kaban, S.; Akcay, B. K.
2015-01-01
In this study, simple, fast and reliable cyclic voltammetry, linear sweep voltammetry, square wave voltammetry and differential pulse voltammetry methods were developed and validated for determination of etodolac in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of etodolac at platinum electrode in acetonitrile solution containing 0.1 M lithium perchlorate. The well-defined oxidation peak was observed at 1.03 V. The calibration curves were linear for etodolac at the concentration range of 2.5-50 μg/ml for linear sweep, square wave and differential pulse voltammetry methods, respectively. Intra- and inter-day precision values for etodolac were less than 4.69, and accuracy (relative error) was better than 2.00%. The mean recovery of etodolac was 100.6% for pharmaceutical preparations. No interference was found from three tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Etol, Tadolak and Etodin tablets as pharmaceutical preparation. PMID:26664057
Laborda, Eduardo; Gómez-Gil, José María; Molina, Angela
2017-06-28
A very general and simple theoretical solution is presented for the current-potential-time response of reversible multi-electron transfer processes complicated by homogeneous chemical equilibria (the so-called extended square scheme). The expressions presented here are applicable regardless of the number of electrons transferred and coupled chemical processes, and they are particularized for a wide variety of microelectrode geometries. The voltammetric response of very different systems presenting multi-electron transfers is considered for the most widely-used techniques (namely, cyclic voltammetry, square wave voltammetry, differential pulse voltammetry and steady state voltammetry), studying the influence of the microelectrode geometry and the number and thermodynamics of the (electro)chemical steps. Most appropriate techniques and procedures for the determination of the 'interaction' between successive transfers are discussed. Special attention is paid to those situations where homogeneous chemical processes, such as protonation, complexation or ion association, affect the electrochemical behaviour of the system by different stabilization of the oxidation states.
Structural and electrical properties of nanostructured Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhaouadi, Hassouna, E-mail: dhaouadihassouna@yahoo.fr; Kouass, Salah; Jaouad, Najeh
2014-01-01
Graphical abstract: - Highlights: • Nanostructured pyrophosphate Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} were synthesized and characterized by XRD and SEM. • The ac-conductivity at different values of temperature for Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} nanomaterials shows frequency independence in the lower frequency range. • Obvious improvements of the electrical conductivity and the electrochemical properties are achieved comparatively Mn{sub 2}P{sub 2}O{sub 7}. • The electrochemical behaviors of Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} were studied using cyclic voltammetry. - Abstract: The nanostructured pyrophosphate Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} was prepared. The synthesis technique was based on the hydrothermal method at 150 °Cmore » using poly-ethylene-glycol (PEG-10000) as surfactant with further calcination at 500 °C. A structural analysis of Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} compound was carried out by applying X-ray diffraction (XRD) and using the Rietveld method. Morphological characterizations were performed using a scanning electron microscope (SEM) and transmission electron microscopy (TEM). A comparative study of the electrical conductivity of Mn{sub 2}P{sub 2}O{sub 7} and Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} nanomaterials was carried out by impedance spectroscopy in the temperature range 500–680 °C. The activation energies for MnP{sub 2}O{sub 7} and Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} were 2.00 and 0.88 eV, respectively. Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} nanomaterial presents a good electric conductivity compared to Mn{sub 2}P{sub 2}O{sub 7}, due to the substitution effect. The improvement of the electronic and ionic conductivity makes the Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} nanomaterial possible electrode materials for rechargeable batteries. The electrochemical behaviors of Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} were studied using cyclic voltammetry.« less
Dendrimer enriched single-use aptasensor for impedimetric detection of activated protein C.
Erdem, Arzum; Congur, Gulsah
2014-05-01
A novel impedimetric aptasensor for detection of human activated protein C (APC) was introduced for the first time in the present study. An enhanced sensor response was obtained using poly(amidoamine) (PAMAM) dendrimer having 16 succinamic acid surface groups (generation 2, G2-PS), that was modified onto the surface of screen printed graphite electrode (G2-PS/SPE). An amino modified DNA aptamer was then immobilized onto the surface of G2-PS modified SPE. The selective interaction of APT with its cognate protein, APC was investigated using different electrochemical techniques; differential pulse voltammetry (DPV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The microscopic characterization was consecutively performed before/after each modification/interaction step using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The selectivity of aptasensor was tested in the presence of numerous proteins; protein C, thrombin, bovine serum albumin, factor Va and chromogenic substrate in different buffer mediums. The APC detection in the artificial serum; fetal bovine serum (FBS) was also performed impedimetrically. This dendrimer modified aptasensor technology brings several advantages: being single-use, fast screening with low-cost per measurement and resulting in sensitive detection of APC with the detection limits of 0.74 μg/mL (0.46 pmol in 35 μL sample) in buffer medium, and 2.03 μg/mL (1.27 pmol in 35 μL sample) in serum. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Chengyun; Zuo, Xiaoxi; Zhao, Minkai; Xiao, Xin; Yu, Le; Nan, Junmin
2016-03-01
1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether (F-EAE) mixed with ethylene carbonate (EC), diethyl carbonate (DEC), and lithium hexafluorophosphate (LiPF6) is evaluated as a co-solvent high-potential electrolyte of LiNi1/3Co1/3Mn1/3O2/graphite batteries. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) indicate that the EC/DEC-based electrolyte with F-EAE possesses a high oxidation potential (>5.2 V vs. Li/Li+) and excellent film-forming characteristics. With 40 wt% F-EAE in the electrolyte, the capacity retention of the LiNi1/3Co1/3Mn1/3O2/graphite pouch cells that are cycled between 3.0 and 4.5 V is significantly improved from 28.8% to 86.8% after 100 cycles. In addition, electrochemical impedance spectroscopy (EIS) of three-electrode pouch cells, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) are used to characterize the effects of F-EAE on the enhanced capacity retention. It is demonstrated that F-EAE facilitates the formation of a stable surface electrolyte interface (SEI) layer with low impedance on the anode and effectively suppresses an increase in the charge-transfer resistance on the cathode. These results suggest that F-EAE can serve as an alternative electrolyte solvent for 4.5 V high voltage rechargeable lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Sun, Baoliang; Shan, Fei; Jiang, Xinxin; Ji, Jing; Wang, Feng
2018-03-01
A bifunctional MoS2/In2S3 hybrid composite that has both photo- and electrocatalytic activity toward hydrogen evolution reaction (HER) is prepared by a facile one pot hydrothermal method. The characterizations by scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM) and Photoluminescence (PL) shows that the MoS2/In2S3 hybrid exhibits ultrathin nanoflakes with mesh-shaped structure on transparent conductive substrates, and the as prepared catalyst composite obviously improves the separation of electro-hole pairs. The as prepared hybrid nanosheets with Mo:In of 1/2 integrate In-doped MoS2 to reduce the stacking and increase the active surface area. The novel mesh-shaped nanostructure with a moderate degree of disorder provides not only simultaneously intrinsic conductivity and defects but also higher electrochemically active surface area (ECSA). By electrochemical measurements, such as linear sweep voltammetry (LSV), electrochemical impedance spectroscope (EIS) and cyclic voltammetry (CV), we find that the MoS2/In2S3 hybrid possesses much better photo/electrochemical activity than pristine MoS2 or In2S3. MoS2/In2S3 ultrathin nanoflaks are anticipated to be a superior photoelectrocatalyst for PEC cells, and the rational use of the MoS2/In2S3 cathode offers a new avenue toward achieving effective photo-assistant electrocatalytic activity.
Velmurugan, Murugan; Thirumalraj, Balamurugan; Chen, Shen-Ming; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed S
2017-01-01
To date, the development of different modified electrodes have received much attention in electrochemistry. The modified electrodes have some drawbacks such as high cost, difficult to handle and not eco friendly. Hence, we report an electrochemical sensor for the determination of palladium ions (Pd 2+ ) using an un-modified screen printed carbon electrode has been developed for the first time, which are characterized and studied via scanning electron microscope and cyclic voltammetry. Prior to determination of Pd 2+ ions, the operational conditions of un-modified SPCE was optimized using cyclic voltammetry and showed excellent electro-analytical behavior towards the determination of Pd 2+ ions. Electrochemical determination of Pd 2+ ions reveal that the un-modified electrode showed lower detection limit of 1.32μM with a linear ranging from 3 to 133.35μM towards the Pd 2+ ions concentration via differential pulse voltammetry. The developed sensor also applied to the successfully determination of trace level Pd 2+ ions in spiked water samples. In addition, the advantage of this type of electrode is simple, disposable and cost effective in electrochemical sensors. Copyright © 2016 Elsevier Inc. All rights reserved.
Trnkova, Libuse; Zerzankova, Lenka; Dycka, Filip; Mikelova, Radka; Jelen, Frantisek
2008-01-01
Using a paraffin impregnated graphite electrode (PIGE) and mercury-modified pyrolytic graphite electrode with basal orientation (Hg-PGEb) copper(II) and Cu(II)-DNA purine base solutions have been studied by cyclic (CV) and linear sweep voltammetry (LSV) in connection with elimination voltammetry with linear scan (EVLS). In chloride and bromide solutions (pH 6), the redox process of Cu(II) proceeded on PIGE with two cathodic and two anodic potentially separated signals. According to the elimination function E4, the first cathodic peak corresponds to the reduction Cu(II) + e- → Cu(I) with the possibility of fast disproportionation 2Cu(I) → Cu(II)+ Cu(0). The E4 of the second cathodic peak signalized an electrode process controlled by a surface reaction. The electrode system of Cu(II) on Hg-PGEb in borate buffer (pH 9.2) was characterized by one cathodic and one anodic peak. Anodic stripping voltammetry (ASV) on PIGE and cathodic stripping voltammetry (CSV) on Hg-PGEb were carried out at potentials where the reduction of copper ions took place and Cu(I)-purine complexes were formed. By using ASV and CSV in combination with EVLS, the sensitivity of Cu(I)-purine complex detection was enhanced relative to either ASV or CSV alone, resulting in higher peak currents of more than one order of magnitude. The statistical treatment of CE data was used to determine the reproducibility of measurements. Our results show that EVLS in connection with the stripping procedure is useful for both qualitative and quantitative microanalysis of purine derivatives and can also reveal details of studied electrode processes. PMID:27879715
NASA Astrophysics Data System (ADS)
Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya
2014-10-01
A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-visible absorption spectrum (UV-vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10-4 to 1.2×10-3 M with the detect limit of 5×10-6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor.
NASA Astrophysics Data System (ADS)
Sun, Xiaojuan; Yang, Jiakuan; Zhang, Wei; Zhu, Xinfeng; Hu, Yuchen; Yang, Danni; Yuan, Xiqing; Yu, Wenhao; Dong, Jinxin; Wang, Haifeng; Li, Lei; Vasant Kumar, R.; Liang, Sha
2014-12-01
A novel green recycling process is investigated to prepare lead acetate trihydrate precursors and novel ultrafine lead oxide from spent lead acid battery pastes. The route contains the following four processes. (1) The spent lead pastes are desulphurized by (NH4)2CO3. (2) The desulphurized pastes are converted into lead acetate solution by leaching with acetic acid solution and H2O2; (3) The Pb(CH3COO)2·3H2O precursor is crystallized and purified from the lead acetate solution with the addition of glacial acetic acid; (4) The novel ultrafine lead oxide is prepared by the calcination of lead acetate trihydrate precursor in N2 or air at 320-400 °C. Both the lead acetate trihydrate and lead oxide products are characterized by TG-DTA, XRD, and SEM techniques. The calcination products are mainly α-PbO, β-PbO, and a small amount of metallic Pb. The particle size of the calcination products in air is significantly larger than that in N2. Cyclic voltammetry measurements of the novel ultrafine lead oxide products show good reversibility and cycle stability. The assembled batteries using the lead oxide products as cathode active materials show a good cyclic stability in 80 charge/discharge cycles with the depth of discharge (DOD) of 100%.
NASA Astrophysics Data System (ADS)
Saranya, S.; Selvan, R. Kalai; Priyadharsini, N.
2012-03-01
Polyaniline (PAni)/MnWO4 nanocomposite was successfully synthesized by in situ polymerization method under ultrasonication and the MnWO4 was prepared by surfactant assisted ultrasonication method. The thermal stability of PAni was determined by TG/DTA (Thermo Gravimetric/ Differential thermal analysis). The structural and morphological features of PAni, MnWO4 and PAni/MnWO4 composite was analyzed using Fourier transform infrared spectrometry, X-ray diffraction (XRD), scanning electron microscope (SEM) and Transmission electron microscope (TEM) images. The electro-chemical properties of PAni, MnWO4 and its composites with different weight percentage of MnWO4 loading were studied through cyclic voltammetry (CV) for the application of supercapacitors as active electrode materials. From the cyclic voltammogram, 50% of MnWO4 impregnated PAni showed a high specific capacitance (SC) of 481 F/g than their individual counterparts of PAni (396 F/g) and MnWO4 (18 F/g). The galvanostatic charge-discharge studies indicate the in situ polymerized composite shows greater specific capacitance (475 F/g) than the physical mixture (346 F/g) at a constant discharge current of 1 mA/cm2 with reasonable cycling stability. The charge transfer resistance (Rct) of PAni/MnWO4 composite (22 ohm) was calculated using electrochemical impedance spectroscopy (EIS) and compared with its physical mixture (58 ohm).
NASA Astrophysics Data System (ADS)
Miao, Chengcheng; Zhu, Yanjuan; Huang, Liangguo; Zhao, Tengqi
2015-01-01
The multi-element doped alpha nickel hydroxide has been prepared by supersonic co-precipitation method. Three kinds of samples A, B and C are prepared by chemically coprecipitating Ni/Al, Ni/Al/Mn and Ni/Al/Mn/Yb, respectively. Inductively coupled plasma atomic emission spectroscopy (ICP-AES), Particle size distribution (PSD) measurement, X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR) are used to characterize the physical properties of the synthesized α-Ni(OH)2 samples, such as chemical composition, morphology, structural stability of the crystal. The results show that all samples are nano-sized materials and the interlayer spacing becomes larger and the structural stability becomes better with the increase of doped elements and doped ratio. The prepared alpha nickel hydroxide samples are added into micro-sized beta nickel hydroxide to form biphase electrode materials for Ni-MH battery. The electrochemical characterization of the biphase electrodes, including cyclic voltammetry (CV) and charge/discharge test, are also performed. The results demonstrate that the biphase electrode with sample C exhibits better electrochemical reversibility and cyclic stability, higher charge efficient and discharge potential, larger proton diffusion coefficient (5.81 × 10-12 cm2 s-1) and discharge capacity (309.0 mAh g-1). Hence, it indicates that all doped elements can produce the synergic effect and further improve the electrochemical properties of the alpha nickel hydroxide.
Kumaravel, Ammasai; Chandrasekaran, Maruthai
2015-07-15
A rapid and simple method of determination of chlorpyrifos is important in environmental monitoring and quality control. Electrochemical methods for the determination of pesticides are fast, sensitive, reproducible, and cost-effective. The key factor in electrochemical methods is the choice of suitable electrode materials. The electrode materials should have good stability, reproducibility, more sensitivity, and easy method of preparation. Mercury-based electrodes have been widely used for the determination of chlorpyrifos. From an environmental point of view mercury cannot be used. In this study a biocompatible nano-TiO2/cellulose acetate modified glassy carbon electrode was prepared by a simple method and used for the electrochemical sensing of chlorpyrifos in aqueous methanolic solution. Electroanalytical techniques such as cyclic voltammetry, differential pulse voltammetry, and amperometry were used in this work. This electrode showed very good stability, reproducibility, and sensitivity. A well-defined peak was obtained for the reduction of chlorpyrifos in cyclic voltammetry and differential pulse voltammetry. A smooth noise-free current response was obtained in amperometric analysis. The peak current obtained was proportional to the concentration of chlorpyrifos and was used to determine the unknown concentration of chlorpyrifos in the samples. Analytical parameters such as LOD, LOQ, and linear range were estimated. Analysis of real samples was also carried out. The results were validated through HPLC. This composite electrode can be used as an alternative to mercury electrodes reported in the literature.
Electrochemical Studies of Sulfur Oxychlorides.
1988-03-28
It had been proposed to study sulfuroxyhalides (1) as solutes in a non-aqueous solvent, (2) undiluted, employing lithium tetrachloroaluminate and (3...electrodes in N,N-dimethylforeamide (DNF) with tetra-butylammonium hexafluorophosphate (TBAPF6 ) as supporting electrolyte. Cyclic voltammetry showed
Evaluating the Passivation of Corrosion of API-X100 Steel with Cyclic Voltammetry
NASA Astrophysics Data System (ADS)
Eliyan, Faysal Fayez; Alfantazi, Akram
2017-10-01
In this research, cyclic voltammetry, in oxygen-free low bicarbonate-carbonate solutions, was used to study the corrosion reactions of a high-strength steel, API-X100. With cycles of different scan ranges, the effects of cycling, transpassivation, and cathodic reduction on the electrochemistry of the passive films were analyzed. It was found that carbonate in higher concentrations reduces the anodic activity and the cathodic reactions of the surface. Bicarbonate in small concentrations in solutions that contained low carbonate concentrations catalyzed dissolution and disrupted the formation of the passive films, in reference to the measured anodic currents. From the experiments, there was electrochemical evidence that with more cycles, the passive films were growing thicker, the transpassivation deteriorated the passive films, and during the cathodic reduction, the dissolution was occurring at lower potentials to facilitate later the passivation at higher potentials.
Gould, Ian R; Wosinska, Zofia M; Farid, Samir
2006-01-01
Accurate oxidation potentials for organic compounds are critical for the evaluation of thermodynamic and kinetic properties of their radical cations. Except when using a specialized apparatus, electrochemical oxidation of molecules with reactive radical cations is usually an irreversible process, providing peak potentials, E(p), rather than thermodynamically meaningful oxidation potentials, E(ox). In a previous study on amines with radical cations that underwent rapid decarboxylation, we estimated E(ox) by correcting the E(p) from cyclic voltammetry with rate constants for decarboxylation obtained using laser flash photolysis. Here we use redox equilibration experiments to determine accurate relative oxidation potentials for the same amines. We also describe an extension of these experiments to show how relative oxidation potentials can be obtained in the absence of equilibrium, from a complete kinetic analysis of the reversible redox kinetics. The results provide support for the previous cyclic voltammetry/laser flash photolysis method for determining oxidation potentials.
Simultaneous detection of iodine and iodide on boron doped diamond electrodes.
Fierro, Stéphane; Comninellis, Christos; Einaga, Yasuaki
2013-01-15
Individual and simultaneous electrochemical detection of iodide and iodine has been performed via cyclic voltammetry on boron doped diamond (BDD) electrodes in a 1M NaClO(4) (pH 8) solution, representative of typical environmental water conditions. It is feasible to compute accurate calibration curve for both compounds using cyclic voltammetry measurements by determining the peak current intensities as a function of the concentration. A lower detection limit of about 20 μM was obtained for iodide and 10 μM for iodine. Based on the comparison between the peak current intensities reported during the oxidation of KI, it is probable that iodide (I(-)) is first oxidized in a single step to yield iodine (I(2)). The latter is further oxidized to obtain IO(3)(-). This technique, however, did not allow for a reasonably accurate detection of iodate (IO(3)(-)) on a BDD electrode. Copyright © 2012 Elsevier B.V. All rights reserved.
Electron Affinity of Phenyl-C61-Butyric Acid Methyl Ester (PCBM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Bryon W.; Whitaker, James B.; Wang, Xue B.
2013-07-25
The gas-phase electron affinity (EA) of phenyl-C61-butyric acid methyl ester (PCBM), one of the best-performing electron acceptors in organic photovoltaic devices, is measured by lowtemperature photoelectron spectroscopy for the first time. The obtained value of 2.63(1) eV is only ca. 0.05 eV lower than that of C60 (2.68(1) eV), compared to a 0.09 V difference in their E1/2 values measured in this work by cyclic voltammetry. Literature E(LUMO) values for PCBM that are typically estimated from cyclic voltammetry, and commonly used as a quantitative measure of acceptor properties, are dispersed over a wide range between -4.3 and -3.62 eV; themore » reasons for such a huge discrepancy are analyzed here, and the protocol for reliable and consistent estimations of relative fullerene-based acceptor strength in solution is proposed.« less
Wang, Lin-Lin; Tan, Teck L; Johnson, Duane D
2015-11-14
We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd-Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites that is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. The method provides a more complete means to design nanoalloys for electrocatalysis.
Osipovich, Nikolai P; Poznyak, Sergei K; Lesnyak, Vladimir; Gaponik, Nikolai
2016-04-21
The application of electrochemical methods for the characterization of colloidal quantum dots (QDs) attracts considerable attention as these methods may allow for monitoring of some crucial parameters, such as energetic levels of conduction and valence bands as well as surface traps and ligands under real conditions of colloidal solution. In the present work we extend the applications of cyclic voltammetry (CV) to in situ monitoring of degradation processes of water-soluble CdTe QDs. This degradation occurs under lowering of pH to the values around 5, i.e. under conditions relevant to bioimaging applications of these QDs, and is accompanied by pronounced changes of their photoluminescence. Observed correlations between characteristic features of CV diagrams and the fluorescence spectra allowed us to propose mechanisms responsible for evolution of the photoluminescence properties as well as degradation pathway of CdTe QDs at low pH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lin -Lin; Tan, Teck L.; Johnson, Duane D.
2015-02-27
We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd–Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites thatmore » is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. As a result, the method provides a more complete means to design nanoalloys for electrocatalysis.« less
Wang, Hualin; Hao, Lilan; Niu, Baicheng; Jiang, Suwei; Cheng, Junfeng; Jiang, Shaotong
2016-04-20
The proanthocyanidins encapsulated in zein (zein-PA) fibers was via electrospinning technique. The kinetics and antioxidant capacity of PA from zein fibers was investigated by cyclic voltammetry. Circular dichroism was used to investigate the secondary structure change of zein and its influence on the shape of fibers. The addition of PA caused a significant increase in viscosity and made fibers wider. These hydrogen bonds between zein and PA molecules would favor the α-helix change and decrease the β-folds of zein in electrospinning solutions, leading to a round-shaped tendency of fibers and enhancing the thermal properties slightly. Zein-PA fibers showed high encapsulation efficiency close to 100%, and the encapsulated PA retained its antioxidant capacity in fibers. Zein-PA fibers showed a good controlled release toward PA, and the predominant release of PA from fibers was Fickian diffusion, which could be well described by first-order model and Hixson-Crowell model.
Miceli, Martina; Roma, Elia; Rosa, Paolo; Feroci, Marta; Loreto, M Antonietta; Tofani, Daniela; Gasperi, Tecla
2018-03-21
The present work aimed to synthesise promising antioxidant compounds as a valuable alternative to the currently expensive and easily degradable molecules that are employed as stabilizers in industrial preparation. Taking into account our experience concerning domino Friedel-Crafts/lactonization reactions, we successfully improved and extended the previously reported methodology toward the synthesis of 3,3-disubstituted-3 H -benzofuran-2-one derivatives 9 - 20 starting from polyphenols 1 - 6 as substrates and either diethylketomalonate ( 7 ) or 3,3,3-trifluoromethyl pyruvate ( 8 ) as electrophilic counterpart. The antioxidant capacity of the most stable compounds ( 9 - 11 and 15 - 20 ) was evaluated by both DPPH assay and Cyclic Voltammetry analyses performed in alcoholic media (methanol) as well as in aprotic solvent (acetonitrile). By comparing the recorded experimental data, a remarkable activity can be attributed to few of the tested lactones.
Liedtke, Theresa; Spannring, Peter; Riccardi, Ludovico; Gansäuer, Andreas
2018-04-23
A cyclic-voltammetry-based screening method for Cp 2 TiX-catalyzed reactions is introduced. Our mechanism-based approach enables the study of the influence of various additives on the electrochemically generated active catalyst Cp 2 TiX, which is in equilibrium with catalytically inactive [Cp 2 TiX 2 ] - . Thioureas and ureas are most efficient in the generation of Cp 2 TiX in THF. Knowing the precise position of the equilibrium between Cp 2 TiX and [Cp 2 TiX 2 ] - allowed us to identify reaction conditions for the bulk electrolysis of Cp 2 TiX 2 complexes and for Cp 2 TiX-catayzed radical arylations without having to carry out the reactions. Our time- and resource-efficient approach is of general interest for the design of catalytic reactions that proceed in single-electron steps. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Noël, Jean-Marc; Zigah, Dodzi; Simonet, Jacques; Hapiot, Philippe
2010-05-18
A versatile method was used to prepare modified surfaces on which metallic silver nanoparticles are immobilized on an organic layer. The preparation method takes advantage, on one hand, of the activated reactivity of some alkyl halides with Ag-Pd alloys to produce metallic silver nanoparticles and, on the other hand, of the facile production of an anchoring polyphenyl acetate layer by the electrografting of substituted diazonium salts on carbon surfaces. Transport properties inside such modified layers were investigated by cyclic voltammetry, scanning electrochemical microscopy (SECM) in feedback mode, and conducting AFM imaging for characterizing the presence and nature of the conducting pathways. The modification of the blocking properties of the surface (or its conductivity) was found to vary to a large extent on the solvents used for surface examination (H(2)O, CH(2)Cl(2), and DMF).
Spectroelectrochemistry and Electrochemistry of Europium Ions in Alkali Chloride Melts
NASA Astrophysics Data System (ADS)
Uehara, Akihiro; Shirai, Osamu; Nagai, Takayuki; Fujii, Toshiyuki; Yamana, Hajimu
2007-04-01
In order to investigate the redox equilibrium of europium ions in molten NaCl-2CsCl, UV-Vis absorption spectrophotometry measurements were performed for Eu2+ and Eu3+ in molten NaCl- 2CsCl at 923 K under simultaneous electrolytic control of their ratio. Molar absorptivities of EuCl3 and EuCl2 in NaCl-2CsCl at 923 K were determined to be (420±21) M -1cm-1 at 31200 cm-1 and (1130±56) M-1cm-1 at 30300 cm-1, respectively. The formal redox potential of the Eu2+/Eu3+ couple in NaCl-2CsCl melt at 923 K was determined to be (-0.941 ±0.004) V vs. Cl2/Cl- by electromotive force measurements on varying concentration ratios of Eu2+ and Eu3+, which were performed using a technique based on the combination of electrolysis and spectrophotometry. Cyclic voltammetry was also carried out in order to examine the characteristics of the voltammograms for the Eu2+/Eu3+ couple in NaCl-2CsCl melt. The formal redox potential of the Eu2+/Eu3+ couple determined by a spectroelectrochemical method agreed with that determined by cyclic voltammetry [(-0.946±0.008) V vs. Cl2/Cl-]. The effects of temperature on the redox potential of the Eu2+/Eu3+ couple in NaCl-2CsCl, NaCl-KCl, LiCl-KCl, and CsCl melts were studied by cyclic voltammetry in the range from 923 to 1123 K.
Aydın, Elif Burcu; Sezgintürk, Mustafa Kemal
2018-08-01
In this study, we fabricated a sensitive and label-free impedimetric immunosensor based on 6-phosphonohexanoic acid (PHA) modified ITO electrode for detection of interleukin-8 (IL-8) in human serum and saliva. PHA was first employed to cancer biomarker sensing platform. Anti-IL-8 antibody was used as a biorecognition element and the detection principle of this immunosensor was based on monitoring specific interaction between anti-IL-8 antibody and IL-8 antigen. The morphological characterization of each electrode modification step was analyzed by scanning electron microscopy (SEM), SEM-energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM) while electrochemical characterization was performed by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and single frequency impedance (SFI) techniques. Moreover, the antibody immobilization on the electrode surface was proved Fourier-transform infrared spectroscopy (FTIR) and Raman Spectroscopy. This proposed impedimetric immunosensor exhibited good performances with a wide linear in the range from 0.02 pg/mL to 3 pg/mL as well as a relative low detection limit of 6 fg/mL. The impedimetric immunosensor had a good specificity, stability and reproducibility. This study proved that PHA was a suitable interface material to fabricate an electrochemical biosensor. Copyright © 2018 Elsevier Inc. All rights reserved.
Chen, Jingyi; Zhu, Rong; Huang, Jia; Zhang, Man; Liu, Hongyu; Sun, Min; Wang, Li; Song, Yonghai
2015-08-21
A novel glucose biosensor was developed by immobilizing glucose oxidase (GOD) on a three-dimensional (3D) porous kenaf stem-derived carbon (3D-KSC) which was firstly proposed as a novel supporting material to load biomolecules for electrochemical biosensing. Here, an integrated 3D-KSC electrode was prepared by using a whole piece of 3D-KSC to load the GOD molecules for glucose biosensing. The morphologies of integrated 3D-KSC and 3D-KSC/GOD electrodes were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM results revealed a 3D honeycomb macroporous structure of the integrated 3D-KSC electrode. The TEM results showed some microporosities and defects in the 3D-KSC electrode. The electrochemical behaviors and electrocatalytic performance of the integrated 3D-KSC/GOD electrode were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The effects of pH and scan rates on the electrochemical response of the biosensor have been studied in detail. The glucose biosensor showed a wide linear range from 0.1 mM to 14.0 mM with a high sensitivity of 1.73 μA mM(-1) and a low detection limit of 50.75 μM. Furthermore, the glucose biosensor exhibited high selectivity, good repeatability and reproducibility, and good stability.
ERIC Educational Resources Information Center
Moore, John W.
1986-01-01
Describes: (1) spreadheet programs (including VisiCalc) for experiments; (2) event-driven data acquisition (using ADALAB with an Acculab Infrared Spectometer); (3) microcomputer-controlled cyclic voltammetry; (4) inexpensive computerized experiments; (5) the "KC? Discoverer" program; and (6) MOLDOT (space-filling perspective diagrams of…
NASA Astrophysics Data System (ADS)
Namdar, N.; Hassanpour Amiri, M.; Dehghan Nayeri, F.; Gholizadeh, A.; Mohajerzadeh, S.
2015-09-01
In this paper, high quality and large area graphene layers were synthesized using thermal chemical vapour deposition on copper foil substrates. We use graphene incorporated electrodes to measure simultaneously ascorbic acid, dopamine and folic acid. Cyclic voltammetry and differential pulse voltammetry methods were used to evaluate electrochemical behaviour of the grown graphene layers. The graphene-modified electrode shows large electrochemical potential difference compared to bare gold electrodes with higher current responses. Also our fabricated electrodes configuration can be used easily for microfluidic analysis.
Spectroscopic and electrochemical behavior of the novel tetra-2-methyl-pyrazinoporphyrazines
NASA Astrophysics Data System (ADS)
Pişkin, Mehmet; Öztürk, Naciye; Durmuş, Mahmut
2017-12-01
This study presents the synthesis and characterization of novel metal-free (H2Pc) and metallo porphyrazines (magnesium(II) (MgPz), copper(II) (CuPz), iron(II) (FePz), manganese(II) (MnPz) and nickel(II) (NiPz)) substituted with four 2-methylpyrazine groups on the peripheral positions. The spectroscopic properties of newly synthesized porphyrazines were investigated. The electrochemical behaviors of these porphyrazines were also determined in DMSO solution by cyclic voltammetry (CV) and square wave voltammetry (SWV) methods on edge plane pyrolytic graphite electrode (EPPG) electrode.
Studies on niobium triselenide cathode material for lithium rechargeable cells
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.; Ni, C. L.; Distefano, S.; Somoano, R. B.; Bankston, C. P.
1988-01-01
NbSe3 exhibits superior characteristics such as high capacity, high volumetric and gravimetric energy densities, and high discharge rate capability, as compared to other intercalating cathodes. This paper reports the preparation, characterization, and performance of NbSe3. Several electrochemical techniques, such as cyclic voltammetry, constant-current/constant-potential discharges, dc potentiodynamic scans, ac impedance, and ac voltammetry, have been used to give insight to the mechanisms of intercalation of three lithiums with NbSe3 and also into the rate determining process in the reduction of NbSe3.
Atila, Alptug; Yilmaz, Bilal
2015-01-01
In this study, simple, fast and reliable cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV) methods were developed and validated for determination of bosentan in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of bosentan at platinum electrode in acetonitrile solution containing 0.1 M TBACIO4. The well-defined oxidation peak was observed at 1.21 V. The calibration curves were linear for bosentan at the concentration range of 5-40 µg/mL for LSV and 5-35 µg/mL for SWV and DPV methods, respectively. Intra- and inter-day precision values for bosentan were less than 4.92, and accuracy (relative error) was better than 6.29%. The mean recovery of bosentan was 100.7% for pharmaceutical preparations. No interference was found from two tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Tracleer and Diamond tablets as pharmaceutical preparation. PMID:25901151
Atila, Alptug; Yilmaz, Bilal
2015-01-01
In this study, simple, fast and reliable cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV) methods were developed and validated for determination of bosentan in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of bosentan at platinum electrode in acetonitrile solution containing 0.1 M TBACIO4. The well-defined oxidation peak was observed at 1.21 V. The calibration curves were linear for bosentan at the concentration range of 5-40 µg/mL for LSV and 5-35 µg/mL for SWV and DPV methods, respectively. Intra- and inter-day precision values for bosentan were less than 4.92, and accuracy (relative error) was better than 6.29%. The mean recovery of bosentan was 100.7% for pharmaceutical preparations. No interference was found from two tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Tracleer and Diamond tablets as pharmaceutical preparation.
Testing Metal Chlorides For Use In Sodium-Cell Cathodes
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald
1992-01-01
Cyclic voltammetric curves of transition-metal wires in molten NaAlCl4 electrolyte used to eliminate suitability of transition metals as cathodes in sodium cells. Cyclic voltammetry used in conjunction with measurement of galvanostatic polarization curves determines whether given metal chloride suitable as cathode material in such cell. Cells useful in such high-energy-density and high-power-density applications as leveling loads on electric-power plants, supplying power to electric ground vehicles, and aerospace applications.
Lanthanide Diphthalocyanines. Electrochemistry and Display Applications.
1982-01-01
transients, cyclic voltametry (Nicholson and Galiardi, 1977, 1978; Noskalev and Shapkin, 1978). and a novel solid-state moving-boundary technique...was confirmed for the reverse process by linear potential- sweep voltammetry. Although the hydrazine hydrate my not have been simply an inert solvent
Marshall, Nicholas; Locklin, Jason
2011-11-01
In this Article, we describe a protocol for surface functionalization of benzenediazonium hexafluorophosphate monolayers by in situ electrochemical reduction of bis(benzenediazonium) hexafluorophosphate. Due to the considerable difference in potential between the first and second reduction of this species, it is possible to form a high density of surface-bound diazonium groups by use of a mild potential which selectively reduces only one diazonium group per ring. The resulting diazonium-containing monolayer reacts readily with solutions of electron-rich aromatic compounds. The reaction with ferrocene produces a dense (2.7 × 10(-10) mol/cm(2)) ferrocene-containing monolayer through a Gomberg-Bachmann type arylation. The resulting ferrocene group exhibits relatively rapid electron transfer to the electrode due to the conjugated linker layer as measured by alternating current voltammetry (ACV) and cyclic voltammetry. Aromatic systems with π-donor substitutents (N,N-dimethylaniline, N,N,N',N'-tetramethyldiaminobenzophenone, and hydroquinone) react through an azo-coupling to form monolayers linked to the surface through an azobenzene moiety. The redox properties of these electron-rich species tethered to the surface were observed and quantified using cyclic voltammetry. This simple and versatile functionalization procedure has a wide variety of potential applications in surface science and materials research.
Quintanilha, Ronaldo C; Orth, Elisa S; Grein-Iankovski, Aline; Riegel-Vidotti, Izabel C; Vidotti, Marcio
2014-11-15
Herein we show the synthesis and characterization of water dispersible composites formed by poly(aniline) and the natural polymer gum Arabic (GA), used as stabilizer. The materials were synthesized via a rapid and straightforward method and were fully characterized by different techniques such as UV-Vis, Raman, FTIR, TEM, SEM and cyclic voltammetry. TEM and SEM images revealed that the proportion of stabilizer highly influences the growth mechanism of the nanostructures. It was found spherical particles, elongated structures and large agglomerates at the lower, intermediate and at the higher GA amount, respectively. Accordingly to fluorescence spectra, different hydrophobic structures are formed depending on the GA amount in aqueous solutions, possibly acting as hosting sites for the PANI growth. In order to further study the PANI polymerization in the presence of GA, kinetics experiments were performed and showed that nucleation is the limiting step for the composite growth and a model is proposed. Spectroscopic experiments showed that the presence of GA affects the PANI conformation, avoiding the formation of phenazine structures which highly impairs the electroactivity of PANI. The material integrity is achieved by strong hydrogen bond interactions between PANI and GA as evidenced by the study of specific NH bands in FTIR and Raman analyses. The intensity of the hydrogen bonds decreased upon higher amounts of GA, probably due to steric impediment around the NH sites. Cyclic voltammograms showed a good electroactivity behavior of the modified electrodes presenting distinguishable diffusional processes through the adsorbed composites. By this way, we have thoroughly investigated the formation and properties of new conducting polymer composite materials. Taken into account the low toxicity of GA and the excellent dispersity in water, the materials can successfully be applied in bioelectrochemical applications or as green corrosion inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.
Electrochemical studies and analysis of 1-10 wt% UCl3 concentrations in molten LiCl-KCl eutectic
NASA Astrophysics Data System (ADS)
Hoover, Robert O.; Shaltry, Michael R.; Martin, Sean; Sridharan, Kumar; Phongikaroon, Supathorn
2014-09-01
Three electrochemical methods - cyclic voltammetry (CV), chronopotentiometry (CP), and anodic stripping voltammetry (ASV) - were applied to solutions of up to 10 wt% UCl3 in the molten LiCl-KCl eutectic salt at 500 °C to determine electrochemical properties and behaviors and to help provide a scientific basis for the development of an in situ electrochemical probe for determining the concentration of uranium in a used nuclear fuel electrorefiner. Diffusion coefficients of UCl4 and UCl3 were calculated to be (6.72 ± 0.360) × 10-6 cm2/s and (1.04 ± 0.17) × 10-5 cm2/s, respectively. Apparent standard reduction potentials were determined to be (-0.381 ± 0.013) V and (-1.502 ± 0.076) V vs. 5 mol% Ag/AgCl or (-1.448 ± 0.013) V and (-2.568 ± 0.076) V vs. Cl2/Cl- for the U(IV)/U(III) and U(III)/U redox couples, respectively. In comparing this data with supercooled thermodynamic data to determine activity coefficients, the thermodynamic database used was important with resulting activity coefficients ranging from 2.34 × 10-3 to 1.08 × 10-2 for UCl4 and 4.94 × 10-5 to 4.50 × 10-4 for UCl3. Of anodic stripping voltammetry and cyclic voltammetry anodic or cathodic peaks, the CV cathodic peak height divided by square root of scan rate was shown to be the most reliable method of determining UCl3 concentration in the molten salt.
NASA Astrophysics Data System (ADS)
Aghazadeh, Mustafa; Maragheh, Mohammad Ghannadi; Ganjali, Mohammad Reza; Norouzi, Parviz; Faridbod, Farnoush
2016-02-01
Cathodic electrodeposition of MnO2 from a nitrate solution, via pulsed base (OH-) electrogeneration was performed for the first time. The deposition experiments were performed in a pulse current mode in typical on-times and off-times (i.e. ton = 1 s and toff = 1 s) with a peak current density of 2 mA cm-2 (Ia = 2 mA cm-2). The structural characterizations conducted by XRD and FTIR techniques revealed that the prepared MnO2 is composed of both α and γ phases. Morphological observation by SEM and TEM showed that the prepared MnO2 is made up of nanobelts with uniform shapes (an average diameter and length of 50 nm and 1 μm, respectively). Further electrochemical measurements by cyclic voltammetry and charge-discharge techniques revealed that the prepared MnO2 nanostructures have excellent capacitive behaviors, like a specific capacitance of 235.5 F g-1 and capacity retention of 91.3% after 1000 cycling at the scan rate of 25 mV s-1.
NASA Astrophysics Data System (ADS)
Peimanifard, Zahra; Rashid-Nadimi, Sahar
2015-12-01
The aim of this study is utilizing the artificial photosynthesis, which is an attractive and challenging theme in the photoelectrocatalytic water splitting, to charge the vanadium redox flow battery (VRFB). In this work multi walled carbon nanotube/cadmium sulphide hybrid is employed as a photoanode material to oxidize VO2+ toVO2+ for charging the positive vanadium redox flow battery's half-cell. Characterization studies are also described using the scanning electron microscopic-energy-dispersive X-ray spectroscopy (SEM-EDS), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and UV-Visible methods. The phtoelectrochemical performance is characterized by cyclic voltammetry and chronoamperometry. Applied bias photon-to-current efficiency (ABPE) is achieved for both two and three-electrode configurations. The glassy carbon/multi walled carbon nanotube/cadmium sulphide yields high maximum ABPE of 2.6% and 2.12% in three and two-electrode setups, respectively. These results provide a useful guideline in designing photoelectrochemical cells for charging the vanadium redox flow batteries by sunlight as a low cost, free and abundant energy source, which does not rely on an external power input.
Electrodes of carbonized MWCNT-cellulose paper for supercapacitor
NASA Astrophysics Data System (ADS)
Sun, Xiaogang; Cai, Manyuan; Chen, Long; Qiu, Zhiwen; Liu, Zhenghong
2017-07-01
A flexible composite paper of multi-walled carbon nanotube (MWCNT) and cellulose fiber (CF) were fabricated by traditional paper-making method. Then, the MWCNT/CF papers were carbonized at high temperature in vacuum to remove organic component. The carbonized MWCNT/CF (MWCNT/CCF) papers are consisted of MWCNT and carbon fiber. The papers were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and four-point probe resistance meter. The electrochemical performances of the supercapacitors were tested by cyclic voltammetry and galvanostatic charge/discharge >with 1 moL/L LiPF6 as electrolyte. The MWCNT/CCF electrode yielded a specific capacitance of 156F/g at a current density of 50 mA/g by galvanostatic charge/discharge measurement, which is 1.29 times higher than MWCNT/CF electrode of 68F/g. The MWCNT/CCF electrodes also displayed an excellent specific capacitance retention of 84% after 2000 continuous charge/discharge cycles at a current density of 400 mA/g. The increase of specific capacitance can be attributed to enhanced electrical conductivity of MWCNT/CCF papers and improved contact interface between electrolyte and electrodes.
Sputtered Pd as hydrogen storage for a chip-integrated microenergy system.
Slavcheva, E; Ganske, G; Schnakenberg, U
2014-01-01
The work presents a research on preparation and physical and electrochemical characterisation of dc magnetron sputtered Pd films envisaged for application as hydrogen storage in a chip-integrated hydrogen microenergy system. The influence of the changes in the sputtering pressure on the surface structure, morphology, and roughness was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AMF). The electrochemical activity towards hydrogen adsorption/desorption and formation of PdH were investigated in 0.5 M H2SO4 using the methods of cyclic voltammetry and galvanostatic polarisation. The changes in the electrical properties of the films as a function of the sputtering pressure and the level of hydrogenation were evaluated before and immediately after the electrochemical charging tests, using a four-probe technique. The research resulted in establishment of optimal sputter regime, ensuring fully reproducible Pd layers with highly developed surface, moderate porosity, and mechanical stability. Selected samples were integrated as hydrogen storage in a newly developed unitized microenergy system and tested in charging (water electrolysis) and discharging (fuel cell) operative mode at ambient conditions demonstrating a stable recycling performance.
NASA Astrophysics Data System (ADS)
Khajonrit, Jessada; Phumying, Santi; Maensiri, Santi
2016-06-01
BiFe1- x Cu x O3 (x = 0, 0.05, 0.1, 0.2, and 0.3) nanoparticles were prepared by a simple solution method. The prepared nanoparticles were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) method analysis using the Barret-Joyner-Halenda (BJH) model, and X-ray absorption spectroscopy (XAS). Magnetization properties were obtained using a vibrating sample magnetometer (VSM) at room temperature. Magnetization was clearly enhanced by increasing Cu content and decreasing particle size. Zero-field-cooled (ZFC) and field-cooled (FC) temperature-dependent magnetization measurements showed that blocking temperature increased with increasing Cu content. Electrochemical properties were investigated by cyclic voltammetry (CV) and the galvanostatic charge-discharge (GCD) method. The performance of the fabricated supercapacitor was improved for the BiFe0.95Cu0.05O3 electrode. The highest specific capacitance was 568.13 F g-1 at 1 A g-1 and the capacity retention was 77.13% after 500 cycles.
Funakawa, Akiyasu; Yamanaka, Ichiro; Otsuka, Kiyoshi
2005-05-12
Electrochemical oxidative carbonylation of methanol was studied over Au supported carbon anode in CO. The major carbonylation products were dimethyl oxalate (DMO) and dimethyl carbonate (DMC). The minor oxidation products were dimethoxy methane (DMM) and methyl formate (MF) from methanol and CO(2). Influences of various reaction conditions were studied on carbonylation activities and selectivities. The selectivities to DMO and DMC can be controlled by the electrochemical potential. Electrocatalysis of Au/carbon anode was studied by cyclic voltammetry (CV), stoichiometric reactions among Au(3+), methanol, and CO, and UV-vis spectra. The Au/carbon anode was characterized by XRD, SEM, and BE images before and after the carbonylation. These experimental facts strongly suggest that transition of oxidation states of Au affects changing of the carbonylation selectivities to DMO and DMC. Au(0) is the active species for the selective DMO formation by direct electrochemical carbonylation at low potentials (<+1.2 V (Ag/AgCl)). On the other hand, Au(3+) is the active spices for the selective DMC formation by indirect electrochemical carbonylation through Au(3+)/Au(+) redox at high potentials (>+1.3 V).
Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode.
Yuan, Yating; Li, Wei; Chen, Hualin; Wang, Zhiyong; Jin, Xianbo; Chen, George Z
2016-08-15
Electrolysis of solid metal oxides has been demonstrated in MgCl2-NaCl-KCl melt at 700 °C taking the electrolysis of Ta2O5 as an example. Both the cathodic and anodic processes have been investigated using cyclic voltammetry, and potentiostatic and constant voltage electrolysis, with the cathodic products analysed by XRD and SEM and the anodic products by GC. Fast electrolysis of Ta2O5 against a graphite anode has been realized at a cell voltage of 2 V, or a total overpotential of about 400 mV. The energy consumption was about 1 kW h kgTa(-1) with a nearly 100% Ta recovery. The cathodic product was nanometer Ta powder with sizes of about 50 nm. The main anodic product was Cl2 gas, together with about 1 mol% O2 gas and trace amounts of CO. The graphite anode was found to be an excellent inert anode. These results promise an environmentally-friendly and energy efficient method for metal extraction by electrolysis of metal oxides in MgCl2 based molten salts.
NASA Astrophysics Data System (ADS)
Eskusson, Jaanus; Jänes, Alar; Kikas, Arvo; Matisen, Leonard; Lust, Enn
FIB-SEM, XPS and gas adsorption methods have been used for the characterisation of physical properties of microporous carbide derived carbon electrodes prepared from Mo 2C at 600 °C (noted as CDC-Mo 2C). Cyclic voltammetry, constant current charge/discharge, and electrochemical impedance spectroscopy have been applied to establish the electrochemical characteristics for supercapacitors consisting of the 1 M Na 2SO 4, KOH, tetraethyl ammonium iodide or 6 M KOH aqueous electrolyte and CDC-Mo 2C electrodes. The N 2 sorption values obtained have been correlated with electrochemical characteristics for supercapacitors in various aqueous electrolytes. The maximum gravimetric energy, E max, and gravimetric power, P max, for supercapacitors (taking into consideration the active material weight) have been obtained at cell voltage 0.9 V for 6 M KOH aqueous supercapacitor (E max = 5.7 Wh kg -1 and P max = 43 kW kg -1). For 1 M TEAI based SC somewhat higher E max (6.2 Wh kg -1) and comparatively low P max (7.0 kW kg -1) have been calculated.
Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors
NASA Astrophysics Data System (ADS)
Alver, Ü.; Tanrıverdi, A.
2016-08-01
In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).
MWCNT-ruthenium oxide composite paste electrode as non-enzymatic glucose sensor.
Tehrani, Ramin M A; Ab Ghani, Sulaiman
2012-01-01
A non-enzymatic glucose sensor of multi-walled carbon nanotube-ruthenium oxide/composite paste electrode (MWCNT-RuO(2)/CPE) was developed. The electrode was characterized by using XRD, SEM, TEM and EIS. Meanwhile, cyclic voltammetry and amperometry were used to check on the performances of the MWCNT-RuO(2)/CPE towards glucose. The proposed electrode has displayed a synergistic effect of RuO(2) and MWCNT on the electrocatalytic oxidation of glucose in 3M NaOH. This was possible via the formation of transitions of two redox pairs, viz. Ru(VI)/Ru(IV) and Ru(VII)/Ru(VI). A linear range of 0.5-50mM glucose and a limit of detection of 33 μM glucose (S/N=3) were observed. There was no significant interference observable from the traditional interferences, viz. ascorbic acid and uric acid. Indeed, results so obtained have indicated that the developed MWCNT-RuO(2)/CPE would pave the way for a better future to glucose sensor development as its fabrication was without the use of any enzyme. Copyright © 2012 Elsevier B.V. All rights reserved.
A new gel route to synthesize LiCoO{sub 2} for lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, N.; Ge, X.W.; Chen, C.H.
2005-09-01
A new synthetic route, i.e. the radiated polymer gel (RPG) method, has been developed and demonstrated for the production of LiCoO{sub 2} powders. The process involved two processes: (1) obtaining a gel by polymerizing a mixed solution of an acrylic monomer and an aqueous solution of lithium and cobalt salts under {gamma}-ray irradiation conditions and (2) obtaining LiCoO{sub 2} powders by drying and calcining the gel. Thermogravimetric analysis (TGA), X-ray diffraction (XRD) and electron scanning microscopy (SEM) were employed to study the reaction process and the structures of the powders. Galvanostatic cell cycling, cyclic voltammetry and ac impedance spectroscopy weremore » used to evaluate the electrochemical properties of the LiCoO{sub 2} powders. It was found that a pure phase of LiCoO{sub 2} can be obtained at the calcination temperature of 800 deg. C. Both the particle size (micrometer range) and specific charge/discharge capacity of an RPG-LiCoO{sub 2} powder increase with increasing the concentration of its precursor solution.« less
NASA Astrophysics Data System (ADS)
Novoselova, I. A.; Oliinyk, N. F.; Volkov, S. V.; Konchits, A. A.; Yanchuk, I. B.; Yefanov, V. S.; Kolesnik, S. P.; Karpets, M. V.
2008-05-01
Carbon nanotubes (CNTs) were synthesized from CO 2 dissolved in molten salts using the novel electrolytic method developed by the authors. The electrolysis were carried out under current and potential controls. To establish the actual current and potential ranges, the electroreduction of carbon dioxide dissolved in the halide melts under an excess pressure up to 15 bar was studied by cyclic voltammetry on glassy-carbon (GC) electrode at a temperature of 550 °C. The electrochemical-chemical-electrochemical mechanism of CO 2 electroreduction was offered for explanation of the obtained results. The structure, morphology, and electronic properties of the CNTs obtained were studied using SEM, TEM, X-ray and electron diffraction analysis, Raman and ESR spectroscopy. It was found that the majority of the CNTs are multi-walled (MWCNTs), have curved form, and most often agglomerate into bundles. Almost all CNTs are filled partly with electrolyte salt. Except MWCNTs the cathode product contains carbon nanofibers, nanographite, and amorphous carbon. The dependences of CNT's yield, their diameter, and structure peculiarities against the electrolysis regimes were established.
NASA Astrophysics Data System (ADS)
Jayalakshmi, M.; Venugopal, N.; Raja, K. Phani; Rao, M. Mohan
New nano-materials like SnO 2-Al 2O 3 and SnO 2-Al 2O 3-carbon were synthesized by a single step hydrothermal method in searching for novel mixed oxides with high electrochemical double layer capacitance. A SnO 2-Al 2O 3-carbon sample was calcined at 600 °C and tested for its performance. The source of carbon was tetrapropyl ammonium hydroxide. The capacitive behavior of SnO 2 was compared to the performance of SnO 2-Al 2O 3, SnO 2-Al 2O 3-carbon and calcined SnO 2-Al 2O 3-carbon using the techniques of cyclic voltammetry, double potential step, chronopotentiometry and E-log I polarization. In 0.1 M NaCl solutions, SnO 2-Al 2O 3 gave the best performance with a value of 119 Fg -1 and cycled 1000 times. The nano-material mixed oxides were characterized by TEM, XRD, ICP-AES and SEM-EDAX.
NASA Astrophysics Data System (ADS)
Liao, Qishu; Hou, Hongying; Liu, Xianxi; Yao, Yuan; Dai, Zhipeng; Yu, Chengyi; Li, Dongdong
2018-04-01
In this work, polypyrrole (PPy) was co-doped with L-lactic acid (LA) and sodium p-toluenesulfonate (TsONa) for high performance cathode in sodium ion battery (SIB) via facile one-step electropolymerization on Fe foil. The as-synthesized LA/TsONa co-doped PPy cathode was investigated in terms of scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), galvanostatic charge/discharge and cyclic voltammetry (CV). The results suggested that some oval-bud-like LA/TsONa co-doped PPy particles did form and tightly combine with the surface of Fe foil; furthermore, LA/TsONa co-doped PPy cathode also delivered higher electrochemical performances than TsONa mono-doped PPy cathode. For example, the initial specific discharge capacity was as high as about 124 mAh/g, and the reversible specific capacity still maintained at about 110 mAh/g even after 50 cycles, higher than those of TsONa mono-doped PPy cathode. The synergy effect of multi components of LA/TsONa co-doped PPy cathode should be responsible for high electrochemical performances.
Helaïli, N; Boudjamaa, A; Kebir, M; Bachari, K
2017-03-01
The present study focused on the evaluation of photo-catalytic and photo-electrochemical properties of the photo-catalyst based on nickel tungstate material prepared by a nitrate method through the degradation of malachite green (MG) dye's. The effect of catalyst loading and dye concentration was examined. Physico-chemical, optical, electrical, electrochemical, and photo-electrochemical properties of the prepared material were analyzed by X-ray diffraction (XRD), fourier transform-infrared spectroscopy (FTIR), BET analysis, optical reflectance diffuse (DR), scanning electron microscopy (SEM/EDX), electrical conductivity, cyclic voltammetry (CV), current intensity, mott-shottky, and nyquist. XRD revealed the formation of monoclinic structure with a small particle size. BET surface area of the sample was around 10 m 2 /g. The results show that the degradation of MG was more than 80%, achieved after 3 h of irradiation at pH 4.6 and with a catalyst loading of 75 mg. Also, it was found that the dye photo-degradation obeyed the pseudo-first order kinetic via Langmuir Hinshelwood model.
NASA Astrophysics Data System (ADS)
Saravanan, M.; Ganesan, M.; Ambalavanan, S.
2014-04-01
In this work, we report an in situ generated carbon from sugar as additive in the Negative Active Mass (NAM) which enhances the charge-discharge characteristics of the lead-acid cells. In situ formed sugar derived carbon (SDC) with leady oxide (LO) provides a conductive network and excellent protection against NAM irreversible lead sulfation. The effect of SDC and carbon black (CB) added negative plates are characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), galvanostatic charge-discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The results show that subtle changes in the addition of carbon to NAM led to subsequent changes on the performance during partial-state-of-charge (PSoC) operations in lead-acid cells. Furthermore, SDC added cells exhibit remarkable improvement in the rate capability, active material utilization, cycle performance and charge acceptance compared to that of the conventional CB added cells. The impact of SDC with LO at various synthesis conditions on the electrochemical performance of the negative plate is studied systematically.
Aluminium electrodeposition in chloroaluminate ionic liquid.
Zhang, Lipeng; Wang, Enqi; Mu, Jiechen; Yu, Xianjin; Wang, Qiannan; Yang, Lina; Zhao, Zengdian
2014-08-01
An efficient microwave enhanced synthesis of ambient temperature chloroaluminate ionic liquid ([EMIM]Br) that preceeds reaction of 1-methylimidazolium with bromoethane in a closed vessel, was described in our work. The reaction time was drastically reduced as compared to the conventional methods. The electrochemical techniques of impedance spectroscopy, cyclic voltammetry and chronoamperometry were used to investigate the mechanism of Al electrodeposition from 2:1 (molar ratio) AlCl3/[EMIM]Br ionic liquid at room temperature. Results indicated that Al electrode- position from this ionic liqud was a quasi-reversible process, and the kinetic complications during the reaction was probably attributed to the electron transfer or mass transport cooperative controlled processes, instantaneous nucleation with diffusion-controlled growth was also investigated. Electrodepositon experiment was conducted using constant current density of 40 mA·cm(-2) for 20 minutes at room temperature and the qualitative analysis of the deposits were performed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and energy dispersive spectroscope (EDS). The deposits obtained on copper cathode were dense and compact and most Al crystal shows granular structure spherical with high purity.
Preparation and Investigation of Electrodeposited Ni-NANO-Cr2O3 Composite Coatings
NASA Astrophysics Data System (ADS)
Jiang, Jibo; Feng, Chenqi; Qian, Wei; Yu, Libin; Ye, Fengying; Zhong, Qingdong; Han, Sheng
2016-12-01
The electrodeposition of Ni-nano-Cr2O3 composite coatings was studied in electrolyte containing different contents of Cr2O3 nanoparticles (Cr2O3 NPs) on mild steel surfaces. Some techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness, the potentiodynamic polarization curves (Tafel) and electrochemical impedance spectroscopy (EIS) were used to compare pure Ni coatings and Ni-nano-Cr2O3 composite coatings. The results show that the incorporation of Cr2O3 NPs resulted in an increase of hardness and corrosion resistance, and the maximum microhardness of Ni-nano-Cr2O3 composite coatings reaches about 495 HV. The coatings exhibit an active-passive transition and relatively large impedance values. Moreover, the effect of Cr2O3 NPs on Ni electrocrystallization is also investigated by cyclic voltammetry (CV) and EIS spectroscopy, which demonstrates that the nature of Ni-based composite coatings changes attributes to Cr2O3 NPs by offering more nucleation sites and less charge transfer resistance.
Metal Ir coatings on endocardial electrode tips, obtained by MOCVD
NASA Astrophysics Data System (ADS)
Vikulova, Evgeniia S.; Kal'nyi, Danila B.; Shubin, Yury V.; Kokovkin, Vasily V.; Morozova, Natalya B.; Hassan, Aseel; Basova, Tamara V.
2017-12-01
The present work demonstrates the application of the Metal-Organic Chemical Vapor Deposition technique to fabricate metal iridium coatings onto the pole tips of endocardial electrodes. Using iridium (III) acetylacetonate as a volatile precursor, the target coatings were successfully applied to the working surface of cathodes and anodes of pacemaker electrodes in the flow type reactor in hydrogen atmosphere at deposition temperature of 550 °C. The coating samples were characterized by means of XRD, SEM, Raman- and XPS-spectroscopies. The formation of non-textured coatings with fractal-like morphology and 7-24 nm crystallite size has been realized. The electrochemical properties of the coatings were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The charge storage capacity values of the electrochemically activated samples were 17.0-115 mC cm-2 and 14.4-76.5 mC cm-2 for measurements carried out in 0.1 M sulfuric acid and in phosphate buffer saline solutions, respectively. A comparison of some characteristics of the samples obtained with commercially available cathode of pacemaker electrodes is also presented.
Synthesis and fluorescent properties of poly(arylpyrazoline)'s for organic-electronics
NASA Astrophysics Data System (ADS)
Vandana, T.; Ramkumar, V.; Kannan, P.
2016-08-01
The present work focuses on the synthesis and characterization of poly(arylchalcone)'s (PCH I-IV) by reacting acetone with various dialdehydes for the first time at below ambient temperature followed by cyclization with phenylhydrazinehydrochloride to yield luminescent poly(arylpyrazoline)'s (PPY I-IV). The synthesized polymers were characterized by standard techniques such as, GPC, SEM, TGA, FT-IR, 1H NMR, UV-Vis absorption and fluorescence spectroscopy, and electrochemical studies by cyclic voltammetry analyses. The Pyrazoline group hooked with different aryl donors such as benzene, thiophene, carbazole, triphenylamine, thus results a series of blue and green emitting materials. The obtained optical bandgap energy of the polymers (PPY I-IV) were 2.53, 3.41, 3.07, 3.10 eV respectively, suggest that all the polymers belongs to semiconducting category. The solvent effect of polymers was thoroughly studied and explained by Lippert-Mataga equation. The polymers I & IV display large degree of intra-molecular charge transfer in excited state evidenced from solvatochromic shift on the emission spectra. The obtained results demonstrate that they are promising materials for organic electronics applications.
Jin, Lin; Jiang, Yu; Zhang, Mengjie; Li, Honglong; Xiao, Linghan; Li, Ming; Ao, Yuhui
2018-04-19
At present, PANI/MWNT composites have been paid more attention as promising electrode materials in supercapacitors. Yet some shortcomings still limit the widely application of PANI/MWNT electrolytes. In this work, in order to improve capacitance ability and long-term stability of electrode, a multi-amino dendrimer (PAMAM) had been covalently linked onto multi-walled carbon nanotubes (MWNT) as a bridge to facilitating covalent graft of polyaniline (PANI), affording P-MWNT/PANI electrode composites for supercapacitor. Surprisingly, ordered arrays of PANI nanowires on MWNT (setaria-like morphology) had been observed by scanning electron microscopy (SEM). Electrochemical properties of P-MWNT/PANI electrode had been characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge technique. The specific capacitance and long cycle life of P-MWNT-PANI electrode material were both much higher than MWNT/PANI. These interesting results indicate that multi-amino dendrimer, PAMAM, covalently linked on MWNT provides more reaction sites for in-situ polymerization of ordered PANI, which could efficiently shorten the ion diffusion length in electrolytes and lead to making fully use of conducting materials.
Su, W; Xu, J; Ding, Xianting
2016-12-01
Conventional glass-based pH sensors are usually fragile and space consuming. Herein, a miniature electrochemical pH sensor based on amino-functionalized graphene fragments and polyaniline (NH 2 -G/PANI) composite film is developed via simply one-pot electrochemical polymerization on the ITO-coated glass substrates. Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Raman Spectra are involved to confirm the successful synthesis and to characterize the properties of the NH 2 -G/PANI composite film. The developed electrochemical pH sensor presents fast response, high sensitivity (51.1 mV/pH) and wide detection range when applied to PBS solutions of pH values from 1 to 11. The robust reproducibility and good stability of the developed pH sensors are investigated as well. Compared to the conventional glass-based pH meters, the NH 2 -G/PANI composite film-based pH sensor could be a promising contender for the flexible and miniaturized pH-sensing devices.
Cell attachment functionality of bioactive conducting polymers for neural interfaces.
Green, Rylie A; Lovell, Nigel H; Poole-Warren, Laura A
2009-08-01
Bioactive coatings for neural electrodes that are tailored for cell interactions have the potential to produce superior implants with improved charge transfer capabilities. In this study synthetically produced anionically modified laminin peptides DEDEDYFQRYLI and DCDPGYIGSR were used to dope poly(3,4-ethylenedioxythiophene) (PEDOT) electrodeposited on platinum (Pt) electrodes. Performance of peptide doped films was compared to conventional polymer PEDOT/paratoluene sulfonate (pTS) films using SEM, XPS, cyclic voltammetry, impedance spectroscopy, mechanical hardness and adherence. Bioactivity of incorporated peptides and their affect on cell growth was assessed using a PC12 neurite outgrowth assay. It was demonstrated that large peptide dopants produced softer PEDOT films with a minimal decrease in electrochemical stability, compared to the conventional dopant, pTS. Cell studies revealed that the YFQRYLI ligand retained neurite outgrowth bioactivity when DEDEDYFQRYLI was used as a dopant, but the effect was strongly dependant on initial cell attachment. Alternate peptide dopant, DCDPGYIGSR was found to impart superior cell attachment properties when compared to DEDEDYFQRYLI, but attachment on both peptide doped polymers could be enhanced by coating with whole native laminin.
NASA Astrophysics Data System (ADS)
Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.
2013-11-01
Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 °C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H2/air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.
NASA Technical Reports Server (NTRS)
Rosario-Castro, Belinda I.; Cabrera, Carlos R.; Perez-Davis, Maria; Lebron, Marisabel; Meador, Michael
2003-01-01
Single-wall carbon nanotubes (SWNTs) are very interesting materials because of their morphology, electronic and mechanical properties. Its morphology (high length-to-diameter ratio) and electronic properties suggest potential application of SWNTs as anode material for lithium ion secondary batteries. The introduction of SWNTs on these types of sources systems will improve their performance, efficiency, and capacity to store energy. A purification method has been applied for the removal of iron and amorphous carbon from the nanotubes. Unpurified and purified SWNTs were characterized by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). In order to attach carbon nanotubes on platinum electrode surfaces, a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) was deposited over the electrodes. The amino-terminated SAM obtained was characterized by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and Fourier-transforms infrared (FTIR) spectroscopy. Carbon nanotubes were deposited over the amino-terminated SAM by an amide bond formed between SAM amino groups and carboxylic acid groups at the open ends of the carbon nanotubes.This deposition was characterized using Raman spectroscopy and Scanning Electron microscopy (SEM).
Insight into capacitive performance of polyaniline/graphene oxide composites with ecofriendly binder
NASA Astrophysics Data System (ADS)
Bilal, Salma; Fahim, Muhammad; Firdous, Irum; Ali Shah, Anwar-ul-Haq
2018-03-01
The behaviour of gold electrode modified with polyaniline/graphene oxide composites (PGO) was studied for electrochemical and charge storage properties in aqueous acidic media. The surface of gold electrode was modified with aqueous slurry of PGO by using Carboxymethyl cellulose (CMC) as binder. The intercalation of polyaniline in the GO layers, synthesized by in situ polymerization was confirmed by scanning electron microscopy (SEM). The electrochemical behaviour and charge storing properties were investigated using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS). A high specific capacitance of 1721 F g-1 was obtained for PGO with 69.8% retention of capacitance even after 1000 voltammetric cycles in the potential range of 0-0.9 V at 20 mV s-1. EIS indicated low charge transfer resistance (Rct) and solution resistance (Rs) values of 0.51 Ω and 0.07 Ω, respectively. This good performance of PGO coated electrode is attributed to the use of CMC binder which generate a high electrode/ electrolyte contact area and short path lengths for electronic transport and electrolyte ion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanin, H., E-mail: hudsonzanin@gmail.com; Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970; Saito, E., E-mail: esaito135@gmail.com
2014-01-01
Graphical abstract: - Highlights: • Graphene nanosheets were produced onto wire rods. • RGO and VACNT-O were evaluated and compared as supercapacitor electrode. • RGO and VACNT-O have structural and electrochemical properties quite similars. • The materials present good specific capacitance, energy storage and power delivery. - Abstract: Reduced graphene oxide (RGO) and vertically aligned carbon nanotubes (VACNT) superhydrophilic films were prepared by chemical vapor deposition techniques for electrical energy storage investigations. These electrodes were characterized in terms of their material and electrochemical properties by scanning electron microscopy (SEM), surface wettability, Fourier transform infrared spectroscopy (FTIR), energy dispersive and Ramanmore » spectroscopies, cyclic voltammetry (CV) and galvanostatic charge–discharge. We observed several physical structural and electrochemical similarities between these carbon-based materials with particular attention to very good specific capacitance, ultra-high energy storage and fast power delivery. Our results showed that the main difference between specific capacitance values is attributed to pseudocapacitive contribution and high density of multiwall nanotubes tips. In this work we have tested a supercapacitor device using the VACNT electrodes.« less
2014-01-01
Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance. PMID:24982603
NASA Astrophysics Data System (ADS)
Alaf, M.; Gultekin, D.; Akbulut, H.
2013-06-01
Free-standing multiwalled carbon nano tube papers (buckypapers) were prepared by vacuum filtration from functionalized multi walled carbon nano tubes (MWCNTs) with controlling porosity. Double phase matrix Sn/SnO2/MWCNT nanocomposites were obtained in two steps, including thermal evaporation of metallic tin (Sn) on the MWCNT papers and RF plasma oxidation. The ratio between metallic tin (Sn) and tin oxide (SnO2) was controlled with plasma oxidation time. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypapers to form functionally gradient nanocomposites. Sn/SnO2 coated on MWCNT buckypapers were used as working electrodes in assembled as coin-type (CR2016) test cells. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine the structure and morphology of the obtained nanocomposites. In addition, the discharge/charge test, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out to characterize the electrochemical properties of these composites as anode materials for Li-ion batteries.
Preparation of Binary and Ternary Oxides by Molten Salt Method and its Electrochemical Properties
NASA Astrophysics Data System (ADS)
Reddy, M. V.; Theng, L. Pei; Soh, Hulbert; Beichen, Z.; Jiahuan, F.; Yu, C.; Ling, A. Yen; Andreea, L. Y.; Ng, C. H. Justin; Liang, T. J. L. Galen; Ian, M. F.; An, H. V. T.; Ramanathan, K.; Kevin, C. W. J.; Daryl, T. Y. W.; Hao, T. Yi; Loh, K. P.; Chowdari, B. V. R.
2013-07-01
We report simple binary oxides namely SnO2, TiO2, CuO, MnO2, Fe2O3, Co3O4 and ternary oxides like MnCo2O4 by molten salt method at a temperature range of 280°C to 950°C in air and discuss the effect of morphology, crystal structure and electrochemical properties of binary and ternary oxides. Materials were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area methods. XRD patterns showed all MSM prepared materials exhibited characteristic lattice parameter values. BET surface area varies depending on the nature of the material, molten salt and preparation temperature and the obtained values are in the range, 1 to 160 m2/g. Electrochemical properties were studied using cyclic voltammetry (CV) and electrochemical performance studies were carried in the voltage range, 0.005-1.0V for SnO2, 1.0-2.8V for TiO2 and Fe2O3, MCo2O4 (M = Co, Mn), MnO2 and CuO were cycled in the range, 0.005-3.0V. At a current rates of 30-100 mA/g and a scan rate of 0.058 mV/sec was used for galvanostatic cycling and cyclic voltammetry. SnO2 showed that an alloying-de-alloying reaction occurs at ˜0.2 and ˜0.5 V vs. Li. TiO2 main intercalation and de-interaction reactions at ˜1.7 and ˜1.8 V vs. Li. Co3O4, MnCo2O4, and MnO2 main discharge potentials at ˜1.2, 0.9V and 0.4V, resp. and charge potentials peak ˜2.0V and 1.5V vs. Li. CuO prepared at 750°C exhibited main anodic peak at ˜2.45V and cathodic peaks at ˜0.85V and ˜1.25V. We discussed the possible reaction mechanisms and Li-storage performance values in detail.
Sagasti, Ariane; Bouropoulos, Nikolaos; Kouzoudis, Dimitris; Panagiotopoulos, Apostolos; Topoglidis, Emmanuel; Gutiérrez, Jon
2017-07-25
In the present work, a nanostructured ZnO layer was synthesized onto a Metglas magnetoelastic ribbon to immobilize hemoglobin (Hb) on it and study the Hb's electrochemical behavior towards hydrogen peroxide. Hb oxidation by H₂O₂ was monitored simultaneously by two different techniques: Cyclic Voltammetry (CV) and Magnetoelastic Resonance (MR). The Metglas/ZnO/Hb system was simultaneously used as a working electrode for the CV scans and as a magnetoelastic sensor excited by external coils, which drive it to resonance and interrogate it. The ZnO nanoparticles for the ZnO layer were grown hydrothermally and fully characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and photoluminescence (PL). Additionally, the ZnO layer's elastic modulus was measured using a new method, which makes use of the Metglas substrate. For the detection experiments, the electrochemical cell was performed with a glass vial, where the three electrodes (working, counter and reference) were immersed into PBS (Phosphate Buffer Solution) solution and small H₂O₂ drops were added, one at a time. CV scans were taken every 30 s and 5 min after the addition of each drop and meanwhile a magnetoelastic measurement was taken by the external coils. The CV plots reveal direct electrochemical behavior of Hb and display good electrocatalytic response to the reduction of H₂O₂. The measured catalysis currents increase linearly with the H₂O₂ concentration in a wide range of 25-350 μM with a correlation coefficient 0.99. The detection limit is 25-50 μM. Moreover, the Metglas/ZnO/Hb electrode displays rapid response (30 s) to H₂O₂, and exhibits good stability and reproducibility of the measurements. On the other hand, the magnetoelastic measurements show a small linear mass increase versus the H₂O₂ concentration with a slope of 152 ng/μM, which is probably due to H₂O₂ adsorption in ZnO during the electrochemical reaction. No such effects were detected during the control experiment when only PBS solution was present for a long time.
1984-04-01
Ill) and Os(Il) as determined using SERS are in good agreement with those obtained from rapid cyclic voltametry . The bulk-phase Raman spectra exhibit...under conventional conditions -i ( sweep rates ca. 100-500 mV sec ; reactant concentration ca. 1 ml_ for which the contribution from any initially...couple can also be obtained using cyclic voltammetry. -1 This entails using sufficiently rapid sweep rates (Z 20 V sec ) and small bulk reactant
Fabrication of Carbon Nanotube Networks on Three-Dimensional Building Blocks and Their Applications
2012-10-27
increases the detection efficiency via sorting of analyte. There are some reports for sorting or separating blood cell, colloidal and bacteria by...the substrates for cyclic voltammetry (CV), pulsed bias of ECD was applied at -1.2 V during 90, 120 and 150 sec for 1, 3 and 5 μm pillar substrates...Deposition with Al2O3: The atomic layer deposition (ALD, Cyclic 4000, Genitech) was introduced to deposit the Al2O3 on the surfaces of network
Umasankar, Yogeswaran; Periasamy, Arun Prakash; Chen, Shen-Ming
2010-01-15
Conductive composite film which contains nafion (NF) doped multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(malachite green) (PMG) has been synthesized on glassy carbon electrode (GCE), gold and indium tin oxide (ITO) electrodes by potentiostatic methods. The presence of MWCNTs in the composite film (MWCNTs-NF-PMG) enhances surface coverage concentration (Gamma) of PMG to approximately 396%, and increases the electron transfer rate constant (k(s)) to approximately 305%. Similarly, electrochemical quartz crystal microbalance study reveals the enhancement in the deposition of PMG at MWCNTs-NF film. The surface morphology of the composite film deposited on ITO electrode has been studied using scanning electron microscopy (SEM) and scanning tunneling microscopy (STM). These two techniques reveal that the PMG incorporated on MWCNTs-NF film. The MWCNTs-NF-PMG composite film also exhibits promising enhanced electrocatalytic activity towards the simple aliphatic alcohols such as methanol, ethanol and propanol. The electroanalytical responses of analytes at NF-PMG and MWCNTs-NF-PMG films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electroanalytical studies, well defined voltammetric peaks have been obtained at MWCNTs-NF-PMG composite film for methanol, ethanol and propanol at Epa=609, 614 and 602mV respectively. The sensitivity of MWCNTs-NF-PMG composite film towards methanol, ethanol and propanol in CV technique are 0.59, 0.36 and 0.92microAmM(-1)cm(-2) respectively, which are higher than NF-PMG film. Further, the sensitivity values obtained using DPV are higher than the values obtained using CV technique.
Shoja, Yalda; Kermanpur, Ahmad; Karimzadeh, Fathallah
2018-08-15
In this present work we made a novel, fast, selective and sensitive electrochemical genobiosensor to detection of EGFR exon 21 point mutation based on two step electropolymerization of Ni(II)-oxytetracycline conducting metallopolymer nanoparticles (Ni-OTC NPs) on the surface of pencil graphite electrode (PGE) which was modified by reduced graphene oxide/carboxyl functionalized ordered mesoporous carbon (rGO/f-OMC) nanocomposite. ssDNA capture probe with amine groups at the5' end which applied as recognition element was immobilized on the rGO/f-OMC/PGE surface via the strong amide bond. Ni-OTC metallopolymer NPs were electropolymerized to rGO/ssDNA-OMC/PGE surface and then hybridization fallows through the peak current change in differential pulse voltammetry (DPV) using Ni-OTC NPs as a redox label. The biosensor was characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), FT-IR spectroscopy, energy dispersive X-ray spectroscopy (EDX), cyclic voltammetry and Nitrogen adsorption-desorption analysis. The Ni-OTC current response verified only the complementary sequence indicating a significant reduction current signal in comparison to single point mismatched and non-complementary and sequences. Under optimal conditions, the prepared biosensor showed long-term stability (21 days) with a wide linear range from 0.1 µM to 3 µM with high sensitivity (0.0188 mA/µM) and low detection limit (120 nM). Copyright © 2018 Elsevier B.V. All rights reserved.
Selvarajan, S; Suganthi, A; Rajarajan, M
2018-06-01
A silver/polypyrrole/copper oxide (Ag/PPy/Cu 2 O) ternary nanocomposite was prepared by sonochemical and oxidative polymerization simple way, in which Cu 2 O was decorated with Ag nanoparticles, and covered by polyprrole (PPy) layer. The as prepared materials was characterized by UV-vis-spectroscopy (UV-vis), FT-IR, X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM) with EDX, high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Sensing of serotonin (5HT) was evaluated electrocatalyst using polypyrrole/glassy carbon electrode (PPy/GCE), polypyrrole/copper oxide/glassy carbon electrode (PPy/Cu 2 O/GCE) and silver/polypyrrole/copper oxide/glassy carbon electrode (Ag/PPy/Cu 2 O/GCE). The Ag/PPy/Cu 2 O/GCE was electrochemically treated in 0.1MPBS solution through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The peak current response increases linearly with 5-HT concentration from 0.01 to 250 µmol L -1 and the detection limit was found to be 0.0124 μmol L -1 . It exhibits high electrocatalytic activity, satisfactory repeatability, stability, fast response and good selectivity against potentially interfering species, which suggests its potential in the development of sensitive, selective, easy-operation and low-cost serotonin sensor for practical routine analyses. The proposed method is potential to expand the possible applied range of the nanocomposite material for detection of various concerned electro active substances. Copyright © 2018 Elsevier B.V. All rights reserved.
Akter, Rashida; Jeong, Bongjin; Choi, Jong-Soon; Rahman, Md Aminur
2016-06-15
An ultrasensitive electrochemical nanostructured immunosensor for a breast cancer biomarker carbohydrate antigen 15-3 (CA 15-3) was fabricated using non-covalent functionalized graphene oxides (GO/Py-COOH) as sensor probe and multiwalled carbon nanotube (MWCNTs)-supported numerous ferritin as labels. The immunosensor was constructed by immobilizing a monoclonal anti-CA 15-3 antibody on the GO modified cysteamine (Cys) self-assembled monolayer (SAM) on an Au electrode (Au/Cys) through the amide bond formation between the carboxylic acid groups of GO/Py-COOH and amine groups of anti-CA 15-3. Secondary antibody conjugated MWCNT-supported ferritin labels (Ab2-MWCNT-Ferritin) were prepared through the amide bond formation between amine groups of Ab2 and ferritin and carboxylic acid groups of MWCNTs. The detection of CA 15-3 was based on the enhanced bioelectrocatalytic reduction of hydrogen peroxide mediated by hydroquinone (HQ) at the GO/Py-COOH-based sensor probe. The GO/Py-COOH-based sensor probe and Ab2-MWCNT-Ferritin labels were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), transmission electron microscope (TEM), and x-ray photoelectron spectroscopy (XPS) techniques. Using differential pulse voltammetry (DPV) technique, CA 15-3 can be selectively detected as low as 0.01 ± 0.07 U/mL in human serum samples. Additionally, the proposed CA 15-3 immunosensor showed excellent selectivity and better stability in human serum samples, which demonstrated that the proposed immunosensor has potentials in proteomic researches and diagnostics. Copyright © 2016 Elsevier B.V. All rights reserved.
Jin, Hui; Gui, Rijun; Yu, Jianbo; Lv, Wei; Wang, Zonghua
2017-05-15
Previously developed electrochemical biosensors with single-electric signal output are probably affected by intrinsic and extrinsic factors. In contrast, the ratiometric electrochemical biosensors (RECBSs) with dual-electric signal outputs have an intrinsic built-in correction to the effects from system or background electric signals, and therefore exhibit a significant potential to improve the accuracy and sensitivity in electrochemical sensing applications. In this review, we systematically summarize the fabrication strategies, sensing modes and analytical applications of RECBSs. First, the different fabrication strategies of RECBSs were introduced, referring to the analytes-induced single- and dual-dependent electrochemical signal strategies for RECBSs. Second, the different sensing modes of RECBSs were illustrated, such as differential pulse voltammetry, square wave voltammetry, cyclic voltammetry, alternating current voltammetry, electrochemiluminescence, and so forth. Third, the analytical applications of RECBSs were discussed based on the types of target analytes. Finally, the forthcoming development and future prospects in the research field of RECBSs were also highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.
Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes.
Hudari, Felipe F; Bessegato, Guilherme G; Bedatty Fernandes, Flávio C; Zanoni, Maria V B; Bueno, Paulo R
2018-06-19
TiO 2 nanotube electrodes were self-doped by electrochemical cathodic polarization, potentially converting Ti 4+ into Ti 3+ , and thereby increasing both the normalized conductance and capacitance of the electrodes. One-hundred (from 19.2 ± 0.1 μF cm -2 to 1.9 ± 0.1 mF cm -2 for SD-TNT) and two-fold (from ∼6.2 to ∼14.4 mS cm -2 ) concomitant increases in capacitance and conductance, respectively, were achieved in self-doped TiO 2 nanotubes; this was compared with the results for their undoped counterparts. The increases in the capacitance and conductance indicate that the Ti 3+ states enhance the density of the electronic states; this is attributed to an existing relationship between the conductance and capacitance for nanoscale structures built on macroscopic electrodes. The ratio between the conductance and capacitance was used to detect and quantify, in a reagentless manner, the triamterene (TRT) diuretic by designing an appropriate doping level of TiO 2 nanotubes. The sensitivity was improved when using immittance spectroscopy (Patil et al. Anal. Chem. 2015, 87, 944-950; Bedatty Fernandes et al. Anal. Chem. 2015, 87, 12137-12144) (2.4 × 10 6 % decade -1 ) compared to cyclic voltammetry (5.8 × 10 5 % decade -1 ). Furthermore, a higher linear range from 0.5 to 100 μmol L -1 (5.0 to 100 μmol L -1 for cyclic voltammetry measurements) and a lower limit-of-detection of approximately 0.2 μmol L -1 were achieved by using immittance function methodology (better than the 4.1 μmol L -1 obtained by using cyclic voltammetry).
NASA Astrophysics Data System (ADS)
Samin, Adib; Wu, Evan; Zhang, Jinsuo
2017-02-01
Pyroprocessing technology is a promising tool for recycling nuclear fuel and producing high purity gadolinium for industrial applications. An efficient implementation of pyroprocessing entails a careful characterization of the electrochemical and transport properties of lanthanides in high temperature molten salts. In this work, the cyclic voltammetry signals of Gd in molten LiCl-KCl salt were recorded for a combination of three temperatures (723 K, 773 K, and 823 K) and three concentration levels (3 wt. %, 6 wt. %, and 9 wt. %) including concentration levels higher than previously reported and relevant for a realistic application of pyroprocessing for molten salt recycle, and the concentration effects were investigated. Four scan rates (200 mV/s to 500 mV/s) were used for each condition, and the signals were examined using conventional Cyclic Voltammetry (CV) analysis equations and by utilizing a two-plate Brunauer, Emmett, and Teller (BET) model accounting for mass diffusion, kinetics, adsorption, and the evolution of electrode morphology via a nonlinear least squares procedure for fitting the model to the experimental signals. It was determined that the redox process is quasi-reversible for the scan rates being used. Furthermore, the applicability of the conventional equations for CV analysis was shown to be problematic for the conditions used, and this is thought to be due to the fact that these equations were derived under the assumption of reversible conditions. The model-derived values for diffusivity are consistent with the literature and are shown to decrease with increasing concentration. This may be due to increased interactions at higher concentration levels. It was also shown that the formal redox potential increased with a concentration and was slightly more positive on the covered electrode.
Role of Au(NPs) in the enhanced response of Au(NPs)-decorated MWCNT electrochemical biosensor
Mehmood, Shahid; Ciancio, Regina; Carlino, Elvio; Bhatti, Arshad S
2018-01-01
Background The combination of Au-metallic-NPs and CNTs are a new class of hybrid nanomaterials for the development of electrochemical biosensor. Concentration of Au(nanoparticles [NPs]) in the electrochemical biosensor is crucial for the efficient charge transfer between the Au-NPs-MWCNTs modified electrode and electrolytic solution. Methods In this work, the charge transfer kinetics in the glassy carbon electrode (GCE) modified with Au(NPs)–multiwalled carbon nanotube (MWCNT) nanohybrid with varied concentrations of Au(NPs) in the range 40–100 nM was studied using electrochemical impedance spectroscopy (EIS). Field emission scanning electron microscopy and transmission electron microscopy confirmed the attachment of Au(NPs) on the surface of MWCNTs. Results The cyclic voltammetry and EIS results showed that the charge transfer mechanism was diffusion controlled and the rate of charge transfer was dependent on the concentration of Au(NPs) in the nanohybrid. The formation of spherical diffusion zone, which was dependent on the concentration of Au(NPs) in nanohybrids, was attributed to result in 3 times the increase in the charge transfer rate ks, 5 times increase in mass transfer, and 5% (9%) increase in Ipa (Ipc) observed in cyclic voltammetry in 80 nM Au(NP) nanohybrid-modified GCE from MWCNT-modified GCE. The work was extended to probe the effect of charge transfer rates at various concentrations of Au(NPs) in the nanohybrid-modified electrodes in the presence of Escherichia coli. The cyclic voltammetry results clearly showed the best results for 80 nM Au(NPs) in nanohybrid electrode. Conclusion The present study suggested that the formation of spherical diffusion zone in nanohybrid-modified electrodes is critical for the enhanced electrochemical biosensing applications. PMID:29713161
Shoji, Taku; Araki, Takanori; Sugiyama, Shuhei; Ohta, Akira; Sekiguchi, Ryuta; Ito, Shunji; Okujima, Tetsuo; Toyota, Kozo
2017-02-03
Tetrathiafulvalene (TTF) derivatives with 2-azulenyl substituents 5-11 were prepared by the palladium-catalyzed direct arylation reaction of 2-chloroazulenes with TTF in good yield. Photophysical properties of these compounds were investigated by UV-vis spectroscopy and theoretical calculations. Redox behavior of the novel azulene-substituted TTFs was examined by using cyclic voltammetry and differential pulse voltammetry, which revealed their multistep electrochemical oxidation and/or reduction properties. Moreover, these TTF derivatives showed significant spectral change in the visible region under the redox conditions.
Electrochemical evaluation of sweet sorghum fermentable sugar bioenergy feedstock
USDA-ARS?s Scientific Manuscript database
Redox active constituents of sorghum, e.g., anthocyanin, flavonoids, and aconitic acid, putatively contribute to its pest resistance. Electrochemical reactivity of sweet sorghum stem juice was evaluated using cyclic voltammetry (CV) for five male (Atlas, Chinese, Dale, Isidomba, N98) and three fema...
Variable Effect during Polymerization
ERIC Educational Resources Information Center
Lunsford, S. K.
2005-01-01
An experiment performing the polymerization of 3-methylthiophene(P-3MT) onto the conditions for the selective electrode to determine the catechol by using cyclic voltammetry was performed. The P-3MT formed under optimized conditions improved electrochemical reversibility, selectivity and reproducibility for the detection of the catechol.
Kudr, Jiri; Richtera, Lukas; Nejdl, Lukas; Xhaxhiu, Kledi; Vitek, Petr; Rutkay-Nedecky, Branislav; Hynek, David; Kopel, Pavel; Adam, Vojtech; Kizek, Rene
2016-01-01
Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained. PMID:28787832
Stevenson, Gareth P; Baker, Ruth E; Kennedy, Gareth F; Bond, Alan M; Gavaghan, David J; Gillow, Kathryn
2013-02-14
The potential-dependences of the rate constants associated with heterogeneous electron transfer predicted by the empirically based Butler-Volmer and fundamentally based Marcus-Hush formalisms are well documented for dc cyclic voltammetry. However, differences are often subtle, so, presumably on the basis of simplicity, the Butler-Volmer method is generally employed in theoretical-experimental comparisons. In this study, the ability of Large Amplitude Fourier Transform AC Cyclic Voltammetry to distinguish the difference in behaviour predicted by the two formalisms has been investigated. The focus of this investigation is on the difference in the profiles of the first to sixth harmonics, which are readily accessible when a large amplitude of the applied ac potential is employed. In particular, it is demonstrated that systematic analysis of the higher order harmonic responses in suitable kinetic regimes provides predicted deviations of Marcus-Hush from Butler-Volmer behaviour to be established from a single experiment under conditions where the background charging current is minimal.
NASA Astrophysics Data System (ADS)
de Brito, A. C. F.; Correa, R. S.; Pinto, A. A.; Matos, M. J. S.; Tenorio, J. C.; Taylor, J. G.; Cazati, T.
2018-07-01
Isoxazoles have well established biological activities but, have been underexplored as synthetic intermediates for applications in materials science. The aims of this work are to synthesis a novel isoxazole and analyze its structural and photophysical properties for application in electronic organic materials. The novel bis (phenylisoxazolyl) benzene compound was synthesized in four steps and characterized by NMR, high resolution mass spectrometry, differential thermal analysis, infrared spectroscopy, cyclic voltammetry, ultraviolet-visible spectroscopy, fluorescence spectroscopy, DFT and TDDFT calculations. The molecule presented optical absorption in the ultraviolet region (from 290 nm to 330 nm), with maximum absorption length centered at 306 nm. The molar extinction coefficients (ε), fluorescence emission spectra and quantum efficiencies in chloroform and dimethylformamide solution were determined. Cyclic voltammetry analysis was carried out for estimating the HOMO energy level and these properties make it desirable material for photovoltaic device applications. Finally, the excited-state properties of present compound were calculated by time-dependent density functional theory (TDDFT).
Cyclic voltammetry of fast conducting electrocatalytic films.
Costentin, Cyrille; Savéant, Jean-Michel
2015-07-15
In the framework of contemporary energy challenges, cyclic voltammetry is a particularly useful tool for deciphering the kinetics of catalytic films. The case of fast conducting films is analyzed, whether conduction is of the ohmic type or proceeds through rapid electron hopping. The rate-limiting factors are then the diffusion of the substrate in solution and through the film as well as the catalytic reaction itself. The dimensionless combination of the characteristics of these factors allows reducing the number of actual parameters to a maximum of two. The kinetics of the system may then be fully analyzed with the help of a kinetic zone diagram. Observing the variations of the current-potential responses with operational parameters such as film thickness, the potential scan rate and substrate concentration allows a precise assessment of the interplay between these factors and of the values of the rate controlling factors. A series of thought experiments is described in order to render the kinetic analysis more palpable.
Cyclic voltammetry to evaluate the antioxidant potential in winemaking by-products.
José Jara-Palacios, M; Luisa Escudero-Gilete, M; Miguel Hernández-Hierro, J; Heredia, Francisco J; Hernanz, Dolores
2017-04-01
Grape pomace is composed of seeds, skins and stems that are an important source of phenolic substances, which have antioxidant properties and potential benefits to human health. Cyclic voltammetry (CV) has been used to measure the total antioxidant potential of different winemaking by-products. The electrochemical behavior of pomace, seeds, skins and stems was measured by CV and lipid peroxidation inhibition by thiobarbituric acid reactive substances (TBARS) method. Differences for the electrochemical parameter were found between the by-products, pomace and seeds, which presented the greatest voltammetric peak area. Furthermore, the by-products induced inhibition of lipid peroxidation in rat liver homogenates. Pomace and seeds showed higher capacity to inhibit lipid peroxidation than stems and skins, which could be because these by-products are richer in flavanols. Simple regression analyses showed that voltammetric parameters are highly correlated to the values obtained for lipid peroxidation inhibition. CV is a promising technique to estimate the total antioxidant potential of phenolic extract from winemaking by-products. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; Macomber, C.; Dinh, H. N.
2012-07-01
Using electrochemical cyclic voltammetry as a quick ex-situ screening tool, the impact of the extracted solution and the individual leachable constituents from prospective BOP component materials on the performance and recoverability of the platinum catalyst were evaluated. Taking an extract from Zytel{trademark} HTN51G35HSLR (PPA) as an example, the major leachable organic components are caprolactam and 1,6 hexanediol. While these organic compounds by themselves do poison the Pt catalyst to some extent, such influence is mostly recoverable by means of potential holding and potential cycling. The extracted solution, however, shows a more drastic poisoning effect and it was not recoverable. Thereforemore » the non-recoverable poisoning effect observed for the extracted solution is not from the two organic species studied. This demonstrates the complexity of such a contaminant study. Inorganic compounds that are known poisons like sulfur even in very low concentrations, may have a more dominant effect on the Pt catalyst and the recoverability.« less
Wang, Xinghao; Liu, Jiaoqin; Qu, Ruijuan; Wang, Zunyao; Huang, Qingguo
2017-08-10
Nanostructured manganese oxides, e.g. MnO 2 , have shown laccase-like catalytic activities, and are thus promising for pollutant oxidation in wastewater treatment. We have systematically compared the laccase-like reactivity of manganese oxide nanomaterials of different crystallinity, including α-, β-, γ-, δ-, and ɛ-MnO 2 , and Mn 3 O 4 , with 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) and 17β-estradiol (E2) as the probing substrates. The reaction rate behaviors were examined with regard to substrate oxidation and oxygen reduction to evaluate the laccase-like catalysis of the materials, among which γ-MnO 2 exhibits the best performance. Cyclic voltammetry (CV) was employed to assess the six MnO x nanomaterials, and the results correlate well with their laccase-like catalytic activities. The findings help understand the mechanisms of and the factors controlling the laccase-like reactivity of different manganese oxides nanomaterials, and provide a basis for future design and application of MnO x -based catalysts.
NASA Astrophysics Data System (ADS)
Bellanger, G.; Rameau, J. J.
1996-02-01
This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive -transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique.
NASA Astrophysics Data System (ADS)
Zhou, Haihan; Han, Gaoyi; Chang, Yunzhen; Fu, Dongying; Xiao, Yaoming
2015-01-01
A facile and feasible electrochemical polymerization method has been used to construct the multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (MWCNTs@PEDOT/PSS) core-shell composites with three-dimensional (3D) porous nano-network microstructure. The composites are characterized with Fourier transform infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This special core-shell nanostructure can significantly reduce the ions diffusion distance and the 3D porous nano-network microstructure effectively enlarges the electrode/electrolyte interface. The electrochemical tests including cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy tests are performed, the results manifest the MWCNTs@PEDOT/PSS core-shell composites have superior capacitive behaviors and excellent cyclic stability, and a high areal capacitance of 98.1 mF cm-2 is achieved at 5 mV s-1 cyclic voltammetry scan. Furthermore, the MWCNTs@PEDOT/PSS composites exhibit obviously superior capacitive performance than that of PEDOT/PSS and PEDOT/Cl electrodes, indicating the effective composite of MWCNTs and PEDOT noticeably boosts the capacitive performance of PEDOT-based electrodes for electrochemical energy storage. Such a highly stable core-shell 3D network structural composite is very promising to be used as electrode materials for the high-performance electrochemical capacitors.
Leuna, Jules-Blaise Mabou; Sop, Sergeot Kungo; Makota, Suzanne; Njanja, Evangeline; Ebelle, Thiery Christophe; Azebaze, Anatole Guy; Ngameni, Emmanuel; Nassi, Achille
2018-02-01
The electrochemical oxidation of Mammeisin (MA) was studied in a solution containing acetone and 0.1M phosphate buffer +0.1M KCl (pH=5.3) at a glassy carbon electrode (GCE), using cyclic (CV) and square wave voltammetry (SWV). MA showed a quasi-reversible process, which is pH dependent and that involves the exchange of two electrons and two protons. The oxidation product was adsorbed by the electrode surface to form a film that blocks active sites over repetitive cyclic. Moreover, the interaction of MA and bovine serum albumin (BSA) was studied by CV and SWV at different pHs (5.4, 7.2, 9.5). As a result of the affinity binding with BSA, electrochemically inactive complex was formed. In addition, the oxidation potential of MA in the presence of BSA depends on the pH. The diffusion coefficients of both free and bound MA were estimated from the cyclic voltammetry data using the method developed by Randles-Sevich (D f =9.85×10 -5 cm 2 s -1 and D b =1.27×10 -9 cm 2 s -1 ) and the binding constant of MA-BSA complex, K=3.47×10 2 Lmol -1 , was obtained. Copyright © 2017. Published by Elsevier B.V.
Cyclic voltammetry of apple fruits: Memristors in vivo.
Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Blockmon, Avery L; Reedus, Jada; Volkova, Maya I
2016-12-01
A memristor is a resistor with memory that exhibits a pinched hysteretic relationship in cyclic voltammetry. Recently, we have found memristors in the electrical circuitry of plants and seeds. There are no publications in literature about the possible existence of memristors and electrical differentiators in fruits. Here we found that the electrostimulation of Golden Delicious or Arkansas Black apple fruits by bipolar periodic waves induces hysteresis loops with pinched points in cyclic voltammograms at low frequencies between 0.1MHz and 1MHz. At high frequencies of 1kHz, the pinched hysteresis loop transforms to a non-pinched hysteresis loop instead of a single line I=V/R for ideal memristors because the amplitude of electrical current depends on capacitance of a fruit's tissue and electrodes, frequency and direction of scanning. Electrostimulation of electrical circuits in apple fruits by periodic voltage waves also induces electrotonic potential propagation due to cell-to-cell electrical coupling with electrical differentiators. A differentiator is an electrical circuit in which the output of the circuit is approximately directly proportional to the rate of change of the input. The information gained from electrostimulation can be used to elucidate and to observe electrochemical and electrophysiological properties of electrical circuits in fruits. Copyright © 2016 Elsevier B.V. All rights reserved.
Assessing the Electrochemical Behavior of Microcontact-Printed Silver Nanogrids
ERIC Educational Resources Information Center
Sanders, Wesley C.; Iles, Peter; Valcarce, Ron; Salisbury, Kyle; Johnson, Glen; Lines, Aubry; Meyers, John; Page, Cristofer; Vanweerd, Myles; Young, Davies
2018-01-01
This paper describes a laboratory exercise used to address the ongoing need for nanotechnology-related, hands-on laboratory experiences for undergraduate students. Determination of the electrochemical behavior of student-fabricated silver nanogrids is reported. Students successfully used cyclic voltammetry to analyze silver nanogrids printed using…
Hasanzadeh, Mohammad; Mokhtari, Fozieh; Jouyban-Gharamaleki, Vahid; Mokhtarzadeh, Ahad; Shadjou, Nasrin
2018-04-15
This study reports on the electropolymerization of a low toxic and biocompatible nanopolymer with entitle poly arginine-graphene quantum dots-chitosan (PARG-GQDs-CS) as a novel strategy for surface modification of glassy carbon surface and preparation of a new interface for measurement of malondialdehyde (MDA) in exhaled breath condensate. Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of GQDs-CS nanostructures on a PARG prepolymerized on the surface of glassy carbon electrode using cyclic voltammetry techniques in the regime of -1.5 to 2 V. The modified electrode appeared as an effective electroactivity for detection of MDA by using cyclic voltammetry, linear sweep voltammetry, and differential pulse voltammetry. The prepared modified electrode demonstrated a noticeably good activity for electrooxidation of MDA than PARG. Enhancement of peak currents is ascribed to the fast heterogeneous electron transfer kinetics that arise from the synergistic coupling between the excellent properties of PARG and semiconducting polymer, GQDs as high density of edge plane sites and subtle electronic characteristics and unique properties of CS such as excellent film-forming ability, high permeability, good adhesion, nontoxicity, cheapness, and a susceptibility to chemical modification. The prepared sensor showed 1 oxidation processes for MDA at potentials about 1 V with a low limit of quantification 5.94 nM. Finally, application of new sensor for determination of MDA in exhaled breath condensate was suited. In general, the simultaneous attachment of GQDs and CS to structure of poly amino acids provides new opportunities within the personal healthcare. Copyright © 2018 John Wiley & Sons, Ltd.
Pt/glassy carbon model catalysts prepared from PS-b-P2VP micellar templates.
Gu, Yunlong; St-Pierre, Jean; Ploehn, Harry J
2008-11-04
Poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer was used as a micellar template to fabricate arrays of Pt nanoparticles on mica and glassy carbon (GC) supports. Polymer micellar deposition yields Pt nanoparticles with tunable particle size and surface number density on both mica and GC. After deposition of precursor-loaded micelles onto GC, oxygen plasma etching removes the polymer shell, followed by thermal treatment with H2 gas to reduce the Pt. Etching conditions were optimized to maximize removal of the polymer while minimizing damage to the GC. Arrays of Pt nanoparticles with controlled size and surface number density can be prepared on mica (for particle size characterization) and GC to make Pt/GC model catalysts. These model catalysts were characterized by tapping mode atomic force microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry to measure activity for oxidation of carbon monoxide or methanol. Cyclic voltammetry results demonstrate the existence of a correlation between Pt particle size and electrocatalytic properties including onset potential, tolerance of carbonaceous adsorbates, and intrinsic activity (based on active Pt area from CO stripping voltammetry). Results obtained with Pt/GC model catalysts duplicate prior results obtained with Pt/porous carbon catalysts therefore validating the synthesis approach and offering a new, tunable platform to study catalyst structure and other effects such as aging on proton exchange membrane fuel cell (PEMFC) reactions.
Lugo-Morales, Leyda Z; Loziuk, Philip L; Corder, Amanda K; Toups, J Vincent; Roberts, James G; McCaffrey, Katherine A; Sombers, Leslie A
2013-09-17
Neurotransmission occurs on a millisecond time scale, but conventional methods for monitoring nonelectroactive neurochemicals are limited by slow sampling rates. Despite a significant global market, a sensor capable of measuring the dynamics of rapidly fluctuating, nonelectroactive molecules at a single recording site with high sensitivity, electrochemical selectivity, and a subsecond response time is still lacking. To address this need, we have enabled the real-time detection of dynamic glucose fluctuations in live brain tissue using background-subtracted, fast-scan cyclic voltammetry. The novel microbiosensor consists of a simple carbon fiber surface modified with an electrodeposited chitosan hydrogel encapsulating glucose oxidase. The selectivity afforded by voltammetry enables quantitative and qualitative measurements of enzymatically generated H2O2 without the need for additional strategies to eliminate interfering agents. The microbiosensors possess a sensitivity and limit of detection for glucose of 19.4 ± 0.2 nA mM(-1) and 13.1 ± 0.7 μM, respectively. They are stable, even under deviations from physiological normoxic conditions, and show minimal interference from endogenous electroactive substances. Using this approach, we have quantitatively and selectively monitored pharmacologically evoked glucose fluctuations with unprecedented chemical and spatial resolution. Furthermore, this novel biosensing strategy is widely applicable to the immobilization of any H2O2 producing enzyme, enabling rapid monitoring of many nonelectroactive enzyme substrates.
Regiart, Matías; Fernández-Baldo, Martin A; Villarroel-Rocha, Jhonny; Messina, Germán A; Bertolino, Franco A; Sapag, Karim; Timperman, Aaron T; Raba, Julio
2017-04-22
We report a hybrid glass-poly (dimethylsiloxane) microfluidic immunosensor for epidermal growth factor receptor (EGFR) determination, based on the covalent immobilization of anti-EGFR antibody (anti-EGFR) on amino-functionalized mesoporous silica (AMS) retained in the central channel of a microfluidic device. The synthetized AMS was characterized by N 2 adsorption-desorption isotherm, scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and infrared spectroscopy. The cancer biomarker was quantified in human serum samples by a direct sandwich immunoassay measuring through a horseradish peroxidase-conjugated anti-EGFR. The enzymatic product was detected at -100 mV by amperometry on a sputtering gold electrode, modified with an ordered mesoporous carbon (CMK-3) in a matrix of poly-acrylamide-co-methacrylate of dihydrolipoic acid (poly(AC-co-MDHLA)) through in situ copolymerization. CMK-3/poly(AC-co-MDHLA)/gold was characterized by cyclic voltammetry, EDS and SEM. The measured current was directly proportional to the level of EGFR in human serum samples. The linear range was from 0.01 ng mL -1 to 50 ng mL -1 . The detection limit was 3.03 pg mL -1 , and the within- and between-assay coefficients of variation were below 5.20%. The microfluidic immunosensor is a very promising device for the diagnosis of several kinds of epithelial origin carcinomas. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.
2018-01-01
The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.
Synthesis and characterization of germa[n]pericyclynes.
Tanimoto, Hiroki; Nagao, Tomohiko; Nishiyama, Yasuhiro; Morimoto, Tsumoru; Iseda, Fumiyasu; Nagato, Yuko; Suzuka, Toshimasa; Tsutsumi, Ken; Kakiuchi, Kiyomi
2014-06-14
The synthesis and characterization of novel pericyclynes comprising germanium atoms and acetylenes, germa[n]pericyclynes, are described. The prepared germa[4]-, [6]-, and [8]pericyclynes were compared by (13)C NMR spectroscopy, X-ray crystallography, cyclic voltammetry, UV-visible spectroscopy, fluorescence emission spectroscopy, Raman spectroscopy, and density functional theory calculation analyses.
Surface pK(sub a) of Self-Assembled Monolayers
ERIC Educational Resources Information Center
Hale, Penny S.; Maddox, Leone M.; Shapter, Joe G.
2005-01-01
The difference between solution and surface properties such as pK(sub a) is illustrated enabling students to understand the differences between nanoscale and macroscopic systems. Details regarding the usage of electrochemical instrumentation, such as a potentiostat, and of the technique such as cyclic voltammetry are given.
Cyclic voltammetry was used qualitatively to characterize and determine the feasibility of the oxidation and reduction of selected organic peroxides and hydroperoxides at a glassy carbon electrode. Organic peroxides were determined using reversed-phase high-performance liquid chr...
Electrochemical detection of Hg (II) ions using EDTA-PANI/SWNTs nanocomposite modified SS electrode
NASA Astrophysics Data System (ADS)
Deshmukh, M. A.; Patil, H. K.; Shirsat, M. D.; Ramanavicius, A.
2017-05-01
Detection of Hg (II) ions using EDTA modified polyaniline (PANI) and single walled carbon nanotubes (SWNTs) nanocomposite (PANI/SWNTs) was performed electrochemically via cyclic voltammetry (CV) technique. Dodecyl benzene sulphonic next step, PANI/SWNTs nanocomposite was modified acid sodium salt (DBSA) was used as a surfactant during this synthesis to get uniform suspension SWNTs. In the by EDTA solution containing crosslinking agent 1-ethyl-3(3-(dimethylamino) propyl) - carbodiimide (EDC) utilizing dip coating technique. The sensitivity of EDTA modified PANI/SWNTs nanocomposite towards Hg (II) ions was investigated. Differential pulse voltammetry (DPV) technique was applied for the electrochemical detection of Hg (II) ions.
Synthesis and characterization of graphene quantum dots-silver nanocomposites
NASA Astrophysics Data System (ADS)
Vandana, M.; Ashokkumar, S. P.; Vijeth, H.; Niranjana, M.; Yesappa, L.; Devendrappa, H.
2018-04-01
A facile microwave assisted hydrothermal method is used to synthesise glucose derived water soluble crystalline graphene quantum dots (GQDs) andcitrate reduction method was used to synthesized silver nanoparticles (SNPs). The formation of graphene quantum dots-silver nanocomposites (GSC) was synthesized through a simple refluxing process and characterised using Fourier Transform Infrared (FT-IR) to study the chemical interaction, Surface morphology using FESEM, Optical properties were studied using UV-Visible spectroscopy. The absorption band shows at 249, 306 and 447 nm confirms the formation of GQDs and GSC. The electrochemical performance of GSC tested to determine the oxidation/reduction processes by cyclic voltammetry and linear sweep voltammetry.
Non-Kinetic Losses Caused by Electrochemical Carbon Corrosion in PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Seh Kyu; Shao, Yuyan; Viswanathan, Vilayanur V.
2012-05-01
This paper presented non-kinetic losses in PEM fuel cells under an accelerated stress test of catalyst support. The cathode with carbon-supported Pt catalyst was prepared and characterized with potential hold at 1.2 V vs. SHE in PEM fuel cells. Irreversible losses caused by carbon corrosion were evaluated using a variety of electrochemical characterizations including cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy, and polarization technique. Ohmic losses at the cathode with potential hold were determined using its capacitive responses. Concentration losses in PEM fuel cells were analyzed in terms of Tafel behavior and thin film/flooded-agglomerate dynamics.
Electrochemical supramolecular recognition of hemin-carbon composites
NASA Astrophysics Data System (ADS)
Le, Hien Thi Ngoc; Jeong, Hae Kyung
2018-04-01
Hemin-graphite oxide-carbon nanotube (hemin-GO-CNT) and hemin-thermally reduced graphite oxide-carbon nanotube (hemin-TRGO-CNT) composites are synthesized and investigated for the electrochemical supramolecular recognition by electron transfer between biomolecules (dopamine and hydrogen peroxide) and the composite electrodes. Redox reaction mechanisms of two composites with dopamine and hydrogen peroxide are explained in detail by using cyclic voltammetry and differential pulse voltammetry. Hemin-TRGO-CNT displays higher electrochemical detection for dopamine and hydrogen peroxide than that of hemin-GO-CNT, exhibiting enhancement of the electron transfer due to the effective immobilization of redox couple of hemin (Fe2+/Fe3+) on the TRGO-CNT surface.
Pulse-voltammetric glucose detection at gold junction electrodes.
Rassaei, Liza; Marken, Frank
2010-09-01
A novel glucose sensing concept based on the localized change or "modulation" in pH within a symmetric gold-gold junction electrode is proposed. A paired gold-gold junction electrode (average gap size ca. 500 nm) is prepared by simultaneous bipotentiostatic electrodeposition of gold onto two closely spaced platinum disk electrodes. For glucose detection in neutral aqueous solution, the potential of the "pH-modulator" electrode is set to -1.5 V vs saturated calomel reference electrode (SCE) to locally increase the pH, and simultaneously, either cyclic voltammetry or square wave voltammetry experiments are conducted at the sensor electrode. A considerable improvement in the sensor electrode response is observed when a normal pulse voltammetry sequence is applied to the modulator electrode (to generate "hydroxide pulses") and the glucose sensor electrode is operated with fixed bias at +0.5 V vs SCE (to eliminate capacitive charging currents). Preliminary data suggest good linearity for the glucose response in the medically relevant 1-10 mM concentration range (corresponding to 0.18-1.8 g L(-1)). Future electroanalytical applications of multidimensional pulse voltammetry in junction electrodes are discussed.
Hoyos-Arbeláez, Jorge; Vázquez, Mario; Contreras-Calderón, José
2017-04-15
The growing interest in functional foods had led to the use of analytical techniques to quantify some properties, among which is the antioxidant capacity (AC). In order to identify and quantify this capacity, some techniques are used, based on synthetic radicals capture; and they are monitored by UV-vis spectrophotometry. Electrochemical techniques are emerging as alternatives, given some of the disadvantages faced by spectrophotometric methods such as the use of expensive reagent not environmentally friendly, undefined reaction time, long sample pretreatment, and low precision and sensitivity. This review focuses on the four most commonly used electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, square wave voltammetry and chronoamperometry). Some of the applications to determine AC in foods and beverages are presented, as well as the correlation between both spectrophotometric and electrochemical techniques that have been reported. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jia, Hongmei; Chang, Gang; Lei, Ming; He, Hanping; Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie; He, Yunbin
2016-10-01
Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the oxidation of glucose because of excellent synergetic effects between gold and platinum species and the increased electrochemical active area from Pt nanoparticles loading. The non-enzymatic glucose biosensor based on Pt/DGNs/GC showed a rapid respond time (within 2 s), wide linear range (from 0.1 mM to 14 mM), low detection limit (0.01 mM), supernal sensitivity (275.44 μA cm-2 mM-1, R = 0.993), satisfactory reproducibility and good stability for glucose sensing. It was demonstrated that Pt/DGNs/GC could work as promising candidate for factual non-enzymatic glucose detection.
NASA Astrophysics Data System (ADS)
Saleem, Junaid; Safdar Hossain, SK.; Al-Ahmed, Amir; Rahman, Ateequr; McKay, Gordon; Hossain, Mohammed M.
2018-04-01
In this work, CeO2-modified Pd/CeO2-carbon nanotube (CNT) electrocatalyst for the electro-oxidation of formic acid has been investigated. The support CNT was first modified with different amounts (5-30 wt.%) of CeO2 using a precipitation-deposition method. The electrocatalysts were developed by dispersing Pd on the CeO2-CNT supports using the borohydride reduction method. The synthesized electrocatalysts were analyzed for composition, morphology and electronic structure using x-ray diffraction (XRD), scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) techniques. The formation of Pd nanoparticles on the CeO2-CNT support was confirmed using TEM. The activity of Pd/CeO2-CNT and of Pd-CNT samples upon oxidation of formic acid was evaluated by using carbon monoxide stripping voltammetry, cyclic voltammetry, and chronoamperometry. The addition of moderate amounts of cerium oxide (up to 10 wt.%) significantly improved the activity of Pd/CeO2-CNT compared to the unmodified Pd-CNT. Pd/10 wt.% CeO2-CNT showed a current density of 2 A mg-1, which is ten times higher than that of the unmodified Pd-CNT (0.2 A mg-1). Similarly, the power density obtained for Pd/10 wt.% CeO2-CNT in an air-breathing formic acid fuel cell was 6.8 mW/cm2 which is two times higher than Pd-CNT (3.2 mW/cm2), thus exhibiting the promotional effects of CeO2 to Pd/CeO2-CNT. A plausible justification for the improved catalytic performance and stability is provided in the light of the physical characterization results.
Giribabu, Krishnamoorthy; Suresh, Ranganathan; Manigandan, Ramadoss; Munusamy, Settu; Kumar, Sivakumar Praveen; Muthamizh, Selvamani; Narayanan, Vengidusamy
2013-10-07
A poly(methylene blue)-modified glassy carbon electrode (PMB/GCE) was fabricated by electropolymerisation of methylene blue on a GCE and further utilized to investigate the electrochemical determination of 4-nitrophenol (4-NP) by cyclic voltammetry (CV), differential pulse voltammetry and chronocoulometry. The morphology of the PMB on GCE was examined using a scanning electron microscope (SEM). An oxidation peak of 4-NP at the PMB modified electrode was observed at 0.28 V, and in the case of bare GCE, no oxidation peak was observed, which indicates that PMB/GCE exhibits a remarkable effect on the electrochemical determination of 4-NP. Due to this remarkable effect of PMB/GCE, a sensitive and simple electrochemical method was proposed for the determination of 4-NP. The effect of the scan rate and pH was investigated to determine the optimum conditions at which the PMB/GCE exhibits a higher sensitivity with a lower detection limit. Moreover, kinetic parameters such as the electron transfer number, proton transfer number and standard heterogeneous rate constant were calculated. Under optimum conditions, the oxidation current of 4-NP is proportional to its concentration in the range of 15-250 nM with a correlation coefficient of 0.9963. The detection limit was found to be 90 nM (S/N = 3). The proposed method based on PMB/GCE is simple, easy and cost effective. To further confirm its possible application, the proposed method was successfully used for the determination of 4-NP in real water samples with recoveries ranging from 97% to 101.6%. The interference due to sodium, potassium, calcium, magnesium, copper, zinc, iron, sulphate, carbonate, chloride, nitrate and phosphate was found to be almost negligible.
Gan, Ning; Yang, Xin; Xie, Donghua; Wu, Yuanzhao; Wen, Weigang
2010-01-01
A disposable organophosphorus pesticides (OPs) enzyme biosensor based on magnetic composite nanoparticle-modified screen printed carbon electrodes (SPCE) has been developed. Firstly, an acetylcholinesterase (AChE)-coated Fe3O4/Au (GMP) magnetic nanoparticulate (GMP-AChE) was synthesized. Then, GMP-AChE was absorbed on the surface of a SPCE modified by carbon nanotubes (CNTs)/nano-ZrO2/prussian blue (PB)/Nafion (Nf) composite membrane by an external magnetic field. Thus, the biosensor (SPCE│CNTs/ZrO2/PB/Nf│GMP-AChE) for OPs was fabricated. The surface of the biosensor was characterized by scanning electron micrography (SEM) and X-ray fluorescence spectrometery (XRFS) and its electrochemical properties were studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The degree of inhibition (A%) of the AChE by OPs was determined by measuring the reduction current of the PB generated by the AChE-catalyzed hydrolysis of acetylthiocholine (ATCh). In pH = 7.5 KNO3 solution, the A was related linearly to the concentration of dimethoate in the range from 1.0 × 10−3–10 ng·mL−1 with a detection limit of 5.6 × 10−4 ng·mL−1. The recovery rates in Chinese cabbage exhibited a range of 88%–105%. The results were consistent with the standard gas chromatography (GC) method. Compared with other enzyme biosensors the proposed biosensor exhibited high sensitivity, good selectivity with disposable, low consumption of sample. In particular its surface can be easily renewed by removal of the magnet. The convenient, fast and sensitive voltammetric measurement opens new opportunities for OPs analysis. PMID:22315558
Nantaphol, Siriwan; Watanabe, Takeshi; Nomura, Naohiro; Siangproh, Weena; Chailapakul, Orawon; Einaga, Yasuaki
2017-12-15
The enormous demand for medical diagnostics has encouraged the fabrication of high- performance sensing platforms for the detection of glucose. Nonenzymatic glucose sensors are coming ever closer to being used in practical applications. Bimetallic catalysts have been shown to be superior to single metal catalysts in that they have greater activity and selectivity. Here, we demonstrate the preparation, characterization, and electrocatalytic characteristics of a new bimetallic Pt/Au nanocatalyst. This nanocatalyst can easily be synthesized by electrodeposition by sequentially depositing Au and Pt on the surface of a boron-doped diamond (BDD) electrode. We characterized the nanocatalyst by scanning electron microscopy (SEM), X-ray diffraction (XRD), and voltammetry. The morphology and composition of the nanocatalyst can be easily controlled by adjusting the electrodeposition process and the molar ratio between the Pt and Au precursors. The electrocatalytic characteristics of a Pt/Au/BDD electrode for the nonenzymatic oxidation of glucose were systematically investigated by cyclic voltammetry. The electrode exhibits higher catalytic activity for glucose oxidation than Pt/BDD and Au/BDD electrodes. The best catalytic activity and stability was obtained with a Pt:Au molar ratio of 50:50. Moreover, the presence of Au can significantly enhance the long-term stability and poisoning tolerance during the electro-oxidation of glucose. Measurements of glucose using the Pt/Au/BDD electrode were linear in the range from 0.01 to 7.5mM, with a detection limit of 0.0077mM glucose. The proposed electrode performs selective electrochemical analysis of glucose in the presence of common interfering species (e.g., acetaminophen, uric and ascorbic acids), avoiding the generation of overlapping signals from such species. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.
2013-12-01
The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.
ERIC Educational Resources Information Center
Sur, Ujjal Kumar; Dhason, A.; Lakshminarayanan, V.
2012-01-01
A laboratory experiment is described in which students fabricate disk-shaped gold and platinum microelectrodes with diameters of 10-50 [mu]m by sealing sodalime glass with metal microwires. The electrodes are characterized by performing cyclic voltammetry in aqueous and acetonitrile solution. Commercial microelectrodes are expensive (cost depends…
Fuel Cell System Contaminants Material Screening Data | Hydrogen and Fuel
contaminants; solution conductivity; pH; total organic carbon (TOC); cyclic voltammetry (CV); membrane conductivity) and organics (measured as total organic carbon) in leachate solutions. Each plot shows the ) contaminants on voltage loss over time for each materials class. GCMS Summary: Top 4 Organic Compounds by
Discrimination of Inner- and Outer-Sphere Electrode Reactions by Cyclic Voltammetry Experiments
ERIC Educational Resources Information Center
Tanimoto, Sachiko; Ichimura, Akio
2013-01-01
A laboratory experiment for undergraduate students who are studying homogeneous and heterogeneous electron-transfer reactions is described. Heterogeneous or electrode reaction kinetics can be examined by using the electrochemical reduction of three Fe[superscript III]/Fe[superscript II] redox couples at platinum and glassy carbon disk electrodes.…
Development of Nitrogen Sensor for Determination of PN(2) in Body Tissues.
1982-07-01
3) The progress of the reduction reaction (1) was followed by voltammetry. A single anodic potential sweep , starting from the open circuit...Graphite Electrode The progressive attachment of [Ru(NH3 ) 5 H2 0] +2 to PVP-coated graphite electrodes was observed by cyclic voltametry as an
A Simple and Inexpensive Function Generator and a Four-Electrode Cell for Cyclic Voltammetry.
ERIC Educational Resources Information Center
Albahadily, F. N.; Mottola, Horacio A.
1986-01-01
Describes construction and operation of an inexpensive signal generator and a four-electrode electrochemical cell for use in voltammetric experiments. Also describes construction and operation of a four-electrode electrochemical cell used to illustrate elimination (or minimization) of background currents due to electrochemical reactions by species…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, David M.; Tsang, Chu F.; Sugar, Joshua Daniel
One method for the formation of nanofilms of materials, is Electrochemical atomic layer deposition (E-ALD), one atomic layer at a time. It uses the galvanic exchange of a less noble metal, deposited using underpotential deposition (UPD), to produce an atomic layer of a more noble element by reduction of its ions. This process is referred to as surface limited redox replacement and can be repeated in a cycle to grow thicker deposits. Previously, we performed it on nanoparticles and planar substrates. In the present report, E-ALD is applied for coating a submicron-sized powder substrate, making use of a new flowmore » cell design. E-ALD is used to coat a Pd powder substrate with different thicknesses of Rh by exchanging it for Cu UPD. Furthermore, cyclic voltammetry and X-ray photoelectron spectroscopy indicate an increasing Rh coverage with increasing numbers of deposition cycles performed, in a manner consistent with the atomic layer deposition (ALD) mechanism. Cyclic voltammetry also indicated increased kinetics of H sorption and desorption in and out of the Pd powder with Rh present, relative to unmodified Pd.« less
Electrochemical separation of uranium in the molten system LiF-NaF-KF-UF4
NASA Astrophysics Data System (ADS)
Korenko, M.; Straka, M.; Szatmáry, L.; Ambrová, M.; Uhlíř, J.
2013-09-01
This article is focused on the electrochemical investigation (cyclic voltammetry and related studies) of possible reduction of U4+ ions to metal uranium in the molten system LiF-NaF-KF(eut.)-UF4 that can provide basis for the electrochemical extraction of uranium from molten salts. Two-step reduction mechanism for U4+ ions involving one electron exchange in soluble/soluble U4+/U3+ system and three electrons exchange in the second step were found on the nickel working electrode. Both steps were found to be reversible and diffusion controlled. Based on cyclic voltammetry, the diffusion coefficients of uranium ions at 530 °C were found to be D(U4+) = 1.64 × 10-5 cm2 s-1 and D(U3+) 1.76 × 10-5 cm2 s-1. Usage of the nickel spiral electrode for electrorefining of uranium showed fairly good feasibility of its extraction. However some oxidant present during the process of electrorefining caused that the solid deposits contained different uranium species such as UF3, UO2 and K3UO2F5.
Kasper, Angela C; Carrillo Abad, Jordi; García Gabaldón, Montserrat; Veit, Hugo M; Pérez Herranz, Valentín
2016-01-01
The use of electrochemical techniques in the selective recovery of gold from a solution containing thiosulphate, ammonia, and copper, obtained from the leaching of printed circuit boards from mobile phones using ammoniacal thiosulphate, are shown in this work. First, cyclic voltammetry tests were performed to determine the potential of electrodeposition of gold and copper, and then, electrowinning tests at different potentials for checking the rates of recovery of these metals were performed. The results of the cyclic voltammetry show that copper deposition occurs at potentials more negative than -600 mV (Ag/AgCl), whereas the gold deposition can be performed at potentials more positives than -600 mV (Ag/AgCl). The results of electrowinning show that 99% of the gold present in solutions containing thiosulphate and copper can be selectively recovered in a potential range between -400 mV (vs Ag/AgCl) and -500 mV (vs Ag/AgCl). Furthermore, 99% of copper can be recovered in potentials more negative than -700 mV (vs Ag/AgCl). © The Author(s) 2015.
Formation of Gd-Al Alloy Films by a Molten Salt Electrochemical Process
NASA Astrophysics Data System (ADS)
Caravaca, Concha; De Córdoba, Guadalupe
2008-02-01
The electrochemistry of molten LiCl-KCl-GdCl3 at a reactive Al electrode has been studied at 723 to 823 K. Electrochemical techniques such as cyclic voltammetry and chronopotentiometry have been used in order to identify the intermetallic compounds formed. Cyclic voltammetry showed that, while at an inert W electrode GdCl3 is reduced to Gd metal in a single step at a potential close to the reduction of the solvent, at an Al electrode a shift towards more positive values occurs. This shift of the cathodic potential indicated a reduction of the activity of Gd in Al with respect to that ofW, due to the formation of alloys. The surface characterization of samples formed by both galvanostatic and potentiostatic electrolysis has shown the presence of two intermetallic compounds: GdAl3 and GdAl2. Using open-circuit chronopotentiometry it has been possible to measure the potentials at which these compounds are transformed into each other. The values of these potential plateaus, once transformed into e. f. m. values, allowed to determine the thermodynamic properties of the GdAl3 intermetallic compound.
Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes.
López-González, B; Dector, A; Cuevas-Muñiz, F M; Arjona, N; Cruz-Madrid, C; Arana-Cuenca, A; Guerra-Balcázar, M; Arriaga, L G; Ledesma-García, J
2014-12-15
A hybrid glucose microfluidic fuel cell composed of an enzymatic cathode (Laccase/ABTS/C) and an inorganic anode (AuAg/C) was developed and tested. The enzymatic cathode was prepared by adsorption of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Laccase on Vulcan XC-72, which act as a redox mediator, enzymatic catalyst and support, respectively. The Laccase/ABTS/C composite was characterised by Fourier Transform Infrared (FTIR) Spectroscopy, streaming current measurements (Zeta potential) and cyclic voltammetry. The AuAg/C anode catalyst was characterised by Transmission electron microscopy (TEM) and cyclic voltammetry. The hybrid microfluidic fuel cell exhibited excellent performance with a maximum power density value (i.e., 0.45 mW cm(-2)) that is the highest reported to date. The cell also exhibited acceptable stability over the course of several days. In addition, a Mexican endemic Laccase was used as the biocathode electrode and evaluated in the hybrid microfluidic fuel cell generating 0.5 mW cm(-2) of maximum power density. Copyright © 2014 Elsevier B.V. All rights reserved.
Al-Assy, Waleed H; El-Askalany, Abdel Moneum H; Mostafa, Mohsen M
2013-12-01
The structure of a new Mn(II) complex, [Mn(TPTZ)Cl2(H2O)]⋅H2O, was established by a single crystal X-ray diffraction. Crystal data are as follow: monoclinic, P21/c,a = 8.7202 (3)Å, b = 11.5712 (4)Å, c = 20.8675 (9)Å, β=11 (18) × 1010, V = 2029.27 (13)Å(3), Z = 4. The HOMO, LUMO and other DFT parameters on the atoms have been calculated to confirm the geometry of the ligand and its complexes using material studio program. The complexes were characterized by elemental analyses, spectral, magnetic, thermal and cyclic voltammetry measurements. Electronic spectra and magnetic moments of the complexes suggest distorted-octahedral structures around the metal ions (Mn(II), Cr(III) and Ru(III)). The redox properties were investigated by cyclic voltammetry. Kinetic parameters were determined using Coats-Redfern and Horowitz-Metzger methods. The results of DNA studies of the metal complexes promised to be effective in tumour treatment. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Soares, Layciane A.; Morais, Claudia; Napporn, Teko W.; Kokoh, K. Boniface; Olivi, Paulo
2016-05-01
This work investigates ethanol electrooxidation on Pt/C, PtxRhy/C, Pt-SnO2/C, and PtxRhy-SnO2/C catalysts synthesized by the Pechini and microwave-assisted polyol methods. The catalysts are characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. The electrochemical properties of these electrode materials are examined by cyclic voltammetry and chronoamperometry experiments in acid medium. The products obtained during ethanol electrolysis are identified by high performance liquid chromatography (HPLC). The adsorbed intermediates are evaluated by an in situ reflectance Infrared Spectroscopy technique combined with cyclic voltammetry. Catalysts performance in a direct ethanol fuel cell (DEFC) is also assessed. The electrical performance of the electrocatalysts in a single DEFC at 80 °C decreases in the following order Pt70Rh30SnO2 > Pt80Rh20SnO2 > Pt60Rh40SnO2 ∼ PtSnO2 > PtxRhy ∼ Pt, showing that the presence of SnO2 enhances the ability of Pt to catalyze ethanol electrooxidation.
NASA Astrophysics Data System (ADS)
Al-Assy, Waleed H.; El-Askalany, Abdel Moneum H.; Mostafa, Mohsen M.
2013-12-01
The structure of a new MnII complex, [Mn(TPTZ)Cl2(H2O)]ṡH2O, was established by a single crystal X-ray diffraction. Crystal data are as follow: monoclinic, P21/c, a = 8.7202 (3) Å, b = 11.5712 (4) Å, c = 20.8675 (9) Å, β = 11 (18) × 1010, V = 2029.27 (13) Å3, Z = 4. The HOMO, LUMO and other DFT parameters on the atoms have been calculated to confirm the geometry of the ligand and its complexes using material studio program. The complexes were characterized by elemental analyses, spectral, magnetic, thermal and cyclic voltammetry measurements. Electronic spectra and magnetic moments of the complexes suggest distorted-octahedral structures around the metal ions (MnII, CrIII and RuIII). The redox properties were investigated by cyclic voltammetry. Kinetic parameters were determined using Coats-Redfern and Horowitz-Metzger methods. The results of DNA studies of the metal complexes promised to be effective in tumour treatment.
Aphale, Ashish; Chattopadhyay, Aheli; Mahakalakar, Kapil; Patra, Prabir
2015-08-01
A novel nanocomposite has been developed using extracted cellulose from marine algae coated with conductive polypyrrole and graphene nanoplateletes. The nanocomposite fabricated via in situ polymerization was used as an electrode for a supercapacitor device. The nanocomposite material has been electrochemically characterized using cyclic voltammetry to test its potential to super-capacitive behavior. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 Fg-1 at the scan rate 50 mV s-1. Transmission electron microscope images show the polymerized polypyrrole -graphene coated cellulosic nanofibers. Scanning electron microscope images reveal an interesting "necklace" like beaded morphology on the cellulose fibers. It is observed that the necklace like structure start to disintegrate with the increase in graphene concentration. The open circuit voltage of the device with polypyrrole-graphene-cellulose electrode was found to be around 225 mV and that of the polypyrrole-cellulose device is only 53 mV without graphene. The results suggest marked improvement in the performance of the nanocomposite supercapacitor device upon graphene inclusion.
NASA Astrophysics Data System (ADS)
Różycka, Anna; Fryń, Patryk; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Dąbczyński, Paweł; Rysz, Jakub; Pociecha, Damian; Hreniak, Agnieszka; Marzec, Monika
2018-02-01
A new piperazine imine, (7E)-N-((4-((E)-(4-hexadecylphenylimino)methyl)piperazin-1-yl)methylene)-4-dodecylbenzenamine, has been synthesized by the condensation of 1,4-piperazinedicarboxaldehyde with 4-hexadecylaniline. The imine was characterized by cyclic voltammetry, Fourier transform middle-infrared absorption spectroscopy and X-ray diffraction. Thermal properties of imine was analyzed by differential scanning calorimetry method during first and second heating scan at 10 and 20 °C/min. Texture of imine was investigated by polarized optical microscopy and atomic force microscopy. Furthermore, imine was blended with titanium dioxide in anatase form and fully characterized by the same methods. Piperazine imine and its mixture with titanium dioxide exhibited only a transition from crystal to isotropic state. Imine exhibits two-step reduction wave attributed to one-electron transfer in each step as was found by cyclic voltammetry. Both titanium dioxide and poly(3-hexylthiophene) change the electrochemical properties of piperazine imine, however, in different ways. Studied imine blended with titanium dioxide exhibited higher value of energy band gap than pure piperazine imine and lower Eg than pure poly(3-hexylthiophene).
MIP-graphene-modified glassy carbon electrode for the determination of trimethoprim.
da Silva, Hélder; Pacheco, João G; Magalhães, Júlia M C S; Viswanathan, Subramanian; Delerue-Matos, Cristina
2014-02-15
A novel sensitive electrochemical sensor was developed by electropolymerization of pyrrole (PY) and molecularly imprinted polymer (MIP) which was synthesized onto a glassy carbon electrode (GCE) in aqueous solution using cyclic voltammetry in the presence of Trimethoprim (TMP) as template molecules. Furthermore, a previous electrode modification was performed by deposition of a suspension of graphene on the electrode's surface. The performance of the imprinted and non-imprinted (NIP) films was evaluated by impedance spectroscopy (EIS) and cyclic voltammetry (CV) of a ferric solution. The molecularly imprinted film exhibited a high selectivity and sensitivity toward TMP. The sensor presented a linear range, between peak current intensity and logarithm of TMP concentration between 1.0 × 10(-6) and 1.0 × 10(-4)M. The results were accurate (with recoveries higher than 94%), precise (with standard deviations less than 5%) and the detection limit was 1.3 × 10(-7)M. The new sensor is selective, simple to construct and easy to operate. The MIP sensor was successfully applied to quantify TMP in urine samples. © 2013 Elsevier B.V. All rights reserved.
Wang, Youdan; Joshi, Pratixa P; Hobbs, Kevin L; Johnson, Matthew B; Schmidtke, David W
2006-11-07
In this study, we describe the construction of glucose biosensors based on an electrostatic layer-by-layer (LBL) technique. Gold electrodes were initially functionalized with negatively charged 11-mercaptoundecanoic acid followed by alternate immersion in solutions of a positively charged redox polymer, poly[(vinylpyridine)Os(bipyridyl)2Cl(2+/3+)], and a negatively charged enzyme, glucose oxidase (GOX), or a GOX solution containing single-walled carbon nanotubes (SWNTs). The LBL assembly of the multilayer films were characterized by UV-vis spectroscopy, ellipsometry, and cyclic voltammetry, while characterization of the single-walled nanotubes was performed with transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. When the GOX solution contained single-walled carbon nanotubes (GOX-SWNTs), the oxidation peak currents during cyclic voltammetry increased 1.4-4.0 times, as compared to films without SWNTs. Similarly the glucose electro-oxidation current also increased (6-17 times) when SWNTs were present. By varying the number of multilayers, the sensitivity of the sensors could be controlled.
NASA Astrophysics Data System (ADS)
Gonçalves, E. S.; Dalmolin, C.; Biaggio, S. R.; Nascente, P. A. P.; Rezende, M. C.; Ferreira, N. G.
2007-08-01
Reticulated vitreous carbon (RVC) was obtained from different heat treatment temperature (HTT), in the range from 700 up to 2000 °C, and used as a substrate for polyaniline growth from electrosynthesis. The influence of HTT on RVC chemical surface was studied by X-ray photoelectron spectroscopy (XPS) and correlated to electrochemical parameters used in the electrosynthesis. XPS analyses have shown that RVC heteroatoms decrease as HTT increases. The results reveal the migration of chemical bonds from oxidized carbon forms towards carbon atoms as the unique final product. Cyclic voltammetry, electrochemical impedance spectroscopy, and stability test of polyaniline films were performed from oxidized and non-oxidized RVC substrates. Cyclic voltammetry in 0.5 mol L -1 H 2SO 4 revealed higher capacitance for the RVC treated at 1000 °C and oxidized in a hot H 2SO 4 solution. The charge accumulation after RVC chemical treatment has increased around ten times. The lowest electric resistivities and impedances were obtained for the RVC treated at 2000 °C, which also showed the highest polyaniline stability.
Surface Analysis of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes
NASA Technical Reports Server (NTRS)
Rosario-Castro, Belinda I.; Fachini, Estevao R.; Contes, Enid J.; Perez-Davis, Marla E.; Cabrera, Carlos R.
2008-01-01
Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.
Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.
Nguyen, Michael D; Venton, B Jill
2015-01-01
Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future.
Interaction between a cationic porphyrin and ctDNA investigated by SPR, CV and UV-vis spectroscopy.
Xu, Zi-Qiang; Zhou, Bo; Jiang, Feng-Lei; Dai, Jie; Liu, Yi
2013-10-01
The interaction between ctDNA and a cationic porphyrin was studied in this work. The binding process was monitored by surface plasmon resonance (SPR) spectroscopy in detail. The association, dissociation rate constants and the binding constants calculated by global analysis were 2.4×10(2)±26.4M(-1)s(-1), 0.011±0.0000056s(-1) and 2.18×10(4)M(-1), respectively. And the results were confirmed by cyclic voltammetry and UV-vis absorption spectroscopy. The binding constants obtained from cyclic voltammetry and UV-vis absorption spectroscopy were 8.28×10(4)M(-1) and 6.73×10(4)M(-1) at 298K, respectively. The covalent immobilization methodology of ctDNA onto gold surface modified with three different compounds was also investigated by SPR. These compounds all contain sulfydryl but with different terminated functional groups. The results indicated that the 11-MUA (HS(CH2)10COOH)-modified gold film is more suitable for studying the DNA-drug interaction. Copyright © 2013 Elsevier B.V. All rights reserved.
Shinde, S K; Fulari, V J; Kim, D-Y; Maile, N C; Koli, R R; Dhaygude, H D; Ghodake, G S
2017-08-01
In this research article, we report hybrid nanomaterials of copper hydroxide/copper oxide (Cu(OH) 2 /CuO). A thin films were prepared by using a facile and cost-effective successive ionic layer adsorption and reaction (SILAR) method. As-synthesized and hybrid Cu(OH) 2 /CuO with two different surfactants polyvinyl alcohol (PVA) and triton-X 100 (TRX-100) was prepared having distinct morphological, structural, and supercapacitor properties. The surface of the thin film samples were examined by scanning electron microscopy (SEM). A nanoflower-like morphology of the Cu(OH) 2 /CuO nanostructures arranged vertically was evidenced on the stainless steel substrate. The surface was well covered by nanoflake-like morphology and formed a uniform Cu(OH) 2 /CuO nanostructures after treating with surfactants. X-ray diffraction patterns were used to confirm the hybrid phase of Cu(OH) 2 /CuO materials. The electrochemical properties of the pristine Cu(OH) 2 /CuO, PVA:Cu(OH) 2 /CuO, TRX-100:Cu(OH) 2 /CuO films were observed by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy technique. The electrochemical examination reveals that the Cu(OH) 2 /CuO electrode has excellent specific capacitance, 292, 533, and 443Fg -1 with pristine, PVA, and TRX-100, respectively in 1M Na 2 SO 4 electrolyte solution. The cyclic voltammograms (CV) of Cu(OH) 2 /CuO electrode shows positive role of the PVA and TRX-100 to enhance supercapacitor performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Azab, Hassan Ahmed; Anwar, Zeinab M; Abdel-Salam, Enas T; el-Sayed-Sebak, Mahmoud
2012-01-01
Two new ligands derived from phloroglucinol 2-{[(4-methoxy benzoyl)oxy]} methyl benzoic acid[L1] and 2-{[(4-methyl benzoyl)oxy] methyl} benzoic acid[L2] were synthesized. The solid complex Eu(III)-L2 has been synthesised and characterized by elemental analysis, UV and IR spectra. The reaction of Eu(III) with the two synthesized ligands has been investigated in I = 0.1 mol dm(-3) p-toluene sulfonate by cyclic voltammetry and square wave voltammetry. The reaction of Eu (III)-L1 and Eu (III)-L2 binary complexes with nucleotide 5'-AMP, 5'-ADP, 5'-ATP, 5'- GMP, 5'-IMP, and 5'-CMP has been investigated using UV, fluorescence and electrochemical methods. The experimental conditions were selected such that self-association of the nucleotides and their complexes was negligibly small, that is, the monomeric complexes were studied. The interaction of the Eu(III)-L1 or L2 solid complexes with calf-thymus DNA has been investigated by fluorescence and electrochemical methods including cyclic voltammetery(CV), differential pulse polarography (DPP) and square wave voltammetry (SWV) on a glassy carbon electrode. The fluorescence intensity of Eu(III)-L2 complex was enhanced with the addition of DNA. Under optimal conditions in phosphate buffer pH 7.0 at 25 °C the linear range is 3-20 μM for calf thymus DNA (CT-DNA) and the corresponding determination limit is 1.8 μM.
Shadjou, Nasrin; Hasanzadeh, Mohammad; Omari, Ali
2017-12-15
Rapid analyses of some water soluble vitamins (Vitamin B2, B9, and C) in commercial multi vitamins could be routinely performed in analytical laboratories. This study reports on the electropolymerization of a low toxic and biocompatible polymer "poly aspartic acid-graphene quantum dots" as a novel strategy for surface modification of glassy carbon electrode and preparation a new interface for measurement of selected vitamins in commercial multi vitamins. Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of graphene quantum dots nanostructures on a poly aspartic acid using cyclic voltammetry techniques in the regime of -1.5 to 2 V. The field emission scanning electron microscopy indicated immobilization of graphene quantum dots onto poly aspartic acid film. The modified electrode possessed as an effective electroactivity for detection of water soluble vitamins by using cyclic voltammetry, chronoamperometry and differential pulse voltammetry. Enhancement of peak currents is ascribed to the fast heterogeneous electron transfer kinetics that arise from the synergistic coupling between the excellent properties of poly aspartic acid as semiconducting polymer, graphene quantum dots as high density of edge plane sites and chemical modification. Under the optimized analysis conditions, the prepared sensor for detection of VB2, VB9, and VC showed a low limit of quantification 0.22, 0.1, 0.1 μM, respectively. Copyright © 2017. Published by Elsevier Inc.
Wickham, Robert J; Park, Jinwoo; Nunes, Eric J; Addy, Nii A
2015-08-12
Rapid, phasic dopamine (DA) release in the mammalian brain plays a critical role in reward processing, reinforcement learning, and motivational control. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique with high spatial and temporal (sub-second) resolution that has been utilized to examine phasic DA release in several types of preparations. In vitro experiments in single-cells and brain slices and in vivo experiments in anesthetized rodents have been used to identify mechanisms that mediate dopamine release and uptake under normal conditions and in disease models. Over the last 20 years, in vivo FSCV experiments in awake, freely moving rodents have also provided insight of dopaminergic mechanisms in reward processing and reward learning. One major advantage of the awake, freely moving preparation is the ability to examine rapid DA fluctuations that are time-locked to specific behavioral events or to reward or cue presentation. However, one limitation of combined behavior and voltammetry experiments is the difficulty of dissociating DA effects that are specific to primary rewarding or aversive stimuli from co-occurring DA fluctuations that mediate reward-directed or other motor behaviors. Here, we describe a combined method using in vivo FSCV and intra-oral infusion in an awake rat to directly investigate DA responses to oral tastants. In these experiments, oral tastants are infused directly to the palate of the rat--bypassing reward-directed behavior and voluntary drinking behavior--allowing for direct examination of DA responses to tastant stimuli.
Singu, Bal Sydulu; Hong, Sang Eun; Yoon, Kuk Ro
2016-06-01
Sea-urchin shaped α-MnO2 hierarchical nano structures have been synthesized by facile thermal method without using any hard or soft template under the mild conditions. The structural and morphology of the 3D-MnO2 was characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). From the XRD analysis indicates that MnO2 present in the α form. Morphology analysis shows that α-MnO2 sea-urchins are made by stacked nanorods, the diameter and length of the stacked nanorods present in the range of 50-120 nm and 200-400 nm respectively. The electrochemical behaviour of α-MnO2 has been investigated by cyclic voltammetry (CV) and charge-discharge (CD). The specific capacitance, energy density and power density are 212.0 F g(-1), 21.2 Wh kg(-1) and 1200 W kg(-1) respectively at the current density of 2 A g(-1). The retention of the specific capacitance after completion of 1000 charge-discharge cycles is around 97%. The results reveal that the prepared Sea-urchin shaped α-MnO2 has high specific capacitance and exhibit excellent cycle life.
NASA Astrophysics Data System (ADS)
Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O.
LiCoO 2 thin films were deposited on the NASICON-type glass ceramics, Li 1+ x+ yAl xTi 2- xSi yP 3- yO 12, by radio frequency (RF) magnetron sputtering and were annealed at different temperatures. The as-deposited and the annealed LiCoO 2 thin films were characterized by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). It was found that the films exhibited a (1 0 4) preferred orientation after annealing and Co 3O 4 was observed by annealing over 500 °C due to the reaction between the LiCoO 2 and the glass ceramics. The effect of annealing temperature on the interfacial resistance of glass ceramics/LiCoO 2 and Li-ion transport in the bulk LiCoO 2 thin film was investigated by galvanostatic cycling, cyclic voltammetry (CV), potentiostatic intermittent titration technique (PITT) and electrochemical impedance spectroscopy (EIS) with the Li/PEO/glass ceramics/LiCoO 2 cell. The cell performance was limited by the Li-ion diffusion resistance in Ohara/LiCoO 2 interface as well as in bulk LiCoO 2.
Ali, Gomaa A M; Divyashree, A; Supriya, S; Chong, Kwok Feng; Ethiraj, Anita S; Reddy, M V; Algarni, H; Hegde, Gurumurthy
2017-10-17
Carbon nanospheres derived from a natural source using a green approach were reported. Lablab purpureus seeds were pyrolyzed at different temperatures to produce carbon nanospheres for supercapacitor electrode materials. The synthesized carbon nanospheres were analyzed using SEM, TEM, FTIR, TGA, Raman spectroscopy, BET and XRD. They were later fabricated into electrodes for cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy testing. The specific capacitances were found to be 300, 265 and 175 F g -1 in 5 M KOH electrolyte for carbon nanospheres synthesized at 800, 700 and 500 °C, respectively. These are on a par with those of prior electrodes made of biologically derived carbon nanospheres but the cycle lives were remarkably higher than those of any previous efforts. The electrodes showed 94% capacitance retention even after 5200 charge/discharge cycles entailing excellent recycling durability. In addition, the practical symmetrical supercapacitor showed good electrochemical behaviour under a potential window up to 1.7 V. This brings us one step closer to fabricating a commercial green electrode which exhibits high performance for supercapacitors. This is also a waste to wealth approach based carbon material for cost effective supercapacitors with high performance for power storage devices.
Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics
NASA Astrophysics Data System (ADS)
Aghazadeh, Mustafa; Asadi, Maryam; Maragheh, Mohammad Ghannadi; Ganjali, Mohammad Reza; Norouzi, Parviz; Faridbod, Farnoush
2016-02-01
The first time pulsed base (OH-) electrogeneration to the cathodic electrodeposition of MnO2 in nitrate bath was applied and MnO2 nanorods were obtained. The deposition experiments were performed under a pulse current mode with typical on-times and off-times (ton = 10 ms and toff = 50 ms) and a peak current density of 2 mA cm-2 (Ia = 2 mA cm-2). The structural characterization with XRD and FTIR revealed that the prepared MnO2 is composed of both α and γ phases. Morphological evaluations through SEM and TEM revealed that the prepared MnO2 contains nanorods of relative uniform structures (with an average diameter of 50 nm). The electrochemical measurements through cyclic voltammetry and charge-discharge techniques revealed that the prepared MnO2 nanostructures reveal an excellent capacitive behavior with specific capacitance values of 242, 167 and 98 F g-1 under the applied current densities of 2, 5 and 10 A g-1, respectively. Also, excellent long-term cycling stabilities of 94.8%, 89.1%, and 76.5% were observed after 1000 charge-discharge cycles at the current densities of 2, 5 and 10 A g-1.
Aghajari, Rozita; Azadbakht, Azadeh
2018-04-15
A streptomycin-specific aptamer was used as a receptor molecule for ultrasensitive quantitation of streptomycin. The glassy carbon (GC) electrode was modified with palladium nanoparticles decorated on chitosan-carbon nanotube (PdNPs/CNT/Chi) and aminated aptamer against streptomycin. Modification of the sensing interface was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDS), wavelength-dispersive X-ray spectroscopy (WDX), cyclic voltammetry (CVs), and electrochemical impedance spectroscopy (EIS). The methodologies applied for designing the proposed biosensor are based on target-induced conformational changes of streptomycin-specific aptamer, leading to detectable signal change. Sensing experiments were performed in the streptomycin concentration range from 0.1 to 1500 nM in order to evaluate the sensor response as a function of streptomycin concentration. Based on the results, the charge transfer resistance (R ct ) values increased proportionally to enhanced streptomycin content. The limit of detection was found to be as low as 18 pM. The superior selectivity and affinity of aptamer/PdNPs/CNT/Chi modified electrode for streptomycin recognition made it favorable for versatile applications such as streptomycin analysis in real samples. Copyright © 2018 Elsevier Inc. All rights reserved.
Sputtered Pd as Hydrogen Storage for a Chip-Integrated Microenergy System
Slavcheva, E.; Ganske, G.; Schnakenberg, U.
2014-01-01
The work presents a research on preparation and physical and electrochemical characterisation of dc magnetron sputtered Pd films envisaged for application as hydrogen storage in a chip-integrated hydrogen microenergy system. The influence of the changes in the sputtering pressure on the surface structure, morphology, and roughness was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AMF). The electrochemical activity towards hydrogen adsorption/desorption and formation of PdH were investigated in 0.5 M H2SO4 using the methods of cyclic voltammetry and galvanostatic polarisation. The changes in the electrical properties of the films as a function of the sputtering pressure and the level of hydrogenation were evaluated before and immediately after the electrochemical charging tests, using a four-probe technique. The research resulted in establishment of optimal sputter regime, ensuring fully reproducible Pd layers with highly developed surface, moderate porosity, and mechanical stability. Selected samples were integrated as hydrogen storage in a newly developed unitized microenergy system and tested in charging (water electrolysis) and discharging (fuel cell) operative mode at ambient conditions demonstrating a stable recycling performance. PMID:24516356
Synthesis and characterization of GO-hydrogels composites
NASA Astrophysics Data System (ADS)
Pereyra, J. Y.; Cuello, E. A.; Coneo Rodriguez, R.; Barbero, C. A.; Yslas, E. I.; Salavagione, H. J.; Acevedo, D. F.
2017-10-01
The preparation of poly(N-isopropylacrylamide) (PNIPAm) hydrogel nanocomposites containing graphene oxide (GO) and GO plus carbon nanotubes (CNT) in the polymer network is communicated. This one-pot preparation methods include the dispersion of GO (or GO plus CNT) in a solution of monomers and the subsequent polymerization. The texture of the nanocomposites was studied using scanning electron microscopy (SEM), where very compact surfaces are observed suggesting good dispersion of GO sheets and CNTs within the polymer matrix. The presence of GO inside the polymer network diminished the equilibrium swelling values and increased the elastic modulus up to 162 % with respect to the pure gel. Similar results were observed for the composite with CNT. Furthermore, the electrical resistivity of PNIPAm-GO diminishes as the applied compression force increases, being 50 % lower than hydrogel without GO. Moreover, the electrochemical properties of the hydrogels, evaluated by cyclic voltammetry, indicate highly reversible electrical charge/discharge response. In order to apply these materials for antibiotic delivery, the absorption of tetracycline (tet) is evaluated and the nanocomposites showed better absorption capability and improved antibiotic delivery. Preliminary results suggest that tet loaded PNIPAm-GO and PNIPAM-GO-CNT display antimicrobial activity against the Pseudomonas aeruginosa turning these materials as potential candidates for biomedical applications.
NASA Astrophysics Data System (ADS)
Aghazadeh, Mustafa; Shiri, Hamid Mohammad; Barmi, Abbas-Ali Malek
2013-05-01
Uniform nanostructures of cobalt hydroxide were successfully prepared by a low-temperature electrochemical method via galvanostatically deposition from a 0.005 M Co(NO3)3 bath at 10 °C. The XRD and FT-IR analyses showed that the prepared sample has a single crystalline hexagonal phase of the brucite-like Co(OH)2. Morphological characterization by SEM and TEM revealed that the prepared β-Co(OH)2 was composed of uniform compact disc-like nanostructures with diameters of 40-50 nm. The electrochemical performance of the prepared β-Co(OH)2 was evaluated using cyclic voltammetry and charge-discharge tests. A maximum specific capacitance of 736.5 F g-1 was obtained in aqueous 1 M KOH with the potential range of -0.2-0.5 V (vs. Ag/AgCl) at the scan rate of 10 mV s-1, suggesting the potential application of the prepared nanostructures as an electrode material in electrochemical supercapacitors. The results of this work showed that the low-temperature cathodic electrodeposition method can be recognized as a new and facile route for the synthesis of cobalt hydroxide nanodiscs as a promising candidate for the electrochemical supercapacitors.
NASA Astrophysics Data System (ADS)
Tong, Linyue; Skorenko, Kenneth H.; Faucett, Austin C.; Boyer, Steven M.; Liu, Jian; Mativetsky, Jeffrey M.; Bernier, William E.; Jones, Wayne E.
2015-11-01
Laminar composite electrodes are prepared for application in supercapacitors using a catalyzed vapor-phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on the surface of commercial carbon coated aluminum foil. These highly electrically conducting polymer films provide for rapid and stable power storage per gram at room temperature. The chemical composition, surface morphology and electrical properties are characterized by Raman spectroscopy, scanning electron microscopy (SEM), and conducting atomic force microscopy (C-AFM). A series of electrical measurements including cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy are also used to evaluate electrical performance. The processing temperature of VPP shows a significant effect on PEDOT morphology, the degree of orientation and its electrical properties. The relatively high temperature leads to high specific area and large conductive domains of PEDOT layer which benefits the capacitive behavior greatly according to the data presented. Since the substrate is already highly conductive, the PEDOT based composite can be used as electrode materials directly without adding current collector. By this simple and efficient process, PEDOT based composites exhibit specific capacitance up to 134 F g-1 with the polymerization temperature of 110 °C.
Facile hydrothermal synthesis of one-dimensional nanostructured α-MnO2 for supercapacitors
NASA Astrophysics Data System (ADS)
Wei, Hongmei; Wang, Jinxing; Yang, Shengwei; Zhang, Yangyang; Li, Tengfei; Zhao, Shuoqing
2016-09-01
α-MnO2 recently becomes a promising candidate of electrode materials for high effective supercapacitors in which it possesses of unique structure of 2×2 tunnels that can provide more electrons and ions diffusion paths. In this work, different morphologies MnO2 with α-phase crystalline structure have been prepared via a one-step facile hydrothermal method by adding various reagents. Compositions, microstructures and morphologies of these as-synthesized materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and electrochemical properties of α-MnO2 electrodes were studied by the cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) in 1 M Na2SO4 aqueous solution. The specific capacitance of nanowires were 158 F g-1 while the specific capacitance of nanorods were 106 F g-1 at current density of 4 A g-1, and improved performance of the wire-like electrode material was probably ascribed to the larger specific surface area that can provide relatively more active sites for high capacity. Meanwhile, both the nanowires and nanorods of MnO2 presented fine cycle stability after continuous multiple charge/discharge times.
NASA Astrophysics Data System (ADS)
Cai, Zhi-Jiang; Zhang, Qin; Song, Xian-You
2016-09-01
Polyindole/carbon nanotubes (PIN/CNTs) composite was prepared by an in-situ chemical oxidative polymerization of indole monomer with CNTs using ammonium persulfate as oxidant. The obtained composite material was characterized by SEM, TEM, FT-IR, Raman spectroscopy, XPS, XRD and BET surface areas measurements. It was found that the CNTs were incorporated into the PIN matrix and nanoporous structure was formed. Spectroscopy results showed that interfacial interaction bonds might be formed between the polyindole chains and CNTs during the in-situ polymerization. PIN/CNTs composite was evaluated by electrochemical impedance spectroscopy, cyclic voltammetry and charge/discharge tests to determine electrode performances in relation to supercapacitors properties in both aqueous and non-aqueous system. A maximum specific capacitance and specific volumetric capacitance of 555.6 F/g and 222.2 F/cm3 can be achieved at 0.5 A/g in non-aqueous system. It also displayed good rate performance and cycling stability. The specific capacitance retention is over 60% at 10 A/g and 91.3% after 5000 cycles at 2 A/g, respectively. These characteristics point to its promising applications in the electrode material for supercapacitors.
Architecture-dependent surface chemistry for Pt monolayers on carbon-supported Au.
Cheng, Shuang; Rettew, Robert E; Sauerbrey, Marc; Alamgir, Faisal M
2011-10-01
Pt monolayers were grown by surface-limited redox replacement (SLRR) on two types of Au nanostructures. The Au nanostructures were fabricated electrochemically on carbon fiber paper (CFP) by either potentiostatic deposition (PSD) or potential square wave deposition (PSWD). The morphology of the Au/CFP heterostructures, examined using scanning electron microscopy (SEM), was found to depend on the type of Au growth method employed. The properties of the Pt deposit, as studied using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and cyclic voltammetry (CV), were found to depend strongly on the morphology of the support. Specifically, it was found that smaller Au morphologies led to a higher degree of cationicity in the resulting Pt deposit, with Pt(4+) and Pt(2+) species being identified using XPS and XAS. For fuel-cell catalysts, the resistance of ultrathin catalyst deposits to surface area loss through dissolution, poisoning, and agglomeration is critical. This study shows that an equivalent of two monolayers (ML) is the low-loading limit of Pt on Au. At 1 ML or below, the Pt film decreases in activity and durability very rapidly due to presence of cationic Pt. © 2011 American Chemical Society
Synergistic tungsten oxide/organic framework hybrid nanofibers for electrochromic device application
NASA Astrophysics Data System (ADS)
Dulgerbaki, Cigdem; Komur, Ali Ihsan; Nohut Maslakci, Neslihan; Kuralay, Filiz; Uygun Oksuz, Aysegul
2017-08-01
We report the first successful applications of tungsten oxide/conducting polymer hybrid nanofiber assemblies in electrochromic devices. Poly(3,4-ethylenedioxythiophene)/tungsten oxide (PEDOT/WO3) and polypyrrole/tungsten oxide (PPy/WO3) composites were prepared by an in situ chemical oxidative polymerization of monomers in different ionic liquids; 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI). Electrospinning process was used to form hybrid nanofibers from chemically synthesized nanostructures. The electrospun hybrid samples were compared from both morphological and electrochemical perspectives. Importantly, deposition of nanofibers from chemically synthesized hybrids can be achieved homogenously, on nanoscale dimensions. The morphologies of these assemblies were evaluated by SEM, whereas their electroactivity was characterized by cyclic voltammetry. Electrochromic devices made from hybrid nanofiber electrodes exhibited highest chromatic contrast of 37.66% for PEDOT/WO3/BMIMPF6, 40.42% for PPy/WO3/BMIMBF4 and show a strong electrochromic color change from transparent to light brown. Furthermore, the nanofiber devices exhibit outstanding stability when color switching proceeds, which may ensure a versatile platform for color displays, rear-view mirrors and smart windows.
Carbon electrode for desalination purpose in capacitive deionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endarko,, E-mail: endarko@physics.its.ac.id; Fadilah, Nurul; Anggoro, Diky
Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 – 1400 m{sup 2}/g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consistedmore » of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.« less
Takahashi, Yasufumi; Shevchuk, Andrew I; Novak, Pavel; Murakami, Yumi; Shiku, Hitoshi; Korchev, Yuri E; Matsue, Tomokazu
2010-07-28
We described a hybrid system of scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM) with ion current feedback nanopositioning control for simultaneous imaging of noncontact topography and spatial distribution of electrochemical species. A nanopipette/nanoring electrode probe provided submicrometer resolution of the electrochemical measurement on surfaces with complex topology. The SECM/SICM probe had an aperture radius of 220 nm. The inner and outer radii of the SECM Au nanoring electrode were 330 and 550 nm, respectively. Characterization of the probe was performed with scanning electron microscopy (SEM), cyclic voltammetry (CV), and approach curve measurements. SECM/SICM was applied to simultaneous imaging of topography and electrochemical responses of enzymes (horse radish peroxidase (HRP) and glucose oxidase (GOD)) and single live cells (A6 cells, superior cervical ganglion (SCG) cells, and cardiac myocytes). The measurements revealed the distribution of activity of the enzyme spots on uneven surfaces with submicrometer resolution. SECM/SICM acquired high resolution topographic images of cells together with the map of electrochemical signals. This combined technique was also applied to the evaluation of the permeation property of electroactive species through cellular membranes.
Selenium containing conducting polymer based pyranose oxidase biosensor for glucose detection.
Gokoglan, Tugba Ceren; Soylemez, Saniye; Kesik, Melis; Toksabay, Sinem; Toppare, Levent
2015-04-01
A novel amperometric pyranose oxidase (PyOx) biosensor based on a selenium containing conducting polymer has been developed for the glucose detection. For this purpose, a conducting polymer; poly(4,7-bis(thieno[3,2-b]thiophen-2-yl)benzo[c][1,2,5] selenadiazole) (poly(BSeTT)) was synthesized via electropolymerisation on gold electrode to examine its matrix property for glucose detection. For this purpose, PyOx was used as the model enzyme and immobilised via physical adsorption technique. Amperometric detection of consumed oxygen was monitored at -0.7 V vs Ag reference electrode in a phosphate buffer (50 mM, pH 7.0). K(M)(app), Imax, LOD and sensitivity were calculated as 0.229 mM, 42.37 nA, 3.3 × 10(-4)nM and 6.4 nA/mM cm(2), respectively. Scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS) and cyclic voltammetry (CV) techniques were used to monitor changes in surface morphologies and to run electrochemical characterisations. Finally, the constructed biosensor was applied for the determination of glucose in beverages successfully. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enhanced electrochemical performance from 3DG/LiFePO4/G sandwich cathode material
NASA Astrophysics Data System (ADS)
Du, Yahui; Tang, Yufeng; Chang, Chengkang
2017-08-01
In this paper, we have successfully synthesized a three dimensional graphene/LiFePO4/graphene (3DG/LFP/G) sandwich composite by an in-situ hydrothermal method, in which chemical vapor deposited 3D graphene acts as the high conductivity supporting framework, while the LiFePO4 nanoparticles are anchored onto the 3D graphene framework covered by graphene sheets. XRD and SEM results confirmed the formation of the 3DG/LFP/G sandwich composite. Cyclic Voltammetry curve of the sandwich composite shows sharper redox peaks and reduced voltage separation when compared to the reference electrodes, suggesting high specific capacity and good rate performance. Further charge/discharge measurements presented high capacity of 164 mAh g-1 at 0.2 C and 124 mAh g-1 at 10 C (75.7% of its initial capacity) for the sandwich composite, with capacity retention of 95.7% after 100 cycles, implying potential application in lithium ion battery at high rates. The EIS investigation suggests that both the electronic conductivity and the Li ion diffusion are promoted by the underlined 3D graphene framework, which is regarded as the reason for the enhanced electrochemical performance.
NASA Astrophysics Data System (ADS)
Nageswaran, Shubha; Keppeler, Miriam; Kim, Sung-Jin; Srinivasan, Madhavi
2017-04-01
Well-crystallized, microspherical LiNi0.5Mn1.5-nSinO4 (0.05 < n < 0.2) is successfully synthesized by a template directed approach in combination with the partial substitution of manganese by silicon. Structural and electrochemical characteristics are investigated through FE-SEM, XRD, EDX, cyclic voltammetry and galvanostatic charge/discharge testing. Spherical shape and incorporation of silicon into the crystal leads to higher proportion of the disordered Fd-3m phase, and electrochemical performance is significantly improved. High capacity retention of 99.4% after 100 cycles at 1 C rate for LiNi0.5Mn1.45Si0.05O4 microspheres is achieved, which is superior compared to 93.1% capacity retention of the pristine LiNi0.5Mn1.5O4 microspheres. Since the Sisbnd O bond exhibits higher dissociation energy compared to the dissociation energies of the Mnsbnd O or Nisbnd O bonds, the excellent electrochemical performance might be associated with an increased structural and chemical stability caused by incorporation of silicon into the oxygen rich crystal lattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, F.; Divan, R.; Parkinson, B. A.
2015-01-01
Interdigitated array electrodes (IDAEs) with one carbon electrode and the other platinum electrode were constructed by electrodepositing platinum on one set of the carbon electrodes. Platinum deposition was confirmed by scanning electron microscope (SEM) and cyclic voltammetry. The width of the carbon and platinum digits is less than 2 μm and the gap between two adjacent digits is around 3 μm. The carbon-platinum IDAEs benefit from the characteristics of both carbon and platinum in that carbon can provide a wide nonreactive potential window while platinum is a good catalyst for hydrogen reactions making it useful to characterize the catalytic hydrogenmore » production cycle of the molecular electrocatalyst [Ni(PPh2NPh2)2(CH3CN)](BF4)2 (where PPh2NPh2 is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane). With properly set potentials, the molecular electrocatalyst was reduced at the carbon digits to initiate a homogeneous H2 production reaction while the platinum digits detect the H2 by oxidation, providing direct evidence of its production rate from the catalytic cycles.« less
Synthesis and electrochemical properties of NiO nanospindles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hai; University of Chinese Academy of Sciences, Beijing 100049; Lv, Baoliang, E-mail: lbl604@sxicc.ac.cn
2014-02-01
Graphical abstract: NiO nanospindles with a different electrochemical activity as compared to those previous reports were synthesized via an agglomeration–dissolution–recrystallization growth process without the addition of any surfactant. - Highlights: • NiO nanospindles were synthesized without the addition of any surfactant. • The agglomeration–dissolution–recrystallization growth process was used to explain the precursors’ formation process of the spindle-like NiO. • As-obtained spindle-like NiO showed a different electrochemical activity as compared to those previous reports. - Abstract: NiO nanospindles were successfully synthesized via a hydrothermal and post-treatment method. The as-synthesized nanospindles were about several hundred nanometers in width and about one micrometermore » in length. X-ray diffraction (XRD) analysis revealed that the spindle-like structure was cubic NiO phase crystalline. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that these NiO nanospindles were of single crystal nature. On the basis of time-dependent experiments, a possible agglomeration–dissolution–recrystallization growth process was proposed to explain the formation process of the spindle-like precursors. The cyclic voltammetry (CV) measurement showed that the as-prepared spindle-like NiO exhibited a pseudo-capacitance behavior.« less
Kandasamy, N; Venugopal, T; Kannan, K
2018-06-01
A flower like cobalt oxide nanostructured thin film (Co2O3) on Nickel (Ni) plate as have been successfully developed via alcoholic Seed Layer assisted chemical bath Deposition (SLD) process. Through the controlled alkaline electrolytes, the flower and paddles like Co2O3 nanoarchitectures were formed. The prepared thin film was characterized by X-ray diffraction (XRD), scanning electron microscope with energy dispersive X-ray (SEM and EDX), Atomic Force Microscope (AFM), Raman spectroscopy techniques. Electron micrograph reveals the flower and paddles like nanostructured Co2O3 thin film deposited on Ni plates. The electrochemical characteristics were investigated using cyclic voltammetry (CV), charge-discharge and AC impedance spectroscopy in different aqueous electrolytes such as NaOH, KOH, and LiOH. The maximum specific capacitance of 856 Fg-1 was attained with 2 M KOH electrolyte with 2 mVs-1 of the Co2O3 thin film coated Ni plate at 80 °C using SLD method. The capacitance values obtained with various electrolytes are in the order of KOH > NaOH > LiOH. The results indicate that the present method is economical and the material is ecofriendly with enhanced capacitance property.
Reddy, M V; Yu, Cai; Jiahuan, Fan; Loh, Kian Ping; Chowdari, B V R
2013-05-22
We report the synthesis of CuO material by molten salt method at a temperature range, 280 to 950 °C for 3 h in air. This report includes studies on the effect of morphology, crystal structure and electrochemical properties of CuO prepared at different temperatures. Obtained CuO was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area methods. Samples prepared at ≥410 °C showed a single-phase material with a lattice parameter value of a = 4.69 Å, b = 3.43 Å, c = 5.13 Å and surface area values are in the range 1.0-17.0 m(2) g(-1). Electrochemical properties were evaluated via cyclic voltammetry (CV) and galvanostatic cycling studies. CV studies showed a minor difference in the peak potentials depending on preparation temperature and all compounds exhibit a main anodic peak at ~2.45 V and cathodic peaks at ~0.85 V and ~1.25 V vs Li. CuO prepared at 750 °C showed high and stable capacity of ~620 mA h g(-1) at the end of 40th cycle.
NASA Astrophysics Data System (ADS)
Mu, Jingjing; Ma, Guofu; Peng, Hui; Li, Jiajia; Sun, Kanjun; Lei, Ziqiang
2013-11-01
Polyaniline (PANI) nanotubes with outstanding electrochemical properties have been successfully synthesized via a simple chemical template-free method in the presence of D-tartaric acid (D-TA) as the dopant, and ammonium persulfate ((NH4)2S2O8) as the oxidant. The morphologies and structures of PANI-(D-TA) with different [D-TA]/[aniline] molar ratios are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). To assess the electrochemical properties of PANI-(D-TA) materials, cyclic voltammetry (CV) and galvanostatic charging-discharging measurements are performed. The PANI-(D-TA) nanotubes electrode, with [D-TA]/[aniline] molar ratio of 1:1, exhibits larger specific capacitance (as high as 625 F g-1 at 1 A g-1) and higher capacitance retention (77% of its initial capacitance after 500 cycles) in 1 M H2SO4 aqueous solution. The remarkable electrochemical characteristics of PANI-(D-TA) are mainly attributed to their unique nanotubular structures, which provide a high electrode/electrolyte contact area and short ions diffusion path. These novel PANI-(D-TA) nanotubes will be promising electrode materials for high-performance supercapacitors.
NASA Astrophysics Data System (ADS)
Navaee, Aso; Salimi, Abdollah; Soltanian, Saeid; Servati, Peyman
2015-03-01
Due to exceptional electronic properties of graphene (Gr) and nitrogen doped graphene (N-Gr), they are considered as superior supporting platforms for novel metal nanoparticle decorations. Here, we report, a novel one-step electrochemical method for synthesis of Nitrogen-doped graphene sheets uniformly decorated with platinum nanoparticles (Pt/N-Gr). A graphite rod and platinum wire are respectively used for graphene and platinum nanoparticles production. The potential is cycled from -3V to +3V in acetonitrile solution as a nitrogen dopant source. By increasing the number of cycles the nitrogen-doped graphene/platinum nanoparticles composite is generated. After heat-treating the composite is characterized with various techniques such as FTIR, Raman, XPS, SEM and TEM. The electrocatalytic activity of the prepared composite toward the reduction of O2 and the oxidation of usual anodic fuels such as methanol, ethanol, hydrazine and formic acid is investigated using cyclic voltammetry technique. In comparison to commercial platinum/carbon, the onset potentials and the current densities for both O2 reduction and fuels oxidation are remarkably improved. Furthermore, the modified electrode by this composite shows good long-term stability and poisoning tolerance.
NASA Astrophysics Data System (ADS)
Wu, Xianwen; Li, Yehua; Xiang, Yanhong; Liu, Zhixiong; He, Zeqiang; Wu, Xianming; Li, Youji; Xiong, Lizhi; Li, Chuanchang; Chen, Jian
2016-12-01
There is a broad application prospect for smart grid about aqueous rechargeable sodium-ion battery. In order to improve its electrochemical performance, a hybrid cationic aqueous-based rechargeable battery system based on the nanostructural Na0.44MnO2 and metallic zinc foil as the positive and negative electrodes respectively is built up. Nano rod-like Na0.44MnO2 is synthesized by sol-gel method followed by calcination at 850 °C for 9 h, and various characterization techniques including the X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to investigate the structure and morphology of the as-prepared material. The cyclic voltammetry, galvanostatic charge-discharge and self-discharge measurements are performed at the same time. The results show that the battery delivers a very high initial discharge capacity of 186.2 mAh g-1 at 0.2 C-rate in the range of 0.5-2.0 V, and it exhibits a discharge capacity of 113.3 mAh g-1 at high current density of 4 C-rate, indicative of excellent rate capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyadjiev, Stefan I., E-mail: boiajiev@gmail.com; Santos, Gustavo dos Lopes; Szűcs, Júlia
2016-03-25
In this study, monoclinic WO{sub 3} nanoparticles were obtained by thermal decomposition of (NH{sub 4}){sub x}WO{sub 3} in air at 600 °C. On them by atomic layer deposition (ALD) TiO{sub 2} films were deposited, and thus core/shell WO{sub 3}/TiO{sub 2} nanocomposites were prepared. We prepared composites of WO{sub 3} nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO{submore » 3} and core/shell WO{sub 3}/TiO{sub 2} nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO{sub 3} thin films, and the coloring and bleaching states were studied.« less
NASA Astrophysics Data System (ADS)
Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma
2014-08-01
In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.
NASA Astrophysics Data System (ADS)
Adhikari, Tham; Pathak, Dinesh; Wagner, Tomas; Jambor, Roman; Jabeen, Uzma; Aamir, Muhammad; Nunzi, Jean-Michel
2017-11-01
Silver indium diselenide quantum dots were successively synthesized by colloidal sol-gel method by chelating with organic ligand oleylamine (OLA). The particle size was studied by transmission electron microscopy (TEM) and the size was found about 10 nm. X-ray diffraction (XRD) was used to study crystalline structure of the nanocrystals. The grain size and morphology were further studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The elemental composition was studied by X-ray photon electron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDAX). The capping property of OLA in nanocrystal was also demonstrated by Fourier Transform Infrared spectroscopy (FTIR). The band gap was calculated from both cyclic voltammetry and optical absorption and suggest quantum confinement. The solution processed bilayer thin film solar cells were fabricated with n-type Zinc oxide using doctor blading/spin coating method and their photovoltaic performance was studied. The best device sintered at 450 °C showed an efficiency 0.75% with current density of 4.54 mAcm-2, open-circuit voltage 0.44 V and fill factor 39.4%.
Zhang, Yujie; Chen, Junhong; Fan, Huili; Chou, Kuo-Chih; Hou, Xinmei
2015-12-14
In this research, we demonstrate a simple route for preparing SiC@SiO2 core-shell nanocables and furthermore obtain SiC@SiO2 nanocables/MnO2 as hybrid electrodes for supercapacitors using various modified methods. The modified procedure consists of mild modifications using sodium hydroxide as well as UV light irradiation and deposition of MnO2. The morphology and microstructural characteristics of the composites are investigated using XRD, XPS, FE-SEM with EDS and TEM. The results indicate that the surfaces of modified SiC@SiO2 nanocables are uniformly coated with a MnO2 thin layer. The electrochemical behaviors of the hybrid electrodes are systematically measured in a three-electrode system using cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The resultant electrode presents a superb charge storage characteristic with a large specific capacitance of 276.3 F g(-1) at the current density of 0.2 A g(-1). Moreover, the hybrid electrode also displays a long cycle life with a good capacitance retention (∼92.0%) after 1000 CV cycles, exhibiting a promising potential for supercapacitors.
Electrodeposition and Capacitive Behavior of Films for Electrodes of Electrochemical Supercapacitors
NASA Astrophysics Data System (ADS)
Shi, C.; Zhitomirsky, I.
2010-03-01
Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0-3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC) in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g-1 was observed for the sample with a specific mass of 89 μg cm-2 at a scan rate of 2 mV s-1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES).
Shi, C; Zhitomirsky, I
2010-01-08
Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0-3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC) in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g-1 was observed for the sample with a specific mass of 89 μg cm-2 at a scan rate of 2 mV s-1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES).
Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation.
Feng, Yue; Bin, Duan; Yan, Bo; Du, Yukou; Majima, Tetsuro; Zhou, Weiqiang
2017-05-01
Porous bimetallic PdNi catalysts were fabricated by a novel method, namely, reduction of Pd and Ni oxides prepared via calcining the complex chelate of PdNi-dimethylglyoxime (PdNi-dmg). The morphology and composition of the as-prepared PdNi were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, the electrochemical properties of PdNi catalysts towards ethanol electrooxidation were also studied by electrochemical impedance spectrometry (EIS), cyclic voltammetry (CV) and chronoamperometry (CA) measurement. In comparison with porous Pd and commercial Pd/C catalysts, porous structural PdNi catalysts showed higher electrocatalytic activity and durability for ethanol electrooxidation, which may be ascribed to Pd and Ni property, large electroactive surface area and high electron transfer property. The Ni exist in the catalyst in the form of the nickel hydroxides (Ni(OH) 2 and NiOOH) which have a high electron and proton conductivity enhances the catalytic activity of the catalysts. All results highlight the great potential application of the calcination-reduction method for synthesizing high active porous PdNi catalysts in direct ethanol fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Hui; He Xiaoyan; Cao Minhua
2009-03-05
Novel rose-like three-dimensional Sn(HPO{sub 4}){sub 2}.H{sub 2}O nanostructures self-assembled by tightly stacked nanopetals were successfully synthesized by a simple cetyltrimethylammonium bromide (CTAB)/water/cyclohexane/n-pentanol microemulsion system under solvothermal conditions for the first time. A series of compared experiments were carried out to investigate the factors that influence the morphology and size of the products. It was found that the molar ratio of water to CTAB and the concentration of SnCl{sub 4} aqueous solution play important roles in the formation of the rose-like nanostructures. A possible formation mechanism of rose-like nanostructures was proposed, which may be related to the crystal structure of Sn(HPO{submore » 4}){sub 2}.H{sub 2}O and the spherical micelles formed by the microemulsion. The electrochemical properties of Sn(HPO{sub 4}){sub 2}.H{sub 2}O were investigated through cyclic voltammetry (CV) measurements. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and field-emission scanning electron microscope (FE-SEM) were used to characterize the products.« less
Arsenopyrite weathering under conditions of simulated calcareous soil.
Lara, René H; Velázquez, Leticia J; Vazquez-Arenas, Jorge; Mallet, Martine; Dossot, Manuel; Labastida, Israel; Sosa-Rodríguez, Fabiola S; Espinosa-Cristóbal, León F; Escobedo-Bretado, Miguel A; Cruz, Roel
2016-02-01
Mining activities release arsenopyrite into calcareous soils where it undergoes weathering generating toxic compounds. The research evaluates the environmental impacts of these processes under semi-alkaline carbonated conditions. Electrochemical (cyclic voltammetry, chronoamperometry, EIS), spectroscopic (Raman, XPS), and microscopic (SEM, AFM, TEM) techniques are combined along with chemical analyses of leachates collected from simulated arsenopyrite weathering to comprehensively examine the interfacial mechanisms. Early oxidation stages enhance mineral reactivity through the formation of surface sulfur phases (e.g., S n (2-)/S(0)) with semiconductor properties, leading to oscillatory mineral reactivity. Subsequent steps entail the generation of intermediate siderite (FeCO3)-like, followed by the formation of low-compact mass sub-micro ferric oxyhydroxides (α, γ-FeOOH) with adsorbed arsenic (mainly As(III), and lower amounts of As(V)). In addition, weathering reactions can be influenced by accessible arsenic resulting in the formation of a symplesite (Fe3(AsO4)3)-like compound which is dependent on the amount of accessible arsenic in the system. It is proposed that arsenic release occurs via diffusion across secondary α, γ-FeOOH structures during arsenopyrite weathering. We suggest weathering mechanisms of arsenopyrite in calcareous soil and environmental implications based on experimental data.
High performance supercapacitor from activated carbon derived from waste orange skin
NASA Astrophysics Data System (ADS)
Ahmed, Sultan; Hussain, S.; Ahmed, Ahsan; Rafat, M.
2018-05-01
Activated carbon due to its inherent properties such as large surface area and low cost is most frequently used electrode material for supercapacitor. Activated carbon has been previously derived from various biomass such as coconut shell, coffee bean etc. Herein, we report the synthesis of activated carbon from waste orange skin. The material was synthesized employing chemical activation method and the success of synthesis was confirmed by its physical and electrochemical properties. The physical properties of the as-prepared sample were studied using the techniques of XRD, SEM, Raman spectroscopy and N2 adsorption/desorption analysis while its electrochemical properties were studied in two-electrode assembly using liquid electrolyte (consisting of 1 M solution of LiTFSI dispersed in ionic liquid EMITFSI) and employing the techniques of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge- discharge. The synthesized sample of activated carbon exhibits high specific capacitance of 115 F g-1 at 10 mV s-1. Also, the activated carbon electrode shows the retention of ˜75% in initial capacitance value for more than 2000 initial cycles, indicating the as-prepared activated carbon can be profitably used as electrode material for energy storage devices.
Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tawfic, A.F.; Dickson, S.E.; Kim, Y.
2015-03-15
Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active filmsmore » (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)« less
An electrochemical dopamine sensor based on the ZnO/CuO nanohybrid structures.
Khun, K; Ibupoto, Z H; Liu, X; Mansor, N A; Turner, A P F; Beni, V; Willander, M
2014-09-01
The selective detection of dopamine (DA) is of great importance in the modern medicine because dopamine is one of the main regulators in human behaviour. In this study, ZnO/CuO nanohybrid structures, grown on the gold coated glass substrate, have been investigated as a novel electrode material for the electrochemical detection of dopamine. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques were used for the material characterization and the obtained results are in good agreement. The selective determination of dopamine was demonstrated by cyclic voltammetry (CV) and amperometric experiments. The amperometric response was linear for dopamine concentrations between 1.0 x 10(-3) and 8.0 mM with a sensitivity of 90.9 μA mM(-1) cm(-2). The proposed dopamine biosensor is very stable, selective over common interferents as glucose, uric acid and ascorbic acid, and also good reproducibility was observed for seven electrodes. Moreover, the dopamine sensor exhibited a fast response time of less than 10 s. The wide range and acceptable sensitivity of the presented dopamine sensor provide the possible application in analysing the dopamine from the real samples.
Wei, Yubo; Zeng, Qiang; Hu, Qiong; Wang, Min; Tao, Jia; Wang, Lishi
2018-01-15
Herein, the self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel was constructed on a glassy carbon electrode (GCE) with a free radical polymerization method. Combining the advantages of thermo-responsive molecular imprinted polymers and electrochemistry, the resulted biosensor presents a novel self-cleaned ability for bovine serum albumin (BSA) in aqueous media. As a temperature controlled gate, the hydrogel film undergoes the adsorption and desorption of BSA basing on a reversible structure change with the external temperature stimuli. In particular, these processes have been revealed by the response of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of electroactive [Fe(CN) 6 ] 3-/4- . The results have been supported by the evidences of scanning electron microscopy (SEM) and contact angles measurements. Under the optimal conditions, a wide detection range from 0.02μmolL -1 to 10μmolL -1 with a detection limit of 0.012 μmolL -1 (S/N = 3) was obtained for BSA. This proposed BSA sensor also possesses high selectivity, excellent stability, acceptable recovery and good reproducibility in its practical applications. Copyright © 2017. Published by Elsevier B.V.
Dayakar, T; Rao, K Venkateswara; Bikshalu, K; Rajendar, V; Park, Si-Hyun
2017-07-01
Non enzymatic electrochemical glucose sensing was developed based on pristine Cu Nanopartilces (NPs)/Glassy Carbon Electrode (GCE) which can be accomplished by simple green method via ocimum tenuiflorum leaf extract. Then, the affect of leaf extract addition on improving Structural, Optical and electrochemical properties of pristine cu NPs was investigated. The synthesized Cu NPs were characterized with X-ray diffraction (X-ray), Uv-Visible spectroscopy (Uv-Vis), Fourier transformation infrared spectroscopy (FTIR), Particle size distribution (PSA), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), Transmission electron microscopy (TEM) for structural optical and morphological studies respectively. The synthesized Cu NPs were coated over glassy carbon electrode (GCE) to study the electrochemical response of glucose by cyclic voltammetry and ampherometer. The results indicates that the modified biosensor shows a remarkable sensitivity (1065.21 μA mM -1 cm -2 ), rapid response time (<3s), wide linear range (1 to 7.2 mM), low detection limit (0.038 μM at S/N = 3). Therefore, the prepared Cu NPs by the Novel Bio-mediated route were exploited to construct a non-enzymatic glucose biosensor for sustainable clinical field applications.
NASA Astrophysics Data System (ADS)
Tarkuc, S.; Sahmetlioglu, E.; Tanyeli, C.; Akhmedov, I. M.; Toppare, L.
2008-06-01
Electrochemical copolymerization of 1-(phenyl)-2,5-di(2-thienyl)-1H-pyrrole (PTP) with 3,4-ethylenedioxy thiophene (EDOT) was carried out in acetonitrile (AN)/NaClO4/LiClO4 (0.1 M) solvent-electrolyte couple via potentiodynamic electrolysis. Characterizations of the resulting copolymer were performed via cyclic voltammetry (CV), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and spectroelectrochemical analysis. Spectroelectrochemical analyses show that the copolymer of PTP with EDOT has an electronic band gap (due to π to π∗ transition) of 1.9 eV at 480 nm, with a claret red in the fully reduced form and a blue color in the fully oxidized form. Via kinetic studies, the optical contrast (ΔT %) was found to be 8% for P(PTP-co-EDOT). Results showed that the time required to reach 95% of the ultimate transmittance was 1.7 s for the copolymer. The P(PTP-co-EDOT) film was used to construct a dual type polymer electrochromic device (ECDs) with poly(3,4-ethylenedioxy thiophene) (PEDOT). Spectroelectrochemistry, electrochromic switching and open circuit memory of the device were investigated.
NASA Astrophysics Data System (ADS)
Wang, Bin; Zhao, Jinsheng; Cui, Chuansheng; Wang, Min; Wang, Zhong; He, Qingpeng
2012-05-01
Electrochemical copolymerization of 1,4-bis(2-thienyl)naphthalene (BTN) with pyrene is carried out in acetonitrile (ACN) solution containing sodium perchlorate (NaClO4) as a supporting electrolyte. Characterizations of the resulting copolymer P(BTN-co-pyrene) are performed by cyclic voltammetry (CV), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The P(BTN-co-pyrene) film has distinct electrochromic properties and exhibits three different colors (yellowish green, green and blue) under various potentials. Maximum contrast (ΔT%) and response time of the copolymer film are measured as 37.8% and 1.71 s at 687 nm. An electrochromic device (ECD) based on P(BTN-co-pyrene) and poly(3,4-ethylenedioxythiophene) (PEDOT) is constructed and characterized. Neutral state of device shows green color while oxidized state reveals blue color. This ECD shows a maximum optical contrast (ΔT%) of 24.4% with a response time of 0.43 s at 635 nm. The coloration efficiency (CE) of the device is calculated to be 349 cm2 C-1 at 635 nm. In addition, the ECD also has satisfactory optical memories and redox stability.
NASA Astrophysics Data System (ADS)
Zhu, Xing; Yuan, Zewei; Wang, Xiaobo; Jiang, Guodong; Xiong, Jian; Yuan, Songdong
2018-03-01
Red phosphorus @reduced graphene oxide (P @rGO) nanohybrid was synthesized via a two-step hydrothermal process. The obtained P @rGO nanohybrid was characterized by TEM, SEM, Raman, XRD and XPS. It was found that the nano-scale red phosphorus encapsulated in the reduced graphene oxide and the existence of phosphorus promote the reduction of graphene oxide. The electrochemical performance of P @rGO nanohybrid as an anode material was investigated by galvanostatic charge/discharge, rate performance, cyclic voltammetry and AC impedance test. With increasing the mass of rGO, the electrochemical performance of P @rGO nanohybrid was significantly enhanced. The first discharge/charge specific capacity of the nanohybrid prepared at optimum condition (P:GO = 7:3) could achieve approximately 2400 mAh/g and 1600 mAh/g respectively and still retained ∼1000 mAh/g after 80 cycles and the coulombic efficiency maintained almost 100%. The enhancement in P @rGO nanohybrid was attributed to the introduction of graphene, which led to the elimination of volume effect and the enhancement of conductively of pure red phosphorus.
Nawaz, Muhammad Azhar Hayat; Rauf, Sajid; Catanante, Gaelle; Nawaz, Mian Hasnain; Nunes, Gilvanda; Marty, Jean Louis; Hayat, Akhtar
2016-10-06
Thin films of organic moiety functionalized carbon nanotubes (CNTs) from a very well-dispersed aqueous solution were designed on a screen printed transducer surface through a single step directed assembly methodology. Very high density of CNTs was obtained on the screen printed electrode surface, with the formation of a thin and uniform layer on transducer substrate. Functionalized CNTs were characterized by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Brunauer-Emmett- Teller (BET) surface area analyzer methodologies, while CNT coated screen printed transducer platform was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed methodology makes use of a minimum amount of CNTs and toxic solvents, and is successfully demonstrated to form thin films over macroscopic areas of screen printed carbon transducer surface. The CNT coated screen printed transducer surface was integrated in the fabrication of electrochemical aptasensors for breast cancer biomarker analysis. This CNT coated platform can be applied to immobilize enzymes, antibodies and DNA in the construction of biosensor for a broad spectrum of applications.
Nawaz, Muhammad Azhar Hayat; Rauf, Sajid; Catanante, Gaelle; Nawaz, Mian Hasnain; Nunes, Gilvanda; Louis Marty, Jean; Hayat, Akhtar
2016-01-01
Thin films of organic moiety functionalized carbon nanotubes (CNTs) from a very well-dispersed aqueous solution were designed on a screen printed transducer surface through a single step directed assembly methodology. Very high density of CNTs was obtained on the screen printed electrode surface, with the formation of a thin and uniform layer on transducer substrate. Functionalized CNTs were characterized by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) surface area analyzer methodologies, while CNT coated screen printed transducer platform was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed methodology makes use of a minimum amount of CNTs and toxic solvents, and is successfully demonstrated to form thin films over macroscopic areas of screen printed carbon transducer surface. The CNT coated screen printed transducer surface was integrated in the fabrication of electrochemical aptasensors for breast cancer biomarker analysis. This CNT coated platform can be applied to immobilize enzymes, antibodies and DNA in the construction of biosensor for a broad spectrum of applications. PMID:27782067
Electrodeposition and Capacitive Behavior of Films for Electrodes of Electrochemical Supercapacitors
2010-01-01
Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0–3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC) in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g−1 was observed for the sample with a specific mass of 89 μg cm−2 at a scan rate of 2 mV s−1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES). PMID:20672082
One-Step Hydrothermal-Electrochemical Route to Carbon-Stabilized Anatase Powders
NASA Astrophysics Data System (ADS)
Tao, Ying; Yi, Danqing; Zhu, Baojun
2013-04-01
Black carbon-stabilized anatase particles were prepared by a simple one-step hydrothermal-electrochemical method using glucose and titanium citrate as the carbon and titanium source, respectively. Morphological, chemical, structural, and electrochemical characterizations of these powders were carried out by Raman spectroscopy, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, and cyclic voltammetry. It was revealed that 200-nm carbon/anatase TiO2 was homogeneously dispersed, and the powders exhibited excellent cyclic performance at high current rates of 0.05 V/s. The powders are interesting potential materials that could be used as anodes for lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Lee, Choong-Gon; Umeda, Minoru; Uchida, Isamu
The effect of temperature on methanol, ethanol, 2-propanol, and 2-butanol electrooxidation is investigated with Pt/C and Pt-Ru/C microporous electrodes. Cyclic voltammetry is employed in temperatures ranging from 25 to 80 °C to provide quantitative and qualitative information on the kinetics of alcohol oxidation. Methanol displays the greatest activity atom alcohols. The addition of ruthenium reduces the poisoning effect, although it is ineffective with secondary alcohols. Secondary alcohols undergo a different oxidation mechanism at higher temperatures. Microporous electrodes provide detailed information on alcohol oxidation.
NASA Astrophysics Data System (ADS)
Henstridge, Martin C.; Batchelor-McAuley, Christopher; Gusmão, Rui; Compton, Richard G.
2011-11-01
Two simple models of electrode surface inhomogeneity based on Marcus-Hush theory are considered; a distribution in formal potentials and a distribution in electron tunnelling distances. Cyclic voltammetry simulated using these models is compared with that simulated using Marcus-Hush theory for a flat, uniform and homogeneous electrode surface, with the two models of surface inhomogeneity yielding broadened peaks with decreased peak-currents. An edge-plane pyrolytic graphite electrode is covalently modified with ferrocene via 'click' chemistry and the resulting voltammetry compared with each of the three previously considered models. The distribution of formal potentials is seen to fit the experimental data most closely.
Metal molybdate nanorods as non-precious electrocatalysts for the oxygen reduction
NASA Astrophysics Data System (ADS)
Wu, Tian; Zhang, Lieyu
2015-12-01
Development of non-precious electrocatalysts with applicable electrocatalytic activity towards the oxygen reduction reaction (ORR) is important to fulfill broad-based and large-scale applications of metal/air batteries and fuel cells. Herein, nickel and cobalt molybdates with uniform nanorod morphology are synthesized using a facile one-pot hydrothermal method. The ORR activity of the prepared metal molybdate nanorods in alkaline media are investigated by using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperomety in rotating disk electrode (RDE) techniques. The present study suggests that the prepared metal molybdate nanorods exhibit applicable electrocatalytic activities towards the ORR in alkaline media, promising the applications as non-precious cathode in fuel cells and metal-air batteries.
Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel.
Wang, Huiru; Du, Cuiwei; Liu, Zhiyong; Wang, Luntao; Ding, De
2017-07-25
This study employs potential-monitoring techniques, cyclic voltammetry tests, alternating current (AC) voltammetry methods, and surface characterization to investigate the AC corrosion of cathodically protected X80 pipeline steel. In a non-passive neutral solution at pH 7.2, a sufficiently negative potential completely protects steel at an AC current density of 100 A/m². In an alkaline solution at pH 9.6, more serious AC corrosion occurs at more negative cathodic protection (CP) potential, whereas without CP the steel suffers negligible corrosion. In addition, the interface capacitance increases with AC amplitude. Based on these results, the AC corrosion mechanisms that function under various conditions are analyzed and described.
NASA Astrophysics Data System (ADS)
Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu
2014-01-01
Mesoporous spinel nickel cobaltite (NiCo2O4) nanostructures were synthesized via a facile chemical deposition method coupled with a simple post-annealing process. The physicochemical properties were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. The electrocatalytic performances were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit typical agglomerate mesoporous nanostructures with a large surface area (190.1 m2 g-1) and high mesopore volume (0.943 cm3 g-1). Remarkably, the NiCo2O4 shows much higher catalytic activity, lower overpotential, better stability and greater tolerance towards urea electro-oxidation compared to those of cobalt oxide (Co3O4) synthesized by the same procedure. The NiCo2O4 electrode delivers a current density of 136 mA cm-2 mg-1 at 0.7 V (vs. Hg/HgO) in 1 M KOH and 0.33 M urea electrolytes accompanied with a desirable stability. The impressive electrocatalytic activity is largely ascribed to the high intrinsic electronic conductivity, superior mesoporous nanostructures and rich surface Ni active species of the NiCo2O4 materials, which can largely boost the interfacial electroactive sites and charge transfer rates for urea electro-oxidation, indicating promising applications in future wastewater remediation, hydrogen production and fuel cells.Mesoporous spinel nickel cobaltite (NiCo2O4) nanostructures were synthesized via a facile chemical deposition method coupled with a simple post-annealing process. The physicochemical properties were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. The electrocatalytic performances were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit typical agglomerate mesoporous nanostructures with a large surface area (190.1 m2 g-1) and high mesopore volume (0.943 cm3 g-1). Remarkably, the NiCo2O4 shows much higher catalytic activity, lower overpotential, better stability and greater tolerance towards urea electro-oxidation compared to those of cobalt oxide (Co3O4) synthesized by the same procedure. The NiCo2O4 electrode delivers a current density of 136 mA cm-2 mg-1 at 0.7 V (vs. Hg/HgO) in 1 M KOH and 0.33 M urea electrolytes accompanied with a desirable stability. The impressive electrocatalytic activity is largely ascribed to the high intrinsic electronic conductivity, superior mesoporous nanostructures and rich surface Ni active species of the NiCo2O4 materials, which can largely boost the interfacial electroactive sites and charge transfer rates for urea electro-oxidation, indicating promising applications in future wastewater remediation, hydrogen production and fuel cells. Electronic supplementary information (ESI) available: XRD patterns of NO and CO; XRD patterns and XPS profiles of CO; SEM images of CO; BET plots of CO; XPS quantitative analysis of NCO; a comparison of N2 sorption data between NCO and CO; the fitted values of impedimetric parameters of NCO and CO electrodes. See DOI: 10.1039/c3nr05359h
Sagasti, Ariane; Bouropoulos, Nikolaos; Kouzoudis, Dimitris; Panagiotopoulos, Apostolos; Topoglidis, Emmanuel; Gutiérrez, Jon
2017-01-01
In the present work, a nanostructured ZnO layer was synthesized onto a Metglas magnetoelastic ribbon to immobilize hemoglobin (Hb) on it and study the Hb’s electrochemical behavior towards hydrogen peroxide. Hb oxidation by H2O2 was monitored simultaneously by two different techniques: Cyclic Voltammetry (CV) and Magnetoelastic Resonance (MR). The Metglas/ZnO/Hb system was simultaneously used as a working electrode for the CV scans and as a magnetoelastic sensor excited by external coils, which drive it to resonance and interrogate it. The ZnO nanoparticles for the ZnO layer were grown hydrothermally and fully characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and photoluminescence (PL). Additionally, the ZnO layer’s elastic modulus was measured using a new method, which makes use of the Metglas substrate. For the detection experiments, the electrochemical cell was performed with a glass vial, where the three electrodes (working, counter and reference) were immersed into PBS (Phosphate Buffer Solution) solution and small H2O2 drops were added, one at a time. CV scans were taken every 30 s and 5 min after the addition of each drop and meanwhile a magnetoelastic measurement was taken by the external coils. The CV plots reveal direct electrochemical behavior of Hb and display good electrocatalytic response to the reduction of H2O2. The measured catalysis currents increase linearly with the H2O2 concentration in a wide range of 25–350 μM with a correlation coefficient 0.99. The detection limit is 25–50 μM. Moreover, the Metglas/ZnO/Hb electrode displays rapid response (30 s) to H2O2, and exhibits good stability and reproducibility of the measurements. On the other hand, the magnetoelastic measurements show a small linear mass increase versus the H2O2 concentration with a slope of 152 ng/μM, which is probably due to H2O2 adsorption in ZnO during the electrochemical reaction. No such effects were detected during the control experiment when only PBS solution was present for a long time. PMID:28773209
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yimin; Kou, Huanhuan; Li, Jiajia
2012-10-15
We report on the electrochemical atomic layer deposition (EC-ALD) of ZnTe dendrites on the carboxyl-functionalized multi-walled carbon nanotubes/polyimide (COOH-MWCNTs/PI) membrane. Electrochemical characteristics were studied by cyclic voltammetry (CV) and the deposition of ZnTe dendrites was completed using amperometric method (I-t). The prepared ZnTe dendrites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The growth mechanism of ZnTe dendrites was elucidated to give a deep understanding of crystal growth. The concentration of reagents and deposition cycle had a significant effect on the morphology and structure of deposits. UV-vis transmission study indicated a direct bandmore » gap of 2.26 eV. Photoelectrical measurement confirmed the p-type conductivity of ZnTe dendrites, which indicated that the dendritic ZnTe crystals may have potential practical application in optoelectronic devices. - Graphical abstract: Representative SEM images of ZnTe dendrites. (a) Panorama of ZnTe dendrites; (b) a single dendrite. The regular branches appeared like leaves and showed a parallel arrangement layer upon layer between each other. Highlights: Black-Right-Pointing-Pointer ZnTe dendrites were successfully synthesized on CNTs/PI membrane by electrodeposition. Black-Right-Pointing-Pointer The growth mechanism of ZnTe dendritic structures was investigated in detail. Black-Right-Pointing-Pointer The concentration and deposition cycle greatly affected the morphology of ZnTe. Black-Right-Pointing-Pointer OCP and I-t studies showed that ZnTe can be beneficial to photoelectric applications.« less
NASA Astrophysics Data System (ADS)
Rahal, Hassiba; Kihal, Rafiaa; Affoune, Abed Mohamed; Ghers, Mokhtar; Djazi, Faycal
2017-06-01
Zinc oxide thin films have been grown by electrodeposition technique onto Cu and ITO-coated glass substrates from an aqueous zinc nitrate solution with addition of sodium thiosulfate at 90 °C. The effects of sodium thiosulfate on the electrochemical deposition of ZnO were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were obtained at -0.60 V vs. SCE and characterized by XRD, SEM, FTIR, optical, photoelectrochemical and electrical measurements. Thickness of the deposited film was measured to be 357 nm. X-ray diffraction results indicated that the synthesized ZnO has a pure hexagonal wurtzite structure with a marked preferential orientation along (002) plane. FTIR results confirmed the presence of ZnO films at peak 558 cm-1. SEM images showed uniform, compact morphology without any cracks and films composed of large flower-like ZnO agglomerates with star-shape. Optical properties of ZnO reveal a high optical transmission (> 80 % ) and high absorption coefficient (α > {10}5 {{cm}}-1) in visible region. The optical energy band gap was found to be 3.28 eV. Photoelectrochemical measurements indicated that the ZnO films had n-type semiconductor conduction. Electrical properties of ZnO films showed a low electrical resistivity of 6.54 {{Ω }}\\cdot {cm}, carrier concentration of -1.3× {10}17 {{cm}}-3 and mobility of 7.35 cm2 V-1 s-1. Project supported by the Algerian Ministry of Higher Education and Scientific Research, Algeria (No. J0101520090018).
NASA Astrophysics Data System (ADS)
Shenouda, Atef Y.; Murali, K. R.
Several substituted titanates of formula Li 4- xMg xTi 5- xV xO 12 (0 ≤ x ≤ 1) were synthesized (and investigated) as anode materials in rechargeable lithium batteries. Five samples labeled as S1-S5 were calcined (fired) at 900 °C for 10 h in air, and slowly cooled to room temperature in a tube furnace. The structural properties of the synthesized products have been investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transmission infrared (FTIR). XRD explained that the crystal structures of all samples were monoclinic while S1 and S3 were hexagonal. The morphology of the crystal of S1 was spherical while the other samples were prismatic in shape. SEM investigations explained that S4 had larger grain size diameter of 15-16 μm in comparison with the other samples. S4 sample had the highest conductivity 2.452 × 10 -4 S cm -1. At a voltage plateau located at about 1.55 V (vs. Li +), S4 cell exhibited an initial specific discharge capacity of 198 mAh g -1. The results of cyclic voltammetry for Li 4- xMg xTi 5- xV xO 12 showed that the electrochemical reaction was based on Ti 4+/Ti 3+ redox couple at potential range from 1.5 to 1.7 V. There is a pair of reversible redox peaks corresponding to the process of Li + intercalation and de-intercalation in the Li-Ti-O oxides.
Ethanol electrooxidation in alkaline medium on electrochemically synthesized Co(OH)2/Au composite
NASA Astrophysics Data System (ADS)
Babu, Sreejith P.; Elumalai, Perumal
2017-01-01
Gold (Au), cobalt hydroxide (Co(OH)2) and different Co(OH)2/Au compositions were electro-deposited onto stainless steel by a potentiodynamic method from the respective metal-ion solutions. The deposits were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transformed infra-red spectroscopy (FT-IR). The XRD and IR data confirmed that the deposits were Au, α-Co(OH)2 or Co(OH)2/Au composites. The SEM observations confirmed that the morphology of the Au was spherical, while the α-Co(OH)2 was flakey with pores. The morphology of the Co(OH)2/Au composites consisted of highly agglomerated Au grains distributed on the Co(OH)2 matrix. The electrocatalytic activity of each of the Au, Co(OH)2 and Co(OH)2/Au-composite electrodes towards ethanol electrooxidation in an alkaline medium was investigated by cyclic voltammetry and chronoamperometry. It turned out that the Co(OH)2/Au-composite electrodes exhibited superior catalytic activity for ethanol electrooxidation compared with the pristine Au or Co(OH)2 electrodes. A peak current density as high as 25 mA cm-2 was exhibited by the Co(OH)2/ Au composite while the Au and Co(OH)2 showed only 0.9 and 13 mA cm-2, respectively. The enhanced conductivity of the Co(OH)2/Au matrix due to the presence of Au, as well as the combined catalytic activity, seemed to be responsible for the superior performance of the Co(OH)2/Au-composite electrodes.
ERIC Educational Resources Information Center
Igartua-Nieves, Elvin; Ocasio-Delgado, Yessenia; Rivera-Pagan, Jose; Cortes-Figueroa, Jose E.
2007-01-01
Cyclic voltammetry experiments on [60]fullerene, (C[subscript 60]), and (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], constitute an educational experiment for the inorganic chemistry laboratory with a primary objective to teach the chemical interpretation of a voltammogram, in…
ERIC Educational Resources Information Center
Kulczynska, Agnieszka; Johnson, Reed; Frost, Tony; Margerum, Lawrence D.
2011-01-01
An advanced undergraduate laboratory project is described that integrates inorganic, analytical, physical, and biochemical techniques to reveal differences in binding between cationic metal complexes and anionic DNA (herring testes). Students were guided to formulate testable hypotheses based on the title question and a list of different metal…
Measuring Vitamin C Content of Commercial Orange Juice Using a Pencil Lead Electrode
ERIC Educational Resources Information Center
King, David; Friend, Jeffrey; Kariuki, James
2010-01-01
A pencil lead successfully served as an electrode for the determination of ascorbic acid in commercial orange juice. Cyclic voltammetry was used as an electrochemical probe to measure the current produced from the oxidation of ascorbic acid with a variety of electrodes. The data demonstrate that the less expensive pencil lead electrode gives…
ERIC Educational Resources Information Center
Ventura, Karen; Smith, Mark B.; Prat, Jacob R.; Echegoyen, Lourdes E.; Villagran´, Dino
2017-01-01
We have designed a 4 h physical chemistry laboratory to introduce upper division students to electrochemistry concepts, including mixed valency and electron transfer (ET), using cyclic and differential pulse voltammetries. In this laboratory practice, students use a ferrocene dimer consisting of two ferrocene centers covalently bonded through a…
ERIC Educational Resources Information Center
Ibanez, Jorge G.; And Others
1988-01-01
Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)
ERIC Educational Resources Information Center
Lunsford, Suzanne K.; Speelman, Nicole; Stinson, Jelynn; Yeary, Amber; Choi, Hyeok; Widera, Justyna; Dionysiou, Dionysios D.
2008-01-01
This article describes an undergraduate laboratory for an instrumental analysis course that integrates electroanalytical chemistry and infrared spectroscopy. Modified electrode surfaces are prepared by constant potentiometric electrolysis over the potential range of 1.5-1.8 V and analyzed by cyclic voltammetry and infrared spectroscopy. The…
NASA Astrophysics Data System (ADS)
Wang, Lu; Ji, Hongmei; Zhu, Feng; Chen, Zhi; Yang, Yang; Jiang, Xuefan; Pinto, João; Yang, Gang
2013-07-01
Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g-1 at 0.1 A g-1), good rate capability (65.8 F g-1 at 40 A g-1), and excellent cycling stability (retention 119.3% after 10 000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles.Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g-1 at 0.1 A g-1), good rate capability (65.8 F g-1 at 40 A g-1), and excellent cycling stability (retention 119.3% after 10 000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00951c
Marsili, Enrico; Rollefson, Janet B.; Baron, Daniel B.; Hozalski, Raymond M.; Bond, Daniel R.
2008-01-01
While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. PMID:18849456
NASA Astrophysics Data System (ADS)
Yan, David; Bazant, Martin Z.; Biesheuvel, P. M.; Pugh, Mary C.; Dawson, Francis P.
2017-03-01
Linear sweep and cyclic voltammetry techniques are important tools for electrochemists and have a variety of applications in engineering. Voltammetry has classically been treated with the Randles-Sevcik equation, which assumes an electroneutral supported electrolyte. In this paper, we provide a comprehensive mathematical theory of voltammetry in electrochemical cells with unsupported electrolytes and for other situations where diffuse charge effects play a role, and present analytical and simulated solutions of the time-dependent Poisson-Nernst-Planck equations with generalized Frumkin-Butler-Volmer boundary conditions for a 1:1 electrolyte and a simple reaction. Using these solutions, we construct theoretical and simulated current-voltage curves for liquid and solid thin films, membranes with fixed background charge, and cells with blocking electrodes. The full range of dimensionless parameters is considered, including the dimensionless Debye screening length (scaled to the electrode separation), Damkohler number (ratio of characteristic diffusion and reaction times), and dimensionless sweep rate (scaled to the thermal voltage per diffusion time). The analysis focuses on the coupling of Faradaic reactions and diffuse charge dynamics, although capacitive charging of the electrical double layers is also studied, for early time transients at reactive electrodes and for nonreactive blocking electrodes. Our work highlights cases where diffuse charge effects are important in the context of voltammetry, and illustrates which regimes can be approximated using simple analytical expressions and which require more careful consideration.
Garazhian, Elahe; Shishehbore, M. Reza
2015-01-01
A new sensitive sensor was fabricated for simultaneous determination of codeine and acetaminophen based on 4-hydroxy-2-(triphenylphosphonio)phenolate (HTP) and multiwall carbon nanotubes paste electrode at trace levels. The sensitivity of codeine determination was deeply affected by spiking multiwall carbon nanotubes and a modifier in carbon paste. Electron transfer coefficient, α, catalytic electron rate constant, k, and the exchange current density, j 0, for oxidation of codeine at the HTP-MWCNT-CPE were calculated using cyclic voltammetry. The calibration curve was linear over the range 0.2–844.7 μM with two linear segments, and the detection limit of 0.063 μM of codeine was obtained using differential pulse voltammetry. The modified electrode was separated codeine and acetaminophen signals by differential pulse voltammetry. The modified electrode was applied for the determination of codeine and acetaminophen in biological and pharmaceutical samples with satisfactory results. PMID:25945094
Thin-layer voltammetry of soluble species on screen-printed electrodes: proof of concept.
Botasini, S; Martí, A C; Méndez, E
2016-10-17
Thin-layer diffusion conditions were accomplished on screen-printed electrodes by placing a controlled-weight onto the cast solution and allowing for its natural spreading. The restricted diffusive conditions were assessed by cyclic voltammetry at low voltage scan rates and electrochemical impedance spectroscopy. The relationship between the weight exerted over the drop and the thin-layer thickness achieved was determined, in such a way that the simple experimental set-up designed for this work could be developed into a commercial device with variable control of the thin-layer conditions. The experimental results obtained resemble those reported for the voltammetric features of electroactive soluble species employing electrodes modified with carbon nanotubes or graphene layers, suggesting that the attainment of the benefits reported for these nanomaterials could be done simply by forcing the solution to spread over the screen-printed electrodic system to form a thin layer solution. The advantages of thin-layer voltammetry in the kinetic characterization of quasi-reversible and irreversible processes are highlighted.
NASA Astrophysics Data System (ADS)
Mouchaal, Younes; Gherrass, Hamou; Bendoukha Reguig, Abdelkarim; Hachemaoui, Aïcha; Yahiaoui, Ahmed; Makha, Mohamed; Khelil, Abdelbacet; Bernede, Jean-Christian
2015-02-01
A new material: conjugated poly {(2,5-diyl pyrrole) [4-nitrobenzylidène]}, that we called (PPNB), has been synthesized and characterized. The cyclic voltammetry has been used in order to estimate first oxidation (Ep) and reduction (En) potentials of our polymer. These values have been assigned, respectively, to the position of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) and determination of the energy band gap which have been estimated to be 6.16, 3.89 and 2.27 eV respectively. Energy levels values of the HOMO and LUMO of the PPNB polymeric donor material were evaluated and the results are compatible with an electron transfer to C60 within an eventual junction, such values show that PPNB could be probed for applications in organic solar cells as donor material. PPNB Thin films have been deposited by dip-coating technique from Dichloromethane solvent with different polymer concentrations, and a dipping speed of 3.0 cm/min. For morphological characterization of the films scanning electron microscopy (SEM) was carried out. The samples, when observed by SEM, reveals that the films deposited are less dense, uniform. Cross-sectional SEM micrographs PPNB films show that thickness of the layers is homogeneous and has value of 35-40 nm. Optical characteristics of the polymer thin films were studied using UV-vis spectroscopy; absorption of wide range of wavelengths from 350 to 700 nm was observed. The optical band gap energy ranges between 1.9 eV and 1.94 eV. Based on these analyzes we realized heterojunction organic solar cells with the structure: ITO/Au/PPNB/C60/BCP/Al, the cells had a photovoltaique effect after J-V measuring, however the efficiency of photo generation under AM1.5 illumination was weak (about 0.02%) and needs to be improved.
Ellis, Jonathan S; Strutwolf, Jörg; Arrigan, Damien W M
2012-02-21
Adsorption onto the walls of micropores was explored by computational simulations involving cyclic voltammetry of ion transfer across an interface between aqueous and organic phases located at the micropore. Micro-interfaces between two immiscible electrolyte solutions (micro-ITIES) have been of particular research interest in recent years and show promise for biosensor and biomedical applications. The simulation model combines diffusion to and within the micropore, Butler-Volmer kinetics for ion transfer at the liquid-liquid interface, and Langmuir-style adsorption on the pore wall. Effects due to pore radius, adsorption and desorption rates, surface adsorption site density, and scan rates were examined. It was found that the magnitude of the reverse peak current decreased due to adsorption of the transferring ion on the pore wall; this decrease was more marked as the scan rate was increased. There was also a shift in the half-wave potential to lower values following adsorption, consistent with a wall adsorption process which provides a further driving force to transfer ions across the ITIES. Of particular interest was the disappearance of the reverse peak from the cyclic voltammogram at higher scan rates, compared to the increase in the reverse peak size in the absence of wall adsorption. This occurred for scan rates of 50 mV s(-1) and above and may be useful in biosensor applications using micropore-based ITIES.
Takmakov, Pavel; Zachek, Matthew K.; Keithley, Richard B.; Bucher, Elizabeth; McCarty, Gregory S.; Wightman, R. Mark
2010-01-01
Transient local pH changes in the brain are important markers of neural activity that can be used to follow metabolic processes that underlie the biological basis of behavior, learning and memory. There are few methods that can measure pH fluctuations with sufficient time resolution in freely moving animals. Previously, fast-scan cyclic voltammetry at carbon-fiber microelectrodes was used for the measurement of such pH transients. However, the origin of the potential dependent current in the cyclic voltammograms for pH changes recorded in vivo was unclear. The current work explored the nature of these peaks and established the origin for some of them. A peak relating to the capacitive nature of the pH CV was identified. Adsorption of electrochemically inert species, such as aromatic amines and calcium could suppress this peak, and is the origin for inconsistencies regarding in vivo and in vitro data. Also, we identified an extra peak in the in vivo pH CV relating to the presence of 3,4-dihydroxyacetic acid (DOPAC) in the brain extracellular fluid. To evaluate the in vivo performance of the carbon-fiber sensor, carbon dioxide inhalation by an anesthetized rat was used to induce brain acidosis induced by hypercapnia. Hypercapnia is demonstrated to be a useful tool to induce robust in vivo pH changes, allowing confirmation of the pH signal observed with FSCV. PMID:21047096
Hrdý, Radim; Kynclová, Hana; Klepáčová, Ivana; Bartošík, Martin; Neužil, Pavel
2017-09-05
We present a portable lock-in amplifier-based electrochemical sensing system. The basic unit (cluster) consists of four electrochemical cells (EC), each containing one pseudoreference electrode (PRE) and one working electrode (WE). All four ECs are simultaneously interrogated, each at different frequencies, with square wave pulses superposed on a sawtooth signal for cyclic voltammetry (CV). Lock-in amplification provides independent read-out of four signals, with excellent noise suppression. We expanded a single cluster system into an array of 16 clusters by using electronic switches. The chip with an array of ECs was fabricated using planar technology with a gap between a WE and a PRE of ≈2 μm, which results in partial microelectrode-type behavior. The basic electrode characterization was performed with the model case using a ferricyanide-ferrocyanide redox couple (Fe 2+ /Fe 3+ ) reaction, performing CV and differential pulse voltammetry (DPV). We then used this system to perform cyclic lock-in voltammetry (CLV) to measure concurrently responses of the four ECs. We repeated this method with all 64 ECs on the chip. The standard deviation of a peak oxidation and reduction current in a single channel consisting of 13 ECs was ≈7.46% and ≈5.6%, respectively. The four-EC configuration in each measured spot allows determination of nonperforming ECs and, thus, to eliminate potential false results. This system is built in a portable palm-size format suitable for point-of-care applications. It can perform either individual or multiple measurements of active compounds, such as biomarkers.
Ghosh, Tanushree; Sarkar, Priyabrata; Turner, Anthony P F
2015-04-01
A new uric acid biosensor was constructed using ferrocene (Fc) induced electro-activated uricase (UOx) deposited within Nafion (Naf) on glassy carbon electrode (GCE). Electro-activation of UOx was successfully achieved by cyclic voltammetry through the electrostatic interaction of Fc with Trp residues within the hydrophobic pockets in UOx. The Naf/UOx/Fc composite was characterised by AFM, FTIR and EDX to ensure proper immobilisation. The interaction of Fc with the enzyme was analysed by Trp fluorescence spectroscopy and the α-helicity of the protein was measured by CD spectropolarimetry. The charge transfer resistance (Rct), calculated from electrochemical impedance spectroscopy, for the modified sensor was lowered (1.39 kΩ) and the enzyme efficiency was enhanced by more than two fold as a result of Fc incorporation. Cyclic voltammetry, differential pulse voltammetry and amperometry all demonstrated the excellent response of the Naf/UOx/Fc/GCE biosensor to uric acid. The sensor system generated a linear response over a range of 500 nM to 600 μM UA, with a sensitivity and limit of detection of 1.78 μA μM(-1) and 230 nM, respectively. The heterogeneous rate constant (ks) for UA oxidation was much higher for Naf/UOx/Fc/GCE (1.0 × 10(-4) cm s(-1)) than for Naf/UOx/GCE (8.2 × 10(-5) cm s(-1)). Real samples, i.e. human blood, were tested for serum UA and the sensor yielded accurate results at a 95% confidence limit. Copyright © 2014 Elsevier B.V. All rights reserved.
Costentin, Cyrille; Nocera, Daniel G; Brodsky, Casey N
2017-10-24
Cyclic voltammetry responses are derived for two-electron, two-step homogeneous electrocatalytic reactions in the total catalysis regime. The models developed provide a framework for extracting kinetic information from cyclic voltammograms (CVs) obtained in conditions under which the substrate or cosubstrate is consumed in a multielectron redox process, as is particularly prevalent for very active catalysts that promote energy conversion reactions. Such determination of rate constants in the total catalysis regime is a prerequisite for the rational benchmarking of molecular electrocatalysts that promote multielectron conversions of small-molecule reactants. The present analysis is illustrated with experimental systems encompassing various limiting behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Amanda M.; Adami, Susan R.; Casella, Amanda J.
The solution chemistry of Pu in nitric acid is explored via electrochemistry and spectroelectrochemistry. By utilizing and comparing these techniques, an improved understanding of Pu behavior and its dependence on nitric acid concentration can be achieved. Here the Pu (III/IV) couple is characterized using cyclic voltammetry, square wave voltammetry, and a spectroelectrochemical Nernst step. Results indicate the formal reduction potential of the couple shifts negative with increasing acid concentration and reversible electrochemistry is no longer attainable above 6 M HNO3. Spectroelectrochemistry is also used to explore the irreversible oxidation of Pu(IV) to Pu(VI) and shine light on the mechanism andmore » acid dependence of the redox reaction.« less
Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel
Wang, Huiru; Du, Cuiwei; Liu, Zhiyong; Wang, Luntao; Ding, De
2017-01-01
This study employs potential-monitoring techniques, cyclic voltammetry tests, alternating current (AC) voltammetry methods, and surface characterization to investigate the AC corrosion of cathodically protected X80 pipeline steel. In a non-passive neutral solution at pH 7.2, a sufficiently negative potential completely protects steel at an AC current density of 100 A/m2. In an alkaline solution at pH 9.6, more serious AC corrosion occurs at more negative cathodic protection (CP) potential, whereas without CP the steel suffers negligible corrosion. In addition, the interface capacitance increases with AC amplitude. Based on these results, the AC corrosion mechanisms that function under various conditions are analyzed and described. PMID:28773211
NASA Technical Reports Server (NTRS)
Yang, Jin-Hua; Rawashdeh, Abdel Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia; Leventis, Nicholas
2003-01-01
We report the redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches, but remains constant at fixed radii. Voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that only two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers of a branch are accessible electrochemically within the same time frame. These results are discussed in terms of slow through-space charge transfer and the globular 3-D folding of the molecules.
Ebrazeh, Ali; Bozorgzadeh, Bardia; Mohseni, Pedram
2015-01-01
This paper demonstrates the feasibility of utilizing impulse radio ultra wideband (IR-UWB) signaling technique for reliable, wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) to address the problem of elevated data rates in high-channel-count neurochemical monitoring. Utilizing an FSCV-sensing chip fabricated in AMS 0.35μm 2P/4M CMOS, a 3-5-GHz, IR-UWB transceiver (TRX) chip fabricated in TSMC 90nm 1P/9M RF CMOS, and two off-chip, miniature, UWB antennae, wireless transfer of pseudo-random binary sequence (PRBS) data at 50Mbps over a distance of <;1m is first shown with bit-error rates (BER) <; 10(-3). Further, IR-UWB wireless transmission of dopamine concentration levels prerecorded with FSCV at a CFM during flow injection analysis (FIA) is also demonstrated with transmitter (TX) power dissipation of only ~4.4μW from 1.2V, representing two orders of magnitude reduction in TX power consumption compared to that of a conventional frequency-shift-keyed (FSK) link operating at ~433MHz.